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Maximal oil recovery by simultaneous condensation of alkane and steam
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This paper deals with the application of steam to enhance the recovery from petroleum reservoirs. We
formulate a mathematical and numerical model that simulates coinjection of volatile oil with steam into a
porous rock in a one-dimensional setting. We utilize the mathematical theory of conservation laws to validate
the numerical simulations. This combined numerical and analytical approach reveals the detailed mechanism
for thermal displacement of oil mixtures discovered in laboratory experiments. We study the structure of the
solution, determined by the speeds and amplitudes of the several nonlinear waves involved. Thus we show that
the oil recovery depends critically on whether the boiling-point of the volatile oil is around the water boiling
temperature, or much below or above it. These boiling-point ranges correspond to three types of wave struc-
tures. When the boiling point of the volatile oil is near the boiling point of water, the striking result is that the
speed of the evaporation front is equal or somewhat larger than the speed of the steam condensation front. Thus
the volatile oil condenses at the location where the steam condenses too, yielding virtually complete oil
recovery. Conversely, if the boiling point is too high or too low, there is incomplete recovery. The condensed
volatile oil stays at the steam condensation location because the steam condensation front is a physical shock.
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I. INTRODUCTION

Steam drive is an economical way of producing oil and is
used worldwide for heavy oil. An overview of the last forty
years of steam drive recovery in California is given in Ref.
[1]. Steam drive is also considered an efficient method to
clean polluted sites [2—4]. During the steam drive, however,
a certain amount of oil is left behind in the steam swept zone
[5].

In the late 1970s Dietz [5] proposed to add small amounts
of volatile oil to the steam to reduce the oil left behind.
Similar ideas were put forward independently by Faroug-Ali
[6]. The volatile oil coinjected with the steam in almost in-
finitesimal amounts would ideally condense at the same lo-
cation where the steam condenses. The condensed volatile
oil acts as a solvent for the heavy oil. As such it pushes the
oil away from the steam-swept zone leaving no oil behind
(see Fig. 1). At the time the crucial importance of the boiling
temperature of the volatile oil was not suspected. Experi-
ments investigating the mechanism are described in Refs.
[5-9]. Still, there was a discrepancy between the original
idea and the experimental observations. At least 5 wt %
(volatile oil/water) was required to reduce considerably the
saturation of the oil left behind [5]. However, it is possible
that the requirement of this large percentage was caused by
transient effects in the experiments. One of the goals of our
work is to clarify this point.

In his pioneering experiment, Willman, in 1961, used a
large percentage of initially present volatile oil [9]. His ex-
periment led to the belief that any volatile oil component,
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initially present in the oil, would lead to virtually complete
recovery from the steam-swept zone. Therefore, the virtue of
adding volatile oil was criticized at the time. The second goal
of our work is to establish the difference between steam-
drive recovery with coinjection of volatile oil and recovery
of oil already containing a fraction of volatile oil. It can be
expected that an efficient condensed volatile oil region is too
short for the resolution of standard simulators.

Our approach [10-13] is to simplify the model equations
in such a way that the essential elements are retained [14]
while avoiding the complexities of solving pressure equa-
tions and nonlinear compositional equations at every grid
cell. As such the model is a straightforward extension of a
one-dimensional (1D) model proposed by Ref. [15], but al-
lowing for immiscible three-phase flow in the steam zone
[16,17] (see also Ref. [18]). The simplification is accom-
plished by the assumption that the steam drive runs at con-
stant pressure as to the thermodynamical behavior; any pres-
sure increase causes an immediate production of fluids.
Therefore the pressure equation decouples and we can solve
the transport equations locally, reaching resolutions that are
unattainable in standard simulators.

The solution of these simplified transport equations is ob-
tained by following each physical state in space time, using
the method of characteristics. If the transport equation were
linear with constant coefficients all states would move at the
same characteristic speed and the wave profiles would re-
main unchanged. In our case, however, the equations are
nonlinear, therefore characteristic speeds depend on the state.
If characteristic speeds increase in the flow direction, states
spread out giving rise to a rarefaction fan (rarefaction wave).
On the other hand, if characteristic speeds decrease the states
collapse on each other giving rise to a discontinuity or a
shock wave. It is this nonlinear collapse that both generates
and stabilizes shock waves. The mathematical theory of
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FIG. 1. The porous rock cylinder. Steam and alkane are injected from the left, fluids are produced at the right. In most cases, the hot
gaseous zone is sharply separated from the cold liquid zone by the steam condensation front (SCF). Initially the rock is filled with a
volatile-oil, dead-oil mixture and water. One of three alkanes is used; dodecane has a tendency to stay upstream of the SCF, and cyclobutane

downstream of the SCF; heptane is in between.

these nonlinear waves is very well developed [19,20]. How-
ever, in our problem mass transfer can occur, viz., evapora-
tion or condensation, giving rise to evaporation or condensa-
tion rarefactions or shocks, which are not so well known.
The relative speeds of the waves occurring in the solution are
crucial in determining the physical phenomena and the dis-
tinctive behavior in terms of the values of the physical prop-
erties.

Knowing the solution obtained by the method of charac-
teristics has three advantages. Firstly, it is a time-asymptotic
solution, which is relevant at the field scale. Secondly, it
allows us to validate the numerical solution. Thirdly, it al-
lows the study of bifurcation phenomena, i.e., change of
structure of solutions under different injection conditions.
The bifurcations of this model in the absence of thermal
effects are described in Refs. [21-24]. (See also the review in
the appendix of Ref. [25]).

The model we used carries three important simplifica-
tions. Firstly, the diffusion mixing between volatile oil and
heavy oil in the liquid phase and between volatile oil vapor
and water vapor in the gaseous phase are disregarded. The
model is not valid for extremely low injection rates, where
capillary diffusion dominates convection, because we ignore
capillary effects. Finally, we do not specify a detailed model
for the kinetics of the condensation process [13]. These as-
pects determine the internal structure of the shocks, which
sometimes affect the structure of the whole Riemann solu-
tion, and are subjects for future work [23].

The range of validity of these simplifications can be ex-
pressed in terms of dimensionless numbers [26]. For diffu-
sion effects to be negligible, both Péclet numbers [Pe
=Lu™/(¢D;)], ie., the one based on molecular diffusion
(D,) and the one based on capillary diffusion (D,), must be
much larger than one. For field conditions L is the distance
between wells. The Péclet number is at least one million,
even for capillary-diffusion phenomena. For laboratory con-
ditions it is a factor 100 smaller, but still Pe> 1. Thirdly, the
ratio between the rate of mass transfer between phases and
convective mass transport, expressed by the Damkohler
number [26], must be very big so that the thickness of the
condensation zone can be disregarded. This aspect is dis-
cussed in Ref. [27], where it is shown that a practical value
of the Damkohler number Da=g,L/u"™ would be of the or-
der of 108. Here g, [s~'] is the rate of steam condensation. In
the same paper it is shown that local equilibrium is obtained
when Da~10*. So the condition of local thermodynamic

equilibrium is definitely satisfied at Da=108. This shows that
to leading order our model, where we use local thermody-
namic equilibrium and disregard diffusion effects, is correct.
However, for more precise and quantitative statements these
effects must be analyzed. This is however, beyond the scope
of this paper.

Finally we also use Darcy’s law without inertia correc-
tion, which requires that the Reynolds number pvd,/ u based
on the grain size, is not larger than one. A typical value for
field conditions is Re=0.007. Therefore for field situations
these conditions are always satisfied and they were satisfied
in most of our laboratory experiments.

Section II describes the physical model and the relevant
thermodynamical relations. The flow is described by balance
equations in Sec. III. Self-similar waves, i.e., rarefaction and
shocks, are analyzed in Sec. IV. An implicit finite difference
method requiring the solution of small matrices is described
in Sec. V. Section VI summarizes earlier results on the injec-
tion of steam displacing heavy oil. Our results concerning
the solution structure and the recovery in terms of the boiling
point of volatile oil are described and discussed in Sec. VII.
We summarize our conclusions in Sec. VIII. Appendix A
contains further details. Appendix B describes physical quan-
tities, symbols, and values. Some calculations are found in
Appendixes C and D.

II. PHYSICAL MODEL
A. Flow of fluids

The model is based on conventional models for steam
drive [28,29]. We consider the injection of steam and volatile
oil into a linear horizontal porous rock cylinder with constant
porosity and absolute permeability (see Fig. 1). The tube is
completely thermally isolated. The injection temperature is
determined by the three-phase equilibrium condition for the
given volatile-oil and steam injection ratio. The cylinder is
originally filled with oil and water. The oil consists of dead
oil, i.e., oil with a negligible vapor pressure, possibly with
dissolved volatile oil. The dissolution of volatile or dead oil
in water is negligible. Three-phase flow occurs in the high
temperature zone, while oil and water flow occurs in the low
temperature zone. The fluids are in local thermodynamic
equilibrium. Physical quantities are evaluated at a represen-
tative constant pressure throughout the cylinder; this is a
good approximation if the total pressure variation is small
relative to the total pressure. It is certainly valid in laboratory
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experiments. Thermal expansion of liquids is disregarded.
The liquid volatile oil and dead oil heat capacities are not the
experimental heat capacities, but slightly adapted so that the
enthalpy of the oleic phase is independent of composition.
This minor adjustment leads to a major simplification of the
mathematical analysis. All fluids are considered incompress-
ible. We assume Darcy’s law for multiphase flow [30,31].
The cylinder diameter is sufficiently small so that capillary
forces equalize the saturation in the transverse radial direc-
tion and temperature is homogeneous radially. As the flow is
horizontal we ignore gravity effects.

B. Thermodynamic fundamentals

Our interest is confined to (1) three-phase flow, i.e., flow
of the aqueous (w), oleic (0), and gaseous (g) phases in the
steam zone and (2) two-phase flow, i.e., flow of the aqueous
and oleic phases in the liquid zone. For liquids, we distin-
guish between an aqueous (waterlike) phase and an oleic
(oil-like) phase because they do not mix. We use the follow-
ing convention: the first subscript (w,0,g) refers to the
phase, the second subscript (w,v,d) refers to the component,
i.e., water, volatile oil, and dead oil. Capital subscripts
(W,V,D) are used to denote phases consisting of a single
component. The densities of the pure liquids are denoted as
Pw> Py, and pp. The densities of the pure vapors, i.e., water
and volatile oil are denoted by p,y, pgy-

We disregard any heat or volume contraction effects re-
sulting from mixing. The concentration [kg/m?] of volatile
(dead) oil in the oleic phase is denoted as p,, (p,q). The
concentration of water vapor (volatile oil) in the gaseous
phase is p,,, (pg,). For ideal fluids we obtain

@+M=1, Bé’i_'_ﬂé’ﬂ:l. (1)
Pv  Pp Pgw  Pgv

The densities of the pure liquids py,pp [kg/m?] are consid-
ered to be independent of temperature, and the densities of
the pure vapors to obey the ideal gas law, i.e.,

_MyP
ng_ RT >

_ MyP
ng_ RT >

2)

where My, My denote the molar weights of water and vola-
tile oil, respectively. T is the temperature and the gas con-
stant is R=8.31 [J/mol K]. P is not a variable in this prob-
lem, but the fixed prevailing pressure value; here we use one
atmosphere, because most of the experiments were carried
out at atmospheric pressure.

The water vapor pressure P,, is determined by the
Clausius-Clapeyron equation [32]

-M 1 1
P,(T)=P, eXP{TVVAw(TZV)<;—T—Z>], 3)
where Ay, (T})) [J/kg] is its evaporation heat at its normal
boiling temperature 7}, (K) at P,, the atmospheric pressure.
We also use Clausius-Clapeyron for the volatile-oil vapor
pressure. In addition, we use Raoult’s law [32], which states
that the vapor pressure of volatile oil is equal to its pure
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vapor pressure times the mole fraction x,, of volatile oil in
the oil phase. Therefore we obtain

-My 1 1

PU(T) _xoupa CXp|: R AV(TZ)( T 7?) :| s (4)
where Ay (T}) is the evaporation heat of the volatile oil at its
normal boiling temperature 7;,. We assume that the prevail-
ing pressure P is the sum of the two vapor pressures. From
Egs. (3) and (4), and P=P,(T)+P,(T), we find for the mole
fraction of volatile oil in the liquid-oil phase x,,(7)
=(puv/MV)/(an/MV+p0d/MD)’

—MWA m)(l 1 )
P-P,exp| — ———
exp| — AT = I

Xo(T) = . (5
P,ex _—MVA (T")(l—l)
0 p R Vitp T v

b

From this we derive an expression for the volatile-oil con-
centration in the oleic phase,

Doy = XouPDPVYMy (6)
” xovaMV + (1 - xov)pVMD

Note that in the gaseous phase no dead oil component is
present, whereas in the oleic phase volatile and dead oil are
present. Figure 2 shows the projections of the phase diagram
of cyclobutane (left), and heptane (right) on the plane of the
temperature vs the volatile-oil mole fraction. The special
three-phase point “3ph” indicates where pure liquid volatile
oil, liquid water, and vapor coexist. Other three-phase points
are on I, the curve where liquid water, volatile-oil and dead-
oil mixtures, and vapor coexist as explained below. For each
T, the mole fraction of volatile oil in the vapor phase on I is
indicated by y,,=[P-P,(T)]/P. This equation is used for
heptane in Fig. 2 (right) to find the lower branch I" extending
from (y,,,7)=[0.0,373.15 (K)]—(0.551,351.71). At the
latter point x,,=1. Similarly, the lower branch I' extends
from (y,,,7)=[0.0,373.15 (K)]—(0.983,285.20) for cy-
clobutane [Fig. 2 (left)]. For dodecane it extends from
(Vg0-T)=[0.0,373.15 (K)]—(0.0356,371.98). All its fea-
tures of interest occur near the very small branch at the left,
which makes a figure less illustrative. Therefore we do not
show it. In Fig. 2 we assume that the prevailing pressure is
atmospheric, i.e., P=P,.

Furthermore, Fig. 2 contains projections of 3D figures
with the temperature as the vertical axis, the volatile-oil frac-
tion in the vapor phase, y,, as the horizontal axis, and the
composition of the oil phase x,, as the axis perpendicular to
the paper. The projection is made on a surface for which
X,, =constant.

Figure 2 (left) contains four phase diagrams for x,,
=1,0.6,0.2,0.1. Consider as an example the phase diagram
for x,,=0.2, i.e., the behavior of liquid oil with a volatile-oil
mole fraction of x,,=0.2. This phase diagram consists of the
curve {x,,=0.2} (see the next paragraph) and the part of the
curve I" to the left of their intersection point. Below these
curves the system consists of two liquid phases, where the
oleic phase with x,,=0.2 is in equilibrium with water. At the
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FIG. 2. (Left) Phase diagram for water, dead oil, and cyclobutane.
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(Right) Phase diagram for water, dead oil, and heptane. The

three-phase point (3ph) for the water-pure volatile-oil system is indicated.

intersection point of these two curves, liquid water and
liquid-oil phase with composition x,,=0.2 are in equilibrium
with vapor with a volatile-oil fraction y,, indicated in the
horizontal axis. On I, left of the intersection point liquid
water is in equilibrium with vapor with a volatile-oil fraction
Ygv Tead from the horizontal axis. Above these curves there is
only vapor. Because in all cases considered here there is
liquid water, we only use the left curve, the curve I, for the
three-phase zone and the region underneath for the two-
phase zone.

The procedure to find the branches on the right emanating
from I for which x,,=0.2,0.4,0.6,1.0 is the following. We
pick a value for x,,, choosing a curve among these branches.
This curve is described by the graph of y,,(T)=P,(T)/P,
where P,(T) is obtained from Eq. (4). Recall that we used
Veuo(T)=[P=P,(T)]/P to obtain the plot of I'. Only at the
intersection point of the curves liquid oil with the chosen x,,,
liquid water and vapor are in equilibrium and we have that
Veu(T)=[P-P,(T)]/P=P,(T)/P. On {x,,=1} there is no
dead oil, rather there is volatile-oil vapor besides water vapor
and liquid volatile oil. For x,, <1 all branches to the right of
I" contain dead oil too. Therefore, these branches with con-
stant x,, describe the two-phase oleic-gaseous equilibrium;
there is no liquid water. We can use Eq. (5) to obtain expres-
sions for the concentrations p,,(T), Pa(T), pe(T), and

Peo(T).

III. BALANCE EQUATIONS

The energy conservation equation in terms of enthalpy is
given as [33]

J
E[Hr + QD(HWSW + HOSD + HgSg)]

+iu(HWfW+Haf,,+H 2) =0, ™)
ox

where the enthalpies per unit volume Hy, H,, and H, are
defined in the table in terms of densities and enthalples per
unit mass Ay, h,y, hop, hey, hgy. These enthalpies depend on

temperature (and on the fixed pressure). The enthalpy of

steam in the gaseous phase is h,y, and hy is the enthalpy of
water in the aqueous phase, while h,y is the enthalpy of
volatile oil in the gaseous phase. Furthermore, A,y and h,p
are the enthalpies of liquid volatile oil and dead oil. Their
values are chosen so that the heat capacity per unit volume
H, is only a function of temperature (see Appendix B). The
rock enthalpy H, is per unit volume. The saturation of the
oleic, aqueous, and gaseous phases are S,, S, S, while f,,
fu [, are their fluxes, defined in Eq. (B16). We use u to
denote the total Darcy flow velocity and ¢ the constant rock
porosity. We can write for the mass conservation equations
of water, volatile oil, and total oil [34],

1%
90 (png +PWS )+ (pgwfg'i'prw) O

P
L (pgvS + PovSo )+ (pgufg+povfo) 0,

J J
qpﬁt<;g;5 +S>+&—u<;g—fg+f0>_ . (8)

Equations (8) and (7) can be written in condensed form as
1% Jd
—Go+ —uF;=0 for €=w,v,0,T. 9)
ot ox

We use the subscript ¢ to denote the components (w,v,0)
and the energy (7). Notice that in the three-phase zone, G,
and F, are functions of the variables §,, S, T and the de-
pendent variables of Eq. (9) are S,, S,, 7, and u. In the
two-phase zone Eqs. (8) and (7) simplify by using p,,,=p,,
=0. Here f,, depends on S,, and 7, f,, on S,,, p,,, and 7. The
dependent variables in the two-phase zone in Eq. (9) are S,
Povs T, and u. Thus a state in the three-phase zone is defined
by the values of §,,, Sg, T, u and in the two-phase zone by the
values of S,,, p,y> T U.

IV. ANALYSIS OF ELEMENTARY WAVES

Considering Eq. (9) and the fact that we use constant
injection conditions and homogeneous initial data we ob-
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serve that solutions must exist that are invariant with respect
to scaling x—ax, t—at, where a is any positive constant.
Such solutions depend only on the similarity coordinate x/¢
and are called Riemann solutions. These solutions represent
large-time asymptotic solutions for many initial and bound-
ary data. Standard theory of conservation laws say that Rie-
mann solutions consist of sequences of smooth rarefaction
waves, discontinuities or shocks, and constant states. Shock
waves satisfy the Rankine-Hugoniot (RH) conditions, which
express mass conservation. We refer the interested reader to
Smoller [20] and Dafermos [19]. Excellent engineering in-
troductions in this field can be found in the papers by Pope
[35], Hirasaki [36], and Dumoré, Hagoort, and Risseeuw
[37], and in the book by Lake [34].

The theory of nonlinear conservation laws relates the
speed of a shock with its left and right states through the RH
conditions. We find explicit formulas for RH conditions for
all shocks, including condensation shocks, one of which is
the steam condensation front (SCF). We derive the charac-
teristic speeds for rarefaction waves. We have also obtained
the rarefaction curves, which represent the rarefaction waves,
but we omit their lengthy derivations here. We have used
these formulas to verify the correctness of every single wave
found numerically in Sec. VII. The concatenation of the
waves according to speed and the extended Lax entropy con-
ditions [20,19] were verified as well. As far as the authors are
concerned the treatment of the velocity variable is original as
there are no time derivatives for this variable in the equa-
tions.

A. Shocks

We use the standard notation for the jump of a quantity U
across a shock as [U]=U*-U". The RH conditions for Egs.
(8) and (7) can be written as follows [for a shock with speed
v and left and right states (—) and (+)]:

- @v[pgwsg'i'pWSw]'*' [u(pgwfg'*'prw)]:Os (10)

- (Pv[pgng + povso] + [”(ngfg + povfo)] = 0’ (1 1)

- @u[%ﬂsgwo} + P(%ﬂf“ﬁ)} -0, (12)
|4 \%4

-vl[H, + ¢(HyS,, +H,S,+H,S,)]
+[M(Hwa+Hafo+Hgfg)]=0- (13)

When v, u™, u~ solve the equations above, then av, au™, au”
also solve the equations.

We distinguish six kinds of shocks. (1) The volatile-oil
evaporation shock (speed vg), with three-phase conditions at
the left. Its main feature is that the volatile-oil concentration
increases in the downstream (right) direction. The tempera-
ture, saturations, and velocity change across the shock. (2)
The steam condensation shock (speed vgcp), with a three-
phase condition at the left. The vapor saturation decreases
drastically in the downstream direction. Again all the quan-
tities change across the shock. (3) The volatile-oil condensa-
tion shock (speed v(), with a three-phase condition at the
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left. The volatile-oil concentration decreases in the down-
stream direction. (4) The volatile-oil two-phase composition
shock (speed v,), which is a contact discontinuity. A contact
discontinuity represents the moving interface between two
fluids in the same phase. In reality such an interface is not
infinitesimally thin. In loose mathematical terms, a contact
discontinuity is defined as a shock for which the character-
istic speeds at the right and left are equal to the shock speed.
(5) The saturation shock (speed vg). Only the saturations
change, while temperature, composition, and the velocity are
constant, so that Eq. (13) does not play a role. (6) The
Buckley-Leverett shock (speed vg;), with only the liquid oil
and water phases present. All quantities except the liquid
saturations are constant, so that Eq. (13) again does not play
a role.

B. Characteristic speeds

Using G, and F; from Eq. (9), we define

G, _IF

G = N l=_
=gy T Ty,

J
. Fo=—WFy)=F, (14)
ou

where V=(V,,V,,V3)=(S,,,S,,T). Note that G, does not de-
pend on u. Without loss of generality u>0 and Eq. (9) can
be rewritten for €=w,v,0,T as

v, v, Ilnu
E G5n5+uF€n— +F€M

n=w,g,T ox

=0. (15)

Let us consider solutions of Eq. (9) that depend on (x,?)
through the similarity coordinate z=x/r. Then Eq. (15) with
(8,,8,.T,In u)" denoting a column vector becomes

d
M(sw,sg,T,ﬂ)d—(sw,sg,T,ln 0 =0, (16)
u)dn

where M(V,\) with A\=#/u is the 4 X 4 matrix

Fi1=ANGy Fiu—ANGpyp Fi3—-ANGy3 F
Fy1=NGy Fp—=NGyp Fyp—AGy F
F31=NG3; F3—NG3y F33—-AGs; Fs
Fy=NGy Fu—NGyp Fi3—-NGy3 Fy

(17)

We have replaced the subscripts w,v,0,T by 1,2,3,4. Ex-
plicit expressions for the flux functions, the accumulation
function, and their derivatives can be found in Appendix D.

1. Three-phase flow

We find the characteristic speeds, viz., the eigenvalues A\
of M. Making the determinant of Eq. (17) equal to zero leads
to a polynomial equation of third order in . Indeed, after
performing Gaussian elimination on the matrix (17), its de-
terminant becomes the following:
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A I
— -\ — Az(N A
as, ® &Sg 13( ) 1
af, af,
=& =E_)\ Ayzs(\) A
as., (?Sg ¢ 33( ) 3
0 0 A% —NAY, A,
0 0 Fuz—=NGuz Fy
é’fw afW
okl VR 0 1
n re Fz—=NGuz Fy
as,, as,

where A|,A3, A,, A(2)3, A%3,]-'4, Fu3, and G43 depend on V,
while A ;(\), As3(\) are linear expressions in N with coeffi-
cients that depend on V. The calculation and expressions are
found in Appendix C.

Let us define D= (ﬁf” Ze I Hg and T=7 %

ﬁfg
35, ) +45s. 7, - The
slow and fast characteristic speeds for saturatlon rarefactlon
waves are given as

I ™
-T+\D
= 5 )\s,2= . (19)
¢ 2¢

The corresponding characteristic vectors have constant 7', u;
only the saturations vary along these waves. Within the satu-
ration triangle, spanned by S,,, S,, S,, which add to one, there
is a point where X;=0. Here the two characteristic speeds
coincide, giving rise to a rich wave structure (see, e.g., Ref.
[24]).

The third and last characteristic speed is

1 Ay Fuy— AL F.
A= NSy, S T) = —— 22 (20)
©AGys+ A23f4

This is associated with a condensation rarefaction wave, in
which all quantities vary.

2. Two-phase flow

In the absence of the gaseous phase, there are three kinds
of rarefaction waves. One is the thermal rarefaction wave,
along which S,,,p,,,T change. Its speed is

H +(H -H)f,
Ap=——2 ( > ,O)f, . 21)
H, +¢[H,+ (H,-H,)S,]

Then we have the Buckley-Leverett rarefaction with
speed A\p;, along which the liquid saturation S,, changes. Fi-
nally, we have the composition wave with speed A\, which is
a contact discontinuity, along which the composition and the
liquid-water saturation change. The speeds Mg (S, Pop>T)
and \(S,,,p,,,T) are

_1d
BL™ ©ds,,

11-7

o1-5. " (22)

> c=

We have computed the characteristic vectors for both two-
and three-phase flow, but we do not provide the formulas
here. They are necessary to compute the rarefaction waves.
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V. NUMERICAL SOLUTION OF THE EQUATIONS

We will use the notation V=(S,,,S,,T) in the three-phase
region and V=(S,,,v,,,T) in the two-phase liquid region.

A. Upstream scheme

Consider Eq. (9), where the fluxes F, are functions of V.
We can write the upstream implicit finite-difference scheme
(€=w,v,0,T)

Gy(t+ An) +u"(t+ At)F (1 + Ar)
=G(1) + (A/A) U (1 + ADFP (e + Ar),  (23)

where m denotes the grid-cell number. The unknowns are
u™(t+Ar) and the three components of V"(t+Af), which
show up in the expressions for G¢'(t+Ar) and Fp'(t+At).

Let us rewrite Eq. (23) and shorten the unknowns as fol-
lows: u™(t+Ar) as u and V"(t+At) as V. We obtain the non-
linear implicit scheme

G(V) + (At/Ax)uF (V) = R}"™, (24)

where we have introduced the notation R}""~! for the right-
hand side of Eq. (23). We assume that F?~!'(r+Ar) and
u"!(t+At) have been precomputed when solving the previ-
ous cell m—1, which may be in a phase condition different
from that of cell m. We emphasize that 7' does not de-
pend on the condition of cell m at the new time 7+ At.

B. Solution of the nonlinear system

The system (24) is solved using Newton-Raphson. Given
an approximate solution in the kth iteration V¥ and u* of Eq.
(24), we find a better approximation in the (k+1)th iteration.
Equation (24) becomes

0= G€(Vk+l) + (At/Ax)uk”Fe(V’Hl) _ RZl,m—l )

Substituting  W*!'=VE 44V, uk+!
second-order terms we obtain

=uf+du, and neglecting

<5Gg(vk) At k(?Ff(Vk)>dV+ i_Fe(Vk)du__Rk,

where we have defined RY as
Rk = G{’(Vk) + (At/Ax)uka(Vk) _ R?,m—l.

This is solvable for (dV,du) if uAt/Ax is not a character-
istic speed, which can be achieved by taking Ar small
enough. After division of this equation by u*At/Ax, we ob-
tain the following linear system to be solved at each Newton
iteration, written in the notation of Eq. (17):

dVl - Rl{
Ax \| av, -RA
M\ V- —— = : 25
( ukAt> dVs - R4 (25)
dulu* -R

C. Numerical implementation

The quantities in the grid cells are computed in the
injection-production direction from the left to the right. We
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FIG. 3. Comparison of the MOC with the FD solutions for the
case that volatile oil is neither injected nor present in the initial oil.
The curves with sharp edges are obtained with MOC, and the
smoother ones with FD. The saturation curves are indicated as
Syy5S8¢,S, in obvious notation. The temperature is indicated with a
T. Also indicated is the steam condensation front vgcr and the
Buckley-Leverett shock vp;.

specify the fluxes of all components at the injection bound-
ary. Initially, all cells contain a homogeneous distribution of
water and an oleic phase at low temperature.

All calculations in the Newton-Raphson scheme depend
on the old phase condition of cell m, as well as on available
information from cells to the left of cell m. The method of
solution depends on the new condition of the cell, two-phase
or three-phase.

The iterative procedure is simple for a cell that starts and
stays in the same condition. When a cell starts in the two-
phase condition, but in the two-phase calculation a tempera-
ture arises that exceeds the boiling temperature of the water
and oleic-phase mixture [see Fig. 2 (left)] then the calcula-
tion is replaced by a three-phase calculation.

Simulations use a uniform grid with 2000 blocks. This
implicit method is inexpensive as it only involves the solu-
tion of many 3 X 3 matrices as opposed to a single big ma-
trix. As far as the authors are concerned, this upstream box
finite difference method is original in the way the total ve-
locity is treated, as there is no time derivative for it in the
system. (See Ref. [38] for a related scheme.)

VI. METHOD OF CHARACTERISTICS FOR STEAM
INJECTION

Figure 3 compares the numerical solutions obtained by
the current finite-difference scheme (FD) and by the method
of characteristics (MOC) used in Ref. [13] for the saturations
(8,.S,.S,) versus the length along the cylinder for pure
steam injection in a cylinder filled initially with dead oil
only. The profiles are shown after the injection of 0.057
P(ore) V(olume) (cold water equivalent). In region I (the
steam zone), where Sg>0, we observe a saturation rarefac-
tion wave, in which the temperature and Darcy velocity are
constant. At the steam condensation shock or front (SCF),
where the temperature drops to the initial temperature, the
gas saturation drops to zero. Here we use the word shock and
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front interchangeably. The water saturation is larger than the
initial water saturation (S,,.=0.15), both in regions I and II.
Downstream of region II there is a second shock to the initial
conditions, i.e., S,,=S,,., S,=1-S,,. in region III. The total
downstream Darcy velocity divided by the injection velocity
is constant spatially at 1.19X 1073 in the entire liquid zone
(regions II and III), but it shows numerical fluctuations of
20% between time steps. Nevertheless the average is correct.
The oil saturation at the SCF is about 0.3. The observed
behavior is approximately independent of the number of grid
blocks. The reduced temperature is plotted, but the total
Darcy velocity is not because they visually coincide.

VII. RESULTS

We distinguish two classes of results. In the first class the
volatile oil is initially present in the reservoir, but it is not
coinjected. In the second class no volatile oil is initially
present, but it is coinjected with the steam. For each of the
classes the volatile oil is cyclobutane, heptane, or dodecane.
These alkanes were chosen because they have low, medium,
and high boiling points, in such a way that each one gives
rise to a different type of solution.

The initial conditions for all the calculations are the fol-
lowing. The initial temperature is 293 K and the gas satura-
tion is zero. The initial water saturation is given as S,,=S,,.
=0.15. We consider the cases where the oleic phase consists
of dead oil and of a volumetric 50% mixture of dead oil and
volatile oil; however, for cyclobutane we use a volumetric
20% mixture of dead oil and volatile oil, as 50% is above the
solubility limit. In the former case we inject an alkane and
steam vapor with mass fraction 0.2 [alkane/(alkane
+steam)]. In the latter case we displace with pure steam. The
injection temperature is 373 K and the injection pressure is
one atmosphere. We use atmospheric pressure because these
results are easiest to validate by laboratory experiments. The
volumetric injection flux is 9.52 X 10™* m/s. From now on,
all figures plot reduced quantities versus the distance. The
reduced velocity (u) is the total Darcy velocity divided by
the injection velocity. The reduced temperature is (T
-T,)/(T)-T,) (see Appendix B for terminology). The re-
duced concentration (volume fraction) is v,,=p,,/ py-

Long time runs were subdivided in shorter ones to
dampen transient behavior faster; in each one the initial data
consisted of the previous one, where every other grid data
was omitted [39]. Each run was stopped before breakthrough
of the fastest wave, i.e., before it reached the end boundary.

A. Cyclobutane and steam mixture displacing dead oil

Figure 4 shows displacement of dead oil by steam and
cyclobutane. There are four regions from the injection point
to the initial condition. In region I, there is a fast three-phase
saturation rarefaction wave with speed given by Eq. (19)
(right); T and u are constant on this wave; the volatile oil
concentration (v,,) is a small constant. The SCF separates
region I from region II. In region II the temperature and the
total velocity are constant, but much lower than in region I.
Regions I and II are three-phase regions, whereas regions III
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FIG. 4. Steam and cyclobutane displacement of dead oil. The
water saturation S, oil saturation S,, and steam saturation S, are
shown as the dashed, solid, and dashed-dotted curves. The volatile-
oil fraction v,, in the oil phase and the reduced temperature are
shown as the dotted and filled-square curves.

and IV are two-phase liquid regions. Regions II and III are
separated by a cyclobutane evaporation shock, where the
temperature jumps to its initial value in the reservoir and the
total velocity to its final downstream value. There is a con-
stant state in region III. Regions III and IV are separated by
a Buckley-Leverett shock. Region IV contains the initial
saturations.

The rarefaction in region I starts at the injection state
(Syes1=8,e, Ty ,u™) and ends at the left state of the SCF,
(S:V SCF» ;SCF, W, u™). The right state of the SCF is SCF*
=(S}, scr>Sg.scr> TscrsUscr)- Left and right states and vgcp
satisfy the RH conditions (10)—(13). The velocity vgcr is the
same as the speed of fast three-phase rarefaction [Eq. (19)] at
the end of region I, i.e., the SCF shock is left-characteristic.
Region II starts at SCF*, which is also the upstream (left)
state of the cyclobutane condensation shock with speed v .
The right state of this shock is C*=(S} .87 -=0,T,,u).
Left and right states and v, satisfy the RH conditions
(10)—(13). Region III is a constant state. Therefore C* is the
upstream (left) state of the Buckley-Leverett shock. Region
IV is a constant state, which is the right state of this shock,
with initial reservoir saturation and temperature.

B. Pure steam displacing a dead-oil and cyclobutane mixture

As shown in Fig. 5, there are four regions again. In region
I, there is a fast three-phase saturation rarefaction wave at
constant 7" and u. Separating region I from region II, there is
the SCF. Note that the temperature at the right side of the
SCF is not the initial reservoir temperature, but an interme-
diate temperature. Region II consists of a constant state with
temperature and total velocity lower than in region I. Re-
gions II and III are separated by a three-phase saturation
shock, which does not change the temperature but reduces
the water saturation to its initial value. The gas saturation in
region III is slightly lower than in region II. Between region
IIT and region IV there is a cyclobutane condensation shock.

Region I (v,,=0) starts at the injection state (S,,.,S,=1
=Sye> Ty, u™) and ends at (S, scg, S, scp T »u™), which is
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FIG. 5. Steam displacement of a dead-oil or cyclobutane mix-
ture. The water saturation, oil saturation, and steam saturation are
shown as the dashed, solid, and dashed-dotted curves. The volatile
oil fraction in the oil phase and the reduced temperature are shown
as the dotted and filled-square curves.

the left state of the SCF. The right state of the SCF is
SCF*=(S}, scr»Sg.scrs Tscr»Uscr)- Left and right states and
vscr satisfy the RH conditions (10)—(13). The SCF is left
characteristic. Region II consists of the constant state SCF*.
Region II ends at the three-phase saturation shock with speed
vs. The right state is denoted as (S}, 5,S, 5. Tscp»Uscr) and
continues in region III. This constant state ends at the con-
densation shock with speed v.. Region IV is a constant state,
which is the right state of this shock, with initial reservoir
saturation and temperature.

C. Steam and heptane mixture displacing dead oil

As shown in Fig. 6, in region I there is again a fast three-
phase saturation rarefaction. At the SCF the temperature
drops to the initial temperature, and a volatile-oil bank (re-
gion II) builds up downstream of the SCF. The volatile-oil
bank does not contain any dead oil. Such a pure volatile-oil
bank displaces all dead oil. Downstream of the volatile-oil

08

0.6 - J

reduced quantities

Pl

0 02 0.4 0.6 0.8
SF distance (m )

FIG. 6. Steam and heptane displacement of dead oil. The water
saturation, oil saturation, and steam saturation are shown as the
dashed, solid, and dashed-dotted curves. The volatile oil fraction in
the oil phase and the reduced temperature are shown as the dotted
and filled-square curves.
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FIG. 7. Steam displacement of a dead-oil and heptane mixture.
The water saturation, oil saturation, and steam saturation are shown
as the dashed, solid, and dashed-dotted curves. The volatile-oil frac-
tion in the oil phase and the reduced temperature are shown as the
dotted and filled-square curves.

bank there is a contact wave, which marks the boundary
between regions II and III. The contact wave is smooth in the
simulation due to numerical diffusion. Downstream there is
only dead oil. Region III consists of a constant state. Regions
IIT and IV are separated by a Buckley-Leverett shock.

Region I starts at the injection state (S,,,S,=1
—S,.,T" u™), and it ends at the left state of the SCF, viz.,
(Sy.scr>Sgscrs T, u™). Again the SCF is left characteristic.
The right state of the SCF is SCF*=(S}, scp»Sg.scrsVou
=1,T,,u™) and continues as a constant state in region IL
Between regions II and III there is a volatile-oil contact wave
with right state SCF* and velocity v,. Downstream of the
contact wave the constant state (S:'V’C, ;,C,v(,v:O,To,u*)
spans region III. The Buckley-Leverett shock separates re-
gion III from region IV. This solution agrees with the obser-
vation made previously by Bruining and collaborators in the
laboratory experiments [5,7]. This is the case when analyti-
cal, numerical, and experimental results are all available.
They all agree.

D. Pure steam displacing a dead-oil and heptane mixture

As shown in Fig. 7, there are only three regions. In region
I, there is the usual rarefaction wave with constant 7 and u.
Separating region I from region II there is the SCF. In region
IT the temperature is equal to the initial temperature and the
total velocity attains its constant downstream value. At the
SCF there is a remarkable spike of volatile oil. The volatile
oil concentration v,, vanishes at the left of the SCF, it
reaches almost one at the SCF, and then it declines to its
initial value. Region II consists of a constant state. Regions
IT and III are separated by a Buckley-Leverett shock. Region
IIT contains the initial saturations.

Region I starts at the injection state (S,.,S,=1
—S...T),u™) and ends at the left state of the SCF, viz.,
(Sy.scrrSgsces Ty -u™).  The right state is SCF*
=(S}, scr>Sgscr=0,T,,u*). Left and right states and vgcy sat-
isfy the RH conditions (10)—(13). Again the SCF is left char-
acteristic. Region II consists of the constant state SCF*. A
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FIG. 8. Steam and dodecane displacement of dead oil. The water
saturation, oil saturation, and steam saturation are shown as the
dashed, solid, and dashed-dotted curves. The volatile-oil fraction in
the oil phase and the reduced temperature are shown as the dotted
and filled-square curves.

Buckley-Leverett shock with velocity vg; separates region II
from region III.

Let us discuss the evolution of the volatile-oil bank. Ini-
tially there is no volatile-oil bank. It starts to be formed after
injection. It grows as long as the volatile-oil-dead-oil mix-
ture reaches the steam zone. The growth of the condensed
volatile-oil bank stops as soon as no more volatile oil, carried
by the liquid oil, can reach the steam zone.

Now we compare the case in Sec. VII C of heptane coin-
jection to the case in Sec. VII D where a mixture of dead oil
and heptane is displaced by pure steam. For the coinjected
(20%) case a large oil bank is built up. On the other hand,
with as much as 50% oil in the initial oil mixture the
volatile-oil bank is very small. This is so because only the
volatile oil that is stripped from the dead oil enters the steam
zone and contributes to the building up of the volatile-oil
bank for case (b). In particular, when the initial volatile-oil
fraction is small it can take a long while before such a bank
is built up, whereas such a building up is much faster with
coinjected volatile oil.

E. Steam and dodecane mixture displacing dead oil

As shown in Fig. 8, besides the fast three-phase saturation
rarefaction in region I, there is a volatile-oil condensation
wave in region II with velocity (20); in this wave both T, u
vary. At the state C joining rarefactions in regions I and II the
two characteristic speeds coincide. Region II is separated
from region III by the SCF. Region III consists of a constant
state, which is separated from region IV by a Buckley-
Leverett shock.

Region I starts at the injection state (S,,,S,=1
—S,e»T™ ., u") and it ends at the coincidence point C
=(S,.c+S,.c. T™ ,u™), the left state of the condensation rar-
efaction. The three-phase rarefaction wave in region I is con-
tinued in region II as a condensation rarefaction wave, which
is connected to the SCF. The left state (S}, scp> Sy scrs Ty » %),
the right state (S}, gcp.S,=0,7T,,u"), and vgcr satisfy the RH
conditions (10)—(13). The SCF is left characteristic.
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FIG. 9. Steam displacement of a dead-oil or dodecane mixture.
The water saturation, oil saturation, and steam saturation are shown
as the dashed, solid, and dashed-dotted curves. The volatile-oil frac-
tion in the oil phase and the reduced temperature are shown as the
dotted and filled-square curves.

F. Pure steam displacing dead-oil and dodecane mixture

As shown in Fig. 9, there are five regions. In region I,
there is a three-phase saturation rarefaction. Near the injec-
tion point and at some other points very small transient ef-
fects are observed in the simulation. Region II consists of a
constant state starting approximately at distance 0.1 m. Sepa-
rating region II from region III there is a dodecane evapora-
tion shock, followed by a fast composition rarefaction wave.
The evaporation shock speed vy coincides with the speed of
the left part of the composition rarefaction wave. In region
III the temperature and the total velocity are lower than in
region I. Regions IIT and IV are separated by the SCF, which
is left characteristic. The temperature drops to its initial res-
ervoir value and the total velocity to its final downstream
value. There is only a constant state in region IV. Regions IV
and V are separated by a Buckley-Leverett shock with speed
vpr- Region V contains the initial saturations.

Region I starts at the injection state (S,,,S,,T,u)
=(S,c,1=8,,.. T}, u™) and finishes at (S;,,E,S;’E,Tw,u""f).
This state also represents the left side of the dodecane evapo-
ration shock as region II is a constant state. The dodecane
evaporation shock has speed vy and the right state E*
=(S}, £+Sg > T-up)- Left and right states and vy satisfy the
RH Egs. (10)—(13). The evaporation shock is left character-
istic too. Region III starts at E* with a composition rarefac-
tion, which ends at (S}, scp» S, scr» Tg» Ug)- the left state of the
SCFE.

The right state of the SCF is SCF"=(S} scr»Sgscr
=0,T,,uécp). Left and right states and vgcp satisfy the RH
conditions. The SCF is left characteristic. Region IV consists
of the constant state SCF* and ends with a Buckley-Leverett
shock.

G. Comparison of cases

We can distinguish three important mass transfer waves,
viz., the SCF, the evaporation wave upstream of the SCF, and
the condensation wave downstream of the SCF. Inspection of
the results reveals the crucial role of the speeds of these
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FIG. 10. Pressure vs carbon-number domain for low, medium,
and high boiling-temperature alkanes. The structure of the solution
changes at the curves separating the L, M, and H regions.

waves, i.e., the speeds of the evaporation shock, the steam
condensation shock, and the condensation wave (shock or
rarefaction). For the medium boiling-point alkane (heptane)
the three waves merge into a single wave, leading to high
recovery. Both high recovery [5] and the existence of the
volatile oil bank had been observed in the coinjection experi-
ments [7]. Similar observations can be made for Willman’s
experiments [9], where medium boiling temperature oil was
present initially. For the other cases the three waves spread
out leading to lower recovery. These statements hold true
irrespective of whether the volatile oil is present initially or
coinjected.

For the high boiling-point alkane (dodecane) the conden-
sation wave collapses on the SCF, whereas the evaporation
wave separates from the SCF. This leads to some positive
effect on the oil recovery.

For the low boiling-point alkane (cyclobutane) the evapo-
ration wave collapses on the SCF, whereas the evaporation
wave separates from the steam condensation shock. This has
only a small effect on the oil recovery.

In summary, resonance, i.e., equality of wave speeds,
leads to high amplitude waves, i.e., favorable recovery. This
occurs for medium boiling-point alkanes.

We use these ideas to find the bifurcation loci in the pres-
sure or carbon-number plane. We used an injected mass frac-
tion (mass volatile-oil or total-mass) of 20%. We derived
polynomial expansions for the properties of volatile oil in
terms of the carbon number, i.e., for the viscosity, the liquid
heat capacity, the evaporation heat, the molar weight, the
liquid density, and the boiling point. In this way we find not
only the properties of the alkanes with integer carbon num-
bers but also of any pseudocompound, characterized by any
real value for the carbon number. We carried out enough
simulations to isolate the wave sequences typical of high,
medium, or low boiling-temperature volatile oils. The result-
ing curves are shown in Fig. 10. The curves are accurate
within a carbon-number change of 0.1. The range of favor-
able medium temperature boiling point, where resonance oc-
curs, becomes larger with increasing pressure.

In our simulation we injected 20 w/w % volatile oil in the
steam rather than 5% as we did in the laboratory experiments
for reasons of clear illustration. For 5% simulations the
volatile-oil bank is thinner as expected, but the overall pic-
ture does not change (see Fig. 11).
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FIG. 11. Steam and heptane displacement of dead oil, using
5 w/w %. At the top, the water saturation, oil saturation, and steam
saturation are shown as the dashed, solid, and dashed-dotted curves.
The volatile oil fraction in the oil phase and the reduced tempera-
ture are shown as the dotted and filled-square curves. At the bottom,
the mass fluxes for water, dead oil, and volatile oil are indicated as
dashed, dotted, and dot-dashed curves, and the enthalpy flux and
pressure as the filled squares and solid curves. The scaled pressure
has small gradients in the vapor zone.

VIII. CONCLUSIONS

We developed a model that captures the main physical
features of thermal three-phase flow, involving water, dead
oil, and volatile oil. The numerical solution for different in-
jected mixtures and initial oil composition reveals its struc-
ture in terms of rarefaction and shock waves. These waves
are validated by verifying that they satisfy all properties pre-
dicted by mathematical analysis based on the mathematical
theory of nonlinear conservation laws. In the solution found
computationally numerical diffusion effects are controlled by
using extremely small grid cells.

In the 1D setting, coinjection of medium boiling tempera-
ture volatile oil in steam leads to 100% recovery of oil (Fig.
6). This improvement is due to the formation of an increas-
ingly long volatile-oil bank displacing the oil in place. The
initial presence of medium boiling-temperature volatile oil
also improves oil recovery (see Fig. 7). This is due to the
formation of a thin volatile-oil bank displacing the oil in
place. Clearly the volatile-oil bank displaces all the dead oil
because they are in the same phase. This solution agrees with
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the observations found previously in the laboratory experi-
ments. There is agreement between analytical, numerical,
and experimental results.

As far as the recovery efficiency is concerned, the initial
presence of medium boiling-temperature volatile oil has a
positive effect. The initial presence of high boiling-
temperature volatile oil has a much smaller effect (see Fig.
9). Coinjection of high boiling-temperature volatile oil in
steam has a negligible effect (see Fig. 8). Coinjected or ini-
tially present low boiling-temperature volatile oil has no ef-
fect (see Figs. 4 and 5).

This model reveals that the essential mechanism for good
recovery is that all the volatile oil condenses at the same
point where the steam condenses. In mathematical language,
this occurs when the evaporation and condensation shock
speeds coincide with the speed of the steam condensation
front. In physical language, high boiling-temperature volatile
oil finds it difficult to evaporate and therefore the evapora-
tion wave is slower than the steam condensation shock. The
low temperature boiling-point volatile oil finds it difficult to
condense and therefore the condensation wave is faster than
the steam condensation shock. For the medium oil the evapo-
ration and the condensation wave collapse on the steam con-
densation shock.
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APPENDIX A: STEAM OR HEPTANE
MIXTURE DISPLACING A DEAD OIL
WITH LESS VOLATILE OIL

To illustrate the effect of low (5 w/w %) concentration of
volatile oil in the injected mixture we made the run shown at
the bottom of Fig. 11. Clearly the wave structure is identical
to that found in Fig. 6. The difference is only that the dis-
solved volatile-oil peak is much thinner. Even for this low-
injection concentration the recovery is high, as shown by the
small amount of oil left behind. However, we observe that
the initialization effect, i.e., the transient bump of oil left
behind near the injection point is larger because the volatile-
oil bank takes longer to build up.

The top part of Fig. 11 includes the fluxes for water, vola-
tile oil, and dead oil, and also the pressure. We rescaled the
values for clear illustration. However, all mass fluxes are on
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the same scale. Notice that the pressure gradients are much
larger in the liquid zone.

APPENDIX B: PHYSICAL QUANTITIES—SYMBOLS
AND VALUES

In this appendix we summarize the values and units of the
various quantities used in the computation and empirical ex-
pressions for the various parameter functions. All enthalpies
per unit mass are are taken relative to the reference tempera-
ture of the components in their standard form. All heat ca-
pacities are specified at constant pressure. All enthalpies in
their standard form are zero at the reference temperature.

1. Temperature-dependent properties of steam,
water, and heptane

We use Refs. [40-42] to obtain all the following proper-
ties. Properties for other volatile components, such as cy-
clobutane and dodecane can be derived from the same refer-
ences. A conventional choice for the reference temperature is
T=298.15 K.

The rock enthalpy H, is

(1-)C(T-T), C,=3274000 (J/m*K). (B1)

The liquid water enthalpy hy(T) [J/kg] is approximated
by

hy(T) = ey (T—-T), cy=4184 (J/kg K). (B2)

The heptane enthalpy 4, [J/kg] and the dead-oil enthalpy
h,p are approximated by

hoV(T) = CoV(T_ T)’ hoD(T) = CoD(T_ T) (BS)

The values for the heat capacities of heptane and dead oil are

Cy=2242, c,p=1914.1 (J/kg K). (B4)

The liquid volatile-oil and dead-oil heat capacities are not the
exact heat capacities, but slightly adapted so that the en-
thalpy of oil per unit volume is independent of composition.
Therefore the heat capacity of the oleic phase per unit vol-
ume can also be defined independently of composition, lead-
ing to an oleic phase heat capacity per unit volume of

C,=1.531 X 10° (J/m*K).
The steam enthalpy h,y, is given by

how(T) = hipy(T) + Ay(T), (BS)

and the sensible steam enthalpy is approximated as

hjg’W( T) =Cpgw

(T-T), Cpgn=1964 (J/kgK). (B6)

The volatile-oil vapor enthalpy /,y as a function of tem-
perature is given by

ho!(T) = hyp(T) + A(T) (B7)

and the sensible heptane enthalpy is approximated as
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(T-T), ¢

hoT) = Cpgp oo = 1658 (J/kg K).  (B8)

For the latent heat Ay(T) [Ay(T)] (J/kg) or evaporation
heat of water (heptane) we use
Aw=3105600-2220T, A, =538830-584T.
(B9)
The liquid-water viscosity u,, [Pa s] is approximated by
M, = exp(— 12.06 + 1509/T). (B10)
The viscosity of the dead oil u,; and heptane u,,, are written

as

— ,—13.79+3781/T

—10.813+880.2/T
Moa =€ s >

Mop =€ (BI11)

and the viscosity of the oleic phase is approximated by the
quarter power rule

4
o= Bttt 22 )
Py Pp

(B12)

We assume that the viscosity of the gas is independent of
composition

o = 1.8264 X 1073(7/300)°°. (B13)

The water saturation pressure is given by Eq. (3). The
pure phase densities of steam and volatile-oil vapor are given
by Egs. (2) and the corresponding concentrations p,,,, p,, are
given in Table. I

2. Three-phase relative permeabilities

We used Stone’s expressions [31] for three-phase perme-
ability: Egs. (B14) and (B15) describe the water relative per-
meability k,,,, the gas-phase relative permeability k,,, and the
oil relative permeability k,,, respectively. For convenience
we have taken the residual oil parameter S, used by Fayers
[31] equal to zero. The relative permeabilities kyy k., are
functions solely of the water saturation S, and the gas satu-
ration S, respectively.

krw= k/ S3+2/)\’ krg — k’,.g(l _ Sgg)z(l _ S;:Z/)\)’

(B14)
So 1 _ch
kro = ( ) krowkrog’
krcow(l - Sw)(l - ch - Sg)
R SW_SWL‘ — I_Sg_ch
" 1- ch - Sor, & 1- ch - Sor’

krow = kr’g(l - Swe)2(1 - Sylv-:y)\ B kmg = kr’WSZZZ/)\'
(B15)

We took k,,=1/2, k/,=1, and k,,,=1. Here A=0.5 is the
sorting factor, S,,. given in the table and S,,=0 are the con-
nate water saturation and the residual oil saturation, respec-
tively.

We can express the Buckley-Leverett fractional flow func-
tions for a=o0, w, g as
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TABLE I. Summary of physical input parameters and variables.

Physical quantity Symbol Value Unit
Water, gas, oil fractional flows FuwsSoro Eq. (B16). m>/m?
Steam, volatile-oil enthalpy/unit mass hgwhgy Egs. (B5) and (B7) J/kg
Sensible enthalpy/unit mass Dy gy Egs. (B6) and (BS) J/kg
Volatile-oil, oil enthalpy/unit mass hyysh,p Egs. (B3) J/kg
Gas enthalpy, oil enthaply H,.H, Hgy+Hgy Hyy+Hyy J/m3
Steam, volatile-oil enthalpy Hgy.Hyy P Dhow(T) ., pT)ho AT) J/m3
Sensible steam, volatile-oil enthalpy HZ,W,H;V ng(T)h;W(T),ng(T)hZ,V(T) J/m?
Partial steam, volatile-oil enthalpy H,,, Hy, P Dhgw(T) , poy, (T g (T) J/m3
Pure volatile-oil, dead-oil enthalpy H,y,H,p pv(Dhy(T), pop(Th,p(T) J/m3
Volatile-oil, dead-oil enthalpy H,,,H,y Pov (DA (T) , pou(T)hyp(T) J/m3
Rock enthalpy H, CAT-T), Eq. (B1) J/m3
Water enthalpy Hy, pw(Dhy(T) J/m?
Porous rock permeability k 1.0x 10712 m?
Water, gas, oil relative permeabilities K +Krg sk Egs. (B14) and (B15) m?/m3
Molar weight, H,O, C;H ¢, dead-oil My My, Mp 0.018, 0.10021, 0.4 kg/mole
Total pressure P 1.0135x 10 Pa
Atmospheric pressure P, 1.0135x 10° Pa
Partial pressures P,.P, Eqgs. (3) and (4) Pa
Water, vapor, oil saturations S1>8458, independent variables m?/m?
Residual oil, connate water saturation SorsSye 0, 0.15 m?/m?
Injection saturations S s input m?/m?
Temperature T independent variable K
Three-phase temperature T(x,,=1) Eq. (5) K
Reservoir, injection temperature T, T" 293, 370-373 K
Boiling point of water, volatile oil T,.T, 373.15, 371.57 for heptane K
Total Darcy velocity u volume flux of all phases m3/(m?s)
Total injection velocity u injected volume flux m3/(m?s)
Water, volatile-oil evaporation heat Aw,Ay see Egs. (B9) J/kg
Water, steam, oil viscosity My s Mg Mo Egs. (B10)-(B13) Pas
Water, steam, volatile-oil vapor density PWw»PgwsPgv 998.2, Egs. (2) kg/m?
Pure heptane, dead-oil densities PvsPD 683, 800 kg/m?
Steam, volatile-oil vapor concentrations Pew>Pav PewP! P, pevPy/ P, Eq. (2) kg/m?
Liquid volatile-oil concentrations PovsPod obtained from Egs. (6) and (1) kg/m?
Molar fraction volatile-oil in liquid-oil Xop Egs. (5) and (4) -
Rock porosity ® 0.38 m?/m?3
Fa= ke, + bt + hyli). (B16)

where f, is the fraction of the volume flux of phase a [26].

APPENDIX C: ANALYSIS OF THE CHARACTERISTIC
EQUATIONS

We observe that making the determinant of Eq. (17) equal
to zero leads to a polynomial equation of third order in A
=7/u and thus we get (if all solutions are real) a slow, a
medium, and a fast wave solution.

We want to eliminate the first two elements of the fourth
row of Eq. (17). To do so we find x and y such that xF,
+yF3+F4;=0 with F;; given in Eq. (D4) and we obtain

Pgw
Hg - Ho + _pg_(Ha - Hw)

Remembering that G;; are given in Eqgs. (D3), it is easy to
verify for a=1,2,
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xF12+yF32+F42:O, .xGla+yG3a+G4a=O.
Now Fy3=xF3+yF33+F,; in the system (17) becomes

‘7:43 = A[—]ng +H(,7 + (H:V_H(,))fw + (Hé - H(;)fgs
where

AHT:x<M) +y(pJE) .
Pw Pv

The primes indicate differentiation relative to temperature.
Analogously, G43=xG3+yG33+Gy3 becomes

H; + ¢{AHS, +[H, + (H,,— H,)S,, + (H, — H,)S,]}.

Finally F,=xF,;+yF;+F, becomes

P P
Hg _ _MHW _ _SEHO
Pw Pv

Now we are ready for the Gaussian elimination. In Eq. (17)
we add to the fourth row the first row multiplied by x and the
third row multiplied by y leading to

Fii=NGy Fip—NGp, Fi3—NGi3 F,

F21_)\G21 F22_)\G22 F23_)\G23 F2 (Cl)
F31—=NG3; F3—ANG3 F33—MNGsz Fs
0 0 Fuz=NGyzs Fu

The rest of the Gaussian elimination is just as tedious and
straightforward. The result is the matrix on the left-hand side
of Eq. (18), where

A(N) =AY - NeAls
! !
(ﬁﬂ) +<M)
Pgw \ Py Pw
Pw Pev | Pew
Pv  Pw

=fv’v+ (M>’_

(fe=N@S,),
Pw ¢ ¢

Al :fw‘l' (CZ)

Using v,,=1-v,, we write
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(&2)(1 _ &1) + (Bﬂ)rﬂgg
Pv Pw Pw/ Py

A(2)3= vodfg - vc,mfo’
1= Pev _ Pew
Pv  Pw
(C3)
Bgz),<l _ﬂ) +(£&),BSE
v Pw Pw/ Py
Aé3 = Vpq®S, +@v,S,,
| = Pev _ Pew
Pv  Pw
(C4)
_ Pev
A2_F2+ U{)UA] _A3 P Y- (CS)
v

These results are used in Sec. IVB 1

APPENDIX D: FLUX, ACCUMULATION FUNCTIONS,
AND DERIVATIVES

We use Egs. (8) and (7). We chose to divide the first and
second of Egs. (8) by py and py, respectively. Thus we ob-
tain Eq. (9). The accumulation functions G; take the follow-
ing form for water, volatile oil, total oil, and energy, respec-
tively,

G, = so(sw+ Pav () )
Pw

Gy = pup(T)(1 =S, = ) + %‘ﬂ(T)sg,
v

G,= (p[1 _S,+ (”JE(T) - 1)54,
Pv

Gr=H,+¢(H,+(H,-H,)S, +(H,~H,)S,], (D)

where all enthalpies are functions of the temperature. Simi-
larly, the flow functions F; take the form

Fo=f,+ 2218,
Pw
Fy=u,(D)(1 = £, - £) + 22(D)f,,
Py

Fo=(1 _fw_fg)"'gngg’
Pv

FT=H0+(HW_Ho)fw"'(Hg_Ho)fg' (Dz)

The partial derivatives of the accumulations (D1) are

’
Py Pew
Gi=¢, Gp=¢ =, Gi3= ( H)Sg’
Pw Pw
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p
G == vy, Gp= ¢’<‘ng - vov)’

. Pew)
Gyu=¢v, (1-5,)+ @[(T;’;) - vo,v]Sg,

P Pew '
G3i=-¢, G32=<P<_gg—1>, G33=<P<_g£) Se»
Pv Pv

G4]=(P(HW—H0), G42=(P(Hg—H0),

Gyu=H) +¢[H,+ (H),-H)S, +(H,~H))S,], (D3)

and the partial derivatives of the flow functions (D2) are

F11=%+M% F12=% M%
3S,  pwdS, S,  pw IS,

!
F13=fvlv+<ew> fg"‘emf',
Pw Pw

J 17
F2] == vovﬂ + <Bg2 - v()v>lg-’
aSw Pv aSw
J 17
P (&L vw)—f&,
(9Sg Pv &Sg
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Pev | P
U U
F23=U£vfo+<i) fg_ ova/v+(i_vov)f,?
Pv Pv

aJ J 7]
Fﬂz_(ﬂ+_f&)+m_f&,
&SW &SW pv z9SW

P I

32 pv(?Sg’

S, dS,

Pw) , P
F33=(_g£> fg+ﬂf;_.f\tv_fl’
Pv Pv

v o,
Fy=(H,-H)—+(H,-H,)—*%,
41 ( w 0)(9S ( g 0)(95

w w

I af,
Fp=(H,-H)—>+(H,-H)=%,
42 ( w D)(;’Sg ( g 0)(9Sg
F43=H¢,)+(Hv/v_H:))fw"'(Hl;_Hz,))fg

+(H,-H,)f, +(H, - H(,)f;,. (D4)
We use the convention that primes mean the derivative rela-
tive to temperature; the subscripts w,v,o0,T were replaced by
1, 2, 3, 4. These results are used in Appendix C.
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