
 
 

Delft University of Technology

Intelligent rail maintenance decision support system using KPIs

Jamshidi, Ali

DOI
10.4233/uuid:14048e52-00ad-49e8-9964-aa14e33673fd
Publication date
2019
Document Version
Final published version
Citation (APA)
Jamshidi, A. (2019). Intelligent rail maintenance decision support system using KPIs. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:14048e52-00ad-49e8-9964-
aa14e33673fd

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:14048e52-00ad-49e8-9964-aa14e33673fd
https://doi.org/10.4233/uuid:14048e52-00ad-49e8-9964-aa14e33673fd
https://doi.org/10.4233/uuid:14048e52-00ad-49e8-9964-aa14e33673fd


  

Intelligent rail maintenance decision support 
system using KPIs 

Proefschrift 

 

Ter verkrijging van de graad van doctor 

aan de Technische Universiteit Delft, 

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen, 

voorzitter van het College voor Promoties, 

in het openbaar te verdedigen op 3 September 2019 om 15:00  uur 

 

door 

  

ALI JAMSHIDI 

Master of Science in Disaster Management (Civil Engineering). Tehran University, 

Iran 

  



  

Dit proefschrift is goedgekeurd door de: 

Promotors: Prof.dr.ir. Z. Li, Prof.dr.ir. R.P.B.J. Dollevoet  

Copromotor: Dr.ir. A.A. Núñez Vicencio 

 

Samenstelling van de promotiecommissie: 

Rector Magnificus    Chairperson 

Prof.dr.ir. Z. Li, promotor   Technische Universiteit Delft 

Prof.dr.ir. R.P.B.J. Dollevoet, promotor  Technische Universiteit Delft 

Dr.ir. A. Núñez Vicencio, copromotor  Technische Universiteit Delft 

 

Onafhankelijke leden: 

Prof.dr.ir. B. De Schutter   Technische Universiteit Delft 

Prof.dr. I. Skrjanc    University of Ljubljana  

Prof.dr. D. Galar    Lulea University of Technology 

Dr.ir. A. Zoeteman    ProRail   

Prof.dr.ir. M. Veljkovic    Technische Universiteit Delft 

 

 

This research is part of the NWO/ProRail project (Multi-party risk management 
and key performance indicator design at the whole system level, PYRAMIDS), 
project code 438-12-300. 

Keywords: Key Performance Indicators, Rail Infrastructure, Rail Surface 
Defects, Axle Box Acceleration, Maintenance Decision Support System 

Printed by: Ipskamp Printing, Enschede 

Copyright © 2019 by Ali Jamshidi. All rights reserved.  

ISBN: 978-94-6384-059-0                                                                     

An electronic version of this dissertation is available at 

http://repository.tudelft.nl  



  

Dedicated to my parents   
  



  

	
Acknowledgment  
	
My PhD research was not possible in the absence of the support of my 
friends/colleagues. First of all, I would like to thank my daily supervisor, Alfredo 
Núñez, for his valuable supervision. I am keenly grateful for his creative and scientific 
insights improving the research quality and suggesting me interesting ideas. I would 
like to thank my main supervisor as well, prof. Zili Li, for his support and technical 
feedback. Also, Thanks to prof. Rolf Dollevoet for all his support and feedback. Finally, 
I am specially thankful of prof. Bart De Schutter and Robert Degenhart, for scientific 
guidance of the PYRAMIDS project and detailed feedback. 
Many thanks to Shahrzad, Siamak and Meysam for our very fruitful collaborations. 
Their inputs certainly improved my quality of my research and publications. Special 
thanks go to Meysam for the many lunch and tea discussions that developed in a great 
friendship with him. 
Further, I would like to thank everyone involved in the PYRAMIDS project, 
particularly Zhou Su. The project was a great chance to learn about cooperation and 
allowed me to realize of the importance of team work. I am glad that I have been 
contributing track visits and nightly track measurements as it taught me a lot regarding 
practical railway operations and also broadened my railway knowledge, although those 
visits and measurements were barely related to my own research. I am happy as well 
that I have been involved in organizing the colloquiums of Railway section as chairman 
and also social events of the section. 
I also thank Railway engineering section’s staffs at TUDelft: Jacqueline, Jan Moraal, 
Jurjen, Dirk and Valeri and my many current and former PhD colleagues and Touraj 
Saberivand for the cover of the thesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

Table of content 
Introduction .................................................................................................... 10 
1.1 Introduction .............................................................................................................. 10 
1.2 Railway asset management ...................................................................................... 10 
1.3 Overview of track structure ...................................................................................... 11 
1.4 Rail defects ............................................................................................................... 12 
1.5 Performance analysis ............................................................................................... 12 

1.5.1 Degradation analysis............................................................................................ 13 
1.5.2 Actual rail health condition monitoring ............................................................... 13 

1.6     Maintenance decision system ..................................................................................... 13 
1.7 Problem statement .......................................................................................................... 14 
1.8  Outline of this dissertation ............................................................................................ 14 
1.9 References ...................................................................................................................... 15 
Robust and predictive fuzzy KPIs.................................................................... 17 
2.1 Introduction .............................................................................................................. 17 
2.2 ABA-based health condition monitoring in railways ............................................... 21 

2.2.1 Background of the ABA measurement system .................................................... 21 
2.2.2 Rail condition monitoring-based on ABA ........................................................... 21 

2.3 Fuzzy interval models for squats .............................................................................. 24 
2.3.1 Maintenance oriented models for squats ............................................................. 24 
2.3.2 Dynamics of squats without maintenance ........................................................... 25 
2.3.3 Rail grinding effect .............................................................................................. 26 
2.3.4 Rail replacement effect ........................................................................................ 27 

2.4 KPIs for rail health condition ................................................................................... 28 
2.4.1 KPI description .................................................................................................... 28 
2.4.2 Mamdani fuzzy KPI............................................................................................. 30 
2.4.3 Fuzzy global KPI ................................................................................................. 31 

2.5 Numerical results ..................................................................................................... 32 
2.5.1 Fuzzy confidence interval .................................................................................... 32 
2.5.2 Fuzzy global KPI for track health condition ........................................................ 33 

2.6 Conclusion and future research ................................................................................ 37 
2.7     References .................................................................................................................. 37 
A big data analysis approach for rail failure risk assessment ............................ 40 
3.1 Introduction .............................................................................................................. 40 
3.2 Failure risk assessment model .................................................................................. 42 

3.2.1 The proposed framework ..................................................................................... 42 
3.2.2 Severity analysis .................................................................................................. 44 
3.2.3 Crack growth analysis ......................................................................................... 45 



  

3.2.4 Analysis of rail image data .................................................................................. 46 
3.3 Case study ................................................................................................................ 46 
3.4 Results and discussion.............................................................................................. 51 
3.5 Conclusions .............................................................................................................. 54 
3.6    References ................................................................................................................... 54 
A rail maintenance decision support approach using big data analysis ............. 57 
4.1 Introduction .................................................................................................................... 57 
4.2 Step 1: Intelligent rail condition monitoring .................................................................. 61 
4.3   Step 2: Prior knowledge of the track ............................................................................ 63 

4.3.1    Track profiles......................................................................................................... 64 
4.3.2    Track irregularities ................................................................................................ 64 
4.3.3    Operational speed profile and tractive efforts........................................................ 65 

4.4   Step 3: Interdependency analysis ................................................................................. 65 
4.5    Step 4: Fuzzy inference model .................................................................................... 68 
4.6    Step 5: Rail maintenance decisions ............................................................................. 70 
4.7   Numerical results.......................................................................................................... 72 
4.8    Conclusion................................................................................................................... 80 
4.9    References ................................................................................................................... 81 
Pareto-based maintenance decisions for regional railways ............................... 85 
5.1    Introduction ................................................................................................................. 85 
5.2    Methodology ............................................................................................................... 88 

5.2.1    ABA measurement system .................................................................................... 88 
5.2.2    Rail welds .............................................................................................................. 88 
5.2.3    Hilbert spectrum of the ABA signal ...................................................................... 89 
5.2.4    Description of the KPIs ......................................................................................... 92 
5.2.5    Degradation model ................................................................................................ 92 
5.2.6    Optimization of rail maintenance decisions........................................................... 93 

5.3    Numerical results and discussion ................................................................................ 95 
5.3.1    Case study one ....................................................................................................... 97 
5.3.2    The whole track study.......................................................................................... 101 

5.4    Conclusions ............................................................................................................... 106 
5.5    References ................................................................................................................. 107 
Conclusion and discussion ............................................................................ 109 
6.1   Conclusion from the effect of the KPIs on the system performance .......................... 109 
6.2   Conclusion from the condition-based rail maintenance methodology ....................... 110 
6.3   Future research ........................................................................................................... 111 
6.4   Recommendations for ProRail ................................................................................... 112 
6.5    References ................................................................................................................. 113 



  

Curriculum Vitæ ........................................................................................... 115 
Publications .................................................................................................. 116 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary  

Summary 
 
Key Performance Indicators (KPIs) enable the infrastructure manager to keep the 
performance quality of the infrastructure at an acceptable level. A KPI must include 
specific features of the infrastructure such as functionality and criticality. The KPIs can 
be classified into three performance levels: (1) technical level KPIs; (2) tactical level 
KPIs and (3) global level KPIs. For instance, some KPIs are related to individual rail 
components (technical level) and some correspond to a bigger picture of the rail 
including multiple components (tactical level). The global level also gives an overview 
indication of the full-length rail based on what the infrastructure manager requires. 
Hence, to use every KPI correctly, the infrastructure manager should be aware of the 
proper KPIs level.  

 In this dissertation, an intelligent rail maintenance decision support system using 
KPIs is proposed. The thesis is composed of three parts: design of KPIs, rail degradation 
model and condition-based maintenance decision system.  

In the first part, a design procedure of the KPIs for railway tracks is proposed. 
Among all factors affecting the railway performance, rail surface defects play an 
important role in influencing the rail performance. To measure rail health condition, 
three different data sources are used in this study: (1) axle box acceleration (ABA) (2) 
video images and (3) ultrasonic. Based on the measurement data, a set of KPIs is 
defined at the technical level for rail surface defects. Next, the KPIs are aggregated into 
track segments to facilitate maintenance decisions at the tactical level. At the end, a 
global level KPI can be obtained according to the tactical and technical level 
representing the whole system performance.   

In the second part, degradation modeling is used for the prediction of the rail 
health condition. A predictive approach is required to anticipate what could occur in 
the rail over a given time period. Relying on field observations, measurements and 
mechanical understanding of how a rail defect grows, a degradation model is proposed 
to predict how fast a defect can evolve. Moreover, the growth is stochastic. Some 
defects can grow faster than others. To capture actual dynamic growth, the KPIs are 
provided with a scenario-based approach. Based on the degradation model, a set of 
predictive and robust KPIs is then defined. Chapter 2 and Chapter 3 of this dissertation 
show the KPI design and the degradation model. In Chapter 2, the focus is on designing 
a set of fuzzy KPIs for rail infrastructures. In Chapter 3, a risk KPI is presented. The 
risk KPI enables the infrastructure manager to perform an analysis on failure estimation 
of rail. The results can be insightful for maintenance plans.  

In the third part, a maintenance decision system is proposed to use the KPIs for 
improving the system performance and to reduce maintenance operation costs. To do 
so, two approaches are given in order to establish the decision support system, namely 
(1) expert systems and (2) Pareto-based approaches. Chapter 4 and 5 describe the 
proposed approaches. Chapter 4 presents a methodology based on expert systems for 
rail maintenance. A combination of video images and ABA signals is used to give a list 
of defects associated with their kilometre positions in a track in the Dutch railway 
network. The idea for using both images and ABA signals was to increase the accuracy 
of the defect observation. Beside the rail observation, track characteristics are added as 
a set of “influential factors” to the maintenance decision system. By having both the 
rail observation and the influential factors, a list of decision rules is generated. 



Summary  

Therefore, an expert system is designed to provide systematic maintenance decision 
solutions. Moreover, a non-smooth optimization problem is formulated in the chapter 
to cluster the defects into different rail kilometer positions. The clustering model takes 
time and operation cost into account. In Chapter 5, a KPI-based degradation model is 
extracted directly from ABA signals. The methodology uses a Hilbert spectrum 
approach to detect damaged rail welds in a regional railway network. Next, an 
evolutionary multi-objective optimization model is proposed considering two objective 
functions, i.e. performance-related objective functions and cost-related objective 
functions. The objective functions are defined by using the predictive and robust KPIs. 
The aim is to have a set of Pareto solutions which minimize operation costs and 
maximize the rail performance.  

At the end of the current dissertation, conclusions for each part are provided to 
not only present the capability of the proposed methodologies but also highlight 
assumptions, limits and potential improvements for each chapter. Future research is 
also included to show major potentialities that can be fulfilled for future researchers 
who are interested in the current topic. Moreover, main recommendations according to 
the acquired conclusions for ProRail are discussed.   
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Introduction 

1.1    Introduction 

During recent years, a shift from road to rail has been promoted in Europe. This shift will have 
advantages: an increase in transportation of passengers and goods by rail, mitigation of traffic 
congestion, reduction of air pollution by increasing the use of electrified railways based on 
resources, especially wind and solar energy, among other advantages. However, the increased 
use of railway implies a pressure on keeping the trains running over longer period, making 
monitoring and maintenance activities on the tracks more difficult to be scheduled. Thus, new 
integrated railway asset management is required to keep the railway system performance at the 
desired level. The current dissertation is focused on an intelligent rail maintenance decision 
support system using KPIs. This includes all the important indicators such as safety and life 
cycle costs based on the perspective of both the railway infrastructure manager and users [1]. 
In the current chapter, a brief description of rail asset management, railway track infrastructure 
and its components and also an overview of the dissertation are included.  

 

1.2    Railway asset management 

Asset management is a broad concept. To make the concept specific, it is important to define 
asset management properly [1]: “The management of the railway assets involves a range of 
activities such as building, inspection, maintenance, enhancement and renewal aimed at 
optimising performance, risks and costs of the infrastructure”. 

To keep control of the activities in the asset management, a decision-making support 
system is needed. Moreover, the decision support system should keep the infrastructure 
manager informed of the asset condition. A typical railway network consists of several assets. 
In The Netherlands, in which this PhD research is conducted, the railway network includes 
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6830 kilometres of tracks, 5100 tunnels and viaducts, 4500 kilometres of overhead wiring, 7508 
switches, a signalling and safety control system and 388 stations [2]. The main focus in this 
dissertation is on railway track infrastructure as the railway track contributes significantly in 
keeping the railway network at the acceptable performance level. Furthermore, almost half of 
the annual railway maintenance budget in the Netherlands is allocated to the track infrastructure 
[2]. 

 

1.3    Overview of track structure 

This section presents concisely basic concepts of a track structure. There are two types of tracks 
in The Netherlands: ballasted track and slab track. Figure 1.1 depicts the main structure of a 
ballast track including a zoom-in picture of a rail piece with a rail defect (squat) on it.  

 

 
Figure 1.1 The structure of a track ballast with a zoom-in picture of a rail piece 

 

A typical railway track is composed of the following components: rail, ballast, sleeper 
and fastening. These components are designed to transfer the loads caused by train to the track 
sub structures. To do so, a rail fastening system should fix rails to sleepers using clamps and 
rail pad. Then, sleepers transfer loads from rolling stocks to the track ballast. The ballast is 
composed of stones to keep control of stability of the whole track structure. Train and track are 
related to each other via the contact force between rail and wheel. This contact force is of major 
concern of railway engineering as it can cause huge challenges for infrastructure maintenance 
and costs. As the contact area between wheel and rail is small, it requires to bear a load, causing 
large contact stress. These stresses can potentially lead to material fatigue, or so-called Rolling 
Contact Fatigue (RCF). In the current dissertation, the RCF defects are used as an input for the 
proposed rail maintenance decision support system in order to include explicitly the rail health 
condition into the decision making. 

Widening of 
running band

Squat spot

Rail
Sleeper

Ballast
Fastening
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1.4    Rail defects 

RCF defects are important type of rail defects. Different factors such as axle load and track age 
can also influence the formation and evolution of the RCF defects which potentially cause rail 
break [3]. The analysis of rail failure risk due to the RCF defects is of the concerns of the 
infrastructure manager [4]. Moreover, there are critical track pieces, many are subject to rail 
defects, most importantly welds, insulated joints and switches. Thus, beside the common types 
of the rail defects such as squats, head checks and corrugations, damaged welds, switches and 
insulated joint can be defective and increase rail failure risk over rail life time [5]. In Figure 1.2 
a, a squat is shown in different stages of growth from the initiation to the moderate size 
associated with its visual length and area. As can be seen in the figure, the defect evolves and 
gets more critical for the rail over time. In Figure 1.2 b, a rail weld prone to develop RCF defects 
is presented.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 (a) A rail squat evolution in three growth stages including its visual length in mm and area in mm2; 
(b) A damaged weld prone to RCF defect. 

 

1.5    Performance analysis 

The railway infrastructure performance is typically measured based on three factors including 
level of safety, availability and quality [6]. The performance measurement should also include 
all the critical health condition indicators of the infrastructure, such as life cycle costs of all its 
assets, social and environmental impacts, considering the perspective of both railway 
infrastructure manager and users. The infrastructure health condition is an influential 
information for the infrastructure manager to make proper maintenance decisions [7]. By 
having a monitoring system, it is possible to keep manage of the actual health condition of the 
infrastructure over number of trains passing by track. The obtained track traffic trend (over a 
given time horizon) is used to model the infrastructure degradation. Traffic can vary from one 
track to another at the same time horizon. 

(a) (b) 

 t=0 month                    t=6 months                     
t=12 months 
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1.5.1 Degradation analysis 

The degradation of the infrastructure can be estimated relying on health condition over time, in 
particular for critical infrastructure like rails [8]. The degradation analysis assists to keep the 
infrastructure manager properly aware of the criticality of the rail infrastructure and evolution 
of the criticality over time. Geographical factors, infrastructure design and maintenance 
planning can hugely influence the degradation process of the rail infrastructure [9]. Rail 
degradation in a track is usually different from one rail kilometre position to another. The track 
positions that have rail defects are more degraded compared to the track pieces with less defects. 
Further RCF defects, damaged welds and insulated joints accelerate the rail degradation process 
[10].  

 

1.5.2 Actual rail health condition monitoring 

To estimate the actual rail degradation, different rail health condition monitoring methods are 
available e.g. eddy current [11], ultrasonic [12], Axle box acceleration (ABA) and video camera 
[13]. In recent years, the range of sensing technologies has expanded rapidly including guided-
wave based monitoring [14], networking technologies and mobile ad hoc networking [15], and 
different types of the cheap wireless sensor networks (WSNs) [16], [17]. Relying on the chosen 
monitoring system, the actual rail health condition data are typically collected at certain periods. 
The measurements collect information that can help to reduce maintenance cost, unnecessary 
operations and also to focus on critical rail pieces where the actual health condition has reached 
the crucial level defined by the infrastructure manager.  
 

1.6     Maintenance decision system 

In Figure 1.3, a KPI-based rail maintenance decision making system is depicted. Three steps 
are presented including actual rail health condition monitoring, performance assessment and 
maintenance decision making. In the first step, a big data analysis approach is used in this 
dissertation to tackle the challenges related to the data size [17]. On the basis of the big data 
analysis of the rail measurement data, the degradation model is developed. Using the 
degradation analysis, a rail defect prediction model is proposed in order to define a set of robust 
and predictive KPIs. The obtained KPIs are used to support the infrastructure manager for 
proposing maintenance decisions. By having the rail health condition in a given maintenance 
time horizon, in the step 3, a maintenance decision making methodology is proposed to obtain 
maintenance decisions using the robust and predictive KPIs. 
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Figure 1.3 A global view of a KPI-based rail maintenance approach using big data analysis 

 

1.7 Problem statement 

To state the problem in the current thesis, a set of questions is defined to be answered over 
different chapters.  
The research question is the following:  
How can KPIs help the infrastructure manager to improve railway infrastructure performance?  
This research question is divided into four sub-questions:  
1. How to define predictive and robust rail KPIs for a railway network? 
2. How to develop a set of rail maintenance decisions using the proposed KPIs? 
3. How to estimate rail failure risk using a risk KPI? 
4. How can infrastructure manager include simultaneously performance and cost to optimize 
rail maintenance decision making?  
 

1.8 Outline of this dissertation 

The outline of this dissertation is shown in Figure 1.4. The holistic framework of the proposed 
intelligent rail maintenance decision support system is divided into three parts including KPIs, 
degradation model and rail maintenance decision support system. Because the modelling of rail 
maintenance is covered extensively in the literature, it is only briefly discussed in the 
introduction of this dissertation. The effect of the defined KPIs on the rail health condition is 
discussed in Chapter 2. Chapter 3 presents a methodology to design risk KPIs including the 
probability of rail failure based on defect crack depth and traffic tonnage. The aim is to prioritize 
the rail kilometre positions in which the rail is prone to break. The methodology helps 
infrastructure manager to make proper decisions for rail replacement using the results of the 

Data

Step 1: Big data analysis

Step 2: Performance assessment

Step 3: Maintenance decision making

Rail health 
condition 

monitoring
Data processing

Degradation 
model KPIs

Actual rail 
health 

condition

Maintenance 
decisions

Rail defect 
prediction 

model
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rail failure risk. Both Chapters 2 and 3 benefit from using degradation models over a prediction 
horizon and including relevant stochasticity. Chapter 4 and Chapter 5 propose rail maintenance 
methodologies based on the obtained KPIs. Chapter 4 defines and analyses the effect of track 
influential factors on rail maintenance decisions. To do so, the chapter presents an investigation 
on how to read the rail observation according to those influential factors using an expert system 
approach. The results ease finding most critical rail pieces for grinding operation. By having 
the predictive and robust KPIs and the proposed rail maintenance methodology, in Chapter 5, a 
multi-objective optimization model is included to analyse trade-offs between the rail 
performance and rail maintenance operation costs. The results present a Pareto front which can 
support the maintenance decisions for a railway network in regional network. At the end of the 
dissertation, Chapter 6 concisely concludes and discusses the dissertation achievements and 
gives some recommendations in order to make the proposed framework applicable for ProRail.  
 

 
Figure 1.4 Outline of the dissertation. 

 

1.9 References   

[1] Rama, D., & Andrews, J. D. (2016). Railway infrastructure asset management: the whole-system life cost 
analysis. IET Intelligent Transport Systems, 10(1), 58-64. 

[2] Zoeteman, A., Dollevoet, R., & Li, Z. (2014). Dutch research results on wheel/rail interface management: 
2001–2013 and beyond. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail 
and Rapid Transit, 228(6), 642-651. 

[3] Min, Y., Xiao, B., Dang, J., Yue, B., & Cheng, T. (2018). Real time detection system for rail surface 
defects based on machine vision. EURASIP Journal on Image and Video Processing, 2018(1), 3. 

[4] Liu, X., Saat, M., & Barkan, C. (2012). Analysis of causes of major train derailment and their effect on 
accident rates. Transportation Research Record: Journal of the Transportation Research Board, (2289), 
154-163. 

[5] Molodova, M., Li, Z., Núñez, A., & Dollevoet, R. (2014). Automatic detection of squats in railway 
infrastructure. IEEE Transactions on Intelligent Transportation Systems, 15(5), 1980-1990. 

[6] Parida, A., Kumar, U., Galar, D., & Stenström, C. (2015). Performance measurement and management 
for maintenance: a literature review. Journal of Quality in Maintenance Engineering, 21(1), 2-33. 

Chapter 1
Introduction

Chapter 2
Robust and predictive fuzzy KPIs for rail 

Chapter 4
A rail maintenance decision support 

approach using big data analysis

Chapter 5
Pareto-based maintenance decisions for 

regional railways 

Chapter 3
A big data analysis approach for rail 

failure risk assessment

Chapter 6
Conclusion and discussion

Step 
1&2

Step 3



Chapter 1 16 

	

[7] Luan, X., Miao, J., Meng, L., Corman, F., & Lodewijks, G. (2017). Integrated optimization on train 
scheduling and preventive maintenance time slots planning. Transportation Research Part C: Emerging 
Technologies, 80, 329-359. 

[8] He, Q., Li, H., Bhattacharjya, D., Parikh, D. P., & Hampapur, A. (2015). Track geometry defect 
rectification based on track deterioration modelling and derailment risk assessment. Journal of the 
Operational Research Society, 66(3), 392-404. 

[9] Bai, L., Liu, R., Wang, F., Sun, Q., & Wang, F. (2017). Estimating railway rail service life: A rail-grid-
based approach. Transportation Research Part A: Policy and Practice, 105, 54-65. 

[10] Chattopadhyay, G., & Kumar, S. (2009). Parameter Estimation for Rail Degradation Model. International 
Journal of Performability Engineering, 5(2). 

[11] Song, Z., Yamada, T., Shitara, H., & Takemura, Y. (2011). Detection of damage and crack in railhead by 
using eddy current testing. Journal of Electromagnetic Analysis and Applications, 3(12), 546. 

[12] Fan, Y., Dixon, S., Edwards, R. S., & Jian, X. (2007). Ultrasonic surface wave propagation and interaction 
with surface defects on rail track head. Ndt & E International,40(6), 471-477. 

[13] Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R., De Schutter, B., & Li, Z. 
(2018). A decision support approach for condition-based maintenance of rails based on big data analysis. 
Transportation Research Part C: Emerging Technologies, 95, 185-206. 

[14] Mariani, S., Nguyen, T., Phillips, R. R., Kijanka, P., Lanza di Scalea, F., Staszewski, W. J., ... & Carr, G. 
(2013). Noncontact ultrasonic guided wave inspection of rails. Structural Health Monitoring, 12(5-6), 
539-548. 

[15] Hodge, V. J., O'Keefe, S., Weeks, M., & Moulds, A. (2015). Wireless sensor networks for condition 
monitoring in the railway industry: A survey. IEEE Transactions on Intelligent Transportation 
Systems, 16(3), 1088-1106. 

[16] Flammini, F., Gaglione, A., Ottello, F., Pappalardo, A., Pragliola, C., & Tedesco, A. (2010, October). 
Towards wireless sensor networks for railway infrastructure monitoring. Electrical Systems for Aircraft, 
Railway and Ship Propulsion (ESARS), 1-6. 

[17] Santur, Y., Karaköse, M., & Akın, E. (2016). Learning Based Experimental Approach For Condition 
Monitoring Using Laser Cameras In Railway Tracks. International Journal of Applied Mathematics, 
Electronics and Computers, 4(Special Issue-1), 1-5. 

[18] Thaduri, A., Galar, D., & Kumar, U. (2015). Railway assets: A potential domain for big data 
analytics. Procedia Computer Science, 53, 457-467. 

 

 

 
 
 
 
 



 

17 

 
 

Robust and 
predictive fuzzy 
KPIs  

This chapter corresponds to the reference: A. Jamshidi, A. Núñez, R. Dollevoet, and Z. Li, 
“Robust and predictive fuzzy key performance indicators for condition-based treatment of 
squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, 
September 2017, 04017006. DOI: 10.1061/(ASCE)IS.1943-555X.0000357. 
 

2.1    Introduction 

During the recent years, a modal shift from road to rail has been promoted in Europe. The idea 
is to increase the share of transport demand for mobility of people and freights. Reduce road 
traffic congestion, make efficient use of the energy resources and tackle the major challenges 
of climate change. Major contributions are needed in the optimal management of railway assets, 
evolving towards a more automated predictive operation where functional assets are monitored. 
This includes all the important indicators such as economical, safety and societal impacts, 
considering the perspective of both railway infrastructure manager and users [1].  

A typical set of railway assets is shown in Figure 2.1, and it includes the track, station, 
superstructure, sub-structure, communication, catenary, control room, signalling system, 
rolling stock, barrier, security and surrounding. In order to monitor and properly maintain the 
railway assets, it is necessary to measure the evolution of important health condition indicators 
over time, also called key performance indicators (KPIs), for each of the critical assets. For 



Chapter 2 18 

	

example, in the Figure 2.1,  relates to the KPI for the health condition of an asset called 
“Asset”, uniquely labelled as “label” at time t. In The Netherlands, the assets in the railway 
network include more than 3,000 km of track, 388 stations, being one of the densest networks 
in Europe. In this network, the design of an optimal maintenance plan for all its assets is a 
challenging problem.  To optimally design the maintenance plans, the infrastructure manager 
requires to provide crucial information of each asset [2], and maintenance decision making 
considering risk averse situations [3]. Thus, the optimal maintenance plan is a necessity because 
of the high demand from users and government for a better quality of service, and the need of 
keeping costs as low as possible.  

 

 
Figure 2.1 Main components of railway infrastructures. 

 

Maintenance Performance Indicators evaluate the system performance and can be used to 
guarantee that these assets operate at an acceptable level of functionality and safety. In [4], a 
general systems framework is proposed using a hierarchical structure of multi-criteria 
maintenance performance measurements. In [5], the same framework is applied to the case of 
benchmarking railway infrastructure maintenance operations. Three different hierarchical 
levels are proposed: strategic level for top management decisions, tactical level for middle 
management and functional level for supervisors/operators. The general framework requires 
effective measurements of the health condition of the assets considering that the different assets 
degrade with different rates due to the effect of different exogenous sources. Particularly, the 
focus of this chapter is to design robust and predictive fuzzy performance indicators for health 
condition monitoring of railway tracks, considering a particular major type of Rolling Contact 
Fatigue (RCF) called squat (see [6]).  

In The Netherlands over forty percent of the railway maintenance budget is allocated 
yearly to track maintenance [7]; [8]. The presence of RCFs accelerates track degradation which 
negatively influences its health condition. RCFs also increase the noise level that affects people 
living in the surroundings and in a worst case making a huge impact on safety as severe RCF’s 
can result in derailment. For track maintenance to be effective, the planning should consider 
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not only costs but also the dynamics of RCFs. Complex interactions between environment, 
vehicles, wheels and track interface, structure and also different behaviours under maintenance 
operation such as grinding and rail replacement can be considered. In [9] rail degradation is 
modelled by a time to failure function using MGT (million gross tons) measurements and 
around 12 failure events, decision making is proposed in a Monte Carlo simulation setting. The 
maintenance operations are modelled as different cost functions, including rail grinding costs, 
track tamping costs, rail lubrication costs, among other maintenance operations. [10] assess the 
value of preventive maintenance in comparison with corrective maintenance. The idea is to 
analyse cost-benefit of using preventive maintenance including four different maintenance 
costs: maintenance inspections, repair of potential failures, repair of functional failures and 
service/production loss. In the case study for a Swedish railway line, the ten costliest railway 
sections are found to have three times the tonnage compared to the sections with the lowest 
costs, and also the costliest sections experience 4.5 times more track failures. The conclusion 
is that the railway sections with the lowest total maintenance cost have implemented more 
preventive maintenance actions. 

In the literature, different studies have been carried out to present how a degradation 
model for tracks can be embedded on asset management to facilitate maintenance plans. Track 
geometry measurements relying on statistical analysis are used to capture the track degradation 
effect [11], [12], [13], [14], [15], [16], [17], [18]. In those papers, different time-dependent 
degradation models are proposed; they can all be used to improve maintenance interventions. 
Estimation of the track safety and considering the probability of rail break has also been 
investigated [19], [20], [21]. Detailed mechanical models can give many insights about the 
evolution of rail defects; however, the use of those models for maintenance planning operations 
requires sophisticated knowledge about the track and its operational conditions that are not 
always available or easy to obtain in practice. Fuzzy logic has increasingly been used in 
different fields; in particular, in the ones where uncertainties can influence the decision process. 
It is used to measure performance in different infrastructures by predicting failure of 
components [22], [23], optimizing asset condition [24], [25] and decision making [26]. In this 
chapter, the authors propose the use of an interval fuzzy model to capture the most important 
dynamics of squats in railway infrastructure, from the maintenance operation point of view. 
The authors aim to keep the prediction as simple as possible, but suitable enough to ease 
decision making in practice. The use of key performance indicators (KPIs) that are able to 
explicitly include the dynamics of the deterioration of the assets, together with an appropriate 
set of scenarios for the principal sources of stochasticity that might affect their performance are 
recommended. A fuzzy Takagi Sugeno (TS) interval model [27], [28], [29] is calibrated using 
real-life data collected over years of field tests and measurements. That helps obtaining 
numerical models capable to predict squat growth over a time horizon under different possible 
scenarios and under different maintenance decisions. 

Based on the interval fuzzy models for squats, a condition-based methodology for rails is 
proposed in this chapter using different KPIs that are defined in a track-partition level which 
allows the grouping of defects located in a given track partition. In this methodology, the 
number and density of squats are considered over a prediction horizon under three different 
scenarios, vis. slow, average and fast growth. Then, to facilitate visualization of the track health 
condition and to ease the maintenance decision process, the chapter proposes a fuzzy global KPI 
based on fuzzy rules for each partition that merges the different KPIs over prediction horizon 
and scenarios. The methodology is evaluated with data from a Dutch railway track, relying on 
the use of technology-based Axle Box Acceleration (ABA) measurements, capable to detect 
the early stage squats on the rail [30], [31]. An introduction of the ABA measuring system is 
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described in Section 2.2, including background of the ABA measurement system and its 
application in rail condition monitoring based on ABA. 

Figure 2.2 shows the flowchart of the proposed methodology divided in three steps. In 
Step 1, relying on ABA measurements, the health condition of the track and severity are 
estimated. A list of defects is assumed to be provided by the detection algorithm. In Step 2, 
using interval fuzzy TS model, the growth of each detected defect i is evaluated over time and 
different possible evolution scenarios are considered. Three models are evaluated, with 
grinding, replacement and without maintenance. The idea is to see the consequences of the 
maintenance operations on the detected squats for different scenarios over a prediction horizon. 
At the end, in Step 3, a global fuzzy KPI is used to describe the condition at a track partition 
level, for a given travel direction, left and right rails. The global fuzzy KPI at a partition, 
combines the effects of a vector of KPIs over a prediction horizon, considering three most 
representative defect evolution scenarios. 

 

 
Figure 2.2 flowchart of the proposed methodology 

 

The chapter is divided as follows. In Section 2.2, the main elements of the ABA based 
detection methods are presented. Fuzzy interval models for squats are presented in Section 2.3 
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for three cases: without maintenance, after grinding and after replacement. In Section 2.4, 
different KPIs are defined at a track partition level in order to aggregate the local dynamic 
behaviour of squats. Because of the number of scenarios and prediction horizon, the fuzzy 
global KPI is proposed to facilitate decision making. Later in Section 2.5, the numerical results 
and discussion are presented. Finally, conclusions and further research are discussed in Section 
2.6. 

 

2.2    ABA-based health condition monitoring in railways 

 

2.2.1 Background of the ABA measurement system 

There are different methods to diagnose the condition of rail defects, including ultrasonic 
measurements, eddy current testing, image recognition and guided-wave based monitoring 
among other technologies. Each of them has different advantages and disadvantages. In this 
chapter, a technology is needed capable to detect defects in an early stage, thus the authors 
consider the use of ABA measurements [32]; [30]. [31] investigated the feasibility of detecting 
early-stage squats using an ABA prototype. It is reported that squats could be detected by 
analysing the frequency content of the ABA signals in the wavelet power spectrum. In practice, 
the useful frequency band for early detection of squats ranges from 1000-2000 Hz and 200-400 
Hz [30]. 

In the literature, it has been reported that ABA systems can be employed to detect surface 
rail defects like corrugation, squats and welds in poor condition. The ABA system offers the 
advantages of (1) having a lower cost than other types of detection methods, (2) it is easy to 
maintain and (3) can be implemented in-service on operational trains. Other significant 
advantages that ABA offers over similar measurement systems are (4) the ability to detect small 
defects with the absence of complicated instrumentation and (5) the ability to indicate the level 
of the dynamic contact force [33]. 

 

2.2.2 Rail condition monitoring-based on ABA 

In this study, the authors are users of the ABA detection methodology presented in [31] and 
[30]; thus, it is assumed that a list of squats and their location are available. Let us define the 
counter of squat defects as i=1,2,…,Ndefects, where xi represents the position of the squat i. The 
authors define H(x,k) and L(x,k) as the real rail condition and real squat length respectively, 
defined at position x and time step k.  The authors only focus on positions xi where squats are 
detected. To simplify the notation, it is assumed that Hi(k)=H(xi,k) and Li(k)=L(xi,k) represent 
the severity and the length of squat i at time step k. To systematically classify squats in terms 
of severity, the authors follow the terminology used in [34], [35] and [36]. The definitions of 
these three references are compatible to one another. Although the transition between one class 
to the other is not always abrupt, the authors have defined fixed values for those transitions 
according to our experience. Depending on the squat length Li(k), measured in mm, the severity 
of the squat can be used to represent the health condition of the rail at location xi as follows:  
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 (2.1) 

 
where S refers to a seed squat, A is a light squat (A squat), B is a moderate squat (B squat), C is 
a severe squat (C squat) and RC is a squat with risk of derailment. The boundaries were defined 
based on general guidelines to classify squats. Figure 2.3 depicts an example of defect growth 
collected from field measurements in the track Meppel-Leeuwarden. In the figure, the x-axis 
represents kilometre position of the track where the squats are located and the y-axis indicates 
the time in three different months, month 0 (moment of the measurement), month 6 and month 
12. In the diagram, A squats are drawn as circles and B squats are squares. Different squats grow 
with different rates. In the average case, the track measurements show that it takes 
approximately 9 months for an A squat of 20 mm to evolve into an B squat of 30 mm.  
 

 
Figure 2.3 An example of defects evolution over time. The x axis is the kilometre position in the track, xi the 

position of squat i, y axis is time every six months. In circles are A squats, squares are B squats. 
 
In this study, the ABA measurements are used to develop a model for defect evolution. 

For each squat, the related energy of the ABA is available using wavelet spectrum analysis and 
advanced signal processing methods [30]. Relying on the ABA measurement, the energy values 
of the ABA signals can be calculated at every position x at time step k as E(x,k). From the 
energy signal, we are interested only in those locations with squats, namely Ei(k)=E(xi,k). For 
using the energy of the ABA signal to predict the squat length evolution, a correlation between 
the squat length and energy of the ABA signal was performed. Photographs from track visits of 
several years are used to measure the lengths of the squats and to fit the piecewise linear 
correlation model.  

if 0 ( ) 8
if 8 ( ) 30

( ) if 30 ( ) 50
if 50 ( ) 60
if ( ) 60

i

i

i i

i

i

S L k
A L k

H k B L k
C L k
RC L k

ì
ï
ïï
í
ï
ï
ïî

£ <
£ <

= £ <
£ <

³



Chapter 2 23 

	

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Global scheme of the main components of the Step 1: Estimation of track health condition based on 
ABA 

 

The estimated length  of squat i at time step k as function of the energy value Ei(k) 
is given by:  
 

 (2.2) 

 
where the slope of local linear functions is , m=1,…,4, and the bias , m=1,…4, are 
adjusted to the specific track. For relation (2.2), we have been users of previous work of our 
group, [37], [31]. In general, we can say that the correlation coefficient and residual standard 
get affected by the speed of the measurement train. In this chapter, we assumed that the 
measurement is done at commercial speed as was done for the test measurement so far, and we 
have disregard segments that were measured out of a reasonable range of speed. A global view 
of the Step 1 of the methodology, estimation of track health condition based on ABA, is 
presented in Figure 2.4. As shown in the figure, in order to estimate the length Li(k), the energy 
value Ei(k) is calculated using the ABA measurement. Hence, relying on the estimated squat 
lengths, the rail health condition Hi(k) can be approximated. In the figure, a squat is detected 
with an energy value Ei(k)=145 m2/s4, the estimated squat length  and the 

estimated health condition .  
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2.3    Fuzzy interval models for squats 

 

2.3.1 Maintenance oriented models for squats 

Typically, maintenance slots in the Dutch railway network are decided based on long and short-
term planning for preventive and corrective maintenance respectively. In the long term, the 
contractor should inform the asset manager at least one year before cyclic grinding for using 
the equipment needed. In the short term, normally, the maintenance is performed when the 
squats are in the last stage of growth (C squat). Thus, a predictive approach by employing well 
designed KPIs should aim to improve both short and long-term planning, (1) keeping a good 
balance between costs and health condition of the track, (2) simplifying the design of 
maintenance plan over the whole time horizon and (3) increasing indirectly the track safety. 

The experimental results show that each squat can grow with a different rate. The 
estimation of squat lengths can be affected by the subjectivity of the human error. For instance, 
one source of uncertainty comes from the fact that visually only the rusty area of the defects is 
used to measuring the length, while the defect might be longer. Fuzzy systems can work under 
subjective environments. In the proposed methodology, the design of the global fuzzy KPI deals 
with the subjectivity. The definition of a low or a big number of defects will depend on the 
subjectivity of the infrastructure manager, and on how this information is incorporated for 
maintenance decision making. In order to generalize this characteristic, fuzzy confidence 
intervals can be used to capture the stochasticity of different scenarios for the squat growth. The 
upper bound of the interval represents a worst case scenario, while the lower bound represents 
a slow growth rate scenario. In the fuzzy interval approach, the average behaviour is given by 
a Takagi-Sugeno (TS) fuzzy model. This is used to approximate nonlinearities by smoothly 
interpolating affine local models. Each local model is involved in the global model based on 
the activation of a membership function. According to literature, the identification of fuzzy 
interval models is divided on three steps: clustering method to generate fuzzy rules, 
identification of the TS local linear parameters (average model), and identification of the fuzzy 
variance for each rule [29]; [38]. In this chapter, we use the fuzzy interval approach proposed 
in [28] and [38], which includes Gustafson Kessel clustering, local identification of the linear 
parameters and optimization of a parameter  to adjust the width of the interval, minimizing 
both area of the band and number of data points outside the band. 

The general problem of interval defect evolution is as follows. Let’s consider different 
defect growth scenarios , time steps , and  
the maintenance action at time step k. The prediction model for the growth of a squat can be 
written as:  

 

 (2.3) 

 

where  is an estimation of the length of the squat i located in the track partition j at the 

time step k+1 considering the scenario h. The model considers the effect of maintenance  

and the initial condition of the squat . Depending on the location of the squat i which is 
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, the authors use a local model corresponding to the track partition j where the squat is located,
. It is assumed that the dynamics for different squats are similar if they are in the 

same track partition under the same scenario. In this chapter, three maintenance actions are 
considered, u(k)Î {u1, u2, u3}, where u1 is no maintenance, u2 is grinding and u3 is replacement. 
Also, three scenarios are evaluated, , where h1 represents slow growth, h2 average 
growth and h3 is fast growth. 

 

2.3.2 Dynamics of squats without maintenance 

In the absence of maintenance, i.e. , the prediction model for the average growth 
scenario, h2, is formulated based on TS fuzzy model:  
 

 (2.4) 

 (2.5) 

 
(2.6) 

 

where ,  are the parameters of the fuzzy local model on rule r,  and 

 is the normalized activation degree of the rule r. In this chapter the authors will 

use Gaussians to model the membership degrees, ,  

defined by parameters  and  given by the Gustafson Kessel clustering algorithm. Once 
the TS model is obtained, the slow growth scenario and the fast growth scenario are used as 
lower and upper bound of the average growth scenario, , respectively. The equations 
can be defined as:  

 

 (2.7) 

 (2.8) 

 (2.9) 
 
where  is the estimated growth length of squat i in time step k+1 in fast scenario, and 

  is estimated growth length in slow scenario,  and  are tuning parameters in the 

fast growth scenario and the slow growth scenario respectively. Moreover, , 

 and are covariance matrix, regression matrix and variance of the local 
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model. Figure 2.5 depicts the proposed fuzzy confidence interval model including 177 data 
points used to capture the squat evolution in different stages of growth. A subset of the data used 
for analysis is included in Table 1. A squat from 8 to 30 mm in length have no or shallow cracks. 
The B squats ranging from 30 to 50 mm grow quickly. The B squats evolve to C squats when 
the network of cracks beneath the squat gets further spread. All three stages are shown by 
reference photos of A squat, B squat and C squat in Figure 2.5. 
 

 
Figure 2.5 A schematic plot of interval fuzzy model for squat growth in the case study track. 

 

Table 2.1 A subset of data used for squat analysis including defect position, km, and visual length, mm, at time k 
and k+1 

 

 

2.3.3 Rail grinding effect 

Squats can be effectively treated by grinding when they are in an early stage of growth. Cyclic 
rail grinding not only keeps control of maintaining the rail profiles but also to plan track 
maintenance efficiently [39]. Figure 2.6 depicts squat growth before and after grinding where 
black points show those squats that did not disappear after grinding. As seen in the figure, some 

 1 

Squat Position, km Li(k), mm Li(k+1), mm Squat Position, km Li(k), mm Li(k+1), mm 
1 104.8438 30.7260 34.7465 11 105.4613 22.8311 24.6695 
2 105.1051 37.7420 40.5086 12 105.4953 19.5933 22.0216 
3 105.1404 33.2264 37.0496 13 105.5827 14.5360 16.7962 
4 105.2116 34.2207 37.7779 14 105.5852 19.5432 21.9787 
5 105.3215 46.7870 49.1017 15 105.6353 11.0032 13.9019 
6 105.3901 33.0151 36.8862 16 105.6591 25.1642 27.1955 
7 105.4195 19.1797 21.6607 17 105.7462 15.4564 17.7552 
8 105.4269 20.2236 22.5435 18 106.3105 28.7262 32.2116 
9 105.4344 9.4918 12.4747 19 106.8735 55.1141 57.1707 

10 105.4561 33.2798 37.0903 20 107.2845 17.8761 20.4044 
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A squats are located in the effective zone of grinding such that these squats have a zero length 
after grinding. Those A squats that are imminent to become B squats are located in the 
ineffective zone for grinding as well as B squats and C squats. Moreover, three growth scenarios 
in the effective zone are specified to capture the squat evolution rate. Even though grinding 
severe squats postpones rail replacement, it could accelerate squat evolution as the cracks are 
not totally disappeared. 

 

 
Figure 2.6 Squat growth before grinding and after grinding classified in two effective and ineffective zones for 

grinding operations. In this case, the depth of the grinding was around 1.0 mm. 
 

The growth model for squat i by considering grinding effect can be expressed as: 
 

 
(2.10) 

 
where is the critical squat length that estimate effectivity of grinding,  is around 20 
mm in Figure 2.6 for a grinding depth of 1.0 mm,  is the slope of the linear model in the 
ineffective zone for grinding for different scenarios h, slow, average and fast growth scenarios.  
 

2.3.4 Rail replacement effect 

When the squat severity becomes worse and cracks are grown considerably, grinding is not 
efficient anymore. Therefore, replacement is the only solution. As replacing a piece of rail takes 
time and it is costly, an optimal decision making for when and where the rail should be replaced 
is important. As in a track with curvature, two rail have different degradation behaviors due to 
the centrifugal force [39], usually only the most needed rail is replaced. Rail replacement is 
performed using welds to connect the new rail with the old one. After replacement, the rail 
surface defects will totally disappear by the installation of new rail whereas development of 
new squats will depend on various factors, like track conditions, MGT, and other different 
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factors. In the case of the welds, because they are composed by materials with different 
properties than the rails, they are prone to squat defect appearance [40]. Figure 2.7a and 2.7b 
show squat growth before and after rail replacement. Figure 2.7a shows the squat growth 
between welds where all the squats will disappear after replacement. The model assumes that 
no squats will appear during a long horizon by considering that new developed squats can be 
detected in the next measurement campaign. Figure 2.7b shows squat growth on the welds in a 
period after replacement. The exact time instant when the growth starts is related to the quality 
of the weld. This means that for those welds that have good quality, the starting point would be 
much later. If squat is positioned between two welds, then the squat length after the rail 
replacement should be equal to zero during a time horizon N1. The growth model on the weld 
can be expressed according to the time N2 when squat can appear. Before time k+ N2 no squat is 
present in the weld, while at k+ N2+1 the squat will start to appear and evolved based on the 
proposed growth scenarios.   
 

 (2.11) 

 (2.12) 

 

where is some position between the welds, is the location of the weld, and ∆Li is small 
value that triggers the growth when the squat i starts evolving at the thermite weld at time instant 
k+ N2+1. After the squat appears, the interval fuzzy model will capture its evolution over time.  
 

2.4 KPIs for rail health condition 

 

2.4.1 KPI description 

The monitoring of the evolution of a single squat might not be practical from the maintenance 
perspective. Aggregated information over bigger track partitions can facilitate infrastructure 
manager decisions over the maintenance plans. In the case of squats, the authors propose key 
performance indicators (KPI’s) considering the number of A, B and C squats and the number of 
squats with potential risk of rail break called RC squats, at different time t and different growth 
scenario h. Moreover, as significant number of B and C squats near to each other indicate a high 
potential risk to track safety, a KPI is proposed relying on a measure of density of squats B and 
C. 

The function  is provided by the ABA detection algorithm, for the current instant 

of measurement k. The function equals to 1 if a squat type is located at position 
x, instant k, partition j and growth scenario h and equals to zero otherwise. Used as initial 
condition, and relying on the interval fuzzy model, it is possible to predict  for any time 
horizon, t=1,…,NP. The growth of new squats during the prediction horizon is not considered 
in this work, because it is assumed that new squats will be detected in the next measurement 
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campaign at instant k+1, where the models can be updated according to the new conditions. 
The KPIs of squat numbers at partition j, instant t, scenario h, can be expressed as: 
 

 (2.13) 

 

 
          (a) 

 
                          (b) 
Figure 2.7 (a) After rail replacement with a piece of new rail free of damage, the length of squats  will 
become zero no matter their initial length ; (b) on welds after rail replacement a squat is prone to appear. 
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Also, to estimate the density of B and C squats , a window is defined around the 

coordinate  (in this chapter, the window is 50 m in track length). The function equals 
the number of squats B or C in the moving window . The KPI density for 
partition j, instant t, and scenario h can be defined as the area of the density function as follows: 
 

 (2.14) 

 

A vector containing all the KPIs called  for partition j, instant t, and scenario h is 
defined as follows: 
 

 (2.15) 
 
 
where  ,  , ,  and  are the number of A squats, B squats, C 
squats, RC squat and the density of B squats C squats, respectively. Due to the large number of 
KPI’s obtained in terms of all the growth scenarios and predictions over time, the authors 
propose two simple steps to include the effect of the trajectories of the KPIs into one global 
KPI: 
Step 1: First, transform the vector  for each partition j, scenario h and instant t, into a 

single KPI using a fuzzy expert system . 
Step 2: Then, aggregate the single KPI over the set of scenarios and over the prediction horizon, 
for each partition j. This results into a single global KPI for the current instant k, :  
 

 (2.16) 
  

2.4.2 Mamdani fuzzy KPI 

For Step 1, a Mamdani fuzzy expert system is used to calculate a single KPI [41]. Even though 
the Mamdani fuzzy system approach was proposed more than 40 years ago, it is still popular 
because of its simplicity and interpretability [42]; [43]; [44]. In this case, 32 fuzzy if-then rules 
are generated. The aim is to assign a membership degree to each KPI to represent the 
contribution of each KPI in the rail health condition:  
 

 (2.17) 

where , , , ,  and  are the membership functions for rule r and  is the output 
Mamdani KPI. The KPIs are first normalized, then Gaussian membership functions are used to 
fuzzify the KPIs. Also, to defuzzify, centre of gravity method is applied in order to obtain crisp 
value at the end. Furthermore, relying on the fuzzy rules, interdependency of KPIs and 
Mamdani KPI are captured as shown in Figure 2.8. In this figure, it is presented how Mamdani 
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KPI models the influence in the health of the track of two KPIs, varying from fully healthy 
(equals to zero) to completely unhealthy (equals to one), while all the other KPIs are assumed 
to be fully healthy (equals to zero). Four plots are presented. In Figure 2.8(a), a higher value for 
the BC density is much relevant than the contribution of the number of B squat. In Figure 2.8(b), 
a high number of C squats makes the most significant impact on the rail health condition. The 
rail condition will get highly unhealthy with high values of either density of the BC squats or 
number of C squat.  In Figure 2.8(c), a high number of RC squats will influence much strongly 
on the health condition than the number of A squats. In the last plot, Figure 2.8(d), a high 
number of A squats or B squats will not have strong influence in the short term (the condition 
moves between the values 0.28 to 0.37). However, the number of B squats effects more 
negatively the rail health condition than the number of A squats. Figure 2.8, shows the intuitive 
fact that rail condition gets worse with the increasing number of squats from A, B, C to RC. 
 

In general, the number of A squats will not have significant impact on the current rail 
health condition. However, in the long term, if not ground, A squats will evolve into severe 
defects. In order to capture this and other dynamic effects, the prediction model is used, and 
the global KPI is calculated over time and under different scenarios.  

 

2.4.3 Fuzzy global KPI 

Relying on defined Mamdani KPIs , a fuzzy global indicator is calculated to give a KPI 
over growth scenarios in partition j: 

 (2.18) 

 
where  is fuzzy global indicator, wh is the weight for scenario given by the infrastructure 
manager to indicate the improtance of each scenario. Moreover, to take the exponential effect 
of time into account wt is defined. In this way, the authors aggregate different KPIs into a single 
one, that captures together stochasticity and evolution over time.  
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Figure 2.8 Interdependency of KPIs over Mamdani KPI, . 

2.5    Numerical results 

 

2.5.1 Fuzzy confidence interval  

This section summarizes the simulation results to predict the squats length. A data set of squat 
lengths collected from different track visits are used to evaluate the performance of the squat 
growth model. Identification data and validation data for the interval fuzzy TS model are 
selected randomly, using 60% of the data for identification and 40% for validation (see Figure 
2.9). 
To optimize the number of clusters, models from two to ten clusters are tested. For each number 
of clusters, the root mean square (RMS) of the prediction error is used to determine the best 
model. During the training, the tuning parameters of the confidence interval fuzzy model are 
considered the same for the lower and upper fuzzy bounds. The idea is to obtain the optimum 
parameter α using a band as confidence interval. The results should be based on a minimum 
number of data points outside the band whereas the band is as narrow as possible. Figure 2.10(a) 
depicts the Pareto front of the normalized area of the band versus the normalized number of 
data points outside the band ranging α from 0 to 40. Figure 2.10(b) shows how α behaves in 
terms of area of the band. As shown in Figure 2.10(b), the area will reach a maximum value if 
α equals 32. In reality, the variance of the worst case scenario is much larger than the best case 
scenario; thus the assumption of a fixed α must be relaxed. Using full trajectories of different 
squats, ad-hoc  and  were obtained to better fit the dynamics. The use of the interval fuzzy 
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model for prediction is presented in Figure 2.11, with α=1.5 and modified parameters
, and . The squat length grows from a small defect of 8 mm to a severe 

squat of 60 mm. An important characteristic is when the prediction model reaches the highest 
bound 60 mm. This happens for squats of 48 mm for the one-step ahead prediction (within 6 
months), and it will happen for squats of 18 mm in the case of four-step ahead prediction (within 
24 months). For testing purposes, the authors have evaluated this model with another data set 
of the trajectories presented in [45]. All of them are contained within the interval model.  

 

 

Figure 2.9 Validation and identification data for the squat length. 

 
Figure 2.10 (a) pareto front of number of data point outside v.s area of the band. (b) area of the band over α. 
 

2.5.2 Fuzzy global KPI for track health condition 

The full track of the Meppel-Leeuwarden is used to illustrate the proposed methodology. The 
Figure 2.12 shows a simple map of the track and the four partitions j1, j2, j3 and j4. The partitions 
can be adapted according to the maintenance plans or other design considerations. The 
partitions in this chapter are all around 10 kilometres long, except the last one which is 15 
kilometres long. Meppel is at kilometre 105, Leeuwarden is at 150, the partitions are defined 
between the kilometres: , , ,  and .  
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Figure 2.13 shows the different KPIs regarding squats number over four step-ahead prediction 
when no maintenance is performed. All the cases are calculated for the scenarios slow growth 
(in blue), average growth (in yellow) and fast growth (in red). In Figure 2.13(a), the number of 
A squats tends to get reduced over time, as they are becoming B squats. In Figure 2.13(b), the 
number of B squat increases because of the A squats becoming B squats, but after t=12, the 
number of B squat decreases as most of them are becoming C squat. When no corrective 
maintenance is performed, it can be seen from Figure 2.13(c) that after t=12, a huge number of 
C squats are in the track (worst case scenario), which is a very expensive situation as the only 
solution will be to replace the rails. In Figure 2.13(d), it is possible to see the moment when 
operational risk locations start to appear, indicating that maintenance should be done before the 
worst case scenario indicates their appearance.  

 
Figure 2.14(a) shows how potential risk squats will start to appear over time. Figure 2.14b 

shows the KPI related to density of B and C squats. As seen in Figure 2.14(a), the first squats 
with high potential risk of derailment, RC squats, appear for the worst case scenario at t=12, in 
four kilometer positions . Three of those four locations were already 
detected at t=0 in Figure 2.14(b), while all of them are already present in the B-C squat density 
signal at t=6 for all the scenarios. It means that within the first 12 month, the infrastructure 
manager is expected to take actions, to prevent risk of derailment.  

 

 

Figure 2.11 Interval fuzzy model predictions, one, two, three and four steps-ahead. 
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Figure 2.12 Schematic track map between two stations, Meppel and Groningen, divided into four partitions, j1, j2, 

j3, and j4 
 

 

 
Figure 2.13 Squat number KPIs for the slow, average and fast growth scenarios in the absence of 

maintenance operation, (a) number of A squat, (b) number of B squat, (c) number of C squat and (d) number of 
RC squats. 

 
Figure 2.15 collects all the scenarios and the signals over the whole prediction horizon, 

to indicate a single global fuzzy KPI for each track partition. Three cases are considered, no 
maintenance, grinding at t=0, and local rail replacement at t=0 for each severe squat. 
Maintenance considerably can improve the rail health condition, but to be fully efficient a 
combination of both grinding and replacement is necessary. 
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(a)                                                              (b) 

Figure 2.14 For track position between 130.5 and 133.5km, predictions over 24 months and three 
scenarios for: (a) Potential risk locations, (b) B-C squats density. 

 
After the maintenance operations, the condition is in the average condition range, where 

the potential risk of derailment is considerably lower during the prediction horizon. The 
following result allows the infrastructure manager to decide how to manage the rail in the future 
at each track partition. In the absence of maintenance operation, a cost of zero euro with the 
clear consequence of the bad rail health condition is expected. In the case of the grinding effect 
and the replacement effect, the results can be applied as an effective factor for cost analysis of 
the track maintenance plan.  
 

 
Figure 2.15 Fuzzy global KPIs 
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2.6    Conclusion and future research  

In this chapter, a condition-based monitoring methodology is developed for a type of surface 
defect in the rail called “squats”. This methodology is employed to construct an interval-based 
TS fuzzy prediction modelling in order to monitor the track condition over maintenance time 
horizon per track partition.  

The idea of using fuzzy interval is to capture all the possible growth scenarios. Based on 
the interval fuzzy models for squats, a condition-based methodology for railway tracks is 
proposed using different KPIs defined in a track-partition level, allowing the grouping of 
defects located in a given track partition. In the methodology, number and density of squats are 
considered over a prediction horizon under three different scenarios, slow, average and fast 
growth. Then, to facilitate visualization of the rail health condition and to ease the maintenance 
decision process, the authors propose a fuzzy global KPI based on fuzzy rules for each partition, 
that combine the different KPIs over prediction horizon and scenarios. Hence, the proposed 
methodology adds value by defining fuzzy global KPIs which are predictable over time to 
facilitate maintenance decision making of the rail. As an example, the KPIs obtained are 
presented for the track Meppel-Leeuwarden.  

As a further research, the study will be oriented into an optimization-based methodology 
to reduce life cycle costs effectively and to fit the methodology much closely to the real-life 
maintenance operations. The use of new predictive and robust KPIs defined for different parties 
will be considered, including infrastructure manager, rolling stock manager, contractors and 
users.    
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Núñez, R. Babuška, R. Dollevoet, Z. Li and B. De Schutter, “A big data analysis approach for 
rail failure risk assessment”. Risk Analysis, Volume 37, Issue 8, August 2017, Pages: 1495-
1507. DOI: 10.1111/risa.12836 
 

3.1    Introduction 

Among all transportation infrastructure, the railway network is one of the most successful 
transport systems for reducing transportation cost, traffic congestion, and air pollution emission 
levels. On the one hand, the increase in usage of the railway network requires a systematic 
monitoring plan to keep the trains running in a safe way as well as with the least possible 
disruptions [1]. On the other hand, a large amount of data is collected by frequent measurements 
from the monitoring systems of the infrastructure and the assets involved in the railway 
operations. This data should be controlled, stored, and processed, such that it can be employed 
to take all necessary actions to guarantee the rail asset quality level desired by the infrastructure 
manager [2]. The large amount of data should be processed into actionable knowledge within a 
certain time period [3].  

Risk is intuitively connected to decision making under uncertainty [4]. Recent 
developments in big data analytics for uncertainty management and risk assessment of 
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industrial systems have been studied on [5], and [6]. Risk assessment of large-scale systems is 
of current interest across many application domains such as healthcare [7], environmental safety 
[8]; [9], transportation [10]; [11]; [12]; [13], business [14], and product development [15]. In 
particular for railway applications, risk assessment is critical for the prediction of infrastructure 
health condition within a given time period. Continuous monitoring of railway systems can 
guarantee the availability of data that can be used to assess the risk of infrastructure failures. 
Also, the database constructed from continuous monitoring of data will become larger and 
larger over time. Thus, applying a big data analysis approach is necessary in order to adequately 
monitor the infrastructure condition [16]. The rail track is an important infrastructure in a 
railway network and should be taken into account in terms of budget allocation [17]. As a high 
percentage of failures occurring in the railway infrastructure is directly related to the rail, it is 
important to assess the failure risk of rails. The rail risk assessment involves detecting the rail 
defects that can potentially result in rail break and derailment in extreme cases [18]; [19]; [20]. 
Rail surface defects are caused by different factors such as fatigue due to a large number of 
trains passing over rail components at especially welds, joints, and switches [21]. Early 
detection of surface defects is important to mitigate disastrous consequences of rail breaks. 
There are different methods to diagnose the condition of rail defects, including ultrasonic 
measurements [22], eddy current testing [23], and guided-wave based monitoring [24]. In 
general, these methods are not able to detect defects in an early stage of growth, i.e. not until 
the defects are severe. In particular, detection of defects at the late stage of growth imposes 
extra operation and maintenance costs due to the fact that the only solution is to replace the rail.   

To address the limitations of the current measurement methods, the use of video cameras 
installed on trains has become popular [25]; [26]. The use of video cameras avoids the error-
prone, costly, and time-consuming process of manual rail monitoring. Moreover, the videos 
taken from side cameras enable the infrastructure manager to capture the real condition of other 
track components such as fasteners, switches, and sleepers. Using video cameras, one can 
simply monitor whether the visible defects are at the early or late stage of growth. This means 
that the infrastructure manager has the opportunity to observe how the defect evolves over time 
in order to take actions at the right moment and to focus on the most urgent places for 
maintenance operations. This can lead to a significant reduction in the operation costs induced 
by the defects and it can prevent potential risks of rail breaks, reducing the risk of derailment. 
Due to the large amount and the high resolution of the videos taken over the rail, an automatic 
detection algorithm is required to process the huge number of images from those videos. The 
main contribution of this chapter is to assess rail failure risk based on an integrated framework 
that merges the information of two defect-related variables: visual length and crack growth. 
There is no similar approach in the literature for risk assessment of rail failure that considers 
both variables. This is due to the fact that in this case a big data analysis problem has to be 
faced, as a result of which usually railway maintenance managers look at only one type of data 
and ignore the other influencing factors. We propose a risk function (equation1) as a 
composition of three functions: the probability function, the crack growth function, and the 
partially inversed severity function. To evaluate these functions, we apply several techniques, 
including a deep convolutional neural network for image processing and defect detection, an 
N-step ahead prediction model for defect severity and crack growth analysis, and a Bayesian 
inference model for failure probability estimation. To implement our proposed framework, a 
particular type of surface defect in railway networks called squat is considered in the case study. 
Furthermore, we give a proposed classification of the squats in terms of the visual length. Thus, 
squats are classified according to different severities. These classes can be used later for 
condition-based maintenance where we have different maintenance operations for different 
stages of the growth (rail grinding for light squats and replacement for severe squats). 
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However, our approach can be generalized and applied for similar cases when there is a need 
to analyze a huge amount of image data for assessment of failure probability and risk function. 
For example, in a recent work by [28] satellite images have been employed to assess flood 
hazard risk. Moreover, in the field of health science, abnormality detection using image 
processing has become very popular [29]. There are many cases in the literature where image 
data is used to deal with risk assessment problem [28]; [29]; [30]; [31]; [32] In all these cases, 
as long as the focus is to detect abnormalities and failures among a big database of images, the 
risk assessment approach proposed in the current chapter is applicable for merging attained 
information from images. 

This chapter is organized as follows. In Section 3.2, the proposed failure risk assessment 
model is presented including the model framework. Section 3.3 addresses a real-life case study 
of the Dutch railway network. Section 3.4 presents the results and discussions. Finally, in 
Section 3.5, conclusions are presented. 

 

3.2    Failure risk assessment model 

 

3.2.1 The proposed framework 

In this section, we propose a failure risk framework for analysing the rail surface defects. The 
proposed framework is depicted in Figure 3.1. Video images, ultrasonic detection [22], and 
eddy current testing [23] can all be used to detect the defects that can lead to rail break. In this 
chapter, we rely on both ultrasonic detection method and video images. On the one hand, with 
ultrasonic measurement, we derive a general characteristic of crack growth. One the other hand, 
with video image, we analyze the growth of the visual length of defects which are detected 
among huge number of rail images. Then, a sample of the visual length of the detected defects 
is chosen for the assessment of failure risk model. The approach can be employed for any type 
of rail defects.  
 

In this framework, a large amount of image data is automatically processed by a deep 
convolutional neural network to detect squats in Step 1 (see details in Section 3.4). The visual 
lengths of defects are measured from the defect detected from the video images, and then used 
for defect severity analysis in Step 2 (see details in Section 3.2).  
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Figure 3.1 Flowchart of the proposed methodology 

 

In Step 3, a crack growth analysis is performed to estimate the crack growth as a function 
of Million Gross Tons (MGT) by using the data from ultrasonic measurements (see details in 
Section 3.2.3). In addition, the probability of rail failure as a function of crack growth is 
estimated using the crack growth data. Finally, we propose to assess the risk of rail failure with 
the composition of the probability function, the crack growth function and the partial inverse 
of severity function:  

 

 
where  and  are two consecutive measurements of visual length for a defect, detected by 
analysis of image data, and  relates  and   to MGT. The function  relates the 
estimate of MGT to crack growth, and function  estimates the probability of failure based 
on the estimate of crack growth. Thus, the risk is approximated relying on the failure probability 
achieved in (3.1). It means that the failure probability represents the risk of failure within a 
given MGT.   
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3.2.2 Severity analysis 

This section aims to model the visual length of defects based on the Million Gross Tons (MGT). 
MGT is a measurement unit to show the total weight of freight and passenger trains that pass 
over a given track in a given time horizon. Thus, the MGT can directly influence the growth of 
defects in the sense that an increase in the MGT accelerates the defect evolution process and 
the tracks with a lower train occupation are expected to have a lower degradation rate than the 
busy tracks.  
 

The defects are automatically detected using the image processing method described in 
Section 2.4. We measure the visual lengths of the detected defects to use in severity analysis. 
We consider visual length as an indicator of a defect severity. Analysis of rail image data shows 
that the visual length of defects can grow with different rates as the MGT increases. To capture 
the dynamics of the growth, we keep track of the growth for each individual squat to determine 
the increase of the visual length in each MGT step. A generic function is used to model the 
growth. The function can be applied relying on different methods where two consecutive data 
measurements are available. We present the benefits of using an N-step ahead prediction model 
for the prediction of squat’s growth in our recent studies. For details, see [33]; [34]. Thus, 
considering the index  as an increment counter for a step value of MGT, , we use an 
N-step ahead prediction model to describe the growth of visual length at different growth 
scenarios :  

 
 

  (3.2) 

 
where  is the estimate of the visual length for each individual squat i at step  assuming 

scenario h,  is the one-step ahead prediction function, and  is the visual length 

measurement at the current step. By partially inversing , we get as a function of the 
visual length in two consecutive MGT steps. In case of scarce data for the total amount of MGT 
in each step, an approximation can be made for the prediction model (3.2): 

 
 

   (3.3) 

 
In this chapter, a fixed increment of the MGT (m) is assumed and the step value for MGT 

holds the same over a given prediction time horizon. Then, we apply function  in an 

N-step ahead fashion to reconstruct . This allows to formulate the relation between visual 

length and MGT at step m. Once  is formulated, we can partially inverse it to get  as 
follows: 
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3.2.3 Crack growth analysis 

The crack growth of defects is an important factor in rail breaks. Independent of the defect 
severity, the growth of the crack length depends on the traffic load (MGT). The idea in this 
chapter is to analyze the data measured by ultrasonic detection technique and to present a 
function for estimation of the crack growth over the MGT [33]; [34]: 
 

  (3.5) 

 
where  is the estimate of the crack growth length for defect i at MGT step  assuming 
scenario h and  is the crack growth function. We will use a similar approach as described 
in Section 3.2.2 to assess the crack growth function. Regarding the crack growth data, assume 
the crack growth length is , containing I measurements total .Then the 
failure event can be defined as:  

 

 
      (3.6) 

 
where  is the critical level for the ith measurement. This formula implies that a failure occurs 
if the crack growth length exceeds the critical level. A logistic function is appropriate for these 
data since the variable is binomial meaning that the system fails if the measurement value 
satisfies (3.6), otherwise there is no failure [35]. Therefore, a logistic function is considered for 
the likelihood of rail failure probability  with parameters a (intercept) and b (slope). 
Recently, the Bayesian inference model has been employed extensively to assess model 
uncertainty and robustness for stochastic data behaviors [36]; [37]; [38]. Using a Bayesian 
inference model, variations of the model parameters can be considered as a step-wise 
degradation process. According to Bayes theorem, if prior knowledge about the parameters  
is represented by its probability density distribution , and if the statistical observations 
of crack growth length have likelihood , then rail failure probability can be expressed 
as posterior distribution : 

 

 
    (3.7) 

 
Typically, Monte Carlo methods are used in Bayesian data analysis to derive the posterior 

distribution [39]; [40]. The aim of using a Monte Carlo method is to generate random samples 
from the posterior distribution in order to use them when it is impossible to analytically compute 
the posterior distribution. Among all the Monte Carlo methods, slice sampling is easier to 
implement as only the posterior needs to be specified [41]; [42]. The slice sampling algorithm 
selects samples uniformly from the region under the density function. Therefore, in this chapter, 
a slice sampling algorithm is selected to capture the failure probability function. 
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3.2.4 Analysis of rail image data 

We consider a railway health monitoring situation where a huge amount of video data is 
regularly collected. Subsequently, the video data needs to be analyzed in order to detect defects 
with a potential risk of rail break. The data is collected by a set of high frame rate cameras that 
are mounted on a measurement train. The video recordings cover the entire length of the 
measured distance on the rail track. The mounted cameras capture the rails from several angles 
to look at different components. The top view camera is aimed at the rail surface defects, with 
each frame covering a length of 15 cm of the track along the longitudinal direction. The 
recordings are preprocessed into video compilations where consecutive frames have a few 
millimeters of overlap and the effects of variations in the train speed are removed. Recordings 
made from (bi)monthly measurements of roughly 6500 kilometers of rail amount to producing 
thousands of Gigabytes. Every 4 Gigabytes of data covers 16 kilometers of rail track. As a 
result, for recording videos of the whole Dutch rail network, almost 10 terabytes of data are 
required per year. 

To be able to automatically extract defect information from the data, we train and apply 
a deep convolutional neural network (DCNN) [43] to detect and classify the defects. Recently, 
application of DCNN has become very popular in the domain of big data due to the increases 
in the size of available training sets and algorithmic advances such as the use of piecewise linear 
units and dropout training [44]; [45]; [46]. By passing through a number of convolutional layers, 
the images are fed to the DCNN to train a set of shared neuron weights, referred to as filters. 
Convolution filters detect distinguishing features and form what is called a feature map. We use 
Rectified Linear Unit (ReLU) [47] activation function which is a piecewise linear function that 
outputs the input directly if it is positive, otherwise, it outputs zero. The function comes after 
the convolution steps. We also use max-pooling layers to efficiently down-sample the outcome 
of each layer. Moreover, to prevent overfitting to the training data, we use dropout layers before 
each convolutional layer. Overfitting occurs when a classifier is fitted too closely to the sample 
data set that is unable to accurately describe the entire population, resulting into a high error 
over the test data. The dropout layer is known to prevent this by randomly disabling some 
activations from the previous layer [48]. The convolutional and pooling layer are finally 
attached to a sequence of three fully-connected layers to get class predictions. The DCNN is 
trained by iterative feed forward of the training examples through the network and by 
calculating the error with respect to the desired outcome. The error and its gradient are then 
evaluated at the last layer of the network and back-propagated through all the layers to adjust 
all the weights. Repeating this process until decreasing the error to a certain limit is called the 
gradient descent algorithm [47]. We use a widely applied variation of the algorithm where on 
each iteration, the error and gradients are calculated using a randomly selected set of training 
examples usually called a mini-batch [47]. 
 

3.3    Case study 

In this section, a track from the Dutch railway network is considered to illustrate the capabilities 
of the proposed methodology. Track availability can be affected by rail surface defects. Among 
all types of rail surface defects, like rail corrugation, head checks, shatter cracking, vertical 
splits, head horizontal splits and wheel burns, squats play an important role in having a 
significant impact on the health condition of the track. Therefore, our main focus is on detecting 
the squats in this case study.  
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We select a sample from these data that contains recordings over a track in the North of The 
Netherlands from Zwolle to Groningen corresponding to approximately 300,000 captured 
frames. Two successive measurements of the same location along the track are matched 
together using the available time and geographic data. In total 4220 samples are labeled and 
used for training and testing of the neural network model. Out of the total set of samples, 3170 
are normal rail samples and roughly 1000 are squats. The proposed DCNN architecture for 
analyzing this amount of image frames is presented in Figure 3.2. Initially the input images are 
down-scaled to 375×275 pixels and converted into gray-scale. The sequence of three fully-
connected layers translates the extracted high-level features from the previous layers, into 3 
classes representing the normal rail, trivial defects (seed squats), and squats.  

 

 
Figure 3.2 Architecture of the proposed DCNN model 

 
Trivial defects appear in the form of spots or small damages to the rail head, while squats 

are usually defects that are fully grown indentations and deformations of the rail surface. The 
normal class includes all other components such as plain rails, switches, welds, possible non-
defect contaminations, etc. To train the network, a set of manually labeled examples is collected 
from several locations along the measured track and is compiled into a training set for each one 
of the 3 classes. The network is trained once and then is used for multiple time predictions. The 
training time is 40 hours per 1500 examples. Once the network is trained, it is used to find 
squats in the large pool of previously unseen samples (prediction). These samples are collected 
from other monitoring sessions. Unlike the training time, the prediction time is insignificant (30 
seconds per 15000 examples). The prediction result then has an average binary accuracy of 96.9 
% (squat vs. normal) when training on 80% of the labelled dataset and testing on the remaining 
20%. By putting a high acceptance threshold on the network output response, we opt to detect 
the correct cases of squats, trivial defects and the normal cases. Hence, after training and testing, 
we use the model to predict the severity of squats from the large amounts of available unlabelled 
data, from which we choose 109 detected squats for manual measurement of visual lengths in 
the track Zwolle-Groningen. Then, the samples are used in the next step where the growth of 
visual lengths is considered as described in Section 3.2.2. 

Here, squats with a visual length below 15 mm are considered as light squats, in which 
cracks have not appeared yet (surface initiation is assumed, and we cannot see beneath the 
surface from the image). Squats with visual length ranging from 15 to 30 mm are considered to 
be at the medium stage of growth. The medium squats evolve to severe squats when the network 
of cracks spreads further. Figure 3.3 shows reference photos of squats ranging from light to 
severe together with crack evolution. After repeated train passes, light squats will evolve into 
medium or severe squats. Once the squat is severe, the squat will evolve into a defect with 
surface-initiated cracks growing along the depth beneath the rail surface [49].  

Normal rail

Squat
Seed squat

Convolution → ReLU → Max-pooling → Dropout Fully-connected Network
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After detecting squats by image processing, we apply the approach as described in Section 
3.2.2 for this particular case to construct severity function. From real data of visual length, we 
estimate  from (3.3).  
 

 
Figure 3.3 A sample of squats in different classes of severity, the red arrows show the evolution of the crack 

when it gets severe. 
 

Figure 3.4. shows the relation between two consecutive measurements of visual length for 
a fixed value of MGT-step (m = 1). Relying on the physical understanding of how a squat grows, 
we fit a polynomial regression model of degree 3, using the least-absolute residual method [50], 
to represent the stochasticity of the growth. The residual plot together with the R-square value 
of 0.9778 determines how well the polynomial model fits the data. We consider the fit model 
as an average growth scenario, and the 3-sigma control limits as slow and fast growth scenarios. 
We use the estimated function of Figure 3.4 for 8-step ahead prediction, and consider a fixed 
MGT increment of 3.01 in each step. As a result, a model-based prediction function for the 
visual lengths versus MGT is depicted in Figure 3.5, considering the three scenarios of average 
(a), fast (b), and slow (c).  
 

 
Figure 3.4 Estimation of the visual length of the squats for m = 1, and based on real data 
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Figure 3.5 Growth of squat visual length over MGT for the following model-based growth scenarios: (a) 

average, (b) fast, (c) slow, the dotted line depicts an upper bound of squat visual length. 

 

The dotted line shows the upper bound of the estimation for visual length, i.e. it is very 
rare to observe a squat with a length over the upper bound in reality. Assuming , 
the visual length at MGT step  at the fast scenario, reaches the upper bound with a MGT 

, lower than at the average scenario  and at the slow scenario. 
It means that the degradation process in the fast scenario is more accelerated than in the average 
and slow scenarios as the traffic load on rail increases. We estimate the crack growth function, 

 by relying on ultrasonic measurement data. The model-based relation between the crack 
growth length and MGT is shown in Figure 3.6. In addition, three different scenarios are 
considered to capture the crack growth dynamics, including the average scenario, the slow 
scenario, and the fast scenario. As seen in the figure, at the fast scenario, crack propagation of 
the squat at a given MGT is significantly faster than squats that are at the average and slow 
scenario. For example, at MGT = 10.36, it is estimated that the crack length of a squat grows 1 
mm at the slow scenario, 2 mm at the average scenario, and 8 mm at the fast scenario. We can 
assess the risk of rail failure considering any of the different scenarios of crack growth length.    

(a)

(b)                                                                        (c)     
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Figure 3.6 A model-based relation between crack growth length and MGT 

 
In the failure probability model, we consider that a rail is prone to fail when a squat 

reaches a crack length of 9 mm as the threshold for rail safety criticality. The crack length of 
each squat is measured to see how it has grown over MGT, and how many cracks have reached 
a length of 9 mm or even more. We use normal priors for the regression parameters . 
Relying on the data for the crack growth length, the parameters are estimated by a slice sampling 
algorithm considering 1000 samples. Respectively, Figure 3.7 and Figure 3.8 shows how the 
mean of the parameter a and b varies over the samples and converges to a constant value. As 
seen in the figures, the posterior means of parameters converge to a stationary status after the 
first 50 samples.  
 

 
Figure 3.7 Posterior distributions of regression parameter a 
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Figure 3.8 Posterior distributions of regression parameter b 

 

3.4    Results and discussion 

For a detected squat with measured visual lengths in one MGT step, we estimate the risk of rail 
failure as follows: From the model in Figure 3.5, we estimate the MGT for the visual lengths in 
two consecutive measurements. Then, from the model in Figure 3.6, we find the crack growth 
length for the estimated MGT. Finally, we estimate the failure probability from the crack growth 
length in Figure 3.9. The failure probability plot represents how probable a squat fails in the 
next MGT step when the crack growth length is given. As an example, if the crack length of a 
squat increases 6 mm for MGT =7.04, the probability that the squat could lead to a rail break is 
roughly 0.82. In Figure 3.10, a sample of 5 squats is visualized, and the estimates of failure 
probability from the given visual lengths are presented.  
 

 
Figure 3.9 Probability of rail failure based on the growth of crack length 
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For instance, the squat with  and  will cause a rail break with a probability 
of 28.9% in the next MGT step, if no maintenance action is operated. However, no serious 
failure threatens the squat at the early stage and the failure probability is then almost 10% (see 
the squat with 16 mm in visual length). In Table 3.1, more samples of squats are presented. The 
table includes 64 samples of squats with their measurements of visual length for two MGT 
steps. As expected, the squat at the severe stage will be prone to a rail break if no operation is 
carried out on the rail within a given MGT step. For example, there is a 53% chance of failure 
for the 64th squat in which the crack growth length is 4.10 mm within the given MGT step. The 
estimated risk values for the squats at the late stage indicate the need for immediate rail 
replacements. For the squats at early stage, a grinding operation is suggested to postpone rail 
failure by treating the squats.  

 
Table 3.1. Failure risk estimation for a sample of squats, detected on the track Zwolle-Groningen 

 
 
 

 

1 42 mmV = 2 57 mmV =

Squat 1V  2V  LD  ProbF  Squat 1V  2V  LD  ProbF  
1 3.65 4.56 0.02 0.055 33 16.41 21.87 0.48 0.079 
2 8.20 9.11 0.03 0.056 34 10.03 14.58 0.42 0.076 
3 3.65 5.47 0.05 0.057 35 6.38 19.14 0.46 0.078 
4 7.29 9.11 0.05 0.057 36 8.20 21.87 0.48 0.079 
5 3.65 6.38 0.08 0.058 37 17.32 23.70 0.55 0.083 
6 5.47 8.20 0.09 0.059 38 7.29 20.96 0.49 0.080 
7 6.38 9.11 0.09 0.059 39 6.38 20.96 0.53 0.082 
8 4.56 8.20 0.10 0.060 40 9.11 27.34 0.63 0.087 
9 5.47 9.11 0.11 0.060 41 11.85 18.23 0.60 0.085 

10 2.73 7.29 0.13 0.061 42 8.20 30.08 0.78 0.095 
11 3.65 8.20 0.13 0.061 43 14.58 23.70 0.77 0.094 
12 4.56 9.11 0.14 0.061 44 28.25 31.90 0.95 0.104 
13 2.73 8.20 0.15 0.062 45 11.85 21.87 0.90 0.101 
14 5.47 10.03 0.15 0.062 46 10.03 20.96 0.94 0.103 
15 6.38 11.85 0.17 0.063 47 14.58 30.08 1.17 0.122 
16 7.29 12.76 0.19 0.064 48 30.99 37.37 1.55 0.156 
17 3.65 10.03 0.19 0.064 49 13.67 30.99 1.31 0.134 
18 4.56 10.94 0.19 0.064 50 12.76 29.16 1.29 0.133 
19 5.47 11.85 0.21 0.065 51 10.03 24.61 1.20 0.125 
20 8.20 14.58 0.21 0.065 52 20.05 24.61 1.48 0.151 
21 10.03 12.76 0.25 0.067 53 13.67 34.63 1.48 0.151 
22 2.73 10.94 0.24 0.067 54 24.61 31.90 1.91 0.190 
23 6.38 13.67 0.24 0.067 55 31.90 41.92 2.23 0.231 
24 7.29 14.58 0.24 0.067 56 10.94 40.10 1.95 0.194 
25 6.38 14.58 0.27 0.068 57 22.78 30.99 2.35 0.248 
26 3.65 12.76 0.27 0.068 58 24.61 34.63 2.56 0.277 
27 9.11 18.23 0.29 0.069 59 27.34 38.28 2.62 0.286 
28 2.73 13.67 0.34 0.072 60 39.19 55.59 3.05 0.348 
29 6.38 16.41 0.34 0.072 61 23.70 35.54 3.09 0.355 
30 8.20 19.14 0.38 0.074 62 33.72 52.86 3.69 0.461 
31 17.32 22.78 0.46 0.078 63 28.25 46.48 3.87 0.493 
32 8.20 20.96 0.44 0.077 64 30.99 51.04 4.10 0.532 

 1 
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Figure 3.10 A sample of failure risk estimates for 5 squats over the track 
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3.5   Conclusions 

In this chapter, we present a methodology for the risk assessment of rail failure for a type of rail 
surface defects called squats. A big data analysis approach is used to automatically detect squats 
from rail images. The visual lengths of squats are measured in order to use them in the severity 
analysis model, which captures the growth of visual length over MGT increments. In addition, 
due to the influence of crack growth on estimation of the failure risk, a crack growth analysis 
based on MGT has been performed. At the end, a Bayesian model is employed to estimate the 
failure probability. By relying on the estimated failure risk, the infrastructure manager is able 
to take actions at the right time and the right place in order to prevent unexpected consequences 
induced by rail breaks. While this chapter is focused on the analysis of squats, the results can 
also be applicable for the analysis of other types of rail defects such as head checks and 
corrugations. 
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4.1 Introduction 

The increase of train traffic and axle loads affect the health condition of railway infrastructure. 
Hence, efficient infrastructure monitoring and maintenance is among the major concerns of 
infrastructure managers in order to improve the performance of railway operations [1]. As such, 
infrastructure health condition should be monitored and considered in the decision making of 
maintenance. Effective management of infrastructure health condition is crucial to guarantee the 
desired asset quality level [2]; [3]. It also plays an important role in meeting the demand when the 
infrastructure is upgraded e.g. when increasing traffic capacity, the maintenance regime should be 
adapted to avoid compromising safety and infrastructure health requirements. To keep the 
infrastructure system working at an effective level, a condition-based maintenance system is 
required not only to consider the actual heath condition but also its evolution during the maintenance 
decision horizon [4]. 
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Condition-based monitoring is used in railway infrastructures to estimate the actual health condition 
of the assets, so that degradation processes can be effectively controlled. It helps to keep the 
infrastructure manager continually informed of the estimated health of the railway infrastructure. 
Condition-based monitoring is supposed to collect information that will allow an effective operation 
by reducing maintenance cost, eliminating unnecessary operations and focusing on places where 
the problems are located and where they will be in the coming period. Furthermore, the 
enhancement in usage of the railway infrastructure needs a systematic monitoring plan to keep the 
trains running safely by considering all related data influencing the health condition. The data for a 
typical railway infrastructure includes a large amount of frequent measurements from the 
monitoring systems of the assets involved in the railway operations. To ensure the performance 
level, a huge amount of data should be collected, transmitted, processed and properly stored so that 
it can be used as historical information. This whole process reflects a transition from raw 
infrastructure data into actionable maintenance knowledge. Therefore, the database constituted 
from continuous monitoring will become larger and larger over time and applying big data analysis 
approaches is inevitable [5]. The classic methods fail to scale up to the huge volumes of the rail 
data. Thus, in order to design proper maintenance plans in railways, it is necessary to explore and 
analyse the growing amount of data and to extract what is useful information of it. To do so, 
different sensors can be used to collect the data obtained in railway track monitoring at different 
times, environmental conditions and frequencies. These data can include different characteristics: 
(1) discrete or continuous, (2) spatial or temporal, (3) signal and images among others [6]; [7]; [8]; 
[9]; [10]. In condition-based maintenance for railways, the monitoring data are mostly collected 
periodically with regular sampling intervals. For some critical assets, the monitoring can be adapted 
to other possible needs including a continuous measurement. The basic concept is to follow 
correctly the degradation of the infrastructure, in particular for critical infrastructure like rails. This 
chapter focuses on rail condition monitoring which have a critical role in the network performance 
[11]; [8]. A notable amount of the maintenance budget should be assigned therefore for the rail in 
an intensive railway network like the Dutch railway network [12]. Due to the fact that rail 
infrastructure contributes hugely to the failures occurred in the network, it is important to assess the 
rail health condition. The analysis of the health condition analysis involves the detection of severe 
rail defects which play key role in causing rail break [13]; [14]; [15]. 

Rolling contact fatigue (RCF) affects the health condition of the rail due to the contact in the 
interface between wheel and rail [16]. RCF is a generic term describing a range of rail surface 
defects and has been an interesting challenging research topic, in particular the influence of RCF 
on maintenance decision making [17]. Moreover, its influence is related to other factors including 
traffic type, train speed, traffic load, rail/wheel profile, train characteristics and maintenance policy 
[18]. Once RCF appears, it induces considerable dynamical forces on the rail surface, and 
subsequently cracks are initiated and propagated from the surface [19]; [20]. The most important 
cause of defect appearance is the large number of trains passing over rail critical components, most 
significantly at welds, joints, and switches [21]. Early detection of surface defects is important to 
mitigate induced maintenance costs as well as unforeseeable consequences of rail breaks. There are 
different methods to diagnose the condition of rail defects, including ultrasonic measurements [22], 
eddy current testing [23] and guided-wave based monitoring [24]. 

In this chapter, the focus is on a type of rail surface defect called squat. The costs for treating 
these defects in the Dutch railway network are considerably high (more than 5000 euro/km per 
year) [21]. The maintenance of squats should be different according to their severity. For late-stage 
squats, a rail replacement plan is a proper decision while for the light squats, grinding a thin layer 
from the rail surface is the most effective solution. Hence, when all residual damages are removed, 
grinding is effective and the rail will be turned to a healthy condition. To optimally plan grinding 
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operations, condition-based maintenance relying on early detection of the squats is required. 
Although a defect detection method could give an indication of the health of the rail, the 
infrastructure manager requires prior knowledge to (1) be aware of all influential factors, (2) analyse 
interdependency between the rail observations and the influential factors and (3) obtain a future 
view of the track condition. Hence, by having knowledge about the track characteristics, potential 
risks about the rail can be anticipated due to the effect of the influential factors on the defect 
appearance and consequently on the rail health condition. Therefore, an analysis of influential 
factors should be taken into account to give at the most a proper prospect of the infrastructure health 
condition.  

Mixed Integer Linear Programming (MILP) is a common approach for track maintenance 
scheduling. A MILP model is developed in [25] for optimal condition-based preventive 
maintenance for a single track divided into multiple segments, considering various economic and 
technical factors such as train speed limit and track quality. The optimal planning of routine 
maintenance activities and projects like grinding to minimize maintenance costs and track 
possession time for a single track is formulated as an MILP problem in [26]. The optimal scheduling 
of rail, sleeper and ballast renewal at a network level is formulated as an MILP problem in [27] to 
minimize the expected life-cycle cost and track unavailability. In [28], the optimal clustering of 
track maintenance jobs into projects to minimize total maintenance costs for a network of track is 
recast as a Vehicle Routing Problem (VRP). The track maintenance problem considering different 
priorities for each section in the railway network is formulated as a VRP with customer costs in 
[29]. A time-space network model is developed in [30] for the optimal scheduling of capital 
maintenance projects like rail replacement. A metaheuristic based on simulated annealing is 
developed in [31] to determine the optimal tamping length of a tamping machine, minimizing the 
associated logistic costs and fixed machine costs. In this chapter, we use a simplified MILP model 
to optimize the rail grinding decision plan into clusters that can be related to the actual condition of 
the rail. The proposed MILP model eases implementing the condition-based maintenance strategy, 
reaching an effective maintenance plan in terms of rail health condition and also reduces the high 
cost of track maintenance activities. In this chapter, we propose a condition-based maintenance 
methodology taking both the observations and the prior knowledge of the track into account. The 
idea is to find interdependency between defect status and all major influential factors of the track 
prior knowledge. The defect status is defined in terms of number and severity of the defects. We 
investigate the interdependencies between the influential factors and the defect appearance by 
studying the track characteristics. Once the interdependency is studied, a set of rules is generated to 
connect rail conditions to the influential factors. The results then indicate which pieces of the rail 
are prone to be defective. The infrastructure manager is then able to propose maintenance planning 
according to the critical pieces of railway track. The methodology uses big data analytics, with real-
life data measured from a Dutch railway track, using Axle Box Acceleration (ABA) measurements 
and rail video images [21]; [32]; [33]. 

Figure 4.1 shows the flowchart of the proposed methodology divided into five steps. The 
major contribution of the chapter is in proposing a methodology that combines different methods 
for rail defect detection and also maintenance intervention optimization. For instance, in Step 5 we 
have adapted the model proposed in [34] to fit the new formulation proposed in this chapter in Step 
1. The integrated methodology is aimed to be implemented by the infra-managers; thus, simplicity 
and coherence between steps are very important to guarantee real-life implementation. In Step 1, 
the most important defects are detected using the ABA signals and rail video images considering 
the track position and the severity. A list of defects is assumed to be provided by the measurement 
systems. In Step 2, major influential factors, , are presented to give context on the prior 
knowledge of the track in the segment j. Step 3 presents the interdependency analysis between the 

jg
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influential factors and the observations obtained from Step 1. The aim is to investigate on how the 
influential factors are related to the observations. In Step 4, a decision system is proposed using a 
fuzzy inference system. A set of possible condition rules, , is generated to build up the 
inference system estimating the rail health condition relying on Step 3. Finally, in Step 5, 
maintenance planning is proposed based on the infrastructure health condition. For this purpose, the 
track can be divided to Ns rail segments (or clusters), to facilitate the maintenance 
decisions for infrastructure manager, particularly in long tracks. The infrastructure manager then 
gets informed of each segment’s status within a maintenance time horizon. Once one rail segment 
requires maintenance operation for grinding, the corresponding maintenance intervention is 
suggested. Therefore, the methodology covers two major parts of rail maintenance framework 
which are condition monitoring and maintenance plan.     
 
 

 
Figure 4.1 Flowchart of the proposed methodology 
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 4.2 Step 1: Intelligent rail condition monitoring 

In this chapter, we require a technology that can detect defects in an early stage. Hence, we consider 
to use ABA measurements [35]. To enhance the visualization, ABA measurements are combined 
with rail image videos [36]; [37]. In our case study, the ABA measurement and rail video images 
are used to study rail surface defects; specifically squats, as they are costly for the Dutch railway 
network. A global scheme of the measurement systems is given in Figure 4.2.  

 

 

 

 

 

 

 

 

 
 
Figure 4.2 Defect severity analysis via ABA signals and image data using on-board train measurement. In the scheme, 

a severe squat  is shown (S4). The actual measurements were obtained from two different trains: CTO Train for the 
ABA signals, and Inspectation measurement train for the video images. 

 
In [32] the feasibility of early-stage squat detection using an ABA system is shown. The ABA 

system can be employed to detect a range of surface defects, most importantly, squats, corrugations, 
and damaged welds, insulated joints and switches. The ABA system can be embedded on in-service 
operational trains. Four channels are assigned for the ABA measurement including left rail and right 
rail, and horizontal and vertical accelerations to capture all the ABA signals. A set of cameras with 
high frame rate are provided to capture high resolution images. The cameras are installed on the 
train measurement. A length of 15 cm of the track can be covered by each image.  

Deep convolutional neural networks (DCNNs) have been applied for different problems in 
the area of classification due to its algorithmic advances [38]; [39]. We use a DCNN model in order 
to automatically estimate from the ABA signals the defect severity throughout tracks based on a big 
data analysis. For training the DCNN, based on previous results [36]; [34], we obtain a set of 
labelled images with their severity. The labels used from the image samples are on a scale from 0 
to above 4 according to the severity level of the defects visible in the squats found by rail images 
analysis. Non-defect track images are assigned a value of zero and defects are assigned from 1 and 
above. The severity of the squat s can be used to represent the health condition of the rail, , 
at the time instant t of the measurement as follows 

( )sH t

Hs(t)=S4 

Accelerometers Video camera 

Video image 
analysis  

ABA signal 
analysis 
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 (4.1) 

 
where Ls(t) is the measured level of severity, S1 refers to a seed squat, S2 is a light squat, S3 is a 
moderate squat, S4 is a severe squat, and S5 is a squat with risk of rail break. The images and their 
severity are matched with their corresponding ABA signal. To do so, a window of the ABA samples 
is defined with a length of 3036 samples, covering full responses to local defects. This facilitates 
matching the signals with the video frames. Figure 4.3 shows two samples of image data used for 
the severity analysis associated with the corresponding ABA signals. The labelled data is therefore 
split into two parts for training and testing. To keep consistency in the defect detection, the labelled 
samples are collected from different locations over the measured track and they cover all the types 
of squats. They are compiled into a training set for each of the classes. The dataset was obtained by 
manual labelling of the images by an expert. The labelled sample defects are then divided into a 
training set and a testing set. The sample size was 125 squats. The distribution of the squat classes 
in terms of severity set is 70 samples for S1, 8 for S2, 6 for S3, 8 for S4, and 33 for S5. 75% of the 
data is assigned for training and 25% for validating of the network performance. The samples of 
the labelled images are composed of 125 different squats collected from different locations of the 
track. We train a convolutional neural network regression model using the samples. The average 
binary accuracy (defect vs. non-defect) of the network on all tested samples is taken into account. 
Although putting a high acceptance threshold on the network output response might increase the 
rate of false positive detection, we use the threshold to detect the correct classes of the defects, seed 
(trivial) defects, and the normal classes. Once the DCNN for the image data is trained, defects in 
the large pool of previously unseen samples can be found. 
 

 
Figure 4.3 ABA signals including acceleration matched with rail video frames 

 
Using a set of convolutional layers, the defect features are included in the DCNN model as 

filters to recognize distinguishing features and create a feature map. We use Rectified Linear Unit 
(ReLU) as activation function with max-pooling layers in order to down sample the outcome of 
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each layer [40]. The convolutional and pooling layer are finally attached to a sequence of three 
fully-connected layers to get class predictions (see in Figure 4.4).  

 

 
Figure 4.4 The prediction model consists of one-dimensional convolutional layers each followed by a max-pooling 

operation, and a ReLU activated dense layer on top, which results in the final scalar estimation of the severity. 
 

The separating rail observations (detecting squats using DCNNs) from track 
characteristics (determined by influential factors) is one of the major contributions of this 
chapter. On the one hand, the DCNN is used to estimate the severity of the defects according to 
the ABA and image sources. This just gives the defect analysis (the rail observation in the Step 
1) and not the rail health condition. On the other hand, track prior knowledge containing the 
influential factors can impact the rail health condition (Step 2) as those factors affect the quality 
of rail use over time (rail degradation). Thus, influential factors are collected to contribute the 
track characteristics for the estimation of rail health condition. For instance, a piece of rail 
positioned on a rail curve can get degraded faster than the same rail piece on a straight rail. To 
include track characteristics effects, the interdependency between the rail observations (the 
DCNNs) and the track prior knowledge is investigated in Step 3. 
 

4.3   Step 2: Prior knowledge of the track 

General characteristics of the railway track system can have a large influence in the initiation and 
growth of the rail defects. A list of some generic track characteristics that are potentially relevant to 
the appearance of rail defects are discussed next. The idea in this chapter is to take seven factors 
into account as “general characteristics of track” as according to the literature survey, they are 
proved to be significantly influencing in the initiation and growth of the rail defects. In particular, 
we classified the seven influential factors based on Step 2 into three categories (1) track profiles, 
(2) track irregularities and (3) operational speed profile and tractive efforts. However, there are other 
factors that can affect the track. As an example, train traffic can be influential and has an important 
role in the actual rail health condition. In this chapter, we assume that the influence of the traffic 
tonnage, which increases the amount of contact force between wheel-rail, can be seen in the defect 
severities (the rail observation). Furthermore, tonnage will be an influential factor when predicting 
defect evolution over time. During the same time period, the rail defects in segments with a higher 
tonnage evolved faster than the defects in segments with a low tonnage. Additionally, observations 
indicate that a higher number of defects will be found in tracks with a higher tonnage. These are 
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two possible ways to include the effect of the traffic tonnage in the proposed approach: (1) Indirectly 
via the effect of the tonnage in the rail observation. Condition monitoring measurements will 
automatically update both the appearance of new defects and the severity of the defects. (2) Directly 
via the inclusion of tonnage as influential factor. This case is most suitable when the infrastructure 
manager wants to predict the evolution of the defects; as tonnage will indicate how fast detected 
defects will evolve. In this chapter, we do not include the prediction of the defect evolution, so in 
this case the indirect method via rail observation is conducted. Part of the future research is to 
consider the effect of tonnage within a predictive approach. We employ various sources of 
information to obtain the prior knowledge of track using a big data analysis.  
 

4.3.1    Track profiles 

Deviations of the track alignments (vertical, lateral, etc.) with respect to the nominal alignment can 
lead to track irregularities [41]; [42]. [43] analyse the contact between wheel and rail conditions in 
the curved railway track to consider the influence of track profile on the initiation and growth of 
rail defects. [44] reviews the research on squats and squat-type defects. According to [44], squats 
appear mostly on straight and gentle curves, and those defects barely occur on sharp curves. 
Likewise, [35] report that squats in the Netherlands occur normally on straight tracks and gentle 
curves. On the contrary, another rail surface defect, called head checks, shows up mostly on the 
curve tracks with radii no more than 3000 m (sharp curves) [45]. In this chapter, the horizontal 
curvature of the track is taken into account. Furthermore, the rail segments are defined based on the 
rail curvature. In this way, only one influential factor for the horizontal curvature is considered for 
one segment. Vertical profile is ignored as those changes in the Dutch railway network are small. 
 

4.3.2    Track irregularities 

The track geometry changes from the design geometry due to trains passing over the track. More 
passing trains could worsen the track geometry condition. In the literature, the irregularity amplitude 
and wavelengths are mostly used as the controlling factors of the track quality. The limits for those 
controlling factors are typically analysed using measurements and dynamic simulations. The 
presence of track irregularities was found to have an influential effect on RCF defect appearance 
[46]. Track geometry problems are widely explained as one of the influential factors considering 
wheel-rail interactions, maintenance planning, and life of railway tracks. Irregularities have an 
impact on ride comfort and traffic safety level. All those influences are therefore very critical in 
railway dynamics. Nonetheless, the critical level is directly related to track usage. In the literature, 
there are also different studies about the influence of track geometry on the track condition and the 
track degradation. Thus, by considering the significant contribution of the track geometry on the 
track condition and then subsequent maintenance plans, control of track irregularities plays an 
important role on facilitating condition-based maintenance planning [47]; [48]. An infrastructure 
manager requires to employ the geometry measurements for the maintenance planning [49]; [50]. 
A maintained track geometry considerably contributes not only to train safety but also track health 
condition. Furthermore, track geometry monitoring could help to prolong the effective track life 
time by managing the track degradation, the track health condition and subsequently cost of the 
maintenance operations [42]. 

The literature surveys show that measurement data has been used to develop statistical 
modelling of railway track irregularities in the last three decades. Track safety and ride comfort are 
among the first track irregularities analysis using field data. [51] discusses the impact of track 
quality on track maintenance decisions and performance-based analysis of track geometry using a 
statistical model for a long track. The paper develops a degradation-based track condition model to 
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explain interaction between rail defects and performance indicators. A similar investigation has 
been carried out using linear models to capture the track response to a train load in terms of track 
irregularities and potential appearance of rail defects [52]. [53] use a comprehensive model to 
predict the track quality for maintenance operations. They employed multiple data of traffic and 
train speed, track structure, maintenance time slots to determine the track quality at two consecutive 
time periods. In this chapter, based on the available data, we select three sets of irregularity-related 
influential factors including (1) the vehicle effect, which is a signal indicating the train ride quality 
based on several geometry measurements and operating trains characteristics, (2) track geometry, 
which is an indicator estimated based on a combination of different track geometry measurements 
such as horizontal alignment, the vertical alignment and cant differences, and (3) track super 
elevation which is the difference between the designed cant and the measured cant. 
 

4.3.3    Operational speed profile and tractive efforts 

Tractive effort and curving in the track are found to be potentially responsible for RCF-type rail 
damages [54]. The review of the squat defects in [44] reveals that these defects can come with 
driving traction i.e. locomotives, compared to curving traction. Observations by [55] show the 
relationship between braking and squat occurrence in the Dutch railway network. The authors 
conclude that the traction performance of the rolling stock has a large influence on the initiation and 
growth of squats. They found many squats at pieces of a track where the gradient of the speed was 
the highest and the speed was low. Moreover, the low speed was also influential, as more use of the 
Anti-lock Brake System (ABS) system happens at lower speeds. Tractive and braking efforts, which 
differ by the types of locomotives, can also influence on the occurrence of RCF defects. A 
comparison is made between different locomotives in different operational situations in Australia 
to investigate the initiation and development of squats in the rail head [56]. [57] finds that the most 
frequent kilometre positions for the squat are locations with low-speed running associated with high 
wheel slip and low adhesion. [57] investigated the traction characteristics of the typical traction 
motors to find the potential link between the generation of defects and the rolling stock type. In this 
chapter, the speed profile of the typical rolling stock is investigated to determine its potential 
correlations with the defect occurrence. The related effects are considered in this chapter including: 
(1) train speed profile, which is the speed of the measurement train in km/h, (2) train acceleration 
profile, which is the acceleration of the measurement train in m/s2 and (3) rail head wear, which 
estimates the difference between the measured height of the railhead and the nominal height of a 
new rail railhead in mm. The measurements were obtained with tacho signals, accelerometers and 
scanning laser sensors mounted on the measurement train. 
 

 4.4   Step 3: Interdependency analysis 

According to the track prior knowledge explained in Step 2, those track factors that are observed to 
be influential on rail conditions in the Dutch railway network are considered. We use the data 
available in the Dutch railway infrastructure monitoring system (BBMS) to acquire the signals of 
the influential factors. In this chapter, we use both dynamic and static measurements to obtain the 
influential factors. After processing the measurements, the influential factors are calculated for a 
single measurement campaign. Part of the further research includes the use of historical 
measurements to study the evolution of the influential factors over time. Hence, seven signals are 
chosen as influential factors which might significantly affect the rail condition containing (1) train 
speed profile, (2) train acceleration profile (3) rail head wear, (4) track horizontal curvature, (5) 
vehicle effect, (6) track geometry parameter and (7) track super-elevation. In Figure 4.5, a map is 
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employed to show track including all the seven influential factors. The data are captured over the 
whole track to analyse the dynamics of the track influential factors.  Hence, on the one hand we 
have a set of data over the track representing the track knowledge and on the other hand, squats are 
detected along the track with their severity and location using the ABA signals and the image data. 
The interdependency is defined by investigating how to match the location and the severity of a 
certain defect with the signals of the track influential factors. To do so, the track is partitioned into 
different segments and the interdependency is investigated per segment.  
 

 
Figure 4.5 A schematic of the GIS map of the track influential factors in a piece of the track shown by the red line. 
 

To numerically represent the severity of a segment, we consider the average of the severities 
of all the squats that are located in segment j: 
 

 (4.2) 

 
where  is the severity of the squat s provided by the ABA detection algorithm for the 
measurement time t. The function  equals to 1 when s is a squat, and equals 0 otherwise. 
Regarding the processing of the datasets, once all the data sets (signals) over the track are 
acquired, the signals are processed according to equations (3) and (4). First, signals are 
normalized using (3), and then the influential factor is obtained by the average of the signal as 
in (4). The influential factor is then a “representative” value of the measured signal for that 
segment. So the signals should all be normalized between  Lint  and Lend  which are respectively the 
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upper bound and lower bound of the interval selected for the normalization. The function can be 
expressed as: 

 (4.3) 

 
where  is the data for the k-th influential factor at the location x and time instant t,  

and  are minimum and maximum values of the signal at the segment j. The variable t is 
defined in case we have different measurements over different periods; then, we can define all the 
influential factors over time. By considering  as the location where average value of the data 
occurs (as the representation of each segment), the data value for the segment j is calculated 
according to: 
 

 (4.4) 

 
where  is the influential factor for the segment j and the time step t.  By having a matrix 

containing  where Ns is the total number of segments and

, a clustering model is provided. Due to the simplicity of a method called 
Fuzzy C-Means, in this chapter we use this method for the clustering problem [58]. Just for 
illustration, three clusters are defined over the influential factors. The membership degree to the 
cluster determines how much a segment belongs to the cluster. The track is partitioned into 15 
segments. Figure 4.6 shows a schematic view of the clusters. As seen in the figure, segment 5 is 
highlighted by a rectangle indicating a high membership degree of the cluster 2 in the segment 
indicated by an arrow. Rail segment 4 has the higher membership to cluster 1; however, it does not 
belong to the cluster 1 as much as segments 1, 2, 3, 6, 14 and 15, which they all have membership 
values near to one. The results are used in order to obtain rail health condition decision rules.     
 

 
Figure 4.6 Membership degree for all the segments based on their influential factors. Highlighted by a rectangle, 

indicating that rail segment number 5 belongs highly to the cluster 2 (membership degree almost one, indicated by the 
arrow). 
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In this chapter, five levels are defined including very low (L1), low (L2), medium (L3), high (L4) and 
very high (L5) to represent the interdependency between the defect severity and the influential 
factors (For simplicity and interpretability of the data, linguistic terms such as very low, low, 
medium, high and very high can be defined). We rely on expert opinion to select the proper level.  

 

4.5    Step 4: Fuzzy inference model 

In this chapter, a fuzzy inference system is used to develop rules about rail health condition 
based on the influential factors . The Mamdani fuzzy system approach is considered due 
to its interpretability and simplicity [59]; [60]. To explicitly express the inference system, the 
Mamdani inference per rule can be defined as follows: 
  

 (4.5) 

 
where  is the rail health condition in section j and  the influential factor k in section 
j. Figure 4.7 shows the architecture of the inference model. In the first layer is to use the values 
of input variables, e.g. . The membership degrees of the inputs to the fuzzy values are 
obtained in layer 2 and employed to compute the rule truth values in layer 3. At the layer 4, 
according to the rule truth values, the rail health condition of each rule in the segment j is 
estimated.    
 

 
                                     Layer 1       Layer 2             Layer 3            Layer 4 
 

Figure 4.7 Generic structure of the fuzzy decision model to compute the rail health condition 
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The R fuzzy if-then rules are generated based on Equation (4.5) to capture combinations of the 
influential factors. The purpose is to assign a membership degree to each . Gaussian 
membership functions are used to fuzzify the inputs. In this chapter, the Gaussian type of 
membership function is used as it is smooth and nonzero at all points [61]; [62]. The Gaussian 
membership function is based on two parameters and can be represented as: 
 

 
(4.6) 

where for each membership function, c and σ are the parameters of the membership function. 
The parameters are tuned so that every membership function has around 30 percent overlapping 
with the neighbouring functions. The rule ri can be expressed as: 
 

 (4.7) 

where  is the fuzzy set related to input variable  and  is the fuzzy set of the rail 
health condition selected based on the expert judgment for rule ri. The minimum of the fuzzified 
input values is given as the rule truth value of each rule. The fuzzy set of the output is obtained 
by the Mamdani union operator over all the rules. To defuzzify the output, the centre of gravity 
approach is applied so to obtain a crisp value. The fuzzy inference system (Mamdani) is to map 
the inputs (the influential factors) to the output (the rail health condition) using a set of fuzzy 
rules. Thus, the fuzzy rules are components of the fuzzy inference system. To set the fuzzy 
rules, a questionnaire is provided to systematically analyse the combinations of possible inputs. 
As the judgment relies on the expert knowledge, it is prone to bias. Thus, the investigation is 
used to support the experts on the validation of the judgements. The inclusion of the 

investigation results in the questionnaire, helps the expert to visualize the effect of  over 
the segment j on the actual rail health conditions. Furthermore, as the questionnaire will lead to 
a model of the rail condition using the knowledge of expert, the expert qualified to fill out the 
questionnaire is a rail maintenance engineer or a rail inspection expert. The expert should have 
experience with both rail monitoring and rail maintenance. By using the proposed methodology, 
the infrastructure management company will benefit from systematically keeping the 
knowledge of rail experts in the company. So, in case a rail expert is not available, the railway 
company can still use the previously developed rules or update them according to new 
infrastructure requirements. In the questionnaire, two options are given including “influential” 
“non-influential”. Then, the experts are asked to rank between 1 and 2 the effect of the 
combination of influential factors into the health conditions of the rail. A major contribution of 
the fuzzy system is to include non-crisp values (fuzzy values) in the output (the rail health 
condition). Although a binary approach is used for the questionnaire, (1) we can capture the 
fuzzy dynamics on the rail health condition and (2) we cover all the rule combinations. 
Otherwise and with using five-level ranking, number of the rules created would be too much 
time consuming for the experts whereas some of those rules would be useless in the decision 
making. Moreover, the five-level ranking is used to just improve the visualization quality of the 
interdependency analysis. The questionnaire is converted into a fuzzy inference system, where 
the rules are given by the options of the questionnaire (two possible fuzzy sets per influential 
factor) and the output fuzzy sets of each rule are given by the answers of the experts (three 
possible fuzzy sets). 
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4.6    Step 5: Rail maintenance decisions 

After estimating the rail health condition for each segment, the entire rail can be evaluated according 
to the estimated health condition. The aim is to find the most critical pieces of the track for the 
condition-based grinding planning. Squats can be considerably treated by grinding completely 
when they are at an early stage of growth or effectively keep at safe level (to avoid having disastrous 
consequences) when they are severe. In this chapter, a clustering method is proposed to grind the 
most critical pieces of the track efficiently based on defined maintenance time slots determined by 
the infrastructure manager. As different tracks have different maintenance time slots, it is important 
to consider the available time slots to carry out the grinding operation. In the Dutch railway network, 
the time slots vary from one railway station to the next railway station. This means that not all 
segments of a long track that include different railway stations have the same maintenance time 
available for doing grinding. Hence, the grinding planning can be formulated as Figure 4.8.  As 
depicted in Figure 4.8, if maintenance time is still available after the grinding, the clustering 
approach can be applied to the next critical track segment ranked second by the expert system to 
effectively utilize the whole available maintenance time slot. Hence, the infrastructure manager 
makes sure that the maintenance time is fully used to avoid inducing extra maintenance costs. The 
clustering approach strives to cover as many severe defects using as few clusters as possible within 
the limited maintenance time slot, which usually takes 8-10 hours at night in the Dutch railway 
network (this depends on the type of operations, and it could change per day, week and year). The 
proposed clustering approach assigns a defect, e.g. a squat, to a cluster. The model includes not only 
the squat position, but also the squat severities acquired by the ABA system measurement and rail 
image data. The proposed grinding model is elaborated in the previous work of the authors [34]. 
Table 4.1 presents the notations used in the model.  
 

 
Figure 4.8 The proposed simplified grinding planning scheme. 
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Table 4.1 A list of the notations of the clustering model 

Notations Definitions 

 Number of clusters 

 Number of squats 

,  Track starting and ending positions, respectively 

Ω Defect severity 

 Setup time for a grinding maintenance operation. 

 Duration of maintenance time slot 

and  Track starting and ending positions of the g-th cluster 

and  Minimum and maximum size of each cluster 

 Grinding machine speed running over the track 
 Driving speed of the grinding machine when the machine is off 
 Time needed to switch from grinding to driving 
 Time needed to switch from driving to grinding 

 
We call  the physical range, and clusters located within the physical range are called active 

clusters. Also, the setup time, ,  typically includes the machine travelling time, preparation time 
and finishing time for a maintenance operation. The start and end locations of the g-th cluster are 
the decision variables of the clustering problem. Thus, the grinding model can be formulated as the 
following non-smooth optimization problem [34]. The indicator function Iσ takes value 1 if the 
statement σ is true, and 0 otherwise. The first term in the objective function (4.8) rewards the squats 
covered by a cluster depending on their severities, while the second term serves to maximize the 
number of non-active clusters, i.e. minimize the number of active clusters. The second term in (4.8) 
counts the number of clusters outside the physical range, i.e. non-active squats. As the total number 
of available clusters Nc is fixed, maximizing the number of non-active clusters is equivalent to 
minimizing the number of active clusters. The active cluster is defined via the kilometre positions 
of its start and end points within the physical range . A non-active cluster is outside the 

physical range and has no physical meaning. We use the idea of non-active cluster to be able to 
have idle clusters. Also, Xl is the kilometre location of the l-th squat. Constraints (4.11)-(4.12) set 
the distance range of the clusters. Note that the upper bound is set as indicated to allow the 

situation of non-active cluster, i.e. all clusters are located outside the physical range . The 

term ε in (4.12) is included to avoid the overlapping of clusters. To determine ε, we suggest just to 
take a tiny positive value (like ε =0.001 m). When ε is high, the distance between clusters will be 
higher and interesting rail pieces might not get covered by a cluster. Constraint (4.13) restricts the 
size of each cluster. 
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subject to 
 

 

(4.9) 
 
 

(4.10) 
  
(4.11) 
 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

 

The minimal and maximal size of a cluster is indeed determined by operational considerations 
of the grinding machine. The minimal size of a cluster is usually set to be the shortest length that 
the grinding machine can manipulate. The maximal size of a cluster should be less than the length 
of the rail considered. Constraint (4.13) restricts the size of each cluster. Constraint (4.14) ensures 
that the clusters are not overlapping, where the small positive parameter e is the minimum distance 
between two clusters. So, there may be track sections between clusters that will be not included in 
the grinding planning. The constraint (4.15) forbids fractional clusters. The fractional cluster means 
that the start and end points of a cluster must both be inside or outside the physical range. We only 
allow to use active clusters (start and end points are both inside the physical range) and non-active 
clusters (start and end points both outside the physical range). The constraint (4.16) is the time limit 
constraint to ensure that the resulting clusters can be processed within the given maintenance time 
slot. The left-hand side of constraint (4.16) computes the total maintenance time, including the time 
to grind the active clusters (first term), the time for the machine to travel between the clusters 
(second term), and the setup time Ts. Constraint (4.16) guarantees that the total maintenance time 
to execute the clustering plan is less than the duration of the maintenance time slot Ts. The non-
smooth optimization problem (4.8)-(4.16) can either be solved by gradient-free algorithms like 
pattern search and genetic algorithms, or transformed into an MILP problem following the standard 
procedure described in [64].  In [34], the clustering method was employed as part of the low-level 
optimization, in a setup where the decisions are based on prediction including uncertainties via a 
scenario-based chance-constrained approach.  

4.7   Numerical results 

The track Amersfoort-Weert in the Netherlands is selected as a case study (nearly 125 kilometers 
of track). The track passes through Utrecht, Geldermalsen, ’s-Hertogenbosch, and Eindhoven to 
reach the destination (Weert) (Figure 4.9). The whole track is partitioned into 15 segments to take 
all the signals of the influential factors per segment into account. Also, the definition of the segments 
is based on track curvature, which means that each curve is included into one segment regardless 
the segment sizes. The squat problem is aimed in the case study due to the fact that: (1) squats are 
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one of the most commonly observed defects on rails, (2) squat-related costs are more than 5000 
euro/km per year in The Netherlands. Although the rail grinding helps to treat all type of rail defects, 
e.g. corrugation, head checks and wheel burn, the optimal maintenance decisions proposed in the 
current chapter focus on the squat problem and for the other rail defect types, it is crucial to take the 
effect of those defects in the maintenance decisions into account. For the estimation of the actual 
rail conditions, as explained in Section 4.2, the images are analysed using image processing to detect 
the ones including squats.  
 

 
Figure 4.9 Schematic track map between two stations, Amersfoort and Weert. 

 

The rail image analysis is defined based on the images as input. The images are rescaled to 
375×275 pixels. The three joined layers changes the high-level features through the previous layers, 
into three different classes defining the normal rail, rail with trivial defects, and rail with severe 
squats. To avoid mismatching between rail images and the ABA signal, first the frames of video 
images are pre-processed to eliminate the overlaps between two consecutive video images. Then, 
we align images with the ABA signal using GPS tags and different reference points of the rail 
infrastructure (such as switches, crossings, joints, etc.). To train the network, a set of manually 
labelled examples is collected from several locations along the measured track and is compiled into 
a training set for each one of the 3 classes (normal, trivial defects and squats). Once the network for 
the image data is trained, it is used to find squats in the large pool of previously unseen samples. By 
selecting a high value for the accuracy threshold on the output, the true cases of defects as well as 
the normal classes can be detected. The dataset was obtained by manual labelling of the images by 
an expert. The samples are chosen from different parts of the track, and they cover all the types of 
squats. The labelled sample defects are then divided into a training set and a testing set. We train a 
convolutional neural network regression model using the samples. Figure 4.10 shows the mean 
absolute error as a function of the training epoch of the network for both training and validation 
data. The convolutional neural network helps to distinguish between normal rail with abnormal 
pieces which contain squats. Figure 4.11 shows the comparative predictions and ground truth values 
for all samples, in the test set. Thus, although we believe that the number of samples is limited, as 
the samples were picked up from different locations and vary from light to severe squats, the dataset 
covers all the interesting cases. 
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Figure 4.10 Mean absolute error (MAE) of the ground truth severities and the predictions. The network is trained using 

75% of the data and is validated on the remaining 25%. 
 

 
Figure 4.11 Ground truth values provided by a human expert by estimating the defect severities from defect images vs 

prediction of the severity level from the ABA signal. 
 

Finally, the trained model is used with the new samples provided from the target track and 
finally predictions based purely on ABA are calculated. Figure 4.12 shows a sample plot of the 
results by the detection algorithm, which are used as the rail actual health condition, and shows the 
position of the defects and their severity.      
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Figure 4.12 A sample of defect locations versus defect severity between kilometre 33 and 33.9 in the track 

Amersfoort-Weert. 
 

The training time is approximately 41 hours for 1500 samples. A large pool of unseen rail 
images is employed to predict the trained network with much less computational time compared to 
the training time (30 seconds for 15000 samples). The prediction results show average accuracy of 
97 % when training data covers 80% of the labelled dataset while 20% of the dataset is assigned for 
testing.  

 
In Figure 4.13, to perform the interdependency analysis we have compared the severity of a 

segment (rail defect problems) with each influential factor (track characteristic). This information 
can be used to guide the design of fuzzy rules created from interview with experts about the relation 
between health condition and influential factors. Based on the interdependencies, a set of fuzzy 
rules are defined to estimate the health condition based on the influential factors as obtained in 
Equation (4.3). All the rules are given with the same weight. Moreover, all the input variables are 
combined through the rules. In this chapter, 127 fuzzy if-then rules are generated in order to meet 
the possible interdependencies. Furthermore, based on the fuzzy rules, the sensitivities of the health 
condition to the influential factors are captured as shown in Figure 4.14. This figure presents how 
the influential factors model the rail health condition, varying from fully healthy (severity equal to 
zero) to completely unhealthy (severity equal to one), while all the other influential factors are 
assumed to be fully healthy (equal to zero). Three plots are used to show the sensitivity.  

 
Variation of the inputs of an expert in the questionnaire can lead to different final maintenance 

decision results. Several experts are asked to fill out the questionnaire so that variations cause by 
single expert are reduced. Among all the influential factors, train speed has the highest effect on the 
grinding decision and superelevation has less influence. An increase of 20% in the train speed 
related influential factor gives an 8% increase on the rail health condition, whereas an increase of 
20% in the superelevation related influential factor gives 5%. A misestimating of 20% in a single 
factor gives at most 8% difference in final results error in the case of changing train speed related 
influential factor with superelevation related influential factor. 

 
As an example, in Figure 4.14(a), the effect of two input variables namely train speed, , and 

train acceleration profile, , respectively, is presented. As shown in the figure, the train speed 
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changes over the track affect more the rail health condition in comparison with train acceleration 
profile. This is a good indicator of the importance of the train speed for the maintenance decisions. 
Figure 4.14(b) depicts the influence of the speed profile versus supperelevation, .  The plot 
shows that the rail health condition cannot get excited by the influence of the supperelevation as 
same as the effect of the train speed profile. In Figure 4.14(c), vehicle effect, , is compared 

with the supperelevation . As can be seen in the plot, both factors are not as influential as 
train speed and train acceleration on the rail health condition. However, the vehicle effect can 
influence more in comparison with the supperelevation.        

 

 
Figure 4.13 Interdependency analysis between defect severity and track influential factors over 15 track segments 

where, and  are train speed profile (m/s), train acceleration profile 
(m/s2), track horizontal curve (mm), track geometry parameter (measured at 40 km/h), rail head wear (mm), vehicle 

effect, track superelevation (mm), respectively. 
 

However, the vehicle effect can influence the health conditions more in comparison with 
the superelevation. Therefore, an increase in the most influencing factors, i. e. and 
can increase the criticality of the segment up to requiring maintenance. If this criticality goes 
beyond the given rail health conditions of other rail segments of the track, then the grinding 
decision changes directly. Therefore, the infrastructure manager should take the segments with 
higher train speed profile and train acceleration into account in the maintenance plan. 

Figure 4.15 also indicates that obtain the highest values of the rail health 
condition. It means that those segments have a critical health condition compared to other rail 
segments. These segments highlighted by the red line in the figure belong to the track between 
railway stations Geldermalsen and 's Hertogenbosch. Furthermore, the rail actual condition (rail 
observation) is depicted in Figure 4.15. 
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Figure 4.14 Examples of how the fuzzy rail condition rules are based according to the interdependency analysis 
 
 

Table 4.2 Calculated influential factors per segment and estimated rail health condition using the proposed fuzzy 
inference system. 

 
 

Relying on the fuzzy model, the rail health condition is estimated. Each segment is evaluated based 
on the health condition as shown in Figure 4.15 and Table 4.2. Table 4.2 presents the results of the 
case study. Given the influential factors, the rail health condition based on the fuzzy inference 
system is estimated. Although some rules might not be needed as they might never apply in practice, 

Segments 1( )j tg  2 ( )j tg  3( )j tg  4 ( )j tg  5( )j tg  6 ( )j tg  7 ( )j tg  ( )m
jY t  

1 2.6 1.9 1.1 1.8 1.7 2.1 1.8 0.6507 

2 2.3 2.4 2.7 2.8 2.4 1.7 2.7 0.6522 

3 2.9 2.8 2.9 2.7 2.9 1.9 2.9 0.6521 

4 2.8 1.8 3.4 2.7 2.8 2.4 2.1 0.4929 

5 3.8 3.4 3.4 2.8 2.7 3.5 3.4 0.6683 

6 2.7 1.7 2.7 2.7 2.8 2.7 2.8 0.6481 

7 3.6 3.6 3.4 4.7 4.3 3.6 3.2 0.6957 

8 4.1 3.4 2.5 3.8 3.5 4.5 4.4 0.6982 

9 4.2 4.2 4.5 4.2 4.1 4.7 3.8 0.6938 

10 4.6 4.5 4.6 3.5 3.6 4.8 3.4 0.6949 

11 4.7 2.7 3.4 3.7 3.8 3.6 3.8 0.6721 

12 4.1 1.7 2.7 2.1 2.7 2.7 2.4 0.6803 

13 4.2 2.6 2.8 3.7 3.6 3.7 2.3 0.6721 

14 2.6 2.7 2.4 1.7 1.8 2.4 2.7 0.6489 

15 2.7 2.4 2.2 2.6 2.7 3.6 3.5 0.6849 

 1 
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we aimed to develop a questionnaire that captures all the possibilities to have a full coverage of 
inputs. Using the proposed inference system, any rail segment can be evaluated with given 
influential factors. Table 4.2 gives an example on how the fuzzy inference system performs. The 
influential factors are obtained from rail field measurements and the last column is calculated using 
the fuzzy rules. 

The figure shows the number of squats over the full track from Amersfoort to Weert. The 
defects are detected based on the proposed detection model described in the Section 4.2. The 
segments with the most severe squats are distinguished by two different arrows in Figure 4.16. As 
seen in the figure, the segments 7 and 10 include the highest number in squat numbers. Thus, the 
segments 7, 8, 9 and 10 are selected as the critical segments to be maintained. Depending on 
available maintenance time slot, the track can be ground. If after grinding the above-mentioned 
segments, there is time to maintenance the rest of the rail, the segment 13 and 15 are candidates to 
be maintained (marked by black arrows). From the figure,  has more squats than , but 
according to Figure 4.15,  is more critical in terms of the health condition and also is shorter in 
length, which increases the squats density distributed on the track. Therefore, segment 15 is chosen 
as the alternative option.       

Once the critical segments are determined, the optimal clustering model is used to cover 
squats subject to the time limit imposed by the maintenance slot. The proposed clustering model is 
able to treat the most important squats. In this chapter, the length of the maintenance time slot is set 
to 8 hours. This time includes the setup time which covers the cost associated with transportation, 
machinery, personnel, etc. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.15 Rail health condition over the track segment showing the most critical pieces of the track highlighted with 
red line on the map 

 
The most relevant squats are covered by a cluster, as the clustering model penalizes a squat 

outside any cluster by its severity. Hence, the most important squats are treated by grinding, even 
when the maintenance slot is not long enough. This is not normally the case for cyclic grinding in 
which the grinding machine starts grinding from the start point going towards to the end of the track 
without any guarantee to capture the most important squats. 
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Figure 4.16 Number of moderate and severe squats within different segments. Red arrows show the target 

segments including most severe squats and black arrows indicate the alternative options for grinding in case the 
maintenance time slot remains after maintaining the target segments. 

 
Figure 4.17 shows the clustering result between the stations Geldermalsen and 's 

Hertogenbosch covering the critical segments, i.e.  . The target track is around 20 
km as shown in the x-axis of the figure. According to the proposed detection model, the squat 
severity is estimated as indicated in the y-axis. The grinding model proposes two clusters within the 
maintenance time slot capturing the most severe squats by considering density of the squats. In this 
way, the grinding machine starts grinding from the beginning of the track to reach the kilometer 
52.42, then the machine stops working to drive to cluster two (the transfer time is supposed 
negligible) which starts at the track position 60.51 km until the end of the track. The squats remained 
not treated, will be maintained in the next maintenance operation, which typically is performed 
every 6 months in the Dutch railway network. Moreover, the number of the defects between 
(remaining track piece) 52.46 km and 60.51 km is much less (43 defects and average severity 2.10) 
than in the first cluster between 46 km until 52.4 km (77 defects and average severity 2.15) and the 
second cluster between 60.51 km until 66 km (187 defects and average severity 2.25). Thus, 
although we have defects between 52.46 and 60.51, by considering (1) the maintenance time slot 
limitation and (2) maintenance priority of the segments 7 and 10 (Figure 4.17) in terms of higher 
value of health condition, the defects between 52.42 and 60.51 remain with no maintenance 
intervention until the next maintenance time slot. Without the proposed clustering model, the 
grinding machine will not be able to capture the most important squats, either at the beginning of 
the track or at the end of the track. Some severe squats would therefore remain untreated, which 
would increase maintenance costs and the probability of rail failure.         

The cost to employ the grinding machine is 35k euro for one night considering 10 hours. Note 
that 10 hours is fixed meaning that for shorter maintenance time slots (time<10 hour) the cost is the 
same. Thus, the infrastructure manager will be charged the same amount of money, although the 
machine is used for less than 10 hours. Thus, in case there is 2 hour more free-traffic time after 8 
hours, then the infrastructure manager has the chance to fill all the available time to keep the 
grinding machine running. In that case, according to the proposed methodology, the grinding 
machine can be transferred to the segment 10, j10, which has a more critical health condition 
compared to the rest of the target track. Then, the infrastructure manager can ensure that traffic-free 
hours have efficiently used to treat all the most important squats over a long track.    
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Figure 4.17 Result of the grinding model that determines the optimal clustering of the target track. A squat is 

marked by either a colored square or a colored circle if they are covered by a cluster. 
 

 
 

4.8    Conclusion 

In this chapter, we propose an integrated approach for maintenance decision system of the railway 
infrastructures. The methodology includes infrastructure condition monitoring and maintenance 
decision making. The proposed approach is applied to the condition-based treatment of squats, with 
big data information coming from a track in the Dutch railway network. The algorithm makes use 
of both ABA signals and rail video images, which contribute a huge amount of data. The use of 
both rail data sources reduces the detection error of the surface defects. Moreover, we have used 
the track characteristics of the Dutch railway network, enabling the infrastructure manager to 
interconnect the track influential factors with the actual rail health condition. We therefore 
investigated how to define a list of decision actions to support the decisions regarding the 
maintenance plan by analysing the above-mentioned interdependency. The results propose a 
maintenance decision approach based on the actual condition of the rails but together with the 
insights resulting from the influential factors. We proposed a partitioning of 15 different segments 
for a track that can be considered quite long (105 km). In the further research the 
interdependency analysis can be conducted at a more detailed level, for instance at every 
kilometre or even at meter of track. In future research, based on the influential factors it will be 
possible to anticipate much better the rail condition, so a predictive maintenance could be achieved. 
The maintenance decision system is proposed using a clustering model to perform grinding over 
the critical pieces of the rail. The results include the most severe squats covered by the maintenance 
clusters. Thus, although not all the squats are treated, the infrastructure manager can make sure that 
there is considerably less safety risk or high maintenance cost until the next rail measurement 
campaign. That is the reason we consider the maintenance time slot as a constraint, to include 
possible practical limitations as well. Different pass numbers of the grinding machine, resulting in 
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different grinding depths, have an impact on the rail defect risk after grinding. Different pass 
numbers also lead to different grinding speeds. The current clustering model considers only one 
grinding depth, meaning one fixed pass number and grinding speed. In the future work, we will 
consider flexible pass number of the grinding machine to obtain more efficient clustering plans. 

While this chapter is focused on the analysis of squats, the results are applicable to the analysis 
of other types of rail defects like corrugations, damaged insulated joints, welds and other types of 
RCF defects. To apply the proposed methodology to all those defects, the infrastructure manager 
will need to analyse the rail observations in terms of that specific type of defect versus the track 
characteristics to define the list of decision rules. The methodology for the design of the rules is 
flexible, so they can be adapted to different railway networks. The maintenance operations could 
be different from one type of defect to another, but the general methodology can be adapted, as far 
as the defects can be grouped into different clusters. In addition, the proposed methodology can be 
linked to a rail maintenance cost analysis to reduce life cycle cost (LCC). Also, by having different 
measurement sets of rail data, a prediction model of how the defects can grow over time could be 
added to the methodology, correlated to the influential factors. This will help the infrastructure 
manager to predict the rail health condition in advance and also to prolong the maintenance decision 
time horizon. Another topic for further research is to evaluate the methodology at different regions 
to investigate the influence of exogenous factors like environmental factors to the decision rules 
and consequently the maintenance decision rules.     
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maintenance decisions for regional railways with uncertain weld conditions using the Hilbert 
spectrum of axle box acceleration”. IEEE Transactions on Industrial Informatics. Volume 15, 
Issue 3, May 2018, Pages: 1496-1507. DOI: 10.1109/TII.2018.2847736. 
 

5.1    Introduction 

Regional railway transport has always been challenging because traditional cost-benefit 
analyses normally suggest that railway transport is not economically feasible from an operations 
and maintenance perspective. This lack of economic feasibility can be explained by the 
relatively low demand and the dispersed nature of the population in rural areas. However, from 
the social perspective, these regional railway lines are crucial for communities because they 
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provide access to work and services [1]. Moreover, good access to transportation services can 
help to prevent the de-population of rural areas and reduce the concentration of capital, services 
and attractions in big cities, which will reduce urban traffic congestion and increase investment 
in areas such as agriculture and tourism. Hence, regional railways can be seen as a tool to 
decentralize opportunities over a territory while accounting for societal equality and to include 
regionalization in decision-making. 

The main challenge faced by regional railways is that their operations and maintenance 
budget is constantly decreasing. Consequently, new technological solutions that can support the 
decision-making to spend scarce resources in a smart way are needed. To optimize maintenance 
costs, many intelligent monitoring systems have recently been used for railway infrastructures, 
which need big data analyses over the data collected [2], [3]. The range of sensing technologies 
has expanded rapidly, and sensor devices have simultaneously become cheaper. For example, 
networking technologies, WSNs, smart phones, accelerometers installed on trains, drones and 
video cameras have all developed and become less expensive [4], [5]. In this chapter, extending 
the traditional concept of what a train does is proposed, which is transporting people or goods, 
to include performing monitoring tasks. In this way, the capabilities of trains can be fully used 
while providing information about the health conditions of the track. Therefore, axle box 
acceleration (ABA) measurements are used from a regular train in operation to provide 
information about the health conditions of rails. This information is useful for detecting 
shortwave defects and corrugation and for determining the conditions of insulated joints and 
crossings.  The health conditions of rails can be estimated by tracing their degradation over time 
with the proper indicators [6], [7]. Degradation analyses allow infrastructure managers to be 
aware of critical locations by providing information about when degradation will reach a critical 
level, and this information can be used to mitigate the risk of a rail break. Rail degradation is 
mainly related to rail surface defects [8], and it is a stochastic process that changes over time 
and space. In this chapter, analyzing weld health conditions based on multiple ABA 
measurements is focused. The detection and assessment of rail surface defects are normally 
realized by analyzing frequency-based features. Previously, methods such as the power 
spectrum density [9], short-time Fourier transform [10] and wavelet transform [11] methods 
have been adopted for detecting defects in wheels, axle bearings and rails. ABA signals from 
regional railways are particularly noisy. The reason is that the signals can be affected not only 
by train speed and wheel conditions but also by a less accurate GPS location and track 
irregularities. To circumvent the usage of a fixed signal, this chapter employs the Hilbert-Huang 
Transform (HHT) based on an adaptive signal that can be associated with physical excitations 
[12]. The Hilbert spectrum of ABA is employed as an indicator of the weld health conditions.  

The use of ABA for assessing welds is inherently stochastic, so a set of robust and 
predictive key performance indicators (KPIs) is defined to capture the weld’s degradation 
dynamics during a given maintenance period. Using a scenario-based approach, two objective 
functions are used, the performance and the number of weld replacements. The latter function 
is related to maintenance costs. To facilitate decision-making, a methodology is proposed based 
on multi-objective optimization. Although the proposed methodology is applied to the rail 
welds, the structure can be generalized for other types of rail surface defects. Figure 5.1 shows 
the four major steps of the methodology. First, an operational train is used to collect ABA signal 
data. Then, the health conditions of the rail are estimated by using the Hilbert spectrum of the 
ABA signal at the rail welds. Next, KPIs are established to characterize the severity of the 
detected welds. As the KPIs include the uncertainty induced by measurement-related variables, 
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such as vehicle speed, condition of wheels, etc., a stochastic analysis is presented in the second 
step to provide robust KPIs. Moreover, different degradation scenarios are introduced to include 
the predictability of the KPIs. In the last step, a maintenance decisions optimization problem 
(MDOP) is solved to obtain Pareto-optimum maintenance solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. A generic flowchart of the proposed methodology 
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5.2    Methodology 

 

5.2.1    ABA measurement system 

There are different methods used to diagnose the condition of rail defects, including ultrasonic 
measurement [13], eddy current testing [14], and image recognition [15], among other 
technologies. Each method has different advantages and disadvantages. These methods help to 
check the crack development underneath rail surface defects (ultrasonic and eddy current) and 
to visually monitor rails (rail video images). However, these methods are not able to capture 
the dynamic response of welds under actual operation. By having a dynamic response, valuable 
information about welds can be acquired. A technology capable of (1) shortwave irregularity 
detection and (2) the capture of the dynamic response of welds is needed [16]. ABA 
measurement systems with these capabilities have been reported in different countries: the 
detection of lateral and vertical track irregularities in Korea [17]; the evaluation of wheel load 
fluctuation and rolling noise in Japan [18]; the detection of corrugations in Poland [19] and Italy 
[20]; the detection of rolling contact fatigue defects, damaged welds, and insulated joints in the 
Netherlands [21], [22]; and the analysis of vertical track geometry in Spain [23]. ABA system 
implementation has different advantages: (1) ABA is a low-cost measurement system compared 
to other types of detection methods. (2) The ABA sensors are easy to maintain and (3) ABA 
can be implemented on in-service operational trains. Moreover, there is (4) the possibility to 
detect seed rail defects with no need for expensive and complex instrumentation and (5) the 
ability to estimate the severity level of the dynamic contact force. Additionally, this technology 
is suitable for regional networks because it is portable and cost-effective. In this chapter, an 
axle box acceleration (ABA) measurement system is used to detect welds and estimate 
conditions. In total, 16 accelerometers are mounted on the axle boxes (vertically and 
longitudinally). For mounting the sensors, small mounting studs have to be glued in dry 
conditions on each axle box. Furthermore, a GPS antenna for positioning is used and installed 
on the roof of the train. The positioning system, beside the GPS antenna, uses tacho count which 
is able to detect pulses at approximately 1 MHz. A schematic view of the ABA system is 
described in Figure 5.2.  
 

Welds highly excite the vertical acceleration of ABA systems [24]. The location of welds 
is well known by the infrastructure manager. If not, their locations can easily be obtained by 
field inspection or video camera systems. However, relating the welds to the ABA signals is 
not an easy task in the time domain, but it is possible in the frequency domain. To study the 
relation between the actual welds in the track with the welds detected by the ABA measurement 
system, a training and validation process is performed. First, a track field inspection is carried 
out to relate different welds detected by the ABA signals to the actual welds. Based on the 
examples for training, a validation to other welds is performed by examining similar frequency 
responses. Finally, predictions are performed for the rest of the track.        

 

5.2.2    Rail welds 

Welded rails have considerably improved the problems of rail wear and overloading, which are 
the main causes of rail breaks. Most field welding in the railway industry is carried out using 
the aluminothermic technique. Such welds are primarily associated with rail replacement, the 
installation of insulated rail joints and track construction activities. However, rail welds are 
typically subject to complex loading and high stresses at the rail head as train wheels pass and 
they are exposed to cyclic fatigue loading [25]. Thus, the rails with damaged welds produce 



Chapter 5 89 

	

vibrations that cause noise and ride discomfort. Over time, they are a safety concern because 
they contribute to less stable support for moving trains. Crack propagation due to brittle 
fractures is one of the main factors that lead to a severely defective weld [26]. In regional 
networks, brittle fractures accelerate the further degradation of defects due to poor maintenance 
operations. 
 

 
Figure 5.2. A side view of the ABA system 

 
 

5.2.3    Hilbert spectrum of the ABA signal 

The Hilbert spectrum is obtained by combining empirical mode decomposition (EMD) with the 
Hilbert transform [27], namely, the HHT. EMD is a data-driven algorithm that adaptively 

decomposes a signal  into a number  of intrinsic mode functions (IMFs) 
,  and a residual . The IMFs are selected using a sifting process that 

only terminates when a stopping criterion has been satisfied. In detail, the EMD algorithm can 
be described by Algorithm 1. The decomposition starts with the original signal . The upper 
and lower envelopes,  and , of the signal are obtained by connecting all the signal 
maxima and minima, respectively, using spline interpolation. Then, the average envelope signal 

can be computed to obtain the estimated IMF  on line 9. At this point, the estimated 
IMF will be checked by the IMF termination criterion. 

 

                                                                                 (5.1) 

 
where  is a positive number that typically ranges from 0.2 to 0.3. If the criterion is not fulfilled, 
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if all the IMFs are obtained. The global termination criterion judges if the updated estimated 
IMF  on line 13 has only one pair of extrema. If not, the sifting process goes on; otherwise, 
the signal residual  can be finally obtained.  
 

Algorithm 1: General steps of EMD 

Input: (original signal) 

Output:  (IMFs), (residual) 

1 ; 
2 ; 
3 ; 
4 while global termination criterion not fulfilled do 
5    while IMF termination criterion not fulfilled 

do 
6       [ , ] FindEnvelopes( ); 

7       ; 
8       ; 
9       ; 
10   ; 
11   ; 
12   ; 

13   ; 

14 ; 
15 return , ; 
 
As a result, the sum of all IMFs and the residual can be used to reconstruct the original 

signal as follows: 
 

                                                                                                         (5.2) 

 
The extracted IMFs are considered as inherent signal modes contained in the original 

signal that can be associated with a physical meaning or cause. The iterative sifting process 
automatically decomposes the original signal into IMFs that possess different frequency bands 
decreasing from  to . Thus, EMD can be applied to ABA signals to extract signal 
features by dividing the full measurement frequency band into several sub-bands of interest. 
The next step of HHT is to compute the instantaneous frequency of the extracted IMFs. 
Concretely, the analytic form of IMFs is first computed using the Hilbert transform: 
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where  denotes the Hilbert transform of IMF . The following relationship is 
established: 

 

                                                                                            (5.4) 

 

Therefore, the instantaneous frequency  of IMF  can be obtained as 

 

                                                                                                                 (5.5) 

 

The instantaneous frequency represents the degree of frequency variation in the IMF  at 
time . This feature is similar to the variations of the wavelet coefficient that reflect the signal 
variations within a certain frequency band. However, in theory, when using the IMFs that are 
extracted from the signal itself instead of the signals reconstructed from a mother wavelet, the 
frequency variations are more closely related to the physical nature of the signals, namely, the 
excitations of ABA at the welds. Finally, the Hilbert spectrum of the signal  is defined as 
a function of instantaneous frequency and time as follows: 

 

                                                                                           (5.6) 

where  denotes the real part of the operator for a complex signal. The Hilbert spectrum of a 
single IMF  represents the energy variations of the instantaneous frequency with time, and 
it is given by 
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of a power spectrum. Since the IMFs have different frequency bands that will be inherited by 
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                                                                                     (5.8) 

 
where  ( ) is the weight coefficient for the spectrum of the  IMF with . For 
ABA signals measured under different conditions or for the detection of different types of 
defects with varying frequency responses, the distribution of weight coefficients varies 
depending on the indicative frequency band.  

 

5.2.4    Description of the KPIs 

When performing multiple ABA measurements, the data related to a given weld are subject to 
a different set of stochasticity. The most influencing uncertainties are related to the way the 
wheel hits the defect. Sources of stochasticity come from sensors, train speed, wheel quality, 
the track and the welds. There are various strategies to include uncertainties in the optimization 
[28]. A scenario-based approach is used to cope with the uncertainties related to the multiple 
measurements, , and robust KPIs are defined. Three different severity scenarios are 
proposed: slow, average and fast severity scenarios. The KPI for the average severity scenario, 
h2, can be expressed as 
 

                                                                                                    (5.9) 

 

where   is the KPI using measurement m at the weld w (located at position xw). The other 
two KPIs are defined as 

 

                                                                             (5.10) 

                                                                             (5.11) 

 
where  and  are the fast and slow severity scenarios for the weld w, respectively.  
 

5.2.5    Degradation model 

The generic degradation process of a rail infrastructure component is stochastic. The 
degradation can be stopped by applying maintenance actions. In this chapter, we consider only 
replacement. The maintenance actions per weld are binary: the weld is replaced or not replaced. 
For a set of welds, the optimization variable at time step k is , where 
W is the number of welds. The following model is proposed to describe the effects of the 
maintenance actions at a weld located at x: 
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            (5.12) 

 

For other types of defects, such as squats or corrugation, (5.11) should be extended to 
include grinding or other maintenance actions. To quantify the effects of maintenance on the 
degradation over time, predictions over the complete maintenance horizon should be conducted 
[29] for the three degradation scenarios, namely, , by solving (5.12) recursively 
 

       (5.13) 

 
The predicted health condition of the weld w could be considered as an interval prediction, 

, and is obtained from the KPIs measured from the ABA signal.  
 

5.2.6    Optimization of rail maintenance decisions 

Because the objective functions of maintenance operations are usually conflicting, i.e., a 
solution that optimizes one objective may not optimize others, the use of multi-objective 
optimization is considered. When there are multiple objectives that vary over time, optimization 
by tuning the weights [30] will work. A maintenance decisions optimization problem (MDOP) 
is formalized so that the trade-off between Pareto optimal solutions is acquired for the 
infrastructure manager. The proposed MDOP can be expressed as 
 

         (5.14) 

 
Let us consider minimization of the  objective functions simultaneously. The solution to 
5.14 is known as the Pareto optimal set. A solution  is said to be Pareto optimal if and 
only if another solution  does not exist, such that 
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The set of all objective function values corresponding to the Pareto optimal solutions is known 
as the Pareto front. In this chapter, two objective functions are considered, the performance and 
cost functions. For the first objective function, the contribution of the weld w to the degradation 
scenario h can be expressed as 

   (5.17) 
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where  is the KPI at the time step k of weld w and under severity scenario h and  is a 
weight applied across the time predictions of the KPIs. According to the predictive and robust 
KPIs provided with the ABA signals, the objective function J1 is defined to cover all the 
welds and all the scenarios over the maintenance period Np: 
 

 (5.18) 

 
where J1 is the KPI at the time step k and  is the weight per scenario. The second function 
(J2) is the number of replacements and is directly related to the budget availability and time 
constraint determined based on the decisions of the infrastructure manager. 
                      

 (5.19) 

 

Furthermore, we use a decision window (Dw) based on the given rail replacement length. 
If more than one weld can be covered by one replacement operation, it will be grouped in 
advance into a cluster . The replacement operation will then improve the conditions of all the 
welds in the cluster with only one replacement operation. In this case, the following rule is 
applied 

 

    
(5.20) 

 
where  is the i-th cluster of welds. Algorithm 2 shows the general architecture of an MDOP. 
To solve the MDOP problem, six optimization algorithms are selected and described in Section 
5.3 through two case studies. 
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Algorithm 2: general architecture of an MDOP 
   Input: N (population size), NR (number of 
             reference points and archive size) 
   Output: P (final population) 
1 P ← Random Initialize (N); 
2 R ← Uniform Reference Point(NR); 
3 A ← P; 
4 R′ ← R; 
5 while termination criterion not fulfilled do 
6     P′ ← Mating Selection (P,R’); 
7     O ← Variation (P’,N); 
8     [A,R′] ← Ref Point Adaption; 
9     P ← Environmental Selection; 
10 return P; 
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5.3    Numerical results and discussion 

In this section, a real-life case study is provided to show the capability of the proposed 
methodology. The regional track Bartolomeu-Zărneşti in Romania is used as the case study 
(Figure 5.3). A compactRIO measurement computer is used to collect 16 ABA channels 
(vertical and longitudinal) and store in the FPGA (field programmable gate array) at 25600 Hz. 
The tacho and GPS data are also stored in the FPGA. Next, a data block composed of 200 
samples is transferred to a computer. The ABA data processing is later performed offline after 
collecting all the data from the measurement campaign. The measurement data size per 
kilometer depends on the train speed. The sampling rate is a fixed 25600 Hz. The average data 
size for the whole track (which covers 26.9525 km) is 273.44 MB/km for one measurement run. 
For a measurement campaign, ten different measurement runs are normally carried out over the 
track to assure the repeatability and reduce signal noise. The size of the full data is 
approximately 73698.916 MB. The weather condition can differently influence rail conditions. 
High temperatures can increase the risk of incidents related to rail buckles. An excessive 
amount of snow and ice can cause huge problems for network performance: (1) a frozen 
catenary might damage the overhead wire and block the train from receiving electrical energy, 
or (2) a track switch could become dysfunctional when the temperature drop is extreme. 
Moreover, the welds can be ruptured in a rapid variation of temperature due to thermal 
expansion and contraction. Although it is an important topic, to the best knowledge of the 
authors, there is no study on how extreme weather conditions influence the quality of ABA 
measurement. 

In the case study, the ABA system was installed on a passenger train. The speed was 
varied from 0 km/h at stations, up to 80 km/h. The signals collected at nearly 0 km/h do not 
contain the necessary excitation for analysis of welds. Signals approximately 70 km/h (higher 
than 60 km/h) have been selected for the processing. The coverage in the track of the case study 
is approximately 80% of the infrastructure. For the rail pieces at the train speed below 70 km/h 
(most of them at stations or near them), quantitative relationships with the signature tunes and 
maximum ABA should be incorporated using a regression model to make full use of the data 
collected. Figure 5.4 shows the IMFs decomposed from a piece of the track measured when the 
train is passing over a weld. The weld located at around the midpoint of the signal segment 
results in two peaks in ABA. The IMFs numbered from IMF1 to IMF9 show the modes of ABA 
in different frequency bands in a descending order. The mode that reflects the excitation of the 
weld can be identified as IMF4, where the two peaks attributed to the weld are adequately 
preserved, while the other parts of IMF4 are almost zero.  

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 5.3 (a) A map of the railway track with a legend, and (b) the speed profile of the track obtained during 
various measurement rounds from Brasov to Zărneşti. 

 
Thus, this mode can be considered as the result of EMD separating the vibration response 

of the weld from other sources of excitation. In this chapter, the frequency band of the IMF4 of 
the ABA signal is employed as the best representation of the frequency response for welds. As 
given in (5.8), the weight coefficients  are thus determined to be  and . 
With this method, all the weld-like impacts will be detected, which are interesting locations for 
monitoring and rail replacement. Next, the amplitude of the Hilbert spectrum of the 
decomposed ABA is used to describe the severity of the welds. To outline the next steps of the 
case study according to the methodology, a four-welds-sample case (Case study one) is 
provided to describe the details of the methodology. Next, the whole track of the case study is 
aimed at showing the applicability of the methodology in practice (Case study two). The 
description of the case studies is given as follows. 

 

c
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Figure 5.4 A segment of the ABA signal and its IMFs decomposed by EMD. 

 

 

5.3.1    Case study one 

Four welds were selected from the full track of the case study first to give a detailed description 
of the steps. In Figure 5.5, the ABA signals of four welds are analyzed. As seen in Figure 5.5, 
four measurements are used to show the impact of the welds on the ABA signals associated 
with their corresponding IMF4, and the amplitudes of the Hilbert spectrum are presented. All 
the measurements are obtained from the vertical acceleration signal of the left rail. Moreover, 
the accuracy of the welds’ positioning is weak in the regional network due to the geographic 
locations. In the case study of this chapter, by defining a set of reference points in the ABA 
signals, together with tacho and GPS, the positioning of the welds is obtained with errors 
between 1 to 10 meters. In the welds of Figure 5.5, the data positioning accuracy is 
approximately 1 meter when compared to ABA peaks due to welds in different measurements. 



Chapter 5 98 

	

The obtained amplitudes are used to indicate the severity of the weld damage. In Figure 5.6 (a), 
the KPIs are estimated, and it is possible to see the degradation behavior of the welds. Relying 
on the physical understanding of how a surface rail defect grows, a polynomial regression 
model is fitted using the least-absolute residual method to represent the stochasticity of the 
growth [31]. Figure 5.6 (b) validates the maintenance decision results. As seen in the ranking, 
Weld 2 has the highest values in all the scenarios out of the four welds, and Weld 1 has the 
second highest rank. However, although Weld 3 has higher values than does Weld 4 in both 
fast and slow scenarios (h1 and h3), the average scenario of Weld 4 shows more criticality in 
comparison with Weld 3 (higher value). This plot can be used later to determine the extent that 
the optimization results are in agreement with the expected rankings of the welds. In Case study 
one, four replacements are possible. In general, the number of replacements should be 
determined according to the decision of the infrastructure manager. The decision can be 
explained in terms of (1) budget limit and (2) maintenance time slots. In Case study one, the 
decision window Dw is shorter than the distance between the welds, so only one weld is 
replaced by one replacement operation (no clustering needed). 

Figure 5.7 shows the Pareto front for four different MDOPs: 1) h1 is a fast severity 
scenario, 2) h2 is an average severity scenario, 3) h3 is a slow severity scenario. Additionally, 
αk is an exponentially growing parameter for the global KPI, which is the time indication in the 
prediction model. In addition, αh is 0.8, 0.6 and 0.4 for the fast, average and slow severity 
scenarios, respectively. The black arrow in Figure 5.7 when J2=2 (two replacements allowed) 
shows that once the severity scenario changes from h1 (fast degradation scenario) to h3 (slow 
degradation scenario), the first objective function (J1) gets a lower value because the 
degradation predictions are more “optimistic”. The selection of the degradation scenarios will 
influence the decision-making. A simple calculation shows an average improvement of 49.33% 
in the rail health condition when two replacements are made rather than zero. Table 5.1 presents 
the optimal decisions per scenario. The maintenance decision was equal to 1 when a 
replacement was made (u=1) and 0 when no replacement was made (u=0). From the Table 1, 
Weld 1 and Weld 2 are the most important welds and are the most common candidates for 
replacement. 
This decision is in agreement with the results shown in Figure 5.5, where the peaks of ABA 
and the amplitude of the Hilbert spectrum are much higher for these two welds. The 
maintenance decisions according to the global KPI are also analyzed. Weld 2 is selected when 
one replacement is allowed (J1=3.542, J2=1). For two replacements (J1=1.793, J2=2), Weld 1 
and Weld 2 are selected. For three replacements (J1=0.8832, J2=3), Weld 3 is included in 
addition to Weld 1 and Weld 2 in slow and fast scenarios, while in an average scenario, Weld 
4 is added to the maintenance decision. This finding is in agreement with Figure 5.6 (b). The 
analysis of the global KPI highlights the influences of Weld 1 and Weld 2 on the replacement 
decisions. 
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Figure 5.5 (a) Photos of welds for four different measurements with (a) the corresponding ABA signals in the 
vertical direction, (b) the IMF4 decomposed from the ABA signal, and (c) the Hilbert spectrum amplitude of 

IMF4.   
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(a) 

 

(b) 

Figure 5.6. (a) Four examples of the KPIs based on four-time-step weld measurements. A schematic view of four 
welds positioned on a piece of rail. Dw indicates the decision window in meters. (b) J1 comparison among four 

welds. 

Dw



Chapter 5 101 

	

 

Figure 5.7. The Pareto fronts of the four-welds example. The black arrow depicts the decrease of J1 as the 
severity of the scenario changes. The global KPIs result from the methodology considering all scenarios. 

 

Table 5.1 Maintenance decision results for each degradation scenario 

 
 

5.3.2    The whole track study 

To use the proposed methodology to study the full track from Bartolomeu to Zărneşti, the defect 
detection algorithm is run for the full track. Over the track, 2128 welds are detected in total. 
Considering only the welds detected at speeds above 60 km/h, the number of welds needed for 
optimization is 1849. The detection of welds is presented in Figure 5.8 (a), which depicts their 
KPIs in terms of the track position in kilometers for a single measurement. Empty severity 
signals imply that the welds in those locations are not analyzed. In Figure 8 (b), a close view of 
the track between 1.8 km and 2.4 km is shown. In Figure 5.8 (b), the effects of the decision 
window Dw can be observed. All the damaged welds within the decision window are grouped 
to indicate the cluster severity. The cluster severity is the summation of the weld severities. In 
this chapter, a decision window of 15 m is selected, but this window can be modified by the 

J2 H J1 Maintenance decisions 

0 
h1, !   6.981 0 0 0 0 
h2,+  4.665 0 0 0 0 
h3, ´  4.061 0 0 0 0 

1 
h1, !  4.647 0 1 0 0 
h2,+  2.851 0 1 0 0 
h3, ´  2.369 0 1 0 0 

2 
h1, !  2.465 1 1 0 0 
h2,+  1.360 1 1 0 0 
h3, ´  1.099 1 1 0 0 

3 
h1, !  1.208 1 1 1 0 
h2,+  0.6764 1 1 0 1 
h3, ´  0.5339 1 1 1 0 

4 
h1, !  0 1 1 1 1 
h2,+  0 1 1 1 1 
h3, ´  0 1 1 1 1 
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infrastructure manager if a reasonable alternative is found. Then, the MDOP problem is solved 
and used by the infrastructure manager to make optimal maintenance decisions. A performance 
analysis is done to evaluate the reliability of the solutions. Six multi-objective optimization 
algorithms are compared (1) ARMOEA [32]; (2) NSGA-II [33]; (3) SPEA2 [34]; (4) GrEA 
[35]; (5) RSEA [36] and VaEA [37]. The reason that those six algorithms are selected is due to 
their popularity to be used widely in different disciplines. Moreover, some of these algorithms, 
i.e. GrEA [35] and ARMOEA [32] are of researchers’ interests to be employed for multi-
objective problems.  

Although different MOEAs have been verified on different types of benchmark MOPs, 
some recent studies have noted that the performance of an MOEA can strongly depend on 
Pareto front shape of the problems [38]. Hence, some MOEAs are more capable of dealing with 
regular Pareto fronts, whereas others are specifically tailored for problems with irregular Pareto 
fronts. For the maintenance optimization problem in this chapter, a binary-based codification is 
used, i.e., on/off maintenance plan (replacing/not replacing). Considering the nature of a 
stochastic integer optimization problem, the results of the convergence and diversity of the 
Pareto fronts are obtained. The algorithm RSEA functions better than do the other algorithms 
according to Table 5.2. All six algorithms are run using the default setting and 30 independent 
runs. Populations of 500 solutions and 50000 generations were considered. The maximum 
number of rail replacements is set to 25 for demonstrations (a reasonable number that should 
fit the capacities of the replacement operations and budget). The results shown in Figure 5.9 are 
achieved using the platform PlatEMO [39] and MATLAB 2017b at a desktop computer (2.60 
GHz Intel Core i12, 32 GB of RAM). The Pareto fronts are shown in Figure 5.9, and the true 
Pareto front was obtained from multiple runs over all the algorithms. As shown in Figure 5.9, 
the RSEA and SPEA2 algorithms approximate the true Pareto front better than the other 
algorithms. The RSEA converged to the true Pareto front more quickly and with less iteration. 
To evaluate these algorithms, the metrics that capture the convergence and diversity of the 
Pareto front approximation delivered by various algorithms can be analyzed. In this chapter, 
the Normalized Hyper-volume (NHV) is included for performance comparisons. This metric is 
the only single set quality measure that is known to be strictly monotonic with regard to Pareto 
dominance; whenever a Pareto set approximation entirely dominates another one, the indicator 
value of the former approximation will be better. In addition, another metric is considered to 
include the effects of diversity analysis on the performances of the peer algorithms, namely, the 
spacing (Sp), which is widely accepted in the literature. The mean and standard deviation (Std.) 
listed in Table II are statistical results of the same algorithm that was run independently 30 
times for the same test problem. The computation time is also calculated for each algorithm. 
According to the results, although AEROMA gives the fastest runtime, RSEA performs better 
in terms of convergence and diversity analysis. Figure 5.10 shows the Pareto optimal solution 
for the maximum number of replacements (25 in total). Figure 5.10 (e) depicts the optimal 
decision derived by the RSEA. Replacing pieces of the track appears to be critical based on the 
RSEA (similar to in 10.63 km), but this replacement decision is missing when the results of 
other algorithms are considered. Moreover, some common rail pieces were found that needed 
replaced, such as the track pieces between 16.92 km to 18.01 km. The evolution of track 
deterioration compared to urban railway networks is lower because the railway traffic in 
regional railways is considerably lower. In the case study line, maintenance plans are organized 
regularly. A total of 25 locations for the rail replacements are considered to rank as the most 
important locations. To visualize the maintenance solution obtained by using the RSEA, a map 
in Figure 5.11 is provided, indicating the 25 locations that are candidates for replacement. 
Moreover, a zoom-in plot is included to show a piece of the track. The track piece shows seven 
maintenance solutions labeled with the replacement ranking. 
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(a) 

 
(b) 

Figure 5.8. (a) Detection results for the track between Bartolomeu and Zărneşti. (b) A piece of the track is 
highlighted in red to show how a decision window (Dw) is defined over the track.   
 

 

Figure. 5.9 Pareto front results of the three multi-objective optimization methods used to optimize rail 
maintenance between Bartolomeu and Zărneşti. The black circles show the true Pareto front, while the black 

cross shows the approximate Pareto front. 
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Table 5.2 Experimental results of a comparison among the 6 peer algorithms 

 

 

Figure 5.10. Optimal Pareto solutions for the rail maintenance decisions. The x-axis depicts the track distance (km) 
versus the maintenance decision, where 1 represents replacement and 0 represents no replacement. The following 
algorithms were used: (a) ARMOEA, (b) NSGAII, (c) GrEA, (d) SPEA2, (e) RSEA, and (f) VaEA. 

 

For example, the location labeled ‘9’ has priority for replacement compared to the other 
locations with higher numbers. Table 5.3 is presented to show the computational time of (1) 
data acquisition, (2) the detection algorithm, and (3) the optimization algorithms. For the data 
acquisition, the data block obtained from the accelerometers is transferred into raw files within 
30 seconds. Finally, when a new raw file is created, the old file is transformed into a text file in 
10 seconds, and both the raw file and the text file can be stored on a hard drive. Regarding the 
detection algorithm, the HHT-based detection algorithm requires an average of 2861.630215 
seconds to analyze the data measured from the full track, 26.9525 km. Thus, the time needed is 
approximately 106.17 s/km. Moreover, six algorithms used for the optimization are listed in the 
table as well. As the processing times for these algorithms are not considerably high, the 

 
NHV Spacing 

ARMOEA mean 0.87151 0.52538 
Std. 0.00018 0.04732 

SPEA2 mean 0.87197 1.05052 
Std. 0.00016 0.15213 

NSGAII mean 0.87187 0.85797 
Std. 0.00016 0.18143 

GrEA mean 0.87203 0.99232 
Std. 0.00014  0.18264 

RSEA mean 0.87229 1.47572 
Std. 0.00012 0.12381 

VaEA mean 0.87127 0.15339 
Std. 0.00023 0.10437 
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computation time difference between algorithms is not of major concern to the infrastructure 
manager. Furthermore, simplicity and quickness are major indicators of the optimization 
algorithms to be used in practice. Relying on Table 5.3, the ARMOEA algorithm is fastest 
compared to the others. However, when considering the simplicity plus the performance of the 
algorithms, RSEA and SPEA2 are interesting to use in practice as well. 

 

 

Figure 5.11. Map of the maintenance solutions depicted with “+”. A zoom-in plot is attached to show the 
maintenance priorities with numbers.  

 

Table 5.3 The list of computational times 
 

 

Transferring time 
from measurement 
train to real time 

computer 

30 s/data block 

The HHT-based 
detection algorithm 106.17 s/km 

The 6 peer 
algorithms 

ARMOEA mean 24.028 s 
Std. 0.083 s 

SPEA2 mean 30.071 s 
Std. 0.157 s 

NSGAII mean 25.722 s 
Std. 0.0988 s 

GrEA mean 24.910 s 
Std. 0.114 s 

RSEA mean 26.187 s 
Std. 0.090 s 

VaEA mean 25.446 s 
Std. 0.091 s 
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5.4    Conclusions 

In this chapter, a Pareto-based maintenance decision system is proposed for rail welds. The 
proposed approach is applied for condition-based maintenance of rail welds based on 
information from a track in a regional railway network. The Hilbert spectrum approach is used 
to detect welds based on the ABA. The case study was conducted for track between Bartolomeu 
and Zărneşti in Romania. To obtain the rail performance, a global KPI was proposed to indicate 
the conditions of the rail by including degradation scenarios and predictions to provide a clear 
picture of the network conditions during the maintenance period. The rail replacement number 
is simply considered as the second objective function, which is related to the budget of the 
infrastructure manager and the capacity to perform replacement operations during the 
maintenance period. Six algorithms were run using the same setup to optimize the rail 
maintenance decisions and evaluate the optimization results. Thus, the infrastructure manager 
not only receives Pareto optimal solutions but can also compare the results between the different 
algorithms. Among all six algorithms, the RSEA is the most reliable and has the most similarity 
to the true Pareto front compared to the other algorithms. Moreover, the coverage and diversity 
of the algorithms are tested using two performance metrics. The numerical results prove that 
the RSEA algorithm has good performance. This analysis will drastically reduce the amount of 
time needed for field inspections. Instead of visiting each weld in the infrastructure, the 
managers can focus on the welds that provide Pareto optimal solutions based on ABA signals. 

 In the future, a distributed system could be applied to the proposed framework to include 
larger sections of tracks. Moreover, by considering the track characteristics such as track 
geometry, a more elaborate framework for KPIs can be acquired. Another topic for future 
research is to consider the life-cycle costs as an objective function so that the rail replacement 
criterion can be reformulated according to different operation costs. Other objectives such as 
social value and environmental impact can also be included when adequate tools are able to 
dynamically assess their effects. While this chapter is focused on analyzing rail welds, the 
methodology can be used to analyze other types of rail defects, such as corrugations, squats and 
damaged insulated joints. The durability of the ABA measurement system has not been 
investigated yet, and it will be a topic of future research. In this study, the ABA system was 
already used for a week during the day in mixed dry and wet conditions, and no technical 
problems that might affect the results were reported. The effects of high temperature variations, 
such as snow conditions or high temperatures (at 30°C the rail might have a temperature 
approximately 70°C), are future research topics. 
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Conclusion and 
discussion 

 
The conclusion is presented in four parts. First, conclusion related to the KPIs is discussed and 
in the second part, the rail maintenance decision support system is concluded. The third part 
presents major recommendations to ProRail and the last part describes future research and 
what potentially can be fulfilled in the future.      

   

6.1   Conclusion from the effect of the KPIs on the system performance 

Chapter 2 defines a set of rail KPIs for a type of surface defect called squats. The global scheme 
of the chapter included two major parts, namely condition monitoring and health condition 
estimation. The chapter relied on ABA measurements for the actual rail health condition. The 
first step was how to use ABA measurement data in a way that can be applicable to the design 
of KPIs. However, data transformation from acceleration to an actionable defect characteristic 
was challenging. We defined a simple model to make the transformation happen. Thus, a model 
is used to convert the energy value of the ABA signals to visual length of the defects. From the 
point of view of the infrastructure manager, there should be a difference between defects in 
terms of their severities. We use the severity model investigated and presented in [1]. The model 
analyzes mechanical nature of squat and its evolution. Thus, we only rely on the visual lengths 
and classify the defects according to the visual lengths while by using crack depth of defects, 
more detailed information on the defect growth can be obtained. In the chapter, we suppose that 
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over the prediction time horizon, no new squat will develop within the rail. This is on contrary 
with the nature of the rail which is always possible to have new squats. Thus, a more practical 
prediction model can take the generation of the new squats in the prediction model into account 
(In Chapter 4, we set a primary investigation to help for estimating the critical pieces of tracks, 
prone to defect appearance). Hence, research regarding the effect of the new generation of the 
defects is for future studies. By having the predictive and robust KPIs, the infrastructure 
manager can think of a maintenance plan to systematically improve the performance. The 
chapter resulted in a simple maintenance recommendation in terms of rail grinding and rail 
replacement. The considerable difference between the rail health condition in doing nothing 
and the health conditions when doing grinding and rail replacing shows how influential the 
design of the rail KPIs can be.  

In Chapter 3, the focus is on how to define a risk KPI for rail. A new methodology is 
developed to analyse rail failure risk probability. Video images are employed to detect the 
squats for a long track Zwolle-Groningen using a big data approach. Once all the defect images 
together with their corresponding kilometre positions were obtained, an analysis on their visual 
lengths were done. Beside the visual length, the authors use the data collected by ultrasonic 
measurements. The aim is to include the crack depth in the defect evolution model. By having 
a double source of the data (video images and ultrasonic), a posterior function was provided for 
the estimate of the failure probability. Thus, the composition of the probability function and the 
crack growth function is considered in order to give the rail failure estimation. Nonetheless, 
estimating the failure risk requires consequence analysis as well. We only focus in this chapter 
on the failure probability and the consequence analysis requires more detailed operation cost 
analysis which can be the subject of future research. Moreover, the chapter uses yearly train 
traffic (MGT) to include the effect of defect growth prediction model. Overall, the failure 
probability can be applicable to replacement maintenance to give the probability on how likely 
can be for a rail piece to break till next measurement campaign in a given MGT. The proposed 
methodology can be more practical with using more real-life data for the crack depth analysis 
as we use limited number of squats for the analysis. 

6.2   Conclusion from the condition-based rail maintenance methodology 

In Chapter 4, an integrated framework for maintenance decision of the railway infrastructures is 
proposed. The proposed approach is applied to the condition-based treatment of squats, with big 
data information coming from a track in the Dutch railway network. After experiencing use of the 
ABA signals and videos images in Chapters 2 and 3, the proposed algorithm in this chapter makes 
use of both ABA signals and rail video images, simultaneously, which consists of a huge amount 
of data. The use of both rail data sources reduces the detection error of the surface defects. 
Moreover, we have used the track characteristics of the Dutch railway network, enabling the 
infrastructure manager to link the track influential factors to the actual rail health condition. The 
interdependency analysis between the track characteristics and the actual rail health condition 
is conducted over a long track. However, sufficient information was not available for a more 
detail analysis for the interdependency analysis in more details, e.g. every 10 meter. The 
proposed maintenance decision system uses a clustering model to perform grinding over the critical 
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pieces of the rail. The results include the most severe squats covered by the maintenance clusters. 
Although not all the squats are treated and there might still be some kilometre spots with squats, 
maintenance cost until the next rail measurement campaign should not be too high as the most 
critical track pieces are treated. The proposed methodology considers the maintenance time slot as 
a constraint, to include possible practical limitations as well. A potential improvement to the 
methodology can be the number of grinding machine passing over the critical pieces to be ground. 
We only use one passage and the rail is supposed to be sufficiently treated while in the practice, a 
rail might need multiple passages to become fully healthy.   

Chapter 5 is the study on the regional railway networks in which technical support for defect 
diagnosis and rail maintenance are more challenging compared to regular railway networks due to 
the difficulties caused by noise in the measurement, less GPS reliability in mountainous regions etc. 
Furthermore, beside Chapter 4 that is on how an expert system can be used for a rail maintenance 
decision support system, in this chapter, a Pareto-based algorithm is used to give optimal 
maintenance decisions. Therefore, in Chapter 5, like Chapter 4, a KPI for defects was directly 
extracted from the ABA signals. A Hilbert spectrum approach is used for detecting damaged welds. 
The Hilbert spectrum approach has not been addressed yet in the literature to detect rail defects. 
The approach helps to acquire the KPIs including the uncertainty of the ABA signals in different 
growth scenarios. So, a set of robust KPIs is defined. Moreover, a multi-objective based approach 
is used for optimizing the maintenance decisions. We could use a single objective function but as 
the trade-offs cannot be clearly tested between performance and cost functions, a multi-objective 
approach enables the infrastructure manager to see the trade-offs and decide better. 

 

6.3   Future research 

Throughout all the chapters, there are some potential improvements that can be taken into account 
in the future for the proposed framework. The major potentialities are highlighted as follows:  

• We rely on ABA measurement systems, rail video images and ultrasonic measurements. 
However, demand for cheap and easy-to-use condition measurement systems is becoming 
of major concern of infrastructure managers, in particular, for the regional networks. It 
means that infrastructure manager requires a cost-effective monitoring system which costs 
less compared to other options and keeps the performance at an acceptable level. Wireless 
condition monitoring systems are among the list of the new measurement technologies. 
Moreover, sensor devices have become cheaper due to the recent advances in networking 
technologies and mobile ad hoc networking. Therefore, wireless sensor networks (WSNs) 
can be used for monitoring railway infrastructure. There are different types of the cheap 
tools for WSNs, most importantly using smart phones, drones and laser camera [2], [3], [4], 
[5].    
 

• While this dissertation is focused on the analysis of squats and welds, the results are 
applicable to analyze other types of rail defects like corrugations, damaged insulated joints, 
and other types of RCF defects.  
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• A rail maintenance cost analysis could be added to the framework in order to reduce life 
cycle cost (LCC). The LCC considers costs associated with the lifetime of a rail 
infrastructure, namely, construction costs, operating costs, maintenance costs, energy costs, 
and taxes, and capital costs. This is not only useful for the maintenance cost analysis, but 
also could be used for a consequence analysis of different maintenance solutions. 

• Another topic for further research can be evaluation of the methodology at different regions 
to investigate the influence of exogenous factors like environmental and socioeconomic 
factors to the decision rules and consequently the maintenance decisions. Hence, it is 
required to perform an assessment considering economic (cost-benefit analysis), social and 
environmental effects in order to estimate the real benefit provided by maintenance 
strategies. To do so, multi-criteria analysis of the factors can be used to evaluate the 
influence by quantifying both impacts, i.e. quantitative and qualitative factors. Multi-criteria 
decision-making methods, particularly ELECTRE (elimination et choix traduisant la 
réalité), AHP (analytic hierarchy process) and TOPSIS (technique for order of preference 
by similarity to ideal solution) have been widely used for this purpose. 

• We select a scenario-based approach to cope with the uncertainties related to the ABA 
measurements throughout the dissertation. However, there are different strategies to include 
uncertainties in optimization problems. Some of them are of future prospect of this research. 
Stochastic optimization methods to tackle the real-world problems give better view of the 
optimization problem compared to deterministic methods. When the variables of the 
problem are known only within specific data interval, robust optimization can be a solution. 
Stochastic programming models are substantially the same but with a difference in the fact 
that probability distributions governing the data are known or can be estimated. Thus, beside 
the scenario-based approach used in this dissertation, the other methods can be also used, 
e.g. stochastic linear program and statistical inference approach [6], [7].  
 

6.4   Recommendations for ProRail 

This PhD dissertation is sponsored by ProRail (the Dutch railway infrastructure manager). The 
objective of this project (which involves three PhD researchers) was the development of a new asset 
and risk management methodology. The results can consider multiple parties in order to guarantee 
the long-term objectives of the Dutch railway infrastructure manager. Thus, this dissertation is 
supposed to be insightful on how to design new KPIs and use the exiting KPIs for maintaining 
network performance in a cost-effective way. According to the three major steps described in the 
summary, this dissertation can help ProRail in the following recommendations: 
 

• As the proposed KPIs include predictability and robustness, ProRail can have a better 
prospect on what is needed in future operations.  

• This dissertation tests three different infrastructure sources for condition monitoring: (1) the 
ABA, (2) high quality rail video images and (3) ultrasonic measurements. Therefore, the 
infrastructure manager comprehends how efficient each source can be on the performance 
improvement of the infrastructure.  
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• At the moment of writing this dissertation, the Dutch railway network mostly relies on 
cyclic maintenance decisions. According to this dissertation, this maintenance approach is 
not always the best choice (Chapter 2) and can be replaced with a condition-based 
maintenance approach. Therefore, instead of maintaining periodically (normally, every 6 
month), Prorail can make a balance between preventive maintenance, reactive maintenance 
and condition-based maintenance (maintaining only critical rail pieces) in order to save 
maintenance operational time and cost.  

• The dissertation framework is presented in such a way that it can be applicable for other 
infrastructures. Thus, not just Dutch rails, but other infrastructures under the management 
of ProRail can use the framework such as bridge, tunnel, etc. To redo the framework for a 
new infrastructure, the framework structure would be substantially the same as introduced 
in this dissertation, with considering all differences that new infrastructure brings along 
compared to the rail infrastructure.  

• Although the dissertation is based on real life data and validated and improved relying on 
railway expert opinions, both in the KPI’s part and the maintenance part, still there should 
be a gap between what can be implemented in the real case and what is implemented in the 
proposed framework. The following ideas need to be improved for using directly the 
proposed framework in the field: (1) defect prediction model which can be improved as 
mentioned in 6.2, and (2) including life cycle cost analysis and (3) detailed involvement of 
track influential factors in the rail degradation. Also, the framework must be tested and 
validated in different Dutch railway tracks to analyze results consistency.  

• Design of a business case can be taken into account. A track from Dutch railway network 
can be selected for the design. During the current research, a discussion was held with a 
grinding operation manager to apply the proposed framework of the dissertation to a 
business case; however, due to the lack of time, it was not feasible to do the case. The 
business case should be carried out with corresponding company partners for grinding 
operations in The Netherlands including ProRail (asset manager), main contractor (e.g. 
Speno International) which is in charge of grinding machines and personnel, main 
subcontractor (e.g. BAM Rail) in charge of planning, safety and cleaning and multiple 
smaller subcontractors. Thus, coordinating with the mentioned set of the partners for the 
business case is of important challenges. Additionally, as a business case requires a list of 
detailed information and enough track-related historical data, data management can be of 
difficulties to make the business case happen.    
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