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Abstract

As human-agent collaboration grows increasingly prevalent, it is crucial to under-
stand and enhance the interaction between humans and AI systems. Explainable AI is
fundamental to this interaction, which involves agents conveying essential information
to humans for decision-making. This paper investigates how adaptive explanations
affect human supervision and trust in robotic systems. The study included 40 partici-
pants and compared baseline (non-adaptive) explanations with adaptive explanations.
The results showed no significant difference between the two types of explanations;
making explanations more abstract did not necessarily improve human supervision or
increase trust in robots.

1 Introduction
The study of Human-Agent interaction is a rapidly growing field that offers numerous oppor-
tunities for creating agents that behave socially and communicate efficiently with humans
[20]. Additionally, agents are becoming increasingly autonomous and intelligent, enabling
them to perform tasks with minimal human supervision. However, humans should handle
some sensitive circumstances exclusively, significantly when moral decisions in risky situa-
tions could affect people’s safety [24]. In such cases, humans should intervene and assume
responsibility for sensitive decisions while allowing the agent to handle decisions that are
considered very safe independently [25].

These agents’ rising complexity and capacities raise essential questions about their inte-
gration into environments where human safety and ethical considerations are important [21].
As agents become more embedded in dynamic environments, understanding their decision-
making processes and ensuring they align with human values and ethical standards becomes
essential. This intersection of advanced technology and ethical responsibility emphasizes
the need for clear and effective communication between humans and agents, especially in
high-stakes scenarios [2].

This research focuses on Human-Agent interaction within a firefighting context, partic-
ularly where moral decisions are involved. Depending on its predicted moral sensitivity,
the agent must decide whether to allocate decision-making to itself or the human super-
visor. For the human-agent team to succeed in this high-stakes environment, the clarity
and personalization of agent explanations are crucial [3]. Furthermore, transparent and per-
sonalized explanations ensure that human supervisors understand the rationale behind the
agent’s actions and decisions, essential for maintaining trust and effective collaboration [13].
When human supervisors can comprehend the agent’s decision-making process, especially in
morally sensitive situations, they are better equipped to intervene appropriately and make
informed decisions [3]. Hence, this paper aims to answer the question: "How do adaptive
explanations that gradually become more abstract affect human supervision and trust in the
robot?". To explore this further, the research addresses several subquestions: how should
designing these explanations be approached, how can these explanations be generated and
implemented in the agent, and how do these explanations affect the dependent variables,
such as human supervision and trust?
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2 Background research

2.1 Human-agent teamwork
Developments in AI make it possible for agents to work together with humans in a human-
agent team (HAT) to accomplish shared objectives. However, delicate decision-making is
usually considered a human competency [27]. As a result, when a human-agent team is
involved in moral decision-making, the human takes responsibility for ensuring that ethical
principles are respected and maintaining accountability if the team fails. For humans to
collaborate with other agents, they must have significant control over them. Regardless,
research has shown that human-agent interaction is only effective when a team environment
values and supports the growth of human responsibility for the agent’s actions and the
group’s choices [25]. In designing the team system, it is important to include explanations
that match the team roles and the human cognitive state in how agents’ actions and decisions
are communicated and managed.

Furthermore, agents can perform various functions in human-agent interactions, includ-
ing helping individuals complete tasks in collaborative settings and working independently
to complete tasks [19]. For example, in environments such as firefighting, agents can assist
human firefighters by entering dangerous areas to gather data, identify hazards, and per-
form initial safety measures, thereby reducing risk to human life, specifically the firefighters.
Besides, agents can deliver supplies in natural disaster relief scenarios and assist in search
and rescue operations, offering support where human presence is limited or dangerous [19].
Similarly, human-agent collaboration is critical in these settings, as it emphasizes designing
agents as teammates rather than tools, highlighting the necessity of understanding behav-
iors that foster successful collaboration [18]. This approach ensures that agents enhance
human-agent teams’ efficiency, safety, and effectiveness across various applications.

Additionally, trust is a significant requirement for human-agent teams to be successful
[11]. Trust in human-agent teams is developed through a history of successful interactions
[28]. Developers of agent systems need to account for these social elements to ensure effec-
tive and fair teamwork. By addressing these factors, teams can function more effectively,
leveraging the strengths of both humans and agents. Moreover, effective human-agent col-
laboration requires understanding the interdependencies in joint activities [11]. Ensuring all
team members, including agents, know these interdependencies helps maintain transparency
and fairness in task execution and decision-making.

Besides trust and understanding interdependencies, the configuration of human-agent
teams plays a crucial role in optimizing their performance. One practical approach to
configuring these teams is through dynamic task allocation. Dynamic task allocation involves
continuously assessing and redistributing tasks among team members, including humans
and agents, based on their current capabilities, workload, and situational demands [6]. For
instance, capability-based task allocation involves assigning tasks based on humans’ and
robots’ specific strengths and weaknesses [22]. This method has been validated in practical
settings, demonstrating its effectiveness in improving work quality and efficiency by matching
tasks to the most suitable resource.

Moreover, a team’s efficiency can be significantly improved by dynamically reallocating
tasks based on current conditions and cognitive load [7]. This approach allows for adap-
tive automation, where tasks are assigned to agents or humans according to their current
capabilities and workload. Such flexibility is particularly beneficial in high-demand envi-
ronments like disaster response, where the situation can change rapidly. In dynamic task
allocation within human-agent teams, effective agent explanations are also recognized as a
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crucial element for optimal performance and trust [14]. Explanations can also effectively
improve human teammates’ understanding of task allocation decisions by their agent team-
mates. Dynamic task allocation ensures the team can respond to these changes effectively,
maintaining high performance and reducing the cognitive burden on human team members
[7].

2.2 Explainable AI
Explaining decisions is integral to human communication, understanding, and learning [8].
XAI refers to methods and techniques in artificial intelligence that make the outputs of
AI systems understandable to humans. Research highlights the importance of stakeholders
selecting appropriate XAI approaches and tools based on their specific needs and the char-
acteristics of the AI applications they are developing [5]. XAI is crucial when understanding
the rationale behind an AI decision, such as in medical diagnosis or any industry that signif-
icantly influences human lives, like firefighting. If the behavior of a respective agent is not
explained, the human may reach an explanation that does not necessarily reflect the AI’s
actual internal state. This can lead to self-deception and lower the quality of the interaction
[1]. This could sometimes lead to dangerous situations, putting the human’s safety at risk.

Moreover, Doran et al. (2017) explore different perspectives on XAI across various re-
search fields and identify four types of XAI systems: opaque, interpretable, comprehensible,
and more advanced type. It draws attention to the variations in the methods and definitions
of explainability used by different AI research communities [4]. The authors argue that the
current understandable and interpretable models must be revised to offer comprehensive
explanations. To create AI systems that can be easily explained, Doran et al. (2017) em-
phasize the need for ongoing study in both interpretable and understandable systems. They
also highlight the importance of integrating logic into XAI.

In addition, explainability in AI is essential for decision-makers to justify the system’s
outputs and processes to stakeholders, including executives, shareholders, and regulators
[10]. The need for explainable AI systems grows as AI models become more complex and
their decision-making capabilities more autonomous. Hoffman et al. (2019) emphasize that
a good explanation should be clear, precise, and satisfying to the user. Trust in AI systems
is complex, involving aspects of justified trust, unjustified trust, and mistrust. The paper
explores various scales and methods to measure and maintain appropriate levels of trust,
ensuring that users can confidently rely on AI systems while being aware of their limitations.

2.3 Adaptive explanations
Adaptive explanation refers to an AI system’s ability to tailor its explanations based on
the user’s level of knowledge and information needs [23]. In the context of AI, this means
the system can assess the user’s familiarity with certain concepts or tools and adjust its
dialogue accordingly to provide more or less detail as needed. Torrey et al. (2006) found
that adaptive explanations meant that a beginner would receive detailed explanations and
background information, while an expert would receive concise, technical information. This
approach aimed to improve communication efficiency, user satisfaction, and task perfor-
mance by ensuring that explanations were appropriately detailed for the user’s expertise
level.

Additionally, Han et al. (2020) recognize that preferences for robot explanations are
inherently subjective and shaped by cultural and individual differences. They propose that
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adaptive explanations, which are customized to an individual’s preferences and cultural
background, represent a critical area for future research. Although the study offers insights
into general preferences for robot explanations, it emphasizes the necessity for further re-
search to investigate how these explanations can be tailored to accommodate the diverse
needs of users, thereby improving the effectiveness of human-robot interactions [9].

Similarly, Verhagen et al. (2023) explored adaptive explanations but focused on differ-
ent dimensions of personalization, such as user trust, workload, and performance [26]. It
demonstrates that personalized explanations can significantly enhance user satisfaction and
trust in the agent. However, it also finds that explanations adapted to performance can
sometimes lower task performance due to the extra time required to process detailed infor-
mation. This research emphasizes the importance of developing robust user models to tailor
explanations according to individual user characteristics effectively. While the studies men-
tioned above underline the benefits of personalization in explanations, they also highlight
different aspects and challenges, underscoring the need to design and implement adaptive
strategies to optimize human-agent interaction carefully. Although there are some studies
on adaptive explanations, it is still unknown how adaptive explanations influence human
trust and supervision during dynamic task allocation.

3 Methods

3.1 Design
We conducted an experiment to compare an agent providing progressively abstract explana-
tions against an agent offering non-adaptive explanations (the baseline). Using a between-
subjects design, participants were exposed to the adaptive or baseline/non-adaptive ex-
planations in a simulated firefighting scenario. The study aimed to assess how adaptive
explanations influenced human supervision and trust in the robotic agent. By adjusting
explanations based on human cognitive sensitivity (detailed in Section 3.7), we evaluated
whether adaptive explanations resulted in higher trust and explanation satisfaction com-
pared to non-adaptive explanations.

3.2 Participants
We recruited 40 university students aged 18 to 30, comprising 19 females and 21 males. Most
participants (35) were between 18 and 23 years old, while the remaining five were between
24 and 35. Regarding educational backgrounds, one participant had not completed high
school, 12 had a high school diploma as their highest level of education, 16 were pursuing
a Bachelor’s degree but had not yet graduated, one held an associate degree, eight had
completed a Bachelor’s degree, and two completed their Master’s degree. In terms of gaming
experience, 10 participants had no gaming experience, eight had little experience, seven had
a moderate amount of experience, five had considerable experience, and 10 were highly
experienced gamers. All participants signed an informed consent form prior to participating
in the study.

We tried to balance age, gender, education, and gaming experience equally between the
baseline/non-adaptive and the adaptive agent. The baseline/non-adaptive and adaptive
agent explanation conditions were homogeneous with respect to gender (χ2(1) = 0, p = 1).
Moreover, we believe these variables might have an effect on the independent variables,
so we controlled for the following variables: age, gender, education, gaming experience,
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risk propensity, trust propensity, and utilitarianism. Results showed that for the control
variables: age (W = 170, p = 0.1637), education (W = 143, p = 0.1075), gaming experi-
ence (W = 231.5, p = 0.3906), risk propensity (W = 221.5, p = 0.5694), trust propensity
(t(38) = −0.17524, p = 0.8618), and utilitarianism (W = 240.5, p = 0.2786), there were no
significant differences between the conditions. Therefore, we could exclude their influence
on our measures and proceed with the analyses.

3.3 Hardware and Software
To conduct this experiment, we used a laptop and the Human-Agent Teaming Rapid Ex-
perimentation (MATRX) software, a Python package tailored for human-agent teaming re-
search (https://matrx-software.com/). The laptop facilitated the launch and access to our
two-dimensional grid world built with MATRX. Subjective measures were gathered using
Qualtrics, and MATRX automatically recorded objective measures.

3.4 Environment
A dynamic task allocation system was created using MATRX to collaborate between a
semi-autonomous firefighting robot and a human supervisor in a simulated firefighting en-
vironment.

• Environment: The 2D environment simulated various firefighting scenarios, includ-
ing situations with 11 victims in need of rescue. It was designed to mirror realistic
firefighting conditions, considering factors like the number of victims and how long the
fire had been burning.

• Task: The main task for both the agent and the human supervisor was to search for
and rescue victims in this simulated setting. The robot was programmed to predict
how dangerous a situation was based on certain features. Depending on the level of
danger it predicted, the robot would either make decisions on its own or let the human
supervisor decide.

• Agent: The virtual firefighting robot named Brutus evaluates the danger by looking
at factors such as the number of victims and the duration of the fire. Based on
these evaluations, it determines whether to act on its own or to involve the human
supervisor. Crucially, the human supervisor can always step in and override the robot’s
decisions if necessary. The robot provides explanations for its decisions, detailing how
each feature influenced its assessment of danger. These explanations aim to help the
human supervisor decide when to intervene or when to trust Brutus’s judgment.

3.5 Task
The objective of the task was to locate injured victims in various areas and transport them
to the drop zone within a 15-minute timeframe. Specifically, only firefighters could carry
critically injured victims, while the agent could individually evacuate mildly injured victims.
Additionally, any fallen objects could only be removed by the agent. Four decision-making
situations could occur during the task: extinguish or evacuate when the robot finds mildly
injured victims in burning areas; send in firefighters to rescue critically injured victims or not;
send in firefighters to help locate the fire source or not; and continue or switch deployment
tactics.
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In the simulated firefighting scenario, six situational features are crucial for decision-
making. The first feature, resistance to collapse, estimates how long the building can with-
stand the fire before collapsing, with values counting down in minutes until reaching zero.
Secondly, the temperature indicates the internal building temperature relative to a safety
threshold, with values being lower (<), close to (<=), or higher (>). Thirdly, the total
number of victims in the building is known (11 victims). Fourthly, the speed of smoke
spread describes how quickly smoke disseminates, with possible values being slow, normal,
or fast, initially unknown, and updated upon detection. Moreover, the fire source location
feature denotes whether the fire source has been located, with values as unknown (?) or
found. Lastly, the distance between the victim and the fire source measures the proximity
from a victim’s location to the fire source, categorized as small or large, initially unknown
until critically injured victims are found.

These features guide the robot and human collaborators in making informed decisions
regarding safety, urgency, and resource allocation during rescue operations. Additionally,
four critical decision-making situations could occur, such as the choice between offensive
and defensive deployment tactics. Offensive deployment focuses on rescuing victims, while
defensive deployment prioritizes extinguishing fires. The room’s temperature was closely
monitored to simulate a real-life scenario with fires. If the fires continued to spread and
the agent and humans did not collaborate to extinguish them, the robot could not send in
a firefighter to carry the critically injured victim to the safe drop zone. This temperature
threshold was an essential consideration in the task. Moreover, there was a threshold of 4.1
for predicted moral sensitivity. If the predicted moral sensitivity exceeded this threshold,
the agent would ask the human to step in and decide. Otherwise, the agent would make the
decision independently. The seven features contributing to the predicted sensitivity were
baseline moral sensitivity, the presence of fire, urgency, the number of safe victims, the speed
of decision-making, the number of firefighters, and the type of tactic used. Additionally, there
was an option to allocate the decision-making responsibility to the robot or the human.

3.6 Agent Types
This experiment tested two types of agents: the baseline/non-adaptive agent and the adap-
tive agent. Both agents performed the same tasks and were configured identically but
differed in how they communicated with the human teammate. The baseline agent used
a standard communication style that remained constant over time. For each of the four
decision-making situations, it provided the same non-adaptive explanations to the human
teammate (see Figure 1).

Unlike the baseline agent, the adaptive agent was not bound by a fixed communication
style. Instead, it was designed to adjust its communication style dynamically based on the
level of collaboration with the human teammate. As the agent and human teammate worked
together, the agent’s explanations and reasoning became increasingly abstract, reflecting a
deeper level of collaboration. Both agents communicated with the human teammate using
the chat box (see Figure 1).

Regarding behavior, both agents moved to the closest unexplored area and kept track
of all explored areas. They were responsible for finding and rescuing victims, ensuring that
any located victims were promptly assisted. Both agents also maintained detailed records
of all explored areas, found victims, rescued victims, removed debris, extinguished fires, and
human interventions. This comprehensive tracking was essential for maintaining an efficient
search and rescue process within the experimental setup.
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Figure 1: Participant view of the MATRX world we used for our study

3.7 Explanation Generation
When designing the adaptive explanations for this task, the main reason for implementing
a more abstract strategy over time is the expected increase in participant experience and
familiarity with the task and the explanations provided. The decision to make explanations
adaptive aligns with the broader literature, which suggests that explanations should be
tailored to the user’s level of expertise [23]. As participants engage with the task and receive
explanations multiple times, their understanding and familiarity with the task mechanics,
decision-making criteria, and overall context will likely improve over time.

Consequently, as participants become more experienced, the need for detailed explana-
tions diminishes. Detailed, granular explanations are crucial during the initial phases to
ensure participants fully grasp the nuances and complexities of the task. However, as their
proficiency grows, these detailed explanations can become redundant and even heavy, po-
tentially leading to mental overload or decreased efficiency. By gradually shifting to more
abstract explanations, we can maintain essential information flow while reducing cognitive
load and allowing participants to focus on higher-level decision-making. This approach
ensures explanations are informative and practical, capturing crucial details without over-
whelming the user.

Below is an outline of a decision-making scenario during the deployment tactic (see Table
1). The textual part of the adaptive explanations was tailored for the four different decision-
making situations. Table 1 illustrates what the participants read when completing the task
during the deployment tactic. It is also important to note that the baseline/non-adaptive
explanation only included explanations for situations with zero occurrences.

As it has been shown over time, the content of the explanation becomes more abstract
and with fewer details. Each explanation includes a plot that evolves through four stages
(see Figure 2, Figure 3, Figure 4, Figure 5). This approach ensures that the explanations
adapt to the Brutus sensitivity level and the number of tasks completed. It is also necessary
to note that the baseline/non-adaptive explanation only showed Figure 2 throughout the
task.
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Figure 2: Early Stage, plot with a full
explanation.

Figure 3: Intermediate Stage, some-
what detailed.

Figure 4: Abstract Stage, less detail.
Figure 5: Very Abstract Stage, mini-
mal detail.
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Number of
occurrences Explanation

0 Our offensive deployment has been going on for {deployment_time}
minutes now. We should decide whether to continue with this deploy-
ment or switch to a defensive deployment. Please make this decision
as the predicted moral sensitivity ({sensitivity}) exceeds my alloca-
tion threshold. Take as much time as you need. However, you can
also reallocate the decision to me. This is how much each feature con-
tributed to the predicted sensitivity:

1 The current strategy has been in place for {deployment_time} min-
utes. A decision is needed on whether to continue or change the
approach. Your decision is required as the predicted sensitivity
({sensitivity}) is beyond the threshold. You may take your time or
assign this decision to me. Factors influencing the predicted sensitivity
are shown below:

2 Active for {deployment_time} minutes. Continue or switch to defense?
Decision needed due to sensitivity ({sensitivity}). Take your time
or assign it to me. Feature contributions:

4 Decide on continuing defense or switching to offense. Decision needed
as sensitivity ({sensitivity}) exceeds threshold. Take your time or
assign it to me. Contributions:

6 Continue or switch to offense? Decision needed due to sensitivity
({sensitivity}). Take your time or delegate. Contributions:

Table 1: Adaptive explanations based on the number of occurrences of the
decision-making situation continue or switch deployment tactic

3.8 Measures
We measured the dependent variables "capacity trust" and "moral trust" using a Likert scale
survey [15]. Participants rated the agent Brutus on various attributes on a scale from 0 (not
at all) to 7 (very). If an attribute did not fit Brutus, participants could select "does not
fit." The ratings provided were used to calculate the average scores for each trust dimension.
Additionally, the dependent variable "XAI satisfaction" was assessed using a Likert scale
survey [10]. Participants rated their satisfaction with the explanations provided by Brutus
when it allocated decision-making to either the participant or himself. The scale ranged from
1 (I disagree strongly) to 5 (I agree strongly). These responses were used to calculate the
average scores for the XAI Satisfaction variable. Furthermore, the variable "disagreement
rate" was measured objectively through data logged with MATRIX. This was calculated as
the ratio of the number of interventions to the total number of allocation decisions.

Control variables, such as "risk propensity," were also measured using a Likert scale
survey [16]. Participants rated their agreement with various statements related to their
attitudes towards risk on a scale from 1 (totally disagree) to 9 (totally agree). The average
of these ratings provided a mean score reflecting each participant’s overall risk propensity.
Similarly, "trust propensity" was measured using a Likert scale survey [17]. Participants
indicated their agreement with several statements about their trust in technology, using
the same scale from 1 (strongly disagree) to 5 (strongly agree). The mean score for each
participant was calculated to determine their overall trust propensity, offering a subjective
measure of their inclination to trust technology in general. Finally, the variable "utilitarian-
ism" was measured using a Likert scale survey [12]. Participants indicated their agreement
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with statements reflecting utilitarian ethical beliefs and values, on a scale from 1 (strongly
disagree) to 5 (strongly agree). These responses were analyzed to calculate a mean score for
each participant, providing a quantitative measure of their inclination towards utilitarian
ethical beliefs.

3.9 Procedure
In this study, participants first opened a browser window with two tabs: one for the survey
and one for the experiment. They began by reading an information sheet and providing
informed consent via TU Delft Qualtrics survey. Next, participants filled in their demo-
graphic information and completed control surveys on risk propensity, the propensity to
trust technology, and utilitarianism. Participants were randomly assigned to one of the two
conditions: Baseline and Adaptive. For this study, some participants were assigned the
baseline agent, while others were assigned the adaptive agent. They were then prompted
to start a tutorial to familiarize themselves with the MATRX environment and the agent
Brutus. After launching the main.py file, participants entered their ID and the explana-
tion condition, which started the tutorial followed by the experimental task. Once the task
was completed, participants returned to the survey to fill out questionnaires on trust and
explanation satisfaction. All survey responses were collected using Qualtrics.

4 Results
The dependent variables, capacity trust, moral trust, XAI satisfaction, and disagreement
rate, were tested to determine if there were any significant differences between the adap-
tive and non-adaptive explanations. The results indicated that there were no significant
differences for any of these variables.

For capacity trust, the Wilcoxon rank-sum test is used because the Shapiro-Wilk nor-
mality test indicates that ’capacity trust’ is not normally distributed for the non-adaptive
explanation (p = 2.716×10−9). The Wilcoxon rank-sum test result (W = 184.5, p = 0.6843)
suggests that there is no significant difference between the non-adaptive explanation (Mean:
5.378, SD: 0.755) and the adaptive explanation (Mean: 5.532, SD: 0.788). A p-value of
0.6843 is much higher than the common alpha level of 0.05, indicating that any observed
difference is likely due to random variation rather than a systematic effect of the conditions.

Similarly, based on the Shapiro-Wilk test results, the Wilcoxon rank-sum test is used
because ’moral trust’ is not normally distributed for the non-adaptive explanation (p =
0.0009988). The Wilcoxon rank-sum test result for moral trust (W = 178, p = 0.7463)
indicates no significant difference between the non-adaptive explanation (Mean: 5.315, SD:
1.699) and the adaptive explanation (Mean: 5.73, SD: 0.846). The high p-value of 0.7463
further supports this.

Furthermore, the t-test is used because the Shapiro-Wilk normality test indicates that
’xai satisfaction’ is normally distributed in both conditions (baseline/non-adaptive 1: p =
0.4794, adaptive: p = 0.6759). The independent samples t-test result for XAI satisfaction
(t(38) = 0.345, p = 0.7319) also shows no significant difference between the baseline/non-
adaptive explanation (Mean: 3.888, SD: 0.557) and the adaptive explanation (Mean: 3.819,
SD: 0.699). The p-value of 0.7319 suggests that any differences observed are likely due to
chance.

Finally, the Wilcoxon rank-sum test is used because the Shapiro-Wilk normality test
indicates that the ’disagreement rate’ is not normally distributed in either baseline/non-
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adaptive (p = 1.973 × 10−5) or adaptive (p = 3.581 × 10−6). The Wilcoxon rank-sum test
result for disagreement rate (W = 235.5, p = 0.2545) indicates no significant difference
between the baseline/non-adaptive explanation (Mean: 0.06, SD: 0.0899) and the adaptive
explanation (Mean: 0.0285, SD: 0.0579). Although this p-value is lower than the others, it
is still above 0.05, meaning that the difference is not statistically significant.

In summary, the statistical tests conducted on the four dependent variables (capacity
trust, moral trust, XAI satisfaction, and disagreement rate) suggest that there are no sig-
nificant differences between the baseline/non-adaptive and adaptive explanations for any
of these variables. This implies that the conditions being compared do not have a notable
impact on these measures.

Below are the boxplot figures (see Figure 6, Figure 7, Figure 8, and Figure 9) for all the
variables mentioned above. These figures visually illustrate the distribution of the data for
each condition.

Figure 6: Capacity Trust Figure 7: Moral Trust

Figure 8: XAI Satisfaction Figure 9: Disagreement Rate
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5 Responsible Research
This section discusses the reproducibility of the study’s methods, including the participants’
selection process and any limitations related to their age. It also addresses handling par-
ticipants’ personal data to ensure ethical research practices. To ensure reproducibility and
transparency, the study’s methods are detailed thoroughly, including how participants were
randomly assigned to different conditions (non-adaptive and adaptive). Participants were
recruited through social media and online university channels, reaching a diverse sample.
However, this method is also limited, as it may exclude individuals less familiar with or
lacking access to online technologies, particularly older adults. This could introduce an age-
related bias, potentially affecting the generalizability of the findings. Future studies should
consider additional recruitment strategies to include a broader age range and those with
limited online access. Throughout the entire study, ethical issues were not just significant,
but crucial. All participants gave informed consent after being adequately informed about
the study’s goal and rights. In order to preserve confidentiality, participant personal data
was anonymized and securely saved. In summary, this study was conducted strongly em-
phasizing reproducibility, ethical considerations, and the responsible handling of participant
data, ensuring the research maintains its integrity and contributes valuable insights to the
field. Furthermore, the code will be made public and accessible to all.1

6 Discussion
The results of our study indicate that there were no significant differences in the dependent
variable and the control variables between the baseline/non-adaptive explanation and the
adaptive explanation conditions. Specifically, the Wilcoxon rank-sum test and the t-test
results showed that the differences in ’capacity trust,’ ’moral trust,’ ’xai satisfaction’, and
’disagreement rate’ were not statistically significant.

6.1 Analysis and Interpretation
The results show no significant differences in the dependent and control variables, suggest-
ing that the type of explanation (baseline/non-adaptive) versus adaptive did not have a
measurable impact on participants’ responses. This outcome could be interpreted in several
ways:

Firstly, both types of explanations may be equally effective in terms of influencing the
measured variables. This could indicate that the choice between baseline/non-adaptive and
adaptive explanations might be based on other factors, such as user preference or specific
application contexts. By highlighting these factors, one can feel more engaged in the research
and understand the broader implications of the findings. In addition, the research sample
might have characteristics that make it less likely to show differences between the conditions.
For this study, the participants were relatively homogeneous regarding their education and
age range, which could reduce observed variability.

Secondly, the methods used to measure ’capacity trust,’ ’moral trust,’ ’XAI satisfaction,’
and ’disagreement rate’ may need to be more sensitive to detect subtle differences between
the conditions. Despite this, it is important to note that capacity trust, moral trust, and
XAI satisfaction were all quite high across both conditions. This indicates that generally,

1Link to the code: https://github.com/rsverhagen94/TUD-Research-Project-2024
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participants perceived the robot as quite trustworthy and were happy with the provided
explanations, which likely contributed to a low disagreement rate. The high levels of trust
and satisfaction suggest that participants had a positive perception of the robot’s trustwor-
thiness and the quality of explanations, thus not often finding reasons to disagree with it.
This should reassure about the effectiveness of the research and the positive impact of the
explanations on the participants. Moreover, these findings might imply that the differences
between the baseline/non-adaptive and adaptive explanations are insufficient to produce
different outcomes in the measured variables. This could suggest that other factors, such as
explanation clarity or user engagement, play a more crucial role.

Additionally, it is possible that the robot’s behavior played a more significant role in
influencing people’s capacity and moral trust than the explanations it provided. If the robot
consistently demonstrated reliable and ethical behavior, participants might have inherently
trusted its actions and decisions, which would overshadow the impact of the type of expla-
nation given. In this context, the robot’s behavior could serve as a primary driver of trust,
making the nature of the explanations less critical in shaping participants’ perceptions.
Moreover, the high levels of XAI satisfaction indicate that participants were generally quite
happy with the explanations for the task allocation provided by the robot. This suggests that
the baseline/non-adaptive explanations already met participants’ expectations and needs.
Consequently, making these explanations more adaptive over time did not add any more sat-
isfaction. The non-adaptive explanations might have been sufficiently clear and informative,
rendering additional adaptiveness unnecessary from the participants’ perspective.

Futhermore, it is worth considering that the baseline explanations used in this study
might not have been ’basic’ enough to highlight significant differences. For example, an-
other potential baseline explanation could have been: I have found a victim in office
{room_name}. We should decide whether to send in a firefighter to rescue the victim or
if this is too dangerous. Please make this decision as the predicted moral sensitivity
{sensitivity} exceeds my allocation threshold. I will ask for your decision after 25 seconds,
but you can take as much time as you need. However, you can also reallocate the decision to
me. Completely removing the feature contributions part might have highlighted differences
between the explanations more effectively. Perhaps the differences would have been more
pronounced if the baseline explanations had been simplified to this extent.

Our findings differ notably from those of Torrey et al. (2006), who found that adaptive
explanations significantly improved user satisfaction and task performance by tailoring the
level of detail to the user’s expertise [23]. In our study, no significant difference was found
between adaptive and non-adaptive explanations, suggesting that the context and user pop-
ulation play a crucial role in determining the effectiveness of adaptive explanations. The
homogeneous nature of our participant group might have minimized the perceived benefits
of tailoring explanations to individual knowledge levels.

Similarly, Han et al. (2020) emphasized the subjective nature of preferences for robot
explanations and the importance of cultural and individual differences [9]. While our study
did not explicitly account for cultural background interpretations, the uniformity in par-
ticipant demographics could explain why adaptive explanations did not show a measurable
impact. This points to the necessity of considering a more diverse sample in future research
to uncover the potential benefits of adaptive explanations across different cultural contexts.

Verhagen et al. (2023) highlighted that personalized explanations could enhance user
satisfaction and trust but sometimes at the cost of performance due to increased cognitive
load [26]. Our results, however, indicated high trust and satisfaction levels with both types of
explanations, without any performance decrement. This discrepancy might be attributed to
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different dimensions of personalization (e.g., workload and performance). It underscores the
complexity of designing adaptive explanations and the need for comprehensive user models
that account for various user characteristics and situational factors.

While our findings suggest no immediate advantage of one type of explanation over the
other, understanding the nuances and contexts in which these explanations are deployed
remains a critical area for future research. Emphasizing this aspect can help one sense the
significance of the research’s implications and the potential for further advancements in the
field.

6.2 Limitations and Future Work
One limitation of the study is the recruitment method. Using social media and online univer-
sity channels might have excluded older adults or those less familiar with online platforms,
potentially limiting the findings’ applicability to a broader population. In addition, ex-
panding the sample size and diversity could also help detect potential differences. Including
participants from various backgrounds and different levels of familiarity with the subject
could provide more results. Future studies should include a more diverse demographic to
understand how adaptive explanations affect different user groups.

Furthermore, it’s important to note that the methods used to measure ’capacity trust,’
’moral trust,’ ’XAI satisfaction,’ and ’disagreement rate’ may need to be more sensitive to de-
tect subtle differences between the conditions. This underscores the need for future research
to consider employing more sensitive measures or alternative methodologies, which could
lead to more nuanced and accurate findings. Running experiments with a more basic/less
detailed but non-adaptive baseline and experiments with higher or lower thresholds could
provide additional insights into the relative effectiveness of adaptive explanations. This
approach would help determine the optimal level of detail and adaptability required for dif-
ferent user groups and contexts. Lastly, the study focused on short-term responses to the
explanations. Future work should investigate the long-term effects of adaptive explanations
on user trust and satisfaction and their impact on behavior over time.

To conclude, our study offers preliminary insights. However, it’s crucial to underscore
the significance of addressing these limitations in future research. Doing so will deepen
our understanding of the impact of different types of explanations and significantly enhance
the robustness and generalizability of the findings, making the research more impactful and
relevant.

7 Conclusions
This research investigated the influence of adaptive explanations that become more ab-
stract over time on human supervision and trust in robots. Despite the theoretical bene-
fits of adaptive explanations, our empirical results show no significant difference between
baseline/non-adaptive and adaptive explanations across key dependent variables: capacity
trust, moral trust, XAI satisfaction, and disagreement rate. The results also suggest that
people perceived the robot doing dynamic task allocation as quite trustworthy both in terms
of capacity and morality and were quite satisfied with both types of explanations supporting
the allocation. The lack of significant differences suggests that making explanations more
abstract over time does not necessarily enhance human supervision or trust in robots.

Future research could explore alternative forms of explanation adaptivity, different con-
texts, or more diverse participant groups to uncover conditions under which adaptive expla-
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nations might be more beneficial. In summary, while adaptive explanations are intriguing,
our study did not find evidence that they improve human supervision or trust in robots com-
pared to baseline explanations. This suggests that more research is needed to understand
how to design and implement adaptive explanations in human-robot interaction effectively.
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