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MATHEMAT ICAL_BACKGROUND OF THE HYDRONAMIC WAVE PENETRATION MODEL

Introduction

The transformation of waves coming from the deep sea and approaching
the shore depends on the local bathymetry, the type of bottom and
the type of waves. The Hydronamic Wave Penetration Model consists
of a number of programs in order to calculate these transformations.
The main program of the model is the program REFDIF. The input for
this program is the bottom topography of the nearshore area and the
wave characteristics of one component of the wave climate. The
bottom=topography is entered as a depth-matrix. For each component
of the wave climate the program is runned and calculates along
wave-rays the various wave-height determining parameters.

These are parameters for refraction, shoaling, friction, percolation
and breaking. The results of these calculations are printed out
and stored on computer disc for further processing.

Seperate programs can plot these data as ray-diagrams.

In order to tackle the caustic problem a seperate program will be
runned to process the output-data according to the method of Bouws
A contour piotting progfam then transforms the results of the
Bouws-program to charts which can be interpreted visually.

In the next chapters of this reports the mathematical background

of these programs is discussed in more detail.




Refraction and shoaling

The phase-speed (celerity) of a small amplitude wave can be expressed
by:
9 9
c = E tanh (kh) (1)

This is the so-called dispersion formula for linear waves, in which
second order effects are neglected. k is the wave number (2m/L)

h is the local waterdepth and g the acceleration of gravity.
Consequently, the celerity has a varation with depth and the situation
is a natural one for the application of Snell's law, which relates

the bending of rays to the speed change:

in which ¢ is the angle between the wave-crest and the depth contour.
The index o indicates deep-water conditions.

The energy of a linear wave per unit of crest width is given by

E:: -é-ngz ‘ (3)

and is transported to the coast with the group-celerity:
c. = % (1 4+ 2kh ) e=nc (4)
g sinh 2Kkh

Consequently the rate at which energy is transported to the coast

is:

_ 12
P= 5 PgH ° (5)
If a section of crest of width s between two rays of orthogonals

is considered, the average rate of energy-transmission between the

orthogonals is:

Ps = g p gH




ft is assumed in classic refraction @heory that the energy contained
between a pair of orthogonals in a long-crested system will remain
between these orthogonals. On this assumption it is possible to
follow orthogonals and trace the changes in wave-height.

If the orthogonals spread, the wave height must become less,

since the same energy is spread over a larger area.

If they contract, the heights grow as more energy is concentrated
in less space. According to this assumption crossing of wave-rays
is not possible. However, when executing the actual computation,
wave-rays will cross frequently. The problem to determine the
wave—height in such crossings can be solved by applying the
Bouws-method, which will be discussed later. At any rate, if the

assumption is reasonable good, then:
g 20 - I 2
or.8ng pgs; 8 ngo Cgoso

which means that the wave-height in shoal water is the height in

deep water, multiplied by two factors:

(—) .

. ;99_% So. %
H=HO(~9.) (3—0

1
The factor (So/s)2= K is called the refraction coefficient; the

[

other factor (Cg /Cg) = K, Is called the shoaling coefficient.
o .
Elaborating the formula for the shoaling-coefficient, applying

relation (4), one gets:

=k 2kh ;%
Ks=(ko)* O+ ropam)



The shoaling coefficient is only a function of deep water data and
the local waterdepth. Unfortunately it is not possible to derivate
such a simple formula for the refraction coefficient, because the
refraction coefficient depends on the shape of the depth contours,

which are crossed.

In general Kr=(So/s)%, in which s is the distance between two
adjacent wave-rays. However, because in the computational process,
only one ray is computed at a time, it is not possible to
determine the distance directly. But a relation between the ray-

distance s and the curvature of the wave ray (u ) exists:

o1 3s
S n

in which is n the distance along the ray. Formula (11) allows
sequential calculation of the value of s along the ray, and

thus sequential calculation of Krf,

The value ofu can be calculated with the second order derivative
of the trajectory, which can be expressed as a product of the
celerity and the step-distance. The second order differential
equations are solved by numercial techniques.

For a more detailed derivation of the above mentioned formules can

be referred to Kinsman (1965).



Friction and percolation

The dissipation of energy by bottom friction and/or percolation
can bring about significant loss of wave energy with a possible
reduction of wave-height, particularly for high waves of long
period which are propagated into a shallow region of very gentle
bottom slope. The rapid attenuation of energy by bottom friction
for waves of long period can be explained qualitatively as due to the
fact that the long waves effectively ''feel' bottom sooner than the
short period waves and consequently are subject to frictional
dissipation over a greater distance. In a compiex wave group

this selctive attenuation could produce, under certain conditions,
a shift in the peak of the energy-spectrum towards lower periods
as the waves travel towards shore.

The method used in the Hydronamic Wave Penetration Model is the
method described by Bretschneider, although some more recent

coefficients for friction have been applied (Treloar & Abernethy,

1978).

Putnam & Johnson (1949) have shown for sinusoTdal waves of small

steepness that the amount of energy. 0, dissipated per unit area

f

at the bottom per unit time (averaged over a wavelength) is given

by:
o b2 3 fH
f3 T3 (sinh Elﬂ)3

L
f is a dimensionless parameter representing the friction factor

for the bottom.

Putnam (1949) has examined the oscillatory percolation of water
through a permeable sea bed, associated with sinusoidal waves

of small amplitude.



The amount of energy dissipated in this way is given by:

2 2
p = 19 ppH
PPV L (cosh )2

in which p is the permeability of the bottom and v is the

kinematic viscosity

For steady state conditions, the rate at which the total energy-

flux is altered per unit distance along one of the wave-rays is:

I (<%

- (Ecgs)= -(Df+Dp)s

Qo

For practical application a coefficient with the same properties
as the refraction and shoaling coefficients is required, thus

a coefficient K which allows the following equation

H=K.K .K_.H
g''r'o

Equation (15) can be entered in (12) and (13). Entering (12) and

(13) in (14) and some mathematics give

dK 2

o+ FKS 4 Fyke 0
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Equation (16) is put in a linearform by deviding by k2. The result is

-1
dK -1
an ok = F, (21)

In the special case of no bottom friction F1=0 and the solution for

K will be denoted by Kp in this case, is simply
n
K_=ex "den 22
el [ Fyn) (22)
o

where the condition Kp#1 at deep water position o has been used

to evaluate the constant of integration. This solution is an integrating
factor for the general equation (16), for if the latter equation is
muitiplied with Kps it is found upon collecting terms that

1

K )=F. K (23)

3 (K—
3n p 1 p

or:

n -1
K=K {1+ f F.K dn} (24)
PL N 1p
0
where the conditions K=1 at the deep water position o is again implied.

Because a seperate expression Kf for the friction-coefficient is

required, equation (24) is devidad by Kp, and thus:

n -1
KF{%! F1K-pdn} ‘ (25)

During the computational process the values of F1 and F2 can be
calculated along the wave ray, and consequently the integrations in
eq. (22) and (25) can be carried. out along the ray, giving percolation

and friction coefficients in any point.



Breaking

At a certain relation between wave-height and water-depth the

wave will break. This relation is defined by
il
TR (26)

Several investigations do not agree upon the exact relation
between waterdepth and breakerheight. For a solitay wave y=0.78,
as can be derived theoretically. A linear small-amplitude wave
cannot break theoretically. Mostly a value of approx. 0.8 is
assumed for monochromatic waves. For Rayleigh-distiibuted waves
Bi jker & Svasek (1969) found a y of 0.5 for the breakerpoint
of the significant wave. Gerritsen (1979) found for the H e
of waves breaking on a reef a value of 0.65,

Recent studies indicate that Yy may be a function of the

Iribarren-number

fr= tan a /‘/H/Lo (27)

in which o is the bottom slope., Until final results area available
the choosen value of y can be entered in the program as an input

variable

During the breaking process a part of the wave energy is dissipated.
The remaining energy will continue its way to the shore. Until today
only a few research has been made on this phenomenon. It is known
that the period may change somewhat by this process, but no exact
quantities are available. In the model is assumed that the period

is not changed. The wave-height is decreased until a value of ¢
times the original wave-height, Thus, if a wave breaks q times the

wave~height will be (neglecting refraction, friction etc.)



The problem of caustics

The equations describing refraction of water waves are based on the
geometrical-optics approximation, in which waves rays are calculated
independently of each other: Forithis reason: the.model:reacts
oversensitively to small variations in depths, as well in incident
wave frequency and direction. This leads to an uncertainty in the
interpretation of the location of individual rays, particularly in
cases of large travel distances through regions with smooth but
irregular bottom topography. An alternative formulation is to say
that this uncertainty reduces the spatial resolution.

Bouws & Battjes have developed a method to overcome this problem

by considering the wave rays as realisations of a partially random
process, The wave energy within each square in the studied area

is estimated from the propagation time of wave energy along the
rays crossing the square. The size of the square determines the -
spatial resolution.

This viewpoint is worked out by Bouws & Battjes quantitatively

by adopting a Monte -Carlo method, in which a number of dense

sets of rays is generated, each for a specific initial T-¢-combination

On deep water the rays have a uniform spacing Sy Thus, the total
incident wave energy, which is in reality continuous along the
incident wave front, is discretized into equal lumps 6P0= EOSO.

Each lump is to associated with a ray. |In other words, each ray

is considered as an energycarrier with a total power 6PO The local
energy transport velocity is Cg. The energy density along the ray
(energy per unit length of ray) is therefore equal to GPO/cg.

A length of ray between n=n and n=n, then represents an energy

equal to:



10.

The latter integral is the time it takes a particle of energy to

travel the given path with speed Cg' Now, the total wave energy in
a square is estimated as:
m o
o™ %0 L f ch ! dn (30)
n

.
The energy in a deep-water square can be calculated in the same way

and is called Esq . In this way the refraction-coefficient for every
square becomes:

Esq .
G =\/: (31)
S

9%
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Actual Computation

The area to be studied is devided into a large number of squares.

A normal ray-refraction calculation is carried out. Along the

wave rays the values of Kp’ Kf and €9 are calculated in discrete
points. After termination of the ray calculation for every square
the value of ESq is calculated, using the data from the former
program and the geometry of the wave rays.

Then, in every square the value of KB is calculated. With the

use of this value the wave height in every square can be determined.
Finally the wave-heights are presented as wave-height charts for

a given H~T-¢ combination,

A combination of all the wave~height chart allows to determine the

(directional) spectrum in any point of the studied area.
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wave celerity

wave group celerity

energy dissipation due to friction
energy dissipation due to percolation
wave energy

friction factor

acceleration of gravity

wave height

water-depth

wave number (2m%/L)

refraction coefficient

shoaling coefficient

friction coefficient

percolation coefficient
refraction/shoaling coeff acc. Bouws
wave length

ratio group velocity to wave velocity
cobdinate along a wave ray

wave power

permeability

number of times a wave is broken
distance between wave rays

wave period

bottom slope

breaker-index

energy dissipation factor at breaking
curvature of a ray

kinematic viscosity

density of sea water

direction of waves
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