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SUMMARY

One of the pillars of the scientific method is the fact that all scientific predictions and ex-
planations of phenomena in the universe are testable. Testing in the context of physics
involves the action of measuring. Thus, the measurement process plays an important
role in physics.
While classically we all understand the idea of measurement in a very straightforward
fashion, in quantum mechanics the concept of measurement departs from our everyday
experience in physics. In fact, although the quantum measurement obeys rather simple
rules, its interpretation has been a subject of discussion since the beginning of the 20th
century.
Some of the physics involved in the process of a quantum measurement have no classi-
cal analogues, challenging in this way our intuition: the famous paradox of a cat in a box
is a clear example of this.

In recent years, with the boom of quantum information and computing, it has be-
come evident that the ability to control a quantum system is of crucial technological
importance. For that, a sufficiently general description of the measurement process is
needed. The theory of continuous weak linear measurement (CWLM) provides such de-
scription. In contrast with the usual descriptions, a sufficiently weak coupling between
the quantum system and multiple degrees of freedom of a detector mediates their en-
tanglement and results in a conversion of discrete quantum information into continu-
ous time-dependent readings of the detector. It provides a description that involves the
requirement of a measurement time and a continuous set of measurement outcomes;
two important characteristics missing in other generally used descriptions.

In this thesis we put forward a framework to compute the statistics of CWLM.
In Chapter 2, we reveal and investigate two signatures of the measurement statistics dur-
ing conditioned quantum evolution related to purely quantum interference effects. We
concentrate on a relevant case of conditioned evolution where the information of the
state before (preparation) and after (post-selection) a measurement can lead to drasti-
cally different statistics than the unconditioned case. The first signature is that of half-
quantization; where either peaks or dips at half-quantized values of the measurement
output appear in the probability distribution of measurement outcomes. The second
signature, we term sudden-jump of the integrated output; where in the case of zero over-
lap between pre and post-selected states, a jump of integrated output appears at small
time scales, revealing unconventionally large values of the average output.
Chapter 3 extents these results to the case of the measurement of two non-commuting
variables. In this way we investigate the interplay of extra decoherence due to the simul-
taneous measurement of non-commuting variables with the goal of revealing the signa-
tures of quantum interference in conditioned evolution in the statistics of measurement

ix
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outcomes.
We generalise the theoretical framework for the description of continuous quantum mea-
surements and the statistics of the measurement results in Chapter 4. We present vari-
ous approaches to the problem and show their equivalence. These include the use of a
full counting statistics evolution equation for a pseudo-density matrix, a drift-diffusion
equation for a density matrix in the space of detector outcomes and discrete stochastic
updates. We also provide the derivation of the underlying equations and stablish the
necessary conditions on the phenomenological parameters that guarantee the physical
interpretation of these results.
Finally, in Chapter 5, we take a closer look at the idea of stochastic updates. Using this
idea, we show a scheme to numerically simulate a CWLM. This allows us to generate
single quantum trajectories of the measured system and the integrated measurement
signal. Using a simple example of a qubit non-demolition measurement we numerically
investigate a rather counter-intuitive fact: the average output of a measurement condi-
tioned on the final state does not depend on time.
Next, we consider how fast a decisive CWLM can be. We conclude by showing how
this method can be extended to engineer and simulate simple measurement feedback
schemes. In these schemes, the information collected from the statistics of the mea-
surement output can be used in real time to condition the qubit evolution. Thus, moving
from the more formal computation of measurement statistics to the direction of quan-
tum control engineering.



SAMENVATTING

Eén van de bouwstenen van de wetenschappelijke methode is het feit dat alle weten-
schappelijke voorspellingen en verklaringen van fenomenen in het universum testbaar
zijn. In natuurkundige context is testen gerelateerd aan de actie van het meten. Daarom
speelt het meetproces een belangrijke rol in de natuurkunde.
Terwijl we allemaal op een eenvoudige manier het idee van een klassieke meting kun-
nen begrijpen, wijkt het concept van een meting in de kwantummechanica af van onze
dagelijkse ervaring in de natuurkunde. Ondanks dat de kwantummeting betrekkelijk
eenvoudige regels volgt, is de interpretatie ervan het onderwerp van discussie sinds het
begin van de twintigste eeuw.
Een deel van de natuurkunde met betrekking tot het proces van een kwantummeting
heeft geen klassieke analoog, waardoor het onze intuïtie uitdaagt: het beroemde voor-
beeld van de kat in de doos is daarvan een duidelijk voorbeeld.

Door de snelle ontwikkelingen in de kwantuminformatie en -berekening van de af-
gelopen jaren is het duidelijk geworden dat het vermogen om een kwantumsysteem te
controleren van cruciaal technologisch belang is. Daarvoor is een voldoende algemene
beschrijving van het meetproces benodigd. De theorie van continue zwakke lineaire
meting (continuous weak linear measurement, CWLM) voorziet in zo’n beschrijving. In
contrast met de gebruikelijke beschrijvingen geeft een voldoende zwakke koppeling tus-
sen het kwantumsysteem en meerdere vrijheidsgraden van een detector verstrengeling
door en resulteert het in een conversie van discrete kwantuminformatie naar continue
tijdafhankelijke aflezingen van de detector. Het voorziet in een beschrijving dat betrek-
king heeft tot de voorwaarde van een meettijd en een continue verzameling van meetuit-
komsten, twee belangrijke karakteristieken die missen in andere algemeen gebruikte be-
schrijvingen.

In deze thesis presenteren we een kader om de statistieken van CWLM te berekenen.
In Hoofdstuk 2 onthullen en onderzoeken we twee kenmerken van de meetstatistieken
gedurende geconditioneerde kwantumevolutie, gerelateerd aan pure kwantuminterferentie-
effecten. We concentreren op een relevant geval van geconditioneerde evolutie, waarin
de informatie van de toestand vóór (preparatie) en na (post-selectie) een meting kan
leiden tot drastisch verschillende statistieken vergeleken met het ongeconditioneerde
geval. Het eerste kenmerk is dat van half-kwantisatie, waarbij pieken of dalen op half-
gekwantiseerde waarden van de meetuitkomst verschijnen in de waarschijnlijkheidsver-
deling van meetuitkomsten. Het tweede kenmerk noemen we de plotse sprong van de ge-
ïntegreerde output, waar in het geval van nul overlap tussen pre- en post-geselecteerde
toestanden een sprong in de geïntegreerde output verschijnt op korte tijdschalen, waar-
bij het onconventioneel grote waarden van de gemiddelde output onthuldt.
Hoofdstuk 3 breidt deze resultaten uit naar het geval van de meting van twee niet-commuterende
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variabelen. Op deze manier onderzoeken we het samenspel van extra decoherentie ver-
oorzaakt door de gelijktijdige meting van niet-commuterende variabelen, met als doel
het ontdekken van kenmerken van kwantuminterferentie in geconditioneerde evolutie
in de statistiek van meetuitkomsten.
We generaliseren het theoretisch kader voor de beschrijving van continue kwantumme-
tingen en hun resulterende statistieken in Hoofdstuk 4. We presenteren verschillende
benaderingen van het probleem en tonen hun equivalentie. Deze benaderingen be-
vatten het gebruik van een evolutievergelijking voor volledige tellingstatistiek van een
pseudo-dichtheidsmatrix, een drift-diffusievergelijking voor een dichtheidsmatrix in de
ruimte van detectoruitkomsten en discrete stochastische updates. We geven ook de af-
leiding van de onderliggende vergelijkingen en we stellen de benodigde voorwaarden
vast voor de fenomenologische parameters die de fysische interpretatie van deze resul-
taten garanderen.
Als laatste bekijken we in Hoofdstuk 5 het idee van stochastische updates. Gebruikma-
kend van dit idee presenteren we een schema om een CWLM numeriek te simuleren.
Dit geeft ons de mogelijkheid om enkele quantumpaden van het gemeten systeem en
het geïngegreerde meetsignaal te genereren. Door een eenvoudig voorbeeld van een
niet-verstorende qubitmeting te gebruiken onderzoeken we numeriek een zeer tegen-
intuïtief feit: de gemiddelde output van een meting geconditioneerd op de uiteindelijke
toestand is onafhankelijk van de tijd.
Daarna beschouwen we hoe snel een beslissende CWLM kan zijn. Tenslotte tonen we te
tonen hoe deze methode kan worden uitgebreid om eenvoudige meting-terugkoppelingschema’s
te construeren en te simuleren. In deze schema’s kan de informatie verzameld vanuit
de statistieken van de meetoutput onmiddelijk gebruikt worden om de qubitevolutie te
conditioneren. Hiermee bewegen we ons van de meer formele berekening van meetsta-
tistieken in de richting van kwantumcontrole-ontwikkeling.
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2 INTRODUCTION

1.1. PREFACE
Almost a century after the advent of quantum mechanics and despite its success in ex-
plaining phenomena observed in the physical world, the abstract status of the theory is
still discussed to understand it deeper [1]. The discussion is commonly centered around
two main areas depicted by two famous paradoxes: the Schrödinger’s cat paradox [2] and
the Einstein-Podolsky-Rosen paradox [3]. This thesis relates to the first, which is often
known as the quantum measurement problem.

Measurement is the abstract promoter of the wave function collapse which, in 1927,
Werner Heisenberg contemplated as a way of describing the measurement process [4].
In this same work he presented his famous uncertainty principle and used it as a physi-
cal explanation of quantum uncertainty.
The following discussions concerning the topic gave rise to different interpretations of
quantum mechanics, as it would seem nature was fundamentally stochastic, a property
people found difficult to accept. Half a century later, the idea of quantum decoherence
is consolidated and mainstream, and used to understand the quantum measurement
problem in the framework of interaction of various quantum systems [5].

From a pragmatical point of view, any observation in an experimental setup requires
at least a minimal understanding of the measurement process. In that spirit, far away
from starting yet another debate on the interpretation of the measurement process or
trying to explain the measurement problem, this thesis aims at providing a new theo-
retical framework that incorporates all the needed ingredients for a physically relevant
description of a quantum measurement.
For that, this introduction will follow a pedagogical approach in building this frame-
work. Pedagogical in the sense that it will be built from the bottom up, starting with
the most basic mathematical description of a quantum measurement usually provided
in any introductory course of quantum mechanics. Recalling the main problems of this
description from a physical point of view, we will introduce the concept of a continuous
weak measurement.
Finally, we will shift the focus of attention to not only the measured system, but also
the detector and the classical outcomes of the measurement process. With this, I will
provide a mathematical framework in the paradigm of continuous weak linear measure-
ment (CWLM).

1.2. QUANTUM MEASUREMENT
In most undergraduate courses in quantum mechanics, the theory is introduced start-
ing with its mathematical structure. For that, it is usual to mention the postulates of
quantum mechanics or directly the Dirac-von Neumann axioms, introduced by Dirac
(1930) [6] and von Neumann (1932) [7]. It is in postulate number 3 that the concept
of measurement is first mentioned. Historically, this postulate is also known as Born’s
Rule [8]. Born’s rule can be described by two simple statements: (1) Let the unit vectors
|b〉 and |a〉 represent the states before and after the measurement, b and a, respectively.
(2) If the state before the measurement is b, the probability of the measurement outcome
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corresponding to the state a, is given by

P (a|b) = |〈a|b〉|2, (1.1)

where |〈a|b〉| symbolize the absolute value of the inner product of the vectors |b〉 and |a〉.

What is not clear with this postulate is which property of the physical world explains
why (1) and (2) lead to exceptional correspondence between experiments and theory.
For more details see, e. g., [9].
Nowadays we have a more detailed mathematical description of postulate 3. Here I will
adopt the basic definitions that appear in [10] and collect the essential concepts of this
postulate in the reminder of this section.

1.2.1. PROJECTIVE MEASUREMENTS
The first class of measurements that are usually introduced are the so called projective
measurements. A projective measurement is described by a physical observable M̂ . This
observable has a spectral decomposition M̂ = ∑

m P̂m , where P̂m is the projector on to
the eigenspace of M̂ with eigenvalue m.
The possible outcomes of the measurement correspond to the eigenvalues, m, of the
observable. If the state of the system is |Ψ〉 immediately before the measurement then
the probability that result m occurs is given by

P (m) = 〈Ψ|P̂m |Ψ〉 . (1.2)

Given that the outcome m occurs, the state of the measured system immediately
after the measurement is

P̂m |Ψ〉p
P (m)

. (1.3)

Projective measurements are a special case of a broader class of measurements (a
special case of postulate 3). Upon being measured the system is successfully projected
to a specific eigenspace of the observable measured. They are also called von Neumann
measurements.

1.2.2. GENERAL MEASUREMENTS
It is worth noting that, for a large number of physical experiments, the notion of projec-
tive measurements is enough to describe the experiment with high accuracy. However,
postulate 3 can be introduced in a more general fashion.

In this definition, quantum measurements are described by a collection {M̂m} of
measurement operators. The index m labels the measurement outcomes that may occur
in the experiment. If the state of the system is |Ψ〉 immediately before the measurement
then the probability that result m occurs is given by

P (m) = 〈Ψ|M̂ †
m M̂m |Ψ〉 , (1.4)
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and the state of the system after the measurement is

M̂m |Ψ〉√
〈Ψ|M̂ †

m M̂m |Ψ〉
. (1.5)

These measurement operators satisfy a completeness relation,∑
m

M̂ †
m M̂m = 1̂, (1.6)

which expresses the fact that probabilities sum to one.

1.2.3. POVM MEASUREMENTS
Another special case of this more general version of postulate 3 are the so called POVM
measurements. The acronym stands for "Positive Operator-Valued Measure".
This special case is naturally used in situations where the post-measurement state of the
system is of little interest, with the main item of interest being the probabilities of the
respective measurement outcomes.

Suppose we define

Êm ≡ M̂ †
m M̂m (1.7)

for the same measurement situation described above. The set of operators Êm are
sufficient to determine the probabilities of the different measurement outcomes. These
are known as the POVM elements associated with the measurement, with the complete
set {Êm} known as a POVM. Note that by this definition, Êm is a positive operator that
completes the identity.
This formalism is a simple consequence of the general measurements description intro-
duced previously. However, POVM measurements are an elegant and widely used theory,
that deserves a separate mention.

1.2.4. HOW DO THEY FIT TOGETHER?
Most introductory courses on quantum mechanics give only one description of postu-
late 3 in the form of projective measurements. The idea of general measurements or the
POVM formalism are consequently unfamiliar to many physicists. Given the historical
controversy around the subject of quantum measurement it is surprising that this is in
fact the case. The main reason for it is that in most physical scenarios measurements
can only be performed in a very harsh manner.
More general and detailed descriptions only start to be relevant when one aims for a
high level of control of the measurements to be done. This is precisely why in the last 30
years more general and precise descriptions of quantum measurement appeared; rapid
technological progress has made the fields of quantum information, computation and
simulation flourish quickly.
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Interestingly enough, one may argue that given the formalism of projective mea-
surements and augmenting it with unitary operations it is possible to find a description
equivalent to general measurements. However, there are several reasons why general
measurements are a better starting point to describe the measurement process.
First, general measurements are simpler than projective measurements in that they in-
volve fewer restrictions on the measurement operators. Which gives rise to useful prop-
erties for general measurements that projective measurements do not possess. Second,
important problems in the fields of quantum information and computation - such as the
the optimal way to distinguish a set of quantum states - involve the use of general mea-
surements, rather than projective measurements.
A third reason is related to the repeatability of projective measurements. If we perform
a projective measurement and obtain the outcome m, repeating the measurement will
give the outcome m each time without changing the state of the measured system. Al-
though it seems a desirable quality for a physical measurement in terms of trust, as a
formalism it lacks the ability to correctly describe many physical measurements that are
not repeatable (usually measurements where the measured system is destroyed).

But why are then POVMs a special case that should be mentioned? POVMs are best
viewed as a mathematical tool, providing the simplest means by which general measure-
ment statistics can be described, without necessarily knowing the post-measurement
state. They are, in fact, a mathematically convenient way to study quantum measure-
ment that sometimes can give extra insights into quantum measurements.

1.3. CONTINUOUS WEAK LINEAR MEASUREMENT

1.3.1. THE NEED FOR A MORE DETAILED PHYSICAL DESCRIPTION

In the last subsection we made clear why general measurements are the way to go when
describing a quantum measurement. However, several questions remain elusive when
we want to describe a measurement in the context of an experiment.

So far we described the measurement process as an instantaneous event, which abruptly
changes the wave function of the measured system and gives a discrete result. This de-
scription is notably not physical. The measurement process in an experiment is indeed
neither instantaneous nor discrete. The statistics and measurement results take a finite
time to accumulate and the measurement results form a continuous set, rather than a
discrete one.
In addition, there is no description of the measuring device. The idea that the detector is
a quantum system that may be substantially bigger than the measured system becomes
relevant if one wants to describe the measurement process with experimentally relevant
quantities like noises or susceptibilities.

Thus it is clear that there is a need for a larger class and framework of quantum mea-
surement. Such description is provided by the theory of Continuous Weak Linear Mea-
surement (CWLM) [11–16], where a sufficiently weak coupling between the quantum



1

6 INTRODUCTION

system and multiple degrees of freedom of a detector mediates their entanglement and
results in conversion of discrete quantum information into continuous time-dependent
readings of the detector. The description follows from general linear response theory and
gives an explicit connection between quantum measurement and quantum noise. [17–
19]

It is worth noting that the same measurement paradigm can be achieved extending
the general measurement theory introduced in the previous section by taking into ac-
count a quantum description of the detector system and a coupling between detector
and measured system. In fact, Any CWLM can be described as a general quantum mea-
surement, which involves a measured system and detector degrees of freedom.
Interestingly enough, although the name von Neumann is associated to projective mea-
surements. His seminal work [7] introduced what is known as the von Neumann mea-
surement scheme which already described measurements by taking into account the
measuring apparatus as a quantum object, thus paving the way for concepts like quan-
tum decoherence.

1.3.2. CWLM DESCRIPTION
Consider the simplest measurement scenario in which a quantum system with dynam-
ics described by a Hamiltonian Ĥs is being measured using another quantum system
(the detector), with its dynamics described by Ĥd .
For the detector to have some information about the measured system, a coupling inter-
action is introduced. The complete dynamics of this scenario can then be described by
a total Hamiltonian

Ĥ = Ĥs + Ĥd + Ĥc , (1.8)

where Ĥc = ÔQ̂ is the coupling Hamiltonian. With Ô acting on the space of the measured
system and the detector’s input variable Q̂ acting on the detector’s space.

As mentioned, it is an important feature of CWLM that the information is transferred
from the measured system to the measuring apparatus. Thus, the measurement out-
come is represented by the detector degrees of freedom. These detector degrees of free-
dom are continuous variables, in contrast to the discrete result of a projective measure-
ment. Additionally these variables might be subject to noise, and this noise can affect
the measured system too.
In comparison with the previously introduced measurement schemes, the CWLM takes
time to both accumulate information and to distort the measured system. The time ta

required to obtain a result with sufficient accuracy is called measurement time or acqui-
sition time and is characteristic of a CWLM setup.
It is another characteristic of CWLM that the dynamics of these detector variables are
linear. Thus in general the form of Ĥd is that of a boson bath. The input and output of
the detector are given by the input and output variables Q̂ and V̂ respectively. Arbitrary
linear dynamics are reproduced if these variables are linear combinations of the boson
creation/annihilation operators.
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In the spirit of linear response theory [20–22] and of the Caldeira-Legget approach [23],
all the information of the measurement can be expressed in terms of the two point cor-
relators of the detector input and output variables:
The noises

SQQ =1

2

∫ t

−∞
d t ′

〈〈
Q̂(t )Q̂(t ′)+Q̂(t ′)Q̂(t )

〉〉
, (1.9a)

SQV =1

2

∫ t

−∞
d t ′

〈〈
Q̂(t )V̂ (t ′)+ V̂ (t ′)Q̂(t )

〉〉
, (1.9b)

SV V =1

2

∫ t

−∞
d t ′

〈〈
V̂ (t )V̂ (t ′)+ V̂ (t ′)V̂ (t )

〉〉
, (1.9c)

where
〈〈

ÂB̂
〉〉= 〈

(Â−〈
Â

〉
)
〉〈

(B̂ −〈
B̂

〉
)
〉

. And the response functions,

aQQ =− i

ħ
∫ t

−∞
d t ′

〈
[Q̂(t ),Q̂(t ′)]

〉
, (1.10a)

aQV =− i

ħ
∫ t

−∞
d t ′

〈
[Q̂(t ),V̂ (t ′)]

〉
, (1.10b)

aV Q =− i

ħ
∫ t

−∞
d t ′

〈
[V̂ (t ),Q̂(t ′)]

〉
, (1.10c)

aV V =− i

ħ
∫ t

−∞
d t ′

〈
[V̂ (t ),V̂ (t ′)]

〉
, (1.10d)

as given by linear response theory and the Kubo formula [24]. In contrast to general
approaches, thermodynamic equilibrium is not assumed. In fact, in most practical de-
tectors this assumption is wrong, as signal amplification cannot take place in thermal
equilibrium. To guarantee the linear dynamics of the detector variables we require that
Wick’s theorem holds for the boson operators involved. This is sufficient for the CWLM
to be a Gaussian process, meaning that these two-point correlators are enough to com-
pletely define the measurement process.

The usefulness of this approach becomes clear when understanding the physical
meaning of these detector correlation functions. Let us note that the two point corre-
lators in Eq. (1.9) are nothing more than quantum noises [17] of different detector vari-
ables. SQQ is the noise of the input variable. It is responsible for the inevitable measure-
ment back action and associated decoherence of the qubit. SV V is the output variable
noise: it determines the time required to measure the detector outcome with a given
accuracy. The cross noise SQV quantifies possible correlations of these two noises. The
response function aV Q determines the detector gain: it is the susceptibility relating the
detector output to the qubit variable measured,

〈
V̂

〉 = aV Q
〈
Ô

〉
. The response function

aQV is correspondingly the reverse gain of the detector: it gives the change of the qubit
variable proportional to the detector reading. Other response functions aQQ , aV V are,
respectively, related to the input and output impedances and are not of immediate in-
terest for us. Conforming to the assumption of slow qubit dynamics, the noises are white
and responses are instant.
These correlators are constrained by a Cauchy-Schwartz inequality:
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SQQ SV V − ∣∣SQV
∣∣2 ≥ ħ2

4

∣∣aV Q −aQV
∣∣2. (1.11)

With this, one can define and relate the dephasing rate γ = SQQ /ħ2 and the acqui-

sition time ta ≡ 4SV V /
∣∣aV Q

∣∣2 required to measure the variable with O with a relative
accuracy ' 1. If one further assumes the direct gain to be much larger than the reverse
gain, aV Q À aQV , it is implied that

γta ≥ 1 (1.12)

This figure of merit shows that one cannot measure a quantum system without dephas-
ing it.

1.3.3. RESULT OF A CWLM
The output of a linear detector is a continuous number defined for a continuous time
interval, T , that is the duration of the measurement. It has a spectrum defined by SV V

and the instant output value has an infinite variance so an actual experimental reading

gives the output integrated over the measurement time V ≡ 1
T

∫ t+T
t dτV̂ (τ). Thus, the

result of a CWLM has a finite variance SV V /T .

For each state of the measured system ρ̂, the probability of getting the result V for a
CWLM of duration T can be described by the Gaussian distribution

Pρ(V ) =
√

T

2πSV V
exp

−
(
V −aV Q

〈
Ô

〉
ρ

)2
T

2SV V

 , (1.13)

with 〈O〉ρ = Tr
[
ρ̂Ô

]
. So the statistics of such measurement are described by the proba-

bility distribution of measurement outcomes:

P (V ) =
√

T

2πSV V

∑
i
ρi exp

(
−

(
V −aV QOi

)2
T

2SV V

)
, (1.14)

where the state ρ̂ of the measured system has been expressed in the eigenbasis of the
measured variable Ô . Meaning ρ̂ =∑

i ρi |i 〉〈i | where Ô |i 〉 =Oi |i 〉.

Several characteristics of CWLM are depicted by this distribution. First, let us con-
sider the duration of measurement T . The separation of the means of the distributions
for two different eigenstates i 6= j grows linearly with the measurement duration, while
the width of the distributions diminishes as

p
T . At small measurement durations the

distribution covers all possible measurement results while at infinitely long measure-
ment durations the distribution converges to a delta distribution peaked at the mean
value

〈
V̂

〉= aV Q
〈
Ô

〉
.

This shows how a CWLM converges to a projective measurement for infinite measure-
ment times T → ∞. And how at infinitely small measurement durations T → 0, the
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measurement result contains no information about the measured system.

To exemplify this a bit further, let us consider the simple scenario of a qubit measure-

ment. Imagine a measurement of the σ̂z variable of a qubit system in the state ρ̂ = 1̂+σ̂x
2 .

In this case we can write the distribution in Eq. (1.14) as,

P (v) =
√

t

2π

(
1

2
exp

(
− (v −1)2 t

2

)
+ 1

2
exp

(
− (v +1)2 t

2

))
, (1.15)

Where we normalized the output v = V /aV Q and the time scale t = T a2
V Q /SV V . With

this the average output corresponds with the measured variable 〈v〉 = 〈σ̂z〉.

This distribution is now composed of two Gaussian distributions, centred at the two
possible outcomes ±1of the projective measurement of the qubit variable. It is shown
in Fig. 1.1 for different measurement times t . For small times t ¿ 1 the width of the
two Gaussian distributions is so big that one cannot distinguish one from another and
the measurement is completely noise dominated. At this time scale it is impossible to
resolve in which state the measured system is. At the time T = ta , i.e., t = 4, the two
peaks are sufficiently narrow such that one can resolve them with accuracy ∼ 1.
Finally, in the limit t →∞ the distribution becomes two delta peaks at the position of the
two eigenvalues ±1, and with certainty one of the two results is obtained with probability
1/2. This is what we expect for the projective measurement of σ̂z of a qubit initially in

the state ρ̂ = 1̂+σ̂x
2 .

1.3.4. THE STATE OF THE MEASURED SYSTEM
So far we have explored the physics of a CWLM in terms of the detector statistics and
seen that it is sufficient to define the two-point correlation functions in Eq. (1.9) and
(1.10) of the detector variables to have a complete description of the measurement pro-
cess.
However, in all the previously introduced classes of measurements, the state of the sys-
tem after the measurement is defined. What happens then to the measured system dur-
ing a CWLM?

Let us go back to the total Hamiltonian of the system and detector in Eq. (1.8). If we
do not consider any other interaction, the dynamics of the complete system are defined
by this Hamiltonian.
Assuming that the coupling between system and measurement apparatus turns on at a
definite time such that both systems are initially separate, i.e., on a product state R̂(0) =
ρ̂⊗ ρ̂d . With ρ̂ being the initial state of the measured system and ρ̂d the initial state of
the detector. Then the dynamics of the total system can be computed as

∂R̂

∂t
= i

ħ [Ĥ , R̂]. (1.16)

Solving this equation is in general a difficult task. In most cases it is more practical
to concentrate on one of the two systems. This can be done by tracing out the degrees of
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Figure 1.1: Distribution of measurement results, P (V ), for a CWLM of the σ̂z variable of a qubit initially in the

state ρ̂ = 1̂+σ̂x
2 . For small measurement times (blue curve) the two qubit states cannot be resolved and the

measurement is noise dominated. For a measurement duration T = ta (green curve), the two eigenvalues ±1
corresponding to the two qubit eigenstates can be resolved with an accuracy ∼ 1. Finally, for relatively long
measurement times (orange curve), the CWLM statistics become close to those of a projective measurement.
Showing two peaks at the two eigenvalues with a width that decreases as 1/

p
t .

freedom of the other system and obtaining an equation for the system of interest alone.
In the case of quantum measurement, in most practical scenarios we will be interested
in the dynamics of the measured system.

Here, we assume that the coupling between the measured system and the detector
is weak enough that the detector’s state is negligibly affected by the interaction on the
time scale of the evolution of the measured system. This is a usual assumption in open
quantum system dynamics. The assumption of a weak coupling is in fact responsible for
the terminology of weak measurement.
A time-dependent perturbation theory seems appropriate to tackle this problem. Thus,
one could compute the dynamics of the measured system as

∂ρ̂

∂t
=− i

ħ [Ĥs , ρ̂]− 1

ħ2

∫ t

−∞
Trd

{
[Ĥc (t ), [Ĥc (t ′), R̂(t ′)]]

}
d t ′, (1.17)

where Trd corresponds to the partial trace over the detector degrees of freedom. Note
that the first order contribution vanishes by construction as

〈
Q̂

〉= 〈
V̂

〉= 0.

This resembles the Nakajima–Zwanzig equation that describes the time evolution of
the density matrix ρ̂. Note that this equation is not local in time, and the state at time
t depends on the state at previous times t ′. The effect of the detector relates these two
times and it is hidden in a memory kernel, the form of which can be explicitly written:
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∂ρ̂

∂t
− i

ħ [Ĥs , ρ̂]− 1

ħ2

∫ t

−∞
d t ′

{〈
Q̂(t )Q̂(t ′)

〉
[Ô (t ), Ô (t ′)ρ̂(t ′)]+〈

Q̂(t ′)Q̂(t )
〉

[ρ̂(t ′)Ô (t ′), Ô (t )]

}
.

(1.18)
It is clear from this expression that the state of the measured system can also be com-

pletely described by the two-point correlators in Eq. (1.9).

Although this equation can describe almost any physical situation, the fact that it is
not local in time makes it very difficult to work with. However, it can be modified to a
master equation that is local in time and still be valid in most experimentally relevant
scenarios.

At this point, the so called Markov approximation is used. When the time scale as-
sociated with the reservoir (in this case, the detector) correlations is much smaller than
the time scale over which the density matrix of the measured system varies appreciably.
Then one can approximate ρ̂(t ′) ≈ ρ̂(t ). This is true for a "memory-less" bath.
Another way of stating it is that the large size of the detector system (the proximity of its
energy levels) ensures that from one moment to the next the system effectively interacts
with a different part of the environment. With this, one obtains a Bloch-Redfield type of
master equation. All these steps are often called the "Born-Markov" approximation.
It is worth mentioning that although this Bloch-Redfield equation is trace preserving and
correctly reproduces a physical state for asymptotic propagation, it does not guarantee
the positivity of the density matrix ρ̂. This equation approaches the correct dynamics
only for sufficiently weak couplings.

With one more approximation one can ensure the positivity of the density matrix.
The equation is then called Lindblad equation [25], and it is the most common form
describing the dynamics of open quantum systems.
This last approximation involves averaging over rapidly oscillating terms in the Bloch-
Redfield equation. In general, a preferred choice of the spectral properties of the bath
(detector) correlation functions is enough to ensure this. In particular, assuming fast
correlation decay (i.e., instant detector responses and white, frequency-independent,
noises) is enough to guarantee this form:

∂ρ̂

∂t
=− i

ħ [Ĥs , ρ̂]− SQQ

ħ2 D[Ô ]ρ̂, (1.19)

with D[Â]ρ̂ ≡ ( 1
2 [Â† Â, ρ̂]+− Âρ̂ Â†

)
.

1.3.5. OTHER METHODS
We chose a very particular method to introduce CWLM in order to highlight its sim-
plicity and the similarity to experimental research with respect to the relevant physical
quantities. However, a description of CWLM can be achieved by several methods. In
simple situations like non-demolition measurements [12] one can use the quantum fil-
tering equation [26]. More sophisticated approaches include the effective action method
[11, 15], path integral formulation[14, 27] and past states formalism [28].
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Some methods rely on the general measurement definition introduced by postulate 3 of
the previous section. For example, a powerful numerical method of experimental signif-
icance is the stochastic update equation [29] which allows to monitor the density matrix
taking into account the measurement results. In this method, the distribution of out-
comes is obtained numerically by collecting statistics of the realizations of "quantum
trajectories".
Continuous measurement and monitoring of quantum systems, and even the informa-
tion about single quantum trajectories [30–36] have been recently achieved in exper-
iments thanks to recent technological advances. Thus, making the stochastic update
equation or "quantum trajectories" an important description of CWLM.

In contrast to these methods, the method of Ref. [27] permits the direct computation
of the generating function of the probability distribution of detector outcomes. It unifies
the full system and detector statistics in a single equation. In the following section we
will introduce this method by extending the density matrix of the measured system to
incorporate the detector statistics.

1.4. COUNTING STATISTICS METHOD
Consider again the simple example of a system being measured by a single detector. The
detector is characterised by linear dynamics of its input and output variables Q̂ and V̂
respectively.
The density matrix evolution during a CWLM can be described using the noises and re-
sponse functions in Eq. (1.9) and (1.10), but what about the statistics of the measurement
outcome? Conforming to the linear dynamics of the detector, a Normal probability dis-
tribution is expected (Eq. (1.14)). However, so far it seems like direct computation of the
statistics of measurement outcomes cannot be achieved from the Hamiltonian dynam-
ics. It would be fundamentally interesting to do this in the same fashion as we did for the
measured system statistics.

To achieve this, one starts again with the Hamiltonian in Eq. (1.8). The statistics of the
detector variable V̂ can be evaluated by introducing a counting field χ(t ) coupled to the
output variable V̂ . This field plays the role of the parameter in the generating function
C (χ(t )) of the probability distribution of the detector readings V (t ).
This generating function is computed in the extended Keldysh scheme [19] where the
evolution of the "ket" and "bra" wave functions is governed by different Hamiltonians,
Ĥ+ and Ĥ− respectively. The extra term describing the interaction with the counting
field reads Ĥ± = Ĥ ±ħχ(t )V̂ (t )/2. This method was first employed in Ref. [37].
This generating function then has the form

C ({χ(t )}) = Trs
(
ρ̂({χ(t )})

)
, (1.20)

ρ̂ being now a quasi-density matrix of the system after the evolution,

ρ̂(χ; t ) = Trd

(−→
T e−i /ħ∫

d t Ĥ−
R̂(0)

←−
T e+i /ħ∫

d t Ĥ+)
. (1.21)

Here, Trs (· · · ) and Trd (· · · ) denote the trace over system and detector variables, respec-
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tively, and
−→
T (

←−
T ) denotes time (reversed) ordering in evolution exponents. R̂(0) is the

initial density matrix for both measured and detector systems.

Assuming white noises and instant responses, one can derive a Bloch-master equa-
tion for the quasi-density matrix that is local in time. This is done in the same spirit as
one derives Eq. (1.19).

∂ρ̂

∂t
= − i

ħ [Ĥq , ρ̂]− SQQ

ħ2 D[Ô ]ρ̂− χ2(t )
2 SV V ρ̂ (1.22)

− SQV

ħ χ(t )[ρ̂, Ô ]+ i aV Qχ(t )
2 [ρ̂, Ô ]+.

Here, [·, ·] and [·, ·]+ refer to commutator and anti-commutator operations respectively
and we have also assumed aV Q À aQV , a general condition for a good amplifier.

Imagine a single measurement over a time interval (0,T ). To define the output of
such measurement, one accumulates the time-dependent detector output during this

time interval and normalizes it by the same interval: V ≡ 1
T

∫ T
0 V (t ′)d t ′. The counting

field χ(t ) corresponding to this output is conveniently constant , χ(t ) ≡ χ, on the time
interval (0,T ) and 0 otherwise. The probability distribution of the detector outcomes
can be computed from the generating function defined by Eq. (1.20),

P (V ) = T

2π

∫
dχe−iχV T C (χ;T ). (1.23)

The joint statistics are extracted from the quasi-density matrix ρ̂(χ;T ) at time T .

In this thesis we will formulate the theory of CWLM using this latter method, as it has
several advantages over other formulations:
Firstly, the statistics of the measured system and the statistics of the measurement results
are computed in an equal footing. Computing the statistics of the classical measurement
outputs via a generating function method allows us to use all the statistical machinery
developed for characteristic functions. This means that concrete and special distribu-
tions can be accessed easily: The equilibrium distributions of measurement outcomes,
distributions at specific measurement times under conditions of specific measurement
outputs at other times, even distribution of measurement outcomes conditioned on spe-
cific quantum states of the measured system or detectors at specific times [38, 39] can
be computed and studied in an elegant manner.
Secondly, it’s equivalence to other methods can be shown from microscopical, phe-
nomenological or interaction and numerical approaches [40]. It is thus a good foun-
dation for a general framework for describing CWLM.
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1.5. STRUCTURE OF THIS THESIS

1.5.1. CHAPTER 2: PROBABILITY DISTRIBUTIONS OF CONTINUOUS MEA-
SUREMENT RESULTS FOR CONDITIONED QUANTUM EVOLUTION

For a conditioned evolution, both the initial and final states of the system are fixed: the
latter is achieved by post-selection in the end of the evolution. The statistics may drasti-
cally differ from the nonconditioned case, and the interference between initial and final
states can be observed in the probability distributions of measurement outcomes, as
well as in the average values exceeding the conventional range of nonconditioned av-
erages. We develop a proper formalism to compute the distributions of measurement
outcomes, and evaluate and discuss the distributions in experimentally relevant setups.
We demonstrate the manifestations of the interference between initial and final states
in various regimes. We consider analytically simple examples of nontrivial probability
distributions. We reveal peaks (or dips) at half-quantized values of the measurement
outputs. We discuss in detail the case of zero overlap between initial and final states
demonstrating anomalously big average outputs and sudden jump in time-integrated
output. We present and discuss the numerical evaluation of the probability distribution
aiming at extending the analytical results and describing a realistic experimental situa-
tion of a qubit in the regime of resonant fluorescence.

1.5.2. CHAPTER 3: PROBABILITY DISTRIBUTIONS OF CONTINUOUS MEA-
SUREMENT RESULTS FOR TWO NON-COMMUTING VARIABLES SUB-
JECT TO CONDITIONED QUANTUM EVOLUTION

Both conditioned quantum measurement and that of two non-commuting variables dif-
fer drastically for either classical or quantum projective measurement. In this chapter we
explore the peculiarities brought by the combination of the two.
We put forward a proper formalism for the evaluation of the distributions of measure-
ment outcomes. We compute and discuss the statistics in idealized and experimentally
relevant setups. We demonstrate the visibility and manifestations of the interference
between initial and final states in the statistics of measurement outcomes for both vari-
ables in various regimes.
We analytically predict the peculiarities at the circle O2

1 +O2
2 = 1 in the distribution of

measurement outcomes in the limit of short measurement times and confirm this by nu-
merical calculation at longer measurement times. We analytically demonstrate anoma-
lously large values of the time-integrated output cumulants in the limit of short mea-
surement times (sudden jump) and zero overlap between initial and final states, and
give detailed distributions. Finally, we present the numerical evaluation of the probabil-
ity distributions for experimentally relevant parameters in several regimes and demon-
strate that interference effects in the conditioned measurement can be accurately pre-
dicted even if they are small.
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1.5.3. CHAPTER 4: STATISTICS OF CONTINUOUS WEAK QUANTUM MEASURE-
MENT OF AN ARBITRARY QUANTUM SYSTEM WITH MULTIPLE DETEC-
TORS

In this chapter, we establish a general theoretical framework for the description of con-
tinuous quantum measurements and the statistics of the results of such measurements.
The framework concerns the measurement of an arbitrary quantum system with an ar-
bitrary number of detectors under the realistic assumption of instant detector reactions
and white noise sources. We present various approaches to the problem, showing their
equivalence. The approaches include the full counting statistics (FCS) evolution equa-
tion for the pseudo-density matrix, the drift-diffusion equation for a density matrix in
the space of integrated outputs, and discrete stochastic updates. We provide the deriva-
tion of the underlying equations from a microscopic approach based on full counting
statistics, a phenomenological approach based on the Lindblad construction, and in-
teraction with auxiliary quantum systems representing the detectors. We establish the
necessary conditions on the phenomenological susceptibilities and noises that guaran-
tee the unambiguous interpretation of the measurement results and the positivity of the
density matrix. Our results can easily be extended to describe various quantum feedback
schemes where the manipulation decision is based on the values of detector outputs.

1.5.4. CHAPTER 5: CONDITIONED OUTPUTS, DISTRIBUTION OF DECISION

TIMES AND MEASUREMENT-BASED FEEDBACK SCHEME FOR CONTIN-
UOUS WEAK LINEAR MEASUREMENT OF A SIMPLE QUANTUM SYSTEM

We address the peculiarities of the quantum measurement process in the course of a
continuous weak linear measurement (CWLM). As a tool, we implement an efficient nu-
merical simulation scheme that allows us to generate single quantum trajectories of the
measured system state, as well as the recorded detector signal, and study statistics of
these trajectories with and without post-selection. In this scheme, a linear detector is
modelled with a qubit that is weakly coupled to the measured quantum system and is
subject to projective measurement and re-initialization after a time interval at each sim-
ulation step. We explain the conditions under which the scheme provides an accurate
description of CWLM.

We restrict ourselves to a simple but generic situation of a qubit non-demolition
measurement. The qubit is initially in an equal-weight superposition of two quantum
states. Over time, the detector signal is accumulated and the superposition is destroyed.
It is known that the times required to resolve the quantum states and to destroy the su-
perposition are of the same order. We prove numerically a rather counter-intuitive fact:
the average detector output conditioned on the final state does not depend on time. It
seems like the qubit knows its final state from the very beginning. We study statistics of
decision times, i.e. the time required for the density matrix along a certain trajectory to
reach a threshold where it is close to one of the resulting states. This is useful to estimate
how fast a decisive CWLM can be.
Based on this, we devise and study a simple feedback scheme that attempts to keep the
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qubit in the equal-weight superposition. The detector readings are used to decide in
which state the qubit is, and which correction rotation to apply to bring it back to the
superposition. We show how to optimize the feedback parameters and move towards
more efficient feedback schemes.
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2.1. INTRODUCTION
The concept of measurement is one of the most important, characteristic, and contro-
versial parts of quantum mechanics. Due to the intrinsically probabilistic nature of the
measurement and associated paradoxes, [1] it continues to attract research attention
and stimulate new experiments. The ability to control a quantum system that is of in-
creasing importance in the context of quantum information processing, requires an ade-
quate yet sufficiently general description of the measurement process. Such description
is provided by the theory of continuous weak linear measurement (CWLM), where a suf-
ficiently weak coupling between the quantum system and multiple degrees of freedom
of a detector mediates their entanglement and results in conversion of discrete quan-
tum information into continuous time-dependent readings of the detector. [2–8] The
description follows from the general linear response theory and gives an explicit con-
nection between quantum measurement and quantum noise. [9]
Recent experimental advances have made possible the efficient continuous measure-
ment and monitoring of elementary quantum systems (qubits) giving the information
on individual quantum trajectories. [10–12] The individual traces of quantum evolution
can be post-selected by a projective measurement at the end of evolution, thus enabling
the experimental investigation of conditioned quantum evolution where both initial and
final states are known. [13–16]

For experimentally relevant illustrations, we concentrate in this paper on a setup of
resonance fluorescence. [13] In this setup, a transmon qubit with ground state

∣∣g〉
and

excited state |e〉 is enclosed in a non-resonant three-dimensional (3D) superconduct-
ing cavity connected to two transmission lines. A resonant field drives the qubit via the
weakly coupled line, while most of the fluorescence signal exits via the other line which
is coupled strongly. The amplitude of the signal is proportional to σ−, the average of the
lowering operator σ̂− = ∣∣g〉〈e| of the qubit, and oscillates with the Rabi frequency Ω set
by the resonant drive.
A heterodyne detection setup is used to measure this signal. The measurement proceeds
in many runs of equal time duration. At each run, the qubit is prepared in a state |e〉 or∣∣g〉

and the signal is monitored at the time interval 0 < t <T . At the end of the interval,
t =T , one can projectively measure the qubit to find it either in the state |e〉 or

∣∣g〉
with

high fidelity using a microwave tone at the bare cavity frequency. With such a setup, the
fluorescence signal can be interpreted as a result of a weak continuous measurement,
that can be conditioned not only on an initial state but also on a final state by post-
selecting with the result of the projective measurement. The authors have concentrated
on the conditioned signal at a given moment of time that is averaged over many runs. Its
time traces reveal interference patterns interpreted in terms of weak values [17] and as-
sociated with the interference of initial and final quantum states in this context. [18, 19]

The concept of weak values has been introduced in [17] to describe the average result
of a weak measurement subject to post-selection in a simplified setup. The authors have
shown that the average measurement results may be paradoxically large as compared
to the outputs of corresponding projective measurements. Since that, the concept has
been extended in various directions, e.g. to account for the intermediate measurement
strength, the Hamiltonian evolution of the quantum states during the measurement, see
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[20, 21] for review. In [18], the average measurement outputs have been investigated in
the context of continuous weak measurement, this has been further elaborated in [22–
24]. As to the detailed statistics of the measurement outcomes, in this context it has
been considered only for simplified meter setups that correspond to measuring the light
intensities in quantum optics. [20, 21] There is a tendency to term "weak value" a re-
sult of any weak measurement that involves post-selection. This may be confusing in
general. For instance, the duration of a weak measurement can exceed the relaxation
time of the system measured. The averaged measurement output in this case is not af-
fected by post-selection and equals to the expectation value of the operator measured
with the equilibrium density matrix. This is very far from the original definition of weak
values [17]. We prefer to stick to the original definition.

We notice that the experiment discussed gives access not only to the conditioned
averages, but also to the conditioned statistics of the measurement results. For instance,
at each run one can accumulate the output signal on a time interval that is (0,T ) or a
part of it and record the results. After many runs, one makes a histogram of the records
that depends on the initial as well as on the final state of the qubit.

This article elaborates on the method to evaluate the distribution of the accumulated
signal and gives the detailed theoretical predictions of the conditioned statistics for ex-
amples close to the actual experimental situation, and in a wide range of parameters.

In this Article, we put forward and investigate two signatures of the conditioned
statistics. First is the half-quantized measurement values. A non-conditioned CWLM
distribution under favourable circumstances peaks at the values corresponding to quan-
tized values of the measured operator, in full correspondence with a text-book projective
measurement. We demonstrate that a conditioned distribution function displays pecu-
liarities — that are either peaks or dips — at half-sums of the quantized values.

Second signature pertains the case of zero or small overlap between initial and final
state and time intervals that are so short as the wave function of the system does not
significantly change. In this case, we reveal unexpectedly large values of the cumulants
of the distribution function of time-integrated outputs for such short intervals, that we
term sudden jump. For the average value of the output, the fact that it may by far exceed
the values of typical outcome of a projective measurement, can be understood from the
weak value theory [17]. We extend these results to the distributions of the output and
reveal the role of decoherence at small time intervals.

We stress that the signatures by itself present no new phenomenon. Rather, the basic
quantum phenomena like interference manifest themselves in these signatures in the
context of CWLM statistics. As such, we permit a re-interpretation of these phenomena
in the context considered.

Our approach to the CWLM statistics is based on the theory of full counting statistics
in the extended Keldysh formalism. [25] The statistics of measurements of

∫
d tV̂ (t ), V (t )

being a quantum mechanical variable representing linear degrees of freedom of the en-
vironment, are generated via a characteristic function method and the use of counting
field technique. It provides the required description of the whole system consisting of
the measured system, the environment and detectors.

Here we develop this formalism first introduced in, [6, 26] to include the conditioned
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evolution. We focus on the pre- and post-selected measurements. In this case, a quan-
tum system is initially prepared in a specific state. After that, it is subject of CWML during
a time interval T . The post-selection in a specific state takes place in the end of the pro-
cedure. We show that the evolution of a qubit whose past and future states are known
can be inferred and understood from the measured statistics of measurement outcomes.
The measurement of the statistics can reveal purely quantum features in experimentally
relevant regimes.

We show how interference arises even at relatively small time scales and how the
information about the initial qubit state is lost during the time evolution making the in-
terference to vanish at sufficiently long time scales. We exemplify how different features
in the distributions can be understood as the manifestations of the qubit evolution dur-
ing the measurement. And we numerically study various parameter regimes of interest
in the case of a measurement of a single observable.

Actually, we show with our results that one can have very detailed theoretical predic-
tions of CWLM distributions that can account for every detail of the experiment. This
enables investigation and characterization of quantum effects even if the choice of pa-
rameters is far from the optimal one and these effects are small.

The structure of the article is as follows. We develop the necessary formalism in
Section 2.2, starting from a Bloch-master equation for the qubit evolution that is aug-
mented with counting fields to describe the detector statistics, and explain how the post-
selection is introduced in this scheme. The scheme can be applied to various experi-
mental scenarios, in particular we focus on the setup described in [13]. It is important
to illustrate how the Cauchy-Schwartz inequalities impose restrictions on the parame-
ters entering the Bloch-master equations, this resulting in several different time scales.
In Section 2.3 we examine a measurement of a general observable and explain how
the half-quantized peculiarities arise in the distributions of measurement outcomes de-
pending on the initial and final state. In Section 2.4 we concentrate on the case of zero
overlap and take the Hamiltonian dynamics into account to arrive at essentially non-
Gaussian probability distributions. In these Sections, we mostly concentrate on a sim-
ple limit where the time interval T is much smaller than the typical time scales of qubit
evolution, this gives the opportunity for analytical results. Next, we extend our study to
longer time intervals. In the Section 2.5 we present numerical simulations at the scale of
decoherence time for three relevant cases: the case of an ideal detector, and the exper-
imentally relevant case with and without detuning. In Section 2.6, we concentrate on
the time scales of Hamiltonian dynamics and experimentally relevant parameters. We
conclude in the Section 2.7.

2.2. METHOD
The description of CWLM can be achieved by several methods, all of them taking into ac-
count the stochastic nature of the measurement process. In simplest situations like non-
demolition measurements [3] one can use the quantum filtering equation [27]. More
sophisticated approaches include effective action method [2, 8], path integral formu-
lation [6, 7], past states formalism [19]. A powerful numerical method of experimental
significance is the stochastic update equation [28] that allows to monitor density matrix
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taking into account the measurement results. In this method, the distribution of out-
comes is obtained numerically by collecting statistics of the realizations of "quantum
trajectories". In contrast to this, the method of [6] permits the direct computation of the
generating function of the probability distribution.

The present goal is to formulate a method to compute probability distributions of
a continuous measurement in the course of a conditioned quantum evolution. We will
extend the method presented in [6] where the central object is a Bloch-master equation
for the evolution of the measured quantum system that is augmented with the counting
fields. Evaluating the trace of the extended density matrix from this equation as a func-
tion of the counting fields provides the generating function for the probability distribu-
tion of the detector output. To outline the formalism, we will focus first on the simplest
setup where a single detector measures a single qubit variable Ô . In the end of the sec-
tion we will give a generalization to the case of two variables.

In general, the dynamics of an isolated quantum system are governed by a Hamilto-
nian Ĥq . For a realistic system, weak interaction with an environment representing the
outside world will generate decoherence and relaxation . In the CWLM paradigm, the
quantum system is embedded in a linear environment described in the same manner by
a Hamiltonian Ĥd . The quantum system interacts with the environment via a coupling
Hamiltonian Ĥc ,

Ĥ = Ĥq + Ĥc + Ĥd (2.1)

with

Ĥc = ÔQ̂, (2.2)

Ô being an operator in the space of the quantum system, that value is to be mea-
sured. Since Ĥd is a Hamiltonian of a linear system, it can generally be represented by a
boson bath Hamiltonian. The input of the detector is characterized by an input variable
Q̂ that is linear in boson fields. The output of the detector is represented by the output
variable V̂ that is also linear in boson fields.
The dynamics and statistics of the measurement process are fully characterized by the
two-time correlators of the operators Q̂(t ), V̂ (t ). If we assume the qubit dynamics is
slower than a typical time scale of the environment, the four relevant quantities corre-
spond to zero-frequency values of the correlators,

SQQ = 1
2

∫ t

−∞
d t ′

〈〈
Q̂(t )Q̂(t ′)+Q̂(t ′)Q̂(t )

〉〉
, (2.3a)

SQV = 1
2

∫ t

−∞
d t ′

〈〈
Q̂(t )V̂ (t ′)+ V̂ (t ′)Q̂(t )

〉〉
, (2.3b)

SV V = 1
2

∫ t

−∞
d t ′

〈〈
V̂ (t )V̂ (t ′)+ V̂ (t ′)V̂ (t )

〉〉
, (2.3c)

aV Q = − i
ħ

∫ t

−∞
d t ′

〈
[V̂ (t ),Q̂(t ′)]

〉
, (2.3d)

aQV = − i
ħ

∫ t

−∞
d t ′

〈
[Q̂(t ),V̂ (t ′)]

〉
. (2.3e)
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where 〈〈ÂB̂〉〉 = 〈(Â−〈Â〉)〉〈(B̂ −〈B̂〉)〉 for any pair of operators Â, B̂ .
These four quantities define the essential characteristics of the measurement process
and have the following physical meaning. SQQ is the noise of the input variable. It is
responsible for the inevitable measurement back action and associated decoherence of
the qubit. SV V is the output variable noise: it determines the time required to measure
the detector outcome with a given accuracy. The cross noise SQV quantifies possible
correlations of these two noises. The response function aV Q determines the detector
gain: it is the susceptibility relating the detector output to the qubit variable measured,
〈V̂ 〉 = aV Q〈Ô〉. The response function aQV is correspondingly the reverse gain of the
detector: it gives the change of the qubit variable proportional to the detector read-
ing. Conforming to the assumption of slow qubit dynamics, the noises are white and
responses are instant.
The values of these noises and responses are restricted by a Cauchy-Schwartz inequality,
[9]

SQQ SV V − ∣∣SQV
∣∣2 ≥ ħ2

4

∣∣aV Q −aQV
∣∣2. (2.4)

For a simple system like a single qubit it is natural to make the measured operator
dimensionless, with eigenvalues of the order of one, or, even better, ±1. With this, one
can define and relate the dephasing rate 2γ = 2SQQ /ħ2 and the acquisition time ta ≡
4SV V /

∣∣aV Q
∣∣2 required to measure the variable with O with a relative accuracy ' 1. If one

further assumes the direct gain to be much larger than the reverse gain, aV Q À aQV , it is
implied by the central equation of [9], Eq. (2.8),

γta ≥ 1 (2.5)

This figure of merit shows that one cannot measure a quantum system without dephas-
ing it.

The statistics of the detector variable V̂ can be evaluated with introducing a counting
field χ(t ) coupled to the output variable V̂ . This field plays the role of the parameter in
the generating function C (χ(t )) of the probability distribution of the detector readings
V (t ).
This generating function is computed in the extended Keldysh scheme [25] where the
evolution of the "ket" and "bra" wave functions is governed by different Hamiltonians,
Ĥ+ and Ĥ− respectively. The extra term describing interaction with the counting field
reads Ĥ± = Ĥ ±ħχ(t )V̂ (t )/2. The generating function has then the form

C ({χ(t )}) = Trq
(
ρ̂({χ(t )})

)
, (2.6)

ρ̂ being a quasi-density matrix of the qubit in the end of evolution,

ρ̂(χ; t ) = Trd

(−→
T e−i /ħ∫

d t Ĥ−
ρ̂(0)

←−
T e+i /ħ∫

d t Ĥ+)
. (2.7)

Here, Trq (· · · ) and Trd (· · · ) denote the trace over qubit and detector variables, respec-

tively, and
−→
T (

←−
T ) denotes time (reversed) ordering in evolution exponents. ρ̂(0) is the
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initial density matrix for both qubit and detector systems.

Assuming white noises and instant responses, one can derive an evolution Bloch-
master equation for the quasi-density matrix that is local in time, like Eq. (13) in [6]. For
the simplest setup, under assumption of a single coupling operator Ô it reads:

∂ρ̂

∂t
= − i

ħ [Ĥq , ρ̂]− SQQ

ħ2 D[Ô ]ρ̂− χ2(t )
2 SV V ρ̂ (2.8)

− SQV

ħ χ(t )[ρ̂, Ô ]+ i aV Qχ(t )
2 [ρ̂, Ô ]+.

Here, [, ] and [, ]+ refer to commutator and anti-commutator operations respectively and
D[Â]ρ̂ ≡ ( 1

2 [Â† Â, ρ̂]+− Âρ̂ Â†
)
. Here we have also assumed aV Q À aQV , a general condi-

tion for a good amplifier. A single coupling operator is an idealization, in a more realistic
situation, the quantum system is also coupled to the environment with other degrees of
freedom not related to the equation, this is manifested as intrinsic relaxation and deco-
herence. This modifies the above equation.

We give the concrete form of this equation for the experimental situation of [13].
There is a qubit with two levels split in z-direction under conditions of strong resonant
drive that compensates the splitting of the qubit levels. The effective Hamiltonian reads

Ĥq = ħ
2
Ωσ̂x + ħ

2
∆σ̂z , (2.9)

Ω being the Rabi frequency proportional to the amplitude of the resonant drive, and ∆
being the detuning of the drive frequency from the qubit energy splitting. The interac-
tion with the environment induces decoherence, excitation and relaxation of the qubit,
with the rates γd ,γ↑,γ↓ respectively. The measured quantity is the amplitude of the irra-
diation emitted from the qubit, so O is convenient to choose to be either σx or σy . With
this, the equation reads

∂ρ̂

∂t
= − i

ħ [Ĥq , ρ̂]−γd D[σ̂z ]ρ̂−γ↑D[σ̂+]ρ̂ (2.10)

−γ↓D[σ̂−]ρ̂− SQV

ħ χ(t )[ρ̂, Ô ]

+ i aV Qχ(t )
2 [ρ̂, Ô ]+− χ2(t )

2 SV V ρ̂,

σ̂+ (σ̂−) being the rising and lowering operators of the qubit, and σ̂z = |e〉〈e|−∣∣g〉〈
g
∣∣ the

standard Pauli operator.
The rates and noises are restricted by the following Cauchy-Schwartz inequality: 1

4

(
γ↑+γ↓

)
SV V −∣∣SQV

∣∣2 ≥ ħ2

4

∣∣aV Q
∣∣2. All the parameters entering the equation can be characterized from

experimental measurements. We provide an example of concrete values in Section 2.5.

We will concentrate on a single measurement during a time interval (0,T ). To define
an output of such measurement, we accumulate the time-dependent detector output
during this time interval and normalize it by the same interval, V ≡ 1

T

∫ T
0 V (t ′)d t ′. The

counting fieldχ(t ) corresponding to this output is conveniently constant ,χ(t ) ≡χ on the
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time interval and 0 otherwise. Our goal is to evaluate the probability distribution P (V )
of the measurement results, conditioned to an initial qubit state given by ρ̂(0), and to a
post-selection of the qubit in a specific state |Ψ〉 at the time moment T . This involves
the projection on the state |Ψ〉, represented by the projection operator P̂Ψ = |Ψ〉〈Ψ| .
The probability distribution of the detector outcomes with no regard for the final qubit
state can be computed from the generating function defined by Eq. (2.6),

P (V ) = T

2π

∫
dχe−iχV T C (χ;T ). (2.11)

The joint statistics are extracted from the quasi-density matrix ρ̂(χ;T ) at the end of
the interval.
Upon the post-selection, the quasi-density matrix is projected on the final state mea-
sured, P̂Ψρ̂(χ;T ), so the conditioned generating function of the detector outcomes reads
as

C̃ (χ;T ) = Trq (P̂Ψρ̂(χ;T ))

Trq (P̂Ψρ̂(χ= 0;T ))
. (2.12)

where the proper normalization is included.
This is the second central equation in our method. Together with Eq. (2.8) it permits an
efficient evaluation of the conditioned probability distributions as the Fourier transform
of this generating function.

Sometimes it is convenient to normalize the time-integrated output introducing O =
V /aV Q that immediately corresponds to the eigenvalues of Ô (We stress that O ) are com-
ing from the averaging of an environmental operator rather than Ô .

In this Article, we will concentrate on the distributions of a single variable. For com-
pleteness, we mention that the approach can be extended to joint statistics of simulta-
neous measurement of two non-commuting observables, e.g. σ̂x and σ̂y . For the case of
identical but independent detectors with associated output variables V̂x ,V̂y and count-
ing fields χx (t ),χy (t ) the corresponding equation reads( i labels {x, y})

∂ρ̂
∂t =− i

ħ [Ĥq , ρ̂]−∑
i

SQQ (i )
ħ2 D[σ̂i ]ρ̂ (2.13)

−∑
i

(
SQV

ħ χi (t )[ρ̂, σ̂i ]+ i aV Qχi (t )
2 [ρ̂, σ̂i ]+− χ2

i (t )
2 SV V ρ̂

)
.

for the situation where the qubit decoherence is due to the detector back actions only.
The parameters are restricted by inequalities similar to Eq. (2.4) for each set of noise and
response functions corresponding to a given detector.
The form of this equation that can account for the realistic experimental situation [13]
is similar to Eq. (2.10):

∂ρ̂
∂t =− i

ħ [Ĥq , ρ̂]−γd D[σ̂z ]ρ̂−γ↑D[σ̂+]ρ̂ (2.14)

−γ↓D[σ̂−]ρ̂−∑
i

S(i )
QV

ħ χi (t )[ρ̂, σ̂i ]

+∑
i

i a(i )
V Qχi (t )

2 [ρ̂, σ̂i ]+−∑
i
χ2

i (t )
2 S(i )

V V ρ̂,
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where i = x, y and we account for detector-dependent noises and response functions.
Two inequalities put restrictions on the parameters involved:

1

4

(
γ↑+γ↓

)
S(x)

V V −
∣∣∣S(x)

QV

∣∣∣2 ≥ ħ2

4

∣∣∣a(x)
V Q

∣∣∣2
, (2.15a)

1

4

(
γ↑+γ↓

)
S(y)

V V −
∣∣∣S(y)

QV

∣∣∣2 ≥ ħ2

4

∣∣∣a(y)
V Q

∣∣∣2
. (2.15b)

Here, we have assumed an ideal and fast post-selection so that the system measured
is projected on a known pure state |Ψ〉. This is the case of the experimental setup [13].
In reality, there can be errors in the post-selection. We note that such errors can also
be accounted for in the formalism outlined. To this end, one replaces the projection
operator P̂Ψ with a density matrix-like Hermitian operator ρ̂ f satisfying Tr[ρ̂ f ] = 1. For
instance, if after a faulty projection measurement with the result "1" the system is in a
orthogonal state |Ψ2〉 with probability pe , the corresponding ρ̂ f reads

ρ̂ f = (1−pe )|Ψ1〉〈Ψ1|+pe |Ψ2〉〈Ψ2| (2.16)

2.3. HALF-QUANTIZATION: A STRAIGHTFORWARD CASE
The outcomes of an ideal projective measurement of a quantum variable Ô are confined
to the eigenvalues Oi of the corresponding operator. If a CWML approximates well this
ideal situation, one expects the distribution of outcomes to peak near Oi , and it is in-
deed so. In this Section, we argue that if the measurement outcomes are conditioned
on a final state, the distribution also has peculiarities at half-sums (Oi +O j )/2 of the
eigenvalues. We prove first this counter-intuitive statement for a restricting limiting case
where the measurement interval T is much smaller than the typical time scales of the
system dynamics. The results are summarized in Eq. 2.20. The resulting distributions
may formally correspond to negative probabilities in the limit of vanishing overlap be-
tween initial and final state. To correct for this, and to extend the limits of validity to
larger time intervals, we concentrate further on a specific but constructive case of non-
demolition measurement. With this, we investigate the influence of decoherence on
half-quantization. The results are given by Eq. 2.23.

To start, we take the measurement interval T to be much smaller than typical time
scales of the quantum system dynamics. This immediately implies that the accuracy of
the measurement will be too low to make it practically useful. However, the resulting
distribution comes out of a straightforward calculation, since the state of the quantum
system does not have time to change significantly during the measurement.

In Eq. (2.8) we may then neglect all terms describing the dynamics and containing
no χ(t ) Let us also assume no correlation between the noises of the input and output
variables of the detector, SQV = 0.
With this, Eq. (2.8) can be simplified to the following form

∂ρ̂

∂t
=−χ

2(t )

2
SV V ρ̂+

i aV Qχ(t )

2
[ρ̂, Ô ]+. (2.17)

Let us concentrate on a piecewise-constant χ(t ) ≡ χΘ(t )Θ(T − t ) corresponding to the
accumulation of the signal during the measurement interval. We take ρ̂(χ;0) = ρ̂(0) as
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the initial condition. After the time interval of the measurement T , the quasi-density
matrix becomes

ρ̂(χ;T ) = e−
SV V

2 χ2T e i
aV Q

2 χT Ô ρ̂(0)e i
aV Q

2 χT Ô . (2.18)

The generating function of the outcome distribution is given by Eq. (2.12) and in-
volves the projection P̂Ψ on the final state |Ψ〉. The calculations are straightforward in
the basis of the eigenstates of the operator Ô , Ô |i 〉 = Oi |i 〉. It is also convenient to nor-
malize the output variable on the value of Ô introducing a rescaled variable O ≡V /aV Q .
The resulting distribution is a linear superposition of shifted normal distributions

g (x) = 1

σ
p

2π
exp

(
− x2

2σ2

)
(2.19)

with the same variance σ2 = SV V /(T a2
V Q ) = ta/4T ,

P̃ (O ) =∑
i

Wi i g (O −Oi )+

∑
i 6= j

Wi j g

(
O − Oi +O j

2

)
(2.20)

and the weights Wi j given by

Wi j =
Ψ jΨ

∗
i ρ

(0)
i j

〈Ψ|ρ(0)|Ψ〉 ;
∑
i , j

Wi j = 1. (2.21)

Let us discuss this result. The terms of the first group are normal distributions cen-
tered at the eigenvalues of Oi . The coefficients in front of these terms are proportional
to the product of the initial probability to be in the state i , ρ(0)i i , and the probability
to be found in final state after being in the state i , |Ψi |2. If there would be no quantum
mechanics, the system on its way from initial to final state should definitely pass one of
the eigenstates of Ô shifting the measurement output by the corresponding eigenvalue.
The sum of the probabilities Wi i would be 1. In fact, it is not 1: owing to quantum inter-
ference, the system does not have to pass a definite state i . One can say that "bras" and
"kets" may pass the different states, and this shifts the output by a half-sum of the cor-
responding eigenvalues. These interference contributions disappear if there is no post-
selection in the final state. Indeed, summing Wi j over a complete basis of possible final
states |Ψ〉 gives zero. These coefficients also disappear in case of diagonal ρ̂(0) Although
the form ( 2.20) suggests that real values Wi , j +W j ,i could be interpreted as "probabili-
ties" of "half-quantized" outcomes, this does not work since these values can be negative
as well as positive, and the contributions centered at half-quantized values can be peaks
as well as dips. This is typical for an interference effect. The double peak structure of the
distribution has been discussed earlier in the context of CWLM [3, 4, 6, 29] The interpre-
tation in terms of half-quantization is an innovation of the present article.

A double-peak probability distribution has been predicted in the context of post-
selected measurements [30, 31]. While this effect is also based on interference, it is
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clearly distinct from the half-quantization considered here since it is observed for an
operator with continuous spectrum and in fact, in distinction from the effect described
here, permits a classical interpretation [31]. The half-quantization also does not bear
any resemblance with the 3-box paradox [32] since the latter involves a third quantum
state absent in our setup.

Nevertheless, the interference signatures can be revealed by a close inspection of the
probability distribution of the outcomes of the conditioned measurement. We notice
that the limit of small T we presently concentrate on is not favourable for such inspec-
tion since the peaks (or dips) are hardly separated, Oi ¿

p
σ, so that P (O ) ≈ g (O ), that

is, hardly depends on the quantum system measured. To enhance the effect, one would
increase T . However, at sufficiently large T the quantum system would relax to equilib-
rium, this suppresses the interference effects. Numerical calculations presented in Sec-
tions 2.5 and 2.6 show that the interference contributions become quite pronounced in
the case of intermediate T .

Figure 2.1: Probability distributions of CWLM outcomes of σ̂x for relatively small duration T = 0.5Γd . The
qubit is initialized in the Z+ state. a. The distribution without post-selection consists of the two marginally
separated Gaussian peaks shown by dotted lines. b. Conditioned distributions for Z+ and Z− and the distri-
bution without post-selection. c.-d. Decomposition of the conditioned distributions into Gaussians (dotted
curves). The Gaussians centered at 0 manifest the half-quantization. e. The conditioned distribution for zero
overlap (Eq. 2.24) in the limit of small T for different K . K = 1 corresponds to ideal detector.

In this Section, we mention a special case where the interference effects become en-
hanced and significant even in the limit T → 0. This is the case of a small overlap be-
tween the initial state ρ̂(0) and the post-selected final state, |Ψ〉, 〈Ψ|ρ̂(0)|Ψ〉→ 0.
The coefficients Wi j diverge upon approaching this limit, and Eq. 2.20 becomes invalid
giving a negative probability density. To consider the case properly, we need to regular-
ize Eq. 2.18 taking into account the dephasing which comes at least from the detector
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back-action. The simplest way to provide such regularization is to include dephasing
produced by interaction with the same operator Ô . The resulting equation reads

∂ρ̂

∂t
=−χ

2(t )

2
SV V ρ̂+

i aV Qχ(t )

2
[ρ̂, Ô ]+−γD[Ô ]ρ̂. (2.22)

It looks we have disregarded the Hamiltonian dynamics in Eq. 2.22. This does not seem
consistent since usually Hq Àħγ, this provides a common separation between the fast
time-scales of Hamiltonian dynamics and longer time-scales of the decoherence and
relaxation. We note that we do not have to disregard it in an important case of non-
demolition measurement when Ĥq and Ô commute. In this case, the only effect of the
Hamiltonian dynamics is to provide time-dependent phase factors for non-diagonal ele-
ments of the density matrix. These trivial phase factors can be compensated by a proper
rotation of the final state and the Hamiltonian dynamics can be gauged away from Eq.
2.22. We address the relevant Hamiltonian dynamics in the next Section.

By virtue of the Cauchy-Schwartz inequality ( 2.4), γ ≥ a2
QV /4SV V . Therefore it is

convenient to characterize the dephasing rate γ with dimensionless K ≡ 4γSV V /a2
QV =

γta , K ≥ 1, that characterizes the quality of the detector.
The equation is easily solved in the basis of eigenvalues of Ô . In comparison with Eq.

2.18, each non-diagonal element ρi j of the quasi-density matrix acquires an extra time-

dependent suppression factor exp

(
−γt

(Oi−O j )2

2

)
. With this, the probability distribution

is given by Eq. 2.20 with modified coefficients Wi j → W̃i j ,

W̃i j ≡
Ψ jΨ

∗
i ρi j e−γT

(Oi −O j )2

2

W̃
; (2.23)

W̃ ≡∑
i , j
Ψ jΨ

∗
i ρi j e−γT

(Oi −O j )2

2

At any non-zero overlap, P (O ) → g (O ) in the limit of T → 0. Let us concentrate on a
special case of zero overlap, 〈Ψ|ρ̂(0)|Ψ〉=0, and let us note that this also implies ρ̂(0)|Ψ〉 =
0 by virtue of positivity of the density matrix. In the limit of T → 0 the chance to find
the system in the final state vanishes, W̃ ≈ γT 〈Ψ|Ô ρ̂(0)Ô |Ψ〉. This divergence should
be compensated by the terms ∝ T that come from expansion of g (O − (Oi +O j )/2) up
to the second order in Oi as well as W̃i j . The resulting distribution of the measurement
outcomes for these rare events differs essentially from the normal one,

P (O ) =
(
1+ (O/σ)2 −1

K

)
g (O ) 6= g (O ) (2.24)

For an ideal detector, K = 1, the probability even vanishes at O = 0. For bigger decoher-
ence exceeding the minimal one, K À 1, the interference term vanishes and P (O ) ≈ g (O ).

We illustrate the content of this Section with some simple plots (Fig. 2.1). We con-
sider a qubit that is initially prepared in Z+ state, σ̂z |Z+〉 = |Z+〉. The measurement
accesses the x-component of the qubit spin, O = σ̂x . After the measurement, the qubit
is post-selected in either Z+ or Z− state. As it follows from the preceding discussion,
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we expect the probability distribution of the outputs to be composed of the Gaussians
centered at ±1, and also at the half sum of the eigenvalues, that is, at 0.

For the first four plots, we choose a relatively big T = 0.5γ−1. Although this choice is
contrary to our assumptions, it permits an easy visual resolution of the Gaussian peaks.
We assume ideal detector K = 1 and use Eq. 2.22 to evaluate the distributions. The
distribution of the outcomes with no post-selection (Fig. 2.1a.) is composed from two
Gaussian peaks centered at ±1 that are hardly separated. The post-selected distributions
differ much from each other and the original one (Fig. 2.1b.) The distribution for Z−
gives well-separated peaks while a single peak is seen in the distribution for Z+. This is
due to the negative or positive half-sum contribution as illustrated in Fig. 2.1c. an d.

The Fig. 2.1e. demonstrates the essential change of the conditioned distribution
function for zero overlap. The distribution for ideal detector reaches zero, and approaches
normal distribution upon increasing K .

To investigate in more detail the manifestations of the interference effects at longer
time intervals ' ta ,γ−1 and in experimental conditions, in Section 2.5 we numerically
solve the evolution equations and compute the conditioned probability distributions.
For this work, we concentrate on a single qubit.

2.4. SUDDEN JUMP: A SIMPLE CONSIDERATION
Let us now change the situation and consider the measurement of a variable that does
not commute with the Hamiltonian. To simplify, we consider very small T such that
the change of density matrix due to Hamiltonian dynamics is small. This is a more se-
vere limitation than that used in the previous Section where T was only supposed to be
smaller than the decoherence rate. Generally, this time interval is too small to measure
anything and we expect the distribution to be close to g (O ) thus to have a large spread.
There is, however, an exceptional situation of zero overlap where after the measurement
the state is projected on |Ψ〉 that is precisely orthogonal to the initial state |i 〉, 〈Ψ|i 〉 = 0.
Let us concentrate on this situation and demonstrate a peculiarity of the output distri-
bution which is best described as a sudden jump of the integrated output.

To give a clear picture, we first treat the situation completely disregarding the deco-
herence/relaxation terms, and take into account the Hamiltonian dynamics only. This
seems relevant at such small T . The general result is given by Eq. 2.26 while a con-
structive case is given by 2.27. This gives a sudden jump of cumulants while the attempt
to derive the distribution results in a negative probability in an interval of outputs that
increases with decreasing T . To improve on this, we will sophisticate the treatment by
including the decoherence. We reveal that the decoherence becomes important at very
small time intervals T ¿ (Ω2ta)−1, that can be interpreted as a finite but small duration
of the sudden jump. The resulting probability distribution is given by Eq. 2.34 and is
positive at any T .

To start with, we disregard relaxation/decoherence terms in the evolution equation
which seems relevant for such small T and owing to orthogonality, the projected ρ(χ)
vanishes at T → 0 and is determined by the first-order corrections to bra- and ket wave
functions,

Tr(P̂Ψρ̂(χ)) =ħ−2T 2〈Ψ|Ĥ+
q |i 〉〈i |Ĥ−

q |Ψ〉e−χ2T SV V /2 (2.25)
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Here H± = Hq ±ħχaV Q Ô .
The small factor T 2 cancels upon normalization in Eq. 2.12 so that the generating

function of the conditioned output reads

C̃ (χ;T ) =
〈Ψ|Ĥ+

q |i 〉〈i |Ĥ−
q |Ψ〉

|〈Ψ|Ĥq |i 〉|2
e−χ

2T SV V /2 (2.26)

We note that C̃ (χ;T → 0) 6= 1. Since the derivatives of lnC̃ at χ→ 0 are related to the

cumulants κn of the distribution of the integrated output
∫ T

0 d tV̂ (t ). This implies that
the cumulants of the distribution of the integrated output do not vanish in the limit of
short time interval: rather, there is a sudden jump of the integrated output not depending
on the duration of the measurement. The jump occurs for the averaged output as well as
for all cumulants. This is very counter-intuitive for a CWLM situation. In this case, one
may expect that the integrated output in this limit is dominated by the detector noise, so

that
∫ T

0 d tV̂ (t ) 'T 1/2 , κn 'T n/2, and thus vanishes at T → 0.
To see this in more detail, let us turn to a concrete example. We consider a situation

corresponding to [13]: a qubit with the Hamiltonian Ĥq = ħ
2Ωσ̂x . The initial and pro-

jected states are Z+ and Z−, respectively, and we measure the projection of the qubit on
Y-axis, Ô = σ̂y . In this case,

C̃ (χ;T ) =
(
1− iχaV Q

Ω

)2

e−χ
2T SV V /2 (2.27)

In the limit T → 0 we obtain for the cumulants:

κn = ∂n

∂(iχ)n ln

(
1− iχaV Q

Ω

)2

= 2(−1)n
( aV Q

Ω

)n
(n −1)! (2.28)

We see a sudden jump in the cumulants of the time-integrated output.
The average value of the output (κ1) is given by

a−1
V Q

∫ T

0
d t〈V̂ (t )〉 =− 2

Ω
; Ō =− 2

ΩT
. (2.29)

This corresponds to the time-averaged output ∝ T −1 that can exceed by far the ex-
pected values of a projective measurement, ±1. Such anomalously big outputs are nat-
urally associated with the weak values [17]. Indeed, one can relate the above result with
weak value conform to the definition [17] if one takes into account the evolution of the
quantum state during the measurement [33]. However, we need to stress that the full
distribution of the outputs cannot be obtained with the traditional weak value formal-
ism and so far has not been obtained with its extensions [22–24] for continuous mea-
surement. The method outlined here does not explicitly evoke the notion of weak values
and provides a more elaborated description of a realistic measurement process.

An attempt to derive from ( 2.27) the overall distribution of the time-averaged out-
puts yields

P (O ) =
(
1+ ∂O

ΩT

)2

g (O ) =
((

1− 4O

Ωta

)2

− 4

Ω2T ta

)
g (O ) (2.30)
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Figure 2.2: Probability distributions of outputs (Eq. 2.34) in the sudden jump regime in case of an ideal de-
tector. The alternating solid-dotted curves correspond to different T = (0.25,0.5,1.0,2.0,4.0)(Ω2ta )−1. Each
curve consists of two peaks separated by a gap at O =Ωta /4. The curves with bigger T are sharper, and the
peaks become increasingly symmetric upon lowering T .

There is a problem with this expression: it is negative in an interval of O , and at suf-
ficiently small T . (Ω2ta)−1 this interval encompasses the body of the "distribution".
This signals that the current approach must be corrected. As we have seen in the previ-
ous Section, such correction most likely requires a proper account of the detector back-
action that causes the decoherence of the qubit.

It is unusual to expect a decisive role of decoherence at such small time scales. How-
ever, if we take into account the decoherence (second term in the r.h.s. of Eq. 2.8 ), we
obtain

Tr(P̂Ψρ̂(χ)) =
(
γT + T 2

4

(
Ω− i aQV χ

)2
)

e−χ
2T SV V /2 (2.31)

Here, γ ≡ SQQ /ħ2 is the corresponding decoherence rate. We see that the decoherence
term may indeed compete with the term coming from Hamiltonian dynamics at short
time intervals. The Physical reason for this is that a decoherence term of this sort in-
duces the relaxation in Z -basis. The relaxation brings the qubit to Z− faster than the
Hamiltonian: The probability to find the system in Z− is thus proportional to T in con-
trast to the probability ∝T 2 induced by the Hamiltonian dynamics.

The resulting characteristic function reads

C̃ (χ) = 4γ+T
(
Ω− i aQV χ

)2

4γ+T Ω2 e−χ
2T SV V /2 (2.32)

and gives the average output

Ō =− 2Ω

4γ+T Ω2 (2.33)
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The value of the average output thus saturates at −Ω/2γ¿−1 in the limit of small T ¿
γ/Ω2. So if the decoherence is taken into account, the change of the output averages is
not really sudden. One can regard the small time scale γ/Ω2 of the saturation as a typical
duration of the sudden jump of the time-integrated output.

The probability distribution valid at all time scales ¿Ω−1 is given by

P (O ) = K −1+ (T /4ta) (Ωta −4O )2

K +T taΩ2/4
g (O ) (2.34)

where we again introduce the dimensionless K = γta ≥ 1 that characterizes the quality
of the detector. The distribution is illustrated in Fig. 2.2 for an ideal detector K = 1 and
various T . In this case, the probability density is zero at O =Ωta/4.

If we compare the distributions ( 2.24) and ( 2.34), we see that the results of the pre-
vious Section are reproduced in the limit Ω→ 0, as well as in the limit of T ¿ (Ω2ta)−1

if we take σ2 = ta/4T . The distribution ( 2.34) thus generalizes ( 2.24) to the case where
the Hamiltonian dynamics are relevant.

To extend the results on larger time intervals 'Ω and on realistic conditions, we nu-
merically solve the evolution equations in Section 2.6 and compute the corresponding
conditioned probability distributions.

2.5. NUMERICAL RESULTS: LONG TIME SCALES
In Section 2.3, we have presented an analytical solution in the limit of small T and
shown that it remains qualitatively valid for bigger T , at least in the case of ideal detec-
tors. We will extend these results evaluating the conditioned distributions numerically.
We concentrate on longer measurement times where the qubit dynamics become im-
portant. We will take into account the effects of decoherence and relaxation, as well as
the effects of strong qubit drive or detuning, all being important in experimental situa-
tions.

In this Section, we address the distributions of the CWLM outcomes of a single vari-
able at the time scales of the order of coherence/relaxation times and ta . Generally, one
can associate it with the qubit variable Ô = σ̂x . To start with, we assume zero detuning,
that is, a qubit Hamiltonian of the form Ĥq = ħ

2Ωσ̂x . In principle, we are now in the
situation of a non-demolition measurement.

To start with, let us assume an idealized situation where all the decoherence is brought
by the detector back action and its rate ∝ SQQ assumes the minimum value permitted
by the inequality ((2.4)). Since Ĥq = ħ

2Ωσ̂x , the back-action does not interfere with free
qubit dynamics causing transitions between the levels. In σx representation, the diago-
nal elements of the density matrix remain unchanged keeping the initial probability to
be in X ± states while the non-diagonal ones oscillate with frequency Ω and decay with
much slower rate Γd ¿Ω.

If we keep the final state fixed to Z±, the interference contribution to the conditioned
distributions will exhibit fast oscillations as function of T with a period 2π/Ω. It is pro-
ficient from both theoretical and experimental considerations to quench these rather
trivial oscillations. We achieve this by projecting the qubit after the measurement on the
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states |Z̄±〉 = e−i Ĥq T |Z±〉 thereby correcting for the trivial qubit dynamics. In practice,
such correction can be achieved by applying a short pulse rotating the qubit about x-axis
right before the post-selection measurement. With this, the conditioned distribution of
outcomes changes only at the time scale ta ' Γ−1

d , that is much longer thanΩ−1, and the

dynamics are described by Eq. (2.22) with Ô = σ̂x .
In Fig. 2.3, we give the plots of the probability distributions conditioned on Z̄± for

a series of measurement time intervals T . We see that (different curves) are shown, for
two cases in which the visibility of the interference feature is stronger, the case of equal
preparation and post-selection, (a), and the case of orthogonal preparation and post-
selection states, (b).
In this ideal situation, even for very small time intervals, the additional knowledge of the
post-selection can lead to perfect resolution of the two eigenstates of the qubit variable
(Fig. 2.3 (b)). While for small time intervals the middle peak results in less resolution for
the opposite choice of post-selected qubit state (Fig. 2.3 (a)), at large time intervals, the
detector back action has resulted in a complete decoherence of the qubit state and the
interference signature disappears, making both distributions converge to two narrow
peaks corresponding to either +X or −X . This exemplifies how the knowledge of the
qubit preparation is lost in time due to decoherence.

The fact that we see no difference between the distributions in this limit is a result
of a symmetric choice we made with respect to the projections. Indeed, if we project on
±X instead, the distributions would consist of a single peak positioned at the value of
O = ±1. Generally, for projections on arbitrary pair of orthogonal superpositions of X
and Z , we expect in this limit different peak weights for two different projections. This
difference, however, is of trivial origin and has nothing to do with the interference effects
of interest. So we have made a symmetric choice to cancel it.

With this, the difference between the two distributions is due to interference only,
that is, due to the half-quantized peak described in the previous Section. At smaller T ,
the distributions take a very distinct shape: single-peak for that conditioned on +Z , and
double-peak for that conditioned on −Z . The half-quantization is dumped on the scale
of the decoherence time, so the difference is seen only for T < ta .

The separation of the distribution onto two peaks in the limit of T À ta is a signature
of the ideal situation of a quantum non-demolition measurement where neither mea-
surement nor any other agent induces the relaxation rates causing the transitions be-
tween the qubit states. In this situation, the density matrix efficiently relaxes to its equi-
librium value ρeq at time interval T , and the distribution of the detector output tends to

concentrate on the average value 〈O〉 = Tr[Ô ρ̂eq ] with decreasing width '√
ta/T .

Let us now turn to the analysis of the experimental situation. We use the general
evolution equation Eq. (2.10) to compute the distributions and substitute the parame-
ters γ↓ = (22.5µs)−1,γ↑ = (56µs)−1,γd = (15.6µs)−1 given in [13]. The acquisition time
comes from the measurement rate 2/ta ≈ (92µs)−1. This rate in fluorescence experi-
ments can be characterized by two different methods both based on the estimation of
the probability distribution for the integrated homodyne signal conditioned on the state
of the qubit, see Appendix F in the supplementary material of [9]. The quality of the
measurement setup is thus rather far from ideal, K = taγd ≈ 12. Nevertheless we predict
some measurable interference effects in the outcome distributions.
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Figure 2.3: Probability distributions of a σ̂x CWLM outcomes for the ideal measurement case for different
ratios T /ta . The qubit is initially prepared in the +Z state and, after T , is post-selected either in the +Z state
(a) or −Z state (b).

We plot in Fig. 2.4 the results for zero detuning. There is no visible difference be-
tween the distributions, so in distinction from Fig. 2.3, we give only a single set of curves
in Fig. 2.4. The curves for all T look dully Gaussian, no peak separation is visible. This is
because of the low quality of the detector: the relaxation to the stationary density matrix
1̂/2 mainly takes place at a time interval shorter than the acquisition time, so most of the
time the detector measures this featureless state. As to short T , the distribution is too
wide to manifest the features of the density matrix.

However, there are still observable signatures of interference. To reveal those, we
plot in Fig. 2.4 the difference of the probability densities for two projections. We see
that at smallest T = 0.2ta the relative difference achieves 0.1 at O ≈ 0 and can be thus
revealed from the statistics of several hundreds individual measurements. The shape of
the difference suggests that the P− is pushed on both positive and negative values of O

in comparison with P+, in agreement with the previous findings. The decoherence and
relaxation quickly diminish the difference upon increasing T .

At big values of O , the difference quickly decreases together with the distributions.
In this respect, it is instructive to inspect the difference normalized on the sum of the
probability densities, C (O ) ≡ (P+(O )−P−(O ))/(P+(O )+P−(O )). This quantity gives the
certainty with which one can distinguish two distributions from each other given a read-
ing O . The values C = ±1 would imply that the measurement is certainly post-selected
with ±Z . As we see from Fig. 2.4 , the certainty saturates with increasing O , reaches
relatively large values at short T , and fades away upon increasing T .

Let us inspect the distributions at non-zero detuning. In this case, there is no reason
to expect the O →−O symmetry in the distribution. We illustrate the situation in Fig. 2.5
assuming relatively large detuning ∆ = 1.7Ω. This value is chosen to maximize 〈O〉 for
the equilibrium density matrix. In the plots of Fig. 2.5a, we see a shift of the distribution
maximum that tends to 〈O〉 ≈ −0.1 at T À ta . The value of the shift does depend on T
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Figure 2.4: Probability distributions of the output σ̂x CWLM for the experimental setup of [13] at various T .
Since the detection is far from ideal, the distributions conditioned on±Z are not visually distinguishable, so we
plot only one (a). However, the difference of the two distributions that is due to interference (b) is sufficiently
large to detect: the relative difference is about 10% for small time intervals (top curve at O = 0 in (b))). In (c) we
give the difference normalized to the sum of the probabilities. This quantity saturates at large O .

as well as on the post-selection state.

If we concentrate on the difference of the probability distributions(Fig. 2.5b), we
see the same order of magnitude as at zero detuning. However, the difference does not
vanish in the limit of big T . Rather, it is concentrated in an increasingly narrow interval
of O conform to the decreasing width of the distribution. As to the certainty (Fig. 2.5c),
it rather quickly converges upon increasing T to finite and rather big values in a wide
interval of O . This does not imply that the distributions P± are different in this limit,
since they become concentrated with divergent probability density, and the values of O

with high certainty occur with exponentially low probability, yet the finite limit of P+−P−
is worth noting and deserves an explanation.

We can qualitatively explain these features assuming that in this limit the probability
distributions are the Gaussians with a shift that depends on the post-selection state and
the variance σ2 = ta/4T , P± = g (O ± s±(T )). In the limit of big T we expect the differ-
ence of the shifts to be proportional (T )−1, s± = 〈O〉±S(ta/T ), S ' 1. This is because
the effect of the post-selection is only felt during a time interval ' γ−1 before the end of
measurement, so that, at a fraction of the whole interval that is proportional to (T )−1.
With this, at O ' σ the difference of the probabilities approaches a limit not depending
on T

P+−P− = S

2

(O −〈O〉)
σ
p

2π
exp

(
− (O −〈O〉)2

2σ2

)
, (2.35)

The maximum difference of probabilities |P+ −P−|max ≈ 1.9S is thus achieved at O =
〈O〉±σ.

As to the certainty, it approaches an alternative limit at O ' 1 Àσ that also does not
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depend on T at T →∞

C (O ) = P+(O )−P−(O )

P+(O )+P−(O )
= tanh(4S(O −〈O〉)) (2.36)

As we see, the certainty reaches ±1 in the limit of large (exponentially improbable) |O |À
1.

The numerical results presented are satisfactory fitted by above expressions with S ≈
0.04. However, the fits are not mathematically exact since, for the sake of simplicity, the
shifts s± have been assumed not to depend on O while in general they do.

Our results show that the difference of the conditioned distributions can be detected
under realistic experimental circumstances.

Figure 2.5: Probability distributions of a σ̂x weak measurement for experimental rates. Here a relatively large
detuning ∆ ≈ 1.7Ω is introduced in the qubit Hamiltonian. The qubit is prepared in the +Z state and post-
selected, after a specific time interval given by each curve, in the+Z state (a) or−Z state (not in the Figure). The
difference of this two probabilities appears to remain at rather big time-scales while being remarkably large for
small time intervals (wider curves in (b)) compared to the single distribution (a). Again, a good measure of this
phenomena is the relative difference, here plotted in (c). Time in units of acquisition time ta .

Although the interference signature seem to disappear for rather short T in a real-
istic experimental regime, the actual measurements are done [13] for time intervals yet
smaller than the time scale of qubit relaxation/decoherence. This correspond to the first
several choices of short time intervals in Figures 2.3, 2.4, and 2.5 where the interference
is still visible.

2.6. NUMERICAL RESULTS: SHORT TIME SCALES
In the previous Section, we have considered the statistics at time-scales T ' γ−1, ta ex-
tending the analytical results of Section 2.5. In this Section, we will extend the analytical
results of Section 2.4. We present numerical solutions for the probability distributions
at a larger time-scale T Ω' 1 of the Hamiltonian dynamics where the decoherence and
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relaxation does not play an important role. We also consider smaller T where the sud-
den jump behaviour is manifested, and yet smaller T where the decoherence becomes
important again and the time-averaged output saturates to the value 'Ω/γÀ 1. We re-
strict ourselves to the experimental circumstances and use for the computation the Eq.
(2.10) with the parameters specified in Section 2.5.

We will concentrate on the conditioned measurement statistics of the variable σ̂y ,

that anticommutes with the qubit Hamiltonian Ĥq = ħ
2Ωσ̂x + ħ

2∆σ̂z . The qubit is initially
prepared in Z+ state and post-selected in either Z+ or Z−. In Fig. 2.6, the probability
distributions of the integrated output O are presented. The upper row plots (Figs. (a)
and (b)) are for zero detuning (∆ = 0), while the lower row plots (Figs. (c) and (d)) show
the corresponding distributions when at the detuning ∆≈ 1.7Ω that maximizes 〈σx〉 .
Left and right figures correspond to post-selection in Z+ and Z−, respectively.

For unconditioned distributions, the average output is given by Y (T ) = 1
T

∫ T
0 d t〈Ψ(t )|σy |Ψ(t )〉,

where |Ψ(t )〉 is obtained from Z+ by Hamiltonian evolution. The function Y (T ) is plot-
ted in the insets of the right plots with a solid curve. We would expect the distributions
to be shifted with respect to the origin by a value O ' 1. This shift would be clearly seen
in the plots since the width of the distribution ' √

ta 'T 'p
taΩ is not very big at ex-

perimental values of Ωta ≈ 200. However, the plots on the left are perfectly centered at
the origin at any T . Indeed, the zero average of the distributions conditioned at Z+ can
be proven analytically in the limit of Hamiltonian dynamics. The averages of the distri-
butions conditioned at Z− (given by dashed curves in the insets of the plots) increase at
small T as T −1, in agreement with Eq. 2.29. The ratio of this average to conditioned av-
erage is just the inverse probability to be found in Z−, p−(T ) = sin2(

p
Ω2 +∆2)T /2)/(1+

(∆/Ω)2), p− ∝T 2 at small T .

These averages are visually manifested as the shifts of the distributions that are largely
Gaussian. We do not see anything resembling a gap in the distribution predicted for an
ideal detector (Fig. 2.2). This is explained by relatively low detection efficiency (c.f. Eq.
2.34).

In a separate Fig. 2.7 we present the distributions conditioned on Z− at yet smaller
time-scales of the order of the sudden jump duration (see Eq. 2.33). In this regime, we
see the saturation of the average Ō at a value close to −11 in the limit T → 0. This gives
the upper limit of anomalously big averages under experimental conditions of [13]. The
distributions can be well approximated by shifted Gaussians, smaller T corresponding
to wider distributions.

2.7. CONCLUSION
Recent experimental progress has enabled the measurements in course of the condi-
tioned quantum evolution. The average signals have been experimentally studied in
[13, 14, 16]. The technical level of these experiments permits the characterization of the
complete statistics of the measurement outputs.
In this work, we have developed a proper theoretical formalism based on full count-
ing statistics approach [6, 26] to describe and evaluate these statistics. We illustrate it
with several examples and prove that the interesting features in statistics can be seen in
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Figure 2.6: The output distributions for the σ̂y measurements for a series of T values at the scale of Ω−1

shown in the label of Figure (a). The qubit is initially prepared in the state Z+. Left column: the distributions
conditioned on Z+. Right column: the distributions conditioned on Z−. Upper row: ∆ = 0. Lower row: ∆ =
1.7Ω. The insets in the right column plots present the unconditioned average (solid curves) and the average
of the distribution conditioned on Z−. The distributions conditioned on Z+ are symmetric with zero average.
The values of the parameters correspond to [13].

experimentally relevant regimes (Fig. 2.4 and 2.7), for both short and relatively long
measurement time intervals.

We reveal and investigate analytically two signatures of the conditioned statistics that
are related to quantum interference effects. First is the half-quantized measurement val-
ues. We demonstrate that the conditioned distribution function may display peculiari-
ties — that are either peaks or dips — at half-sums of the quantized values.

Second signature pertains the case of zero overlap between initial and final state and
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Figure 2.7: The probability distributions of outcomes of σ̂y measurement for different T ¿Ω−1. The values
of the parameters correspond to [13]. The qubit is prepared in Z+ and post-selected in an orthogonal state
Z−. The average output signal Ō is shown in the inset. It exhibits anomalously large values and saturation in
the limit T → 0.

time intervals that are so short as the wave function of the system does not significantly
change by either Hamiltonian or dissipative dynamics.

We reveal unexpectedly large values of the time-integrated output cumulants for
such short intervals, that we term sudden jump. We show that the account for deco-
herence leads to a finite duration of the jump at ultra-short time-scale γ/(Ω2) and satu-
ration of the anomalous eigenvalues at Ω/γ, Ω and γ being the frequency scales of the
Hamiltonian and dissipative dynamics, respectively.

Actually, we have shown with our results that one can have very detailed theoretical
predictions of CWLM distributions that can account for every detail of the experiment.
This enables investigation and characterization of quantum effects even if the choice of
parameters is far from the optimal one and these effects are small. We emphasize once
again that the interference signature in the distributions that we predict in this Article
can be seen in realistic experimental regimes and hope the effects can be experimentally
observed soon. The efficient recording of time traces for a weak continuous monitor-
ing of one, or several, qubit variables, is a key ingredient for accessing these statistics. It
has been achieved in several articles and applied for observation of single quantum "tra-
jectories" or real time feedback. [34] High fidelity preparation and post-selection of the
qubit is also required for experiments with conditioned evolution, yet this is a general
requirement in most qubit experiments. We thus believe that it is possible to extract the
interesting statistics from the existing records.
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3.1. INTRODUCTION
Quantum computing and communication [1] are stimulating rapid progress in the un-
derstanding and control of small quantum systems. An important ingredient for ad-
vanced quantum control is the ability to realize continuous monitoring of a quantum
system. Theories for continuous quantum measurement [2–8] and experiments [9–15]
have enabled a detailed understanding of the realistic and practical measurement pro-
cess in quantum mechanics.
A relevant case of quantum measurement is that of the measurement of non-commuting
quantum variables. The fact that some observables cannot be measured together is
one of the major differences between quantum and classical theory. Although it is pos-
sible to perform a simultaneous measurement of non-commuting variables, only re-
cently [4, 6, 16–19] the dynamics of the qubit state has been studied under these con-
ditions. It is important to note that the simultaneous measurement of non-commuting
variables for a long time has been a topic of many experimental and theoretical studies
in quantum optics [20]. The linearity of most optical measurements provides a perfect
platform for experiments of this kind.

Another interesting and relevant kind of quantum measurement is the conditioned
measurement. For a general conditioned evolution, both the initial and final states of
the system can be regarded as fixed. This is achieved by the selection of the measure-
ment results on the basis of the result of the concluding projective measurement. It has
been shown that the statistics of such a conditioned measurement may drastically differ
from the unconditioned case [5, 6]. In this context, the statistics of measurement results
reveal purely quantum phenomena that can be interpreted in terms of weak values [21]
and associated with the interference of initial and final states [22, 23] .

This paper elaborates on a combined case of quantum measurement of two non-
commuting variables and for conditioned quantum evolution. The goal is to inspect
the full statistics of the measurement results and its dependence on the dynamics of
the system measured. For that purpose, we use the theory of continuous weak linear
measurements (CWLM), where a sufficiently weak coupling between a quantum system
and infinitely many degrees of freedom of a linear detector provides their entanglement
and conversion of the (discrete) quantum information into continuous time-dependent
readings of the detector [2–8]. Our approach to CWLM statistics was first introduced in
[6, 24], and extended to include conditioned evolution in [25]. It is based on the theory
of full counting statistics in the extended Keldysh formalism [26].The statistics of mea-
surements of

∫
d tV̂ (t ), V (t ) being a quantum mechanical variable representing linear

degrees of freedom that are measured, are evaluated with the characteristic functional
method and the use of counting field technique. The method provides the necessary and
compact description of the whole quantum system consisting of the measured system
and multiple degrees of freedom describing general linear detectors.

The probability distributions for the measurement of a single variable have been ex-
tensively studied in our recent publication [25]. The motivation to address the two-
variable case comes from the recent experiments [12] where a qubit has been measured
in a resonance fluorescence setup. In the experiment, the transmon qubit enclosed in
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a non-resonant three-dimensional (3D) superconducting cavity is resonantly driven at
the Rabi frequencyΩ and its fluorescence signal is recorded. The cavity is coupled to two
transmission lines, the resonant driving field drives the qubit via a weakly coupled line,
while most of the fluorescence signal exits via the other line which is coupled strongly.
The complex amplitude of the the fluorescence signal is proportional to σ−, the average
of the lowering operator σ̂− = ∣∣g〉〈e| of the qubit, and oscillates with the Rabi frequency
Ω. At each run, the qubit is prepared in either its ground

∣∣g〉
or excited |e〉 state and the

signal is monitored during a time interval (0,T ). At time T , the qubit is projectively
measured using a strong pulse at the bare cavity frequency.
A heterodyne detection setup is used to measure this signal, and the fluorescence signal
can be interpreted as a result of a weak continuous measurement. We notice that the
experiment discussed can give access not only to the conditioned averages, but also to
the conditioned statistics of the measurement results. Those are statistics of the contin-
uous weak measurement of two non-commuting variables of the qubit, σx and σy that
comprise σ̂− = σ̂x − i σ̂y .

The statistics of the conditioned measurement results reveal the signatures of inter-
ference between pre and post selected states. With the present work, we extend these
signatures to the case of simultaneous measurement of non-commuting variables, and
reveal the relation between the visibility of these signatures and the qubit dynamics in
different parameter regimes.

Our results demonstrate that one can achieve very detailed theoretical predictions of
the statistics of CWLM of two non-commuting variables, with account for every relevant
experimental parameter. This allows for the study and characterization of quantum ef-
fects at any choice of parameters, even in the regime where the signatures are very weak.

Among other interesting results, we show that the joint distribution of measurement
outcomes of two non-commuting quantum variables P (O1,O2) has peculiarities located
at the circle O2

1 +O2
2 = 1. This is the two-variable analog of the half-quantized measure-

ment values for the single variable measurement case. We reveal these peculiarities by
analytical calculation of the quasi-distribution of shifts in the limit of short measure-
ment time, and demonstrate them in numerical results at larger measurement times.
We demonstrate how the visibility of the circle is suppressed by the system dynamics,
such that the joint distribution effectively becomes a product of two independent distri-
butions P (O1,O2) ≈ P1(O1)P2(O2).

At measurement times that are so short that the wave function of the system does
not change significantly, and in the case of zero or small overlap between initial and final
states, we reveal anomalously large values of the cumulants of the distribution function
of time integrated outputs that we previously nicknamed sudden jump [25]. In the case
of simultaneous measurement of two non-commuting variables, we reveal simultaneous
sudden jump of the two time integrated outputs O1,O2 with an appropriate choice of
Hamiltonian. For the average value of the output, the big values are readily understood
from the weak value theory [21]. We present both analytical and numerical results.

We also compute the distributions of the outputs under realistic experimental pa-
rameters of [12] concentrating on the quantum signatures of conditioned evolution and
the non-commutativity of the variables.
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The structure of the paper is as follows. We outline and develop the necessary for-
malism in Sec. 3.2, starting from a Bloch master equation for the qubit evolution that
is augmented with counting fields to describe the statistics of detector readouts. This
formalism has been elaborated in our previous work [25], we extend it here to the simul-
taneous measurement of two non-commuting variables. We reveal the role of various
experimental parameters and formulate the relevant quantum noise inequalities for a
general multiple detector setup. In Sec. 3.3 we concentrate on short T and compute
the quasi-distribution of the shifts of the joint distribution P (O1,O2), revealing the circle
shape discussed. In Sec. 3.4 we concentrate on the case of zero overlap between initial
and final states and derive analytical expressions for the joint distribution P (O1,O2) of
measurement outcomes at short times. In this regime, the joint distribution is essen-
tially non-Gaussian and manifests the sudden jumps in the integrated outputs.

In the next sections, we present numerical results at various times scales and in pa-
rameter regimes demonstrating the possibility of very detailed predictions of CWLM dis-
tributions. To start with, in Sec. 3.5 we present numerical simulations at time intervals
that are much smaller than the typical time scales of all Hamiltonian dynamics focusing
on three relevant cases: the case of ideal detectors, and the experimentally relevant case
with and without detuning. In Sec. 3.6, we concentrate on time scales of the order of the
decoherence time, inspecting the three cases for ideal detectors with and without drive,
and for experimentally relevant setup. We conclude in Sec. 3.8.

3.2. METHOD
The description of CWLM in use was first introduced in [24], and later, extended in [25]
to compute probability distributions of a continuous measurement for a conditioned
quantum evolution.
In contrast to other methods such as path integral formulation [6, 7], effective action
method [2, 8], past states formalism [23] or the stochastic update equation [27]; this de-
scription permits the direct evaluation of the generating function of the probability dis-
tribution of the measurement results.

The central object in this description is a Bloch-master equation for the evolution of
the quasi-density matrix of the quantum system that is augmented with counting fields.
Evaluating the trace of the augmented density matrix from this equation as a function
of the counting fields provides the generating function for the probability distribution
of the detector(s) output(s). We give the concrete expression of such equation for a si-
multaneous measurement of two variables O1,O2 of the quantum system. In an ideal
measurement, where all decoherence is due to the coupling with O1,O2 and for the case
of independent detectors, it reads,

∂ρ̂

∂t
= − i

ħ [Ĥq , ρ̂]−∑
i

S(i ,i )
QQ

ħ2 D[Ôi ]ρ̂− χ2
i (t )
2 S(i ,i )

V V ρ̂ (3.1)

− S(i ,i )
QV

ħ χi (t )[ρ̂, Ôi ]+ i ai ,i
V Qχi (t )

2 [ρ̂, Ôi ]+.



3.2. METHOD

3

49

Here, [, ] and [, ]+ refer to commutator and anti-commutator, respectively, D[Â]ρ̂ ≡( 1
2 [Â† Â, ρ̂]+− Âρ̂ Â†

)
and i = 1,2.

For each output Oi , there is a corresponding counting field χi (t ) and a pair of input Q̂i

- output V̂i operators of the corresponding detector. The parameters in the previous
equation are the two-point correlators of these input-output operators, that give the set
of noises and response functions in this linear measurement environment,

S(i , j )
QQ = 1

2

∫ t

−∞
d t ′

〈〈
Q̂i (t )Q̂ j (t ′)+Q̂ j (t ′)Q̂i (t )

〉〉
, (3.2a)

S(i , j )
QV = 1

2

∫ t

−∞
d t ′

〈〈
Q̂i (t )V̂ j (t ′)+ V̂ j (t ′)Q̂i (t )

〉〉
, (3.2b)

S(i , j )
V V = 1

2

∫ t

−∞
d t ′

〈〈
V̂i (t )V̂ j (t ′)+ V̂ j (t ′)V̂i (t )

〉〉
, (3.2c)

a(i , j )
V Q = − i

ħ

∫ t

−∞
d t ′

〈
[V̂i (t ),Q̂ j (t ′)]

〉
, (3.2d)

a(i , j )
QV = − i

ħ

∫ t

−∞
d t ′

〈
[Q̂i (t ),V̂ j (t ′)]

〉
. (3.2e)

This set of noise and response functions define completely the characteristics of
the measurement process. Conforming to the assumption of slow qubit dynamics, the
noises are white and the responses are instant, corresponding to zero-frequency corre-
lators.
The values of these noises and responses are restricted by a set of Cauchy-Schwartz in-
equalities of the form, [28]

S(i ,i )
QQ S( j , j )

V V −
∣∣∣S(i , j )

QV

∣∣∣2 ≥ ħ2

4

∣∣∣a( j ,i )
V Q −a(i , j )

QV

∣∣∣2
, (3.3)

for each pair of operators Q̂i , V̂i ; and not excluding inequalities for pairs of only input
(Q̂’s) or only output (V̂ ’s) operators.

As discussed in [25], these inequalities impose the necessary conditions for the posi-
tivity of the probability distributions of measurement outputs. However, it is possible an
necessary to derive a more restrictive set of inequalities that impose the conditions for
this positivity. In two-detector case at hand, an extra restriction reads:
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S(1,1)
QQ +S(2,2)

QQ ≥ ħ2

4

∣∣∣a(1,1)
V Q −a(1,1)

QV

∣∣∣2

S(1,1)
V V

+

∣∣∣S(1,1)
QV

∣∣∣2

S(1,1)
V V

+ħ2

4

∣∣∣a(2,2)
V Q −a(2,2)

QV

∣∣∣2

S(2,2)
V V

+

∣∣∣S(2,2)
QV

∣∣∣2

S(2,2)
V V

+ħ
∣∣∣
(
a(1,1)

V Q −a(1,1)
QV

)
S(2,1)

QV

S(1,1)
V V

−
(
a(2,2)

V Q −a(2,2)
QV

)
S(1,2)

QV

S(2,2)
V V

∣∣∣
+

∣∣∣S(2,1)
QV

∣∣∣2

S(1,1)
V V

+

∣∣∣S(1,2)
QV

∣∣∣2

S(2,2)
V V

. (3.4)

We demonstrate in Sec. 3.7 how to derive such inequalities from analytical expres-
sions of the joint distribution of measurement outcomes. Those and more complex in-
equalities can be derived from the positivity of the matrix Sβα+ i

aβα−aαβ
2 where the in-

dices α,β index the whole set of operators V̂ ,Q̂.

Let us focus in a experimental situation general to the one described in [12], a trans-
mon qubit embedded in a 3D superconducting cavity with two levels split in z-direction
under conditions of strong resonant drive that compensates the splitting of the qubit
levels. The effective Hamiltonian reads

Ĥq = ħ
2
Ωσ̂x + ħ

2
∆σ̂z , (3.5)

Ω being the Rabi frequency proportional to the amplitude of the resonant drive, and ∆
being the detuning of the drive frequency from the qubit energy splitting. The interac-
tion with the environment induces decoherence, excitation and relaxation of the qubit,
with the rates γd ,γ↑,γ↓ respectively. The measured quantities are related to the fluores-
cence signal emitted from the qubit, so O1 and O2 are conveniently chosen to be σx and
σy .

This is the case of heterodyne detection. The signal from σx,y eventually oscillates at
frequency Ω. The accumulating signal is obtained by the mixture of this signal with the
resonant drive. As a result, it is in principle possible to measure both σx,y signals with
a single detector variable mixing it with sin and cos components of the resonant drive.
Then Eq. 3.1 needs to be adjusted to the case of heterodyne detection. The symmetrized
noises SV V have to be taken at frequency Ω rather than on zero frequency. The same
pertains the susceptibilities. The most important change concerns the second term in
Eq. 3.1 that, for O1,2 =σx,y describes the decoherence and transitions between the states
σz

∣∣Z±〉 =± ∣∣Z±〉
. In Eq. 3.1, the rates of these transitions are equal for both directions,

γ↓ = γ↑. For the case of heterodyne detection, they are not: there are two rates with
gaining/loosing energy proportional to the quantum noise SQQ at positive and negative
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frequencies ±Ω. We also need to add the terms describing the decoherence of the states∣∣Z±〉
.

With this, the equation reads, (i = 1,2)

∂ρ̂

∂t
= − i

ħ [Ĥq , ρ̂]−γd D[σ̂z ]ρ̂−γ↑D[σ̂+]ρ̂ (3.6)

−γ↓D[σ̂−]ρ̂− SQV

ħ
∑

i χi (t )[ρ̂, Ôi ]

+ i aV Q

2

∑
i χi (t )[ρ̂, Ôi ]+−∑

i
χ2

i (t )
2 SV V ρ̂,

σ̂+ (σ̂−) being the rising and lowering operators of the qubit, and σ̂z = |e〉〈e|−∣∣g〉〈
g
∣∣ the

standard Pauli operator.
All the parameters entering the equation can be characterized from experimental mea-
surements. We provide an example of concrete values in Section 3.5.

For simplicity we inspect the case of identical but independent detectors. Meaning
all cross noises and responses vanish and the behaviour of both detectors is physically
the same. In that case, the rates and noises are restricted by the inequality,

SQQ SV V − ∣∣SQV
∣∣2 ≥ ħ2

4

∣∣aV Q −aQV
∣∣2. (3.7)

For a simple system like a single qubit it is natural to make the measured operator
dimensionless, with eigenvalues of the order of one, or, even better, ±1. With this, one
can define and relate the measurement induced dephasing rate 2γ = 2SQQ /ħ2 and the

acquisition time ta ≡ 4SV V /
∣∣aV Q

∣∣2 required to measure the variable O1,2 with a relative
accuracy ' 1.

We concentrate on the simultaneous measurement of two variables of a qubit during
a time interval (0,T ). During this time interval, one accumulates the time-dependent

outputs of the detectors and normalize them by the same interval, Vi ≡ 1
T

∫ T
0 Vi (t ′)d t ′

(i = 1,2). Our goal is to evaluate the joint probability distribution P (V1,V2) of the mea-
surement results, conditioned to an initial qubit state given by ρ̂(0), and to a post-selection
of the qubit in a specific state |Ψ〉 at the time moment T . This involves the projection
on the state |Ψ〉, represented by the projection operator P̂Ψ = |Ψ〉〈Ψ| . This works under
assumption of an ideal and fast post-selection so that the system measured is projected
on a known pure state |Ψ〉. This is the case of the experimental setup [12]. In reality,
there can be errors in the post-selection. Such errors can also be accounted for in the
formalism outlined. To this end, one replaces the projection operator P̂Ψ with a den-
sity matrix-like Hermitian operator ρ̂ f satisfying Tr[ρ̂ f ] = 1. For instance, if after a faulty
projection measurement with the result "1" the system is in a orthogonal state |Ψ2〉 with
probability pe , the corresponding ρ̂ f reads

ρ̂ f = (1−pe )|Ψ1〉〈Ψ1|+pe |Ψ2〉〈Ψ2| (3.8)

The probability distribution of the detector outcomes can be computed from the
generating function according to
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P (V1,V2) = T

2π

∫ ∫
dχ1dχ2e−iχ1V1T e−iχ2V2T C (χ1,χ2;T ). (3.9)

The joint statistics are extracted from the quasi-density matrix ρ̂(χ1,χ2;T ) at the end
of the interval calculated using Eq. (3.1). With the post-selection, the quasi-density ma-
trix is projected on the final state measured |Ψ〉, and the conditioned generating function
of the detector outcomes reads [25]

C̃ (χ1,χ2;T ) = Trq (P̂Ψρ̂(χ1,χ2;T ))

Trq (P̂Ψρ̂(χ1 = 0,χ2 = 0;T ))
. (3.10)

Here, Trq denotes the trace over qubit variables.
Sometimes it is convenient to normalize the time-integrated outputs introducing Oi =
Vi /a(i ,i )

V Q that immediately corresponds to the eigenvalues of Ôi (We stress that Oi are

coming from the averaging of an environmental operator rather than Ôi ).

3.3. QUASI-DISTRIBUTION OF SHIFTS
For a sufficiently long measurement, the distribution of the measurement results is a
shifted Gaussian with the value of the shift proportional to the averaged value of the op-
erator measured. In this case, the spread of the Gaussian is much smaller than the shift.
In this Section, we will attempt to understand the shifts in the limit of short measure-
ment times T . In principle, any distribution of a vector variable P (~O ) can be presented
as a convolution of a Gaussian distribution PG and a quasi-distribution of the shifts,

P (~O ) =
∫

d~sC (~s)PG (~O −~s) (3.11)

One should only not to be confused with the fact that C is a quasi-distribution and
should not be ever positively defined.

The convolution of such kind is especially natural since the solution of Eq. (3.1) is
proportional to the characteristic function of the Gaussian distribution. If we neglect the
cross-noises, and the Hamiltonian dynamics, the solution at short T can be represented
as

ρ̂(T ) = exp

(
−T χ2

i (t )

2
S(i ,i )

V V

)
Û ρ̂(0)Û (3.12)

with Û = exp

(
i ai ,i

V Qχi T

2

)
The first factor here is the characteristic function of the Gaussian

distribution generated by the detector noises. From the second factor, assuming the
initial density matrix ρ̂i and the post-selection described by ρ̂ f , we obtain the generating
function of the shift quasi-distribution

C (~χ) = Tr[ρ̂ f Û ρ̂iÛ ]

Tr[ρ̂ f ρ̂i ]
. (3.13)

We illustrate the quasi-distribution of the shifts for the case of a qubit. Although
in this paper we concentrate on two-detector setups, it is much more instructive to con-
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sider now three detectors measuring all three Pauli matrices~σ= (σx ,σy ,σz ). We normal-
ize the detector outputs on ±1 of Pauli matrix eigenvalues and rescale the corresponding
counting fields~χ. accordingly. With this, the matrix Û becomes nicely symmetric

Û = exp
(−i (~χ,~σ)/2

)
(3.14)

The final and initial density matrices for a qubit are represented as

ρ̂i , f =
1

2
(1+ (~Pi , f ,~σ)) (3.15)

with polarization vectors |~Pi , f | < 1. The generation function for smaller number of de-
tectors is obtained by setting some components of ~χ to 0. For instance, setting χz,y = 0
gives

C (χx ) = (
1+ (~Pi ,~P f )

)−1
(
((~Pi ,~P f )−P z

i P z
f )

+(1+P z
i P z

f )cosχx + (P z
i +P z

f )sinχ
)

(3.16)

which corresponds to the following quasi-distribution of the shifts

C (sx ) = δ(sx −1)+δ(sx )+δ(sx +1) (3.17)

This quasi-distribution, as discussed in [25], is located on a compact support of half-
sums of the eigenvalues ±1 of the operator σx . The half-quantized value sx = 0 is mani-
fested only in the case of conditioned measurements.

Multiplying the matrices and taking the trace, we obtain the answer for three detec-
tors. It can be naturally separated into scalar, vector, and tensor part (χ≡ |~χ|),

Cs (~χ) = cosχ+ (~Pi ,~P f ) (3.18)

Cv (~χ) = i (~Pi +~P f ,χ)
sinξ

ξ
(3.19)

Ct (~χ) = −(~Pi ,~χ)(~P f ,~χ)
2sin2(χ/2)

χ2 (3.20)

C = Cs +Cv +Ct

1+ (~Pi ,~P f )
. (3.21)

Let us now compute the quasi-distribution of the shifts the inverse Fourier transform
of C ,

C (~s) =
∫

d~s

(2π)3 C (~χ)exp
(−i (~s,~χ)

)
(3.22)

Eventually, the integral is rather involved. The best way to perform the integration is to
try the direct transform. We note that

sin
(
χA

)
χ

≡ z(A) =
∫

d~s
δ(s − A)

4πA
exp

(
i (~s,~χ)

)
(3.23)
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at any A and

sin
(
χ
)

χ
,cos(ξ) = lim

A→1
z(A),

d

d A
z ; (3.24)

2sin2(χ/2)

χ2 =
∫ 1

0
d Az(A) (3.25)

With using this we arrive at the quasi-distribution of the form

Cs (~s) = − 1

4π
(δ(s −1)+δ′(s −1))+ (~Pi ,~P f )δ(~n) (3.26)

Cv (~n) = −(~Pi +~P f ,
∂

∂~s
)δ(s −1) (3.27)

Ct (~n) = (~Pi ,
∂

∂~s
)(~P f ,

∂

∂~s
)
Θ(1− s)

s
(3.28)

C = Cs +Cv +Ct

1+ (~Pi ,~P f )
(3.29)

We observe that the vector and tensor contributions provide a quasi-distribution lo-
cated on a compact support s = 0 or s = 1. The latter is rather surprising: it invokes a
notion of a ’classical’ qubit spin, a classical unit vector pointing in an arbitrary direction.
While for such classical spin the quasi-distribution would have been positive, this is not
the case of actual quantum mechanical expression: the quasi-distribution is made of
δ-function and its derivatives. We do not find it instructive to plot the resulting quasi-
distribution. The tensor part also contains terms located on this support. In addition,
there are terms ∝ (~P f ,~s)(~Pi ,~s)/s5 located within the sphere s < 1. The tensor part per-

sists only for the case of conditional measurement ~P f 6= 0.
To obtain the distribution of 2 outputs, we integrate it over sz making use of∫

d sz z(A) = 2√
A2 − s2

⊥
; s⊥ ≡

√
s2

x + s2
y (3.30)

The resulting quasi-distribution reads (here, the indices a,b = x, y)

Cs (~s) = − 1

2π

1

(1− s2
⊥)3/2

+ (~Pi ,~P f )δ(sx )δ(sy ) (3.31)

Cv (~s) = −(P a
i +P a

f ,
∂

∂na )δ(s −1) (3.32)

Ct (~s) = P a
i
∂

∂sa P b
f

∂

∂sb
)arccosh(s−1

⊥ ) (3.33)

C = Cs +Cv +Ct

1+ (~Pi ,~P f )
(3.34)

We see that this quasi-distribution is located at the compact support s2
x + s2

y = 1, s2
x +

s2
y = 0 as well as inside the circle s2

x + s2
y < 1. This gives us an expectation that the actual
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distribution of the measurement results should exhibit some peculiarities at s2
x + s2

y = 1,
an expectation that is confirmed by numerical results of subsequent Sections.

It is worth noting that the generalized functions involved in the quasi-distributions
presented in the Eqs. (3.34) and (3.29) are rather involved and should be dealt with care-
fully. In particular, a direct attempt to integrate Eq.(3.34) over ny does not immediately
reproduce Eq. (3.17) as it should. Rather, the integration diverges near s2

x + s2
y = 1. To

resolve this apparent paradox, one requires a regularization of the generalized functions
involved. Such regularization can be provided by replacing

δ(s − A) →π−1Im
1

A+ iξ
(3.35)

at small but finite ξ. With this, the divergence at the circle edge is eliminated and Eq.
(3.17) is reproduced.

3.4. SHORT TIME INTERVALS AND ZERO OVERLAP
In this Section, we consider again very short T such that the change of the density matrix
due to Hamiltonian and dissipative dynamics is small. Since the measuring time is too
short to resolve the signal with sufficient accuracy, we expect the distribution to be close
to the Gaussian one

PG (O1,O2) = ∏
i=1,2

1

σi
p

2π
exp

(
− O2

i

2σ2
i

)
, (3.36)

with σ2
i = S(i ,i )

V V /(T
∣∣∣a(i ,i )

V Q

∣∣∣2
). The spread of O is much larger than their eigenvalues. How-

ever, the distribution can become quite different if the overlap between the initial state,
|i 〉, and the final state of the projective measurement, |Ψ〉, vanishes: 〈i |Ψ〉 = 0. The latter
implies that such output of the projective measurement is very improbable, but it can be
singled out and its statistics are worth studying.

Figure 3.1: (a): Probability distribution of outputs [Eq. (3.39)] in the sudden jump regime in case of an ideal
detector (K ≡ γta = 1). The figures (b) and (c) present conditioned distributions. In (b), we plot the probability
distribution of O1 output given a O2 = y result for the other output. (c) gives the probability distribution of O2
output given a O1 = x result for the other output. All distributions are evaluated at T = 4/(Ω2ta ).



3

56
PROBABILITY DISTRIBUTIONS OF CONTINUOUS MEASUREMENT RESULTS FOR TWO

NON-COMMUTING VARIABLES AND CONDITIONED QUANTUM EVOLUTION

Figure 3.2: (a): Probability distribution of outputs [Eq. (3.42)] in the sudden jump regime in case of an ideal
detector (K ≡ γta = 1). Both figures (b) and (c) present conditioned distributions. (b) gives the probability
distribution of O1 output given a O2 = y result for the other output. (c) gives the probability distribution of O2
output given a O1 = x result for the other output. All the distributions are evaluated at T = 4/(Ω̄2ta ). We set
Ωx =Ωy , this explains the symmetry.

A peculiarity termed a sudden jump of the integrated output, is characteristic for this
situation. It can be explained from the concept of weak values [21] as far as average out-
puts are concerned. For the whole statistics of the outputs, the sudden jump was stud-
ied for a single variable measurement [25]. Here we demonstrate that the sudden jump is
still seen in the statistics of simultaneous measurement of two variables. A proper choice
of Hamiltonian permits for a simultaneous sudden jump in both integrated outputs. The
signature of sudden jump is enhanced in the distribution where the distribution of one
output is conditioned on a specific value of another one.

To this end, let us focus first at the experimental situation in [12]. In this case, the
two measured variables are conveniently chosen to be σ̂x and σ̂y and the qubit is driven
by a Hamiltonian Ĥq = ħΩ2 σ̂x . In the simplest case where the two detectors are inde-
pendent and no cross noises are present, and with the assumptions of short T and zero
overlap 〈i |Ψ〉 = 0 (the qubit is prepared in

∣∣Z+〉
and post-selected in |Z−〉), one obtains

the following joint characteristic function of the distribution of detector outputs:

C (χ,T ) =
4γ+T

((
Ω− i a(2,2)

V Q χ2

)2 −
(
a(1,1)

V Q χ1

)2
)

4γ+T Ω2 e−
1
2

∑
i S(i ,i )

V V χ2
i T . (3.37)

γ= S(1,1)
QQ /ħ2 +S(2,2)

QQ /ħ2 being the decoherence rate.
This gives the average outputs

Ō1 = 0, Ō2 =− 2Ω

4γ+T Ω2 ; (3.38)

and the joint distribution
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P (O1,O2) = 1

4γ+T Ω2

(
4γ+T

[(
Ω− 4O2

ta2

)2

− 4

T ta2
+ 4

ta1

(
4O2

1

ta1
− 1

T

)])
PG (O1,O2)

(3.39)
The value of average output Ō2 thus saturates at −Ω/2γ¿ −1 in the limit of short

T ¿ γ/Ω2. Note that this sudden jump behaviour, at a time scale of γ/Ω2 now is only
visible at the time-integrated output of the variable O2 not commuting with the Hamil-
tonian. Thus, to achieve a simultaneous sudden jump for both time-integrated outputs,
we need to require that the Hamiltonian does not commute with both variables .

Let us modify the Hamiltonian to Ĥq =ħΩx
2 σ̂x+ħΩy

2 σ̂y . The joint characteristic function
can be written as

C (χ,T ) =
4γ+T

(
(Ωx − i a(2,2)

V Q χ2)2 − (iΩy −a(1,1)
V Q χ1)2

)
4γ+T Ω̄2

e−
1
2

∑
i S(i ,i )

V V χ2
i T , (3.40)

where Ω̄2 =
(
Ω2

x +Ω2
y

)
. This gives the average outputs

Ō1 =
2Ωy

4γ+T Ω̄2
; Ō2 =− 2Ωx

4γ+T Ω̄2
. (3.41)

Therefore, both time-integrated outputs exhibit a sudden jump at a time scale of
γ/Ω̄2. The joint probability distribution of measurement outcomes can then be com-
puted by Fourier transformation of the joint characteristic function (3.40), and is given
by

P (O1,O2) = 1

4γ+T Ω̄2

(
4γ+T

[(
Ωx − 4O2

ta2

)2

+
(
Ωy + 4O1

ta1

)2

− 4

T ta2
− 4

T ta1

])
PG (O1,O2).

(3.42)

Here, tai ≡ 4S(i ,i )
V V /

∣∣∣ai ,i
V Q

∣∣∣2
are the acquisition times corresponding to each detector.

For the simplest case of identical but independent detectors, ta1 = ta2, this distribution
is positive as long as K ≡ γta ≥ 1 (K = 1 corresponding to an ideal detector), which is
always guaranteed by the corresponding Cauchy-Schwartz inequality (3.7).

It is instructive to inspect the forms of the distributions (3.39) and (3.42) to under-
stand the main characteristics of such a measurement scenario. We do that by plotting
the joint distributions and several cross sections of these joint distributions as the distri-
bution of one integrated output given a specific result for the other integrated output. In
Figures 3.1 and 3.2 we present this two distributions for a measurement time T = 4/Ω2ta

and T = 4/Ω̄2ta respectively. The first plot, (a) presents the joint distribution covering
a huge range of detector outcomes due to the short measurement time T . The sudden
jump behaviour of the integrated output is visible at this time scale. The position of the
peaks and the average integrated outputs in the (O1,O2) plane for these distributions
depend only on the choice of the Hamiltonian dynamics, as can be seen by comparing
Figures 3.1 and 3.2.
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In Fig. 3.1 (b) and (c) we present cross sections of the joint distribution (3.39). First,
due to the asymmetry of the Hamiltonian with respect to the two detector outputs, the
distributions for O1 (plot (a)) are intrinsically different than the distributions for O2 (plot
(b)). While the average value of the integrated output O1 corresponding to the measure-
ment of Ô1 = σ̂x is zero, the average integrated output of the second variable Ô2 = σ̂y

can reach anomalously big values as explained by theory of weak values [21]. Figure
(b) also shows how conditioning on results of the second integrated output, can be used
to drastically change the distribution of the first integrated output, going from a noise-
dominated distribution (full line curve for O2 = −20) to a well-resolved measurement
(dashed-dotted curve for O2 = 20).

As noted above, with a proper choice of Hamiltonian, one can achieve anomalously

large average integrated outputs in both variables. Thus, now using Ĥq =ħΩx
2 σ̂x+ħΩy

2 σ̂y ,
in Fig. 3.2 (b) and (c) we present cross sections of the joint distribution (3.42). Here, the
asymmetry between the two distributions (a) and (b) disappears and the maximum and
minimum values are the same due to our choice of parameters (Ωx =Ωy ).

In Sec. 3.7, we use the analytical results for the distribution in the limit of short time
and zero overlap to check the positivity of the distribution of measurement outcomes for
a more general set of detector noises and responses. We show that the positivity of the
distribution is guaranteed provided the restriction (3.4).

3.5. NUMERICAL RESULTS: SHORT TIME SCALES
In this section, we are going to numerically compute the full probability distribution
of measurement outcomes in the same regime as in the previous section, but for ex-
perimental conditions. The measurement time is short compared to the Hamiltonian
dynamics of our qubit and the state of the measured system does not vary significantly
during this measurement time. For simplicity, in the reminder of this paper we will al-
ways consider vanishing cross noises, S(i ,i )

QV = 0, for a set of identical but independent
detectors. However, the results can be numerically simulated and extended to any two
variable measurement scenario.

To numerically study this limit and longer time intervals in the next Sec. 3.6, let us
focus on 3 interesting cases:

(i) An ideal detection case, where we numerically solve Eq. (3.1) with Ĥq =ħΩ2 σ̂x and
parameter values such that the inequality (3.7) becomes an equality. Meaning, all
the decoherence is brought by the detectors back action and their rates assume the
minimum permitted values, K = taγ= 1.

(ii) An experimentally relevant case, where we numerically solve Eq. (3.6) with Ĥq =
ħΩ2 σ̂x , γ↓ = (22.5µs)−1,γ↑ = (56µs)−1 and γd = (15.6µs)−1. The acquisition time
comes from the measurement rate 2/ta ≈ (92µs)−1 as given in [12].

(iii) Finally, another experimentally relevant case, where we will again solve Eq. (3.6)
but with a modified Hamiltonian, in which a rather strong detuning ∆ ≈ 1.7Ω is
applied to the qubit as Ĥq = ħΩ2 σ̂x +ħ∆2 σ̂z . This value is chosen to maximize 〈O1〉
for the equilibrium density matrix.
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Figure 3.3: Output distributions for the simultaneous measurement of Ô1 = σ̂x and Ô2 = σ̂y . The measurement

with ideal detectors (case (i)) for T ¿Ω−1 or comparable with Ω−1. The qubit is prepared in
∣∣Z+〉

and post
selected at the end of the measurement: In

∣∣Z+〉
for the first row of figures (plots (a), (b) and (c)); and in |Z−〉

for the second row of figures (plots (d), (e) and (f)).

The distributions of the measurements for these three cases are presented in three
different figures. Figure 3.3 for the ideal case, and Figures 3.4 and 3.5 for the experimen-
tally relevant scenario without and including a strong qubit detuning respectively.

In these three figures, we plot the joint distribution for different combinations of
preparation and post-selection states of the measured qubit. As well as cross sections
of this distribution, meaning the distribution of a particular detector output given spe-
cific values for the other detector output. The first row of plots, (a), (b) and (c), presents
these distributions for a qubit prepared in

∣∣Z+〉
and post-selected after the measurement

in
∣∣Z+〉

; we refer to this as P+. The second row of plots, (d), (e) and (f), presents these
distributions for a qubit prepared in

∣∣Z+〉
and post-selected in |Z−〉; we refer to this as

P−.
Also, the first column of plots, (a) and (d), are density plots of the joint distribution of
measurement outcomes (P+(O1,O2) and P−(O1,O2)) for both measured variables and for
the measurement time T = 0.05Ω−1. The second column of plots, (b) and (e), presents
different conditioned distributions of the detector output O2 given specific values O1 = x
of the other detector output (P+(O2|O1 = x) and P−(O2|O1 = x)), again for a measure-
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Figure 3.4: The measurement with non-ideal detectors and experimentally relevant parameters, case (ii). The
qubit is prepared in

∣∣Z+〉
and post selected at the end of the measurement: In

∣∣Z+〉
state for the first row of

figures (plots (a), (b) and (c)); and in |Z−〉 for the second row of figures (plots (d), (e) and (f)).

ment time T = 0.05Ω−1. Finally, the third column of plots, (c) and (f), presents dif-
ferent conditioned distributions of the detector output O2 given a result of O1 = 0 of
the other detector output (P+(O2|O1 = 0) and P−(O2|O1 = 0)) for different measurement
times T = 0.05,0.2,0.5Ω−1.

At this short measurement times, one expects these distributions to be dully Gaus-
sian spreading over a large range of detector output values. This is seen in the upper row
of plots. There is only one particular case, as we have shown previously, where this is
not true. When the overlap between the preparation and post-selection states is zero. In
second row of plots in Figures 3.3, 3.4 and 3.5, a sudden jump behaviour in the averaged
integrated output appears, manifested in these figures as very non-Gaussian distribu-
tion shapes. There are small deviations in this numerical results because T is finite. The
plots show anomalously large values for the average integrated output as big shifts in the
distribution peaks, in agreement with the analytical results of the previous section. The
agreement is visible if one compares Fig. 3.3 (e) with Fig. 3.1 (c).
As expected, this peculiarity is suppressed as the Hamiltonian dynamics start to be rel-
evant (T ∼ Ω−1) as can be seen in the different curves at increasing time intervals in
the third column of plots in Figures 3.3, 3.4 and 3.5. The shape of the distributions be-
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Figure 3.5: The measurement with non-ideal detectors and strong detuning, case (iii). The qubit is prepared
in

∣∣Z+〉
and post selected at the end of the measurement: In

∣∣Z+〉
for the first row of figures (plots (a), (b) and

(c)); and in |Z−〉 for the second row of figures (plots (d), (e) and (f)).

comes more Gaussian as the detectors considered are less ideal. This can be seen when
comparing the distributions for ideal detectors (Fig. 3.3) and experimentally relevant
parameters (Fig. 3.4 and 3.5).
As the measurement time is short compared to the Hamiltonian dynamics, the qubit
state changes insignificantly during the measurement. This fact is manifested in the
sudden jump behaviour of the P− distributions in the second row of plots, and in the
fact that Figures 3.4 and 3.5 are almost the same. At these short measurement times, a
difference in the Hamiltonian is not noticeable.

3.6. NUMERICAL RESULTS: LONGER TIME SCALES
In the previous section, we have presented the distributions of CWLM outcomes of the
simultaneous measurement of two non-commuting variables in the limit of short mea-
surement times. In this Section, we address the distributions of the CWLM outcomes of
the simultaneous measurement of two non-commuting variables at time scales of the
order of coherence/relaxation times and ta .



3

62
PROBABILITY DISTRIBUTIONS OF CONTINUOUS MEASUREMENT RESULTS FOR TWO

NON-COMMUTING VARIABLES AND CONDITIONED QUANTUM EVOLUTION

Figure 3.6: Output distributions for the simultaneous measurement of Ô1 = σ̂x and Ô2 = σ̂y . The qubit is
prepared in

∣∣Z+〉
and post selected either in

∣∣Z+〉
for the first row of figures (plots (a), (b) and (c)); or in |Z−〉

for the second row of figures (plots (d), (e) and (f)). There is no post-selection for the last row of figures (plots
(g), (h) and (i)). The measurement is performed with ideal detectors and no Hamiltonian dynamics are present
during time intervals comparable to the acquisition time of the measurement setup.
In this configuration, the peculiarities discussed in Sec. 3.3 are clearly visible in the joint distributions (plots
(a), (d) and (g)).

To begin with, let us assume no Hamiltonian and ideal detectors (case (i) with no
Hamiltonian). With this, the conditioned distribution of outcomes changes only at the
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Figure 3.7: Here, the output distributions for a measurement performed with ideal detectors (case (i)) during
time intervals comparable to the acquisition time of the measurement setup. The Hamiltonian drastically
changes the type of peculiarities seen in the distributions. This can be seen by comparison with Figure 3.6.

time scale ta ' γ−1, that is much longer thanΩ−1, and the dynamics are described by Eq.
(3.1) with vanishing S(i ,i )

QV and Ĥq terms.
As discussed in Section 3.3, the pre and post-selection condition leads to peculiarities in
the joint distribution that are located around the circle O2

1 +O2
2 = 1. These peculiarities

should be visible in these conditions, at intermediate measurement times that are longer
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thanΩ−1 but short enough so that they are comparable to ta ' γ−1.
In fact, this is what we present in Fig. 3.6 when plotting the joint distributions (first
column of plots; (a), (d) and (g)). The cross sections ((b), (e) and (h); and (c), (f) and
(i)) show the expected half-quantization peculiarities characteristic of a single variable
measurement, extensively discussed in [25]. In the last column of plots ((c), (f) and
(i)) one could expect the separation of the distribution onto peaks at the limit T À ta .
However, this is a signature of a quantum nondemolition measurement, and the fact that
we inspect the simultaneous measurement of two non-commuting variables means that
the measurement itself will induce rates causing transitions between the qubit states.
Thus, not being a nondemolition measurement.
It is worth mentioning that the fact that all these distributions are symmetric under a
change O1 ↔ O2 is due to the choice identical detectors and no Hamiltonian dynamics
in any of those variables axes (Ô1 = σ̂x and Ô2 = σ̂y ).

To clarify these observations, let us describe precisely the layout both for Fig. 3.6 and
Fig. 3.7: The (a) plots show the joint distribution of measurement outcomes P+(O1,O2)
for a qubit prepared in

∣∣Z+〉
and post-selected in the same state after the measurement

of duration T = 0.4ta . The (d) plots show the joint distribution of measurement out-
comes P−(O1,O2) for a qubit prepared in

∣∣Z+〉
and post-selected in the orthogonal state

|Z−〉 after the measurement of duration T = 0.4ta . The (g) plots show the joint distri-
bution of measurement outcomes P (O1,O2) for a qubit prepared in

∣∣Z+〉
unconditioned

to any post-selection after the measurement of duration T = 0.4ta . Next, in the sec-
ond column, the (b) plots present the conditioned distributions P+(O1|O2 = y) of the
first output, given a result O2 = y for the second output, again for a qubit prepared in∣∣Z+〉

and post-selected in the same state after the measurement of duration T = 0.4ta .
Respectively, the (e) and (h) plots, show the conditioned distributions P−(O1|O2 = y)
and P (O1|O2 = y). Finally, in the third column, we plot the conditioned distributions
P+(O1|O2 = 0) in (c), P−(O1|O2 = 0) in (f), and P (O1|O2 = 0) in (i); for different measure-
ment duration T = 0.4,0.8,1.2ta .
In contrast with the figures in the previous section, as the measurement time is big
enough so that the qubit state changes appreciably during the measurement, we also
plot the unconditioned distributions P (O1,O2) now being clearly different than the dis-
tributions conditioned to a specific pot-selection P±(O1,O2).

Let us incorporate Hamiltonian dynamics to this measurement scenario, focusing
now on case (i). If we keep the final state fixed to

∣∣Z±〉
, the contribution due to the con-

ditioned evolution in these distributions will exhibit fast oscillations as function of T

with a period 2π/Ω. It is proficient from both theoretical and experimental considera-
tions to quench these rather trivial oscillations. We achieve this by projecting the qubit

after the measurement on the states |Z̄±〉 = e−i Ĥq T |Z±〉 thereby correcting for the trivial
qubit dynamics. In practice, such correction can be achieved by applying a short pulse
rotating the qubit about x-axis right before the post-selection measurement.
With this, the asymmetry in the Hamiltonian with respect to the measured Ô1 and Ô2

variables will break the symmetry in the shape of the distributions. Then, the condi-
tioned distributions for the output O2 are just Gaussian functions centered at O2 = 0
with their spread decreasing over time as ∼ 1/

p
T . Thus giving no information about
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the output O2 at this time scale. That is why we choose to plot the conditioned distribu-
tions for the output O1. This situation is presented in Fig. 3.7. The choice of Hamiltonian
now collapses all these peculiarities due to the pre and post-selection conditions in one
of the two outputs. This is perfectly visible in the shape of the joint distributions (plots
(a), (d) and (g)). Not only that, but the addition of dynamics to the measured qubit re-
sults in a clear and strong suppression of the dependence of a given output on the other
output outcomes as can be seen in plots (b), (e) and (h). Finally, if one compares the time
evolution of these distributions (plots (c), (f) and (i)) for figures 3.6 and 3.7, the addition
of dynamics to the measured qubit, results in a less resolved measurement, i.e., less sep-
arated peaks for a given measurement time T .
Although this shows that the interference effect and peculiarities due to conditioned
evolution are still visible at longer time scales for an ideal measurement scenario, it is
also clear, that those signatures are suppressed by dynamics in the measured qubit. In
fact, in an experimental situation, where external sources of decoherence are present,
resolving those signatures might become a very challenging task. It is then important to
inspect an experimentally relevant parameter regime in these numerical simulations.

To this end, one can inspect experimentally relevant scenarios like cases (ii) and (iii).
It is good to note that the quality of the measurement setup in these conditions is far
from ideal, K = taγd ≈ 12, and at longer time scales, the decoherence completely dom-
inates all the measurement dynamics. It is so that the distributions do not show visible
characteristics of the conditioned qubit evolution. They appear to be just Gaussian dis-
tributions centered at zero value of the outcome variables.

In this case, it is more instructive to inspect the difference of two particular distri-
butions, rather than the distribution itself. With that in mind, in Figures 3.8 and 3.9 we
plot different differences of distributions. In Fig. 3.8 we consider case (ii). In Fig. 3.9 we
consider case (iii). In doing so, not only we are interested in the phenomena related to
conditioned qubit evolution, but also in the difference of simultaneous measurement of
several variables from the single variable case.
These two figures are structured with the following layout: The (a) plots, show the dif-
ference of the distribution of the first output disregarding the second output and the
distribution of the same first output given a specific result y for the second output,
P+(O1) − P+(O1|O2 = y). The (b) plots, show the same difference divided by its sum,
(P+(O1)−P+(O1|O2 = y))/(P+(O1)+P+(O1|O2 = y)). Both for a qubit prepared in

∣∣Z+〉
state and post-selected in the same state. The (c) plots, show again that difference but for
a qubit prepared in

∣∣Z+〉
and post-selected in |Z−〉, i.e., P−(O1)−P−(O1|O2 = y). Respec-

tively, (d) show that difference divided by the sum, (P−(O1)−P−|(O1|O2 = y))/(P−(O1)+
P−(O1|O2 = y)). These differences give an estimation of the correlation between the two
outputs in these measurements, or the separability of the joint distribution.
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Figure 3.8: Differences of distributions at measurement times of the order of the acquisition time ta under
experimentally relevant measurement conditions, case (ii). The layout is described in detail in Sec. 3.6 in the
main text.
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Figure 3.9: Differences of distributions taken at measurement times of the order of the acquisition time ta and
at nonzero detuning, case (iii). The layout is the same as in previous Figure 3.8.

Next, the (e) plots show the difference between the distribution of the first output
given a specific result y for the second output for a qubit prepared in

∣∣Z+〉
and post-
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selected in the same state; and the distribution of the first output given a specific result
y for the second output for a qubit prepared in

∣∣Z+〉
and post-selected in |Z−〉. That

is P+(O1|O2 = y)−P−(O1|O2 = y). Again, the (f) plots show this difference divided by
their sum, (P+(O1|O2 = y)−P−(O1|O2 = y))/(P+(O1|O2 = y)+P−(O1|O2 = y)). Finally, the
(g) plots show the same difference, but for the distributions of the second output given
a specific result x for the first output: P+(O2|O1 = x)−P−(O2|O1 = x). Respectively (h)
show that difference divided by their sum, (P+(O2|O1 = x)−P−(O2|O1 = x))/(P+(O2|O1 =
x)+P−(O2|O1 = x)).
The reason for inspecting these last differences is simple, we want to have an estima-
tion for the resolution of any signature that is due to the conditioned evolution of the
measured system. Thus, inspecting the difference between the two limiting cases of this
conditioned evolution, i.e., same pre and post-selection and orthogonal pre and post-
selection; shows how strong these signatures are. Furthermore, these differences divided
by their sums, quantify how much these signatures can be resolved by using the output
distributions of such measurements. Or in other words, the certainty with which one
can distinguish two distributions from each other given a measurement reading: [25]

C (Oi |O j =α) = P+(Oi |O j =α)−P−(Oi |O j =α)

P+(Oi |O j =α)+P−(Oi |O j =α)
(3.43)

The values C = ±1 would imply that the measurement is certainly post-selected in∣∣Z±〉
.

In this experimental regime at zero detuning, Fig. 3.8, the differences of distributions
(a) and (c), reveal that the two outputs are still correlated, and this correlation seems to
be bigger for given values of the outputs that are farther away from the origin where the
distributions peak at such time scales. Nevertheless, it is very small, as the joint distri-
bution quickly becomes a Gaussian due to decoherence and relaxation. At big values of
O1, the difference quickly decreases together with the distributions. In this respect, it is
instructive to inspect the difference normalized on the sum of the probability densities.
As we see from (b) and (d), this quantity increases with increasing O1, reaches relatively
large values at increasing O2 = y results due to their low statistical weight, and seems to
remain relevant at a small region O1 ∼ 0 even for big times. This region is more relevant
because this quantity is not suppressed or increased due to exponentially low probabili-
ties for those values, it is rather a direct measure of the correlation of the two outputs.
The signatures of the conditioned evolution are revealed by the differences in (e) and
(g). As expected due to the form of the Hamiltonian (on Ô1 = σ̂x axis), (e) is very different
from (g). In (e), the shape of the difference suggests that the P−(O1|O2 = y) is pushed
on both positive and negative values of O1 in comparison with P+(O1|O2 = y), in agree-
ment with the previous findings. The decoherence and relaxation quickly diminish the
difference upon increasing T . Inspecting the certainty in (f), it saturates with increasing
O1, reaches relatively large values at short T , and fades away upon increasing T . Note
that at short T = 0.4ta this relative difference achieves 0.002 at O1 ≈ 0 and can be thus
revealed from the statistics of several hundred individual measurements. For the second
output O2, the differences in (g) are an order of magnitude bigger than those for the O1

distributions in plot (e). Not only that, but the difference does not vanish in the limit
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of big T . Rather, it is concentrated in an increasingly narrow interval of O2 conforming
to the decreasing width of the distribution. It is worth noting that they also change sign
as T increases. For short times, the shape of P−(O2|O1 = x) resembles the shape of the
distribution at the sudden jump regime (Fig. 3.4), as the time T increases, the distri-
butions are shifted depending on the post-selected state. This is not the case for the O1

output discussed previously because of the chosen Hamiltonian. As to the certainty in
(h), it shows a linear behaviour with O2, C (O2|O1 = x) = βO2. The sign of β depends on
the sign of the shift in the distributions, and the linear behaviour can be explained in the
limit of small shifts. This does not imply that the distributions are different in this limit
since they become concentrated with divergent probability density, and the values of O2

with high certainty occur with exponentially low probability. This is discussed in detail
Section V of [25].

Let us inspect these differences of distributions at nonzero detuning in Fig. 3.9. In
this case, there is no reason to expect the O1 →−O1 symmetry in the distributions, or in
turn, the differences. Again the differences showed in (a), (b), (c) and (d); reveal small
correlations between the two outputs still in the presence of detuning. These are bigger
when the distributions are conditioned with values at bigger distances from the origin.
The differences of the probability distributions presented in (e) and (g) seem to be at
least one order of magnitude bigger for the distributions of the first output in (e), com-
pared to the zero detuning case in Fig. 3.8. And, for both outputs, the difference does
not vanish in the limit of big T . Rather, it is concentrated in an increasingly narrow in-
terval of O1,2 conforming to the decreasing width of the distribution. This suggests that
adding a strong detuning can increase the detection resolution, and reveal these distri-
bution differences from the statistics of fewer individual measurements. However, as
mentioned before, the certainties (f) and (g), rather quickly converge when increasing
T to finite and and rather big values in a wide interval of the output O1,2 in question.
Again this do not imply that the distributions are fundamentally different in this limit
since they become concentrated with divergent probability densities. For the certainty
of the second output distributions in (h), a linear behaviour appears due to the small
shifts limit of the distributions.

It is worth noting, that although the joint distribution of measurement outcomes
effectively becomes a product distribution P (O1,O2) ≈ P (O1)P (O2), meaning the corre-
lations between the two non-commuting variables are lost rather fast, when increasing
T . The signature of interference due to the conditioned dynamics in the probability
distribution can still be revealed from the statistics of several hundred individual mea-
surements in experimental conditions.

3.7. POSITIVITY OF THE DISTRIBUTION
Here we present the derivation of the inequality (3.4) from the analytical procedure used
in Sec. 3.4 to derive the joint distribution of measurement outcomes at short times T

and given a vanishing overlap between preparation and post-selection states, 〈i |Ψ〉 = 0.
To do so, we focus first on the simple setup considered in the main text. Next, we add
different correlations between the two detectors, understand what they add to the pic-



3

70
PROBABILITY DISTRIBUTIONS OF CONTINUOUS MEASUREMENT RESULTS FOR TWO

NON-COMMUTING VARIABLES AND CONDITIONED QUANTUM EVOLUTION

ture and derive a more general restriction.

To start with, note that for any pair of operators Q̂,V̂ it is possible to construct a
Cauchy-Schwarz inequality of the following form [28]:

SQQ (ω)SV V (ω)− ∣∣SQV (ω)
∣∣2 ≥

∣∣∣∣ħ2 (aV Q (ω)−aQV (ω))

∣∣∣∣2
(

1+∆
[

SQV (ω)
ħ
2 (aV Q (ω)−aQV (ω))

])
(3.44)

where

∆[z] = [
∣∣1+ z2∣∣− (1+|z|2)]/2. (3.45)

In the limit of zero frequency, this reproduces the inequality (3.7).

However, in the case where we have more than one detector or measured variable,
i.e., more than one pair of input-output variables Q̂,V̂ , there are additional inequalities
restricting the correlators between input-output variables pertaining to these different
pairs. An easy way to see this is to inspect the distribution we calculated for short time
scales, Eq. (3.39). It describes the case of independent detectors without cross noises.
Let us find the conditions for it to be positive at all values of O1,2. This condition reads:

γ≥ 1

ta1
+ 1

ta2
. (3.46)

For us, the inequality can be written as,

S(1,1)
QQ +S(2,2)

QQ ≥ ħ2

4


∣∣∣a(1,1)

V Q

∣∣∣2

S(1,1)
V V

+

∣∣∣a(2,2)
V Q

∣∣∣2

S(2,2)
V V

 . (3.47)

We write this assuming the condition of a good amplifier, that is, the direct gain ex-
ceeds much the reverse one [28], a(1,1)

V Q À a(1,1)
QV . All results presented here can be ex-

tended to a more general situation by replacing a(i ,i )
V Q with the difference a(i ,i )

V Q − a(i ,i )
QV .

This inequality can be constructed as the sum of two inequalities of the form (3.3) for
the two sets of input-output variables involved. This fact explicitly shows that this in-
equality does not add any more restrictions to the correlators than the ones that come
from the aforementioned Cauchy-Schwarz inequalities.

Now, let us derive the distribution at short time for a more general case where the
cross noises and correlations are present, and then check the condition for positivity
once again.

Firstly, for any correlations between output variables, meaning S(1,2)
V V = S(2,1)

V V 6= 0, the
distribution (3.39) will change, however, the condition for positivity will not. In particu-
lar, adding correlations between output variables modifies it in the following way,
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P (O1,O2) = 1

4γ+T Ω̄2

(
4γ+T

[Ωx − 4O2

ta2
− 2O1S(1,2)

V V

a(2,2)
V Q a(1,1)

V Q

2

+
Ωy + 4O1

ta1
+ 2O2S(1,2)

V V

a(2,2)
V Q a(1,1)

V Q

2

− 4

T ta2
− 4

T ta1

])
PG (O1,O2). (3.48)

The positivity of the distribution is again guaranteed by the same condition (3.47).
Let us now introduce cross noises between input-output, i.e., S(1,1)

QV ,S(2,2)
QV ,S(1,2)

QV ,S(2,1)
QV 6= 0.

The distribution of measurement outcomes can then be approximated as

P (O1,O2) = 1

4γ+T Ω̄2

[
4γ+T

(Ωx +
2S(1,2)

QV

a(2,2)
V ,Q

−1

 O2

T σ2
2

+
2S(1,1)

QV

a(1,1)
V ,Q

O1

T σ2
1

2

+
Ωy +

1+
2S(2,1)

QV

a(1,1)
V ,Q

O1

T σ2
1

+
2S(2,2)

QV

a(2,2)
V ,Q

O2

T σ2
2

2

−
1−

2S(1,2)
QV

a(2,2)
V ,Q

2
1

T 2σ2
2

−
2S(1,1)

QV

a(1,1)
V ,Q

2
1

T 2σ2
1

−
1+

2S(2,1)
QV

a(1,1)
V ,Q

2
1

T 2σ2
1

−
2S(2,2)

QV

a(2,2)
V ,Q

2
1

T 2σ2
2

)]
PG (O1,O2). (3.49)

Here, σ2
i = tai /4T .

For this distribution to be positive we have the following condition,

γ−
1−

2S(1,2)
QV

a(2,2)
V ,Q

2
1

ta2
−

2S(1,1)
QV

a(1,1)
V ,Q

2
1

ta1
−

1+
2S(2,1)

QV

a(1,1)
V ,Q

2
1

ta1
−

2S(2,2)
QV

a(2,2)
V ,Q

2
1

ta2
≥ 0; (3.50)

which one can write as

S(1,1)
QQ +S(2,2)

QQ ≥ħ2

4

[((
a(2,2)

V ,Q −2S(1,2)
QV

)2 +
(
2S(2,2)

QV

)2
)

1

S(2,2)
V V

+
((

a(1,1)
V ,Q +2S(2,1)

QV

)2 +
(
2S(1,1)

QV

)2
)

1

S(1,1)
V ,V

]
. (3.51)

Conversely, if one takes the initial state to be |Z−〉 and the final projection to be
∣∣Z+〉

,
then the condition becomes:
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S(1,1)
QQ +S(2,2)

QQ ≥ħ2

4

[((
a(2,2)

V ,Q +2S(1,2)
QV

)2 +
(
2S(2,2)

QV

)2
)

1

S(2,2)
V V

+
((

a(1,1)
V ,Q −2S(2,1)

QV

)2 +
(
2S(1,1)

QV

)2
)

1

S(1,1)
V ,V

]
. (3.52)

The probability distribution of measurement outcomes should remain positive re-
gardless of the initial and final conditions. Thus, both these inequalities (3.51) and (3.52),
have to be fulfilled. Taking this into account, one can write the inequality (3.4), where in-
verse susceptibilities are added back, owing to the possibility of bad amplifiers.
This shows that the existence of cross noises between input-output of different detectors
imposes a stronger restriction on the possible values for the set of noises and response
functions defining a measurement scenario than the usual Cauchy-Schwarz inequali-
ties considered. It is worth noting that we did not consider non-vanishing responses
between input-output of different detectors. The analysis can be extended to this case
with even more complex restrictions on the correlators for the positivity of the distribu-
tion of measurement outcomes.

3.8. CONCLUSION
In this work, we put forward a proper theoretical formalism based on full counting statis-
tics approach [6, 24] to describe and evaluate the measurement statistics in the course
of conditioned quantum evolution. We extend the previous work [25] to the simultane-
ous measurement of two non-commuting variables. We illustrate this formalism with
several examples and prove that the interesting features arising from the conditioned
quantum evolution can be seen in the statistics of the measurement outcomes for both
short and relatively long measurement intervals. We also reveal the interplay between
the two non-commuting variables statistics and the signatures of the conditioned dy-
namics in the individual and joint distributions.

We describe and investigate two signatures of the conditioned statistics that are re-
lated to quantum interference effects. First is the appearance of peculiarities at the circle
O2

1 +O2
2 = 1 in the distribution of measurement outcomes, that is revealed by a quasi-

distribution of shifts located at the compact support O2
1 +O2

2 = 1 , O2
1 +O2

2 = 0 as well
as inside the circle O2

1 +O2
2 < 1. This provides a connection with what we termed half-

quantized measurement values for the single variable measurement case, as the distri-
bution function may display peculiarities, that are either peaks or dips, at half-sums of
the quantized values. In the special case of zero overlap between initial and final states
and time intervals that are so short as the wave function of the system does not signif-
icantly change by either Hamiltonian or dissipative dynamics. We reveal unexpectedly
large values of the time-integrated output cumulants for such short intervals, that we
termed sudden jump. We show that a simultaneous jump in integrated output can be
achieved in both measured variables given an appropriate choice of Hamiltonian. This
effect is felt in a short time scale γ/Ω2 where γ−1 is the time scale of dissipative dynamics



REFERENCES

3

73

andΩ−1 is the time scale of Hamiltonian dynamics. Additionally our results show that it
is possible to achieve bigger saturation values for these anomalously big averages when
further conditioning the statistics of one output with the results of other outputs.

Our results show that it is possible to have very detailed theoretical predictions of
CWLM distributions. In particular, we show how to use this formalism to account for
conditioned quantum evolution and simultaneous non-commuting variable measure-
ments in the paradigm of CWLM. This opens the possibility for investigation and char-
acterization of quantum effects even if the choice of parameters is far from ideal and the
effects are small.

The signatures in the distributions that we predict in this paper can be seen in realis-
tic experimental regimes. One of the key elements to experimentally observe this effects
is the ability to efficiently record time traces for a weak continuous monitoring of one or
rather, several qubit variables, and this has been achieved in several papers [9–15, 18]
applying it for the observation of qubit trajectories or real-time feedback. Thus, we be-
lieve it is possible to extract these kind of statistics from the existing records of several
experiments.
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4.1. INTRODUCTION
The concept of quantum measurement is essential for the understanding and interpre-
tation of quantum mechanics, and continuously inspires both theoretical and experi-
mental research [1]. The proper description of the measurement process and setup is
essential in the quantum realm. The projective measurement [2], although can be re-
alized experimentally, is not the only way to acquire information about the state of a
quantum system. One of the most experimentally relevant situations is the setup and
paradigm of continuous weak linear measurement (CWLM) [3–9]. In this setup, a weak
coupling between the quantum system and its environment results in continuous en-
tanglement of the system and the environmental degrees of freedom, those include the
detector variables. Thereby, the (discrete) quantum information from the measured sys-
tem is converted to continuous time-dependent detector outputs. At the same time, the
environment induces the decoherence and relaxation of the quantum system, which is
an inevitable feedback of the measurement process. The measurement results are ran-
dom incorporating intrinsic noises of the detectors, and their statistics is interesting and
important to reveal quantum features of the system measured. Recent experimental ad-
vances enable faster and more accurate CWLM and even permit combination of CWLM
and projective measurement. [10–14]. This allows to experimentally access the statis-
tics in question and makes it relevant to describe and predict the statistics for arbitrary
complex CWLM setups.

There are various approaches to statistics of CWLM. In Ref. [6] an approach based on
FCS has been developed and applied for several simple situations, in particular, the qubit
purification has been demonstrated. Recently, the same approach has been extended to
describe the situation of conditioned measurement where a CWLM ends with a pro-
jective measurement. This has been done for a single [15] and two [16] detectors and
connection with the theory of weak values [17] has been established. Many authors pre-
fer the so-called Bayesian approach to the description of quantum measurement where
one implements a stochastic update of density matrix [4, 13, 18] that does not immedi-
ately provide a closed expression for the statistics but permits rather efficient numerical
simulations. Recent advances in this direction are presented in [19, 20]. There is still no
general scheme unifying the approaches, neither the equivalence between approaches
has been shown generally and explicitly. For instance, Ref. [21] basically repeats the
numerical calculations of Ref. [6] with a different method. The generalization of the de-
scriptions on an arbitrary number of detectors and arbitrary complex quantum system
has not been done yet.

The goal of this article is to establish a general framework for the description of the
CWLM in the case of an arbitrary number of detectors and arbitrary quantum system
measured. The only important restriction on the applicability of the framework is the
assumption that the time correlation of noises and time delays of the susceptibilities
take place at a smaller scale than the typical scale of quantum evolution. This results in
simple Markovian evolution equations and update schemes. This is also a usual experi-
mental situation.

In the article, we consider three alternative descriptions of the statistics of the mea-
sured results employing three different derivation methods and showing their equiva-
lence. First description gives the generating function of the statistics in terms of a solu-
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tion of an evolution equation for a pseudo-density matrix, such equations are common
in FCS context [22] Second description is a drift-diffusion equation for a density ma-
trix in the space of integrated detector outputs. Third description involves a stochastic
update of the density matrix and summation over random trajectories in the space of
integrated outputs. We derive these results with a microscopic method based on FCS
approach, a phenomenological method that employs Lindblad construction [23], and,
in the context of the update, a method where the detection is modelled with axillary
quantum systems. We establish conditions on noises and susceptibilities involved that i.
guarantee the unambiguous interpretation of the detector outputs ii. guarantee the pos-
itivity of the density matrix. We specify the minimum detection feedback on the quan-
tum system measured.

This does not exhaust all possible approaches and formulations. Various path inte-
gral methods [6, 24, 25] are beyond the scope of this article. The potential importance
of these methods is their ability to capture the physics beyond Markov approximation,
and we believe they are redundant for Markovian setups. We note that the methods de-
scribed in the article allow for simple non-Markovian extensions in case of delay in clas-
sical variables. Similar extensions are plausible for the description of quantum feedback
schemes where the feedback does depend on the accumulated value of detector outputs.
This will be discussed in detail in future publications.

The paper is organized as follows. In Section 4.2 we provide the full microscopic
derivation of the multi-detector measurement and demonstrate that the measurement
statistics are completely described by an evolution equation for a pseudo-density ma-
trix. We establish the necessary conditions for the unambiguous interpretation of the
measurement results and for the positivity of the density matrix. In Section 4.3, we show
the equivalence of this scheme and a drift-diffusion equation for a density matrix that
encompasses the integrated detector outputs. In Section 4.4, we reverse-engineer the
drift-diffusion equation providing its phenomenological derivation. Thereby we estab-
lish the minimum detector feedback on the measured system. At this stage, it is conve-
nient to rescale the outputs and separate the measuring part of the system into indepen-
dent detectors. This is achieved by a linear transformation diagonalizing the matrix of
the detector noises (Section 4.5). In Section 4.6, we turn to another approach introduc-
ing a general stochastic discrete update process that is equivalent to the drift-diffusion
equation. In Section 4.7 we demonstrate that the process is equivalent to the averaging
over stochastic trajectories in the space of the integrated outputs with the trajectory-
conditioned density matrix of the system measured. In two subsections of this Section,
we specify two concrete realizations of the stochastic update: oscillator and qubit up-
date. We conclude in Section 4.8

4.2. FCS DERIVATION
In this Section, we will derive an equation that determines statistics of time-integrated
outputs of a set of detector variables V̂i (t ), Latin index i numbering the detectors. We will
follow the approach of [26] in the description of the measurement and extend it to the
case of multiple detectors. The key element of the approach is to introduce a pair of ex-
tra canonically conjugated variables χ̂i , ŝi for each detector. Their operators satisfy the
canonical commutation relations [χ̂i , ŝ j ] = iδi j , ŝi , χ̂i being analogous to the momen-
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tums and coordinates, respectively. The coupling Hamiltonian of these extra variables
and the detector variables is postulated to be Hc = −χ̂i V̂i (we assume summation over
repeating indices) and there are no other Hamiltonian terms involving χ̂i , ŝi . This guar-
antees that the operators ŝ represent an integrated detector output, since by virtue of
Heisenberg equations

d ŝi

d t
= V̂i (t ). (4.1)

To proceed, let us consider the evolution of the density matrix of the detectors in vari-
ables χ ≡ {χi } in a time interval (t1, t2). Such representation is especially convenient
since d χ̂i /d t = 0 so that these variables do not change upon the evolution. Following
the lines of [26], we obtain the relation between initial and final density matrices of the
detectors(R̂ here is the initial density matrix of the whole system)

ρ f (χ+,χ−) = P (χ+,χ−)ρi n(χ+,χ−). (4.2)

The matrices are thus related by so-called FCS kernel P (χ+,χ−) that is given by

P (χ+,χ−) = Tr
sys

−→
T exp{−i

∫ t2

t1

d t
[
Ĥsys −χ+i V̂i

]
}R̂

←−
T exp{ i

∫ t2

t1

d t
[
Ĥsys −χ−i V̂i

]
} (4.3)

and
−→
T (

←−
T ) denotes(inverse) time ordering.

As explained in [26], if the Wigner representation of the density matrix,

ρ(χ, s) =
∫

dζ

2π
e i s·ζ ρ(χ+ ζ

2
,χ− ζ

2
), (4.4)

can be interpreted as a classical probability distribution Π(χ, s) for the detectors to be
at a certain position χ with momentum s, the Wigner representation of the FCS kernel
P (χ, s) can be interpreted as the probability distribution of the shifts in momentum s,
that is, as the distribution of integrated detector outputs

∫ t2
t1

V̂i (t )d t . This does not hold
in general. Generally, a Wigner representation cannot be interpreted as a probability
distribution, so the same applies to P (χ, s). In particular, P (χ, s) does not have to be
positive.

There is, however, an important case when the interpretation of the FCS kernel as
the probability distribution of integrated detector outputs is indeed applicable. In this
particular case, P (χ, s) does not depend on χ. This implies that P (χ+,χ−) is a function
of the difference of counting fields only, P (χ+,χ−) ≡ P (χ+ −χ−). The latter function
becomes the generating function of the probability distribution of the detector outputs.

In the following, we specify the model, compute the FCS kernel and reveal the con-
ditions under which it depends on the difference of counting fields only. We argue that
these conditions are met for any realistic measurement situation and therefore the FCS
can be used for evaluation of the statistics of the integrated detector outputs.

We separate the whole system into a system to be measured and an environment.
The system to be measured is a purely quantum system with finite number of degrees
of freedom. We measure a set of operators Ôα in the space of these degrees of freedom
labelling them with Greek indices. They are coupled to the environmental degrees of
freedom Q̂α, the operators of the corresponding generalized forces,

Hc =−Q̂αÔα (4.5)
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We will assume that in the absence of coupling the expectation values of the operators
V̂i ,Q̂α are absent, 〈V̂i 〉 = 0, 〈Q̂α〉 = 0 (if it is not so, we can always redefine the operators
adding the constant terms compensating the averages). If the coupling is sufficiently
weak, the environment can be regarded as a linear one. The environment provides a
reaction proportional to the first power of the operators Oα. The detector variables V̂i

are also defined as operators in the space of environmental degrees of freedom. The
total Hamiltonian thus reads:

Hsys = Henv +Hq +Hc (4.6)

where Henv and Hq define the dynamics of the environment and the system to be mea-
sured, respectively, and are operators in corresponding spaces. We employ this Hamil-
tonian to evaluate the FCS kernel (4.3).

The answer would involve the correlators of the time-dependent operators V̂i ,Q̂α. It
is instructive to assume that the correlations vanish at a time scale tc characterizing the
environment while the quantum correlations in the system to be measured may persist
at much larger scale. Let us separate the time interval (t1, t2) into smaller intervals of
duration T À tc . The dynamics of environment are independent for different intervals,
so that the environmental degrees of freedom can be traced out separately within each
interval. The duration T can be chosen such that the change of the density matrix of
the system is small. Tracing out the environmental degrees of freedom in (4.3) till time t ,
results in a pseudo-density matrix ρ̃(t ) in the space of the system to be measured,

ρ̃(t ) = Tr
env

−→
T exp{−i

∫ t

t1

dτ
[
Ĥq −Q̂α(τ)Ôα−χ+i V̂i (τ)

]
}R̂

←−
T exp{ i

∫ t

t1

dτ
[
Ĥq −Q̂α(τ)Ôα−χ−i V̂i

]
}

(4.7)
The tracing out the environment in the next smaller interval of duration T promotes the
pseudo-density matrix as

ρ̃(t +T ) = ρ̃(t )+T
(−i [Hq, ρ̃(t )]−Γ[ρ̃(t )]

)
(4.8)

where the linear superoperator Γwill be evaluated below. Therefore, the whole FCS ker-
nel can be presented as

P (χ+,χ−) = Tr[ρ̃(t2)] (4.9)

where ρ̃(t2) is obtained by solving an evolution equation

∂ρ̃

∂t
=−i [Hq, ρ̃(t )]−Γ[ρ̃(t )] (4.10)

with the initial condition ρ̃(t1) = ρ, ρ being the true density matrix of the system to be
measured at the time moment t1.

Let us evaluate the linear superoperator Γ. It is contributed by various second-order
terms in operators V̂i ,Q̂α. There are contributions proportional to the second, first, and
zero power of χ±. Let us consider these three contributions separately.

The second order terms involve the correlators of two V̂ j operators. We denote

S±
i j =

∫
d t〈V̂i (0)V̂ j (t )Θ(±t )〉 (4.11)
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and rewrite it as
Γ[ρ] =

(
χ+i χ

+
j S−

i j +χ−i χ−j S+
i j −χ−i χ+j (S−

i j +S+
i j )

)
ρ (4.12)

At this point, it is convenient to introduce symmetrized noises Si j and the susceptibili-
ties ai j ,

2Si j = S+
i j +S−

i j +S−
j i +S+

j i (4.13)

ai j = i (S+
j i −S−

i j ) (4.14)

With these more physical quantities, we express the sums of correlators

S±
i j +S±

j i = Si j ∓ i
ai j +a j i

2
(4.15)

S−
i j +S+

i j = Si j + i
ai j −a j i

2
(4.16)

to obtain

Γ[ρ] = 1

2

(
(χ+i −χ−i )(χ+j −χ−j )Si j + i (χ+i +χ−i )(χ+j −χ−j )ai j

)
ρ (4.17)

To make sure that the FCS kernel defines the probability distribution, we need to require
ai j = 0, no zero-frequency susceptibilities of the detector. We stress that this is the case
of most common electrical measurement. The operators V̂i in this case are associated
with currents or voltages in a dissipative electrical circuit. The zero-frequency suscepti-
bilities in this situation would give current and/or voltage response on vector potential
and/or charge passed through a point in a circuit, therefore they are zero by virtue of
gauge invariance.

Let us evaluate the first-order contribution. In this case, each term involves a single
operator Ô and a correlator of Q̂, and V̂ . Adopting the notations (4.11), we represent this
term as

Γ[ρ] = Ôαρ
((

S−
αi +S−

iα

)
χ+i − (

S+
iα+S−

iα

)
χ−i

)+ρÔα

((
S+
αi +S+

iα

)
χ−i − (

S+
αi +S−

αi

)
χ+i

)
(4.18)

Making use of the relations (4.15), we arrive at

Γ[ρ] = Ôαρ
((

Sαi + i
aiα

2

)
(χ+i −χ−i )+ i

aαi

2
(χ+i +χ−i )

)
+ρÔα

((
Sαi − i

aiα

2

)
(χ−i −χ+i )− i

aαi

2
(χ+i +χ−i )

)
(4.19)

We see that the terms with the sums of counting fields drop and the correctness of
FCS approach is guaranteed provided aαi = 0, that is, there are no susceptibilities from
the detectors to the measured variables. Again this is the case of a common electrical
measurement and is guaranteed by gauge invariance. The reverse susceptibilities aiα

should be non-zero for the measurement to take place.
The zero-order contribution describes the effect of environment on the dynamics of

the measured system. It involves the pairs of the operators Ô , and reads

Γ[ρ] = S−
αβÔαÔβρ+ρÔαÔβS+

αβ− ÔαρÔβ(S+
βα+S−

βα) (4.20)

It is instructive to separate this expression into two parts. The first part is a Lindblad
form describing dissipative transitions and decoherence induced by the environment,

ΓL[ρ] =
(

1

2

(
ÔβÔαρ+ρÔβÔα

)− ÔαρÔβ

)
Cβα (4.21)
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where the hermitian matrix Cβα is defined as

Cβα = (S+
βα+S−

βα) = Sβα+ i
aβα−aαβ

2
. (4.22)

One can diagonalize the set of Lindblad operators involved. For this, let us present C in
the diagonal form,

Cαβ =Ψ∗γ
α CγΨ

γ

β
, (4.23)

with γ labelling its eigenvectors and eigenvalues, and introduce an operator set

L̂γ =
√

CγΨ
γ
αÔα. (4.24)

In these terms, the contribution reads

ΓL[ρ] = 1

2

(
L̂†
γL̂γρ+ρL̂†

γL̂γ
)
− L̂γρL̂†

γ (4.25)

The second part gives a renormalization of the system Hamiltonian by the coupling to
the environment. It reads

ΓH [ρ] = i [Ĥ ′,ρ]; Ĥ ′ =− i

2
(S−
αβ−S+

αβ)ÔαÔβ (4.26)

The matrix i (S−
αβ

−S+
αβ

)/2 is Hermitian and in general case cannot be expressed in terms

of zero-frequency noises and susceptibilities. With a help of a Kramers-Kronig relation,
it can be expressed in terms of those at finite frequency,

i

2
(S−
αβ−S+

αβ) =
∫

dω

2πω

(
aβα(−ω)−aαβ(ω)

2
+ i Sαβ(ω)

)
(4.27)

If the environment is in the ground state, this matrix can be reduced to the matrix of the
zero-frequency susceptibilities, i (S−

αβ
−S+

αβ
)/2 = ai j . Since this term can be attributed

to the system Hamiltonian, it is not especially interesting for us and we do not discuss it
further.

To summarize the results of the derivation of this Section, the distribution of in-
tegrated detector outputs P (s) over the time interval (t1, t2) is expressed in terms of a
pseudo-density matrix ρ̃ that depends on the counting fields χ,

P (s) =
∫

dχ

2π
e i s·χ Tr[ρ̃(χ; t2)]. (4.28)

and satisfies the evolution equation

∂ρ̃

∂t
=−i [Hq, ρ̃(t )]− 1

2
χi Si jχ j (4.29)

−
(
Ôαρ

(
Sαi + i

aiα

2

)
−ρÔα

(
Sαa − i

aiα

2

))
χi

−
[

1

2

(
ÔβÔαρ+ρÔβÔα

)− ÔαρÔβ

](
Sβα+ i

aβα−aαβ
2

)
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with initial condition ρ̃(t1) = ρ(t1), ρ(t1) being the density matrix of the system mea-
sured.

The noises and susceptibilities involved in this equation are not arbitrary numbers.
They should satisfy inequalities that follow from their definition and eventually guaran-
tee that the distribution of the outcomes obtained from the above equation, is positively
defined.

Let us consider a matrix Č (Eq. (4.22)) with an index a that takes values of detector
and operator indices, Cab = Sab + i (aba − aab)/2. All inequalities required are obtained
from the condition that the matrix Č is positively defined, that is, for any vector Ψa ,
Ψ∗

aCabΨb > 0
If the vector has a single component, the positivity requires rather obvious inequali-

ties Si i > 0, Sαα > 0, diagonal noises are positive. For a two-component vector, in addi-
tion to the above conditions, the determinant of the corresponding 2×2 matrix must be
positive. For two detectors, this restricts cross-noises since the corresponding suscepti-
bilities are 0, Si i S j j > S2

i j . For detector i and operator α, this gives the condition

Si i Sαα > S2
iα+a2

iα (4.30)

that is widely discussed in the context of CWLM [1]. Increasingly complex inequalities
can be obtained if one considers the vectors with more components [16].

4.3. DRIFT-DIFFUSION EQUATION
There is an alternative way to view this equation. Let us consider a density matrix in
system variables and the auxiliary variables s that we have used to represent the inte-
grated detector outputs, ρ(s1, s2) where we have made explicit its dependence on the
outputs. As a matter of fact, the χ-dependent pseudo-density matrix ρ̃ can be regarded
as a Fourier-component of this density matrix for coinciding s1, s2,

ρ̃(χ) =
∫

dχe iχ·sρ(s, s) (4.31)

Performing the inverse Fourier transform, we obtain the following equation forρ(s) ≡
ρ(s, s) (here, ∂i ≡ ∂si )

∂ρ̃

∂t
=−i [Hq, ρ̃(t )]+ 1

2
Si j∂i∂ jρ (4.32)

−i
(
Ôα∂iρ

(
Sαi + i

aiα

2

)
−∂iρÔα

(
Sαa − i

aiα

2

))
−

[
1

2

(
ÔβÔαρ+ρÔβÔα

)− ÔαρÔβ

](
Sβα+ i

aβα−aαβ
2

)
This equation is of the drift-diffusion type. In the absence of coupling to the quantum

system, it describes a Brownian motion in the multi-dimensional space of integrated
outputs. In this case, ρ is just a scalar giving the probability of the integrated outcome s,

P0(s) =
√

det[Si j ]

2πt
exp

(
− si s j (S−1)i j

2t

)
(4.33)
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In the presence of coupling, the maximum of this distribution drifts with a velocity that
is proportional to the measured values of the operators Ôα.

A simple and general solution of the equation (4.32) can be obtained under a rather
uninteresting "classical" assumption that all operators Ôα commute with each other. In
this case, the equations for the elements of ρ separate in the basis of the eigenvectors of
Ôα .

The time evolution of a diagonal element ρ ({Oα}, s) exhibits a simple drift-diffusion
behaviour,

ρ ({Oα}, s) = P0(s −v t ), (4.34)

with the velocity vk ≡ akαOα proportional to the eigenvalues.
The non-diagonal elements, in addition to drift, are subject to damping due to deco-

herence and also exhibit oscillations due to noise correlations Sαk , and non-symmetric
susceptibilities,

ρ
(
{Oα}, {O ′

α}, s
)= P0

(
s − v +v ′

2
t + i (w −w ′)t

)
e−Γd t+iγt . (4.35)

Here, v ′
k = akαO ′

α, wk = SαkOα, w ′
k = SαkO ′

α,Γd = 1
2 Sαβ(Oα−O ′

α)(Oβ−O ′
β

), γ= 1
4 aαβ((Oα+

O ′
α)(Oβ−O ′

β
)− (Oβ+O ′

β
))(Oα−O ′

α).

The solutions become much more involved in the case of non-commuting Ôα.

4.4. LINDBLAD CONSTRUCTION DERIVATION
In this Section, we will ’reverse-engineer’ the drift-diffusion equation (4.32) providing its
general phenomenological derivation that is mostly based on the positivity of the density
matrix utilizing Lindblad construction. This equation is for a density matrix ρ̂(s1, s2),
where s represents the detector outputs while the rest of the matrix structure is inherited
from the measured system. An important additional requirement on the equation is that
it does not mix diagonal and non-diagonal components of the matrix this suppressing
possible quantum interference of the states with different detector readings.

Let us start with Lindblad construction. Given a set of operators Âi and the Her-
mitian Hamiltonian Ĥ the positivity of a general density matrix is guaranteed by the
following equation (Lindblad construction)

∂ρ̂

∂t
= Si j

(
Âi ρ̂ Â†

j −
1

2
Â†

j Âi ρ̂− 1

2
ρ̂ Â†

j Âi

)
− i Ĥ ρ̂+ i ρ̂Ĥ (4.36)

provided Si j is a positive Hermitian matrix. At the moment, it is an arbitrary matrix not
related to the matrix Si j used in the previous Sections.

Let us specify to the structure ρ̂(s1,s2). It is convenient to introduce the half-sum and
the half-difference of these variables,

s,d ≡ s1 ±s2

2
. (4.37)

Let us find a Lindblad construction that does not mix diagonal and non-diagonal matrix
elements in s. As for the operator set, we choose

Âi = χ̂i + B̂i , χ̂i ≡ i∂/∂si
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This gives three groups of terms.
First group represents the diffusion in the space of detector variables containing the

terms quadratic in χ̂.
∂ρ̂

∂t
= Si j

(
χ̂i ρ̂χ̂ j − 1

2
χ̂i χ̂ j ρ̂− 1

2
χ̂i χ̂ j ρ̂

)
(4.38)

We notice that

< s1|ρ̂χ̂i |s2 > = −i
∂ρ̂

∂s2,i
=−i

1

2

(
∂

∂si
− ∂

∂di

)
ρ̂

< s1|χ̂i ρ̂|s2 > = i
∂ρ̂

∂s1,i
= i

1

2

(
∂

∂si
+ ∂

∂di

)
ρ̂

With this, the equation for density matrix is represented as

∂ρ̂

∂t
= Re

[
Si j

] 1

2

∂

∂si

∂

∂si
ρ̂+ i Im

[
Si j

] 1

2

∂

∂di

∂

∂s j
ρ̂ (4.39)

We have to require here the absence of the terms with the derivatives with respect to d.
It may seem to require real and therefore symmetric matrix S.

However, there could be a term in Ĥ compensating for imaginary part of S. This
could happen if this part of the Hamiltonian contains two derivative operators, so let us
search for it in the most general form H = C̄i j χ̂i χ̂ j with a Hermitian C̄ . This gives the
following contribution to the time derivative of the density matrix:

∂ρ̂

∂t
=−iC̄i j

(
χ̂i χ̂ j ρ̂− ρ̂χ̂i χ̂ j

)=−i Re
[
C̄i j

] ∂

∂di

∂

∂s j
ρ̂. (4.40)

This is always symmetric with respect to exchange of i and j , so it cannot compensate
the operator in the second term of Eq. 4.39 which is antisymmetric. Therefore S is indeed
a symmetric and real matrix.

The second group of terms mixes χ̂ and B̂ .

∂ρ̂

∂t
= Si j

(
χ̂i ρ̂B̂ †

j + B̂i ρ̂χ̂ j − 1

2

(
χ̂i B̂ j + B̂ †

i χ̂ j

)
ρ̂− 1

2
ρ̂

(
χ̂i B̂ j + B̂ †

i χ̂ j

))
(4.41)

We collect the terms proportional to the derivatives of s

i

4
Si j

(
∂ρ̂

∂si

(
3B̂ †

j + B̂ j

)
−

(
3B̂ j + B̂ †

j

) ∂ρ̂
∂si

)
and to the derivatives of d:

i

4
Si j

(
∂ρ̂

∂di

(
B̂ †

j − B̂ j

)
−

(
B̂ †

j − B̂ j

) ∂ρ̂
∂di

)
.

We do not like the terms proportional to the derivatives of d. Let us try to compensate
those by a proper choice of an addition to the Hamiltonian. We seek for it in the form
Ĥ = −∑

i χ̂i D̂i , D̂i being Hermitian operators. Its contribution to the time derivative of
the density matrix reads

∂ρ̂

∂t
=−1

4

(
D̂i

∂ρ̂

∂si
+ ∂ρ̂

∂si
D̂i

)
− 1

4

(
D̂i

∂ρ̂

∂di
− ∂ρ̂

∂di
D̂i

)
(4.42)
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To cancel the terms we dislike we need to set

D̂i = i Si j

(
B̂ j − B̂ †

j

)
Summing up the terms from the Lindblad form and the Hamiltonian, we obtain

∂ρ̂

∂t
= i

(
∂ρ̂

∂si
K̂ †

i − K̂i
∂ρ̂

∂si

)
; K̂i = Si j B̂ j (4.43)

We can also separate K̂i into two Hermitian operators, K̂i = (R̂i − i D̂i )/2, with this

∂ρ̂

∂t
= i

2

[
∂ρ̂

∂si
, R̂

]
+ 1

2

[
∂ρ̂

∂si
,D̂

]
+

(4.44)

where, as we will see soon, the first term is associated with the effect of cross-noises
between the detector variables and the fields acting on the measured system, while the
second term is associated with the susceptibilities.

The third group of terms represents the effect of the measurement on the decoher-
ence and relaxation of the quantum system.

∂ρ̂

∂t
= Si j

(
B̂i ρ̂B̂ †

j −
1

2
B̂ †

j B̂i ρ̂− 1

2
ρ̂B̂ †

j Âi

)
= B̂i ρ̂K̂ †

i − 1

2
B̂i K̂ †

i ρ̂−
1

2
ρ̂B̂i K̂ †

i (4.45)

We can bring everything together to a relatively compact form:

∂ρ̂

∂t
= 1

2
Si j∂i∂ j ρ̂+ i

(
∂i ρ̂K̂ †

i − K̂i∂i ρ̂
)
+ 1

2

[
B̂i , ρ̂K̂ †

i

]
+ 1

2

[
B̂i ρ̂, K̂ †

i

]
(4.46)

Let us now compare this with Eq. 4.32 term by term. The comparison of the first
group of terms shows that the matrix S is nothing but the noise matrix of the detectors.
The comparison of the second group gives

D̂i = aiαÔα, R̂i = 2SiαÔα, K̂i =
(
Sαi − i

aiα

2

)
Ôα (4.47)

so the operators R̂,D̂ are indeed associated with the cross-noises and susceptibilities,
respectively.

The third group of terms in Eq. 4.46 gives the minimum decoherence and dephasing
that is associated with the measurement, or, in other words, to the input noises acting
on the detector and corresponding susceptibilities. The contributions can also come
from other sources that are not related to the measurement. They can be added to the
Lindblad construction (4.36) as a set of operators Oα with a positively defined Hermitian
matrix. With this, we obtain an important result

Sαβ+ i
aβα−aαβ

2
>

(
Sαi − i

aiα

2

)
(S−1)i j

(
S jβ− i

aiβ

2

)
(4.48)

Here, the inequality sign implies that the difference of the matrices on both sides is a
positively defined matrix, and the right hand side represents the minimum contribution
to the decoherence/dephasing.

Naturally, the same inequality may be derived from the positivity of the matrix Č
discussed in the previous sections.
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4.5. OUTPUT RESCALING AND SEPARATION
Till this moment, we assume general linear detection working with an arbitrary noise
matrix Si j . Since the detection is linear, we can redefine the detector outputs taking
arbitrary combinations of those. An orthogonal transformation of the outputs brings
the noise matrix to the diagonal form. This separates the detectors, their noises are now
independent. The rescaling of the separated outputs brings the diagonal noises to the
same value S. It is possible to set S = 1. However, this implies the rescaling of the outputs
in such a way that all of them have dimension sec1/2. We find this rather inconvenient
so we prefer to work with a dimensionful S.

Such redefinition of the outputs simplifies the equations to some extent. The result-
ing equations are obtained by substitution Si j = Sδi j . In particular, Eq. 4.46 takes the
form

S−1 ∂ρ̂

∂t
= 1

2
∂i∂i ρ̂+ i (∂i ρ̂B̂ †

i − B̂i∂i ρ̂)+ 1

2

[
B̂i , ρ̂B̂ †

i

]
+ 1

2

[
B̂i ρ̂, B̂ †

i

]
(4.49)

4.6. DISCRETE UPDATE
In this Section, we will look at the resulting equations from a different point of view:
we will introduce a discrete process, a step-by-step update of the density matrix of the
system and detector outputs. As we will see in the next Section, this update can be made
stochastic giving stochastic trajectories in the space of integrated detector outputs. The
actual ρ̂(s) is then obtained by averaging over different realizations of trajectories. One
motivation for considering the stochastic update is that it can be an efficient numerical
strategy to solve the drift-diffusion equation. An alternative strategy would involve a
discretization of the output space and solving at the resulting multi-dimensional mesh
with a lot of nodes. Another motivation is that the stochastic update process can be
made to mimic the time-line of an actual experimental run where random outputs of
the detectors are quasi-continuously measured.

The stochastic update was considered in [4, 18]. Here, we present its generalization
to the general situation of multi-detector measurement of an arbitrary quantum system.

We start by noting that an update that reproduces the drift-diffusion equation can
be organized in a variety of ways. We chose a physical but rather general way. We sep-
arate the detectors as in the previous section and concentrate on a single detector. We
introduce an auxiliary quantum system for this particular detector. At each update step,
we first prepare the auxiliary system in an initial state characterized by a certain density
matrix R̂. Then we switch on an interaction between the auxiliary system, the system
to be measured, and the detector variable χ and let the unitary evolution to take place
during a time interval d t .

The idea is to keep d t small so that the change of the system density matrix is small
∝ d t , and to choose the form of interaction in such a way as to reproduce the con-
tribution of this particular detector into Eq. 4.49. Generalization to many detectors is
straightforward: since the contributions of the detectors add, at each update step we
run the procedure described for all auxiliary systems representing the detectors. The re-
sulting update does not depend on the order of the procedures with an accuracy∝ (d t )2.
The sources of decoherence and relaxation not related to the measurement may be in-
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corporated in a similar way with using the auxiliary systems where there is no interaction
with the detector variable.

To understand the requirements on the interaction and to make convenient choices
is thus enough to concentrate on a single Lindblad operator χ̂+ B̂ . It is convenient to
organize the update in such a way that the interaction with B̂ comes first and then the
interaction with the detector variable χ̂ takes place. The update of the density matrix is
then defined as follows:

ρ̂new = Tra
[
Û ρ̂ol d R̂Û−1] (4.50)

with the unitary evolution operator Û = exp{−i V̂χ}exp{−i V̂B } and the interaction V̂χ,B

assuming the following form

V̂χ = (Sd t )1/2χ̂ĉ ;V̂B = (Sd t )1/2
(
B̂ b̂† + B̂ †b̂

)
(4.51)

and the trace is over the degrees of freedom of the auxiliary system. At the moment, Her-
mitian ĉ and generally non-Hermitian b̂ are arbitrary operators in the space of the aux-
iliary system, with only condition of their zero expectation values 〈ĉ〉 = 0,〈b̂〉 = 0 (Here,
〈Â〉 ≡ Tra

[
ÂR̂

]
. To derive the evolution equation, we need to expand Û up to the second

order in (Sd t )1/2. With this, we obtain

S−1 ∂ρ̂

∂t
=

−1

2
〈ĉ2〉[χ̂,

[
χ̂, ρ̂

]]+
−1

2
〈b̂2〉

[
B̂ †,

[
B̂ †, ρ̂

]]
− 1

2
〈b̂†2〉[B̂ ,

[
B̂ , ρ̂

]]+
+〈b̂b̂†〉

(
−1

2
B̂ †B̂ ρ̂− 1

2
B̂ †B̂ ρ̂+ B̂ρB̂ †

)
+〈b̂†b̂〉

(
−1

2
B̂ B̂ †ρ̂− 1

2
B̂ B̂ †ρ̂+ B̂ †ρB̂

)
−〈ĉ b̂〉B̂ † [

χ̂, ρ̂
]+〈b̂ĉ〉[χ̂, ρ̂

]
B̂ † −〈ĉ b̂†〉B̂ [

χ̂, ρ̂
]+〈b̂†ĉ〉[χ̂, ρ̂

]
B̂ . (4.52)

Comparing this with Eq. 4.49, we recognize we have to require

〈ĉ2〉 = 〈b̂b̂†〉 = 〈b̂ĉ〉 = 〈ĉ b̂†〉 = 1; 〈b̂2〉 = 〈b̂†2〉 = 〈ĉ b̂〉 = 〈b̂†ĉ〉 = 〈b̂†b̂〉 = 0. (4.53)

Those are the only conditions on the corresponding operators, otherwise they can
be chosen in an arbitrary way. We will specify two simple choices below. Yet before
this let us present a greater simplification of the method under description. In fact, it
is not necessary to deterministically update the whole density matrix that involves the
measured system and the detector variables. Equivalently, one can update the system
density matrix only while producing at each step a stochastic detector output.

4.7. STOCHASTIC TRAJECTORIES
To see this possibility, let us rewrite Eq. 4.50 in the form that explicates eigenstates of the
operator ĉ,

ρnew =∑
c

exp{−i (Sd t )1/2χ̂ĉ}Lcρol d exp{−i (Sd t )1/2χ̂ĉ}; (4.54)

Lcρol d ≡ 〈c|exp{−i (Sd t )1/2
(
B̂ b̂† + B̂ †b̂

)
}ρ̂ol d R̂ exp{i (Sd t )1/2

(
B̂ b̂† + B̂ †b̂

)
}|c〉 (4.55)
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If we write in the density matrix the detector variables explicitly ρ̂→ ρ̂(s, s′), and concen-
trate on diagonal elements, s = s′, we see that in the course of the update the s coordinate
of any such element is shifted by a value proportional to an eigenvalue of ĉ,

ρ̂new (x, x) =∑
c

Lsρol d (x − (Sd t )1/2c, x − (Sd t )1/2c). (4.56)

This gives us an idea to regard c as a random variable. At each update step this variable
is generated from the distribution P (c) = Tr[(Lc r̂ )] (the trace here is over the system
variables) and contributes to the time-dependent integrated output s(t ). The successive
updates thus form a stochastic trajectory in the space of the outputs, s(t ). So we do not
have to worry about s-dependence of the density matrix any more since this is certain for
a certain trajectory. Instead, we can work with a stochastic density matrix r̂ in the system
variables that gets a c-dependent update. The actual density matrix ρ̂(s, s; t ) is obtained
by averaging over all stochastic trajectories that end in the point s. To summarize, the
update equations become

snew = sol d + (Sd t )1/2c; (4.57)

c is random with the distribution : P (c) = Tr[(Lc r̂ )] (4.58)

r̂new = Lc r̂ol d

P (c)
(4.59)

We remind that for N detectors one has to repeat the update for each detector at each
time interval d t , promoting s with random c in N directions. As mentioned, for the terms
of the relevant order (Sd t ) the order of these updates does not matter.

In the following two subsections, we describe two concrete examples of the auxiliary
systems and corresponding updates.

4.7.1. OSCILLATOR UPDATE
In this case, the possible states of the auxiliary system are those of a harmonic oscillator
and the operators b̂, b̂† are conventional annihilation/creation operators of the oscilla-
tor. Initially, the oscillator is prepared in the vacuum state, R̂ = |0〉〈0|. The operator ĉ can
be associated with the oscillator coordinate, ĉ = b̂+ b̂†. This choice satisfies the relations
(4.53).

Conveniently, the distribution of c is closer to Gaussian in the limit d t → 0,

P (c) ≈ |〈c|0〉|2 =G(c) ≡ (2π)−1/2exp(−c2/2) (4.60)

It is constructive to specify the full update equation analytically for two cases: no
cross-noise, B̂ =−B̂+ =−D̂/2S, and no susceptibility, B̂ = B̂+ = R̂/2S

For no cross-noise limit, the natural basis is that of eigenfunctions of D̂ , that we label
with a,b, ... The unitary part of the update shifts the wave function of the oscillator in
coordinate space by values proportional to Da . The distribution of c is a composition of
shifted Gaussians with weights equal to probabilities to find the system in state a

P (c) = raaG(c − (d t/S)1/2Da). (4.61)
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The density matrix update involves the shifts corresponding both indices,

r ab
new = r ab

ol d

√
G(c − (d t/S)1/2Da)G(c − (d t/S)1/2Db)/P (c) (4.62)

For no-susceptibility limit, the relevant basis is of the eigenfunctions of R̂. The uni-
tary part of the update shifts the wave function of the oscillator in momentum space.
This does not modify the P (c). The whole update is unitary

r ab
new = r ab

ol d exp
(
i c(d t/S)1/2(Ra −Rb)

)
(4.63)

yet stochastic owing to the randomness of c. If one knows s(t ), the measurement can be
"undone" in this situation [8].

4.7.2. QUBIT UPDATE
The simplest auxiliary system is a qubit encompassing two quantum states. The rela-
tions (4.53) are satisfied if ĉ = σ̂x , b̂ = (σx + iσy ) and the initial state is polarized in z-
direction (σ-matrices are in the space of the qubit). Two possible random outcomes are
therefore c =±1.

Let us explicate the update analytically in two limits. For the no cross-noise limit,
the unitary part of the update rotates the qubit spin about the y-axis with the angles
proportional to the eigenvalues of D̂ The probabilities of c =±1 outcome read

P (c) = 1

2

(
1− sin

(
(d t/S)1/2Da

)
r aa

ol d

)
(4.64)

and the whole update is expressed as

r ab
new = r ab

ol d (cos
(
(d t/S)1/2(Da −Db)/2

)− c cos
(
(d t/S)1/2(Da +Db)/2

)
/(2P (c)) (4.65)

In the no susceptibility limit, the probabilities of both outcomes are equal, and the whole
update is random and unitary,

r ab
new = r ab

ol d exp
(
i c(d t/S)1/2(Ra −Rb)

)
(4.66)

The qubit update can be expressed analytically in terms of operators B̂ , B̂+ only, yet the
expression is too cumbersome to be instructive.

4.8. CONCLUSIONS
In conclusion, we have established a general framework for the description of a CWLM
of an arbitrary quantum system by an arbitrary number of the detectors. We have com-
pared different approaches to the problem and demonstrated their equivalence. The
approaches include the full counting statistics (FCS) evolution equation a for pseudo-
density matrix (Eq. 4.29), the drift-diffusion equation (Eqs. 4.32 , 4.46) for a density
matrix in the space of integrated outputs, and discrete stochastic updates (Eq. 4.57). We
provide the derivation of the underlying equations from microscopic approach based
on full counting statistics method (Section 4.2), a phenomenological approach based
on Lindblad construction (Section 4.4), and interaction with auxiliary quantum systems
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representing the detectors (Sections 4.6,4.7). We give the necessary conditions on the
phenomenological susceptibilities and noises that guarantee the unambiguous inter-
pretation of the measurement results and the positivity of density matrix.

The applicability of the framework is restricted by a Markov assumption: no delay of
susceptibilities and no time correlation of noises at the time scale of quantum dynam-
ics. Different methods are required to treat the effects of delay and time correlations at
quantum level. However, the framework can be easily extended to incorporate delays at
classical level. It can be also extended to describe various quantum feedback schemes
where the quantum system is subject to manipulation, and the decision on the way to
manipulate is based on the values of detector outputs. This will be addressed in future
work.
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5.1. INTRODUCTION
The standard description of quantum mechanics introduces projective measurement
as an instantaneous non-unitary process by which a quantum system is projected into
an eigenstate of a measured observable with a probability given by Born’s rule. In real-
ity, the measurements are never instantaneous but occur over some time scale that is
determined by the details of the interaction between the measured system and its en-
vironment and required to obtain a reliable measurement result. This idea has become
one of the basis and principal ingredients in the study of quantum control at the core of
quantum computing and communication [1].
A more general and adequate description of the measurement process is provided by the
paradigm of continuous weak linear measurement (CWLM) [2–8].
Recent technological advances have made possible to utilize and study CWLM in every
detail for a set of quantum device setups. Experiments realize continuous measurement
and monitoring of quantum systems, and even provide the information about single
quantum trajectories [9–15]. This resulted in a more elaborative and practical under-
standing of the measurement process in quantum mechanics.
In particular, the experimental realization of interesting phenomena related to the con-
ditioning of a quantum system using measurement and feedback is of relevance to our
work [16–20].

In this work, we study the CWLM implementing numerically an iterative simulation
procedure that is essentially equivalent to those commonly used [21, 22] but formulated
in more transparent and basic terms. This tool permits a deep investigation of the mea-
surement process that is not possible analytically. With this, we can directly simulate
individual quantum trajectories from the first principle quantum state evolution and
quickly accumulate sufficiently big statistics of these trajectories to compute the distri-
bution of various quantities characterizing the measurement, including the condition-
ing of the trajectories.

In contrast to usual descriptions of CWLM that are based on a Bloch equation for
the density matrix of the measured system , or on stochastic differential equations, the
tool gives insight not only into the characteristics of the measured system but also into
the generation of a measurement signal in a linear measurement setup. The tool is quite
simple. The detector is represented by a qubit. At each step of the simulation, the qubit
is first initialized to an equal-weight superposition of two states. Then for a time interval
of ∆t it is coupled to the system measured. We evaluate the unitary evolution of the
system and the qubit on this interval. After that, the qubit is measured projectively. The
measurement result counts for the detector output at this time interval, and the density
matrix of the system is updated according to the measurement result. We show that this
setup accurately reproduces CWLM at proper choice of measurement strength and the
duration of the time interval.

Although the tool permits accurate simulation of rather complex quantum systems
and measurement setups, in this Article we apply it to the simulation of one of the sim-
plest yet generic situations of CWLM: the non-demolition measurement (see e.g. [23]).
The quantum system is a qubit. It is initially prepared in an equal-weight superposition
of two quantum states, (|+〉+|−〉)/

p
2. It is measured in the basis of these two states. As a
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result of the decoherence induced by the measurements, the superposition is destroyed
at certain time scale, and the density matrix of the qubit becomes diagonal. The qubit is
in either of the two states. The mean value of the detector output V (t ) freezes at one of
the two levels corresponding to the states. We normalize the signal such that these levels
correspond to v =±1. A repetitive measurement would reproduce the same result. Since
the detector signal is noisy, it takes a finite time to resolve these two levels of the signal.
This acquisition time is of the same order as decoherence time [24]. Owing to simplicity
of the system, we can compare some results of the simulation with the analytical results.

We start our study with computing the average value of the detector output. Owing
to symmetric initial conditions, this value is always zero. However, we can condition
the output at its asymptotic mean value computing 〈v(t )v(∞)〉. An intuitive expectation
is that this quantity is 0 at t = 0 (since the qubit is in an equal-weight superposition)
and saturates at 1 if t → ∞. However, we show that the conditioned output does not
depend on time. It looks like the qubit "knows" from the very beginning in which of the
two states it is and the superposition is indistinguishable from an equal-weight diagonal
density matrix. We confirm this counter intuitive result analytically.

In reality, an observer can not instantly decide in which state the qubit is. Let us
assume that the observer has full information about the measurement results of the de-
tector qubit and can therefore access the density matrix of the measured qubit along
the quantum trajectory at any given moment of time. He monitors the probability to
be in one of the states, say, p+, and waits till it achieves certain small threshold h. If
p+ = 1−h/2, he decides that the qubit is in ’+’ state, if p+ = h/2, the qubit must be in the
opposite state. This moment we call decision time. This time varies from trajectory to
trajectory, and we are interested in the distribution of the decision times and its depen-
dence on the threshold h. This quantifies how fast the measurement can bring certain
result and helps in planning an actual fast measurement.

We go into details of decision dynamics and consider the situation when the deci-
sions are used for a feedback. As a simple example, we formulate and simulate a feed-
back scheme that has a purpose to keep the qubit in the equal-weight superposition.
The observer accumulates the detector output during a time interval T f . If the average
value of the output exceeds a certain threshold, |v | > I , he decides the qubit is in the state
sgn(v) and applies a correcting unitary transformation that brings the qubit back to the
equal-weight superposition. We made detailed simulations of the feedback dynamics
and attempt to optimize the average probability to be in the superposition with respect
to parameters I ,T f . We compare the results with some analytical predictions.

The structure of the Article is as follows. We explain and present the simulation tool
used in Section 5.2 and formulate the general description of the scheme. In subsec-
tion 5.2.1 we specify to the case when the detector qubit can be effectively considered as
a linear detector that measures another qubit and discuss the conditions for this and the
details of numerical implementation.
Further, in Section 5.3 we present the simulation results concerning the average condi-
tioned detector output and the distribution of the decision times.
In Section 5.4, we present and discuss the feedback scheme described. The subsection
5.4.1 elaborates on the scheme on analytical level. We present the simulation results of
the feedback dynamics in subsection 5.4.2 and show how optimize the feedback effi-
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ciency as a function of two parameters.
We conclude in Section 5.5.

5.2. THE SIMULATION TOOL
Our goal is to describe in general a continuous measurement process using a discrete
stochastic update approach. We outline a step-by-step stochastic process that will mimic
a random time-line of an actual continuous measurement performed in an experimental
setup.
Let us consider a general measurement scenario in which a quantum system A is being
measured with making use of another quantum system B (the detector). The dynamics
of these systems are governed by the corresponding Hamiltonians ĤA , ĤB .
For the information transfer from the system measured to the detector, there must be an
interaction between those systems, a coupling of a kind between the degrees of freedom
of A and B. Thus, the complete dynamics in this simple yet general scenario is governed
by a total Hamiltonian:

Ĥ = ĤA + ĤB + Ĥc , (5.1)

where Ĥc is the coupling Hamiltonian. For a simplest case when the detector is sensitive
to a single observable M , the coupling Hamiltonian can be represented as Ĥc = M̂ ⊗ Q̂
where M̂ is an operator acting in system A and Q̂ is an operator acting in B.
The stochastic update process we construct is supposed to simulate the time-line of an
actual experimental run where the random outputs of the detectors in short time inter-
vals are measured and recorded. With this in mind, the coupling at each step persists
during a time interval ∆t . To simulate a continuous measurement, the ∆t should be
chosen such that the change of the density matrix of the measured system ∝∆t is small.
In this limit, the simulation process can be described with a quasi-continuous stochastic
differential equation.

At the beginning of the simulation step, the interaction has not been switched on.
The measured system and the detector are in a product state ρ̂i = ρ̂A(0)⊗ ρ̂B (0). It is
convenient to initialize the detector to the same ρ̂B at each step. Then the whole density
matrix undergoes a unitary evolution determined by Ĥ . It is convenient to disregard ĤA

and ĤB for this evolution. One can formally do this, for instance, by applying a unitary
transformation that switches to the interaction picture and to disregard subsequently
the time dependence of Hc (t ) during a short time interval ∆t . Alternatively, one can
separate the evolution governed by ĤA + ĤB and Hc in time, adding an extra simulation
step of the same duration where the dynamics is governed by ĤA + ĤB . This is valid in
the limit of small ∆t where exp

(
i Ĥ∆t

) ≈ exp
(
i (ĤA + ĤB )∆t

)
exp

(
i Ĥc∆t

)
With this, the

whole density matrix in the end of the time interval becomes

ρ̂(∆t ) = e−i∆t M̂Q̂ ρ̂i e+i∆t M̂Q̂ . (5.2)

One can use the eigenbasis |n〉 of the operator M̂ , M̂ |n〉 = Mn |n〉 to rewrite the previous
equation
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ρ̂(∆t ) = ∑
n,m

ρA
n,m(0) |n〉〈m|⊗ K̂n,m(∆t ), (5.3)

where K̂n,m(∆t ) = e−i∆t MnQ̂ ρ̂B (0)e+i∆t MmQ̂ .
After the time interval, the detector system is projectively measured in the basis |i 〉 that
does not coincide with the eigenbasis of Q̂. The probability of the outcome i is given by

P (i ) = TrA 〈i | ρ̂(∆t ) |i 〉 =∑
n
ρA

n,n(0)〈i | K̂n,n(∆t ) |i 〉 . (5.4)

Here, TrA is a partial trace over the space of the system A Once the detector is projected
to the state i , and the result is recorded, the density matrix of the system measured be-
comes

ρA
new (∆t ) =

∑
n,m ρA

n,m(0) |n〉〈m| 〈i | K̂n,m(∆t ) |i 〉∑
n ρ

A
n,n(0)〈i | K̂n,n(∆t ) |i 〉 . (5.5)

This density matrix is taken as the initial one ρ̂A at the next step of the simulation.
The detector is initialized again to ρ̂B (0) and the step is repeated.
With this procedure, the random outputs of the detector are recorded like eventual read-
ings in an experiment while the measured system undergoes a stochastic update pro-
cess. The random outputs of the detector can then be combined in a random time-
dependent variable V (t ) which due to the previous derivation will contain information
about the measured system expected values of the operator M̂ . As discussed in the fol-
lowing section, this simulates CWLM provided the strength of the interaction at each
step (M̂∆t ) is small.

While any quantum system is in principle suitable to simulate a detector, here we
concentrate on a simplest one and consider a qubit.

5.2.1. QUBIT AS A LINEAR DETECTOR

Let us consider a qubit that measures an operator M̂ in the space of the system A. In
general, this operator may be associated with an effective magnetic field acting on the
qubit pseudo-spin. This magnetic field causes precession of the pseudo-spin with the
angle directly proportional to this magnetic field. This leads to a straightforward setup
of an approximately linear qubit detector. Initially, the qubit pseudo-spin is in x direc-
tion. Let the magnetic field rotate it in y direction. This will cause the deviation of the
pseudo-spin in z direction that is linear in M̂ in the limit of small M̂∆t .

To quantify, we note that initially the whole system is in a product state ρ̂(0) = ρ̂A ⊗
|x〉〈x| (where σ̂x |x〉 = |x〉 is an eigenstate of the Pauli matrix σ̂x ). At the start of a step,
we turn on the coupling Hamiltonian Ĥc = M̂ ⊗σ̂y for the duration∆t of the step. By the
end of the step, the resulting density matrix in the eigenbasis of the operator M̂ reads

ρ̂n,m(∆t ) = ρ̂A
n,m(0)⊗e−i Mn σ̂y∆t |x〉〈x|e i Mm σ̂y∆t (5.6)

= ρ̂A
n,m(0)⊗ K̂n,m(∆t ),
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Mn being the eigenvalues of M̂ .
In the end of the step, the detector qubit is projected onto the Z (σ̂z ) basis and a result

of ±1 is recorded, with the probability given by Eq. (5.4),

P (±) = 1

2

∑
n
ρA

n,n(0)(1± sin(2Mn∆t )) (5.7)

We see that 〈σ̂z〉 = 2∆t〈M̂〉 in the limit of M̂∆t → 0, as one expects from a linear mea-
surement setup.
Finally, the density matrix of the system A is updated depending on the detector reading
±1 according to Eq. (5.5),

ρ̂A
n,m,± = P−1(±)ρA

n,m(0)(cn ± sn)(cm ± sm) (5.8a)

cn , sn ≡ cos(Mn∆t ),sin(Mn∆t ) (5.8b)

Naturally, this particular choice of the initial state, the interaction Hamiltonian and the
projection basis is somewhat arbitrary. The choice can be modified, as long as the qubit
precession retains information about M̂ and is detected by a projective measurement.

To simulate the CWLM at a time interval of duration T , the step is repeated N = T /∆t
times. The resulting data set for the measurement results and the density matrices at
each step of the time evolution is referred as a quantum trajectory [9–11, 16]. The aver-
aged quantum evolution is obtained by averaging over the quantum trajectories.

If, in addition to the measurement, the system A is subject to Hamiltonian dynamics
with Hamiltonian ĤA , this can be included by extending each step with a unitary trans-
formation with the corresponding evolution matrix exp

(−i ĤA∆t
)
. The error of such sep-

aration of the measurement and the Hamiltonian evolution in time scales as (∆t )2 and
is therefore negligible in the limit of ∆t → 0.

For each run, we obtain a set of σi = ±1 measurement outcomes that are almost
equally distributed and independent provided that the measurement strength M̂∆t of
each measurement is small. This is in contrast with an output of a linear detector V (t )
that is a continuous number defined for continuous time. It has a white noise spec-
trum 〈V (t )V (t ′)〉 = δ(t − t ′). The instant output value has an infinite variance so an
actual experimental reading gives the output integrated over a time interval T , V̄ (t ) =
T −1

∫ t+T
t dτV (τ) that has the finite variance 〈V̄ 2〉 = S/T . To simulate the output, we

associate

V̄ (t ) = K −1
K∑

i=0
σi (5.9)

where K = T /∆t , and summation is over K measurement results in the time interval
(t , t +T ). The distribution of the sum is normal at K À 1 so it accurately reproduces
the continuous normal-distributed output. Comparing the variances of both sides we
conclude that S =∆t .

We conclude that the qubit can accurately simulate a linear detector provided ∆t ¿
T ¿ T and Mn∆t ¿ 1. To provide more accurate estimations, we assume, for the rest
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of the paper, that the system A is also a qubit and M̂ ≡ M Σ̂z , Σ̂i being the Pauli matrices
in the space of the qubit measured. The eigenvalues of M̂ are thus ±M . We thus pro-
vide the linear detection of z-component of the qubit, 〈V 〉 = 2M∆t〈Σ̂z〉. For a decisive
measurement, the standard deviation of the averaged output signal at the time interval
T ,

p
S/T , should be smaller than the separation 4M∆t between the discrete values of

the output that correspond to 〈Σ̂z〉 = ±1. This gives a typical time scale at which a de-
cisive measurement takes place, Tc = (M 2∆t )−1. Since an interesting simulation would
encompass a time interval at least of the order of Tc , N > (M∆t )−2.

A general CWLM is characterized by an inequality [24]

Sout Si n ≥ a2/4 (5.10)

where Sout ,Si n are output and input noises, respectively and a is the linear susceptibility
of the detector signal to the input. Substituting the parameters of our setup, Sout = ∆t ,
a = 2M∆t , SM = M 2∆t , we conclude that our setup simulates an ideal detector. More
general CWLM with non-ideal detector can be simulated if we just add an extra white
noise signal to the output, this would lead to an expected deterioration of the measure-
ment quality.

5.3. THE SIMPLE MEASUREMENT SETUP: SIMULATION RESULTS
Here, we present the simulation results for a very simple and generic setup. We measure
the z-projection of a qubit pseudospin setting it initially to an equal-weight superposi-
tion |x〉. Owing to the symmetry of the initial condition, 〈Σ̂z〉 = 0 at any time. However, at
sufficiently long time the superposition is destroyed and the qubit is in one of the states
|+〉, |−〉 , this is reflected in the measurement output at sufficiently big durations. One
can say that a spontaneous symmetry breaking takes place upon the measurement. Ow-
ing to the simplicity of the setup, there are simple and known analytical solutions. The
average density matrix satisfies an evolution equation

∂ρ̂

∂t
=−(

ρ̂− Σ̂z ρ̂Σ̂z
)

, (5.11)

where we measure time in units of Tc . The solution that satisfies the initial condition
reads ρ̂(t ) = (1+ e−2t Σ̂x )/2. One can also evaluate the joint density matrix of the qubit
and the measurement outputs. It is convenient for us to use the counting field method [6,
17]. In this method, one considers a time interval (τ,τ+T ) and solves an evolution equa-
tion for the augmented density matrix ρ̂(χ) in this interval,

∂ρ̂

∂t
=−χ

2

8
ρ̂+ i

χ

2
(Σ̂z ρ̂+ ρ̂Σ̂z )− (

ρ̂− Σ̂z ρ̂Σ̂z
)

. (5.12)

We normalize the average output in such a way that v =±1 for two projections of Σ̂z . The
joint density matrix ρ̂(v) is then given by

ρ̂(v) = T

2π

∫
dχρ̂(χ)e−iχvT (5.13)

Its trace gives the distribution of the normalized averaged output in this interval.



5

102
CONDITIONED OUTPUTS, DISTRIBUTION OF DECISION TIMES AND MEASUREMENT-BASED

FEEDBACK SCHEME

5.3.1. QUANTUM TRAJECTORIES
In Fig. 5.1 we present a typical output of a simulation run. The simulations are performed
setting the measurement strength to M∆t = 0.03 and choosing the characteristic time
scale Tc = 1. No Hamiltonian evolution is included. Figure 5.1a shows a single quantum
trajectory of the qubit measured during the CWLM. In order to distinguish various aver-
ages, we denoteΣz (t ) = Tr(Σ̂zρ(t )) the pseudospin component averaged with the density
matrix along a single trajectory, while 〈Σz (t )〉 denotes the average over the trajectories at
a given moment of time.

We thus plot the Σz (t ). As we see, the projection fluctuates rather wildly, yet ap-
proaches ±1 upon increasing time, so that at sufficiently long time the qubit is projected
into either the |+〉 or the |−〉 state.
For the plot in Fig. 5.1b, we run the simulation 100 times and average over all the quan-
tum trajectories. As expected, the contributions of the trajectories with opposite final
states compensate each other and 〈Σz〉 approaches zero with ' 10% deviations.

(a) Single trajectory. (b) Average of 100 trajectories.

Figure 5.1: Quantum trajectories of the qubit (Σz is shown )obtained from the simulation. A single trajectory
(Fig. (a)) is rather noisy exhibiting sharp jumps induced by the random measurement at each step. A single
trajectory gives an information on the random detector outputs. The averaging over 100 trajectories (Fig. (b))
reproduces the result Σz = 0 for the density matrix computed when disregarding the detector outputs.

5.3.2. SIMULATION OF THE DETECTOR SIGNAL
Let us now investigate the detector signal. As described, in our simulation procedure it is
obtained by summing up the random results of the projective measurements accumu-
lated during a sampling interval T . This gives a certain number of detector readings.
There is an obvious trade-off between the number of readings and the noise in each
reading.

A Hamiltonian ĤA =ħT −1
c σ̂y is added such that the average Σz is more "interesting":

the Hamiltonian leads to precession of the qubit spin in x − z plane. For this choice,
〈Σz〉 = −2e−t sin

(p
3t

)
/
p

3. In Fig. 5.2 we present the average of 100 trajectories and
the detector readings for two values of the sampling interval: T = 0.1 (Fig. 5.2a) and
T = 0.4(Fig. 5.2b). We observe that the trajectory average is reasonably close to the
analytical prediction 〈Σz〉(t ). The same holds for the detector readings. However, the
correspondence is worse given the same statistics accumulated. This is related to the
trade-off mentioned: the readings at short sampling intervals are too noisy, making the
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(a) Average of 100 trajectories with the sam-
pling interval of T = 0.1 for the detector signal.
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(b) Average of 100 trajectories with the sam-
pling interval of T = 0.4 for the detector signal.

Figure 5.2: Averaged qubit trajectories and the corresponding detector signal for different sampling intervals
T . To make the the average detector signal non-zero, we have augmented the dynamics by adding a Hamilto-
nian ĤA = ħT−1

c σ̂y . The duration of the sampling interval T controls the noise of the detector readings. The
plots illustrate how the average over the trajectories and the detector readings approach 〈Σz 〉(t ) given by the
solid line.

interval larger decreases the number of independent detector readings.

5.3.3. RESULTS FOR CONDITIONED OUTPUT

An interesting behaviour of the detector output can be seen in conditioned measure-
ments [17]. For our setup, it is natural to condition the quantum trajectories on their
asymptotic values at long times where the corresponding Σz sticks to ±1.This is equiv-
alent to a post-selection to the states |+〉 or |−〉. So we accumulate the statistics of the
quantum trajectories and the corresponding detector outputs taking the values of Σz (t )
and v(t ) with the sign of Σz (∞) (or, equivalently, v(∞), since the output corresponds to
the state at t →∞). We disregard the Hamiltonian dynamics, ĤA = 0.
In Fig. 5.3 we present these conditional averages of Σz (t ) and v(t ), 〈Σz (t )〉c ,〈v(t )〉c

In Fig. 5.3a and 5.3b the sampling interval is chosen T = 0.1 while in Fig. 5.3c and 5.3d
we use T = 0.4. We average over 100 post-selected trajectories in Fig. 5.3a and 5.3c , and
over 500 post-selected trajectories in Fig. 5.3b and 5.3d.

Let us discuss first the conditioned average of Σ(z), 〈Σz (t )〉c . As one may expect, it
starts at 0 at t = 0 where qubit is in the equal-weight superposition and approaches 1 at
the time scale ' Tc . Collecting statistics of 20000 trajectories, we have shown that with
‘10−2 relative accuracy 〈Σz (t )〉c = tanh( f (t )), f (t ) = t (1.15+2.8/(1+4.2t )).

Generally, one may expect that the average detector signal follows 〈Σz (t )〉c . We have
seen that this is the case for unconditional averages. Rather surprisingly, it does not.
Moreover, the average signal does not depend on time, 〈v(t )〉c = 1. It looks like the qubit
initially is not in a superposition, but just from the beginning is already in one of |±〉
states, and this state does not change during the measurement. The observed condi-
tioned output would be the same as from a classical bit that is randomly put to one of
the two states in the beginning.
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(a) The conditional average over 100 trajecto-
ries. The detector signal is computed with the
sampling interval T = 0.1.

(b) The conditional average over 500 trajecto-
ries. The detector signal is computed with the
sampling interval T = 0.1.

(c) The conditional average over 100 trajecto-
ries. The detector signal is computed with the
sampling interval T = 0.4.

(d) The conditional average of 500 trajectories.
The detector signal is computed with the sam-
pling interval T = 0.4.

Figure 5.3: The average 〈Σz (t )〉c and the detector signal 〈v(t )〉c conditioned on the final state. The 〈Σz (t )〉c
exhibits an expected behaviour corresponding to transition from the equal-weight superposition at t = 0 where
Σz = 0 to the final |±〉 where 〈Σz (t )〉c = 1 at a time scale ' Tc . Rather counter intuitively, the average output
does not follow 〈Σz (t )〉c , and, with numerical accuracy, does not depend on time, 〈v(t )〉c = 1. It looks like the
qubit "knows" from very beginning that it is in a final state.

It should be possible to confirm such simple result analytically. Indeed, it follows
from a straightforward calculation that employs the formalism introduced in [6, 17]. Let
us collect detector output during two time intervals: first one of duration t1 and the
second one that follows the first and has the duration t2. To find the distribution of two
outputs v1,2, we need to solve Eq. 5.12 for a time-dependent χ(t ) that takes values χ1,2

in the intervals and is zero otherwise. The distribution is computed from the Fourier
transform of Tr[ρ(χ1,2] and reads

P (v1, v2) =
p

t1t2

π

∑
±

e−2(v1±1)2t1 e−2(v2±1)2t2 (5.14)

It does not depend on the start time moments of the interval but only on their durations.
To adjust this general expression to our situation, we take the limit t2 →∞ restricting v2

to ±1. The conditional probability then becomes
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P (v1|v2 = 1) =
√

2t1

π
e−2(v1−1)2t1 . (5.15)

Apparently, 〈v(t )〉c = 1 does not depend on time, in agreement with the numerical re-
sults.

5.3.4. DECISION TIME DISTRIBUTION
Let us consider a knowledgeable observer who has access to all the results of the pro-
jective measurements of the detector. With this, and with the known initial condition
he is able to reconstruct the density matrix along an individual quantum trajectory and
monitor it in time. Suppose he needs to decide upon the final state of the qubit as soon
as possible. He does this by monitoring Σz (t ). Whilst its absolute value reaches a certain
threshold |Σz | = 1−h, he makes the decision based on the sign of Σz . We note that the
decision may be wrong, and further evolution along the trajectory would bring the qubit
to the opposite quantum state. Association p± = (1±Σ(z))/2 suggests that the probability
of error is 0.5h, and this is confirmed by our numerical simulations. Thus the decision
is well-based in the limit of small h. So-defined decision time is thus a random quantity,
its distribution depending on h. This distribution is useful for a less knowledgeable and
less devoted observer, who just wishes to quantify a time required for the qubit to come
to a certain state with sufficiently high probability.
We have evaluated the distribution numerically at various small threshold values h col-
lecting the statistics of 4 ·105 trajectories. We have made the histograms and fitted their
shape. The results are presented in Fig. 5.4.

As expected, the body of the distribution shifts to longer times upon decreasing h,
this is accompanied by an increase in the variance. We choose to fit the distribution
shape with a rather arbitrary function ce−a/t−bt which is exponentially small at short
and long times, a,b being free coefficients and c being fixed by the normalization. The
fits are excellent, especially at smaller h. The values of the coefficients a, b for different
h are given in the table 5.1.

h a b
10−1 0.0820617 4.88529
10−2 0.452684 3.28453
10−3 1.13362240458 2.84497317856
10−4 2.14055480776 2.61165068723
10−5 3.5115442592 2.49436474245
10−6 5.17495025523 2.41115342218
10−7 7.20739094438 2.35187767864
10−8 9.57228930443 2.31735035473

Table 5.1: The fit coefficients for the decision time distribution.

The most probable decision time tp ≡p
a/b that corresponds to the maximum of the

distribution can be fitted well with tp =− ln(2.3h). We note that this is rather short time
in comparison with the life-time of the superposition. Since 〈Σx (t )〉 = e−2t , 〈Σx (tp )〉 ≈
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Figure 5.4: Histograms of the decision time at various values of the threshold parameter h. (a) h = 0.1, (b)
h = 0.01, (c) h = 0.001 , (d) h = 10−4, (e) h = 10−5,(f ) h = 10−6,(g) h = 10−7, (h) h = 10−8. The body of the
distribution shifts to longer times upon decreasing h and the variance decreases slightly. The fit is made with
an exponential function of the form ce−a/t−bt , a,b being free parameters and c being set by the normalization.
The fits are plotted with solid lines.

(2.3h)1/4 À h, although a naive expectation would be 〈Σx (tp )〉 ' h. The distribution has
a prominent exponential tail at t → ∞. The corresponding coefficient b can be neatly
fitted with b = 2.0 − 6/lnh thus approaching 2 at small thresholds. This is probably
the manifestation of the superposition life-time. We note that although the variance
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≈ 0.25
p

a/b3 ≈ tp /8 grows with decreasing h, the relative variance ≈ (8tp )−1 actually de-
creases resulting in a concentrated distribution. This permits an accurate quantification
of the expected decision time for small h and corresponding error probability h/2.

5.4. RESULTS ON THE FEEDBACK SCHEME
One can think of further technological developments whereby the information collected
during the CWLM is used to manipulate the measured system. Modern qubit implemen-
tations make it realistic. Here we consider a simple example of such feedback scheme.

The measurement destroys the superposition and brings the qubit to a certain fi-
nal state. The detector shows what state is reached. Let us note that the state can be
"corrected": the qubit can be brought back to the initial superposition by a unitary ma-
nipulation, rotation about Y axis. The rotation angle, however, does depend on the state
reached. General rotation by angleα is given by a unitary matrix Û (α) = cosα+iΣy sinα.
We see that |±〉 state is corrected by Û (±π/4).

Let us devise a simple feedback scheme with a goal to keep the qubit in the equal-
weight superposition while being measured. It works as follows. We collect the detector
output during a time interval T f . We use the reading v to decide which rotation we ap-
ply. The simplest decision scheme utilizes a reaction threshold I : no correcting manipu-
lation takes place if |v | < I , otherwise the rotation Û (sgn(v)π/4) is applied. Alternatively,
the rotation angle is

α(v) = sgn(v)Θ(|v | > I )
π

4
. (5.16)

Then the feedback cycle is repeated again and again: the collection of the output at a
time interval T f is followed by a correcting rotation.

If the collection time T f À Tc , the correction to the superposition will be exact if
I < 1. However, the superposition will be destroyed at the time scale of Tc and will persist
for only a small fraction of the cycle. In the opposite limit T f ¿ Tc the superposition will
not be destroyed during the cycle. However, the output collected at such small time
interval will exhibit large fluctuations and will hardly reflect the state measured. This
will make the correction very inefficient. As a criterion for a good feedback, we take the

average value ofΣx (t ) integrated over the whole cycle, Σ̄x ≡ T −1
f

∫ T f

0 d t〈Σx (t )〉. This value

will depend on T f and I , and we will find the optimal values of these parameters.

5.4.1. ANALYTICS

Owing to the simplicity of the scheme, we can find analytical expressions for Σ̄x . We note
that the solution for the density matrix must be periodic in time with the period T f . Let
ρ̂a be the density matrix of the qubit right after the correction. It evolves on the time
interval T f to the joint density matrix ρ̂(v) of the qubit and output. This can be found by
solving Eq. 5.12 with the initial condition ρ̂a . Applying the output-dependent correction
to the joint density matrix, we return to ρ̂a ,

ρ̂a =
∫

d vÛ (α(v))ρ̂(v)Û (α(v))−1 (5.17)

This forms a closed self-consistency equation for ρ̂a to solve. In our situation, owing to
symmetry, we can seek for ρ̂a in the form ρ̂a = (1+ρx Σ̂x )/2. The joint density matrix
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takes the form

ρ̂(v) =∑
±

G±
1+ Σ̂z

4
+e−2T f GρxΣx , (5.18)

where G(v) ≡ (2T f /π)1/2 exp
(−2T f v2

)
, G±(v) =G(v ∓1).

The self-consistency equation reads

ρx = A+Bρx (5.19)

A ≡
∫

d v
G+−G−

2
sin(2α(v)) (5.20)

= 1

2
(er f ((I +1)

√
2T f )−er f ((I −1)

√
2T f )) (5.21)

B ≡
∫

d ve−2T f

∫
G cos(2α(v)) = e−2T f erf(I

√
2T f ) (5.22)

The time-averaged x-projection is computed as

Σ̄x = ρx
1−e2T f

2T f
= A

1−B

1−e2T f

2T f
(5.23)

In Fig. 5.5 we plot Σ̄x versus I for a set of T f . The curves reach maximum at some
intermediate value of I . More detailed optimization shows that the maximum value of
Σ̄x = 0.661 is achieved at I = 0.88, T f = 0.21. The average value of spin immediately after
the correction is higher, 〈Σx〉a = 0.81 for the optimal settings. We see from the plot that
close values of Σ̄z are achieved in a rather wide window of I and T f . This is a rather large
value given the primitive feedback scheme in use. More elaborated feedback schemes
may improve this even further.
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0 0.5 1 1.5 2
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Figure 5.5: The efficiency Σ̄x versus the reaction threshold I for a set of collection times T f . The T f takes the
values 1/3,1/4,1/5,1/6,1/7,1/8 from the lower to the upper curve at I = 2, respectively. The curves come in
opposite order at I = 0. The plot shows that the efficiency close to 2/3 can be achieved in a wide region of I
and T f .
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5.4.2. NUMERICAL RESULTS
We investigate the feedback scheme numerically with the tool described. The simulation
proceeds by time intervals of duration T f . The detector output is collected during the
interval, and the correcting rotation about y axis is applied depending on the resulting
output in accordance with Eq. 5.16. We always start with the equal-weight superposition
at t = 0 and collect the quantum trajectories along with the detector readings. Some time
is required for the simulation to achieve a steady state where the averages are periodic.
We have found that in the range of T f explored this time is of the order of 5-7 cycles
irrespective of the cycle duration.

We explore and illustrate numerically the effect of the reaction threshold I and the
collection time T f on the performance of the feedback scheme and find numerically the
optimal settings I , T f that maximize this performance.

Figure 5.6: A single quantum trajectoryΣx (t ) of the qubit subject to the feedback. The collection time is set to a
rather large value T f = 1, I = 0. At these settings, the superposition is strongly suppressed within the collection
time. This provides an accurate measurement and efficient correction to the target superposition state.

Figure 5.6 gives an example of a single quantum trajectory. We plot 〈Σ〉x versus time
for 5 collection interval. The collection time is set to a rather large value T f = 1. The
superposition is essentially suppressed during this time so the measurement of the final
state is accurate and the resulting correction is accurate. We see the 〈Σ〉x coming back to
≈ 1 any time after the correction. We also see strong and fast fluctuations of 〈Σ〉x in time.

To suppress these fluctuations, we plot in the subsequent figures the averages over 50
quantum trajectories. To illustrate the effect of the parameters I and T f on the dynamics
of the qubit under feedback, we present in Fig. 5.7 such averages for different parameter
values. In Figure 5.7a we set T f = 1/4 and compare the results for I = 0 (solid) and I = 1
(dashed). One can see the improved performance in the latter case: the qubit is closer to
the target equal-weight superposition. At this choice of I , no correction is applied if the
collected output |v | < 1 and its reduced value does not indicate a certain z-projection.
At these settings, this happens in approximately 1/3 of the cases. Apparently, the rule "it
is better to do nothing than to do wrong" works here well.
In Fig. 5.7b we set I = 0 and plot the average 〈Σx (t )〉 for two collection times: T f = 1/4
(solid curve) and T f = 4 (dashed). For the long collection time, we observe almost com-
plete decay of the superposition and accurate correction to the target superposition at
each feedback cycle. For the shorter correction time, the correction at each cycle is by
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(a) The average of 〈Σx (t )〉 over 50 trajectories
for T f = 0.25 and two values of the reaction
threshold, I = 0 (solid) and I = 1 (dashed).
For the latter setting, the correction is not ap-
plied for small values of the collected output
v . Apparently, this improves the feedback per-
formance. It is better to do nothing than to do
something wrong.

(b) The average 〈Σ̂x (t )〉 over 50 trajectories for
I = 0 and two values of T f , T f = 4 (dashed)
and T f = 1/4 (solid). Long collection time im-
proves the efficiency of the correction but does
not keep the superposition. T f = 0.25 is close
to optimal settings providing a good trade-off
between the superposition decay and the vari-
ance of the output collected.

Figure 5.7: The effects of the parameters I and T f on the feedback performance illustrated with numerical
simulations.

far less accurate, but the superposition does not decay much and is big in average.

We explore the feedback efficiency Σ̄x in a wide range of I , T f . We present the results
in Fig. 5.8 where each point corresponds to averaging over 500 quantum trajectories
during 100 collection time intervals. Apart from the remaining noise, these numerical
data are in agreement with the results of the analytical calculation presented in Fig.5.5.
Each data set at fixed T f exhibit a maximum in efficiency at some intermediate value of
I . The exact optimization settings are difficult to see since the similar efficiency close to
2/3 is reached in a wide region of the parameters. We employ the numerical iterative op-
timization procedure that bring us to the values Σ̄x = 0.66 at I = 0.9, T f = 0.2 that is close
to the settings obtained from numerical analysis. This proves that the simulation tool in
use can be efficiently implemented for the analysis of more sophisticated and efficient
feedback schemes that are too complicated to be treated analytically.

The efficiency of the feedback scheme can be definitely improved, for instance, by
choosing the rotation angle α(v) in a more flexible way and taking into account the de-
tector outcomes from the previous collection intervals.

5.5. CONCLUSION
In this paper, we explore the peculiarities of a continuous weak linear measurement in a
simple but generic setup. We develop an efficient numerical simulation tool that gener-
ates single quantum trajectories along with the corresponding detector signal. We study
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Figure 5.8: The feedback efficiency Σ̄x in a wide region of the reaction thresholds I and collection times T f .
Each data point is computed by averaging of 500 quantum trajectories over time interval of 100 T f . An effi-
ciency ' 0.6 is observed in a wide parameter range.

the statistics of the trajectories and outputs with and without post-selection.

We prove numerically that the detector output conditioned on the final state does
not depend on time and does not follow the average Σz (t ). Seemingly this implies that
the measured qubit "knows" from very beginning of the measurement in which final
state it is. To investigate this further, we study the statistics of the decision times. We
have found an accurate fit for corresponding distribution and revealed that the decision
time is commonly much shorter than the life-time of the superposition. This simple de-
scription gives insight into the interplay of the measured system and the detector system
from a quantum point of view. It describes the translation of discrete quantum informa-
tion to a continuous classical signal.
While similar methods have been successfully used to study such measurement scenar-
ios [9–11, 16], our method allows not only to describe the measured system dynamics
but also the detector system signal. How this signal is constructed and in which circum-
stances can correspond to a real integrated signal of an experimental run.
We have also presented and investigated a simple feedback scheme where the measure-
ment results are used to keep the qubit in the initial superposition state despite being
measured. Despite the simplicity, the feedback scheme can be tuned to provide rather
high efficiency Σ̄x = 0.66. The feedback can be further improved and sophisticated.

The results obtained are relevant in the context of experimental situations where
continuous weak linear measurement is used and for the design of interesting quantum
feedback schemes and measuring protocols.
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