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Abstract
Logistics and mobility services play a major role in our society, and efficient routing is a

crucial part of this. However, even though routing problems have been widely researched,
the solutions provided by algorithms do not always match drivers’ expectations. Routing costs
used by these algorithms are often based on one or a few parameters, but in real-world oper-
ations, many factors and sometimes hard-to-define aspects are responsible for this. Drivers
can consider these different aspects and some studies found that experienced drivers often
plan better delivery routes than the optimization tools. In this research, we focus on using
expert decision data as examples for learning the costs of routing and train a policy that can
make decisions more in line with the expectations of the expert. We formulate state-action
representations for the TSP and CVRP, which we use to interpret these routing problems as
inverse optimization and multiclass classification problems. Additionally, we propose multiple
policy training approaches as well as state feature vector transformations that can be used
based on the characteristics of the routing problems. These different training configurations
are utilized to train different existing algorithms with training data sets consisting of example
state-action pairs. The performance of the trained models is compared to each other and the
optimal solution. The optimal solution acted as expert example and was used to create the
training data. We demonstrate that both inverse optimization and multiclass classification al-
gorithms are able to imitate expert decision-making for new problem instances from example
data. However, we also show a large variation in performance depending on the problem,
state features, algorithm formulations and training configuration.
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1
Introduction

Logistics and mobility services play a major role in our current society. Ordering packages,
groceries, or dinner is becoming more popular, and, in most cases, we expect next or even
same-day delivery. Even express orders are possible nowadays, promising delivery minutes
after placing the order. Besides that, many people use mobility services, such as Uber or
taxis, whenever they want and expect fast responses and transportation.

Vehicle routing is required to fulfil customer demand in all these cases, usually in an ur-
ban environment. Finding the best route to visit a set of locations is often referred to as a
routing problem and can have different formulations. The two most common formulations of
these routing problems are the Traveling Salesman Problem (TSP) and the Vehicle Routing
Problem (VRP). In the TSP, a single vehicle must visit the set of locations and return to its
starting point. A VRP is similar to a TSP. However, here multiple vehicles are used to visit the
locations. In addition, constraints, such as time or capacity, often apply to the problem. These
problems aim to determine a set of routes visiting all locations whileminimizing the routing cost.

Many variations of these routing problems exist and have been researched, focusing on
different costs or constraints for determining the optimal route. However, even though the
TSP and VRP are intensively studied, the “theoretical optimal” solutions provided by routing
algorithms do not always match the expectations of route planners or drivers. This mismatch
is because the costs these algorithms minimize are often based on a few parameters, like
distance or travel time, which have been studied extensively in the literature. In real-world op-
erations, a good solution is influenced by several other factors that are also important. These
factors may include road conditions, traffic lights, rush hours, facilities along a road and many
others. Some aspects might even be challenging to define explicitly or may derive from the
interdependencies among street segments. This large amount of different and sometimes
hard-to-define aspects makes it complicated to estimate actual costs and incorporate them
into an algorithm.

On the other hand, human drivers and route planners can take these different aspects
into consideration, sometimes subconsciously, when determining a route. As a result, some
studies found that experienced drivers often plan better delivery routes than the optimization
tools (Canoy et al., 2021; Chen et al., 2021). In this research, we use this experience and
expert decisions as examples. We use machine learning to learn the weights and costs of
certain routing decisions to determine a policy that can mimic expert decision-making. The
benefits of this would be that this policy and thus the model would be able to make better de-
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2 1. Introduction

cisions that are more in line with the drivers’ expectations. Furthermore, it would offer a way
in which new drivers can also use and benefit from the knowledge of more experienced drivers.

The idea of learning from expert example data has been around for many years and mainly
falls under supervised or imitation learning. Supervised learning is an approach where the al-
gorithm is trained on input data labelled for a particular output. In line with this, imitation
learning involves learning the optimum policy from expert demonstrations. Many supervised,
and imitation learning approaches exist (Abbeel & Ng, 2004; Klein et al., 2012; Kotsiantis,
2007).

This research uses two approaches and interpretations for learning a policy to make rout-
ing decisions using expert examples. The first approach we use is inverse optimization (IO).
In IO, one assumes that when given a signal, an expert solves an optimization problem to de-
termine the action to take. The goal is to create an agent which can imitate this. However, this
agent does not know the objective function and costs the expert uses to solve this problem.
Therefore, the agent must learn this using a set of signals and corresponding expert actions.

We interpret the routing problem for the second approach as a multiclass classification
problem. In multiclass classification, an algorithm is trained using a data set of samples and
corresponding labels. Feature vectors often represent these samples. The goal is for the al-
gorithm to learn which label belongs to a specific sample so that the algorithm can predict the
correct label when presented with a new sample.

This study demonstrates how we can interpret a routing problem and its solution as a set of
state-action pairs. We propose state-action representations for two separate routing problems
with different characteristics and show how we can use these state-action formulations for our
IO and classification approaches. Depending on the formulation of the problems, we provide
multiple training strategies. Finally, we analyze and compare the performance of several ex-
isting solution algorithms for different problems regarding learning from routing examples and
solving new routing problem instances.

In this research, we want to determine if we can use an IO and multiclass classification
approach to learn the costs of a routing problem and train a policy which can then be used to
solve new routing decisions by imitating expert decision-making. Therefore, the main question
we try to answer is:

Can we imitate expert decision-making for routing problems by learning only from example
decision data utilizing inverse optimization and multiclass classification solution approaches?

To answer this question, we consider related sub-questions like, how do we formulate rout-
ing problem states and corresponding actions? What is the performance of the trained models
compared to the expert? Furthermore, how do the performance of IO and different multiclass
classification approaches compare to each other when solving routing problems?

The remainder of this report is organized as follows. Chapter 2 reviews the relevant current
research on IO and multiclass classification to routing and transportation problems. After that,
Chapter 3 discusses the formulation of the different routing problems we consider in the study.
The IO and multiclass classification approaches are discussed in Chapter 4 and Chapter 5,
respectively. Chapter 6 discusses the numerical experiments and results, and finally, Chapter
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2
Literature Review

The origins of the TSP as a mathematical problem date back to the 1930s. However, it was not
until 1954 that a breakthrough occurred when G. Dantzig et al. (1954) published a description
of a method for the TSP by solving an instance with 49 nodes, an over-whelming size at that
time. Soon after, the first formulation of the VRP was introduced by G. B. Dantzig and Ramser
(1959) as the ”Truck Dispatching Problem”. This problem concerned itself with the optimum
routing of a fleet of gasoline delivery trucks with a limited capacity between a bulk terminal
and multiple service stations. Later, Clarke and Wright (1964) further generalized the problem
forming the basis for the VRP as we know it.

Both the TSP and VRP are NP-hard combinatorial optimization and integer programming
problems (Jünger et al., 1995; Toth & Vigo, 2002). This makes them interesting but also com-
plicated to solve, and so since their introduction, research performed on both problems has
grown rapidly (Cook et al., 2011; Eksioglu et al., 2009; Konstantakopoulos et al., 2020), and a
wide variety of formulations focusing on different problems or constraints have been created.
When considering the VRP, some of the most common examples are the Capacitated Vehicle
Routing Problem (CVRP), where the vehicles have limited capacity and each request has a
specific demand; the Vehicle Routing Problem with Time Windows, where each request must
be served within a specific time frame; the VRP with Pick-up and Delivery, where goods have
to be picked-up and delivered in specific amounts at the locations; or the Dial-A-Ride-Problem
that involves transporting people between different locations (Pillac et al., 2013).

The TSP andVRP are among themost studied combinatorial optimization problems (Sharma
et al., 2018). Because of this, many different solution methods have been proposed. Most
of these are operations research-based (OR) methods. However, in recent years machine
learning has been a popular approach for finding new ways to solve these routing problems.

On a high level, OR solution algorithms can be divided into three types: exact, heuristic,
and metaheuristic, with each category containing multiple methods, as can be seen in Figure
2.1. The primary distinction between these methods is that exact methods solve the issue
to the best possible or optimal answer, whereas (meta)heuristic solutions approximate the
optimal solution. As a result, the solutions identified by these (meta)heuristic algorithms are
not always the best solutions possible. However, (meta)heuristic approaches are frequently
considerably faster and, therefore, more interesting than exact methods. Most studies on this
aim to identify heuristic approaches that get as near to the optimal solution as possible in the
shortest time. For more information on different approaches, the reader is referred to literature

5



6 2. Literature Review

(Elshaer & Awad, 2020; S. C. Ho et al., 2018; Konstantakopoulos et al., 2020; Oyola et al.,
2017a, 2017b; Zhang et al., 2022).

Figure 2.1: Classification of OR based algorithms for the VRP (Konstantakopoulos et al., 2020).

In recent years, machine learning has been a popular technique for solving routing prob-
lems, with (deep) reinforcement learning (RL) being one of the most popular approaches used,
which learns by trying different actions and evaluating the response it receives from the envi-
ronment (Nazari et al., 2018). Some early methods were proposed by Bello et al. (2016) and
Vinyals et al. (2015), who introduced the concept of a Pointer Network. These models were
based on recurrent neural networks (RNN) and inspired by sequence-to-sequence models
(Luong et al., 2015; Sutskever et al., 2014), which have been extensively studied in the field
of machine translation. These sequence-to-sequence models are useful if a mapping from
one sequence to another is required. Although these methods provide good results on the
TSP, using an RNN is restrictive when we try to solve more complicated problems for which
the system’s representation varies over time, such as with VRPs. In order to resolve this com-
plication, Nazari et al. (2018) proposed an end-to-end framework that uses RL to solve VRPs
based on pointer networks and attention mechanisms. After that, Kool et al. (2018) proposed a
different model using RL entirely based on attention. Finally, another example is the “Learn to
Improve” method proposed by H. Lu et al. (2020) for solving the VRP, which learns to iteratively
refine the solution with an improvement operator selected by a reinforcement learning-based
controller.

2.1. Inverse Optimization for Routing Problems
In the previous section, we mentioned different approaches for solving the TSP and VRP using
operational research and machine learning. However, these approaches require a predefined
cost that they will try to minimize. In real-world situations, however, this cost can depend
on many aspects and may not be so easily defined. However, an IO approach can be used
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to determine unspecified parameters of an optimization problem that make a given observed
solution optimal (Burton & Toint, 1992), possibly in the presence of some state-action con-
straints. The approach is particularly suitable when the action is an optimal decision for a
certain unknown cost function (Akhtar et al., 2022) and can help to obtain more practical costs
from previous experts’ decisions. In this way, the optimization model for these costs could
replicate the decision-making behaviour of the expert.

The interest in IO among the mathematical programming community started with the re-
search of Burton and Toint (1992), which was the first to propose an IO approach for linear
programming by investigating the inverse shortest path problem. This was soon followed by
Ahuja and Orlin (2001) and Jianzhong Zhang and Zhenhong Liu (1996) in a more generalized
context, who studied the inverse linear optimization based on optimality conditions and dual
theory. IO models have also been researched in the context of integer programs (Schaefer,
2009; Wang, 2009) and network problems (Burton & Toint, 1992; Hochbaum, 2003; Jianzhong
Zhang & Zhenhong Liu, 1996). Recently, research has expanded to include the use of IO when
dealing with noisy and imperfect data (Aswani et al., 2015; Esfahani et al., 2015).

The applications of IO models can be found in a wide range of domains, like geoscience
(Burton & Toint, 1992; Neumann-Denzau & Behrens, 1984), healthcare (Chan et al., 2014;
Erkin et al., 2010), energy (Ratliff et al., 2013; Saez-Gallego et al., 2016), production plan-
ning (Troutt et al., 2006) and warehouse management (Rummukainen, 2021). Also, in the
transportation area, IO is studied, for instance, in the context of cost estimations related to
collaboration among carriers in liner shipping (Agarwal & Ergun, 2010; Zheng et al., 2015).
However, concerning routing problems, little research on applying an IO approach can be
found in literature.

One of the studies found is a recent paper by Chen et al. (2021) on the use of an IO ap-
proach for CVRPs. They propose an IO formulation based on dualization to derive a cost
matrix by learning from the decisions of experienced drivers (experts). In this way, the goal is
that the routing model, with respect to the learned costs, could provide solutions as good as
those given by experts. To train the model, Chen et al. (2021) follow the example of earlier re-
search (Bärmann et al., 2018; Bärmann et al., 2017) and propose an online learning approach.

Two other studies on the topic of routing were performed by You et al. (2016) and Xu
et al. (2018). You et al. (2016) proposed an urban freight modelling framework that consid-
ers both spatial-temporal constraints, based on an adaptation of an activity-based passenger
model called the household activity pattern problem (Chow & Recker, 2012; Recker, 1995).
The problem is modelled as a custom VRP, and an IO approach was used to update coeffi-
cients of different objectives to observed data such as GPS traces. The models’ application
was demonstrated by developing and executing a custom Sequential Selective Vehicle Rout-
ing Problem to show how to anticipate drainage truck activity using GPS trajectories to infer
operational parameters. Xu et al. (2018) proposed an IO model to learn the parameters of
heterogeneous travellers’ route behaviour to infer shared network state parameters, such as
link capacity dual prices, in real-time. Parameter learning in their model is accomplished by
solving a set of inverse shortest route problems with an invariant common prior.

Finally, a real-world example of a routing system using IO is given by Rönnqvist et al.
(2017). They describe an online route recommendation system for long-haul truck drivers
in the Swedish forest industry. This system, which has been in operation since 2009, finds
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the best route, depending on road features and driver preferences, when multiple competing
objectives are involved. One of its distinctive features is the use of an IO approach that reduces
a loss, balancing various factors by using more than 100 weights. The system has resulted in
a change from manually to automatically determined routes that are collectively established
by all stakeholders, facilitating standardization, collaboration, and reduced costs.

2.2. Multiclass Classification for Routing Problems
Supervised classification algorithms aim at producing a learning model from a labelled train-
ing set. In other words, the objective is to create a simple model of the distribution of class
labels in terms of predictive features. The derived classifier is then used to assign class labels
to testing instances where the predictor feature values are known, but the class label value
is unknown. Simple classification problems frequently use only binary labels, whereas multi-
class classification problems use more than two labels, only one of which can be given to a
collection of features. Various classification variations and approaches have been developed
throughout the years (Chih-Wei Hsu & Chih-Jen Lin, 2002; Kotsiantis, 2007).

The applications of (multiclass) classification can be found in a wide range of domains,
like ecology (Bourel & Segura, 2018), food chemistry (Berrueta et al., 2007), and healthcare
(Akbar et al., 2020; J. Lu et al., 2005). For example, classification is used in this last domain
to aid in diagnoses decisions (Ramaswamy et al., 2001). For the domain of transportation,
multiclass classification is also used. However, most of these applications focus on categoris-
ing data or predicting already established routes. As is the case in two studies by Duca et al.
(2017) and Lo Duca and Marchetti (2020), they use multiclass classification to predict ship
routes.

For the applications on vehicle routing, only one recent study by Mandi et al. (2021) was
found using a form of classification for vehicle routing. In this research, the writers formulate a
multiclass classification problem where they define the next stop in a route as the class of the
set of visited stops. They used a set of previous routing data to train a neural network model
which learns the transition probabilities between locations in a CVRP problem formulation.
With these transition probabilities, they solve the maximum likelihood routing problem instead
of the conventional VRP to make the routing decisions. To the best of our knowledge, this is
the only study that implements (multiclass) classification for solving routing problems.

2.3. Summary
In summary, most of the research on applying machine learning to solve routing problems
has been done in the field of (deep) reinforcement learning. Using supervised learning or
similar approaches where the routing costs are unknown, and the algorithm has to learn from
examples has been comparatively less researched. IO and multiclass classification are both
approaches that have already been explored in many different contexts. However, this is not
the case in the area of routing problems. Our research is an early step in this, in which we
investigate their application to two different routing problems and suggest different training and
learning methods from routing examples. We then test these approaches and compare the
performance of various existing algorithms for solving these problems. We discuss the results
and propose future possibilities for learning to solve routing problems from examples.



3
Routing Problems

A TSP or VRP is generally defined on a graph 𝐺 = (𝑉, 𝐸), with vertex set 𝑉 = {𝑣0, ..., 𝑣𝑛} and
edge set 𝐸 = {(𝑣𝑖 , 𝑣𝑗) ∶ 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}, where 𝑣0 often represents the depot, and the other
vertices in 𝑉 are the requests that need to be served. The goal of these routing problems is to
determine, with a single or multiple vehicles, a set of routes such that each vertex (except the
depot) is visited exactly once while solving an objective function and satisfying constraints. A
common example of this is minimizing the overall routing cost.

In this research, we define two different routing problems for which we will test the algo-
rithms we use. The first problem we refer to as the TSP, and the second problem we refer to as
the CVRP. Details and the formulation of each problem are described below. The main differ-
ence between both problems is that in the TSP, only one vehicle is used to visit all the nodes.
For the CVRP, multiple vehicles are used to visit the nodes. However, the vehicles only have a
limited capacity, and each node has a specific demand that must be fulfilled. These demands
remain the same but are redistributed across the nodes for each new problem instance. Both
problem formulations will be evaluated with fixed customer locations, where the nodes are in
the same place for each new problem instance, and with random customer locations, where
the node locations are different in each problem instance. Figure 3.1 illustrates an example of
a TSP and CVRP solution.

Figure 3.1: Examples of a TSP (left) and CVRP (right) solution.

We defined these two routing problems with their characteristics for multiple reasons.

9
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These problems are simplified representations of route problems we encounter daily in the
real world. We already argued in the introduction that learning to imitate experts’ decisions
can have advantages. In addition, the difference in characteristics regarding the fixed and ran-
dom locations allows us to test two different scenarios in which we learn and apply experts’
preferences.

The random locations for each new problem instance ensure that the costs of different rout-
ing choices also vary according to the problem. Therefore, this scenario considers a universal
use for learning to make routing decisions based on more general preferences. The fixed
locations, however, are similar to a more area-specific application. Because only a limited
network is considered to learn and route inside, the edges, and the routing costs, stay con-
stant. The focus here is on developing a policy for routing decisions in a specific location, such
as a neighbourhood or city, where a model is trained solely on routing decisions from this area.

As we mentioned before, for the algorithms we use to solve these problems, we will not
provide the objective function or specify the routing costs used by the expert to determine the
routes. Instead, we only provide a data set containing 𝑁 routing examples, which is used to
train the algorithms to make routing decisions. This data set consists of multiple state-action
pairs {𝑠̂𝑖 , 𝑢̂𝑖}𝑁𝑖=1. To create these state-action pairs, we assume that a route, the solution to the
routing problem, is formulated using a series of actions or decisions 𝑢. Each of the decisions
being which node the vehicle will visit next. The state 𝑠 represents the system state of the
problem as it was when making the decision and is formulated as a feature vector. An example
of this is illustrated in Figure 3.2. In this system we consider the set of nodes 𝑉 = [0, 1, 2, 3, 4].
In the first system state, the vehicle is located at the depot. This state is translated into a
feature vector 𝑠1 for which the next node the vehicle will visit represents the corresponding
action 𝑢1. After the vehicle has travelled to this node, this is the next system state. Different
features are used depending on the problem, which is discussed below.

Figure 3.2: Two consecutive state-action pair examples: A system state is represented by a feature vector 𝑠 and
the next node the vehicle will visit is the corresponding action 𝑢.
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3.1. Traveling Salesman Problem
In the TSP a single vehicle must visit a set of vertex 𝑉 = {0,… ,𝑁} consisting of 𝑁 nodes, for
which vertices 𝑖 = 1,… ,𝑁 correspond to customers and vertex 0 corresponds to the depot. The
vehicle will start at the depot and must also return to the depot after visiting all the customers.
Furthermore, all customersmay only be visited once, and the goal of the problem is tominimize
the total routing cost. 𝐶 = {𝑐𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑉} is the cost matrix, in which 𝑐𝑖𝑗 is the travel cost from
node 𝑖 to node 𝑗, which is equal to the euclidean distance between the nodes. The following
mathematical formulation describes the problem.

Mathematical Formulation
Decision variable:
𝑥𝑖𝑗 Equal to 1 if a vehicle travels directly from vertex 𝑖 to vertex 𝑗; 0, otherwise. 𝑖, 𝑗 ∈ 𝑉

Formulation:

minimize ∑
𝑖,𝑗∈𝑉

𝑐𝑖𝑗𝑥𝑖𝑗

subject to ∑
𝑗∈𝑉
𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑉

∑
𝑖∈𝑉
𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝑉

∑
𝑖,𝑗∈𝑆

𝑥𝑖𝑗 ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑉

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉
To formulate a state 𝑠 used in the data set, we need to define what information we can use

as features for describing the system’s state at any point in the problem for every instance.
The features that were selected for this are the x-coordinates and y-coordinates of every node,
the information if a node has already been visited or not and, in case of the random customer
locations also, the distances of the node that the vehicle is located at that point to all the other
nodes and the distances between all nodes and the depot. In the following example, we will
explain how the feature vector is constructed.

Figure 3.3: TSP state example with four customers (black dots), depot (red square) and traveled route of the
vehicle (blue arrows)
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Consider Figure 3.3, which illustrates a system state wemust represent as a feature vector.
This system consists of 5 nodes, of which four customers and the depot are randomly located
on a graph. The vehicle started at the depot and followed the partial route visiting customers
2 and 3, respectively. Therefore, currently, the vehicle is located at customer 2. To describe
this system, we use the features mentioned above. We represent the information on if a node
is already visited or not as an array of ones and zeros, where zero means a node is visited
and one means the node is not visited and thus is still available. This results in the following
features and corresponding feature vector:

x-coordinates: [𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4]⊤
y-coordinates: [𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4]⊤

distance to current node: [𝑑20, 𝑑21, 0, 𝑑23, 𝑑24]⊤
distance to depot: [0, 𝑑01, 𝑑02, 𝑑03, 𝑑04]⊤
available nodes: [1, 1, 0, 0, 1]⊤

Feature vector:
[𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑑20, 𝑑21, 0, 𝑑23, 𝑑24, 0, 𝑑01, 𝑑02, 𝑑03, 𝑑04, 1, 1, 0, 0, 1]⊤.

There are multiple ways to approach the training of a decision-making model for solving
the routing problem. The first and most straightforward way is to train one decision-making
policy for the entire statespace 𝕊. In this case, the same policy is used to make a decision, no
matter the state of the problem. However, another option would be to train different policies
depending on the number of available nodes left in the system. To do this, we divide the data
set of state-action pairs used for training in 𝑛𝑑 individual data sets, which we use to learn a
policy for every number of available nodes left. Note that we do not need to learn a policy
when only a single customer is left or when the vehicle has visited all the customers and has
to return to the depot.

Figures 3.2 and 3.3 show that the customers in a specific system are arbitrarily numbered,
starting with the number 1. However, the numbering of the customers has no relation to the
routing choices and only serves as a reference for interpreting the decisions made by the
algorithm. This is illustrated in Figure 3.4.

Figure 3.4: Relation between node labels and decisions. For the same system different labeling outputs a different
decision for the same routing location.
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In this example, we consider the same system, represented by a simplified feature vector
𝑠 only consisting of a single feature 𝑓 per node, with different labelling of the customers. As a
result of the different labelling, the corresponding feature vector is different for the same order
of the nodes, resulting in different actions for travelling to the same location. So as we can see,
the labelling will not influence the location the vehicle will travel. This allows us to change the
order of the second feature vector so that both system’s states and actions are represented
the same, as shown in Figure 3.5.

Figure 3.5: Reordering of the feature vector results in different decision.

We can use this information to reorder and reduce the feature vector depending on the
current system state and previous decisions. Themain benefit of this is that it can decrease the
computational time needed for both training and testing of the algorithm and reduce the variety
of possible actions depending on the nodes left to visit. In this next part, we demonstrate how
we apply the reordering and reducing for the feature vector we proposed above.

Example: Feature Vector Reordering and Reducing
Consider the same system as above, however now we will label the nodes in the system with
letters, where the first node is still the depot now label with letter Z and the other nodes the
customers labeled A to D. The node order of this problem corresponds to [𝑍, 𝐴, 𝐵, 𝐶, 𝐷], see
Figure 3.6.

Figure 3.6: TSP state example with four customers (black dots), depot (red square)

In the first decision, the vehicle moves to the third node in this system, which using the
node order, corresponds to customer B. After this, we now have a new state for which a feature
vector can be constructed. However, we reorder the node order and, thus, the features so that
the nodes that were already visited are moved to the end of their respective feature group. If
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we do this, the node order now corresponds to [𝑍, 𝐴, 𝐶, 𝐷, 𝐵] and the new feature vector for
this state will be:

Feature vector:
[𝑥𝑍, 𝑥𝐴, 𝑥𝐶 , 𝑥𝐷 , 𝑥𝐵 , 𝑦𝑍, 𝑦𝐴, 𝑦𝐶 , 𝑦𝐷 , 𝑦𝐵 , 𝑑𝐵𝑍 , 𝑑𝐵𝐴, 𝑑𝐵𝐶 , 𝑑𝐵𝐷 , 0, 0, 𝑑𝑍𝐴, 𝑑𝑍𝐶 , 𝑑𝑍𝐷 , 𝑑𝑍𝐵 , 1, 1, 1, 1, 0]⊤.

As we can see, the features corresponding to customer B, indicated in red, have now
moved. It is important to note that the node order in the feature vector is now changed, so the
decisions made depending on the state will not correspond to our original node labels, as we
will now show. Therefore, it is important to keep track of the performed changes. Depending
on this new feature vector, the next decision is to move to the third node. This is the same
as our first decision; however, because we reordered the node order and feature vector, the
third node corresponds to customer C. After this decision, we can now reorder the node order
again, resulting in [𝑍, 𝐴, 𝐷, 𝐵, 𝐶] with the feature vector for the new state:

Feature vector:
[𝑥𝑍, 𝑥𝐴, 𝑥𝐷 , 𝑥𝐵 , 𝑥𝐶 , 𝑦𝑍, 𝑦𝐴, 𝑦𝐷 , 𝑦𝐵 , 𝑦𝐶 , 𝑑𝐶𝑍 , 𝑑𝐶𝐴, 𝑑𝐶𝐷 , 𝑑𝐶𝐵 , 0, 0, 𝑑𝑍𝐴, 𝑑𝑍𝐷 , 𝑑𝑍𝐵 , 𝑑𝑍𝐶 , 1, 1, 1, 0, 0]⊤.

The result of this reordering is that the available nodes and their features will always be
in front of the node order and their corresponding feature parts. Therefore, the decision will
always be to go to one of the first nodes in the order, reducing the variation in actions depending
on the number of available nodes. Suppose we now consider the approach of training a
different policy depending on the number of available nodes left. In that case, we can argue
that we do not need to include the features of nodes that have already been visited before
the current node. So we can reduce the length of the feature vector, which will consequently
reduce the computational time needed. Reducing the last feature vector will result in:

Feature vector:
[𝑥𝑍, 𝑥𝐴, 𝑥𝐷 , 𝑥𝐶 , 𝑦𝑍, 𝑦𝐴, 𝑦𝐷 , 𝑦𝐶 , 𝑑𝐶𝑍 , 𝑑𝐶𝐴, 𝑑𝐶𝐷 , 0, 0, 𝑑𝑍𝐴, 𝑑𝑍𝐷 , 𝑑𝑍𝐶 , 1, 1, 1, 0]⊤.

Note that reduction of the feature vector can only be applied when training multiple decision-
making policies depending on the number of available nodes left and not in the case of training
a global decision-making policy because of the varying vector size.

3.2. Capacitated Vehicle Routing Problem
In the CVRP a number of vehicles 𝐾 with a limited capacity 𝑄 is used to visit a set of vertex
𝑉 = {0,… ,𝑁} consisting of 𝑁 nodes, for which vertices 𝑖 = 1,… ,𝑁 correspond to customers
and vertex 0 corresponds to the depot. The vehicles will start at the depot and must also return
to the depot at the end of their route. Furthermore, all customers have a demand 𝑞𝑖 , 𝑖 ∈ 𝑉\{0}
and may only be visited once. The goal of the problem is to minimize the total routing cost.
𝐶 = {𝑐𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑉} is the cost matrix, in which 𝑐𝑖𝑗 is the travel cost from node 𝑖 to node 𝑗, which
is equal to the euclidean distance between the nodes. The following mathematical formulation
describes the problem.

Mathematical Formulation
Decision variable:
𝑥𝑖𝑗𝑘 Equal to 1 if a vehicle 𝑘 travels directly from vertex 𝑖 to vertex 𝑗; 0, otherwise. 𝑖, 𝑗 ∈ 𝑉,
𝑘 ∈ [𝐾]
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Formulation:

𝑚𝑖𝑛 ∑
𝑘∈[𝐾]

∑
𝑖,𝑗∈𝑉

𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑
𝑘∈[𝐾]

∑
𝑗∈𝑉
𝑥𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝑉\{0}

∑
𝑗∈𝑉
𝑥𝑖𝑗𝑘 =∑

𝑗∈𝑉
𝑥𝑗𝑖𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ [𝐾]

∑
𝑗∈𝑉\{0}

𝑥0𝑗𝑘 = 1 ∀𝑘 ∈ [𝐾]

∑
𝑖∈𝑉

∑
𝑗∈𝑉\{0}

𝑞𝑗𝑥𝑖𝑗𝑘 ≤ 𝑄 ∀𝑘 ∈ [𝐾]

∑
𝑖,𝑗∈𝑆

𝑥𝑖𝑗𝑘 ≤ |𝑆| − ⌈
1
𝐶 ∑
𝑗∈𝑆
𝑞𝑗⌉ ∀𝑆 ⊂ 𝑉\{0}, 𝑘 ∈ [𝐾]

𝑥𝑖𝑗𝑘 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑉, 𝑘 ∈ [𝐾]

Like with the TSP, we formulate a vector using multiple features to represent the sys-
tem’s state. However, because of the differences between the problem, we also use different
features. For example, in this problem, we have to deal with multiple vehicles routing simul-
taneously. Furthermore, we also have the customers’ demands and the vehicle’s capacities,
which are both important and change depending on the problem instance and state.

The first features we use are the vehicle for which we have to make the current decisions,
its current capacity and location. The vehicle that has travelled the smallest distance is se-
lected to move next. To indicate which vehicle this is, we use a one-hot encoding. This means
that we use a vector with an equal length to the number of vehicles, where every element of the
vector is equal to zero except for the considered vehicle, which is equal to one. For example,
in the case of 3 vehicles, and we are considering the second vehicle, the one-hot encoding
results in [0, 1, 0]. We use the same approach of one-hot encoding to represent the location
of the current vehicle, where we use a vector with the length equal to the number of nodes
of which the element corresponding with the current node is equal to one. The other features
we use are the current capacities of all vehicles, the current location of all vehicles again in
a one-hot encoding, the initial demand of each customer and which customer the vehicle can
visit depending on if the customer has already been visited and the vehicle still has enough
capacity to serve the demand. Furthermore, in the case of the random customer locations, we
include the x-coordinates and y-coordinates of every node, the distances of the node where
the current vehicle is located at that point to all the other nodes and the distances between all
nodes and the depot.

Like with the TSP, there are multiple ways in which we can approach the training of a
decision-making model for solving the CVRP as well. We can again use the so-called global
policy training approach, where we are training one decision-making policy for the entire
statespace 𝕊. However, the fixed node locations also allow us to take a node-orientated train-
ing approach. This means that we train and use different policies depending on the node
where the vehicle is located. To do this, we divide the data set of state-action pairs used for
training in 𝑛𝑛 individual data sets, which we use to learn a policy for every individual node in
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the system.

3.3. Data Set Creation
Data sets are generated in advance for both problems that we use in this research to evaluate
the performance of the different models. Both a training data set and a test data set are gener-
ated for each problem, containing a predetermined number of different problem instances. In
the case of the training data set, these problem instances need to be transformed into state-
action pairs. To do this, we determine the optimal route by solving each problem instance
using Gurobi (Gurobi Optimization LLC, 2022). The optimal solution will be used as the expert
routing examples we use for training. We split each optimal route into individual actions, with
each new node in the route being an action. Then we determine the corresponding feature
vectors representing the state for each action and combine these in the data set, which will be
provided to our model for training.

Now that we have defined the problems, different learning approaches and described how
the data sets of state-action pairs are constructed to train our models. We discuss the different
algorithms that will be used in this study.



4
Inverse Optimization

As was mentioned before, in IO an agent aims to learn the behaviour of an expert who makes
decisions based on an exogenous signal, which in this research is represented by the state
of the routing problem. To do this, it is assumed that upon receiving a state 𝑠 ∈ 𝕊 ⊆ ℝ𝑛, the
expert optimizes a parametric optimization problem over a set of feasible actions 𝕌(𝑠) ⊆ ℝ𝑚,
which also depend on the system state 𝑠. This optimization problem is formulated as

min
𝑢∈𝕌(𝑠)

𝐹(𝑠, 𝑢), (4.1)

where 𝐹 ∶ ℝ𝑚 × ℝ𝑛 → ℝ. In this optimization problem, we assume that for every state 𝑠 ∈ 𝕊,
the set of minimizers 𝕌∗(𝑠) ∶= argmin𝑢∈𝕌(𝑠)𝐹(𝑠, 𝑢) is non-empty. Furthermore, we assume
that the agent has no prior knowledge of the objective function 𝐹 representing the expert’s
preferences. Thus the agent is unable to predict the experts response 𝑢ex to a particular
system state 𝑠 prior to training. The agent does however has access to a data set consisting
on 𝑁 states which are paired with corresponding expert actions {𝑠̂𝑖 , 𝑢̂ex𝑖 }𝑁𝑖=1, for which,

𝑢̂ex𝑖 ∈ argmin
𝑢∈𝕌∗(𝑠̂𝑖)

𝐹(𝑠̂𝑖 , 𝑢) ∀ 𝑖 ∈ [𝑁].

This state-action data, indicated with the hat notation ⋅̂, can be used to learn the experts
objective function. To do this, we assume that the unknown objective function 𝐹(𝑠, 𝑢) can be
represented by a parameterized function 𝐹𝜃(𝑠, 𝑢), which is part of a parametric hypothesis
space ℱ = {𝐹𝜃 ∶ 𝕊 ×𝕌 → ℝ ∣ 𝜃 ∈ Θ}, where 𝜃 ∈ Θ represents the parameters to be learnt. The
mapping 𝜃 ↦ 𝐹𝜃 and the choice of space Θ depend on the problem at hand. Using this we
can formulate the optimization problem that the agent tries to solve as

min
𝑢∈𝕌(𝑠)

𝐹𝜃(𝑠, 𝑢). (4.2)

Optimizing this for a system state 𝑠 ∈ 𝕊 as input will return an action 𝑢 ∈ 𝕌. This output action
is considered as the agent action 𝑢ag𝜃 (𝑠) with

𝑢ag𝜃 (𝑠) ∶= argmin
𝑢∈𝕌(𝑠)

𝐹𝜃(𝑠, 𝑢).

4.1. Loss Functions
Ideally, the agent would aim to identify a hypothesis closely resembling the behaviour of the
expert. To do this, the available data set {𝑠̂𝑖 , 𝑢̂ex𝑖 }𝑁𝑖=1 is used to training the agent so it can learn
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the parameters in the hypothesis. For this training a loss function 𝓁𝜃 is used to quantify the
inaccuracy of the parameter used in a objective function 𝐹𝜃 ∈ ℱ. The goal during training would
be to find the parameter 𝜃 which minimize the total loss. We can formulate this optimization
problem as

min
𝜃∈Θ

𝓁𝑁(𝜃) ∶=min
𝜃∈Θ

1
𝑁

𝑁

∑
𝑖=1
𝓁𝜃(𝑠̂𝑖 , 𝑢̂ex𝑖 ), (4.3)

where 𝓁𝜃(𝑠, 𝑢) ∶ ℝ𝑚 × ℝ𝑛 → ℝ.

Different loss functions are discussed in literature and existing IO models mainly differ
based on their specification of the loss function (Akhtar et al., 2022). A computationally attrac-
tive loss function in the context of IO is the suboptimality loss (Esfahani et al., 2015) which is
formulated as

𝓁sub𝜃 (𝑠, 𝑢ex) ∶= 𝐹𝜃(𝑠, 𝑢ex) − min
𝑢ag∈𝕌(𝑠)

𝐹𝜃(𝑠, 𝑢ag). (4.4)

For the candidate hypothesis, the suboptimality loss quantifies the difference between ex-
pert and agent decisions. The object function in the hypothesis space that best describes the
expert action given an external input, regardless of the real cost incurred by the agent, is found
via minimization of this loss function. It is worth noting that the loss is only zero when the ex-
pert action is the cost minimizer for the hypothesized cost, and the loss is explicitly dependent
on the system state 𝑠.

While in some situations the suboptimality loss is very useful, Zattoni Scroccaro et al.
(2021) showed that this is not always the case. Particularly in many practical applications,
and hence they introduced the generalized suboptimality loss as

𝓁gsub(𝑠, 𝑢ex(𝑠)) ∶= 𝐹𝜃(𝑠, 𝑢ex) − min
𝑢ag∈𝕌(𝑠)

{𝐹𝜃(𝑠, 𝑢ag) − 𝛾𝑑(𝑢ex, 𝑢ag)}, (4.5)

with 𝛾 ≥ 0 and where the distance function 𝑑(𝑢ex, 𝑢ag) > 0 if 𝑢ex ≠ 𝑢ag and 𝑑(𝑢ex, 𝑢ag) = 0 if
𝑢ex = 𝑢ag. As the name suggests the generalized suboptimality loss can be used for a more
wider range of problems like when solving a linear program. Therefore, in this research we
will be using this loss in the context of our IO model. Furthermore, for the distance function
we apply the 0-1 distance 𝑑(𝑢ex, 𝑢ag) = 𝐼(𝑢ex, 𝑢ag) with 𝐼(𝑢ex, 𝑢ag) = 0 if 𝑢ex = 𝑢ag, else
𝐼(𝑢ex, 𝑢ag) = 1 (Zattoni Scroccaro et al., 2021).

When combining the generalized suboptimality loss (4.5) and the optimization problem
(4.3) for a given data set {𝑠̂𝑖 , 𝑢̂ex𝑖 }𝑁𝑖=1, the training phase of the IO approach results in the
optimization program

min
𝜃∈Θ

1
𝑁

𝑁

∑
𝑖=1
(𝐹𝜃(𝑠̂𝑖 , 𝑢̂ex𝑖 ) − min

𝑢ag𝑖 ∈𝕌(𝑠̂𝑖)
{𝐹𝜃(𝑠̂𝑖 , 𝑢ag𝑖 ) − 𝛾𝐼(𝑢ex, 𝑢ag)}) . (4.6)

4.2. Modeling Choices
We use the formulation presented by Zattoni Scroccaro et al. (2021). The parameterized
objective function 𝐹𝜃(𝑠, 𝑢) is defined as

𝐹𝜃(𝑠, 𝑢) ∶= 𝑠⊤𝑄𝑢, (4.7)
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where 𝜃 = vec(𝑄), meaning that the parameter vector 𝜃 can be reshaped into a parameter
matrix 𝑄 ∈ ℝ𝑛×𝑚.

Now that we have defined our hypothesis function we can combine this with problem (4.2)
and formulate the optimization problem that our IO agent tries to optimize as

min
𝑢∈𝕌(𝑠)

𝑠⊤𝑄𝑢. (4.8)

The parameter vector 𝜃 is found using the generalized suboptimality loss by solving op-
timization problem (4.6). This is done by reformulating the problem as a single minimization
problem as demonstrated by Zattoni Scroccaro et al. (2021). It is important to mention that
in our research the constraint set of decisions 𝕌(𝑠) consists of a finite number of discrete el-
ements. Because of this a auxiliary variable 𝛽𝑖 can be introduced for each state-action pair
in our training data set, and we can use the so-called epigraph reformulation of the problem
(Boyd & Vandenberghe, 2004). Furthermore, a regularization term ℛ(𝜃) = ‖𝜃‖22 and param-
eter 𝜆 > 0 was added to penalise the magnitude of 𝜃. Resulting in the single minimization
problem formulated as

min
𝜃,𝛽1 ,...,𝛽𝑁

𝜆‖𝜃‖22 +
1
𝑁

𝑁

∑
𝑖=1
𝛽𝑖

s.t. ⟨𝜃, 𝜙(𝑠̂𝑖 , 𝑢̂ex𝑖 )⟩ − ⟨𝜃, 𝜙(𝑠̂𝑖 , 𝑢𝑎𝑔𝑖)⟩ + 𝛾𝑑(𝑢̂𝑒𝑥𝑖 , 𝑢
ag
𝑖 ) ≤ 𝛽𝑖 ∀𝑢ag𝑖 ∈ 𝕌(𝑠̂𝑖), 𝑖 ∈ [𝑁]

𝜃 ∈ Θ.

(4.9)

Finally, in our implementation, we use Gurobi (Gurobi Optimization LLC, 2022) to solve
optimization problem 4.9 for a training data set to obtain the parameter vector 𝜃. This vector
is then rescaled to the parameter matrix 𝑄, which is used with optimization function 4.8 to
formulate the agent’s decisions when testing the model.





5
Multiclass Classifications

A classification problem in machine learning refers to a predictive modelling problem where a
class needs to be predicted for a given sample. To solve this problem, a model will determine
the optimal way to map input data samples to certain classes using the training data set. As
such, the training data set must be sufficiently representative of the problem and have several
examples for each class. There are several different types of classification algorithms which
have been developed. Many algorithms use binary classification, which refers to classification
tasks containing two classes.

On the other hand, a multiclass classification problem is a problem in which there are more
than two classes, and each sample can only be classified as one of them. Not all classification
predictive models support multiclass classification. However, algorithms designed for binary
classification can be adapted to solve multiclass problems with the One-vs-Rest (OvR) or One-
vs-One (OvO) methods (see Appendix B).

This research will use different multiclass classification algorithms to evaluate and compare
their performance in solving the TSP and VRP. The algorithms that we use are described in
the sections below.

5.1. Support Vector Machines
A support vector machine (SVM) is a binary classification algorithm used for multiclass classi-
fication using the OvO approach. The SVM classifier works by determining a hyperplane that
separates the two classes of the input samples. The dimensions of this hyperplane are equal
to the number of features of the input sample. These hyperplanes act as decision boundaries
for the classification of new input samples. Samples on either side of the hyperplane will be
classified into the corresponding class. There are usually several potential hyperplanes from
which to choose. However, the classifier attempts to locate a plane with the greatest distance
between data points from both classes, called the margin. Maximising the margin allows new
data points to be categorised with more certainty. The support vectors (SV) are samples clos-
est to the hyperplane and impact the hyperplane location and orientation, see Figure 5.1. The
position of the hyperplane will change if the support vectors are removed.

21
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Figure 5.1: Support Vector Machine hyperplane

Depending on the features, there are many cases in which it is impossible to separate the
input samples using a hyperplane in the current dimensions (the number of which is equal to
the number of features) as most data is not linearly separable. We can use feature transfor-
mation to map the sample vector into a higher dimensional space using a function 𝜙 to solve
this problem. However, the downside of this is its high computational complexity. To deal with
this, we can use the so-called kernel trick. It allows us to operate in the original feature space
without computing the coordinates of the data in a higher dimensional space. To better explain
this, we use the following example.

Consider two data points in 2 dimensions, which we need to map to a 4-dimensional space:

𝑎 = [𝑎1, 𝑎2]⊤,
𝑏 = [𝑏1, 𝑏2]⊤.

Mapping these features results in:

𝜙(𝑎) = [𝑎21 , 𝑎1𝑎2, 𝑎2𝑎1, 𝑎22]⊤,
𝜙(𝑏) = [𝑏21 , 𝑏1𝑏2, 𝑏2𝑏1, 𝑏22]⊤.

If we would calculate the dot product of these mappings we end up with:

𝜙(𝑎)⊤𝜙(𝑏) =
2

∑
𝑖,𝑗=1

𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗

= (𝑎1𝑏1 + 𝑎2𝑏2)2
= (𝑎⊤𝑏)2
= 𝐾(𝑎, 𝑏).

The function𝐾(𝑎, 𝑏) is called the kernel function of which different formulations exist. Some
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of the most popular kernel functions are:

linear: 𝐾lin(𝑎, 𝑏) = 𝑎⊤𝑏
polynomial: 𝐾poly(𝑎, 𝑏) = (𝛾(𝑎⊤𝑏))𝑑

radial basis function (rbf): 𝐾rbf(𝑎, 𝑏) = 𝑒−𝛾‖𝑎−𝑏‖
2

sigmoid: 𝐾sig(𝑎, 𝑏) = tanh(𝛾(𝑎⊤𝑏)),

where 𝑑 is the degree and 𝛾 influence parameter. This parameter defines how far the influ-
ence of a single training sample reaches.

We now discuss the formulation of the SVM classifier (Cortes & Vapnik, 1995). Given a
data set of training samples {𝑥̂𝑖 , ̂𝑦𝑖}𝑁𝑖=1 for which 𝑥𝑖 ∈ ℝ𝑛 ∀𝑖 ∈ [𝑁] and 𝑦𝑖 ∈ {−1, 1}∀𝑖 ∈ [𝑁] then
the prediction is given by

𝑦 = sign(𝑤⊤𝜙(𝑥) + 𝑏), (5.1)

where 𝑤 ∈ ℝ𝑛 is the weight and 𝑏 ∈ ℝ is the bias. To determine the weight, the following
optimization problem is solved:

min
𝑤,𝑏,𝜁

1
2‖𝑤‖

2 + 𝐶
𝑁

∑
𝑖=1
𝜁𝑖

s.t. 𝑦̂𝑖(𝑤⊤𝜙(𝑥̂𝑖) + 𝑏) ≤ 1 − 𝜁𝑖 ∀𝑖 ∈ 𝑁
𝜁𝑖 ≤ 0 ∀𝑖 ∈ [𝑁],

(5.2)

where 𝜁𝑖 is the distance of a sample from its margin boundary and 𝐶 is a regularization pa-
rameter.

In order to be able to use the kernel functions we described above, we need to determine
the dual of the above optimisation problem. This is formulated as

min
𝛼

1
2𝛼

⊤𝐷𝛼 − 𝑒⊤𝛼

𝑠.𝑡. 𝑦⊤𝛼 = 0
0 ≤ 𝛼𝑖 ≤ 𝐶 ∀𝑖 ∈ [𝑁],

(5.3)

where 𝐷 is an 𝑁 by 𝑁 positive semidefinite matrix. With our formulation of the kernel functions
we can define this matrix as 𝐷𝑖𝑗 = 𝑦̂𝑖𝑦̂𝑗𝐾(𝑥̂𝑖 , 𝑥̂𝑗). Furthermore,𝑒 is a vector of all ones and 𝛼
is called the dual coefficient vector, which is used in the classification of new samples. The
prediction is now given by:

𝑦 = ∑
𝑖∈𝑆𝑉

𝑦̂𝑖𝛼𝑖𝐾(𝑥̂𝑖 , 𝑥) + 𝑏, (5.4)

where 𝑆𝑉 is a set of all the support vectors.

5.2. Multi-Layer Perceptron
Multi-Layer Perceptron (MLP) is a supervised learning algorithm that uses a feed-forward neu-
ral network structure and can be used for multiple tasks, including classification. The network
consists of three types of layers: the input layer, output layer and hidden layer. An example
of an MLP is illustrated in Figure 5.2.
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Figure 5.2: Multi-Layer Perceptron Network

The input layer consists of a set of neurons, each representing an element from the state’s
feature vector 𝑥 used as the input signal to be processed. Each neuron in the hidden layer
transforms the values from the previous layer with a weighted linear summation, followed by
a non-linear activation function 𝑔(⋅) ∶ 𝑅 → 𝑅, like the ReLU of the hyperbolic tan function.
Between the input and output layers are one or more layers of hidden neurons. Their name
refers to the fact that these neurons are not directly reachable either from the input or output.
The output layer receives the values from the last hidden layer and transforms them into output
values. For Figure 5.2, where there is one hidden layer, we can represent the model as:

𝑓(𝑥) = 𝑊2𝑔(𝑊𝑇
1 𝑥 + 𝑏1) + 𝑏2. (5.5)

If there are more than two classes, 𝑓(𝑥) would be represented by a vector of size 𝑁classes
The required task, which in this case is classification, is performed by this output layer. For
multiclass classification, a softmax function is applied as output function.

softmax(𝑧)𝑖 =
exp(𝑧𝑖)

∑𝑁classes
𝑐=1 exp(𝑧𝑐)

, (5.6)

where 𝑧𝑖 represents the 𝑖th element of the input to softmax in this case 𝑓(𝑥), which corre-
sponds to class 𝑖, and 𝑁classes is the number of classes. The result is a vector 𝑦 containing
the probabilities that state 𝑥 belongs to each class. The output is the class with the highest
probability.

The weights used by the neurons in the MLP are trained using stochastic gradient descent
(SGD) (Rumelhart et al., 1986). SGD updates parameters using the gradient of the loss func-
tion with respect to a parameter that needs adaptation. In this case the cross-entropy loss is
used which for 𝑁classes > 2 is formulated as (Y. Ho & Wookey, 2020)

𝑙(𝑦̂, 𝑦) = − 1𝑁

𝑁classes

∑
𝑐=1

𝑁

∑
𝑖=1
𝑦̂𝑖,𝑐 log(𝑦𝑖,𝑐), (5.7)

where 𝑁 is the number of training examples and 𝑦̂𝑖,𝑐 is the 𝑐th element of one-hot vector 𝑦̂𝑖 of
length 𝑁classes for which the correct class is equal to one and 𝑦𝑖 is the probability vector output
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by the MPL. Furthermore also, an L2-regularization term that penalises complex models is
added to the loss to avoid over-fitting, resulting in

𝐿𝑊(𝑦̂, 𝑦,𝑊) = 𝑙(𝑦̂, 𝑦) +
𝛼
2𝑁‖𝑊‖

2
2, (5.8)

where 𝛼 > 0 is a non-negative hyperparameter that controls the magnitude of the penalty.
With the SGD, the weight is updated as

𝑊𝑡+1 = 𝑊𝑡 − 𝜖∇𝐿𝑡𝑊, (5.9)

where 𝑡 is the iteration step and 𝜖 > 0 is the learning rate of the model. The algorithm stops
when it reaches a preset maximum number of iterations; or when the improvement in loss is
below a certain predefined number.

MLPwas shown to havemultiple advantages over standard classification algorithms (Benedik-
tsson et al., 1990; Gardner & Dorling, 1998). The first and most important benefit is that no
prior assumptions about the distribution of training data are needed. Furthermore, another ad-
vantage of the MLP approach is that no decision about the relative importance of the various
input features is required, the weights are adjusted during training to choose the most discrimi-
nating inputs. Benediktsson et al. (1990) suggested that with care, the traditional classification
algorithms can be used to classify more accurately than an MLP. However, this requires con-
siderably more insight and effort from the analyst using the algorithms.

5.3. Random Forest and Decision Tree
A random forest is a meta estimator that trains several decision tree classifiers on different
sub-samples of the data set and applies averaging to classify given samples, improving pre-
dicted accuracy and controlling over-fitting when compared to a single decision tree classifier
(Breiman, 2001).

Decision Tree
Decision trees are a non-parametric supervised learning method for classification. The ob-
jective is to build a model that predicts the class of a sample based on basic decision rules
derived from data features. This is accomplished by formulating true/false statements using
the features and repeatedly splitting the data set until all data samples belonging to each class
are separated. The data is therefore structured in a tree form. A node is added to the tree for
each statement. The first node is referred to as the root node. Following each statement, the
data set is divided, and new nodes are created based on the value of a feature. Each split
will create new branches and segments the feature space into disjoint regions (James et al.,
2013). All data points for which the statement is true are represented by one branch of the
split. The other branch represents the remaining data points. As a result, the feature space
narrows with each split in the tree, and each sample belongs to just one section. The aim is to
keep splitting the feature space and applying statements until there are no more statements to
apply or the maximum tree size is reached. The final nodes formed are known as leaf nodes.
A leaf node corresponds to a particular class. Alternatively to assigning a specific class, the
probability of each class in a leaf node, which is the fraction of training samples of the class in
a leaf, can be output.

In a decision tree, the algorithm attempts to divide the data set into the smallest subset
possible for each split. Just as with other machine learning methods, this is done byminimising
a loss function. Because data samples from different classes are separated, the loss function
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should assess a split by comparing the proportion of data samples from each class before
and after the split. To do this, Gini impurity is used as the loss function to compare the class
distribution before and after the split (Breiman et al., 2017). This loss is a measure of variance
across the different classes and is formulated as

𝑙node =
𝑁classes

∑
𝑐=1

𝑝𝑐(1 − 𝑝𝑐), (5.10)

where 𝑁classes is the number of classes and 𝑝𝑐 the probability of picking a sample from class
𝑐.

When using decision trees, it is important to take into account the possibility of over-fitting,
which occurs when over complicated trees are generated that do not generalise the data cor-
rectly. To prevent this problem, mechanisms such as pruning, setting the minimum number
of samples required at a leaf node, and limiting the tree’s depth are required. Furthermore,
decision trees can be unstable since little changes in the training data might result in the gen-
eration of an entirely different tree. However, this can be reduced by using multiple decision
trees inside an ensemble, such as random forest.

The random forest algorithm is a perturb-and-combine technique designed explicitly for
trees (Breiman, 1998). This means that a varied group of classifiers is formed by manipu-
lating the data distribution and changing the generation method. As a result, there is more
variation in the models. Furthermore, forests produce decision trees with somewhat decou-
pled prediction errors. Ensembles containing a more diversified group of trees typically result
in higher prediction accuracy. The ensemble prediction is given as the average of the individ-
ual classifier predictions.

5.4. Modeling Choices
To use classification algorithms for solving the TSP and CVRP, we need to interpret these
routing problems as classifications problem. The system’s state is described as a feature
vector in the routing problems. We consider this as the sample which needs to be classified.
The next node on the route is determined depending on the system’s state. Therefore, we
can consider this node as the class belonging to the system state. Using this approach, the
number of nodes determines the number of classes in the classification problem.

Important to note is that the classification algorithms we formulated above do not neces-
sarily consider the constraints that apply to the problem we want to solve. For example, this
can be the case when considering the CVRP we formulated above. Here the classifiers could
easily violate the capacity constraints and choose a next node for the vehicle to visit while it
has not enough capacity to serve its demand. To make sure that no constraints are violated,
we validate the suggested action before it is output, where if the classifier would suggest going
to a node that violates any constraint and is therefore infeasible, the closest feasible node will
be output instead.

To conclude, we described three distinct classification methods. The first is SVM, a binary
classification technique that may be used to solve multiclass classification problems using the
OvO approach. As a second algorithm, we described the MLP, which utilises a feed-forward
neural network structure to determine the probability of a state belonging to a specific class,
and finally, the random forest approach, which employs several different decision trees and
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averages of individual classifier predictions to determine the class of a sample. In the next
chapter, we will compare the performance of these approaches with each other and the IO
method we formulated before.





6
Numerical Experiments

In this chapter, we will go through the numerical experiments we conducted to evaluate the
performance of the different algorithms we discussed earlier. As previously stated, the algo-
rithms were evaluated on two different routing problems, the TSP and CVRP. The specifics of
these problems are provided below. To solve both problems, eight different algorithms were
considered, which are as follows:

1. Inverse Optimization (IO)

2. Support Vector Machine with linear kernel (SVM Linear)

3. Support Vector Machine with polynomial kernel (SVM Polynomial)

4. Support Vector Machine with rbf kernel (SVM Rbf)

5. Support Vector Machine with sigmoid kernel (SVM Sigmoid)

6. Multi-layer Perception (MLP)

7. Random Forest

8. Decision tree
As previously stated, the objective of both routing problems is to minimize the routing cost,

which is equal to the total routing distance. A training data set was prepared in advance for
both problems. We used Gurobi (Gurobi Optimization LLC, 2022) to find the optimal solutions
for many problem instances, which were then used to create the state-action pairings. All the
algorithms were trained using the same data set for each problem. During testing, we com-
pare the performance of the algorithms to each other and to the optimal solutions we want
them to mimic. Furthermore, because we use distance as a routing cost, we also compare
the findings to a greedy solution approach to evaluate performance.

Python 3.7 was used to implement all algorithms and conduct all experiments. As pre-
viously indicated, the IO model was implemented using Gurobi (Gurobi Optimization LLC,
2022). In the IO model we used a regularization parameter 𝜆 = 1 and 𝛾 = 1. Besides that,
we included a constant term equal to 1 at the beginning of the feature vector as the bias term.
The other multiclass classification algorithms were implemented using Scikit-learn 1.1.1 (Pe-
dregosa et al., 2011). In the case of the SVM we used regularization parameter 𝐶 = 1, degree
𝑑 = 3 for the polynomial kernel, and influence parameter 𝛾 = 0.5. Furthermore, in the MLP,
100 hidden layers were used, and the Random Forest consisted of 100 decision trees. All
other parameters were left at their default settings in Scikit-learn 1.1.1.
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6.1. Traveling Salesman Problem
The TSP was formulated as we detailed in Chapter 3. For evaluating the different models,
we considered a TSP consisting of 10 nodes 𝑉, a single depot and nine customers. The
x-coordinates and y-coordinates of the customer locations are in the range [0, 1]. In every
problem instance, the depot location was fixed, positioned at the point (0.5,0.5) in the middle
of the feasible location region. Furthermore, the distances between nodes are equal to the
euclidean distances.

For the training of the models, we evaluated different approaches using a global policy
and multiple policies depending on the number of available nodes left in the system, which we
refer to as a decisions policy. Both policy types were combined with either no feature vector
transformations or reordering. In the case of the decisions policy, the reducing feature vector
technique was also applied, as discussed in Chapter 3. The models were trained in an offline
batch manner, with each batch including 10 problem instances. It is worth noting that each
problem instance is made up of 10 state-action pairs. The training data set had a total of 500
problem instances.

Training Time
We also looked at the training time for the different configurations to evaluate the models with
different policies and feature vector transformations. Table 6.1 shows the different training
times for the IO model during the experiments performed to obtain the results presented in
section 6.1.1.
Table 6.1: Training times of the IO model for different policy training configurations during the experiments pre-
sented in Table 6.2. Trained over 500 TSP training instances.

Training
Policy

State Feature Vector
Transformation

Training Time
IO Model (s)

Global None 6854
Global Reorder 2050
Decisions None 2592
Decisions Reorder 2661
Decisions Reduce 2487

The training times show that the reordering feature vector transformations greatly reduce
training time when using the global policy approach. For the decisions policy, however, we see
that this is less so, where all training times are somewhat equal, with the reordering being the
highest. However, although these results suggest some benefits with regard to training time
for the reordering and reducing feature vector techniques, it must be mentioned that these
results might not be entirely reliable. This is because the experiments were performed on an
HP zBook Studio G5 - intel core i7 device which was also used for other activities during the
experiments. We noticed these activities strongly influenced the training time (see Appendix
C). This makes it hard to draw any firm conclusions concerning the difference in training time
between the training configurations, and further research is needed to confirm these findings.

6.1.1. Results
As mentioned in Chapter 3, the models were trained and tested on a TSP with fixed customer
locations and a TSP with random customer locations. The performance in these problem
variations was evaluated by solving 200 different TSP instances and calculating the average
routing cost.
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For the TSP with fixed customer locations, we found that all models were able to imitate
the expert, which is the optimal solution exactly (see Appendix D). Note that when we consider
the TSP with fixed locations, every individual problem instance in training as well as in testing
is the same. Therefore, this result is expected, showing that all models can learn how to solve
a single TSP problem instance from an example.

We find more varying, and therefore interesting, results when focusing on the TSP with
random customer locations. Table 6.2 provides an overview of the models’ performances
for each training configuration. The average optimal cost of these test instances, which the
models are trying to imitate, is equal to 2.83, and the average routing cost using a greedy
approach is equal to 3.08.

Table 6.2: TSP (random locations): Average routing cost per model for different policy training configurations.
Trained over 500 TSP training instances and evaluated over 200 TSP test instances.

Average Routing Cost Optimal 2.83
Greedy 3.08

Training
Approach

State
Feature Vector
Transformation

IO SVM
Linear

SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Global None 3.36 3.05 3.10 3.19 4.13 3.00 3.28 3.55
Global Reorder 3.38 3.06 3.02 3.08 3.90 2.97 3.13 3.44
Decisions None 3.49 3.33 3.20 3.35 3.75 3.18 3.39 3.64
Decisions Reorder 3.35 3.12 3.09 3.13 3.77 3.03 3.23 3.57
Decisions Reduce 3.33 3.11 3.09 3.11 3.77 3.01 3.21 3.44

When analyzing these results, we find that for each training configuration, the best per-
formance is obtained by the MLP model, with its overall best performance using the global
policy training approach with feature vector reordering. This global policy training with feature
vector reordering approach obtained, for almost all models, their individual best performance,
except for the IO, SVM Linear and SVM Sigmoid models. In the case of the IO model, the best
performance was obtained by the decisions policy training with reducing feature vector. The
best performance for the SVM Linear model resulted from the global policy training without
any feature vector transformation. Interestingly, the best performance of the SVM Sigmoid
model was obtained using the decisions policy training approach without any feature vector
transformations. This approach, however, resulted in the worst individual performances of all
other models. Besides that, the average cost of the SVM Sigmoid model was still higher than
that of all the other models, making it the worst-performing model overall.

Comparing the results of the global and decisions policy training approach, we can see
that for most models, except for the IO and SVM Sigmoid models, the decisions policy train-
ing approach does not increase performance. Furthermore, considering the feature vector
transformations, we observe that for the global and the decisions policy training approach, the
performance of almost all models increases when reordering, and in the case of the decisions
policy reducing, the state feature vector compared to using no transformation.

As we mentioned, using the distance as routing cost also allows us to compare the model
performances to using a greedy solution approach. In the current results, we see that the
SVM Linear, SVM Polynomial and MLP models all outperform this greedy approach using the
global policy training with feature vector reordering, with the SVM Linear and MLPmodels also
obtaining better results in some other training configurations.
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Figure 6.1 shows the development of the average overall routing cost for each model dur-
ing training using the global policy training with the feature vector reordering approach. After
each training batch, the performance of the models was evaluated over 200 different TSP test
instances. Figure 6.2 visualizes the performance after training (see Table 6.2), along with the
standard deviation of each model for this training configuration compared to the average opti-
mal and greedy routing costs. We see that the results are consistent with the different model
performances at the end of training, as we would expect. Most models’ standard deviation
is similar to that of the optimal and greedy approaches, with the exceptions of the IO, SVM
Sigmoid and Decision Tree models, which are larger.

Because the average cost development of all training configurations is relatively similar,
we only focus on the global policy with the feature vector reordering approach in this section,
as this training approach obtained the best performances for most models. The average cost
development, as well as the plotted results from Table 6.2 for all other training configurations,
are provided in Appendix E.

Figure 6.1: TSP (random locations): Cost development during
training using global policy training and feature vector reorder-
ing. Evaluated over 200 TSP test instances after each batch of
10 TSP training instances.

Figure 6.2: TSP (random locations): Average
routing costs with standard deviation per model
after training over 500 TSP instances using
global policy training and feature vector reorder-
ing. Evaluated over 200 TSP test instances.

Examining the data in Figure 6.1, we observe some interesting similarities and differences
between the average cost development during the training of the models. The majority of
the models follow a similar development curve, where the average routing cost decreases
rapidly during the first 200 TSP training instances, after which this decline slows down and
almost stabilizes after about 400 TSP training instances. There are three models, however,
for which the development of the average cost is different. For both the IO and Decision Tree
models, average costs also decrease. However, the curves follow a slower and more steady
rate than the other models. Furthermore, for these two models, the decline in the average
routing cost does not seem to stabilize at the end of training, which indicates that they may
reduce further when more training instances are available. Finally, the average routing cost of
the SVM Sigmoid model shows no improvement during training.

Influence of Training Size and Distance Features
As we mentioned before, for some models, the average routing costs stabilized around a
certain value at the end of the training. However, this is not the case for all models, and the
performance of these models may be further improved. To gain a better insight into this, we
repeated the experiment using global policy training with feature vector reordering with a larger
training data set. In addition, it is important to note that for a certain state, the distances from
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the current node to every other node are included in the feature vector, which means that
the cost of each possible action for this given state is included in the feature vector since the
routing costs are equal to the distances. To investigate how this affects the performance of the
different models, we also performed an additional experiment using global policy training with
feature vector reordering, in which the distances between nodes are not included in the state
feature vectors. We used a training data set of 1000 TSP instances for both experiments,
training in batches of 10 instances. The results of the model’s performances with and without
the distances included in the feature vector are provided in Table 6.3 and in Figure 6.3 and
Figure 6.4, respectively.

Table 6.3: TSP (random locations): Average routing cost per model for global policy training and feature vector
reordering. Evaluated over 200 TSP test instances.

Average Routing Cost Optimal 2.83
Greedy 3.08

TSP Training
Instances

Distances Included
in Feature Vector IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

500 Yes 3.38 3.06 3.02 3.08 3.90 2.97 3.13 3.44
1000 Yes 3.26 3.02 2.97 3.02 3.90 2.96 3.09 3.41
1000 No 3.79 3.66 3.09 3.09 3.93 2.99 3.10 3.45

Figure 6.3: TSP (random locations): Average routing
costs with standard deviation per model after training
over 1000 TSP instances using global policy training
and feature vector reordering. Distances included in the
state representation. Evaluated over 200 TSP test in-
stances.

Figure 6.4: TSP (random locations): Average routing
costs with standard deviation per model after training
over 1000 TSP instances using global policy training and
feature vector reordering. Distances not included in the
state representation. Evaluated over 200 TSP test in-
stances.

First, comparing the results of the experiment with a training size of 500 TSP instances to
that of the larger training data set including 1000 instances, both with distances included in the
feature vector, we see that for all but one model, the average routing cost has decreased with
a larger training size. The exception is the SVM Sigmoid model, for which the performance is
the same. This matches our previous observation that the SVM Sigmoid model is not improv-
ing during training. The most considerable improvement was made by the IO model, which is
also in line with our previous findings, as the IO model still had the highest rate of decline at
the end of training in Figure 6.1.

If we now look at the influence of including the distance in the state feature vector, we
see that the performances of all models lower when the distance is not included in the state
representation. This is especially the case for the IO and SVM Linear models, which perform
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considerably worse than they did when the distances were included in the feature vector. This
means that the actions of both these models were highly dependent on these features and,
thus, the knowledge of the costs for specific actions. Removing the distance from the state
representation had the lowest impact on the MLP and Random Forest models. Both these
models obtained almost equal performance in both experiments, with the MLP model still out-
performing the greedy routing strategy without the distances.

Figure 6.5 and Figure 6.6 show the development of the average routing cost for each
model for the experiments with and without the distances included in the state feature vector,
respectively.

Figure 6.5: TSP (random locations): Cost development
during training using global policy training and feature
vector reordering. Distances included in the state repre-
sentation. Evaluated over 200 TSP test instances after
each batch of 10 TSP training instances.

Figure 6.6: TSP (random locations): Cost development
during training using global policy training and feature
vector reordering. Distances not included in the state
representation. Evaluated over 200 TSP test instances
after each batch of 10 TSP training instances.

In the experiment where the distances were included in the feature vector, Figure 6.5, we
see that after 500 training instances only for the IO model, there was still a relatively large
decrease in the average routing cost. However, this seems to almost stop after 800 training
instances. For the other models, only a marginal decline can be observed after the first 500
training instances.

Now comparing these developments to the experiment where no distances were included
in the feature vector, we see clear differences. Some models, including the SVM polynomial,
SVM Rbf, MLP, Random Forest and Decision tree, still follow a similar development curve.
However, this decline is slightly slower, and also, the average route costs at the end of train-
ing are somewhat higher than when the distances were included in the feature vector. In
addition to these models, we can observe that the average route costs for the remaining mod-
els decrease just a little or not at all during training. In the case of the SVM Sigmoid, this
means not much has changed. However, for the IO and SVM Linear models, this is a major
difference as they are now unable to improve their performance during training.

Larger Problem Size
Finally, besides the experiment performed above, we also evaluate the performance of our
models on different problem sizes to see how this influences the results. To obtain insight
into this, we trained the models using a global policy approach with feature vector reorder-
ing on 500 TSP problem instances consisting of 20 nodes with random customer locations.
The models were trained in an offline batch manner, with each batch including ten problem
instances.
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Figure 6.7 hows the average routing cost for eachmodel during training. After each training
batch, the performance of the models was evaluated over 200 different TSP test instances.
Furthermore, Table 6.4 and Figure 6.8 provide the performance after training along with the
standard deviation of each model compared to the average optimal and greedy routing costs.

Figure 6.7: TSP (random locations, 20 nodes): Cost devel-
opment during training using global policy training and feature
vector reordering. Evaluated over 200 TSP test instances after
each batch of 10 TSP training instances.

Figure 6.8: TSP (random locations, 20 nodes):
Average routing costs with standard deviation per
model after training over 500 TSP instances us-
ing global policy training and feature vector re-
ordering. Evaluated over 200 TSP test instances.

Table 6.4: TSP (random locations, 20 nodes): Average routing cost per model for global policy training and feature
vector reordering. Evaluated over 200 TSP test instances.

Average Routing Cost

Optimal Greedy IO SVM
Linear

SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

3.83 4.34 4.95 4.30 4.30 4.85 7.29 4.17 4.44 5.28

When analyzing the results and comparing them to previous experiments, we find that the
development of the average routing cost with a problem size of 20 nodes (Figure 6.7) for most
models is relatively the same as when we considered a problem size of 10 nodes (Figure 6.1).
One notable difference is the development in average cost for the SVM Rbf model, which
develops slower and has a higher average routing cost at the end of training compared to
the majority of models with a problem size of 20 nodes. However, there is still a relatively
high rate of decline at the end of training, suggesting that with a larger training data set, the
performance can possibly reach the same level as most other models. Furthermore, after the
models are trained over 500 TSP instances, we see that the SVM Linear, SVMPolynomial, and
MLP models can perform better than the greedy routing strategy, with the best performance
obtained by the MLPmodel. Overall this experiment indicates that with a large enough training
data set, most models can deal with different sizes of problems, obtaining relatively the same
performances.

6.2. Capacitated Vehicle Routing Problem
Chapter 3 describes the formulation of the CVRP we use to evaluate and assess the differ-
ent model performances. For the experiments we consider a CVRP consisting of 11 nodes
𝑉, among which ten customers and the depot. The x-coordinates and y-coordinates of the
customer locations are in the range [0, 1], and in every problem instance, the depot location
was fixed. Additionally, the number of vehicles 𝐾 = 3 and each has a maximum capacity
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𝑄 = 20. The demands of each customer 𝑞𝑖 ∀𝑖 ∈ 𝑉\{0} change in every CVRP instance. For
each problem instance, these values are sampled without replacement from a set of possible
demands 𝑑 = [3, 4, 5, 5, 5, 6, 6, 6, 7, 8]. The distances between the nodes correspond to the
euclidean distances.

As described in Chapter 3, when considering fixed locations, the different models can
either be trained by using a global policy or creating multiple policies, one for each node in
the system, which we refer to as the nodes policy approach. Like with the TSP, we trained
the models using an offline batch approach, with each batch including ten different problem
instances. Note that each problem instance consists of 12 state-action pairings. A total of 500
problem instances were included in the training data set.

6.2.1. Results
For the results, we first discuss the CVRP formulation with fixed customer locations followed
by the CVRP formulation with random customer locations.

Fixed Customer Locations
Figure 6.9 and Figure 6.10 show the development of the average routing cost during training
for each model using a global and nodes policy training approach, respectively. After each
training batch, the performance was evaluated by solving 200 different CVRP instances and
calculating the average total routing cost.

Figure 6.9: CVRP (fixed locations): Cost development
during training using global policy training. Evaluated
over 200 CVRP test instances after each batch of 10
CVRP training instances.

Figure 6.10: CVRP (fixed locations): Cost development
during training using nodes policy training. Evaluated
over 200 CVRP test instances after each batch of 10
CVRP training instances.

In these figures, we can observe that almost all of the different models follow the same
development of the average routing cost in both approaches. There is a decrease in the av-
erage cost for the initial batches, after which this decline slows down and stabilizes around a
certain value, which is slightly lower for most models using the global policy training approach.
However, we can see that the SVM Rbf and SVM Sigmoid models are two exceptions. For
both models, the average routing cost converges to a much higher value during the global
policy training approach. In addition, we see that for the SVM Polynomial model the average
routing cost reduces more slowly using the global policy approach and the average value fi-
nally reached is a somewhat higher value compared to the majority of other models at the end
of training.

The CVRP differs from the TSP in that multiple cars are used for routing, and each vehicle
has a maximum capacity, as previously noted in the problem description. The consequence of
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this is that, depending on early routing decisions, it can be possible that the problem becomes
unsolvable since none of the vehicles has enough capacity left to serve the remaining cus-
tomer(s). As a result, the route and, therefore, the solution are incomplete. We increased the
overall routing cost by double the distance between the depot and the remaining customer(s),
which equates to an additional trip, as a penalty for this situation. Figure 6.11 and Figure 6.12
show how each model’s incomplete routes, represented as a percentage of the total number
of problem instances evaluated after each batch, develop during training for the global and
nodes policy approach, respectively.

Figure 6.11: CVRP (fixed locations): Incomplete routes
development during training using global policy train-
ing. Evaluated over 200 CVRP test instances after each
batch of 10 CVRP training instances.

Figure 6.12: CVRP (fixed locations): Incomplete routes
development during training using nodes policy train-
ing. Evaluated over 200 CVRP test instances after each
batch of 10 CVRP training instances.

Here we can see that, for most models, the development of the percentage of incomplete
routes and the values are somewhat the same for both policy training approaches. Some-
thing that immediately stands out is that almost 100% of routes are incomplete for the SVM
Rbf model using the global training approach throughout training. Upon further investigation
of the routing decisions made by this model, we found that it almost always chooses to re-
turn to the depot after visiting a single customer for each vehicle. This is also reflected in the
extremely high, almost constant average routing cost during the global policy approach train-
ing, as seen in Figure 6.9. Although this is not the case when using the nodes policy training
approach, the SVM Rbf still performs than the other models, producing an incomplete route
in more than half of the problem instances. Additionally, this model’s performance does not
improve as it continues to be trained.

Furthermore, we also see that the percentage of incomplete routes for the SVMPolynomial
model is much higher during the global policy training approach. Note that the development of
the percentage of incomplete routes for the model is similar to that of the average routing cost
in Figure 6.9. It is also interesting to note that for the global policy training, the SVM Sigmoid
model, which has a high average routing cost, does improve on its percentage of incomplete
routes until it reaches the same level as the majority of other models at the end of training.

Finally, considering the nodes policy training approach, we see that the Decision Tree
model has more incomplete routes than most other models. However, the average routing
cost of the model during training is only slightly higher than that of other models, as seen in
Figure 6.10.

After training themodels, we also evaluated their performance on 200 newCVRP instances
as we did for the TSP experiments. Comparing the results to the optimal solutions and the
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greedy approach. These results can be found in Table 6.5 as well as Figure 6.13 for the global
policy training and Figure 6.14 for the nodes policy training approach.

Table 6.5: CVRP (fixed locations): Average routing cost per model for different policy training approaches. Trained
over 500 TSP training instances and evaluated over 200 TSP test instances.

Average Routing Cost Optimal 4.39
Greedy 5.61

Training
Approach IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Global 4.56 4.54 4.67 7.25 5.22 4.52 4.54 4.58
Nodes 4.61 4.55 4.62 4.81 4.75 4.56 4.57 4.61

Figure 6.13: CVRP (fixed locations): Average routing
costs with standard deviation per model after training
over 500 CVRP instances using global policy training.
Evaluated over 200 TSP test instances.

Figure 6.14: CVRP (fixed locations): Average routing
costs with standard deviation per model after training
over 500 CVRP instances using nodes policy training.
Evaluated over 200 TSP test instances.

The results for both policy training approaches correspond to the models’ performances at
the end of training, as we would expect. For most models, the best performance is obtained
using the global policy training approach, except for the SVM Polynomial, SVM Rbf and SVM
Sigmoid models, which performed better using the nodes policy approach. The best overall
performance is obtained by the MLP model having both the lowest average routing cost and
percentage of incomplete routes for the global policy training approach.

When comparing the results with the optimal and greedy routing results, we can see that,
with the exception of the SVM Rbf using the global policy, all models are able to obtain an
average routing cost relatively close to that of the optimal solution and below the greedy routing
strategy. However, focusing on the percentage of incomplete routing solutions, we find that for
the global policy, only the IO and MLP models are able to obtain a lower result than the greedy
strategy. For the nodes policy training approach, this is only the case for the SVM Linear and
MLP models.

Random Customer Locations
For training the models on CVRP with random customer locations, we only use the global pol-
icy training approach, which is combined with both no feature vector transformation as well as
feature vector reordering. Figure 6.15 and Figure 6.16 show the development of the average
routing cost for each model using no transformation and reordering, respectively.
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Figure 6.15: CVRP (random locations): Cost devel-
opment during training using global policy training with
no feature vector transformation. Evaluated over 200
CVRP test instances after each batch of 10 CVRP train-
ing instances.

Figure 6.16: CVRP (random locations): Cost devel-
opment during training using global policy training with
feature vector reordering. Evaluated over 200 CVRP
test instances after each batch of 10 CVRP training in-
stances.

In the figures above, we see that the average route cost development within each feature
vector transformation approach is almost the same for most models. Furthermore, if we com-
pare the two approaches, we see almost the same development for each model, with the value
for the average route cost being slightly lower in the case of no feature vector transformation
compared to the reordering approach.

In addition, we see that for both feature vector approaches the SVM Rbf gives a high
average route cost compared to the other models that do not improve during training. The
reason for this is the same as in the experiments with fixed customer locations. This is also
reflected in the 100% incomplete routes during the training, as shown in Figure 6.17 for no
transformations and Figure 6.18 for the reordering feature vector transformations.

Figure 6.17: CVRP (random locations): Incomplete
route development during training using global policy
training with no feature vector transformation. Evalu-
ated over 200 CVRP test instances after each batch of
10 CVRP training instances.

Figure 6.18: CVRP (random locations): Incomplete
route development during training using global policy
training with feature vector reordering. Evaluated over
200 CVRP test instances after each batch of 10 CVRP
training instances.

Considering the development of the percentage of incomplete routes for both the training
approach with and without feature vector reordering, we see that for the IO, SVM Rbf and
SVM Sigmoid models, this is relatively the same in both approaches. However, for the other
models, we can observe differences between the two. First, the SVM Linear follows the same
development, but the percentage of incomplete routes is higher when using feature vector
reordering. For the SVM Polynomial, this is similar but with a lower percentage of incomplete
routes using the reordering approach. Furthermore, using no feature vector transformations,
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we see that the Random Forest model starts with a high percentage of incomplete routes
but is able to bring this down to the same level as most other models in the first 200 train-
ing instances. When we compare this to the experiment with feature vector reordering, we
see that this is not the case. Here the percentage of incomplete routes also starts at a high
value but decreases relatively slow during training and ends far above that of the other models.

Finally, we can observe that the percentage of incomplete routes is around the same value
in the case of the MLP and Decision Tree models, both with and without feature vector re-
ordering. However, we see that in the case of the reordering approach, this value shows large
fluctuations between batches compared to the approach with no transformation.

After training, the performance of the models was tested on 200 new CVRP instances as
we did before. Comparing the results to the optimal solutions and the greedy approach. The
results of this can be found in Table 6.6 as well as Figure 6.19 and Figure 6.20, for the training
approach without and with feature vector reordering, respectively.

Table 6.6: CVRP (random locations): Average routing cost per model using global policy training with different fea-
ture vector transformations. Trained over 500 TSP training instances and evaluated over 200 TSP test instances.

Average Routing Cost Optimal 3.90
Greedy 4.76

State Feature Vector
Transformation IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

None 4.74 4.78 5.39 7.49 4.96 4.69 4.92 5.02
Reorder 4.86 4.97 5.46 7.49 4.95 4.87 5.42 5.11

Figure 6.19: CVRP (random locations): Average rout-
ing costs with standard deviation per model after train-
ing over 500 CVRP instances using global policy training
with no feature vector transformation. Evaluated over
200 TSP test instances.

Figure 6.20: CVRP (random locations): Average rout-
ing costs with standard deviation per model after train-
ing over 500 CVRP instances using global policy training
with feature vector reordering. Evaluated over 200 TSP
test instances.

Analyzing these results, we find that for most models, better performance in average rout-
ing cost is obtained without using feature vector transformation. Only the SVM Sigmoid has
a slightly lower average routing cost when using feature vector reordering. Furthermore, in
terms of the percentage of incomplete routes, we see that most models perform better using
no feature vector transformation. The MLP and IO models obtain the best performances using
no feature vector reordering, with a lower average routing cost than the greedy strategy for
both models. However, they still have a higher percentage of incomplete routes.
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Influence of Distance Features
Just like we did with the TSP problems, we also evaluated the influence of including the dis-
tances as features, which are equal to the costs, on the performance of the models. To do
this, we performed an additional experiment using global policy training without feature vector
transformation, in which the distances between nodes are not included in the state represen-
tations. Figure 6.21 and Figure 6.22 show the development of the average routing cost and
incomplete routes for each model without the distances included in the state feature vector,
respectively.

Figure 6.21: CVRP (random locations): Cost develop-
ment during training using global policy training with no
feature vector transformation. Distances not included
in the state representation. Evaluated over 200 CVRP
test instances after each batch of 10 CVRP training in-
stances.

Figure 6.22: CVRP (random locations): Incomplete
route development during training using global policy
training with no feature vector transformation. Distances
not included in the state representation. Evaluated over
200 CVRP test instances after each batch of 10 CVRP
training instances.

In these figures, we can see that both the development of the average costs and the per-
centage of incomplete routes, for all models, when the distances are not included in the feature
vector, are very similar to the result we observed in Figures 6.15 and 6.17, where the distances
were included. With only minor differences between the two experiments.

The results of the models’ performances with and without the distances included in the
feature vector in terms of average routing costs after training are provided in Table 6.7. Fur-
thermore, Figure 6.23 shows the performance of the models without distances included in the
feature vector compared to the optimal solution and greedy routing strategy.

Table 6.7: CVRP (random locations): Average routing cost per model using global policy training with no feature
vector transformation. Trained over 500 TSP training instances and evaluated over 200 TSP test instances.

Average Routing Cost Optimal 3.90
Greedy 4.76

Distances Included
in Feature Vector IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Yes 4.74 4.78 5.39 7.49 4.96 4.69 4.92 5.02
No 5.02 5.08 5.66 7.49 4.95 5.13 5.06 5.21

Analyzing these results, we can see that for almost all models, the average routing cost
is higher when the distances are not provided in the feature vector. However, unlike what we
saw in the TSP problem, no model has a major performance loss compared to the others.
Interestingly, the SVM Sigmoid model improved its performance in terms of average routing
cost, making it the best-performing model. Furthermore, we see that for most of the mod-
els, the percentage of incomplete routes has decreased when the distances are not included
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Figure 6.23: CVRP (random locations): Average rout-
ing costs with standard deviation per model after train-
ing over 500 CVRP instances using global policy training
with no feature vector transformation. Distances not in-
cluded in the state representation. Evaluated over 200
TSP test instances.

compared to the results in Figure 6.19, where distances were provided.

6.3. Discussion
The results above provide interesting insights regarding the different models and approaches
for learning to make routing decisions from expert examples. When comparing the TSP and
CVRP, we observe some similarities as well as differences in the results. For both problems,
most models follow a similar learning curve when considering the development of the aver-
age routing cost. The models rapidly decrease their average routing costs in the first initial
batches. This decrease then slows down and declines only very slowly for the remainder of
the training instances. Furthermore, for both problems, we see that some models are unable
to improve their performance during training or stop improving on a relatively high cost value.
We mainly observed this with the SVM Sigmoid model for both problems and in the case of
the CVRP with the SVM Rbf model when using a global policy training approach.

For both problems, we tested the model’s ability to learn from expert examples when deal-
ing with fixed as well as random customer locations. The objective of the models was to learn
a policy resembling that of the expert, which was the optimal solver in this case. To do this,
the models had to learn the costs of routing decisions (equal to the distances) depending on
features and actions. Although the performance in terms of the average routing cost for some
models is better than that of others, overall, we can observe that for both the fixed and random
locations, most models were able to learn this decision-making up to a certain performance
level. However, we also observed that there was a difference in this performance level be-
tween the problems with fixed and random locations in both problems.

In the case of the TSP with fixed locations, we found that all models were able to imitate
the expert perfectly. This is not surprising as all problem instances and thus solutions are the
same. However, for the CVRP with fixed locations, where there are differences between the
problem instances, the average routing costs of almost all models get close to the optimal
solution, which was used as expert examples. Additionally, all models perform considerably
better than a greedy routing approach. For both problems with random customer locations,
this is different. Here we observe that the gap between the average routing cost for the op-
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timal solution and that of the different models is larger, with most models achieving average
routing costs somewhat higher than the greedy strategy and only a few models obtaining a
better result.

The difference in performance level can be explained by the large difference in the edges
for the problems with fixed and random customer locations. Consider the CVRP, when using
fixed locations, the customers are always in the same place for every problem instance. There-
fore, the edges, which connect the customers, and their costs are constant for every problem
instance. In our experiments, we used a single depot and ten customers. This means that
there are only 110 different edges for which the model has to learn the cost. If we look at
the problem with random customer locations, this is very different. Here the edges and thus
also their costs vary in every problem instance. Making it considerably more complicated to
learn the costs as there is an extremely high number of different possibilities. In this case, the
model needs to interpret the new costs of a problem instance in some way using the features
provided, which might be more challenging for some of the models, as we observed when
comparing the performance using a feature vector with and without distances (and thus costs)
included.

In these experiments, we found that, in the case of the TSP, the performances of the IO
and SVM Linear models were highly dependent on whether the distances were included in
the features. Both of these models use a linear relation between the features and weight in
their hypothesis functions which, in the case of the random customer locations, when in every
instance the edges are different, and the distances are not included in the features, is not a
sophisticated enough for a hypothesis. At least not with the provided features. For the CVRP,
we observed that although the average routing costs for most models increased by a small
amount when the distances were not included in the feature vector, this was almost the same
relative to each other, and there were no models for which the performance majorly decreased
compared to the rest. In addition, we saw that the percentage of incomplete routes decreased
for most models without the distance features. This indicates the importance of choosing the
right features and that while in some cases, more features and thus information can benefit
the performance in some aspects, at the same time, it can negatively impact others.

We notice a few things if we take a closer look at the different multiclass classification algo-
rithms. In the case of the SVM, we used different kernel formulations to test their performance
differences. The sigmoid kernel is not suitable for the problems we try to learn from and solve.
For TSP, this function is barely able to improve its performance during training and also, in the
CVRP, it is among the worst performing models of all. On the other hand, the polynomial and
rbf kernel can both learn and perform well for the TSP with random locations. Even without the
distances included in the state feature vector, both models are still able to reduce the average
routing cost compared to other models. Taking into account that this is not the case for the
linear formulated models. It shows that a higher-order non-linear hypothesis is needed for this
formulation of the problem and state-actions. However, in the case of the CVRP, using the
polynomial or rbf kernel results in some of the worst performances of all models. Interestingly,
a linear approach is the best performing option for this problem.

The MLP classification model is overall the best performing model we tested, having one
of the lowest average routing costs in both problems, even without the distances in the state
feature vector for the problems with random locations. This confirms the advantage of the MLP
model we mentioned in Chapter 5 and demonstrates the ability of a deep learning approach
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using neural networks to learn and adapt to different problems. However, the downside is that
this model’s training time is higher than the other classifiers.

Comparing the performance of the Random Forest and Decision Tree models, we can see
that, as expected, the Random Forest model can obtain better results for almost all problems.
This can be explained by the fact that the Decision Tree only uses a single tree to make its
decisions while the Random forest model combines multiple. This results in lower average
routing costs and fewer incomplete routes when considering the CVRP (without feature vector
reordering).

Finally, as mentioned, the purpose of the models was to imitate the expert as well as
possible based on examples. If we look at the performance of the different models compared
to the optimal solution, in this case, the expert, we see that, in both problem formulations,
most models can achieve this to some extent. However, note that there is a difference in how
the optimal solver and the models determine their solutions. For an optimal solution, we have
to solve the whole problem at once to determine the route, and if this problem changes, we
have to do this again. For our trained models, this is not the case. These models are trained
to make a decision based on the system’s current state. Therefore, if the problem changes,
this is just a different state. This would suggest that using this state-action formulation, the
model’s decision-making is faster than the approach of the optimal solver. Although this seems
logical, we have not performed any specific testing to confirm this, so this would require further
investigation.



7
Conclusion

In our research, we formulated state-action representations for the TSP and CVRP. We dis-
cussed how these routing problems could be interpreted as IO or multiclass classification prob-
lems evaluating the performance of different algorithms in imitating expert decision-making
learned from examples. The characteristics of the problems mainly differed in terms of single
vehicle routing and multi-vehicle routing with demands. Besides this, for both routing prob-
lems, we experimented with fixed and random customer locations between different problem
instances. For the algorithms to learn to solve these routing problems, we propose multi-
ple policy training approaches as well as state feature vector transformations that can be
used based on the characteristics of the problems. These different training configurations are
tested by an IO model and four multiclass classification models, some with multiple variations
on training data sets consisting of state-action pairs for multiple different problem instances.
The performance of the trained models is evaluated on new problem instances, for which we
compare their performance relative to each other and to the optimal solution which acted as
the expert and was used to create the training data. Because we used the distance between
the nodes as a routing cost, we can also compare the performances to a greedy solution ap-
proach. Furthermore, we demonstrated how different features can influence the performance
of the models and, in the case of the TSP formulation, showed the effect of using a larger
training or problem size.

Considering our research question, we stated in the introduction of this report. We demon-
strated that we can use IO and multiclass classification to learn from example data and imitate
expert decision-making. However, we also showed a large variation in performance depend-
ing on the problem, state features, algorithm formulations and training configuration. Further-
more, the performance development of the models stabilizes at a certain level above that of
the expert (in this case, the optimal), limiting perfect imitation.

For both the TSP and CVRP, our results show that the global policy training approach ob-
tains the best results for most models. In the case of the TSP with random locations, this is
true when combining this training approach with the feature vector reordering transformation.
Furthermore, we found that overall the MLP model obtains the best performance for most
problem setups. As we discussed, this model utilizes a neural network formulation, which
is often used in other research on the application of machine learning for routing problems
and has many advantages. However, these models are often complex and can require more
data or time to train. Therefore, it is interesting to note that the MLP model’s performance
was closely matched in most experiments and, in some cases, even surpassed by some of
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the other models that use a simpler formulation, demonstrating their potential. However, the
results also show that these simpler models are more susceptible to changes in problem for-
mulation, features and training configurations, making them less versatile and flexible in use
compared to the MLP model.

Focusing on the difference in performance considering problems with fixed or random cus-
tomer locations, we can conclude that the best results are obtained when customer locations
are fixed between problem instances. Because the locations are fixed, the edges and thus
the costs are constant over all problem instances. As we discussed, this makes it easier for
the models to learn the costs of certain routing decisions. Therefore, the models are better at
imitating the expert by only learning from the examples. When the locations are random, the
edges and thus also the costs of decisions vary for every instance. This creates a more com-
plex problem, making it more challenging for the models to learn the expert’s decision-making.
In this research, we used the costs equal to the distances, so when we include the distances
between locations in the feature vector, we also include the costs in the state representation.
However, this can be challenging when more complex costs are used. Additional experiments
not including the distances as features show that depending on the problem, it can become
challenging for some models to imitate expert decision-making. Therefore, this shows that the
hypothesis used by the model needs to be sophisticated enough to learn how the costs relate
to the features presented when the costs vary in every problem instance and are not included
in the features.

As discussed in Chapter 2, only a few research studies have been performed on learning
to solve routing problems from expert examples. Therefore, our research is one of the early
steps in investigating the application of known algorithms for different routing problem formu-
lations. Based on our findings, we have some recommendations for further research.

In Chapter 3, we explained how using fixed, and random customer locations between prob-
lem instances outline two scenarios in which we can learn and apply the decision-making pref-
erences of experts. The random locations represent a universal scenario for learning to make
routing decisions based on general preferences, and the fixed locations represent a more
area-specific application. The results of our research suggest that this second scenario might
be more suitable for learning from expert examples. So for an area-specific application where
the emphasis is on learning from experts and developing a policy for routing decisions in a
specified region, one can consider designing a fixed graph that should represent an area lay-
out, with only a few nodes representing consumers. The customer positions can then change
inside the graph, but the overall graph, and so the edges and costs, remain unchanged. In
this circumstance, the research could also consider more complex, area-specific routing costs
that represent the real-world situation. Furthermore, the research might concentrate on other
objectives of the routing problem or newly emerging customers during routing.

For the goal of learning from examples universally, we suggest concentrating research
on state representation and model design to improve the model performance or make the
performance less dependent on specific features. Focusing on a neural network approach
could be a promising direction for this. Additionally, we already mentioned that we expect our
state-action formulation and problem-solving approach, used by the different models, to be
faster than the approach of an optimal solver. However, we performed no further experiments
to show this specifically, so this could be confirmed in a new study.
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Abstract—Logistics and mobility services play a major role in
our society, and efficient routing is a crucial part of this. However,
even though routing problems have been widely researched, the
solutions provided by algorithms do not always match drivers’
expectations. Routing costs used by these algorithms are often
based on one or a few parameters, but in real-world operations,
many factors and sometimes hard-to-define aspects are respon-
sible for this. Drivers can consider these different aspects and
some studies found that experienced drivers often plan better
delivery routes than the optimization tools. In this research, we
focus on using expert decision data as examples for learning
the costs of routing and train a policy that can make decisions
more in line with the expectations of the expert. We formulate
state-action representations for the TSP and CVRP, which we
use to interpret these routing problems as inverse optimization
and multiclass classification problems. Additionally, we propose
multiple policy training approaches as well as state feature vector
transformations that can be used based on the characteristics of
the routing problems. These different training configurations are
utilized to train different existing algorithms with training data
sets consisting of example state-action pairs. The performance of
the trained models is compared to each other and the optimal
solution. The optimal solution acted as expert example and was
used to create the training data. We demonstrate that both
inverse optimization and multiclass classification algorithms are
able to imitate expert decision-making for new problem instances
from example data. However, we also show a large variation in
performance depending on the problem, state features, algorithm
formulations and training configuration.

Index Terms—Routing, Inverse optimization, Multiclass clas-
sification, Supervised learning

I. INTRODUCTION

Logistics and mobility services play a major role in our
current society. Ordering packages, groceries, or dinner is be-
coming more popular. Besides that, many people use mobility
services, such as taxis. Vehicle routing is required to fulfil
customer demand in all these cases. Finding the best route to
visit a set of locations is often referred to as a routing problem.
The two most common formulations of these routing problems
are the Traveling Salesman Problem (TSP) and the Capacitated
Vehicle Routing Problem (CVRP). The goal is to determine a
set of routes visiting all locations while minimizing the routing
cost. However, even though the TSP and CVRP have been
widely researched, the “theoretical optimal” solutions provided
by routing algorithms do not always match the expectations
of drivers.

This is because the costs this algorithm focuses on min-
imizing are often based on one or a few parameters, like

distance or travel time. However, a good solution in real-
world operations, according to drivers, can be influenced by
many factors, some of which might even be difficult to define
explicitly or may derive from the interdependencies among
street segments. This complicates estimating real-world costs
and incorporating them into an algorithm. Drivers, however,
consider these different aspects, sometimes subconsciously,
when determining a route. As a result, some studies found
that experienced drivers often make better routing decisions
than the optimization tools [1], [2].

In this research, we use these driver decisions as examples
and utilize machine learning (ML) to learn the costs of specific
routing actions and train a policy that can mimic the driver,
which we refer to as the “expert”. The benefits of this would
be that this policy can make better decisions, which are more
in line with the drivers’ expectations, without having to define
specific routing costs for the algorithm. Furthermore, it offers
a way in which new drivers can use the knowledge of more
experienced drivers.

In recent years, ML is increasingly being used for solving
routing problems, with (deep) reinforcement learning (RL)
being one of the most researched approaches [3], [4], [5]. RL,
however, requires predefined costs, which, in our approach,
are not available for the model. The idea of learning from
(expert) example mainly falls under the domain of supervised
or imitation learning, for which many different techniques exist
[6], [7], [8].

We use two approaches for learning a policy to make routing
decisions using expert examples. The first approach we use is
inverse optimization (IO), which can be used to determine
unspecified parameters of an optimization problem that make
a given observed solution optimal [9], possibly in the presence
of some state-action constraints. The approach is particularly
suitable when the action is an optimal decision with respect
to a certain unknown cost function [10].

In the second approach, we interpret routing as a multiclass
classification problem. In multiclass classification, a model is
trained to learn which label belongs to a particular sample
so that when presented with a new sample, the algorithm can
predict the correct label. In other words, the objective is to
create a model of the distribution of class labels in terms of
predictive features.

Our goal is to evaluate the use of IO and multiclass
classification approaches to learn the costs of routing deci-
sions and how to train a policy that can solve new routing



problems imitating expert decision-making. We propose state-
action representations for two separate routing problems with
different characteristics and show how we can use these state-
action formulations for our IO and classification approaches.
Depending on the formulation of the problems, we provide
multiple training strategies. Finally, we analyze and compare
the performance of several existing solution algorithms for the
problems in learning from routing examples and subsequently
solving new routing problem instances.

The remainder of this report is organized as follows. Section
II discusses relevant background literature. Next, we formulate
different routing problems, corresponding training approaches
in Section III and the IO and multiclass classification models
in Section IV. Followed by the numerical experiments in V
and conclusion of the findings in Section VI.

II. BACKGROUND

The interest in IO among the mathematical programming
community started with an IO approach for linear program-
ming by investigating the inverse shortest path problem [9].
This was soon followed by a more generalised context based
on optimality conditions and dual theory [11], [12]. IO models
have further been researched in the context of integer programs
[13], [14], network problems [9], [15], [11] and dealing
with noisy and imperfect data [16], [17]. The applications of
IO models can be found in a wide range of domains, like
geoscience [9], [18], healthcare [19], [20] and energy [21],
[22].

Considering routing problems, we found one study using
an IO approach for solving the CVRP [1]. Another study
proposed an urban freight modelling framework modelled
as a custom VRP, where an IO approach was used to up-
date coefficients of different objectives [23]. Furthermore,
Xu et al. proposed an IO model to learn the parameters
of heterogeneous travellers route behaviour to infer shared
network state parameters in real-time [24]. Finally, a real-
world example of using IO for routing consists of an online
route recommendation system for long-haul truck drivers in
the Swedish forest industry [25].

Now focusing on multiclass classification problems, various
classification variations and approaches have been developed
throughout the years [26], [8]. The applications of (multiclass)
classification can be found in a wide range of domains, like
ecology [27], food chemistry [28], and healthcare [29], [30],
[31]. For the domain of transportation, multiclass classification
is also used. However, most of these applications focus on
categorising data or predicting already established routes [32],
[33]. For the applications on vehicle routing, only one recent
study was found using a form of classification for vehicle
routing [34]. To the best of our knowledge, this is the only
study that implements (multiclass) classification for solving
routing problems.

III. MODELING ROUTING PROBLEMS

As routing problems we use a TSP and CVRP, which are de-
fined on a graph G = (V,E), with vertex set V = {v0, ..., vn}

and edge set E = {(vi, vj) : vi, vj ∈ V, i ̸= j}, where
v0 customers the depot, and the other vertices in V are the
requests that need to be served. The goal of these routing
problems is to determine, with a single or multiple vehicles, a
set of routes such that each vertex except the depot is visited
exactly once while solving an objective function and satisfying
constraints.

The main difference between the problems is that in the
TSP, only one vehicle is used to visit all the nodes. For the
CVRP, multiple vehicles are used to visit the nodes. However,
the vehicles only have a limited capacity, and each node has a
specific demand that must be fulfilled. These demands remain
the same but are redistributed across the nodes for each new
problem instance. Both problem formulations will be evaluated
with fixed customer locations, where the nodes are in the
same place for each new problem instance and with random
customer locations. The difference in characteristics regarding
the fixed and random locations allows us to test two different
scenarios in which we learn and apply the preferences of
experts.

The random locations for each new problem instance ensure
that the costs of different routing choices also vary according
to the problem. Therefore, this scenario considers a universal
use for learning to make routing decisions based on more
general preferences. The fixed locations are similar to a more
area-specific application. Because only a limited network is
considered to learn and route inside, the edges, and the routing
costs, stay constant.

As we mentioned before, for the algorithms we use to solve
these problems, we will not provide the objective function
or specify the routing costs used by the expert to determine
the routes. Instead, we only provide a data set containing N
routing examples, which is used to train the algorithms to make
routing decisions. This data set consists of multiple state-action
pairs {ŝi, ûi}Ni=1. To create these state-action pairs, we assume
that a route, which is the solution to the routing problem, is
formulated using a series of actions or decisions u. Each of
the decisions being which node the vehicle will visit next.
The state s represents the system state of the problem as it
was when making the decision and is formulated as a feature
vector.

A. Traveling Salesman Problem

In the TSP a single vehicle must visit a set all vertex V =
{0, . . . , N} consisting of N nodes. The vehicle starts at the
depot and must also return to the depot after visiting all the
customers. The goal of the problem is to minimize the total
routing cost. C = {cij , i, j ∈ V } is the cost matrix, in which
cij is the travel cost from node i to node j, which is equal to
the euclidean distance between the nodes.

To formulate a state s used in the data set, we selected the
x-coordinates and y-coordinates of every node, the information
if a node has already been visited or not and in case of the
random customer locations also the distances of the node that
the vehicle is located at that point to all the other nodes and
the distances between all nodes and the depot as features. We



Fig. 1. Relation between node labels and decisions. For the same system
different labeling outputs a different decision for the same routing location.

represent the information on if a node is already visited or not
as an array of ones and zeros, where zero means a node is
visited and one means the node is not visited and thus is still
available.

Consider a system of 5 nodes, four customers and the depot.
A vehicle started at the depot and followed a partial route
visiting customer 2 and 3, respectively. Therefore, currently,
the vehicle is located at customer 2. This results in the
following features and corresponding feature vector, which are
combined in a single state vector:

x-coordinates: [x0, x1, x2, x3, x4]
⊤

y-coordinates: [y0, y1, y2, y3, y4]
⊤

distance to current node: [d20, d21, 0, d23, d24]
⊤

distance to depot: [0, d01, d02, d03, d04]
⊤

available nodes: [1, 1, 0, 0, 1]⊤

The customers in a certain system are arbitrarily numbered,
starting with the number 1. However, the numbering of the
customers has no relation to the routing choices and only
serves as a reference for interpreting the decisions made by
the algorithm. This is illustrated by Figure 1.

In this example, we consider the same system, represented
by a simplified feature vector s only consisting of a single
feature f per node, with different labelling of the customers.
As a result of the different labelling, the corresponding feature
vector is different for the same order of the nodes, resulting
in different actions for travelling to the same location. We
can see that the labelling will not influence the location the
vehicle will travel. This allows us to change the order of the
second feature vector so that both systems states and actions
are represented the same, as we demonstrate in Figure 2.

We use this information to reorder and even reduce the
feature vector depending on the current system state and
previous decisions so that the features of nodes that were
already visited are moved to the end of their respective feature
group or removed entirely. The result of this reordering is
that the available nodes and their features will always be in
front of the node order and their corresponding feature parts.
Therefore, the decision will always be to go to one of the first

Fig. 2. Reordering of the feature vector results in different decision.

nodes in the order, so depending on the number of available
nodes, it will reduce the variety in the actions. Suppose we now
consider the approach of training a different policy depending
on the number of available nodes left. In that case, we can
argue that we do not need to include the features of nodes
that have already been visited before the current node. So we
remove them, which reduces the length of the feature vector.
Note that reduction of the feature vector can only be applied
when training multiple decision-making policies because of
the varying vector size.

B. Capacitated Vehicle Routing Problem

In the CVRP a number of vehicles K with a limited capacity
Q is used to visit a set of vertex V = {0, . . . , N} consisting of
N nodes. All customers have a demand qi, i ∈ V \{0} and may
only be visited once. The goal of the problem is to minimize
the total routing cost. C = {cij , i, j ∈ V } is the cost matrix,
in which cij is the travel cost from node i to node j, which
is equal to the euclidean distance between the nodes.

Like with the TSP, we formulate a vector using multiple
features to represent the system’s state. The features we use
are; the vehicle for which we have to make the current
decisions, its current capacity and location. The vehicle that
has travelled the smallest distance is selected to move next. To
indicate which vehicle this is, we use a one-hot encoding. This
means that we use a vector with an equal length to the number
of vehicles, where every element of the vector is equal to zero
except for the considered vehicle, which is equal to one. For
example, if there are three vehicles and we are considering the
second vehicle, the one-hot encoding results in [0, 1, 0]. We
use the same approach of one-hot encoding to represent the
location of the current vehicle, where we use a vector with
the length equal to the number of nodes of which the element
corresponding with the current node is equal to one. The other
features we use are; the current capacities of all vehicles, the
current location of all vehicles again in a one-hot encoding,
the initial demand of each customer and which customer the
vehicle can visit depending on if the customer has already
been visited and the vehicle still has enough capacity to serve
the demand. Furthermore, in the case of the random customer
locations, we include the x-coordinates and y-coordinates of
every node, the distances of the node where the current vehicle
is located at that point to all the other nodes and the distances
between all nodes and the depot.



C. Data Set Creation

Both a training data set and a test data set are generated for
each problem, containing a predetermined number of different
problem instances. In the case of the training data set, these
problem instances need to be transformed into state-action
pairs. To do this, we determine the optimal route by solving
each problem instance using Gurobi [35]. The optimal solution
will be used as the expert routing examples we use for training.
We split each optimal route into individual actions, with each
new node in the route being an action. Then we determine the
corresponding feature vectors representing the state for each
action.

IV. SOLUTION METHODS

A. Inverse Optimization

In IO an agent aims to learn the behaviour of an expert who
makes decisions based on an exogenous signal, which in this
research is represented by the state of the routing problem. To
do this, it is assumed that upon receiving a state s ∈ S ⊆ Rn,
the expert optimizes a parametric optimization problem over a
set of feasible actions U(s) ⊆ Rm, which also depend on the
system state s. This optimization problem is formulated as

min
u∈U(s)

F (s, u), (1)

where F : Rm × Rn → R. In this optimization problem,
we assume that for every state s ∈ S, the set of minimizers
U∗(s) := argminu∈U(s)F (s, u) is non-empty. Furthermore,
we assume that the agent has no prior knowledge of the
objective function F representing the expert’s preferences.
Thus the agent is unable to predict the experts response uex

to a particular system state s prior to training. The agent does
however has access to a data set consisting on N states which
are paired with corresponding expert actions {ŝi, ûex

i }Ni=1, for
which ûex

i is a minimizer for ŝi.
We assume that the unknown objective function F (s, u) can

be represented by a parameterized function Fθ(s, u), which is
part of a parametric hypothesis space F = {Fθ : S×U → R |
θ ∈ Θ}, where θ ∈ Θ represents the parameters to be learnt.
Using this we can formulate the optimization problem that the
agent tries to solve as

min
u∈U(s)

Fθ(s, u). (2)

We define the parameterized objective function Fθ(s, u) the
agent uses to replicate the the expert behavior as

Fθ(s, u) := s⊤Qu, (3)

where we say θ = vec(Q), meaning that the parameter vector
θ can be reshaped into a parameter matrix Q ∈ Rn×m.

Loss Function
Ideally, the agent would aim to identify a hypothesis closely
resembling the behaviour of the expert. To do this, the avail-
able data set is used to training the agent so it can learn the
parameters in the hypothesis. A loss function ℓθ is used to

quantify the inaccuracy of the parameter. The goal during
training would be to find the parameter θ which minimize
the total loss.

In our research, we use the generalized suboptimality loss
[36], and for a given data set, the training phase of the IO
approach results in the optimization problem

min
θ∈Θ

1

N

N∑
i=1

(Fθ(ŝi, û
ex
i )−

min
uag
i ∈U(ŝi)

{
Fθ(ŝi, u

ag
i )− I(uex, uag)

}
.

(4)

with I(uex, uag) = 0 if uex = uag, else I(uex, uag) = 1.
For the implementation, we replicate the work of Zattoni et

al. [36] to obtain the parameter vector θ for a certain training
data set.

B. Multiclass Classification

To use classification algorithms for solving the TSP and
VRP, we need to interpret these routing problems as classifi-
cations problem. The system’s state is described as a feature
vector in the routing problems. We consider this as the sample
which needs to be classified. The next node on the route is
determined depending on the system’s state. Therefore, we
can consider this node as the class belonging to the system
state. Using this approach, the number of nodes determines
the number of classes in the classification problem.

Important to note is that the classification algorithms do not
necessarily consider the constraint that applies to the problems.
To ensure that no constraints are violated, we validate the
suggested action before it is output. If the classifier would
suggest going to a node that violates any constraint and is
infeasible, the closest feasible node will be output instead.

The following multiclass classification algorithms are used
in this study to evaluate and compare their performance in
solving the TSP and CVRP: Support Vector Machine (SVM),
Multi-layer Perceptron (MLP), Random Forest, and Decision
Tree. In the case of the SVM, we used four kernel functions:
linear, polynomial, radial basis function (rbf), and sigmoid.
The algorithms were implemented using Scikit-learn 1.1.1
[37], and the reader is referred to the literature for detailed
formulations.

V. NUMERICAL EXPERIMENTS

As previously stated, the algorithms were evaluated on two
different routing problems, the TSP and CVRP. To solve
both problems, eight different algorithms were considered. All
the algorithms were trained using the same data set. During
testing, we compare the performance of the algorithms to each
other and to the optimal solutions we want them to mimic.
Furthermore, we also compare the findings to a greedy solution
approach to evaluate performance.

Python 3.7 was used to implement all algorithms and
conduct all experiments, where the IO model was implemented
using Gurobi [35]. In the case of the SVM we used regulariza-
tion parameter C = 1. Furthermore, in the MLP, 100 hidden



layers were used, and the Random Forest consisted of 100
decision trees. All other parameters were left at their default
settings in Scikit-learn 1.1.1.

A. Traveling Salesman Problem

For evaluating the different models, we considered a TSP
consisting of 10 nodes V , a single depot and nine customers.
The x-coordinates and y-coordinates of the customer loca-
tions are in the range [0, 1]. In every problem instance, the
depot location was fixed, positioned at the point (0.5,0.5) in
the middle of the feasible location region. Furthermore, the
distances between nodes are equal to the euclidean distances.
The models were trained in an offline batch manner, with each
batch including 10 problem instances and the total training
data set consisting of 500 problem instances. The performance
of the models was evaluated by solving 200 different TSP
instances and calculating the average routing cost after each
batch and at the end of training.

There are multiple ways to approach the training of a
decision-making model for solving the routing problem. The
first and most straightforward way is training one decision-
making policy for the entire statespace S. Another option
would be to train different policies depending on the number
of available nodes left in the system, which we refer to as a
decisions policy. To do this, we divide the data set of state-
action pairs used for training in nd individual data sets, which
we use to learn a policy for every number of available nodes
left.

For the TSP with fixed customer locations, we found that all
models were able to imitate the expert which is the optimal
solution exactly. Note that when we consider the TSP with
fixed locations, every individual problem instance in training
as well as in testing is the same. Therefore, this result is
expected, showing that all models can learn how to solve a
single TSP problem instance from an example.

Focusing on the TSP with random customer locations, we
find more varying results. Table I provides an overview of
the models’ performances for each training configuration. The
average optimal cost of these test instances, which the models
are trying to imitate, is equal to 2.83, and the average routing
cost using a greedy approach is equal to 3.08.

When analyzing these results, we find that for each training
configuration, the best performance is obtained by the MLP
model, with its overall best performance using the global
policy training approach with feature vector reordering. This
global policy training with feature vector reordering approach
obtained almost all models’ individual best performance, ex-
cept for the IO, SVM Linear and SVM Sigmoid models.

Comparing the results of the global and decisions policy
training approach, we can see that for most models, except
for the IO and SVM Sigmoid models, the decisions policy
training approach does not increase performance. Furthermore,
considering the feature vector transformations, we observe that
for the global as well as the decisions policy training approach,
the performance of almost all models increases when reorder-

Fig. 3. TSP (random locations): Cost development during training using
global policy training and feature vector reordering. Evaluated over 200 TSP
test instances after each batch of 10 TSP training instances.

ing, and in the case of the decisions policy reducing, the state
feature vector compared to using no transformation.

In the current results, we see that the SVM Linear, SVM
Polynomial and MLP models all outperform the greedy ap-
proach using the global policy training with feature vector
reordering, with the SVM Linear and MLP models also
obtaining better results in some other training configurations.

Figure 3 shows the development of the average overall rout-
ing cost for each model during training using the global policy
training with the feature vector reordering approach. We found
that the average cost development of all training configurations
is relatively similar. Therefore, we only focus on the global
policy with the feature vector reordering approach, as this
training approach obtained the best performances for most
models.

Examining the data in Figure 3, we observe that most
models follow a similar development curve. The average
routing cost decreases rapidly during the first 200 TSP training
instances, after which this decline slows down and almost
stabilizes after about 400 TSP training instances. There are
three models, however, for which the development of the
average cost is different. For both the IO and Decision Tree
models, average costs also decrease. However, the curves
follow a slower and more steady rate than the other models.
Furthermore, for these two models, the decline in the average
routing cost does not seem to stabilize at the end of training,
which indicates that they may reduce further when more
training instances are available. Finally, the average routing
cost of the SVM Sigmoid model shows no improvement during
training.

B. Capacitated Vehicle Routing Problem

For the experiments, we consider a CVRP consisting of
11 nodes V , ten customers and the depot. We used the same
coordinate range for the TSP experiments with the fixed depot
location. Additionally, the number of vehicles K = 3 and each
vehicle has a maximum capacity Q = 20. The demands of
each customer qi ∀i ∈ V \{0} changes each problem instance.



TABLE I
TSP (RANDOM LOCATIONS): AVERAGE ROUTING COST PER MODEL FOR DIFFERENT POLICY TRAINING CONFIGURATIONS. TRAINED OVER 500 TSP

TRAINING INSTANCES AND EVALUATED OVER 200 TSP TEST INSTANCES.

Average Routing Cost

Training
Approach

State
Feature Vector
Transformation

Optimal Greedy IO SVM
Linear

SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Global None 2.83 3.08 3.36 3.05 3.10 3.19 4.13 3.00 3.28 3.55
Global Reorder 2.83 3.08 3.38 3.06 3.02 3.08 3.90 2.97 3.13 3.44
Decisions None 2.83 3.08 3.49 3.33 3.20 3.35 3.75 3.18 3.39 3.64
Decisions Reorder 2.83 3.08 3.35 3.12 3.09 3.13 3.77 3.03 3.23 3.57
Decisions Reduce 2.83 3.08 3.33 3.11 3.09 3.11 3.77 3.01 3.21 3.44

These values are sampled without replacement from a set
of possible demands d = [3, 4, 5, 5, 5, 6, 6, 6, 7, 8]. Like
with the TSP, we trained the models using an offline batch
approach, with each batch including 10 different problem
instances. A total of 500 problem instances were included in
the training data set.

There are multiple ways we can approach the training
of a decision-making model for solving the CVRP. We can
again use the global policy training approach. However, the
fixed node locations also allow us to take a node-orientated
training approach. This means that we train and use different
policies depending on the node where the vehicle is located.
To do this, we divide the data set of state-action pairs used
for training in nn individual data sets.

Fixed Customer Locations
For the development of the average routing cost during training
for each model using a global and nodes policy training, we
found that almost all of the different models follow the same
development of the average routing cost in both approaches,
where there is a decrease in the average cost for the initial
batches, after which this decline slows down and stabilizes
around a certain value, which is slightly lower for most models
using the global policy training approach. However, the SVM
Rbf and SVM Sigmoid models are two exceptions. For both
these models, the average routing cost converges to a much
higher value during the global policy training approach.

The CVRP differs from the TSP in that multiple cars are
used for routing, and each vehicle has a maximum capacity, as
previously noted in the problem description. The consequence
of this is that, depending on early routing decisions, it can be
possible that the problem becomes unsolvable since none of
the vehicles have enough capacity left to serve the remaining
customer(s). As a result, the route and, therefore, the solution
is incomplete. We increased the overall routing cost by double
the distance between the depot and the remaining customer(s),
which equates to an additional trip, as a penalty for this situa-
tion. Figure 4 and Figure 5 show how each model’s incomplete
routes, represented as a percentage of the total number of
problem instances evaluated after each batch, develop during
training for the global and nodes policy approach, respectively.

Here we can see that, for most models, the development of
the percentage of incomplete routes and the values are some-
what the same for both policy training approaches. Something

that immediately stands out is that throughout training, almost
100% of routes are incomplete for the SVM Rbf model using
the global training approach. Upon further investigation of
the routing decisions made by this model, we found that it
almost always chooses to return to the depot after visiting
a single customer for each vehicle. Although this is not the
case when using the nodes policy training approach, the SVM
Rbf performs worse than the other models, producing an
incomplete route in more than half of the problem instances.

Furthermore, we also see that the percentage of incomplete
routes for the SVM Polynomial model is much higher during
the global policy training approach. It is also interesting to
note that for the global policy training, the SVM Sigmoid
model, which has a high average routing cost, does improve
on its percentage of incomplete routes until it reaches the same
level as the majority of other models at the end of training.

After training the models, we also evaluated their perfor-
mance. Comparing the results to the optimal solutions and the
greedy approach. The results of this can be found in II.

For most models, the best performance is obtained using
the global policy training approach, except for the SVM
Polynomial, SVM Rbf and SVM Sigmoid models, which
performed better using the nodes policy approach. The best
overall performance is obtained by the MLP model having
both the lowest average routing cost and the percentage of
incomplete routes for the global policy training approach.

When comparing the results with the optimal and greedy
routing results, we can see that, with the exception of the
SVM Rbf using the global policy, all models are able to
obtain an average routing cost relatively close to that of
the optimal solution and below the greedy routing strategy.
However, focusing on the percentage of incomplete routing
solutions, we find that for the global policy, only the IO and
MLP models are able to obtain a lower result than the greedy
strategy. For the nodes policy training approach, this is only
the case for the SVM Linear and MLP models.

Random Customer Locations
For training the models on CVRP with random customer
locations, we only use the global policy training approach,
which is combined with both no feature vector transformation
as well as feature vector reordering.

We found that for each feature vector transformation ap-
proach, the development of the average route cost is almost



Fig. 4. CVRP (fixed locations): Incomplete routes development during training
using global policy training. Evaluated over 200 CVRP test instances after
each batch of 10 CVRP training instances.

Fig. 5. CVRP (fixed locations): Incomplete routes development during training
using nodes policy training. Evaluated over 200 CVRP test instances after each
batch of 10 CVRP training instances.

TABLE II
CVRP (FIXED LOCATIONS): AVERAGE ROUTING COST AND PERCENTAGE OF INCOMPLETE ROUTES PER MODEL FOR DIFFERENT POLICY TRAINING

APPROACHES. TRAINED OVER 500 TSP TRAINING INSTANCES AND EVALUATED OVER 200 TSP TEST INSTANCES.

Training
Approach Optimal Greedy IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Average Routing Cost
Global 4.39 5.61 4.56 4.54 4.67 7.25 5.22 4.52 4.54 4.58
Nodes 4.39 5.61 4.61 4.55 4.62 4.81 4.75 4.56 4.57 4.61

Percentage of Incomplete Routes
Global 0% 25% 23% 25% 44% 100% 48% 14% 27% 36%
Nodes 0% 25% 26% 17% 30% 56% 26% 24% 31% 38%

the same for most models. Furthermore, if we compare the two
approaches, we found almost the same development for each
model, with the value for the average route cost being slightly
lower in the case of the no feature vector transformation com-
pared to the reordering approach. Furthermore, the SVM Rbf
gives a high average route cost compared to the other models
that do not improve during training. The reason for this is
the same as in the experiments with fixed customer locations.
This is also reflected in the 100% incomplete routes during
the training, as shown in Figure 6 for no transformations and
Figure 7 for the reordering feature vector transformations.

Considering the development of the percentage of incom-
plete routes for both the training approach with and without
feature vector reordering, we see that for the IO, SVM Rbf
and SVM Sigmoid models, this is relatively the same in both
approaches. However, for the other models, we can observe
differences between the two. First, the SVM Linear follows the
same development, but the percentage of incomplete routes is
higher when using feature vector reordering. For the SVM
Polynomial, this is similar but with a lower percentage of
incomplete routes using the reordering approach. Furthermore,
using no feature vector transformations, we see that the Ran-
dom Forest model starts with a high percentage of incomplete
routes but is able to bring this down to the same level as
most other models in the first 200 training instances. When we
compare this to the experiment with feature vector reordering,
we see that this is not the case. Here the percentage of
incomplete routes also starts at a high value but decreases

relatively slow during training and ends far above that of the
other models.

Finally, we can observe that the percentage of incomplete
routes is around the same value in the case of the MLP and
Decision Tree models, both with and without feature vector
reordering. However, we see that in the case of the reordering
approach, this value shows large fluctuations between batches
compared to the approach with no transformation.

After training, the performance of the models was tested on
200 new CVRP instances as we did before. Comparing the
results to the optimal solutions and the greedy approach. The
results of this can be found in Table III.

Analyzing these results, we find that for most models,
better performance in average routing cost is obtained without
using feature vector transformation. Only the SVM Sigmoid
has a slightly lower average routing cost when using feature
vector reordering. Furthermore, in terms of the percentage of
incomplete routes, we see that most models perform better
using no feature vector transformation. The MLP and IO
models obtain the best performances using no feature vector
reordering, with a lower average routing cost than the greedy
strategy for both models. However, they still have a higher
percentage of incomplete routes.

C. Discussion

The results above provide interesting insights regarding the
different models and approaches for learning to make routing
decisions from expert examples. For both of the problems,



Fig. 6. CVRP (random locations): Incomplete route development during
training using global policy training with no feature vector transformation.
Evaluated over 200 CVRP test instances after each batch of 10 CVRP training
instances.

Fig. 7. CVRP (random locations): Incomplete route development during
training using global policy training with feature vector reordering. Evaluated
over 200 CVRP test instances after each batch of 10 CVRP training instances.

TABLE III
CVRP (RANDOM LOCATIONS): AVERAGE ROUTING COST AND PERCENTAGE OF INCOMPLETE ROUTES PER MODEL USING GLOBAL POLICY TRAINING

WITH DIFFERENT FEATURE VECTOR TRANSFORMATIONS. TRAINED OVER 500 TSP TRAINING INSTANCES AND EVALUATED OVER 200 TSP TEST
INSTANCES.

State Feature Vector
Transformation Optimal Greedy IO SVM

Linear
SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Average Routing Cost
None 3.90 4.76 4.74 4.78 5.39 7.49 4.96 4.69 4.92 5.02
Reorder 3.90 4.76 4.86 4.97 5.46 7.49 4.95 4.87 5.42 5.11

Percentage of Incomplete Routes
None 0% 29% 35% 43% 75% 100% 48% 35% 38% 41%
Reorder 0% 29% 43% 56% 71% 100% 34% 49% 38% 42%

most of the models follow a similar learning curve when
considering the development of the average routing cost, where
in the first initial batches, the models rapidly decrease their
average routing costs, after which this decline slows down
and only lowers very slowly for the remainder of the training
instances. Furthermore, for both problems, we see that some
models cannot improve their performance during training or
stop improving on a relatively high cost value. We mainly
observed this with the SVM Sigmoid model for both problems
and in the case of the CVRP with the SVM Rbf model when
using a global policy training approach.

The objective of the models was to learn a policy resembling
that of the expert, which was the optimal solver in this case. To
do this, the models had to learn the costs of routing decisions
(in this case, equal to the distances) depending on the features
and actions. For both problems, we tested the model’s ability
to learn from expert examples when dealing with fixed as well
as random customer locations. Although the performance in
terms of the average routing cost for some models is better
than that of others, overall, we can observe that for both
the fixed and random locations, most models were able to
learn this decision-making up to a certain performance level.
However, we also observed that there was a difference in
this performance level between the problems with fixed and
random locations in both problems.

In the case of the TSP with fixed locations, we found that

all models were able to imitate the expert perfectly. This is not
surprising as all problem instances and thus solutions are the
same. However, in the case of the CVRP with fixed locations,
where there are differences between the problem instances,
the average routing costs of almost all models get close to
the optimal solution, which was used as expert examples.
Additionally, all models perform considerably better than a
greedy routing approach. For both problems with random
customer locations, this is different. Here we observe that the
gap between the average routing cost for the optimal solution
and that of the different models is larger, with most models
achieving average routing costs somewhat higher than the
greedy strategy and only a few models obtaining a better result.

The difference in performance level can be explained by
the large difference in the edges for the problems with fixed
and random customer locations. Consider the CVRP, when
using fixed locations, the customers are always in the same
place for every problem instance. Therefore, the edges, which
connect the customers, and their costs are constant for every
problem instance. In our experiments, we used a single depot
and ten customers. This means that there are only 110 different
edges for which the model has to learn the cost. If we look
at the problem with random customer locations, this is very
different. Here the edges and thus also their costs vary in every
problem instance. Making it considerably more complicated
to learn the costs as there is an extremely high number of



different possibilities. In this case, the model needs to be able
to interpret the new costs of a problem instance using the
features provided, which might be more challenging for some
of the models.

We notice a few things if we take a closer look at the
different multiclass classification algorithms. In the case of
the SVM, it is clear that the sigmoid kernel is not a suitable
formulation for the type of problems we are trying to learn
from and solve. For TSP, this function is barely able to improve
its performance during training and also, in the CVRP, it is
among the worst performing models of all. On the other hand,
the polynomial and rbf kernel can both learn and perform well
for the TSP with random locations. However, in the case of
the CVRP, using the polynomial or rbf kernel results in some
of the worst performances of all models. For this problem, a
linear approach is the best performing option.

The MLP classification model is the best performing model
we tested, having one of the lowest average routing costs
in both problems. This demonstrates the ability of a deep
learning approach using neural networks to learn and adapt to
a different problem. However, the downside is that this model’s
training time is much higher than the other classifiers.

Comparing the performance of the Random Forest and
Decision Tree models, we can see that, as expected, the
Random forest model can obtain better results for almost all
problems. This can be explained by the fact that the Decision
tree only uses a single tree to make its decisions while the
Random forest model combines multiple.

Finally, there is a difference in the way that the optimal
solver and the models determine their solutions. For optimal
solution, we have to solve the whole problem at once to
determine the route, and if this problem changes, we have to do
this again. For our trained models, this is not the case. These
models are trained to make a decision based on the system’s
current state. Therefore, if the problem changes, this is just a
different state. This would suggest that using this state-action
formulation, the model’s decision-making is faster than the
approach of the optimal solver. Although this seems logical,
we have not performed any specific testing to confirm this, so
this would require further investigation.

VI. CONCLUSION

In our research, we formulated a state-action representation
for the TSP and CVRP. We discussed how these routing
problems can be interpreted as IO or multiclass classification
problems evaluating the performance of different algorithms
in imitating expert decision-making learned from examples.
The characteristics of the problems mainly differed in terms of
single vehicle routing and multi-vehicle routing with demands.
Besides this, for both routing problems, we experimented
with fixed and random customer locations between differ-
ent problem instances. For the algorithms to learn to solve
these routing problems, we propose multiple policy training
approaches as well as state feature vector transformations that
can be used based on the characteristics of the problems. These
different training configurations are tested by an IO model

and four multiclass classification models, some with multiple
variations on training data sets consisting of state-action pairs
for multiple different problem instances. The performance of
the trained models is evaluated on new problem instances, for
which we compare their performance relative to each other
and to the optimal solution, which acted as the expert and
was used to create the training data.

We demonstrated that we can use IO and multiclass clas-
sification to learn from example data and imitate expert
decision-making. However, we also showed a large variation
in performance depending on the problem, state features, al-
gorithm formulations and training configuration. Furthermore,
the performance development of the models stabilizes at a
certain level above that of the expert, limiting perfect imitation.

For both the TSP and CVRP, our results show that the global
policy training approach obtains the best results for most
models. In the case of the TSP with random locations, this is
true when combining this training approach with the feature
vector reordering transformation. Furthermore, we found that
overall the MLP model obtains the best performance for most
problem setups. As we discussed, this model utilizes a neural
network formulation, which is often used in other research
on the application of machine learning for routing problems
and has many advantages. However, these models are often
complex and can require more data or time to train. Therefore,
it is interesting to note that the performance of the MLP
model was matched by some of the other models that use a
simpler formulation, demonstrating their potential. However,
the results also show that these simpler models are more
susceptible to changes in problem formulation, features and
training configurations, making them less versatile and flexible
in use compared to the MLP model.

Focusing on the difference in performance considering
problems with fixed or random customer locations, we can
conclude that the best results are obtained when customer
locations are fixed between problem instances. When the
locations are random, the edges and thus also the costs of
decisions vary for every instance. This created a more complex
problem, making it harder for the models to learn the expert’s
decision-making.

Only little research has been performed on learning to
solve routing problems from expert examples. Therefore, our
research acts as one of the early steps in investigating the
application of known algorithms for different routing problem
formulations. Based on our findings, we have some recom-
mendations for further research.

We explained that the random locations represent a universal
scenario for learning to make routing decisions based on
general preferences, and the fixed locations represent a more
area-specific application. The results of our research suggest
that this second scenario might be more suitable for learning
from expert examples. So for an area-specific application
where the emphasis is on learning from experts and developing
a policy for routing decisions in a specified region, one can
consider designing a fixed graph that should represent an
area layout, with only a few nodes representing consumers.



The customer positions can then change inside the graph,
but the overall graph, and so the edges and costs, remain
unchanged. In this circumstance, research could also consider
more complex, area-specific routing costs, which are more
representative of the real-world situation. Furthermore, the
research might concentrate on other objectives of the routing
problem or newly emerging customers during routing.
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B
Binary Classification for Multiclass

Classification Problems

Splitting the multiclass classification data set into multiple binary classification data sets and fit-
ting a binary classification model to each is a way of employing binary classification algorithms
for multiclassification problems. Two approaches are the One-vs-Rest (OvR) and One-vs-One
methods (OvO).

In the OvR approach, a binary classifier is trained for each individual class. For each
classifier, the class is fitted against all the other classes. Each of these classifiers aims to pre-
dict the probability that a certain sample belongs to its respective class. Then the class with
the highest overall probability score will be predicted as the class which belongs to the sample.

Like the OvR approach, the OvO approach trains multiple classifiers. However, a binary
classifier is trained for each pair of classes in this case. This means that for a problem with
𝑁classes number of different classes, the number of individual classifiers is determined as

number of classifiers = 𝑁classes(𝑁classes − 1)
2 , (B.1)

which is significantly more than the OvR approach. Each classifier will determine a class for a
certain sample, and the overall class predicted the most will be returned as the corresponding
class for the sample. When two classes get an equal number of votes, it chooses the class
with the highest aggregate classification probability by averaging the pair-wise classification
probability levels computed by the underlying binary classifiers (Bishop, 2006).
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C
Varying Training Times for The Inverse

Optimization Model

As mentioned in Chapter 6.1, other activities were performed on the device used during the
experiments. These activities influenced the training time of the different models. This is
shown in Table C.1, which shows the same experiment with the exact same configurations
performed on two different days while different activities took place. This makes it hard to draw
any firm conclusions from these results concerning the difference in training time between the
different training configurations.

Table C.1: Training times for the IO model of the exact same experiment on different points in time

Training Date Training
Approach

State Feature Vector
Transformation

Training Time
IO Model (s)

25-07-2022 11:00 Global None 6854
27-07-2022 11:07 Global None 4197
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D
TSP Results for Fixed Customer

Locations

Figure D.1 shows each model’s average overall routing cost during training on the TSP prob-
lem with fixed customer locations, using the global policy training without feature vector trans-
formation. After each training batch of 10 TSP training instances, the performance of the
models was evaluated over 200 different TSP test instances. Furthermore, Figure D.2 visual-
izes the performance after the training along with the standard deviation of each model for this
training configuration compared to the average optimal and greedy routing costs. Note that
when we consider the TSP with fixed locations, every individual problem instance in training
as well as in testing is the same. Therefore, this result is expected and shows that all models
can learn how to solve a single TSP problem instance from an example.

Figure D.1: TSP (fixed locations): Cost development during
training using global policy training without feature vector trans-
formation. Evaluated over 200 TSP test instances after each
batch of 10 TSP training instances.

Figure D.2: TSP (fixed locations): Average rout-
ing costs with standard deviation per model after
training over 500 TSP instances using global pol-
icy training without feature vector transformation.
Evaluated over 200 TSP test instances.
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E
TSP Results for Random Customer

Locations

This appendix shows the performances of the different models for each combination of differ-
ent policy training approaches and feature vector transformations for the TSP formulation with
random customer locations suggested in Chapter 3.1 (except the global policy training with
feature vector reordering, as this is discussed in Chapter 6.1). All models were trained using
an offline batch training approach on a total of 500 TSP training instances in batches of 10.
The TSP consisted of 10 nodes, and the routing cost equals the distance.

Table E.1 provides the same overview of the performances per model tested on 200 TSP
test instances for each different training configuration as Table 6.2.

Table E.1: TSP (random locations): Average routing cost per model for different policy training configurations.
Trained over 500 TSP training instances and evaluated over 200 TSP test instances.

Average Routing Cost Optimal 2.83
Greedy 3.08

Training
Approach

State
Feature Vector
Transformation

IO SVM
Linear

SVM
Polynomial

SVM
Rbf

SVM
Sigmoid MLP Random

Forest
Decision
Tree

Global None 3.36 3.05 3.10 3.19 4.13 3.00 3.28 3.55
Global Reorder 3.38 3.06 3.02 3.08 3.90 2.97 3.13 3.44
Decisions None 3.49 3.33 3.20 3.35 3.75 3.18 3.39 3.64
Decisions Reorder 3.35 3.12 3.09 3.13 3.77 3.03 3.23 3.57
Decisions Reduce 3.33 3.11 3.09 3.11 3.77 3.01 3.21 3.44

The figures below show the development of the average routing cost for the different train-
ing configurations and the average routing cost and standard deviation tested after training. In
these results, we can see that, for all training configurations, the development of the average
routing cost during training follows a similar curve for most models, mainly differing in the rate
of decline.
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Figure E.1: TSP (random locations): Cost development during
training using global policy training without feature vector trans-
formation. Evaluated over 200 TSP test instances after each
batch of 10 TSP training instances.

Figure E.2: TSP (random locations): Aver-
age routing costs with standard deviation per
model after training over 500 TSP instances us-
ing global policy training without feature vector
transformation. Evaluated over 200 TSP test in-
stances.

Figure E.3: TSP (random locations): Cost development during
training using decisions policy training without feature vector
transformation. Evaluated over 200 TSP test instances after
each batch of 10 TSP training instances.

Figure E.4: TSP (random locations): Average
routing costs with standard deviation per model
after training over 500 TSP instances using deci-
sions policy training without feature vector trans-
formation. Evaluated over 200 TSP test in-
stances.

Figure E.5: TSP (random locations): Cost development dur-
ing training using decisions policy training and feature vector
reordering. Evaluated over 200 TSP test instances after each
batch of 10 TSP training instances.

Figure E.6: TSP (random locations): Average
routing costs with standard deviation per model
after training over 500 TSP instances using de-
cisions policy training and feature vector reorder-
ing. Evaluated over 200 TSP test instances.
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Figure E.7: TSP (random locations): Cost development dur-
ing training using decisions policy training and feature vector
reduction. Evaluated over 200 TSP test instances after each
batch of 10 TSP training instances.

Figure E.8: TSP (random locations): Average
routing costs with standard deviation per model
after training over 500 TSP instances using deci-
sions policy training and feature vector reduction.
Evaluated over 200 TSP test instances.
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