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Abstract

In software defined networking a controller can
control where the data-plane routes packets to.
Programmable data-planes make networks even
more flexible, as the algorithms on the data-
plane can be updated. The P4 programming
language can be used to program data-planes,
and the P4Runtime data-plane API can be
used for controller to data-plane communica-
tion. The possibility of man-in-the-middle at-
tacks when using P4Runtime was investigated.
Man-in-the-middle attacks are possible either
between the controller and data-plane, or be-
tween two hosts on the network. A virtual net-
work in Mininet was used to try and demon-
strate the difference between secure and inse-
cure channels in these two scenarios. A mali-
cious controller can take control of a switch in
order to use it for man-in-the-middle attacks
when the P4Runtime channel is insecure, but
not in a secure channel. The man-in-the-middle
attack between the controller and switch was
not achieved due to the switches in Mininet
only running on localhost and not being able
to run the controller in-band. It was concluded
that it is indeed recommended to only use se-
cure P4Runtime channels, and possible exten-
sions to this research could be to attempt the
same experiment using a different setup or to
research the effects that a successful man-in-
the-middle attack can have.

1 Introduction
Programmable data-planes are not limited to vendor-
provided algorithms because they can be reprogrammed.
P4 (Programming Protocol-Independent Packet Proces-
sors) [1] is a programming language that is used to
program data-planes and create custom algorithms for
them. Data-plane APIs let the controller directly con-
trol the data-plane during runtime. For P4 this means
controlling Match Action Tables (MATs), externs, and
packet I/O between the control plane and the P4 target.
MATs map packet headers to actions and externs are
methods not included in the core P4 functionality [2].

P4Runtime is a data-plane API that lets a controller
and data-plane communicate using RPCs (Remote Pro-
cedure Calls) [2]. The P4 target that hosts the data-
plane is required to implement a gRPC server, and
the controller a gRPC client. P4Runtime uses protocol
buffers (protobuf) [3], a format for serializing structured
data, to format messages sent through the gRPC chan-
nel. P4Runtime can be used to either control a data-
plane locally, if the controller is on the same machine as
the P4 target, or remotely [4].

When the controller is running remotely there is a
larger attack surface and a higher danger that the
P4Runtime communication channel could be corrupted.

If the channel of communication between the control-
plane and data-plane is compromised then so are the
switches that the controller controls. One attack that
P4Runtime is vulnerable to is the man-in-the-middle at-
tack, as mentioned by Agape et al. [5], who look at
the attack surface of networks using P4 switches and
P4Runtime on the controller. The section related to
P4Runtime were taken as a starting point for looks at
man-in-the-middle attacks between the P4Runtime en-
gine on the P4 target and the client running on the con-
troller in greater detail.

The motivation for this work is that while there is re-
search on related topics, there is a lack on P4Runtime
and man-in-the-middle attacks combined. Related re-
search covers how P4 can be used to improve network
security [6] and protecting the links between P4 switches
from man-in-the-middle attacks [7]. Research on the
communication between control and data-planes in SDN
includes works such as Brooks and Yang’s paper on man-
in-the-middle attacks on the OpenDayLight controller [8]
and Network Topology Poisoning Attacks in OpenFlow
controllers that can pave the way for man-in-the-middle
attacks [9]. As far as the author is aware, there is noth-
ing specifically on the security of the P4Runtime com-
munication channel against man-in-the-middle attacks.
Therefore the communication safety of P4Runtime with
regard to man-in-the-middle attacks merits investiga-
tion.

The main research question of this work is: Can
the communication channel between the client and the
P4Runtime engine be corrupted? To answer this ques-
tion, how the P4Runtime engine and client communicate
and what attacks can affect P4Runtime were considered,
with a focus on man-in-the-middle attacks.

The main conclusions of this research are that as is
mentioned in the P4Runtime Specification [4] and the
work of Agape et al. [5], the communication channel
is vulnerable if an insecure gRPC connection is used.
In the case of an insecure connection an attacker can
eavesdrop on the communication between the controller
and data-plane or take control of that data-plane.

The paper answers the research question in the follow-
ing way. Section 2 describes the methodology of the re-
search and Section 3 discusses the security of P4Runtime
in more detail. Section 4 describes the experimental
setup and the results. A section on responsible research
is discussed in Section 5. Section 6 discusses the results
while Section 7 handles the conclusions and recommen-
dations for future work on the subject.

2 Methodology
The methodology described in this section gives an
overview of how the research for this paper was con-
ducted and the plans for performing a man-in-the-middle
attack between a P4Runtime controller and switch. For
a more in depth description of the experiment performed
see Section 4 Experimental Setup and Results.

In order to answer the research question, how the



P4Runtime engine and client communicate was inves-
tigated by reading the P4Runtime [4], gRPC [10], and
protobuf [11] documentation. As mentioned in Section
1 Introduction, P4Runtime uses gRPC channels sending
messages in protobuf format.

The existing research involving P4Runtime or man-in-
the-middle attacks mentioned in the Introduction (Sec-
tion 1) was read to identify where further research should
continue. The work of Agape et al. [5] was taken as
a starting point as it describes man-in-the-middle at-
tacks and channel flooding as the main vulnerabilities of
P4Runtime.

To investigate the security of the P4Runtime channel
with regard to man-in-the-middle attacks, the attack was
attempted in practice on both an insecure P4Runtime
channel and one secured using TLS (Transport Layer Se-
curity), which is considered best practices [12]. Mininet,
a network emulator that can create virtual networks [13],
was used to simulate a network and the bmv2 model,
a reference P4 software switch [14], was used to simu-
late the P4 switches in that network. Using Wireshark
[15], the contents of the packets being sent could be in-
spected. Bettercap [16], a tool for man-in-the-middle
attacks, was selected to perform the man-in-the-middle
attacks because it includes tools for ARP poisoning and
other man-in-the-middle approaches. ARP poisoning,
in which spoofed Address Resolution Protocol (ARP)
messages can be used to facilitate man-in-the-middle at-
tacks, can affect SDN networks and therefore various
mitigation strategies have been discussed [17]. Seeing as
research has been done on adding ARP to P4 switches
[18], it is plausible that switches using P4Runtime to
communicate with controllers would be vulnerable to
ARP poisoning.

Two different possible scenarios for man-in-the-middle
attacks using P4Runtime were considered. The first
scenario is when a malicious entity gets in the middle
of the P4Runtime communication between the original
controller and the switch and impersonates that con-
troller to send commands. The second scenario is when
a malicious controller takes control of the data-plane and
makes that switch the man-in-the-middle, targeting the
traffic that passes through it. In both cases the attacker
gains control of a switch and can do almost anything on
it, including updating the rules on the switch to inspect
the messages or change the routing tables.

3 Man-in-the-Middle Attacks and
P4Runtime

In P4Runtime multiple controllers can be connected to
one P4 target, however only one can have write ac-
cess to the entities on the target. This controller is
the primary controller. All the other controllers can
only have read access to the entities on the P4 tar-
get [4]. Thus, being the primary controller means hav-
ing complete control over the switch and being able
to modify its functionality. The primary controller
can load a new P4 program onto a P4 target by in-

stalling a new ForwardingPipelineConfig file using the
SetForwardingPipelingConfig RPC.

As stated in the P4Runtime specification [4], the data-
plane identifies controllers based on a 3-tuple composed
of a device_id, a role, and an election_id. The
device_id identifies the P4 target and the role deter-
mines which entities on the data-plane the controller has
access to, the default being access to everything. The
controller with the highest election_id is the primary
controller.

The primary controller is determined through the pro-
cess of arbitration. When a new controller wants to
connect it sends a MasterArbitrationUpdate request,
which contains the device_id, role, and election_id.
If the new controller has a higher election_id than the
previous primary controller then it will become the pri-
mary controller.

P4Runtime trusts the messages that it receives
through its gRPC client [4]. This means that if no au-
thentication mechanism is enabled in gRPC, the switch
will accept any connection request as long as no du-
plicate device_id, role, election_id combination is
used. In this way a malicious controller can provide
an election_id higher than the previously highest
recorded one and become the new primary controller.

In a network of P4 switches and controllers running
P4Runtime, there are two main ways for man-in-the-
middle attacks to be set up. As described in Section 2
Methodology, the man-in-the-middle can be between the
controller and switch, or between hosts on the network.

In the first scenario, there is a malicious entity moni-
toring the communication channel between the controller
and the switch and it can perform man-in-the-middle at-
tacks.

In an insecure connection where the messages are not
encrypted, it is easy for the entity in the middle to read
or modify the messages, or impersonate the controller to
give commands to the data-plane. To impersonate the
controller, the attacker needs to obtain the device_id,
role, and election_id that the controller is using to
identify itself to the data-plane.

In a secure channel on the other hand, it is more diffi-
cult for a man-in-the-middle attack to take place. gRPC
supports multiple authentication mechanisms, such as
mutual TLS [4]. If the communication is encrypted
then an attacker cannot read the device_id, role, and
election_id from the messages. While the attacker
may be able to guess these, if the P4 target is authen-
ticating connection requests from controllers then the
attacker will not be able to connect.

In the second scenario a malicious controller can es-
tablish itself as the primary controller to make the switch
the man-in-the-middle between different hosts on the
network.

If the P4Runtime communication channel between the
controller and the switch is insecure, a malicious con-
troller can easily become the primary one. The only
things the malicious controller needs to know to estab-
lish a connection are the address and port to connect to,



and the device_id that identifies the data-plane that it
wants to control, which can be obtained by sniffing the
unencrypted traffic.

When the communication channel is secure, which is
the most likely, a malicious controller cannot simply con-
nect to a data plane because only known controllers are
allowed to connect. Using an authentication mechanism
between the controller and data-plane prevents malicious
controllers from becoming the primary controller.

4 Experimental Setup and Results
As described in Section 2 Methodology, the P4Runtime
communication channel was studied in a virtual network
in Mininet using bmv2 switches on an Ubuntu 18.04.1
virtual machine. The starting point for the experi-
mentation was the P4Runtime tutorial exercise of the
p4lang repository on GitHub [19]. This exercise uses a
topology of three switches, depicted as circles labeled
s1, s2, and s3, connected in a triangle. Each switch is
connected to one host, depicted as rectangles labeled
h1, h2, and h3, as seen below in Figure 1. Because
the topology was already set up to use P4Runtime for
the controller-switch communication, it was used for
the experimental setup as well, since only one switch,
two hosts, and one controller would be needed for the
scenarios described in the methodology. The p4lang
exercise uses an insecure channel by default. To use
a secure channel a gRPC server using a secure port
needs to be created while initializing the switches, in
the p4runtime_switch.py file in the utils.

s1s2

s3

h1h2

h3

Figure 1: Topology of network

The hosts are assigned their own IP addresses while
the switches run on localhost. In the tutorial exercise
the controller is run from localhost as well. Attempts
were made to run the controller with a different IP ad-
dress from the switches by either running it as an in-
band controller on one of the hosts or as a remote con-
troller. However, due to difficulties with achieving this in
Mininet and time constraints this was not successful and
all experiments were done running the controllers from
localhost, using the topology pictured below in Figure 2.

s1s2

s3

h1h2

h3c1

c2
Figure 2: Topology of network with identity competing
controllers

For the scenario where a malicious controller be-
comes the primary controller when the data-plane
accepts insecure connections, only the election_id has
to be updated, provided the device_id is known, as
well as the address and port number of the P4Runtime
Engine on the data-plane. The default role can be used
to request access to everything on the data plane.

To create the malicious controller, the default con-
troller in the example was altered to use a modi-
fied version of the utils provided. All methods that
make use of the election_id were adjusted to use
a higher value for the election_id instead. The
value 900000 was chosen arbitrarily, as the exam-
ple controller used the value 1. The methods that
had to be modified to use the higher election_id
where MasterArbitrationUpdate used for selecting
the primary controller, SetForwardingPipelineConfig
used to load a new P4 program on the switch,
WriteTableEntry used to update the Match Action Ta-
ble, and WritePREEntry used for updating the packet
replication engine.

While the original controller was running on localhost
in one terminal, the modified controller was run from an-
other. This resulted in the modified controller becoming
the primary controller. The original controller could not
regain control of the switch afterwards because it had a
lower election_id. This demonstrates that when the
data-plane accepts insecure communication channels, a
malicious controller can easily become the primary con-
troller by using a very high election_id, and would
then be able to control the data plane however it wants,
including for performing man-in-the-middle attacks for
traffic passing through that switch.

To perform man-in-the-middle attacks between the
controller and a switch, the same setup using the p4lang
tutorial example was used. Using Wireshark, the traffic
on the virtual network was monitored to detect which
ports were being used for the communication between
the controller and the switch. While the original idea
was to perform a man-in-the-middle attack using bet-
tercap 2.32.0 with the switches running on localhost and
the controller running on a host in order to have a dif-
ferent IP address, this was not achieved.

For the man-in-the-middle attack between the con-
troller and the switch, the topology shown on the
following page in Figure 3 was supposed to be used.
The malicious entity performing the man-in-the-middle
attack between switch s3 and host h3 containing the
controller is depicted as h4.
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Figure 3: Topology of network for man-in-the-middle
attack between controller and switch

This setup was not achieved because the python script
for the controller could not be run on a host in the
Mininet network and then connect to the switches run-
ning on localhost. Instead bettercap was run on local-
host to sniff the messages sent from the controller on
localhost to the switches. The performance of a man-in-
the-middle attack was not successful because the topol-
ogy used did not use ARP, making an ARP poisoning at-
tack impossible. In the example controller the addresses
of the switches were hardcoded.

5 Responsible Research
Researching the security of the P4Runtime communica-
tion channel is important for the security of networks
in which the controllers use P4Runtime to communicate
with the switches. The research was performed in an
ethical and reproducible way.

The main ethical concerns related to looking into the
security of communication channels is how any vulner-
abilities that are discovered are handled. It is not eth-
ical to simply disclose vulnerabilities to the public or
sell them to someone other than the maintainer because
this puts any systems using that software at risk. If
any vulnerability was found it would have been reported
to the P4.org API Working Group that works on the
P4Runtime specification so that it could be addressed.
However, no new vulnerability was found and therefore
this ethical dilemma never arose.

The methods used in this research are reproducible.
Section 2 describes the methodology used and Section
4 gives a more detailed explanation of the experimental
setup and the exact steps taken in such a way that the
results can be reproduced.

6 Discussion
The main results were that in the case of an insecure
P4Runtime communication channel a malicious con-
troller can become the primary controller and seize con-
trol of a switch, as was described in Section 4 Experimen-
tal Setup and Results. This was the expected result after
reading the P4Runtime specification, and reemphasizes
the statement that securing the connection using TLS
is best practice [12] and prevents man-in-the-middle at-
tacks [5].

To answer the research question, the communica-
tion channel between the P4Runtime engine and a
P4Runtime client can be corrupted, especially when the

communication channel is insecure. This agrees with the
work of Martinez-Yelmo et al. [18], who advocates keep-
ing the control-plane close to the data-plane to decrease
the attack surface.

To reflect upon the progress made, it was unfortu-
nate that only the scenario in which a malicious con-
troller takes control of a switch to use that switch as
the man-in-the-middle between two hosts communicat-
ing over that switch could be performed. In order to
perform a man-in-the-middle attack between a controller
and a switch the communication between them would
have to be rerouted through a malicious entity, and do-
ing this between two different ports on localhost was not
possible within the time frame. This is because much
time and effort was put into trying to run the controller
on a host in Mininet.

The conclusion that some form of authentication be-
tween the controller and switch should take place agrees
with what is stated in the P4Runtime Specification [4]
and related literature [5], [12].

7 Conclusions and Future Work
To answer the research question of if the communication
channel between the P4Runtime Engine and the client
can potentially be corrupted, the sub-questions of how
the P4Runtime Engine and client communicate, what at-
tacks are possible, and how they can be executed and/or
prevented were considered.

Man-in-the-middle attacks and channel flooding are
the main attacks for P4Runtime, according to Agape et
al. [5]. The work of Agape et al. was extended to demon-
strate how to seize control of a switch using an insecure
gRPC connection to become the primary controller, al-
lowing for that switch to be used in man-in-the-middle
attacks on the traffic passing through that switch.

A malicious controller can take control of a switch by
sending a very high election_id in its requests to the
data-plane. When the data-plane uses insecure connec-
tions the malicious controller only needs to know the
address of the data-plane, the port used by the gRPC
client, and the device_id of the target. With secure
connections this is more difficult because if mutual TLS
is used then the controller and switch authenticate each
other and the switch will not accept a connection from
a different controller.

The second scenario for man-in-the-middle attacks us-
ing the P4Runtime communication channel is when an
entity between the controller and switch performs the
attack. The planning for the experiment was to run the
controller in-band on one of the hosts in the Mininet
network, however this was not successful, and may not
even be possible. An improvement to the setup may be
to use a different program other than Mininet to simu-
late the network or to use a different controller, such as
the ONOS controller [20], which supports P4Runtime,
instead of the lightweight python script that was used.

Further research to build upon the work done could
be to investigate the effects of man-in-the-middle attacks



by a compromised switch on the network and detection
strategies for this.

Another possibility for future research could be to look
at the possible use cases of P4Runtime controllers in real
networks, because the network architecture has an effect
on the viability of man-in-the-middle attacks. In the
case of a network where a controller uses ARP to relate
the IP address of a switch to its MAC address, ARP
poisoning could be used to set up a man-in-the-middle
attack. In a network where ARP is not used and the
controller connects to a switch through a fixed link, this
approach is not possible.
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