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Abstract
In this article, a parameterized extended shift-splitting (PESS) method and its
induced preconditioner are given for solving nonsingular and nonsymmetric
saddle point problems with nonsymmetric positive definite (1,1) part. The con-
vergence analysis of the PESS iteration method is discussed. The distribution of
eigenvalues of the preconditioned matrix is provided. A number of experiments
are given to verify the efficiency of the PESS method for solving nonsymmetric
saddle-point problems.
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1 INTRODUCTION

Consider the following nonsymmetric saddle point problem:

𝔄u =

(
A B
− BT 0

)(
x̂
ŷ

)
=

(
f
− g

)
≡ b, (1)

where B ∈ Rm×n has full column rank with m ≥ n, A ∈ Rm×m is nonsymmetric positive definite. These hypotheses ensure
the existence and uniqueness of the solution of (1). The matrices A and B are also large and sparse, f ∈ Rm and g ∈ Rn.
In various engineering applications, solving linear system (1) is required, such as networks computer graphics, optimal
control, and computational fluid dynamics; see References 1 and 2 and references therein.

For large and sparse matrices A and B, iterative methods are better than direct methods to solve saddle point problems.
There are two options for matrix B. First, if B is a rank deficient matrix, matrix 𝔄 is singular and (1) is a singular saddle
point problem. A number of useful stationary iterative methods are proposed for solving singular saddle point problems
in recent years. For instance, Uzawa-type,3,4 HSS-type,5-7 SOR-type methods,8,9 also efficient preconditioners are known
to accelerate the convergence of Krylov subspace methods (such as, shift-splitting preconditioners).10-19

Second, the coefficient matrix 𝔄 is nonsingular if B in (1) has full column rank. This type of problems, which
is called the nonsingular saddle point problems, can be solved by iterative techniques, such as Uzawa-type meth-
ods,2,20,21 parameterized inexact Uzawa (PIU) methods,22,23 SOR-type method,21,24-26 Hermitian and skew-Hermitian
method.27-31 Since A and B are large and sparse matrices, linear system (1) can be solved by a Krylov subspace method.32,33

The Krylov subspace methods tend to converge slowly and good preconditioners are required to achieve fast conver-
gence.34,35 Recently, very efficient preconditioners have been studied, such as constrained preconditioners,36,37 structured
preconditioners,1 HSS-based preconditioners,27,29,38-40 deteriorated positive definite and skew-Hermitian splitting (DPSS)
preconditioner,41,42 dimensional split (DS) preconditioner,43,44 block definite, indefinite and triangular precondition-
ers,45-50 and shift splitting preconditioners.16-19,51-56
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Bai et al.19 presents a shift-splitting preconditioner for solving non-Hermitian positive definite linear system. Based
on the shift splitting of Bai et al.,19 Cao et al.51 gave the SS preconditioner as

SS =
1
2

(
𝛼̂I + A B
− BT

𝛼̂I

)
,

where 𝛼̂ ≥ 0 and I represents the identity matrix. The saddle point problem is solved through efficient shift-splitting and
its generalized preconditioners. Chen and Ma52 and Cao et al.53 introduced the generalized shift-splitting (GSS) precon-
ditioner for nonsymmetric saddle point problem with replacing ̂

𝛽 instead of 𝛼̂ in the last block of SS. In addition, SS is
a special case of the GSS preconditioner when 𝛼̂ = ̂

𝛽. Numerical experiments in References 53 and 52 show that the GSS
preconditioner has a better performance compared to the SS preconditioner. Cao et al.54 presented an efficient precondi-
tioned generalized shift-splitting (PGSS) iteration for saddle point problems with symmetric (1, 1)-block and established
its unconditional convergence. In order to solve a nonsymmetric saddle point problem, Zhou et al.55 developed a mod-
ified shift-splitting (MSS) preconditioner. Then, Huang et al.16 replaced 𝛼 by parameter 𝛽 in (2,2)-block of the MSS and
introduced the generalized MSS (GMSS) preconditioner. Huang and Su56 employed a modified SS preconditioner (MSSP)
to accelerate the convergence of the GSS method for solving saddle point problem that has a symmetric, positive definite
(1,1)-block. A modified GSS (MGSS) preconditioner was obtained for solving nonsymmetric saddle point problems by
Huang et al.17 Numerical experiments in Reference 17 show that the MGSS preconditioner is more efficient in terms of
runtime and number of iterations.

Zheng et al.57 introduced an extended shift-splitting (ESS) preconditioner

ESS =
1
2
(ΩQ +𝔄) =

1
2

(
Q1 + A B
− BT Q2

)
,

for symmetric saddle point problems, where ΩQ = diag(Q1,Q2),Q1 ∈ Rn×n and Q2 ∈ Rm×m are symmetric positive def-
inite. Salkuyeh et al.11 considered a MGSS method for singular saddle point problems. Spectral analysis of the MGSS
preconditioner was given in Reference 12. The ESS was studied for both the singular and nonsingular nonsymmetric gen-
eralized saddle point problem in Reference 58. Huang et al.18 recently utilized constant l within the matrix𝔄 to introduce
the following parameterized GSS preconditioner (PGSS)

𝔄 = PGSS −PGSS =

(
𝛼̂I + lA lB
− lBT

̂

𝛽I

)
−

(
lA + 𝛼̂I − A lB − B
− (l − 1)BT

̂

𝛽I

)
,

such that 𝛼̂ ≥ 0, ̂𝛽 > 0. Wang et al.59 presented a class of new extended shift-splitting (NESS) preconditioners for solving
symmetric positive definite saddle point and they presented the NESS preconditioner as

NESS =

(
P + lA lB
− lBT Q

)
.

There is no discussion on the NESS59 and PGSS54 iteration methods for the nonsymmetric saddle point problem
with nonsymmetric positive definite A. In this article, inspired by the NESS and PGSS, we propose a parameter-
ized extended shift-splitting (PESS) preconditioner for nonsymmetric and nonsingular saddle point problems with
nonsymmetric (1,1)-block. The present work also evaluates the convergence of the introduced iterative method
and examines the spectral characteristics of the PESS preconditioned matrix. The numerical results in Section
5 show that the PESS method has a faster rate of convergence than PGSS,18 MGSS,GMSS,PIU, and DPSS
methods.

It is numerically demonstrated that PESS, and GMRES with PESS preconditioning are efficient methods. The remain-
der of the study is organized as follows: Section 2 describes the PESS preconditioner and its implementation. Section 3
discusses PESS convergence properties. Section 4 presents the spectral analysis of the PESS preconditioned matrix.
Section 5 contains numerical results, and Section 6 presents some conclusions.
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VAKILI et al. 3 of 24

2 DESCRIPTION AND IMPLEMENTATION OF THE PESS
PRECONDITIONER

In this section, using the idea of References 18 and 59 for nonsymmetric saddle point problems, the following new splitting
of 𝔄 is given as

𝔄 = PESS −PESS

=

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)
−

(
𝛼̂P + (l − 1)A (l − 1)B
− (l − 1)BT

̂

𝛽Q

)
, (2)

where 𝛼̂ ≥ 0, ̂𝛽 > 0, l ∈ R+, and P ∈ Rm×m, Q ∈ Rn×n are symmetric positive definite matrices. Therefore, applying (2)
emerges the following new method.

PESS iteration method: Suppose l ∈ R+ and 𝛼̂ ≥ 0, ̂

𝛽 > 0. Assume (x̂(0)
T
, ŷ(0)T )T = ̂X (0) be an initial guess. We

compute

PESS ̂X
(k+1) = PESS ̂X

(k) + b, (3)

where ̂X (k+1) =
(

x̂(k+1)

ŷ(k+1)

)
, until convergency of ̂X (k), k = 0, 1, … . Iteration scheme (3) can be rewritten as follows

̂X (k+1) = Γ(𝛼̂, ̂𝛽, l) ̂X (k) + C1, (4)

where

Γ(𝛼̂, ̂𝛽, l) =

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)−1 (
lA + 𝛼̂P − A lB − B

BT − lBT
̂

𝛽Q

)

is the iteration matrix of the PESS method and

C1 =

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)−1 (
f
− g

)
.

Note that each splitting matrix introduces a splitting preconditioner for the Krylov subspace methods and produces a
splitting iteration method.

The preconditioner related to the splitting (2) can be presented by

PESS =

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)
= Ω + l𝔄, with Ω =

(
𝛼̂P 0
0 ̂

𝛽Q

)
, (5)

where PESS is the PESS preconditioner for 𝔄.
With the different choice of parameters 𝛼̂, ̂𝛽 and matrices P,Q, we can easily get a series of existing splitting precon-

ditioners for the saddle point problem (1), such as SS,GSS,PGSS, and ESS preconditioners. The PESS method benefits
from all advantages of these methods.

I. If l = 1
2
, 𝛼̂ = ̂

𝛽,P = Q = 1
2

I, then the PESS preconditioner yields the SS51 preconditioner.
II. If l = 1

2
,P = Q = 1

2
I, then the PESS preconditioner becomes the GSS52,53 preconditioner.

III. If l = 2,P = Q = I, then the PESS preconditioner becomes the MGSS17 preconditioner.
IV. If P = Q = I, then the PESS preconditioner gets the PGSS18 preconditioner.
V. PESS preconditioner with 𝛼̂ = ̂

𝛽 = l = 1
2

is the ESS57 preconditioner.
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4 of 24 VAKILI et al.

At each step of (4) or applying PESS within a Krylov subspace methods, we need to solve a linear system of the
following form

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)
z = r, (6)

where z = (ẑ1
T
, ẑ2

T)T , r = (r̂1
T
, r̂2

T)T and r̂1, ẑ1 ∈ Rm, r̂2, ẑ2 ∈ Rn. It is clear that

PESS =

(
I l

̂

𝛽

BQ−1

0 I

)(
𝛼̂P + lA + l2

̂

𝛽

BQ−1BT 0

0 ̂

𝛽Q

)(
I 0

− l
̂

𝛽

Q−1BT I

)
. (7)

Substituting (7) into the coefficient matrix of (6), we will get ẑ1, ẑ2 from the following expression

(
ẑ1

ẑ2

)
=

(
I 0

l
̂

𝛽

Q−1BT I

)(
𝛼̂P + lA + l2

̂

𝛽

BQ−1BT 0

0 ̂

𝛽Q

)−1 (
I − l

̂

𝛽

BQ−1

0 I

)(
r̂1

r̂2

)
. (8)

In order to find ẑ1, ẑ2, we define the following algorithm.

In Algorithm 1, the solution process of (8) is presented and shows that in each iteration we need to solve (𝛼̂P + lA +
l2

̂

𝛽

BQ−1BT)ẑ1 = t1. For all 𝛼̂ ≥ 0, ̂𝛽 > 0 and l > 0, the matrix 𝛼̂P + lA + l2

̂

𝛽

BQ−1BT is positive definite. The systems could
be solved approximately, for this GMRES can be employed for solving sub-linear systems accurately enough. Further-
more, LU factorization with AMD or column AMD reordering51,60,61 can solve it exactly. Although inexact solvers can
reduce iteration costs, they will also slow down convergence somewhat in experiments. In this article, we apply the LU
factorization in combination with column AMD reordering to solve (𝛼̂P + lA + l2

̂

𝛽

BQ−1BT)ẑ1 = t1.

3 THE CONVERGENCE OF THE PESS ITERATION METHOD

In this section, we investigate the PESS iteration method’s convergence properties. Fixed-point equation (4), for nonsin-
gular saddle point problems, converges to u = 𝔄−1b for right-hand side b and arbitrary initial guess (x(0)T , y(0)T)T if and
only if 𝜌(Γ(𝛼̂, ̂𝛽, l)) < 1.

Lemma 1 (2). Assume A ∈ Rm×m is nonsymmetric positive definite and B ∈ Rm×n has full column rank. Then matrix 𝔄 is
positive stable, that is, Re(𝜆) > 0 for all 𝜆 ∈ 𝜎(𝔄), where 𝜎(𝔄) is the spectral set of 𝔄.

The following lemma is a generalization of Lemma 3.2 from Reference 15 to PESS method.

Lemma 2. Assume A ∈ Rm×m and B ∈ Rm×n are nonsymmetric positive definite and a full column rank matrix, respectively.
Take 𝛼̂ and ̂

𝛽 positive. Then the real part of all eigenvalues of Ω−1𝔄 is positive, where Ω is defined as in (5).

Proof. The iteration matrix Γ(𝛼̂, ̂𝛽, l) in (4) can be rewritten as

Γ(𝛼̂, ̂𝛽, l) = (Ω + l𝔄)−1(Ω + (l − 1)𝔄) = (I + lΩ−1𝔄)−1(I + (l − 1)Ω−1𝔄).

Algorithm 1. PESS iteration method

input r = (r̂1
T
, r̂2

T)T
compute t1 = r̂1 − l

̂

𝛽

BQ−1r̂2;

solve ẑ1 from (𝛼̂P + lA + l2

̂

𝛽

BQ−1BT)ẑ1 = t1;

compute ẑ2 = Q−1

̂

𝛽

(lBTẑ1 + r̂2).
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VAKILI et al. 5 of 24

Let 𝜆 and 𝜇 be an arbitrary eigenvalue of matrix Ω−1𝔄 and iteration matrix Γ(𝛼̂, ̂𝛽, l), respectively. Then it holds that
𝜇 = 1+(l−1)𝜆

1+l𝜆
and 𝔄w = 𝜆Ωw, where w is the eigenvector corresponding to eigenvalue 𝜆. The eigenvalue problem

𝔄w = 𝜆Ωw is equivalent to

Ω−
1
2𝔄Ω−

1
2 w = 𝜆w with w = Ω

1
2 w,

where

Ω−
1
2𝔄Ω−

1
2 =

⎛⎜⎜⎝
1
𝛼̂

P−
1
2 AP−

1
2

1√
𝛼𝛽

P−
1
2 BQ− 1

2

− 1√
𝛼𝛽

Q− 1
2 BTP−

1
2 0

⎞⎟⎟⎠ . (9)

Since A is nonsymmetric and positive definite and P−
1
2 is symmetric and positive definite, P−

1
2 AP−

1
2 is nonsymmetric and

positive definite. Since B is full column rank and Q− 1
2 is symmetric and positive definite, P−

1
2 BQ− 1

2 is full column rank and
the upper matrix (9) has the same block structure as the nonsymmetric saddle point matrix𝔄. By Lemma 1 all eigenvalues
of the matrix Ω−1𝔄 have a positive real part. ▪

The following theorem is a generalization of Theorem 3.1 from Reference 18 to PESS method. Since the proof is similar,
it is omitted.

Theorem 1. Assume that 𝜆 is an eigenvalue of Γ(𝛼̂, ̂𝛽, l) and the conditions in Lemma 2 are satisfied. If l >
max

{
1
2
− 𝜆min(H)

𝜌(𝔄)2
, 0

}
, where𝔄 = Ω−1𝔄 and H = 1

2
(𝔄 +𝔄

T
), then the PESS iteration method converges to the exact solution

of saddle point problem (1).

Remark 1. In Theorem 1, if the size of 𝔄 is large, it is difficult to find 𝜆min(H) and 𝜌(𝔄). Thus, the condition l >
max

{
1
2
− 𝜆min(H)

𝜌(𝔄)2
, 0

}
is impractical in many cases, so it can be replaced by l ≥ 1

2
.

4 THE SPECTRAL ANALYSIS OF THE PESS PRECONDITIONED MATRIX

The rate of convergence significantly correlates with the eigenvalue distribution of −1
PESS𝔄, that is why we investigate the

spectral features of the −1
PESS𝔄. Let (𝜆, 𝛾 = (u∗, v∗)∗) be an eigenpair of −1

PESS𝔄, we have −1
PESS𝔄𝛾 = 𝜆𝛾 , so

(
A B
− BT 0

)(
u
v

)
= 𝜆

(
𝛼̂P + lA lB
− lBT

̂

𝛽Q

)(
u
v

)
.

This can also be written as:
{

Au + Bv = 𝜆(𝛼̂Pu + lAu + lBv),
− BTu = −𝜆(lBTu − ̂

𝛽Qv),

or

{ Au = 𝜆(𝛼̂H + lA)u + (𝜆l − 1)Bv, (10)
(𝜆l − 1)BTu = 𝜆 ̂𝛽v. (11)

The following theorems are a generalization of Theorem 5.1 from References 17 and 18 to the PESS method.

Theorem 2. Let the preconditioner of the PESS method be defined as in (5) and B has full column rank and (𝜆, (u∗, v∗)∗) be
an eigenpair of −1

PESS𝔄. If BTu = 0, then 𝜆 = 1
l

as 𝛼̂ = 0; if 𝛼̂ > 0, then

l1 ≤ Re(𝜆) ≤ u1 and |Im(𝜆)| ≤ u2, (12)
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6 of 24 VAKILI et al.

where

l1 =
𝜆min(H)(𝛼̂𝜆min(P) + l𝜆min(H))
(𝛼̂𝜌(P) + l𝜌(H))2 + l2

𝜌(S)2
,

u1 =
𝜌(H)(𝛼̂𝜌(P) + l𝜌(H)) + l𝜌(S)2

(𝛼̂𝜆min(P) + l𝜆min(H))2
,

u2 =
𝛼̂𝜌(P)𝜌(S)

(𝛼̂𝜆min(P) + l𝜆min(H))2
,

with S = 1
2
(A − AT), 𝜆 = Re(𝜆) + iIm(𝜆).

Proof. Since BTu = 0, equality 𝜆 ̂𝛽Qv = 0 from (11) gets v = 0. If u = 0, we have (u∗, v∗)∗ = 0, which contradicts the
definition of an eigenvector. Substituting v = 0 into (10) yields

Au = 𝜆(𝛼̂P + lA)u. (13)

The expression u∗

u∗u
is well defined due to u ≠ 0. Multiplying the left-hand side of (13) by u∗

u∗u
and using

u∗Pu
u∗u

= d1,
u∗Au
u∗u

= a1 + ib1, (14)

gets

𝜆 = a1 + ib1

𝛼̂d1 + l(a1 + b1i)
=
𝛼̂a1d1 + la2

1 + lb2
1 + 𝛼̂d1b1i

(𝛼̂d1 + la1)2 + l2b2
1

, (15)

if 𝛼̂ = 0, then 𝜆 = 1
l
. If 𝛼̂ > 0, then from (15) we get

Re(𝜆) =
𝛼̂a1d1 + la2

1 + lb2
1

(𝛼̂d1 + la1)2 + l2b2
1
, Im(𝜆) = 𝛼̂d1b1

(𝛼̂d1 + la1)2 + l2b2
1
.

Since

0 ≤ |b1| = |||| 1
2i

(
u∗Au
u∗u

− u∗AT u
u∗u

)|||| = ||| u∗iSu
u∗u

||| ≤ 𝜌(S),
𝜆min(H) ≤ a1 =

1
2

(
u∗Au
u∗u

+ u∗AT u
u∗u

)
= u∗Hu

u∗u
≤ 𝜌(H),

𝜆min(P) ≤ d1 ≤ 𝜌(P),

it is easy to prove (12). It is also clear from (12) that Re(𝜆) > 0. ▪

Lemma 3. Let ẑ1, ẑ2 are real numbers and ẑ1 + iẑ2 is one of the square roots of a2 + ib2, where

a2 = ̂

𝛽

2(a2
1 − b2

1
)
− 4𝛼̂ ̂𝛽c1d1, b2 = 2 ̂𝛽2a1b1,

then

ẑ1 =

√√√√√
d2 + 4 ̂𝛽4a2

1b2
1 + d

2
,

ẑ2 = sign(b1)

√√√√√
d2 + 4 ̂𝛽4a2

1b2
1 − d

2
, (16)
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VAKILI et al. 7 of 24

where

d = ̂

𝛽

2(a2
1 − b2

1
)
− 4𝛼̂ ̂𝛽c1d1

and the second root of a2 + ib2 is −(ẑ1 + iẑ2).

Proof. Let z = z1 + iz2, solving equation z2 = a2 + ib2 gets the proof of lemma. ▪

Theorem 3. Assume that the conditions in Theorem 2 are satisfied. If BTu ≠ 0, then the preconditioned matrix −1
PESS𝔄 has

eigenvalue 𝜆 = 1
l

and the remaining eigenvalues are enclosed in the rectangle:

[
̂

𝛽𝜆min(H)𝜆min(BQ−1BT) + l𝜆min(BQ−1BT)2

( ̂𝛽𝜌(H) + l𝜌(BQ−1BT))2 + ̂

𝛽

2
𝜌(S)2

,

̂

𝛽𝜌(H)𝜌(BQ−1BT) + l𝜌(BQ−1BT) )2

( ̂𝛽𝜆min(H) + l𝜆min(BQ−1BT))2

]

×
[
−

̂

𝛽𝜌(S)𝜌(BQ−1BT)
( ̂𝛽𝜆min(H) + l𝜆min(BQ−1BT))2

,

̂

𝛽𝜌(S)𝜌(BQ−1BT)
( ̂𝛽𝜆min(H) + l𝜆min(BQ−BT))2

]
, (17)

as 𝛼̂ = 0. Furthermore, the eigenvalues of −1
PESS𝔄 converge to ( 1

l
, 0) as ̂

𝛽 → 0+. If 𝛼̂ > 0, then the eigenvalues of the
preconditioned matrix −1

PESS𝔄 satisfy

𝜆+ =
1
l
+

(
ẑ1 − ̂

𝛽a1 −
2𝛼̂ ̂𝛽a1

l

)
+ i(ẑ2 − ̂

𝛽b1)

2(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1 + i ̂𝛽lb1)
,

𝜆− =
1
l
−

(
ẑ1 + ̂

𝛽a1 +
2𝛼̂ ̂𝛽a1

l

)
+ i(ẑ2 + ̂

𝛽b1)

2(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1 + i ̂𝛽lb1)
, (18)

where

u∗BQ−1BTu
u∗u

= c1,
u∗Pu
u∗u

= d1,
u∗Au
u∗u

= a1 + ib1, (19)

and z1, z2 are defined in (16). The eigenvalues 𝜆± satisfy the inequality:

||||𝜆± − 1
l
||||
2
≤

(
2 ̂𝛽𝜌(H) + 2𝛼̂ ̂𝛽𝜌(P)

l

)2 + ( ̂𝛽𝜌(S) +
√

̂

𝛽

2
𝜌(S)2 + 4𝛼̂ ̂𝛽𝜌(BQ−1BT)𝜌(P))2

4(𝛼̂ ̂𝛽𝜆min(P) + l ̂𝛽𝜆min(H) + l2
𝜆min(BQ−1BT))2

. (20)

When 𝛽 → 0+, it holds that

𝜆± →
1
l
, (21)

that is, the eigenvalues of the −1
PESS𝔄 converge to

( 1
l
, 0

)
.

Proof. Since BTu ≠ 0, we can write (11) as v = (l𝜆−1)Q−1BT u
𝜆

̂

𝛽

, where 𝜆 ≠ 0 and u ≠ 0. Then (10) becomes

𝜆

2(𝛼̂ ̂𝛽P + l ̂𝛽A + l2BQ−1BT)u − 𝜆( ̂𝛽A + 2lBQ−1BT)u + BQ−1BTu = 0. (22)

By multiplying (22) by u∗

u∗u
and using (19), we obtain

𝜆

2 − 𝜆
̂

𝛽a1 + 2lc1 + i ̂𝛽b1

𝛼̂

̂

𝛽d1 + l ̂𝛽a1 + i ̂𝛽lb1 + l2c1
+ c1

𝛼̂

̂

𝛽d1 + l ̂𝛽a1 + i ̂𝛽lb1 + l2c1
= 0. (23)
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8 of 24 VAKILI et al.

The roots of (23) are

𝜆+ =
1
l
+

(
ẑ1 − ̂

𝛽a1 −
2𝛼̂ ̂𝛽d1

l

)
+ i(ẑ2 − ̂

𝛽b1)

2(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1 + i ̂𝛽lb1)
,

𝜆− =
1
l
−

(
ẑ1 + ̂

𝛽a1 +
2𝛼̂ ̂𝛽d1

l

)
+ i(ẑ2 + ̂

𝛽b1)

2(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1 + i ̂𝛽lb1)
. (24)

By some calculations, we get the following inequalities

Re(𝜆+) =
K + (𝛼̂ ̂𝛽d1 + l2c1)(2lc1 + ẑ1) + l ̂𝛽(a1ẑ1 + |b1ẑ2|)

2[(𝛼̂ ̂𝛽a1 + l ̂𝛽a1 + l2c1)2 + l2 ̂
𝛽

2b2
1]

> 0,

Re(𝜆−) =
K + (𝛼̂ ̂𝛽d1 + l2c1)(2lc1 − ẑ1) − l ̂𝛽(a1ẑ1 + |b1ẑ2|)

2[(𝛼̂ ̂𝛽a1 + l ̂𝛽a1 + l2c1)2 + l2 ̂
𝛽

2b2
1]

≥

l2c1( ̂𝛽a1 + lc1)

(𝛼̂ ̂𝛽a1 + l ̂𝛽a1 + l2c1)2 + l2 ̂
𝛽

2b2
1

> 0,

where K = 𝛼̂ ̂𝛽2a1d1 + l ̂𝛽2(a2
1 + b2

1) + 3l2
̂

𝛽a1c1 and ẑ1, ẑ2 are presented by (16). From (16)

ẑ1 =

√√√√√
d2 + 4 ̂𝛽4a2

1b2
1 + d

2

=

√√√√√
̂

𝛽

4(a2
1 − b2

1)2 − 8𝛼̂ ̂𝛽3c1d1(a2
1 − b2

1) + 4 ̂𝛽4a2
1b2

1 + 16𝛼̂2
̂

𝛽

2d2
1d2

1 + d
2

≤

√√√√√
[ ̂𝛽2(a2

1 + b2
1) + 4𝛼̂ ̂𝛽c1d1]2 + d

2
= ̂

𝛽a1, (25)

|ẑ2| =
√√√√√

d2 + 4 ̂𝛽4a2
1b2

1 − d
2

≤

√√√√√[
̂

𝛽

2(a2
1 + b2

1) + 4𝛼̂ ̂𝛽c1d1
]2 − d

2

=
√

̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1. (26)

Thus, by using (25) and (26), we derive the following inequalities from (24)

||||𝜆± − 1
l
||||
2
=

(
̂

𝛽a1 +
2𝛼̂ ̂𝛽d1

l
± ẑ1

)2 + ( ̂𝛽b1 ± ẑ2)2

4[(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1)2 + l2 ̂
𝛽

2b2
1]

≤

(
2 ̂𝛽a1 +

2𝛼̂ ̂𝛽d1
l

)2 +
(
̂

𝛽|b1| +√
̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1

)2

4
[
(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1)2 + l2 ̂

𝛽

2b2
1
] = f (a1, b1, c1, d1). (27)

It is evident that an upper bound of |𝜆± − 1
l
|2 is maxa1,b1,c1,d1 f (a1, b1, c1, d1) with a1, b1, c1, d1 being bounded as follows:

𝜆min(H) ≤ a1 ≤ 𝜌(H), 0 ≤ |b1| ≤ 𝜌(S),
𝜆min(BQ−1BT) ≤ c1 ≤ 𝜌(BQ−1BT), 0 ≤ b2

1 ≤ 𝜌(S)
2
,

𝜆min(P) ≤ d1 ≤ 𝜌(P) (28)
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VAKILI et al. 9 of 24

thus

||||𝜆± − 1
l
||||
2
≤ f (a1, b1, c1, d1)

≤

(
2 ̂𝛽𝜌(H) + 2𝛼̂ ̂𝛽𝜌(P)

l

)2 + ( ̂𝛽𝜌(S) +
√

̂

𝛽

2
𝜌(S)2 + 4𝛼̂ ̂𝛽𝜌(BQ−1BT)𝜌(P))2

4(𝛼̂ ̂𝛽𝜆min(P) + l ̂𝛽𝜆min(H) + l2
𝜆min(BQ−1BT))2

,

then it yields (20). On the other hand, when ̂

𝛽 → 0+, we have ẑ1, ẑ2 → 0. Therefore, for 𝛼̂ ≥ 0, we have 𝜆+, 𝜆− → ( 1
l
, 0) as

̂

𝛽 → 0+. Moreover, when 𝛼̂ = 0, we have ẑ1 = ̂

𝛽a1 and ẑ2 = ̂

𝛽b1 in (16). Accordingly,

⎧⎪⎪⎨⎪⎪⎩

𝜆+ =
1
l
+ (ẑ1 − ̂

𝛽a1) + i(ẑ2 − ̂

𝛽b1)
2( ̂𝛽la1 + l2c1 + i ̂𝛽lb1)

→
1
l
,

𝜆− =
1
l
− (ẑ1 + ̂

𝛽a1) + i(ẑ2 + ̂

𝛽b1)
2( ̂𝛽la1 + l2c1 + i ̂𝛽lb1)

= 1
l
−

̂

𝛽a1 + i ̂𝛽b1

̂

𝛽la1 + i ̂𝛽lb1 + l2c1
=

̂

𝛽a1c1 + lc2
1 − i ̂𝛽b1c1

( ̂𝛽a1 + lc1)2 + ̂

𝛽

2b2
1

,

implies that for ̂𝛽 > 0, the eigenvalues of −1
PESS𝔄 are 1

l
and

̂

𝛽a1c1+lc2
1−i ̂𝛽b1c1

( ̂𝛽a1+lc1)2+ ̂𝛽
2b2

1

as 𝛼 = 0. We obtain

̂

𝛽𝜆min(H)𝜆min(BQ−1BT) + l𝜆min(BQ−1BT)2

( ̂𝛽𝜌(H) + l𝜌(BQ−1BT))2 + ̂

𝛽

2
𝜌(S)2

≤

̂

𝛽a1c1 + lc2
1

( ̂𝛽a1 + lc1)2 + ̂

𝛽

2b2
1

≤

̂

𝛽𝜌(H)𝜌(BQ−1BT) + l𝜌(BQ−1BT)2

( ̂𝛽𝜆min(H) + l𝜆min(BQ−1BT))2
,

and

||||||
̂

𝛽b1c1

( ̂𝛽a1 + lc1)2 + ̂

𝛽

2b12

|||||| ≤
̂

𝛽𝜌(S)𝜌(BQ−1BT)
( ̂𝛽𝜆min(H) + l𝜆min(BQ−1BT))2

,

using inequality (28). Therefore, 1
l

is one of the eigenvalues of −1
PESS𝔄 as ̂

𝛽 > 0, 𝛼̂ = 0, and the other eigenvalues are
bounded by rectangle (17). ▪

Remark 2. Using Theorem 2, it can be seen that 𝜆 = 1
l
> 0 when BTu = 0 and 𝛼̂ = 0, and from (12), we have Re(𝜆) > 0

as 𝛼̂ > 0, where (𝜆, (u∗, v∗)∗) is an eigenpair of the preconditioned matrix −1
PESS𝔄. Thus all eigenvalues of −1

PESS𝔄 have a
positive real part and lie within a positive box. Moreover, when BTu = 0 and 𝛼̂ = 0, we have 𝜆 = 1

l
or 𝜆 = 0; and Theorem 3

gets 𝜆→
( 1

l
, 0

)
when BTu ≠ 0, ̂𝛽 → 0+ and 𝛼̂ ≥ 0. Therefore, these results imply that the PESS preconditioned matrix that

is, −1
PESS𝔄 with suitable 𝛼̂ and ̂

𝛽 parameters will have a more clustered spectrum compared with the spectrum of matrix
𝔄. As a result, GMRES with PESS preconditioner leads to rapid convergence rate of that. Tables in Section 5 confirm this
conclusion. Also, when c1 > 0, we have from (25) and (26) that

(
2 ̂𝛽a1 +

2𝛼̂ ̂𝛽d1

l

)2

+
(
̂

𝛽|b1| +√
̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1

)2

=
(

2 ̂𝛽a1 +
2𝛼̂ ̂𝛽d1

l

)2

+
(

2 ̂𝛽2b2
1 + 4𝛼̂ ̂𝛽c1d1 + 2 ̂𝛽|b1|√ ̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1

)

≤

(
2 ̂𝛽a1 +

2𝛼̂ ̂𝛽d1

l

)2

+ 2 ̂𝛽2b2
1 + 4𝛼̂ ̂𝛽c1d1 + 2 ̂𝛽|b1|

√
̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1 +

(
2𝛼̂c1d1|b1|

)2

=
(

2 ̂𝛽a1 +
2𝛼̂ ̂𝛽d1

l

)2

+ 4 ̂𝛽2b2
1 + 4𝛼̂ ̂𝛽c1d1

<

(
2𝛼̂ ̂𝛽d1

l
+ 2 ̂𝛽a1 + 2lc1

)2

+ 4 ̂𝛽2b2
1,
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10 of 24 VAKILI et al.

T A B L E 1 Numerical results for 𝜇 = 0.1.

Method p 16 32 48 64 128

GMSS 𝛼̂exp 22 36 39 38 42

̂

𝛽exp 16 8.3 6.8 5.9 4.7

IT. 66 73 79 89 -

CPU 0.572 10.446 9.837 211.427 -

MGSS 𝛼̂exp 0.2 0.5 0.2 0.2 0.2

̂

𝛽exp 0.1 0.1 0.1 0.1 0.1

IT. 21 21 21 21 21

CPU 0.175 2.985 16.093 50.187 791.919

PGSS 𝛼̂ 0.2 0.2 0.2 0.2 0.2

̂

𝛽 0.2 0.2 0.2 0.2 0.2

IT. 8 9 10 10 12

CPU 0.078 1.110 6.959 21.616 445.930

PESS 𝛼̂ 0.1 0.1 0.1 0.1 0.1

̂

𝛽 0.1 0.1 0.1 0.1 0.1

IT. 4 4 4 4 4

CPU 0.048 0.408 2.338 6.986 124.033

which together with inequality (27) we get

|𝜆± − 1
l
|2
≤

(
2 ̂𝛽a1 +

2𝛼̂ ̂𝛽d1
l

)2 +
(
̂

𝛽|b1| +√
̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1

)2

4[(𝛼̂ ̂𝛽d1 + l ̂𝛽a1 + l2c1)2 + l2 ̂
𝛽

2b2
1]

=
(2 ̂𝛽a1 +

2𝛼̂ ̂𝛽d1
l
)2 + ( ̂𝛽|b1| +√

̂

𝛽

2b2
1 + 4𝛼̂ ̂𝛽c1d1)2

l2
[(

2𝛼̂ ̂𝛽d1
l
+ 2 ̂𝛽a1 + 2lc1

)2

+ 4 ̂𝛽2b2
1

]

<

(
2𝛼̂ ̂𝛽d1

l
+ 2 ̂𝛽a1 + 2lc1

)2

+ 4 ̂𝛽2b2
1

l2
[( 2𝛼̂ ̂𝛽d1

l
+ 2 ̂𝛽a1 + 2lc1

)2 + 4 ̂𝛽2b2
1
] = 1

l2 , (29)

which implies that ||𝜆± − 1
l
|| < 1

l
as BTu ≠ 0. When BTu = 0 then 𝜆 = 0 or 𝜆 satisfies (15), from (15) we have

||||𝜆± − 1
l
||||
2
= 𝛼̂

2

l2(𝛼̂d1 + la1)2 + l2b2
1
<

1
l2 .

According to the above discussion, all eigenvalues of −1
PESS𝔄 lie in a circle centered at ( 1

l
, 0) with radius 1

l
.

We know that the eigenvectors of the preconditioned matrix play an important rule for the convergence of the Krylov
subspace methods except when the preconditioned matrix is symmetric.33 Therefore, we present the following theorem
which explains the distribution of eigenvectors of −1

PESS𝔄.

Theorem 4. Let PESS preconditioner PESS be as defined in (5) and 𝛼̂ = 0, then −1
PESS𝔄 have m + p (0 ≤ p ≤ m) linearly

independent eigenvectors, with m eigenvectors of the form
(

ut
0

)
(1 ≤ t ≤ m) for the eigenvalue 1

l
, where ut ≠ 0 (1 ≤ t ≤ m)
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VAKILI et al. 11 of 24

T A B L E 2 Numerical results of the GMRES method for 𝜇 = 𝛼̂ = 0.1 and p = 32 with six preconditioners

Preconditioner p 16 32 48 64 128 256

I IT. 131 287 447 - - -

CPU 0.039 1.186 4.349 - - -

GMSS ̂

𝛽 4.9974 4.9996 4.9999 5 5 5

IT. 24 26 26 26 28 32

CPU 0.109 0.602 1.795 4.192 19.246 31.748

MGSS ̂

𝛽 19.9861 19.9983 19.9995 19.9998 20 20

IT. 16 18 18 19 21 24

CPU 0.077 0.430 1.202 2.922 12.588 23.696

PIU ̂

𝛽 9.9931 9.9992 9.9998 9.9999 10 10

IT. 46 51 53 56 60 71

CPU 0.189 1.234 3.846 6.982 21.775 35.912

DPSS IT. 37 51 63 72 99 185

CPU 0.667 4.865 19.778 37.743 319.812 645.052

PGSS(l = 6) ̂

𝛽 59.9583 59.9950 59.9986 59.9994 59.9999 60

IT. 14 15 15 15 16 19

CPU 0.036 0.232 0.629 1.280 6.36 18.198

PESS(l = 6) ̂

𝛽 59.9583 59.9950 59.9986 59.9994 59.9999 60

IT. 7 8 8 8 9 10

CPU 0.020 0.120 0.294 0.650 3.545 10.780

PGSS(l = 3) ̂

𝛽 29.9792 29.9975 29.9993 29.9997 29.9999 30

IT. 14 15 15 15 16 19

CPU 0.035 0.197 0.475 1.150 5.087 17.956

PESS(l = 3) ̂

𝛽 29.9792 29.9975 29.9993 29.9997 29.9999 30

IT. 7 8 8 8 9 9

CPU 0.026 0.133 0.236 0.724 3.091 10.076

PGSS(l = 8) ̂

𝛽 79.9445 79.9934 79.9981 79.9992 79.9999 80

IT. 14 15 15 15 16 18

CPU 0.039 0.171 0.496 0.998 4.972 17.742

PESS(l = 8) ̂

𝛽 79.9445 79.9934 79.9981 79.9992 79.9999 80

IT. 7 8 8 8 8 10

CPU 0.023 0.144 0.308 0.646 2.903 9.980

are arbitrary linearly independent vectors, and p eigenvectors of the form

(
u1

t
(l𝜆−1)Q−1BT u1

t
𝜆

̂

𝛽

)
(1 ≤ t ≤ p), which correspond to

the eigenvalue 𝜆 ≠ 1
l
, where u1

t ≠ 0 (1 ≤ t ≤ p) satisfy 𝜆 ̂𝛽Au1
t = l ̂𝛽𝜆2Au1

t + (l ̂𝜆 − 1)2BQ−1BTu1
t and if 𝛼̂ > 0, then −1

PESS𝔄

has q (0 ≤ q ≤ m) linearly independent eigenvectors of the form

(
u2

t
(l𝜆−1)Q−1BT u2

t
𝜆

̂

𝛽

)
(1 ≤ t ≤ q) that correspond to the eigenvalue

𝜆 ≠
1
l
, when u2

t ≠ 0 (1 ≤ t ≤ q) satisfy 𝜆 ̂𝛽Au1
t = ̂

𝛽𝜆

2(𝛼̂P + lA)u2
t + (l ̂𝜆 − 1)2BQ−1BTu2

t .

Proof. Suppose 𝜆 is an eigenvalue of −1
PESS𝔄 and (u∗, v∗)∗ is the corresponding eigenvector. If u = 0, then we get 𝜆Qv = 0

from (11), and therefore, v = 0, which is a contradiction, so u ≠ 0. Now let 𝜆 = 1
l
, we have 𝛼̂Pu = 0 from (10) and v = 0
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12 of 24 VAKILI et al.

T A B L E 3 Numerical results of the GMRES method with six preconditioners for 𝜇 = 𝛼̂ = 1 and p = 32.

Preconditioner p 16 32 48 64 128 256

I IT. 206 436 - - - -

CPU 0.085 2.67 - - - -

GMSS ̂

𝛽 0.4997 0.5 0.5 0.5 0.5 0.5001

IT. 12 14 14 14 16 18

CPU 0.058 0.350 0.947 2.170 9.477 17.968

MGSS ̂

𝛽 1.9989 1.9999 2 2 2 2.0003

IT. 11 12 13 13 15 17

CPU 0.058 0.311 0.882 2.060 9.116 17.137

PIU ̂

𝛽 0.9995 0.9999 1 1 1 1.0002

IT. 34 36 38 39 44 53

CPU 0.147 0.843 2.455 4.393 15.846 24.408

DPSS IT. 45 65 81 94 132 185

CPU 0.778 6.501 24.909 54.029 435.909 656.270

PGSS(l = 5) ̂

𝛽 4.9974 4.9996 4.9999 5 5 5

IT. 9 11 1 12 14 15

CPU 0.077 0.158 0.375 0.976 5.975 14.454

PESS(l = 5) ̂

𝛽 4.9974 4.9996 4.9999 5 5 5

IT. 5 6 7 7 7 7

CPU 0.068 0.107 0.269 0.552 3.305 8.121

PGSS(l = 7) ̂

𝛽 6.9963 6.9994 6.9998 7 7 7

IT. 9 10 11 11 14 15

CPU 0.048 0.145 0.387 0.768 5.497 15.423

PESS(l = 7) ̂

𝛽 6.9963 6.9994 6.9998 7 7 7

IT. 6 6 6 6 7 8

CPU 0.046 0.084 0.238 0.214 3.298 8.976

from (11). If 𝛼̂ = 0, (10) always holds for the case 𝜆 = 1
l
. Thus, there are m eigenvectors of the form

(
ut
0

)
(t = 1, 2, ...,m)

which are linearly independent related to eigenvalue 1
l
, in which ut are arbitrary linearly independent vectors. If 𝛼̂ > 0

holds, then v = 0 and u = 0 is a contradiction. Now we check the case 𝜆 ≠ 1
l
. If 𝛼̂ = 0, then it follows from (11) that

v = (𝜆l−1)BT u
𝜆

̂

𝛽Q
. Substituting this relation into (10), we have

𝜆

̂

𝛽Au = l ̂𝛽𝜆2Au + (l𝜆 − 1)2BQ−1BTu. (30)

Suppose there exists a u ≠ 0 that satisfies (30), thus, we will have p (1 ≤ p ≤ m) linearly independent eigenvectors
of the form

(
u1

t
v1

t

)
(1 ≤ t ≤ p) corresponding to the eigenvalue 𝜆 ≠ 1

l
. Here, u1

t (1 ≤ t ≤ p) satisfies 𝜆 ̂𝛽Au1
t = l ̂𝛽𝜆2Au1

t +
(l𝜆 − 1)2BQ−1BTu1

t and v1
t (1 ≤ t ≤ p) is giving by

v1
t =

(l𝜆 − 1)Q−1BTu1
t

𝜆

̂

𝛽

. (31)

If 𝛼̂ > 0, then similar to (30), we can write

𝜆

̂

𝛽Au = ̂

𝛽𝜆

2(𝛼̂P + lA)u + (l𝜆 − 1)2BQ−1BTu. (32)
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VAKILI et al. 13 of 24

T A B L E 4 Numerical results of the GMRES method for 𝜇 = 0.1 and p = 128 with five preconditioners.

Preconditioner

(𝜶̂, ̂𝜷) PIU GMSS MGSS PGSS(l=6) PESS(l=6)

(0.6, 0.8) IT. 89 20 7 6 3

CPU 9.011 4.091 1.669 1.303 0.974

(0.2, 0.5) IT. 86 18 6 5 3

CPU 8.580 3.688 1.500 1.075 0.950

(0.2, 1.3) IT. 85 22 8 6 4

CPU 8.377 4.428 1.904 1.342 0.968

(1, 0.8) IT. 93 20 7 6 3

CPU 9.118 4.154 1.603 1.306 0.947

(1.2, 1.5) IT. 87 23 9 7 4

CPU 8.408 4.538 2.018 1.428 1.187

(1.5, 1.2) IT. 100 22 8 7 4

CPU 9.913 4.357 2.031 1.501 0.934

(1.8, 1.5) IT. 87 23 9 7 4

CPU 8.785 4.662 2.058 1.442 1.202

(0.02, 0.5) IT. 55 18 6 5 3

CPU 5.430 3.714 1.268 1.091 0.937

(0.89, 1.37) IT. 98 22 8 7 4

CPU 9.526 4.527 1.785 1.475 0.927

(0.93, 0.16) IT. 97 16 5 5 3

CPU 9.794 3.3 1.93 1.111 0.983

(0.01, 0.2) IT. 45 14 7 4 3

CPU 4.562 3.622 1.099 0.971 0.884

If there is a u ≠ 0 that satisfies (32), there will be q(1 ≤ q ≤ m) linearly independent eigenvectors of the form(
u2

t
v2

t

)
(1 ≤ t ≤ q) that corresponding to the eigenvalues 𝜆 ≠ 1

l
. Here, u2

t ≠ 0 (1 ≤ t ≤ q) satisfies 𝜆 ̂𝛽Au2
t = ̂

𝛽𝜆

2(𝛼̂P +

lA)u2
t + (l ̂𝜆 − 1)2BQ−1BTu2

t and v2
t (1 ≤ t ≤ q) satisfies (31).

The linear independence of m + p eigenvectors of the −1
PESS𝔄 as 𝛼 = 0 can be proved similar to that of Theorem 5.2 of

Reference 17 and Theorem 3.2 of Reference 42. ▪

5 NUMERICAL RESULTS

We provide two examples to show the effectiveness of the PESS method to solve (1). Numerical results of PESS, PGSS,18

MGSS,17 PIU,22 DPSS,41 and GMSS16 methods are reported based on the number of iterations (denoted by “IT”) and
the CPU times (denoted by “CPU”) which is in seconds. All systems are solved by applying MATLAB R2015b on a PC
with Intel(R) Core (TM) i7 CPU 4.20 GHz and 8.0 GB memory. In both examples, we select P = 0.01H, Q = 0.1In×n,
that H = 1

2
(A + AT), the vector x(0) = (0, 0, … , 0) is used as initial guess and the right-hand side vector is chosen b =

rand(m + n, 1) except for Table 1, it is chosen in a way that (1, 1, … , 1)T is the exact solution of (1). In Table 1, the optimal
parameters have been determined experimentally such that, it results in the least number of iterations. The computation
of the optimal parameter is often problem-dependent, so in this table the right hand side vector is not chosen random
vector.
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14 of 24 VAKILI et al.

T A B L E 5 Numerical results of the GMRES method for 𝜇 = 1 and p = 128 with five preconditioners.

Preconditioner

(𝜶̂, ̂𝜷) PIU GMSS MGSS PGSS(l=5) PESS(l=5)

(0.6, 0.8) IT. 52 19 12 9 4

CPU 5.287 3.918 2.547 1.859 1.316

(0.2, 0.5) IT. 47 18 10 7 3

CPU 4.831 3.762 2.155 1.415 1.149

(0.2, 1.3) IT. 45 21 14 9 5

CPU 4.608 4.240 2.984 2.049 1.279

(1, 0.8) IT. 53 19 12 9 4

CPU 5.173 3.887 2.576 1.819 1.182

(1.2, 1.5) IT. 54 22 15 11 5

CPU 5.404 4.458 3.092 2.267 1.284

(1.5, 1.2) IT. 53 21 14 10 5

CPU 5.359 4.251 3.168 1.997 1.247

(1.8, 1.5) IT. 55 22 15 11 5

CPU 5.300 4.515 3.153 2.224 1.247

(0.02, 0.5) IT. 31 18 10 7 47

CPU 3.169 3.635 2.240 1.481 1.114

(0.89, 1.37) IT. 52 21 14 10 5

CPU 5.068 4.250 2.964 2.010 1.263

(0.93, 0.16) IT. 52 14 7 6 3

CPU 5.132 2.932 1.631 1.282 0.918

(0.01, 0.2) IT. 19 17 5 6 3

CPU 1.878 3.098 1.667 1.296 1.158

Example 1. Consider the saddle point problem (1) with the following matrices18,27

A =

(
A1 0
0 A1

)
∈ R

2p2×2p2
, B =

(
B1

B2

)
∈ R

2p2×p2
,

where A1 = I ⊗ T + T ⊗ I, B1 = I ⊗ F, B2 = F ⊗ I, and

F = tridiag
(
−1
h
,

1
h
, 0

)
∈ R

p×p
, T = tridiag

(
−𝜇
h2 − 1

2h
,

2𝜇
h2 ,

−𝜇
h2 + 1

2h

)
∈ R

p×p
,

where h = 1
p+1

, ⊗ denotes the Kronecker product and 𝜇 indicates the viscosity.
All runs terminate when the number of iterations exceeds 𝜅max = 500 or RES < 10−6, where

RES =

√||f − Ax̂(k) − Bŷ(k)||2
2 + ||g − BTx̂(k)||2

2√||f ||2
2 + ||g||2

2

< 10−6
.

The termination criterion of inner GMRES method is ||r(k)||||r(0)|| < 10−7
, in which r(k) is the residual of the kth GMRES iteration.

We list numerical results of Example 1 in Tables 1–8.
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VAKILI et al. 15 of 24

T A B L E 6 Numerical results of the GMRES method for 𝜇 = 0.1 and 𝛼̂ = 0.8 with five preconditioners.

Preconditioner ̂

𝜷 0.05 0.2 0.9 1.3 2.6

P = 32 GMSS IT. 13 14 17 18 21

CPU 0.290 0.324 0.410 0.438 0.462

MGSS IT. 4 5 7 8 8

CPU 0.073 0.078 0.101 0.108 0.209

PIU IT. 76 69 65 65 69

CPU 1.875 1.679 1.688 1.512 1.663

PGSS(l = 6) IT. 4 4 5 5 6

CPU 0.053 0.066 0.071 0.072 0.088

PESS(l = 6) IT. 2 3 3 3 4

CPU 0.042 0.048 0.050 0.066 0.055

PGSS(l = 8) IT. 3 4 5 5 6

CPU 0.049 0.053 0.064 0.080 0.078

PESS(l = 8) IT. 2 3 3 3 3

CPU 0.036 0.043 0.054 0.050 0.050

P = 128 GMSS IT. 15 17 20 20 26

CPU 3.157 3.477 4.097 4.383 4.974

MGSS IT. 4 5 7 8 11

CPU 1.071 1.292 1.663 1.800 2.314

PIU IT. 100 98 93 97 88

CPU 10.075 9.762 9.067 9.371 8.637

PGSS(l = 6) IT. 4 5 6 7 7

CPU 0.873 1.096 1.299 1.408 1.440

PESS(l = 6) IT. 3 3 3 4 4

CPU 0.497 0.906 0.928 0.959 1.088

PGSS(l = 8) IT. 5 5 6 6 7

CPU 0.856 1.081 1.230 1.240 1.478

PESS(l = 8) IT. 2 3 3 4 4

CPU 0.482 0.870 0.902 0.916 1.113

In Table 1 of this example, for GMSS, MGSS, PGSS, and PESS iteration methods, we solve linear subsystems (𝛼̂I +
2H + 1

̂

𝛽

BBT)x = b, (𝛼̂I + 2A + 4
̂

𝛽

BBT)x = b, (𝛼̂I + lA + l2

̂

𝛽

BBT)x = b and (𝛼̂P + lA + l2

̂

𝛽

BQ−1BT)x = b, respectively, using the
LU factorization with combination column AMD reordering. In this table, the optimal parameters of MGSS and GMSS
have been obtained experimentally, while we find 𝛼̂, ̂𝛽, and l for the PESS iteration method and for the PGSS method,
as a special case of the PESS method with P = Q = I, so that 𝜌(Γ(𝛼̂, ̂𝛽, l)) be minimized. For this aim, in a similar way of
Reference 18, the following function is minimized.

𝜏(𝛼̂, ̂𝛽, l) = ||PESS||2
F

= 𝛼̂2tr(PTP) + 2𝛼̂(l − 1)tr(PTA) + (l − 1)2tr(ATA)

+ 2(l − 1)2tr(BTB) + ̂

𝛽

2tr(QTQ) > 0.

Now we select parameters 𝛼̂, ̂𝛽, and l to make 𝜏(𝛼̂, ̂𝛽, l) as small as possible. Since

lim
𝛼̂,

̂

𝛽→0+
𝜏(𝛼̂, ̂𝛽, l) = (l − 1)2tr(ATA)(l − 1)2tr(ATA).
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16 of 24 VAKILI et al.

T A B L E 7 Numerical results of the GMRES method for 𝜇 = 0.1 and ̂

𝛽 = 0.5 with six preconditioners.

Preconditioner 𝜶̂ 0.01 0.3 0.8 1.5 2.7 5

P = 32 GMSS IT. 16 16 16 16 16 16

CPU 0.379 0.397 0.388 0.393 0.391 0.387

MGSS IT. 5 5 5 6 6 7

CPU 0.075 0.139 0.170 0.095 0.194 0.199

PIU IT. 50 67 72 66 66 69

CPU 1.102 1.507 1.736 1.469 1.460 1.503

DPSS IT. 45 59 64 67 69 69

CPU 4.125 5.266 5.561 5.796 6.320 6.448

PGSS(l = 6) IT. 4 4 5 5 5 5

CPU 0.054 0.060 0.063 0.70 0.077 0.077

PESS(l = 6) IT. 3 3 3 3 3 3

CPU 0.046 0.042 0.052 0.053 0.050 0.061

PGSS(l = 9) IT. 4 4 4 4 5 5

CPU 0.059 0.056 0.063 0.060 0.064 0.074

PESS(l = 9) IT. 3 3 3 3 3 3

CPU 0.054 0.051 0.054 0.054 0.060 0.068

PGSS(l = 4) IT. 4 5 5 5 6 6

CPU 0.063 0.059 0.072 0.077 0.085 0.092

PESS(l = 4) IT. 3 3 3 3 4 4

CPU 0.051 0.052 0.051 0.058 0.055 0.052

P = 128 GMSS IT. 18 18 18 19 19 19

CPU 3.121 3.569 3.696 3.723 3.743 3.713

MGSS IT. 6 6 6 7 7 8

CPU 1.253 1.404 1.460 1.643 1.598 1.814

PIU IT. 48 89 90 90 94 98

CPU 4.696 8.471 8.476 8.543 9.120 9.446

DPSS IT. 99 153 167 176 183 192

CPU 55.895 78.383 93.470 88.886 92.346 97.884

PGSS(l = 6) IT. 4 5 5 6 6 7

CPU 0.919 1.131 1.252 1.298 1.385 1.485

PESS(l = 6) IT. 3 3 3 3 3 3

CPU 0.0909 0.928 0.938 0.945 0.969 0.972

PGSS(l = 9) IT. 4 5 5 5 6 6

CPU 0.936 1.081 1.060 1.085 1.260 1.375

PESS(l = 9) IT. 3 3 3 3 3 3

CPU 0.911 0.935 0.952 0.973 1.090 1.206

PGSS(l = 4) IT. 5 6 6 6 7 8

CPU 1.087 1.107 1.127 1.198 1.421 1.625

PESS(l = 4) IT. 3 3 3 3 3 4

CPU 0.840 0.899 0.909 0.926 0.9302 1.082
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VAKILI et al. 17 of 24

T A B L E 8 Condition number of M−1𝔄 with p = 48 for PGSS and PESS

Method 𝝁 = 0.1 𝝁 = 1

PGSS(l = 5) 29.0623 18.0808

PESS(l = 5) 4.1820 2.5131

PGSS(l = 6) 29.0828 18.0931

PESS(l = 6) 4.0758 2.5132

PGSS(l = 1) 29.0467 17.7931

PESS(l = 1) 8.1418 2.5126
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F I G U R E 1 Convergence curves for p = 16, 32, 48, and 64 with 𝜇 = 0.1

We can select l = 1 and 𝛼̂, ̂𝛽 → 0+ such that 𝜏(𝛼̂, ̂𝛽, l) → 0+ and PESS → 0, so it is easy to see that 𝜏(𝛼̂, ̂𝛽, l) = 𝛼̂2tr(PTP) +
̂

𝛽

2tr(QTQ) as l = 0. The values of 𝛼̂, ̂𝛽 are chosen small enough such that 𝜏(𝛼̂, ̂𝛽, l) is as small as possible, but 𝛽 is not so
small that 𝛼̂P + lA + l2

̂

𝛽

BQ−1BT is very ill-conditioned. The symbol of exp indices indicate that the optimal parameters are
found experimentally.

Table 1 lists the numerical results of the various methods with respect to different problem sizes and 𝜇 = 0.1 for
Example 1. The efficiency of the PESS method is shown with l = 1 and small values for both 𝛼̂ and ̂

𝛽. The pro-
cessing time and iteration numbers of PESS iteration method for solving Example 1 is less than those of the other

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2478 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [06/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 24 VAKILI et al.

methods. The IT of GMSS in comparison with the MGSS, PGSS, and PESS methods shows more sensitivity to the
value of p.

Tables 2 and 3, present numerical experiments of the GMSS, MGSS, PIU, DPSS, PGSS, and PESS
preconditioned GMRES method with 𝜇 = 0.1, 1 on different uniform grids. The GMRES method without pre-
conditioning is indicated by I in these tables. The notation - is used to show that the method until 𝜅max
iterations, does not satisfy the RES < 10−6. Moreover, parameters considered for the chosen preconditioners are
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F I G U R E 2 The eigenvalue distributions of the five preconditioned matrices for 𝜇 = 1 and p = 32.
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F I G U R E 2 (Continued)

F I G U R E 3 The pattern of nonzero entries of LU factorization (left) and LU factorization with combination column AMD reordering
(right) for PESS with 𝜇 = 0.1 and p = 32.

given from References 18 and 53:

𝛼̂GMSS = 𝜇, ̂

𝛽GMSS =
||B||2

2

2||H||2
; 𝛼̂MGSS = 𝜇, ̂

𝛽MGSS =
2||B||2

2||A||2
;

𝛼̂PIU = 𝜇, ̂

𝛽PIU =
||B||2

2||A||2
; 𝛼̂DPSS = 𝜇;

𝛼̂PGSS = 𝜇, ̂

𝛽PGSS =
l||B||2

2||A||2
; 𝛼̂PESS = 𝜇, ̂

𝛽PESS =
l||B||2

2||A||2
. (33)

We can use ̂PESS =

(
𝛼̂

l
P + A B
− BT ̂

𝛽

l
Q

)
as a scaled PESS preconditioner. For the given parameters 𝛼̂ ≥ 0, ̂𝛽 > 0, we have

lim
l→+∞

( ̂PESS −) = lim
l→+∞

[
1
l

(
𝛼̂P 0
0 ̂

𝛽Q

)]
= 0.

Also, because of ill-conditioning of 𝛼̂P + lA + l2

̂

𝛽

BQ−1BT , we should not select a large value for l and the selection of its
optimal parameter is difficult. For Tables 2 and 3, the parameter l = 3, 6, 8 and l = 5, 7 is chosen, respectively.
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20 of 24 VAKILI et al.

T A B L E 9 Results for the Oseen problem with different uniform grids (Q2 − Q1FEM, 𝜈 = 0.1, 𝛼̂ = 𝜈).

Preconditioner Grids 16 × 16 32 × 32 64 × 64

DPSS IT. 38 86 226

CPU 0.201 2.415 29.272

PIU ̂

𝛽 0.0592 0.0153 0.0038

IT. 67 76 33

CPU 0.075 0.489 1.072

GMSS ̂

𝛽 0.0296 0.0076 0.0019

IT. 24 41 79

CPU 0.085 0.548 5.345

MGSS ̂

𝛽 0.1184 0.0305 0.0077

IT. 19 35 68

CPU 0.067 0.469 4.658

PGSS(l = 6) ̂

𝛽 0.3553 0.0915 0.0231

IT. 16 22 41

CPU 0.062 312 2.851

PESS(l = 6) ̂

𝛽 0.3553 0.0915 0.0231

IT. 6 6 6

CPU 0.025 0.098 0.487

PGSS(l = 3) ̂

𝛽 0.1776 0.0458 0.0115

IT. 18 29 57

CPU 0.234 1.487 3.891

PESS(l = 3) ̂

𝛽 0.1776 0.0458 0.0115

IT. 6 6 6

CPU 0.033 0.102 0.591

Tables 2 and 3 show that the PESS preconditioned GMRES is feasible and efficient.
As further evidence of the advantage of the PESS preconditioner over the GMSS, MGSS, PGSS, and PIU precondi-

tioners for GMRES method, numerical results for Example (1) with different values of 𝛼̂, ̂𝛽 are presented in Tables 4
and 5.

Tables 4 and 5 give numerical experiments for several preconditioned GMRES methods with various parameters 𝛼̂, ̂𝛽
and p = 128 with 𝜇 = 0.1, 1, respectively. The optimal parameters of the PIU preconditioner have been experimentally
obtained, and this value is (0.01, 0.2). As we can see, the PESS preconditioned GMRES method takes less IT and CPU
time for different values of parameters 𝛼̂, ̂𝛽 than the other preconditioners, which means that the PESS preconditioner
accelerates GMRES convergence for Example 1 more than the other preconditioners.

Table 6 gives the numerical results for the constant 𝛼̂ = 0.8 and various values of ̂𝛽. This table shows that the CPU
time increases with increasing ̂

𝛽 for all methods except PIU. Table 7 presents with different values of 𝛼̂, the constant
̂

𝛽 = 0.5, and p = 32,128. Table 8 presents the condition number of M−1𝔄 for the PGSS and PESS methods with the values
of 𝛼̂, ̂𝛽 from (33). This table shows with the appropriate selection of matrices P,Q and parameters 𝛼̂, ̂𝛽, and l, the condition
numbers of M−1𝔄 for PESS method is less than those of the PGSS method.

In Figure 1, the convergence curves are given for GMSS, MGSS, PGSS, and PESS methods with 𝜇 = 0.1, for p = 16,
32, 48, and 64, respectively, with the parameters in Table 1. It shows that the PESS method gives a better convergence rate
for all values of p.

In Figure 2, the eigenvalue distributions of the GMSS, MGSS, PGSS, PIU, and PESS preconditioned matrices as given
in Table 3 for 𝜇 = 1 and p = 32 are shown. According to Figure 2, the PESS preconditioned matrix has a better eigenvalue
clustering as compared to the others.−1

PESS𝔄has eigenvalues positioned within a circle with a radius 1
l
. Comparing the spy

plot of the LU factorization and LU factorization with combination column AMD reordering of the 𝛼̂P + lA + l2

̂

𝛽

BQ−1BT in
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VAKILI et al. 21 of 24

T A B L E 10 Results for the Oseen problem with different uniform grids (Q2 − Q1FEM, 𝜈 = 1, 𝛼̂ = 𝜈).

Preconditioner Grids 16 × 16 32 × 32 64 × 64

DPSS IT. 72 158 330

CPU 0.397 3.837 43.548

PIU ̂

𝛽 0.0078 0.0020 5.013e − 4

IT. 25 17 4

CPU 0.030 0.134 0.196

GMSS ̂

𝛽 0.2256 0.0584 0.0148

IT. 42 71 124

CPU 0.148 0.942 8.760

MGSS ̂

𝛽 0.0155 0.0040 0.0010

IT. 14 24 45

CPU 0.051 0.361 3.055

PGSS(l = 5) ̂

𝛽 0.0389 0.0100 0.0025

IT. 10 16 30

CPU 0.039 0.247 2.187

PESS(l = 5) ̂

𝛽 0.0389 0.0100 0.0025

IT. 4 5 5

CPU 0.017 0.083 0.397

PGSS(l = 8) ̂

𝛽 0.0620 0.0159 0.0040

IT. 10 14 25

CPU 0.037 0.213 1.876

PESS(l = 8) ̂

𝛽 0.0620 0.0159 0.0040

IT. 4 5 5

CPU 0.016 0.083 0.408

Figure 3, shows that minimum degree reduces the nonzero number by a factor of 14.76. The nonzero counts are 2,226,238
and 150,802, respectively.

Example 2. Using the Picard iteration to linearize the steady incompressible Navier–Stokes equation gets the Oseen
equation:

{
− 𝜈Δu + w.∇u + ∇p = f ,
∇.u = 0,

in Ω = (−1, 1) × (−1, 1) ⊂ R2. The Δ and ∇ are the Laplacian operator and gradient, respectively, and 𝜐 > 0 stands for
viscosity. Here, the w is the approximation of u from the previous Picard iteration. The linear system is taken at the ninth
Picard iteration. The test problem is a two-dimensional leaky-lid driven cavity problem on Ω and it is discretized by the
Q2 − Q1 mixed finite element method on a uniform grid. We generate the test problem with the IFISS software written
by Elman et al.62 to generate linear systems corresponding to 16 × 16, 32 × 32, and 64 × 64 meshes. For each grid, we test
two viscosity values, that is, 𝜈 = 1 and 𝜈 = 0.1.

All runs are started from the initial zero vector and terminated if the current iterations satisfy ||r(k)||||r(0)|| < 10−6
, where r(k)

is the residual at the kth iteration, or if the number of iterations exceeded 𝜅max = 1500. In this example, we first select
l = 3, 6 for Table 9, l = 5, 8 for Table 10, then 𝛼̂ = 𝜈 and ̂

𝛽 obtain using (33).
In Tables 9 and 10, numerical experiments demonstrate that the PESS iteration method consistently performs better

than the other five iteration methods in terms of IT and CPU times, and this advantage is accentuated as system size
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22 of 24 VAKILI et al.

T A B L E 11 Numerical results of the GMRES methods for 𝜇 = 1 with five preconditioners

Preconditioner

(𝜶̂, ̂𝜷) PIU GMSS MGSS PGSS(l=5) PESS(l=5)

p = 32 (0.6, 0.8) IT. 31 100 99 67 18

CPU 1.263 7.933 7.933 5.071 0.478

(0.2, 1.3) IT. 37 76 74 55 20

CPU 1.535 5.914 5.850 4.174 0.516

(1.2, 1.5) IT. 29 135 132 89 22

CPU 1.217 10.728 10.405 7.055 0.570

(0.02, 0.5) IT. 40 46 41 33 16

CPU 1.657 3.341 3.200 2.543 0.427

(0.89, 1.37) IT. 28 122 118 81 23

CPU 1.176 9.630 9.484 6.244 0.511

(0.93, 0.16) IT. 23 90 82 51 11

CPU 0.683 6.876 6.247 3.955 0.366

p = 128 (0.6, 0.8) IT. 29 409 409 264 29

CPU 10.815 143.385 136.824 87.628 9.664

(0.2, 1.3) IT. 36 275 274 181 29

CPU 12.666 90.708 90.462 58.849 9.81

(1.2, 1.5) IT. 28 561 560 365 30

CPU 10.513 192.700 190.131 121.083 10.008

(0.02, 0.5) IT. 40 111 109 79 27

CPU 11.349 35.946 35.448 25.692 9.296

(0.89, 1.37) IT. 28 499 496 324 30

CPU 11.506 172.840 168.213 106.899 10.084

(0.93, 0.16) IT. 25 384 380 244 26

CPU 9.621 129.547 126.919 82.676 8.714

increases. By utilizing the preconditioners stated above, the GMRES method converges quickly, and the proposed PESS
preconditioned GMRES method converges faster than the other five preconditioned GMRES methods. Furthermore, we
see that the PESS preconditioned GMRES method’s convergence behavior is not overly sensitive to the size of the problem.

Table 11 presents numerical experiments of Example 2 for several preconditioned GMRES methods with various
parameters 𝛼̂, ̂𝛽 and p = 32,128 with 𝜇 = 1.

6 CONCLUSIONS

In this work, we presented a parameterized extended shift-splitting (PESS) method and the PESS preconditioner for
solving (1) and theoretically discussed the convergence behavior of PESS method. Also, eigen properties of the corre-
sponding preconditioned matrix are investigated. The numerical results show the superiority of PESS method in terms of
IT and CPU times for solving saddle point problem compared to PGSS,MGSS,GMSS,PIU, and DPSS methods with the
appropriate choice of P,Q.
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