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Abstract—Recent advancements in Artificial Intelligence, and par-
ticularly Large Language Models (LLMs), offer promising prospects
for aiding system administrators in managing the complexity of
modern networks. However, despite this potential, a significant gap
exists in the literature regarding the extent to which LLMs can
understand computer networks. Without empirical evidence, system
administrators might rely on these models without assurance of
their efficacy in performing network-related tasks accurately.

In this paper, we are the first to conduct an exhaustive study on
LLMs’ comprehension of computer networks. We formulate several
research questions to determine whether LLMs can provide correct
answers when supplied with a network topology and questions
on it. To assess them, we developed a thorough framework for
evaluating LLMs’ capabilities in various network-related tasks. We
evaluate our framework on multiple computer networks employing
proprietary (e.g., GPT4) and open-source (e.g., Llama2) models.
Our findings in general purpose LLMs using a zero-shot scenario
demonstrate promising results, with the best model achieving an
average accuracy of 79.3%. Proprietary LLMs achieve noteworthy
results in small and medium networks, while challenges persist
in comprehending complex network topologies, particularly for
open-source models. Moreover, we provide insight into how prompt
engineering can enhance the accuracy of some tasks.

Index Terms—Large Language Models, Computer Networks,
System Administrators.

I. INTRODUCTION

The increasing complexity of computer networks raises
the need for technical experts to maintain the operation,
configuration, and security of computer systems and networks
within an organization’s perimeter. System Administrators
(SysAdmins) are generally the professionals designed to take
care of these tasks, performing various tasks such as router
and switch configuration, resolving connectivity issues, and
even analyzing intrusion detection attempts [1]. They are
responsible for network design, implementation, configuration,
and maintenance, and they need to provide security by constant
monitoring and troubleshooting. However, expanding network
complexity and the proliferation of cyber threats make their job
increasingly convoluted. The integration of Artificial Intelligence
(AI) powered assistants has emerged as a potential solution. In
particular, the recent advancements in the field of Large Language
Models (LLMs) have made their usage as an assistant to human
operation increasingly popular [2]. Furthermore, companies and

organizations may not have the resources to maintain their IT
infrastructure, and, as such, virtual SysAdmins can significantly
help automatically identify problems and vulnerabilities.

A LLM is a type of Deep Learning (DL) model designed to
generate human-like text based on the input it receives. These
models are trained on vast amounts of text data to learn patterns,
structures, and relationships in language. This knowledge allows
them to solve diverse tasks (e.g., translation, summarization,
question answering, text and image generation), contrasting with
prior models confined to solving specific tasks [3]. This has been
possible because of the improved reasoning and generalization
capabilities with respect to Machine Learning (ML) models [4],
[5]. Indeed, ML and DL have found applicability in networking,
helping on various tasks [6], [7]. As such, using AI in computer
networks is not new. However, up to date, while some works have
investigated the usage of LLMs in the context of computer net-
works, none of them have studied their understanding of the topol-
ogy and their possible usage as assistants for SysAdmins [8], [9].

This research investigates how and how much LLMs can
integrate the two aspects and provide correct answers on
computer networks presented as graphs. Such capabilities can
be fundamental in different sections. Network engineering
can benefit from LLMs as experienced peers when designing
or updating network topologies. Moreover, they can help in
spotting erorrs inside networks during troubleshooting. Security
engineers can also benefit from LLMs capable of understanding
network topologies. They can query LLMs to identify security
issues and misconfigurations faster.

With respect to pure graph networks, computer networks
implicitly include certain information masqueraded into other
details. Links between nodes provide a clear example. Two nodes
exposing IP addresses belonging to the same subnetwork can be
represented with a direct link, even if it is not explicitly described
in the graph formalization. On the other hand, computer
networks generally do not include self-loops or direct edges,
which can simplify the analysis by reducing the search space.

Contributions. This paper investigates the issue of LLM
understanding of computer networks by proposing a framework
for their evaluation. With the selection of six state-of-the-art
LLMs and the representation of different networks, we define
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four research questions to assess the capabilities of these models.
Our results indicate that LLMs can comprehend basic network
structures and help administrators in several tasks. However,
they still struggle in specific scenarios where the network
topology complexity increases. Furthermore, we conduct a study
on prompt engineering and provide insightful takeaways for
getting the best performance from LLMs. Our contributions
can be summarized as follows.

• We define a framework to assess the capabilities of LLMs
in understanding computer network topologies.

• We conduct experiments on state-of-the-art models (3
proprietary and 3 open-source) over 3 different network
topologies of increasing complexity.

• We discuss the results, providing insight into possible
prompt engineering techniques to improve results.

• We open-source our networks and prompts at:
https://github.com/spritz-group/LLM-SysAdmin.

Organization. The rest of the paper is organized as follows.
Section II explains research questions and our methodology. In
Section III, we provide details on our experiments, the results
of which are shown in Section IV. We discuss our results
in Section V, and provide related works in the literature in
Section VI. Finally, Section VII concludes our work.

II. METHODOLOGY

Problem Statement. A preliminary question needs to be
addressed to provide the basis for addressing the discussed
problems: are LLMs able to comprehend the structures of
computer networks? Specifically, this paper addresses the
problem by investigating the following research questions.

• RQ1: Are LLMs able to answer basic questions on network
topologies correctly?

• RQ2: Can LLMs provide graphical representations of
network topologies?

• RQ3: Can LLMs recognize subnetworks and IP addresses
inside computer networks?

• RQ4: Can LLMs comprehend computer network
connections?

We selected this set of research questions as they most closely
reflect the capabilities a SysAdmin assistant must have. As such,
through answering our research questions, we investigate the
concept of LLMs comprehension of computer networks and allow
us to objectively evaluate the utility of LLMs in this context.

Framework. To the best of our knowledge, no frameworks
or previous work have analyzed the problem of computer
network understanding on LLMs. To test their capabilities, we
define a list of questions whose response is closely related
to a specific network architecture. As such, we devise queries
that cannot be answered without a certain degree of knowledge
of the underlying network structure. We represent our general
framework in Figure 1.

Using in-context learning, we include the network graph
directly in the prompt. Other solutions, such as Retrieval Aug-
mented Generation (RAG) [10], may be used for more extensive
networks that will not fit the prompt size. However, since modern

LLMs have quite big context sizes, it is usually enough for the
scope of this work. One example is ClaudeAI, which supports a
100k tokens context-window [11]. Moreover, we only test a zero-
shot prompt style for several reasons. First, being this research
the first on the topic, we decide to start with the most accessible
and most straightforward approach. Moreover, a few-shot prompt
may be infeasible to be developed in a real-world application
because of the variety of possible questions and tasks [12].

LLMsPromptsNetJSONsNetworks

Evaluations

Fig. 1. Our evaluation framework. We test several LLMs with a combination
of tasks specific to each network which is represented in a NetJSON format.

Prompting. The straightforward primary prompt we use as
a template is shown in Figure 2. Based on the model used,
we adapted the template to suit the model’s need, e.g., adding
keywords to specify where the instruction starts and ends. The
prompt begins with a sentence introducing the context of the
questions. Then, a fundamental issue regards the representation
of the network graph.

To answer the following questions, consider the
following network:
```
{network}
```

{task}

Fig. 2. Basic prompt for network comprehension task.

Network Representation. To date, there is no widely accepted
standardized way to encode graphs and basic information of a
computer network in a textual-based format. Some techniques
have been developed regarding general graphs, from essential
solutions like adjacency lists or edge lists to more feature-
rich Graph Modelling Language [13] and Graph Markup
Language [14]. However, since our network has a precise
meaning and these languages are general-purpose, we decided to
employ a standard designed ad-hoc for computer networks. The
most widely adopted solution is NetJSON [15], which we employ
in our experiments. Following this network structure, we insert
each instruction we want to evaluate our model on one by one.
The employed networks are available on our Github repository1.

III. EXPERIMENTS

Models. As the first research study, we investigate freely acces-
sible models (or subscription-based, avoid per-token payments),

1https://github.com/spritz-group/LLM-SysAdmin
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which can represent a baseline for further studies. Therefore,
we choose three different off-the-shelf online LLMs, namely:

• Bing Copilot (GPT-4 based, 1756B parameters) [16],
• Github Copilot (GPT-4 based, 1756B parameters) [17],
• Chat-GPT (GPT-3.5 based, 175B parameters) [18].

Moreover, we were interested in smaller models that could also
run locally. Therefore, we locally run some open-source models
and test the same queries on them:

• Llama 2 (13B parameters) [19],
• Mistral Instruct v0.2 (7B parameters) [20],
• BASH Coder Mistral (7B parameters) merged with Mistral

Instruct v0.2 (7B parameters) using slerp [21], [22].
While online and proprietary models are generally more
powerful [23], [24], local models provide enhanced flexibility,
are not subject to API rate limits, and are not required to pay a
fee for each token as pay-per-use models. Moreover, computer
network structures may include sensible information or can
be used to infer security defences [25]. This may discourage
safety-critical actors from sharing such information with services
owned by other companies so as not to risk compromising their
privacy. This topic is discussed more into detail in Section V-C.

Tasks. To understand the level of knowledge a model can get
regarding network structures, we design a list of tasks to grasp the
LLMs comprehension of various aspects. We show each task in
Table I. In particular, we took inspiration from computer network
books [26] and exercise lists [27]. We engineer the queries
through several tests to ensure that the understanding of each
question is clear enough not to be misinterpreted by the majority
of the models and by humans. However, we avoid excessive tun-
ing on the question format at this stage, trying to present questions
in a direct form that could be employed by a system administrator
seeking help in a LLM to solve a network issue. We discuss
possible prompt engineering improvements in Section V-A. Up to
T9, tasks are the same for each scenario. From T10 on, questions
require two node names to compute subnetworks and connections
between them. In particular, T11 looks for direct connections
between nodes that are not directly connected, while T12 expects
a positive answer. The specific nodes we employed are available
in our Github repository1. Finally, the LLMs’ replies to each task
are evaluated by computer science PhD students as either correct
or wrong. Since the networks’ complexity level is quite low, only
basic topology knowledge is required to evaluate these questions.

Networks. We extract three increasingly complex networks
from Kathara [28] main labs, and we convert each in the
NetJSON format [15]. We edited addresses and links in some
labs to create a more challenging environment. Furthermore, this
procedure ensures that LLMs will deal with unforeseen data,
as their training datasets are not accessible but might include
the original Kathara labs [28]. The most straightforward setup
comprises two devices only: a client and a WebServer (denoted
W in the results) exposing an example webpage. Both devices
expose a link-local IPv6 address and are connected to the same
IPv4 subnetwork. Then, we consider a slightly more complicated
network including three Routers and five subnetworks connecting
them. This network is denoted as R in the results. Finally, the

most complex architecture includes 12 nodes interconnected
through 15 different subnetworks. This last scenario represents
an Intradomain routing situation, denoted I in the results.

Evaluation. Most questions accept a single precise answer
that cannot leave space for interpretation. We assign 1 point to
the LLM for correct and complete answers and 0 for incorrect
questions. Moreover, correct but incomplete answers are awarded
with 0.5 points. An example is question T9 “Which devices
have the most IP addresses assigned?”: if more than one device
has the same number of addresses, which is also the maximum,
returning only one of their IDs is considered partially correct
but incomplete. Another particular example is the drawing of the
network graph, where we graded incomplete but still meaningful
answers with 0.5 points. Since LLM answers are not deterministic,
each networking question is repeated and evaluated 10 times.

IV. RESULTS

We applied our newly developed framework on the 6 LLMs
described, conducting ten tests for each task and each network.
Therefore, a score of 10 means that all the tasks obtained a
correct answer. Conversely, 0 indicates that wrong answers only.
In this section, we present the overall results and address the
research questions we formulated initially.

A. Overall results

As shown in Figure 3, results are variable based on both the
model and the network employed. While proprietary models
maintain a discrete accuracy over all the networks, local
models show lower results even in simple networks and a
more enhanced performance decrease while increasing network
complexity. Bing is the best-performing model, reaching 8.9 on
the most straightforward networks and 6.9 on the most difficult

TABLE I
TASKS USED FOR EACH RQ. FROM TASK T10 ON, EACH QUESTION HAS

DIFFERENT X1 AND X2 BASED ON THE NETWORK.

RQ ID Task

R
Q

1
(T

op
ol

.) T1
How many nodes are there in the network? Answer with
a number.

T2 How many IP addresses are assigned to devices?
T3 Which devices have the most IP addresses assigned?

R
Q

2
(D

ra
w

)

T4
Draw me the graph of my network. If you can’t draw it,
use ascii art.

R
Q

3
(A

dd
re

ss
in

g)

T5
Are there any devices with special-purpose IP addresses
(e.g., multicast addresses)?

T6
Do any devices have multiple IP addresses assigned to
them?

T7 Are there any IPv6 addresses assigned?

T8
How many subnetworks are there in my network? Answer
with a number.

T9
Is it possible to remove one subnetwork but keeping all
the devices able to ping each other?

T10 Which is the subnetwork that connects x1 to x2?

R
Q

4
(P

at
hs

) T11
Is it possible for x1 to ping x2 without any hop? Answer
directly with ”yes” or ”no”. (negative)

T12
Is it possible for x1 to ping x2 without any hop? Answer
directly with ”yes” or ”no”. (positive)

T13 Traceroute from x1 to x2.
T11 includes only cases in which x1 cannot ping x2 without any hops.
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ones, with an overall mean of 7.9. On the contrary, Llama shows
the worst performance, with an overall mean accuracy of 3,7.

Fig. 3. Average accuracy on answering questions on each network.

For the proprietary LLMs, we use the default values for the
parameters for their practicality and alignment with typical
operational scenarios. In particular, we employ the base
ChatGPT and Copilot while using the precise version of
Bing. ChatGPT has higher variability, which can be seen in
the results with more intermediate values with respect to the
counterparts. For local models, we have instead complete control
over the parameters. We tweak our local model temperature
parameters to show a small but present response variability.
We employ a temperature of 1.2 in a scale from 0 to 2 used
by the GPT4All Python APIs [29]. In this scale, temperatures
above 1 progressively promote equal consideration of all
token candidates, while at a temperature between 0 and 1, the
likelihood of the best token candidates grows even more.

In the following, we present the results while discussing the
research questions and providing some important takeaways.

B. RQ1: Are LLMs able to correctly answer basic questions
on network topologies?

To address this research question, we generate simple queries
to identify easily detectable notions that can be extracted from a
network, such as the number of machines (T1) and IP addresses
(T2-T3). We summarize the results in Table II.

TABLE II
ACCURACY ON QUESTIONS REGARDING THE SIZE OF THE NETWORK,

REPORTED FOR THE THREE DIFFERENT NETWORKS2 .

LLM T1 T2 T3
W R I W R I W R I

Bing 10 10 10 10 0 0 10 10 10
Github 10 10 10 10 8 0 10 6,5 10
ChatGPT 10 10 7 10 3 3 10 10 6
BASH Mistral 10 10 0 10 0 0 6,5 5 0
Mistral 10 0 0 10 0 0 8 2,5 0
Llama 10 10 0 10 0 1,5 2,5 4 0
W: WebServer. R: Routers. I: Intradomain.

The number of nodes is relatively easy to understand for both
a human and a machine, as we can see in the table (T1). While
almost all the tested models can correctly count nodes in smaller
networks with up to three machines, with increasing network
size, models showed a significant loss in performance. This is
especially true for open-source models that ultimately return
wrong guesses on the number of nodes for extensive networks.
However, proprietary LLMs retain a discrete success rate,
especially those employing GPT-4 that maintain 100% accuracy.

On the other hand, the number of IP addresses (T2), which is
usually more significant than the number of machines, is trickier
to identify in large networks. Performances of huge models
such as GPT-4 decrease starting from the Routers scenario. All
the models performed poorly when the number of addresses
increased significantly in the Intradomain scenario, where all
the LLMs are almost unusable. Indeed, it is known that LLMs
like ChatGPT has problems with math [30], which makes this
issue particularly visible in extensive networks.

The last question (T3) investigates partial counting, implicitly
asking the network to differentiate between addresses assigned
to different nodes. In this case, the math involved is simple, as
the maximum number of addresses per node was 4. Nonetheless,
the steps the LLM needs to follow to answer the question are
strict: (i) counting the number of addresses for each node; (ii)
identify the maximum number(s); and (iii) return the name of the
associated node(s). While we notice an overall sufficient result
for online models, local models suffer even in smaller networks.
This indicated difficulty in reasoning local models, while bigger
online LLMs are more prone to think step by step implicitly [31].

Takeaway: LLMs can comprehend small networks and
answer questions about their size. However, they struggle
with calculations and increased network complexity.

C. RQ2: Can LLMs provide graphical representations of
network topologies?

Graphical representation of a network is challenging for an
LLM but can also prove challenging for a network specialist.
We investigate this question through prompt T4. Since not all
the models can generate images (i.e., only Bing can through
DALL-E 3 [32]), we included the possibility of using ASCII art
to depict the network [33]. Even though it could be challenging
for extensive networks such as Intradomain, we provide the
LLM freedom of choosing the detail level of the representations.

As we can see in Table III, on overall bad results, the reliability
in the drawing seems to be linked to the size of the network to
be represented. For networks of a couple of nodes only, results
are generally sufficient. With three nodes and five subnetworks
of Routers, not all the LLMs can provide a representation
of the system. As expected, increasing the complexity of the
network again dramatically decreases the results. No LLM
could represent Intradomain successfully. A strategy sometimes

2In certain cases whose scores are indicated in italic, we added “without
writing any code” to the prompt to force Github Copilot to directly return
the answer instead of a code snippet to solve the problem.
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adopted by ChatGPT is removing addresses from the ASCII
art, which can benefit such extensive networks. However, it
misinterprets node connections, resulting in the wrong schema.

TABLE III
ACCURACY ON DRAWING THE NETWORK ON THE THREE SCENARIOS.

LLM T4
W R I

Bing 0 3 0
Github 5 5 1
ChatGPT 9 3 0
BASH Mistral 6,5 2 0
Mistral 6,5 1,5 1
Llama 1 0 0

Bing generates different results, enhanced through DALL-E
3 [32], a powerful text-to-image LLM. Because of this feature,
Bing almost always relies on it to draw the schema. However,
generated images are an artistic representation of networks
without resembling the network in the prompt. An example
is shown in Figure 4.

Takeaway: LLMs struggle in representing, in any form,
network graphs of not-trivial computer networks without
including a lot of inaccuracies.

D. RQ3: Can LLMs recognize subnetworks and IP addresses
inside computer networks?

To measure the capabilities of recognizing IP addresses in
the context of computer networks, we designed three questions
(T5, T6, and T7). As shown in Table IV, except for Llama,
all the networks obtained significant results in these tasks.
Question T5 discussed the capabilities of individuating specific
addresses with meanings that differentiate them from other
standard addresses. The questions include an example to guide
the LLMs and reduce hallucination. ChatGPT responses, on

Fig. 4. DALL-E generated image of a network. As shown, it is an artistic
interpretation and does not include any detail of the original network.

the other hand, contained incorrect answers (e.g., stating that
normal addresses have multicast special purposes) and negations
of the same answers within the generated text, as follows:

‘‘[...] device as100r1 has an IP address of
140.0.0.2/30, which falls within the reserved
address space for multicast addresses. Multicast
addresses typically fall within the range of
224.0.0.0 to 239.255.255.255. Therefore, 140.0.0.2/30
is within this range and can be considered a
multicast address.’’

This highlights the difficulties LLMs have in correctly
reasoning on the answer they provide. However, more complex
networks such as GPT-4 can answer such questions correctly.

Separating the number of addresses from the devices to which
they were assigned was evaluated by question T6. As reported,
except for the weird results of Llama, all the other models
performed flawlessly, even in more complex networks, showing
a good understanding of the separation between devices in the
provided NetJSON data. Similarly, T7 also reported outstanding
results, but the Llama model still presents similar issues to the
other questions. In this task, we measured the capabilities of
differentiating IPv4 and IPv6 addresses, a straightforward task
for an engineer.

Takeaway: Even inside complex networks, LLMs can
recognize different IP address types and properly assign
them to the corresponding machine.

TABLE IV
ACCURACY ON QUESTIONS REGARDING IP ADDRESSING, REPORTED FOR THE

THREE DIFFERENT NETWORKS.

LLM T5 T6 T7
W R I W R I W R I

Bing 10 10 10 10 10 10 10 10 10
Github 10 10 10 10 10 10 10 10 10
ChatGPT 10 10 3 10 10 10 10 10 10
BASH Mistral 10 10 10 10 10 10 10 10 10
Mistral 10 10 10 10 10 10 10 10 10
Llama 9 6 5 4 7 2,5 4 5 10

While comprehending IP addresses has proven to be usually
straightforward for LLMs, they perform far worse in recognizing
subnets, as shown in Table V. Question T8 investigated the
capabilities of the LLMs to compute and count subnetworks.
If it could be a time-demanding yet straightforward task for
a network engineer, it is more difficult for an LLM, which can
provide wrong answers even with simple networks. For example,
we can see a wrong reasoning from ChatGPT-3.5, stating that
two IP addresses belong to two different subnetworks. However,
it is not true with the /16 netmask:

‘‘In the given network, both devices [...]
belong to separate subnetworks (10.0.0.0/16 and
10.0.1.0/16).’’

The error probably originated from the structure of the
employed IP addresses that resemble two different /24
subnetworks. However, this is a clear example showing how
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the LLM cannot comprehend the subnetting task correctly but
instead bases its reasoning on the form of the training data.

Github Copilot, developed to write code, tries instead to answer
with a script and often prefers not to answer at all when explicitly
asked not to do so. Overall, the main problem related to this
task was complete ignorance of the netmask by many answers.
Finally, it is worth mentioning the good results of BASH Mistral
on WebServer, which was probably due to the training set and not
superior performances, as confirmed by the following networks.

The last question (T9) contains more reasoning connected
to the network structure instead. In particular, it requires
different steps, such as computing subnetworks and checking
device connections. In this task, results are scattered, with a
high predominance of Bing, which solved the task on all the
networks. Moreover, it provides interesting insights showing
the capabilities of considering both IPv4 and IPv6 addresses:

‘‘If you remove the IPv4 subnetwork (10.0.0.0/16
and 10.0.1.0/16), the nodes will still be able
to communicate with each other using their
IPv6 addresses, assuming that your network
infrastructure supports IPv6.’’

Other models, instead, have more difficulties on this task.
ChatGPT, for instance, was not able to assess the presence of
a unique IPv4 subnet in network WebServer:

‘‘[...] In the given network, there are two
subnetworks: (1) Subnetwork with IP range
10.0.0.0/16 (containing the client) (2) Subnetwork
with IP range 10.0.1.0/16 (containing the server)’’

When the complexity of the network increased, Github and
ChatGPT started providing generic answers unrelated to the
proposed network or saying that they could not answer the
question, respectively.

TABLE V
ACCURACY ON SUBNETTING QUESTIONS ON THE THREE SCENARIOS.

T8 T9 T10LLM W R I W R I W R I
Bing 2 2 8 10 10 10 10 10 10
Github 0 0 0 10 10 0 10 10 10
ChatGPT 1 4 0 0 7 3,5 10 10 2
BASH Mistral 10 2 0 4 8 8 10 0 0
Mistral 0 0 0 9 0 0,5 9 0 2,5
Llama 0 5 0 2 3 1 0 10 0

Then, we check if LLMs can identify the subnetwork
connection of two machines equipped with at least two different
addresses each (T10). While online models usually return perfect
results, offline models generally perform worse, apart from some
spikes. As expected, results are worse for the Intradomain net-
work. In particular, we notice how, in the presence of many links
between nodes, big models are prone to make up connections that
do not exist in the topology, thus leading to wrong final answers.

Takeaway: Proprietary LLMs can provide answers
regarding subnetting only if simple tasks are required.

Instead, open-source LLMs suffer from unsteady results
and, up to now, are unreliable.

E. RQ4: Can LLMs comprehend computer network connections?

In this section, we analyze the capabilities of LLMs in path
computation between nodes inside each network. Results are
summarized in Table VI.

TABLE VI
ACCURACY ON PATH COMPUTATION QUESTIONS ON THE THREE SCENARIOS.

T11 T12 T13
LLM W3 R I W R I W R I
Bing - 10 10 10 10 0 10 10 1,5
Github - 10 10 10 10 0 0 8,5 4
ChatGPT - 10 3 9 6 3 5,5 7,5 2
BASH Mistral - 10 10 0 0 0 3 2,5 0
Mistral - 10 10 0 0 0 1 7 0
Llama - 5 6 4 2 5 2,5 5 0

We started with the more straightforward tasks asking the
LLMs to test the capabilities of directly ping one machine from
another without any hop (T11 and T12). While T11 seems to
return high scores, it may be due to a bias of LLMs to answer
negatively when they are not sure about the correct final answer.
This is verifiable with questions T12, where the requested
connections were instead possible without any hop. Here, only
GPT4-based models maintain similar scores, while the other
models generally reduce their accuracy. This highlights how
the models could not correctly understand the question and the
reasoning steps to compute a correct answer.

Bad results are also shown in the Intradomain scenario, with
even lower performances for all the tasks. Even GPT-4-based
models cannot correctly answer questions on such an extensive
network.

Moreover, we try to see how LLMs work when asked to
return all the hops between two nodes (T13). The terminal
command to get that information is called traceroute, and
we trust the LLMs to have been trained with data containing
that command. Surprisingly, the Mistral fine-tuned on BASH
commands performed poorly, generally worse than other
not-fine-tuned offline models, demonstrating not to have grasped
the meaning of the command. Instead, other proprietary LLMs
showed discrete results in Routers, while scores drastically fell
for the biggest Intradomain. Moreover, with the simple scenario
WebServer, GitHub returns only the command that needs to be
executed without following the link and returning the result. This
shows the difficulties for all the LLMs to perform inherently
multi-stage tasks such as computing the path between two nodes.

Takeaway: While it is generally possible for GPT-4 models
to compute paths between nodes, performances drastically
reduce with the increase of the network size.

3Since WebServer contains two directly connected nodes only, this question
is the same as T12 and requires a positive answer.
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V. DISCUSSION

In this section, we discuss the obtained results. Section V-A
investigates the usage of prompt engineering to improve
performances, Section V-B discusses the LLM reasoning process,
while Section V-C analyses security and privacy concerns.

A. Prompt Engineering

In this section, we explore the possibility of enhancing results
through prompt engineering [34], [35]. We focus our effort on
the overall best-performing model, which is the GPT-4-powered
Bing [16]. As suggested in the literature, some enhancements can
be added to the base prompt (B, shown in Figure 2) to improve
the results. In particular, we employed the well-known “reason
step by step” sentence (SR) to force the LLM into describing its
reasoning steps [31]. We insert this text at the end of the prompt
or, when available, before indicating how to formulate the answer
(e.g., “answer with a number”). In these cases, we also add “and
then” to enhance the sequentiality of the tasks. Then, we enhance
the characterization of the LLM inserting his role as a senior
network engineer, as previously done in a similar contexts [36],
[37], inserting the sentence “you are a senior network engineer”
(NE) at the beginning of the prompt. Finally, we try an
improvement we designed by looking at previous mistakes in the
traceroute experiment (T13) in the Intradomain scenario. Since
mistakes are usually due to the system making up connections, we
ask the LLM to “explain all the relevant connections between two
nodes” (RC) to force it to reason about it correctly. We add this at
the end of the prompt. The results are summarized in Table VII.

TABLE VII
RESULTS USING PROMPT ENGINEERING TECHNIQUES WITH THE BING MODEL.
B: BASE PROMPT; SR: “REASON STEP BY STEP”; NE: “YOU ARE A SENIOR
NETWORK ENGINEER.”; RC: “EXPLAIN ALL THE RELEVANT CONNECTIONS

BETWEEN TWO NODES.“; ALL: ALL THE ABOVE.

Task Network B Prompt
SR NE RC All

T2
Routers (R) 0 10 0 4 7

Intradomain (I) 0 10 0 0 9

T8
WebServer (W) 2 3 9 10 8

Routers (R) 2 4 0 10 5
Intradomain (I) 8 8 0 2 7

T12 Intradomain (I) 0 8 0 0 8
T13 Intradomain (I) 1,5 2 3 8 2

Interesting results are obtained using the SR and require proper
discussion. We notice how they usually improve for complex
networks while being almost unchanged for small networks. This
happens because expanding the reasoning is insufficient when
the network is simple but contains some tricky structures. In our
case, in WebServer, problems were related to the IPv6 assigned,
which were not adequately considered. However, forcing the
system to reason step by step is usually a good practice to
improve the quality of responses (as suggested in previous
works [31], [38]) also in the computer network scenario.

Regarding T13 (i.e., traceroute), the primary problem is that
the LLM is unable to identify network connections correctly,
and sometimes it makes up links. This happens even with the

other enhancements to the prompt, where one of the steps is
usually broken because of an invented link between two nodes.
In contrast, different connections and the provided explanation
seem satisfying. A well-written but wrong discussion may be
dangerous since it may sound correct to the users, tricking them
into accepting an incorrect answer.

Takeaway: Step by step reasoning generally improves
results correctness. However, it may induce sound but
wrong answers that network engineers should be aware of.

While exploring different prompts in different questions, we
also combine them to generate a prompt that can work on all
the tasks. As we can see, it generally improves the results with
respect to the basic prompt. However, results are not always the
best with respect to single prompt improvements. This makes
it trickier to develop a unique prompt for a LLM designed for
network engineers.

Takeaway: It is not trivial to develop a prompt template that
works on all the various tasks regarding computer networks.

To overcome the problem, an efficient solution could be
to teach network engineers how to provide better prompts
to LLMs. Indeed, from Table VII, we can see the logic
behind specific results. For instance, we can see how RC is
fundamental for T13 since the LLM must understand all the
links between devices to perform a traceroute correctly. Adding
other improvements can instead decrease the results.

Takeaway: Network engineers should have basic knowledge
of prompt engineering to best tune queries and employ
LLMs at their best.

B. Reasoning Analysis

One of the most promising approaches of prompt engineering
(discussed in Section V-A) is the step by step reasoning, which
is an application of the Chain-of-Thought (CoT) [4] prompting.
It is a recent advancement in prompting methods that encourages
LLM to explain their reasoning.

In Figure 5 we provide an end-to-end example of how CoT
is capable of fixing wrong reasoning on the best-performing
model (Bing). Indeed, in the wrong answer, the LLM simply
assigns three addresses to each node. Instead, with CoT, the
LLM is forced into explicitly counting the addresses in each
node, leading to a correct answer.

C. Security and Privacy Aspects

Deploying LLMs in system administration necessitates
a comprehensive examination of security and privacy
considerations. We delve into two critical aspects: protecting
sensitive information and the strategic role of LLMs as
supportive tools for system administrators. It is fundamental to
consider security and privacy themes that concern the utilization
of LLMs for system administrator operations [39].

First, outsourcing companies’ information, including network
topology details and connected device types, may not be
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Preamble

To answer the following questions, consider the
following network:
```
{"type": "NetworkGraph",
"nodes": [
{ "id": "r1", "local addresses": [ "100.0.0.1/24",
"150.0.0.1/30", "200.0.1.2/30" ] },
{ "id": "r2", "local addresses": [ "150.0.0.2/30",
"200.0.0.1/30", "200.0.1.1/30" ] },
{ "id": "r3", "local addresses": [ "200.0.0.2/30",
"220.0.0.1/24" ] }
] }

```

T2 (Example of wrong answer)

How many IP addresses are assigned to devices?
Answer with a number.

The total number of IP addresses assigned to
devices in the given network is 9. Each device (r1,
r2, r3) has three IP addresses assigned to it.

T2 + SR (Example of correct answer)

How many IP addresses are assigned to devices?
Think step by step and then answer with a number.

The number of IP addresses assigned to devices
can be calculated by counting the number of local
addresses for each device. Here’s how:

• Device r1 has 3 local addresses: 100.0.0.1/24,
150.0.0.1/30, 200.0.1.2/30.

• Device r2 has 3 local addresses: 150.0.0.2/30,
200.0.0.1/30, 200.0.1.1/30.

• Device r3 has 2 local addresses: 200.0.0.2/30,
220.0.0.1/24.

So, the total number of IP addresses assigned to
devices is 3 (from r1) + 3 (from r2) + 2 (from r3)
= 8. Therefore, 8 IP addresses are assigned to
devices.

Fig. 5. An example of a complete prompt related to task T2 and network
Routers, both with base prompt and with step by step reasoning.

practically achievable. Such information often harbors sensitive
data, and any accidental leakage could potentially jeopardize
the company’s security. Therefore, we believe virtual system
administrators should integrate LLMs that can run locally in
the company perimeter.

Second, system administrators frequently encounter requests
to execute critical tasks to ensure the network’s overall health.
However, relying on LLMs as a black-box solution can
lead to the accidental introduction of faulty configurations,
potentially jeopardizing the stability and security of the network
infrastructure. Therefore, as transparent ML applications are
essential in cyber security [40], we believe that technologies
such as LLMs can be utilized as a system admin co-pilot (in
support) rather than replacing them.

VI. RELATED WORKS

LLMs have been applied in different fields recently. They are
potent models trained on vast corpora of documents that can
achieve general-purpose language generation. They can find ap-
plications in many sectors, such as medicine [41], education [42],

coding [43] or cybersecurity [44]. Other possible tasks where
LLMs can improve or simplify solutions are network topology
optimization [45], [46] or network traffic prediction [47] and
management [48], [49]. The telecom domain is going to benefit
from LLMs as well [50], [51]. For instance, a fine-tuned LLM can
help understanding the telecom language [52], [53]. Moreover,
network understanding could, for example, enhance the usage
of LLMs in penetration testing and red teaming tasks [54], [55].

Graph reasoning related to LLMs has been extensively
studied [56], [57]. It describes a cognitive process involving
analyzing and interpreting information presented in a graphical
form (e.g., charts, diagrams, networks). It often infers, draws
conclusions, or solves problems based on relationships or patterns.
The other way around, graph-to-text, have been investigated
in the literature [58]. Plot to text has also been researched,
including a reasoning step on the generated content [59]. While
AI has been used to perform research on graph networks, no
one ever tries to understand the capabilities of off-the-shelf
LLMs in understanding computer network topologies.

VII. CONCLUSIONS

This work represents the first step in assessing the capabilities
of LLMs in understanding computer networks and answering
questions regarding them. We developed a framework to answer
our research questions and establish the reasoning capabilities of
LLMs in this field. From our first analysis, we discover a good
accuracy of huge proprietary models in correctly answering
questions on simple and complex computer network topologies.
In particular, LLMs can comprehend the topology of smaller
networks and correctly recognize and assign IPs to different
machines. However, we highlight several limitations system
administrators should know when using LLMs as part of
their job. For example, proprietary LLMs currently yield the
best results at the cost of network confidentiality. Moreover,
fine-tuning and prompt engineering may be necessary to make
LLMs employable by system administrators in the wild.

Future Works. This paper does not aim to be a comprehensive
benchmark of models and parameters in the computer network
context but a first exploratory study to understand the overall
capabilities of state-of-the-art LLMs in this field. We foresee
several future works in this area. More models, including
models fine-tuned on computer network tasks, should be
evaluated using our framework to identify those that perform
best in this area. The variation of accuracy as model parameters
(e.g., temperature) change and the format of the prompt —also
including few-shot strategies [12]— should be investigated
as well. Furthermore, on the network side, testing other
representation techniques could open more opportunities, as our
current approach uses IP addresses to infer physical connections.

ACKNOWLEDGMENT

We would like to thank Omitech S.r.l. for supporting the
research of Denis Donadel.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2025 at 09:05:54 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] T. Sommestad and A. Hunstad, “Intrusion detection and the role of the
system administrator,” Information Management & Computer Security,
vol. 21, no. 1, pp. 30–40, 2013.

[2] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz, “The
programmer’s assistant: Conversational interaction with a large language
model for software development,” in Proceedings of the 28th International
Conference on Intelligent User Interfaces, pp. 491–514, 2023.

[3] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang, et al., “A survey on evaluation of large language
models,” ACM Transactions on Intelligent Systems and Technology, 2023.

[4] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24824–24837, 2022.

[5] J. Huang and K. C.-C. Chang, “Towards reasoning in large language
models: A survey,” arXiv preprint arXiv:2212.10403, 2022.

[6] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” Ieee Network,
vol. 32, no. 2, pp. 92–99, 2017.

[7] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications surveys & tutorials,
vol. 21, no. 3, pp. 2224–2287, 2019.

[8] J. Wang, L. Zhang, Y. Yang, Z. Zhuang, Q. Qi, H. Sun, L. Lu, J. Feng,
and J. Liao, “Network meets chatgpt: Intent autonomous management,
control and operation,” Journal of Communications and Information
Networks, vol. 8, no. 3, pp. 239–255, 2023.

[9] F. Jiang, L. Dong, Y. Peng, K. Wang, K. Yang, C. Pan, D. Niyato, and
O. A. Dobre, “Large language model enhanced multi-agent systems for
6g communications,” arXiv preprint arXiv:2312.07850, 2023.

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
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