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Abstract

Homogeneous transition metal-based (TM) catalysts are crucial to producing chemically pure drugs, stem-
ming from their ability to obtain high product selectivity. However, experimental screening of TM-based
complexes is expensive, so computational methods are leveraged instead. Especially machine learning (ML)
approaches show promise due to being efficient as well as unbiased. ML of homogeneous TM-based cata-
lysts is based on physiochemical properties named descriptors. Descriptors are dependent on the method
of simulation and the simulated complex itself. Methods with a higher level of theory are more accurate,
but also more resource intensive. Similarly, larger complexes simply demand more computational resources.
Two general methods to minimize the number of resources needed are: 1) using the lowest level of theory
containing reasonable accuracy and 2) using the simplest representative complex.

In this thesis, possible simplifications were investigated for a homogeneous TM-based catalyst screening
workflow. Objective 1 was investigating the effect of levels of theory for geometry optimization on descriptors.
Structures were optimized for four levels of theory relevant to this workflow, namely: MACE, GFN-FF, GFN2-
xTB and DFT. Subsequently, xTB level descriptors were calculated for the first three levels of theory and were
then correlated against xTB level descriptors of the benchmark, DFT. In addition, it was investigated how
descriptors obtained from xTB and DFT single-point calculations differ. Objective 2 was investigating the
effect of the chemical structure on descriptors. To do so, a set of octahedral complexes and a set of simplified
structures were generated and descriptors of both sets were correlated against each other.

Regarding objective 1, it was observed that solely descriptors from the GFN2-xTB level of theory correlated
well with DFT, at least for the majority of descriptors. Next to that, it was found that GFN2-xTB geometries
more or less coincide with DFT geometries. Regarding objective 2, it was found that the bidentate ligands in
the model set deform towards the metal centre, which leads to decreased correlations among the majority of
the descriptors. Additionally, it was found that clustering occurred due to the presence of two different ligand
classes in the dataset.

The primary conclusion of this research was that geometries originating from GFN2-xTB geometry opti-
mization are structurally comparable to geometries originating from DFT geometry optimization. However,
descriptors obtained from GFN2-xTB single-point calculation are not comparable to descriptors obtained
from DFT single-point calculation. As such, to accurately extract descriptors, DFT single-point calculations
are necessitated.
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1
Introduction

Whether knownst or unbeknownst to the average Joe, catalysis is omnipresent in modern society. Behind
the scenes, it serves as the foundation for modern materials and as the driver for high-standard living condi-
tions. Some might be familiar with catalysis as a concept from their cars’ catalytic converters, but many are
oblivious to the scale catalysis encompasses. Catalysts, the substances that induce the process of catalysis,
underpinned 30% of the Gross Domestic Product of European countries in 2016 and are used in approxi-
mately 80% of all manufactured products [1]. Use cases are ample, ranging from the medicines we take to the
fabrics that keep us warm, to the fuels that power the vehicles that transport us [2].

The current definition of a catalyst is: "a substance which increases the rate at which a chemical reac-
tion approaches equilibrium without becoming itself permanently involved" [3]. In other words, a catalyst
gently provides an alternative pathway for creating and breaking chemical bonds. This alternative pathway
possesses a lower activation energy, therefore increasing the reaction rate and speeding up the reaction.
In general, three major types of catalysts exist: heterogeneous, homogeneous, and bio-catalysts.

Heterogeneous catalysts exist in a different aggregation state than the reactants. Having catalysts in a dis-
tinct phase is an enormous advantage since separation and re-utilization becomes simple and cheap [4]. In
heterogeneous catalysis the reaction mechanism usually goes as follows: the reactants are adsorbed on the
surface of the catalysts, the chemical reaction occurs and then the product gets desorbed from the surface.
Due to their general applicability and low cost, heterogeneous catalysts are mostly used in large-scale chem-
ical engineering contexts and are closely connected to the fields of surface science and solid-state chemistry
[5].

Homogeneous catalysts, on the other hand, exist in the same aggregation state as the reactants. Bio-
catalysts technically also fall under this definition, but usually are considered a distinct type and are generally
labelled enzymes [6]. Homogeneous catalysts have superb selectivity and their respective mechanisms are
generally better understood than heterogeneous ones [4]. Nonetheless, heterogeneous catalysts are usually
preferred over their homogeneous counterpart, due to (expensive) separation difficulties.

In the context of pharmaceuticals, however, the utilization of homogeneous catalysts is pervasive, ow-
ing to the industry’s target aim of developing safe and effective drugs for human usage. The presence of
impurities, e.g. different stereoisomers, may result in the absence of a reaction or even toxicity in human
consumption.

Figure 1.1: Simplest form of a hydrogenation reaction. Ethene is converted to ethane through a (TM-based organometallic) catalyst in a
syn addition mechanism, where both hydrogen atoms are facing the same side. Schematic adapted from [7].

1
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One example is the antidepressant drug Citalopram. The drug is sold as a mix of both the S and R enan-
tiomers, however, only the S enantiomer is responsible for its beneficial effects [8], making the drug possess-
ing a redundant compound. Another example is the drug D-penicillamine, which is used to treat rheumatoid
arthritis. L-penicillamine, D-penicillamine’s enantiomer, inhibits the function of an essential B vitamin [9]
and is very toxic to humans, therefore the reaction of producing L-penicillamine needs to be pure.

For reactions concerning stereoselective drugs, organometallic complexes are often utilized [5]. These
organometallic complexes consist of a metal centre connected to (in)organic molecules named ligands. Es-
pecially transition metal (TM) based organometallic complexes have been studied extensively in the past
decades for their use in obtaining high selectivities [10].

One of the first successful applications of TM-based homogeneous catalysts is the reduction of unsatu-
rated organic molecules by means of molecular hydrogen, a reaction known as hydrogenation. This reaction,
which can be seen in Figure 1.1, consists of the addition of a hydrogen molecule to an unsaturated moiety,
e.g. C =C , C = N , C ≡C , C =O, etc.

Breaking double bonds of this moiety can lead to asymmetry of the product. In Figure 1.1 both hydrogen
atoms are facing the same side (syn-addition), however, by utilizing a different catalyst, one hydrogen can
face backwards and the other hydrogen face frontwards (anti-addition). As mentioned before, it is impor-
tant to get stereochemically pure products in asymmetric catalysis and thus in asymmetric hydrogenation.
For asymmetric hydrogenation extensive research has been done to obtain useful and pure stereoisomers
through the noble-metal (Rh, Ir, Ru) catalysts with chiral ligands (phosphines) [11–16]. The ISE group and
their pharmaceutical partner are currently continuing on the previous research by investigating the asym-
metric hydrogenation of enamines with a rhodium metal centre and asymmetric hydrogenation of amines
with an iridium metal centre. Their research serves as the inspiration for the work done in this thesis.

Selectivity originates from the ligands of the homogeneous catalyst and because of that, for the catalyst
to have high regio-, diastereo- and/or enantioselectivity, appropriate ligands need to be selected [10]. Often,
experimentalists use chelating ligands, i.e. ligands that bind to multiple sites (monodentate = 1, bidentate =
2, etc.) to get fitting selectivities. This chelating effect makes the ligand bind more tightly to the metal centre,
therefore, creating more steric hindrance, leading to higher selectivities.

Figure 1.2: Different geometries for an organometallic complex. The coordination number refers to the number of ligands connected to
the metal centre. Schematic adapted from [17].

Possible combinations of ligands and metal centres scale factorially, therefore making the chemical space
close to infinite [18]. Solely by changing the number of binding sites the ligand has, e.g. monodentate, biden-
tate or pincer ligand, the complex’s characteristics become completely different. Additionally, metals have
multiple oxidation states, which allow for a different number of bonds. These different oxidation states give
rise to different geometries with different amounts of ligands connected to the metal centre, see Figure 1.2.
For example, the reactant will interact with an octahedral complex in a completely different manner than a
square planar complex, either through steric hindrance or the different electronic properties of the metal. In
a nutshell, catalyst design from the chemical space gets profoundly difficult.

Recent advances in analytical chemistry accelerated the exploration of this extensive chemical space,
however. One such method is high-throughput experimentation (HTE), which leverages robotics to auto-
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mate reactions. As such, for one specific target, many reactions can be done in parallel with varying condi-
tions [19–21].

Still, experimental exploration of the chemical space remains costly. Therefore, current research also
leverages in silico design, i.e. computational methods, to screen catalysts. These in silico methods to ra-
tionally design catalysts have been referred to as the "Holy Grail" of chemistry, showcasing its significance
[22]. In recent years, many methods to design and select catalysts have been tried and proposed to find this
elusive "Holy Grail" [23–27]. In Figure 1.3, three general approaches are outlined.

The first approach is automated in silico catalyst design, which is based on virtual screening methodolo-
gies. In this approach, the user enters a substrate in a workflow, then complexes are automatically generated
through an exhaustive ligand library. These complexes are analysed for transition states, and subsequently,
different conformers are sought and stereoisomers are found.

The second approach is rational design, which uses a chemist’s knowledge to design new catalysts and
subsequently model them to validate the catalysts’ use. A complete computational study is subsequently
carried out to find catalyst activity/selectivity.

Figure 1.3: Overview of different approaches for computationally-led organocatalyst design. Figure adapted from [26].

The last approach is machine learning, which is based on physiochemical properties and mathematical
relations to make predictive models over the chemical space. This approach especially shows promise as it is
characterized by a faster rate of execution compared to the other two methods while remaining bias-free.

The methods of relating physiochemical properties to useful variables are called quantitative structure-
activity or structure-property relationships (QSAR/QSPRs) [28]. Through QSAR/QSPRs, these physiochemi-
cal properties, called descriptors, can be related to mathematical equations, e.g. with linear free energy rela-
tionships (LFERs) [29, 30]. One example of LFERs is the Hammet equation, which relates the rate of a reaction
to the electronic properties of the substitutes [31]. Another example is the Brønsted equation which relates,
the Gibbs free energy for proton dissociation to the activation energy of the catalytic step [32].

QSAR/QSPRs are the relationships between molecular descriptors and the chemical space. By utilizing
these relations, novel catalysts can be identified and analyzed. However, finding descriptors that represent
structural properties properly is a major bottleneck in these models [33]. Descriptors can be based on simple
information, such as the amount of X-type atoms in the structure, but also on higher level information based
on the 3D geometry of the structure, e.g. the bite angle between the ligands and the metal centre. Many 3D
descriptors originate from Tolman’s work on homogeneous TM-based bidentate phosphorus complexes [34].
Some examples of these 3D descriptors include Tolman’s own cone angle, polarity or flexibility, which in turn
can relate to product conversion, product selectivity or turnover number [35].

The challenge with machine learning stems from obtaining adequate higher-level descriptors in organometallics.
2-D representations of organometallics, without mechanistic knowledge, are simply insufficient to obtain ad-
equate descriptors. As such, 3D structures need to be created from scratch. Using a chemist’s knowledge is
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one possibility, but this is slow and inherently biases the search for the chemical space through the chemist’s
intuition. The ISE group, therefore, strives to create a purely data-driven workflow to generate and screen
molecules to omit this astutely titled expert bias. Descriptors themselves, however, are dependent on which
computational or quantum chemical (QC) method is used to simulate the system. Methods that utilize more
computational power, usually give more realistic structures and geometries, therefore creating more accurate
values for the descriptors. These methods which give more realistic structures are usually referred to as meth-
ods of a higher level of theory. Ideally, one calculates descriptors on the highest level of theory at all times, but
this would require large quantities of computational power. A balance needs to be found in-between levels
of theory and computational efficiency. In this thesis, descriptors on different levels of theory, e.g. DFT and
xTB-GFN2 are being compared to each other, to find this balance.

In order to obtain screening data of complexes on a sufficient level of theory, it is typically required to use
high-performance computing, specifically supercomputers. Although computational power has increased
exponentially in the past decade, computational experiments are still surprisingly not very cost- or ecologi-
cally friendly.

Computational time is measured in standard billing units (SBUs), which is the time taken for the calcula-
tion times the number of cores, compared to a benchmark calculation. In the ISE group, for organometallic
complexes with 100-150 atoms, DFT calculations take 1132 SBUs on average. 1 SBU is approximately equal
to 1 euro cent, hence calculating a single complex costs 11.32 euros. A real-life experiment of one complex
at the ISE group costs about 3 euros, withholding all costs of lab space, electricity and labour. However,
computational methods have the benefit of being easily restartable and being much faster than experimen-
tal experiments, whilst not producing any chemical pollution. These reasons make computational methods
still very favourable. Regardless, for the amount of power a supercomputer uses on a yearly basis, a small
city of 50,000 people can be sustained [36]. By using such large quantities of power, a huge carbon footprint
naturally follows, which, for all supercomputers worldwide, comes down to 100 megatons of CO2 emissions
per year. Despite the anticipation of a 2- to 9-fold growth in the next decade, the current number is already
comparable to the complete aviation section of the United States [37–39]. With the now irreversible effect of
climate change, massive steps need to be made to lower emissions as much as possible [40].

One approach to lowering computational time, thus lowering cost and carbon footprint, is by simplifying
the to-be-calculated system. By excluding atoms that are not part of the relevant chemical sites, the complex-
ity of a system, i.e. degrees of freedom, gets reduced a multitude of times, leading to reduced computing time.
A quote from C.J Cramer, a pillar of the computational chemistry field, encapsulates this concept perfectly:

The talent of the well-trained computational chemist is knowing how to maximize the accuracy
of a prediction while minimizing the investment of such resources. - Cramer 2004 [41]

In other words, it is paramount for a computational chemist to minimize resources by using the simplest
system with the lowest level of theory possible.

Therefore, the goal of this thesis was to compare possible simplification methods which could be made in
the ISE group’s homogeneous catalyst screening workflow. This was done by simplifications on:

1. The level of structure optimization and descriptor calculation

2. The chemical structure that digitally represents a catalyst structure in the virtual screening process



2
Theory

In this chapter, applicable computational and quantum mechanical (QM) background information is given
for the computational methods used in this thesis. After that, in Section 2.5, the parameters (descriptors) to
computationally represent, compare and analyse our TM complexes are outlined. The majority of informa-
tion on QM computational methods has been extracted from the following two books:

• "Essentials of Computational Chemistry" - C.J. Cramer [41]

• "Computational quantum chemistry: molecular structure and properties in silico" - J.J.W. Mcdouall
[42]

2.1. Computational Chemistry
Computational chemistry seeks to understand chemical systems. Computational screening, however, seeks
to explore the chemical space. The potential energy surface (PES) is monumental in exploring this chemical
space. The PES is the relationship, whether mathematical or graphical, between a molecule’s energy and
its geometry. The most intuitive model to represent molecules in chemical space is to consider molecules
as balls (atoms) held together by springs (bonds). Usually, springs are in an equilibrium state, but through
"grasping" atoms and therefore stretching or compressing the bonds, the potential energy of the molecule
changes. This model is motionless thus the potential energy remains in the system. In a simple diatomic
molecule, the PES can be expressed as the potential energy versus the bond length, see figure Figure 2.1A.
However, for polyatomic molecules, the dimensionality increases, since the PES is a collection of all possible
atomic arrangements. The PES, therefore, becomes a hypersurface and has 3N − 6 dimensions for N ≥ 3
where N is the number of atoms, stemming from the three-dimensional nature of Cartesian space. Drawing
hypersurfaces is impossible in our three-dimensional space, thus we take slices through potential energy
surfaces that involve one or two coordinates (e.g. bond lengths). See Figure 2.1B . The PES is useful since
by setting the first-order partial derivatives to 0, ∂E

∂q1
= ∂E

∂q2
= . . . = 0 (where E is the energy and q1 and q2

is the bond length of arbitrary bond 1 and bond 2), the minima (stationary point) of the PES is given. This
stationary point corresponds to the lowest energy state respective to that bond. The lowest energy state here
corresponds with the most stable geometric structure.

If the second-order partial derivative is bigger than 0 for all variables, ∂
2E
∂q2

1
= ∂2E

∂q2
2
= . . . > 0, this means the

stationary point is truly a minimum. However, if the second-order partial derivative is smaller than 0 in the
direction of the most likely reaction pathway, this means the stationary point is a saddle point. Saddle points
correspond to the transition states of the molecule. In this way, we can (intuitively) calculate the reaction
pathway with its corresponding transition states and most stable geometry.

The PES is essentially a plot of the molecular energy versus the molecular geometry. The concept of
molecular geometry is only valid because nuclei can be regarded as stationary with respect to electrons, since
they are 2000x heavier, as proven by the Born-Oppenheimer approximation[44, 45]. The Born-Oppenheimer
approximation states that the Schrödinger equation for a molecule can be separated into an electronic and a
nuclear equation. Consequently, a molecule has a defined shape [41, 42, 46].

5



2.2. Molecular Mechanics 6

A B

Figure 2.1: A: 2-D potential energy surface of a Hydrogen molecule (H2) where r is the distance between the Hydrogen nuclei; B: Hypo-
thetical 3-D PES with its corresponding contour plot for an endothermic reaction. Images reproduced from [43].

.

2.2. Molecular Mechanics
The basis of molecular mechanics (MM) utilizes the same model as the PES: a molecule is a collection of balls
(atoms) held together by springs (bonds). Springs resist being distorted therefore creating different energies
from different geometries. MM is thus a purely mathematical model to find minimum-energy geometries.
The form of this mathematical expression for energy adds up to a force field, which is why MM methods are
frequently called force-field methods. By nature, this method omits the electronic properties of a system and
needs specification at what angle the bonds are drawn and how strong they are. Furthermore, vibrational
energies are not taken into account with the MM’s mechanical model, whilst atomic vibrations do in fact
affect the spring (bond) length.

From the normal spring lengths and the angle between springs, the energy of this collection can be cal-
culated with Equation (2.1).

E = ∑
bond s

Estr etch + ∑
ang l es

Ebend + ∑
di hedr al s

Etor si on + ∑
pai r s

Enonbond (2.1)

While the individual terms and their calculations are out of scope for this work, in every term a propor-
tionality constant (k) is present. The process of finding values for k is called parameterizing the forcefield.
Usually, experimental values or more accurate methods of representing the chemical space are used to get
good fits for k. However, there are many interactions between atoms creating many different k values. Con-
sidering only the first 100 elements on the periodic table and making no distinction between single, double or
triple bonds would lead to more than 108 parameters necessary to describe the force field. As such, these pa-
rameters are minimized either through chemical knowledge or by only considering a subset of all elements.
Many force field methods also assign atom ’types’, consisting of element (atom number) plus hybridization,
oxidation state or another state altering atom behaviour. Furthermore, general force fields such as DREID-
ING, UFF and VALBOND decrease the scope by making almost all parameters, which depend on more than
one atom, functions of single-atom-specific parameters. A more modern generic MM approach is GFN-FF,
which seeks to model all complexes even beyond the 1000-atom size regime [47]. Approaches such as MM2
and MM3 introduce quantum mechanical (QM) enhancement in the form ofπ bond orders to the mechanical
model, to more accurately calculate k values. Ultimately, different approaches in MM are catered to different
systems and goals.

The process of exploring the PES with MM, by changing the bond lengths and bond angles, is called ge-
ometry optimization. Through iterative methods the lowest energy thus the most stable geometry is going
to be found. These iterative methods are carried out by a minimization algorithm, usually some form of
Newton-Raphson method. This process happens iteratively until the lowest energy is found. Note that this
could be a local minimum and not necessarily the most stable state of the whole PES. The advantages of MM
are that it is fast and hardware undemanding, while still being relatively accurate. One drawback is that it
empirically estimates electronic properties with parameterization since electrons are completely ignored in
the calculation.
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2.3. Density Functional Theory
Density Functional Theory (DFT) is one of the cornerstones of computational chemistry and constitutes
widespread use, even in biology and geosciences [48, 49]. Explaining DFT starts with quantum mechanics
(QM) [50].

2.3.1. Quantum Chemistry
The fundamental equation (in its general form) of quantum chemistry (QC) is the time-dependent Schrödinger
equation given in Equation (2.2)

iħ ∂

∂t
Ψ(r, t ) = ĤΨ(r, t ) (2.2)

For stationary states, the equation can be simplified to its time-independent form, as seen in Equa-
tion (2.3).

Ĥψ= Eψ (2.3)

The Hamiltonian operator (Ĥ) consists of a system’s kinetic- and potential energy, combining for the total
energy, see Figure 2.2. In this figure, a system of N electrons and M nuclei is described, where index i runs
over electrons (N ) and A/A′ iterates over nuclei (M). ∇ is the Laplacian operator over i electrons. MA denotes
the mass of nucleus A. ZA denotes the charge of nucleus A. ri A is the distance between electron i and nucleus
A. ri j is the distance between electron i and j . RA A′ is the distance between nucleus A and A′.

Figure 2.2: Hamiltonian operator in the non-relativistic, time-independent Schrödinger equation, figure reproduced from [51, 52].

.

In the case of very small molecular systems, e.g. H2
+, Equation (2.3) can be solved by using the Hamil-

tonian operator described in Figure 2.2. The Hamiltonian describes pairwise interactions for all particles,
implying that all particles are interdependent on each other. Thus to solve larger systems approximations
are necessary. The first approximation is again the Born-Oppenheimer approximation. As mentioned in Sec-
tion 2.1, nuclei are regarded as stationary compared to electrons. In doing so, the electronic wavefunction and
the nuclei wavefunction can be solved independently, reducing complexity a great deal [53]. One method of
solving the Hamiltonian for larger molecules is with the Hartree-Fock Self-Consistent Field (HF-SCF) method,
where the secular equation is solved iteratively through an initial guess. Its main drawback, however, is that
it uses one-electron operators, therefore ignoring all electron correlations.

Density Functional Theory (DFT) circumvents this issue by using electron density to solve the Hamil-
tonian, reducing the degrees of freedom from 3N to 3. The manner in which the Hamiltonian is solved is
through the two Hohenberg-Kohn (HK) theorems [54].

The first HK theorem states that the energy of an atomic system, and all other observables, is unam-
biguously determined by the electronic density of the system. The second HK theorem states that only the
ground-state electronic density, will minimize the total energy of the system [55].

Kohn and Sham realised a method to obtain the electron density by considering a set of non-interacting
electrons [56]. This Hamiltonian can be expressed as a sum of one-electron operators, has eigenfunctions
which are Slater determinants of the individual one-electron eigenfunctions and has eigenvalues that are the
sum of the one-electron eigenvalues [41]. The starting point is a fictitious system of non-interacting electrons
that have the same overall ground-state density as a real interest where electrons do interact. The energy
functional (a function that takes another function as input) can therefore be expressed as in Equation (2.4).

E [ρ(r)] = Tni [ρ(r)]+Vne [ρ(r)]+Vee [ρ(r)]+∆T [ρ(r]+∆Vee [ρ(r)] (2.4)
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Where ρ is the electron density, Tni the kinetic energy of non-interacting electrons, Vne the nuclear-
electron interaction, Vee the classical electron-electron repulsion, ∆T the correction to the kinetic energy
derived from interacting electrons, ∆Vee all non-classical correction to the electron-electron repulsion en-
ergy.

2.3.2. Exchange-correlation potential
The last two terms from Equation (2.4) are commonly added together to form the exchange-correlation en-
ergy (EXC ), which includes effects of QM exchange and correlation, correction for classical self-interaction
energy and correction for the difference in kinetic energy between the fictitious and real system.

To solve EXC , an exchange-correlation functional (νXC (r)) is used. However, this functional is unknown
and can only be approximated. Approximations generally are dealt with as an exchange term and a cor-
relation term [57]. Due to this, functionals are frequently still called by a combination of both terms, e.g.
PBE1PBE, instead of its respective general name PBE0 [58, 59]. Devising good functionals is the main prob-
lem in DFT since all difficult-to-calculate terms have been swept into the functional. Functionals form a
hierarchical structure where the level of sophistication increases in the following order: a) the local density
approximation (LDA), b) the generalized gradient approximation (GGA), d) meta-GGA, d) hybrid GGA and
hybrid meta-GGA, e) random phase approximation (RPA). This hierarchical structure is also referred to as
DFT Jacob’s ladder, analogous to the biblical ladder reaching up to heaven, that culminates into the divine
functional [60].

Divine functional

RPA

Hartree World

LDA

GGA

mGGA

Hybrid (meta) GGA 

Figure 2.3: Jacob’s ladder metaphor for DFT exchange-correlation functionals. The Hartree world represents Hartree approximation
theory, while every subsequent rung represents a higher level of theory. The cloud represents the divine functional which solves every
system exactly.

The simplest approximation is LDA, which solely depends on the value of the electronic density at each
point in space to determine EXC . LDA serves as a base for the construction of more sophisticated approxima-
tions such as GGA. In GGA, instead of taking the electron density as uniform in every point in space, it takes
the gradient of electron density, in other words, where the density is locally changing. This approach is more
generally applicable, since in a molecular system the electron density is not spatially uniform. Meta-GGA
functionals improve on GGA functionals by adding a second derivative term to the electron density func-
tion (whereas GGA functionals only use the first derivative). Currently, Hybrid (meta) GGA functionals are
also being used. HGGA functionals add the Hartree-Fock electron exchange, calculated from the Kohn-Sham
wavefunction of noninteracting electrons. RPA is the most novel method and the fifth rung of accuracy. RPA
is an approximate, but fully nonlocal method to determine EXC . Here, one assumes that electrons only re-
spond to the total electric potential. A dielectric function can be calculated which then adequately predicts
properties of the electron gas [61, 62].
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2.3.3. Basis sets
The set of functions making up the wave function of an atom in DFT is called a basis set. Basis sets are mathe-
matical approximations of the actual wave function, which are theoretically most accurate when infinite, but
larger sets take up more computational power. One method to create basis sets is to use the Linear Combi-
nation of Atomic Orbitals (LCAO) method. Atomic orbital basis sets are usually atom centred, meaning the
same as real orbitals, they are centred in the core of an atom. Using the LCAO method, the best types of basis
sets are formed with Slater-Type Orbitals (STO), which are based on the exact solution of the single electron
Hydrogen atom system. However, STO basis sets are computationally expensive, so instead they are approx-
imated by Gaussian-Type Orbitals (GTO). Multiplying GTOs of atoms has been shown to give a complete set
of functions for molecules [63].

The main drivers of bonding are the valence electrons. As such, the inner-shell AOs and valence AOs are
commonly split. The inner AOs are described by a single basis function while the valence AOs are described
by two or more basis functions. This method is dubbed split-valence polarization (SVP). To increase accuracy
further, basis sets include polarization functions to account for the polarization of the electron density of the
atoms in molecules. Lastly, the addition of diffuse functions is common to account for the parts of the AO
that are far away from the nucleus [64–66].

2.3.4. Solvation
With the currently described methods, only the non-interacting (gas phase) molecule has been taken into ac-
count. In real-world experiments, solvent molecules are often present, therefore they have to be considered
during in-silico research as well. Solvation is included either explicitly (discreet) or implicitly (continuum).
Explicit solvation models include solvent molecules explicitly, creating a physically solved description of the
solvent, but interactions between molecules increase a great deal, increasing computational load. Implicit
solvation models use a homogeneous polarizable medium for the solvent, which is much more computa-
tionally efficient, but fail to take local fluctuations of the solvent density into account [22, 67–69].

2.3.5. Dispersion corrections
In larger molecules, London dispersion forces become more apparent. Therefore, accounting for these forces
becomes paramount to reaching chemical accuracy in Kohn-Sham DFT [70, 71]. Multiple methods have been
developed to tackle dispersion forces, such as atom pairwise sum over C6R−6 potentials (DFT-D), dispersion-
corrected atom-centred potentials (DCAP) and "pure" density functionals (DFs) [72]. Grimme refined the
DFT-D method to gain higher accuracy, a broader range of applicability, and less empiricism, to get the D3(BJ)
and its novel successor D4 methods [73]. Grimme’s D3 and especially D4 have unprecedented accuracy and
range of applicability to many systems, including TM complexes.

2.4. Density Functional Tight Binding
Semi-empirical DFT combines ab initio (Hartree-Fock theory) calculations with empirical parameters for
the correlation functional, whether from a higher level of theory or experimental parameters, to obtain a
molecule’s energy [74]. Density Functional Tight Binding (DFTB) is one such method, where the parameters
are obtained by calculating the Hamiltonian and orbital overlap out of AO’s [75, 76]. This method originates
from the tight-binding model of bands, describing the electronic structure [77]. The exchange-correlation
functional is then described a Taylor expansion of the KS-DFT total energy around a reference energy density
[78].

Much research has been done in recent decades on DFTB methods, giving rise to the extended Tight-
Binding method (xTB), which was introduced by Grimme et al. The extended refers to parameter availability
to nearly the full set of elements of the periodic table (Z ≤ 86). The theory originates from DFT perturba-
tion expansion (adding successive corrections) of the electron density in fluctuation terms to various orders
similar to the original DFTB model.

This xTB method is designed for calculations on Geometries, (vibrational) Frequencies and Non-covalent
interactions, hence the full family of methods are dubbed GFNn-xTB, with n = 0,1,2 [79]. n refers to different
versions that exist within the xTB family. In this manner, GFN1-xTB is the antecedent of the GFN family
and is in turn based on DFTB3. Like DFTB3 GFN1-xTB uses a Taylor-expansion up until the third term to
approximate the system’s energy, but GFN1-xTB does not depend on atom pair-wise parameterization [79,
80]. Instead, it uses element-specific empirical fitting to enable consistent parameterization of a large part of
the periodic table.
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GFN1-xTB and DFTB3 both use monopole-type, spherically symmetric descriptions of the atom pair-
wise electrostatic interactions, which impairs describing non-covalent interactions. GFN2-xTB was created
to solve this issue by firstly including anisotropic (direction-dependent) second-order density fluctuation ef-
fects via short-range damped interactions of cumulative atomic multipole moments, therefore it includes
electrostatic interactions and exchange-correlation effects with greater accuracy [81]. This method increases
the physical basis for calculating the Hamiltonian. Secondly, improvements stem from the dispersion model
used. GFN1-xTB uses the older D3 dispersion model with Becke-Johnson damping, while GFN2-xTB uses
a modified D4 dispersion model. D4 is modified by taking atomic partial charges from a Mulliken popula-
tion and are solved self-consistently, which allows a large three-body term to be dropped from the dispersion
energy equation [82]. Lastly, D4 does not use any element-pair-specific parameters and corrections, while
D3 does have necessary H-H and halogen bond corrections. Consequently, GFN2-xTB uses only global and
element-specific parameters, which is an improvement compared to its predecessor. GFNn-xTB methods
use a polar continuum (implicit) solvation model in the form of a generalized Born model. Here a molecule
is considered as a continuous region with a dielectric constant ϵi n surrounded by infinite solvent with a di-
electric constant ϵout [83]. Additionally, a nonpolar contribution is added to the solvation energy in the form
of the solvent-accessible surface area (SASA). Lastly, an additional shift is included depending on the cho-
sen reference state of the solution to ultimately reproduce COSMO-RS16 solvation-free energies [81, 84]. In
the GFN family, improvements are still ongoing. GFN0-xTB recently came to live, but only currently exists
as a preliminary, proof-of-principle version. In GFN0 electrostatics are treated classically and only keep QM
contributions to the electronic structure of the first order, leading to speed-ups of factor 2-20 [85].

The GFN family’s main advantage is that almost any chemically interesting species can be computed due
to having parameters for almost all elements of the periodic table (including transition metals). By having all
these parameters, a good balance is found between accuracy and computational efficiency. Furthermore, it
is designed to be able to handle systems of up to a couple of thousand atoms.

2.5. Descriptors
Molecular descriptors represent each structure uniquely. Descriptors are subsequently used to predict exper-
imental catalyst activities via quantitative structure-activity or structure-property relationships (QSAR/QSPRs)
[28]. QSAR/QSPRs are mathematically quantified forms of the molecular structure of catalyst compounds
and as such relate descriptors to the figure of merit, i.e. a quantity that describes a catalyst’s usefulness [86].

Multiple methods exist to correlate descriptors (also called features in ML context) to figures of merit, for
example (multivariate) linear regression or machine learning [25, 87, 88]. Molecular descriptors generally fall
in one of four categories [89]:

• 0D descriptors (atom type, molecular weight, bond types)

• 1D descriptors (counts of atom types, fingerprints, one-hot encoding)

• 2D descriptors (topology and connectivity-based descriptors)

• 3D descriptors (QC descriptors)

If the dimensionality of the descriptors increases, so does the necessary computational time, since higher
dimensionality leads to higher degrees of freedom. Therefore, 0D, 1D and 2D are very useful to screen large
amounts of structures quickly. However, this advantage is offset by several limitations. Firstly, they ignore the
conformational space. Secondly, they are unable to treat chirality, which is central to asymmetric reactions
and thus selectivity. Lastly, they lack mechanistic interpretation [28, 90]. Whilst for large biological systems
these concessions are acceptable, in homogeneous catalysis, differences between isomer energies are minus-
cule enough to necessitate 3D descriptors [28].

Descriptors are then ranked and correlated to the figure of merit. Although this approach cannot guar-
antee that the model includes all the important parameters. One method to solve this is to include as many
descriptors as possible and then rank the best descriptors using selection algorithms or chemical intuition.
Many descriptors exist, however, and all of them describe the chemical space in a slightly different way [91].
An overview of the descriptors used in this research is given below and given a particular category. Note that
to a certain degree, categories are arbitrarily defined. In some descriptor cases, arguments could be made to
move the descriptor to another bin.
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2.5.1. Geometric descriptors
Geometric descriptors describe a structure’s (bond) angles and are independent of any electronic calculation,
instead are solely dependent on Cartesian coordinates.

Bite angle
The bite angle is the angle (denoted by β) between the central metal atom of the catalyst and its two chelating
ligand atoms, as can be seen in Figure 2.4A. In this simplified illustration, purple refers to the metal, the
bidentate phosphine is denoted with orange, the connection between the phosphines are some undefined
atoms and the blue spheres denote rest groups. The bite angle is only valid for bidentate ligands and thus for
bidentate phosphine ligands specifically, their use is widespread, due to their ability to adopt a wide range of
bite angles. The bite angle is a useful parameter to explain observed rates and selectivities [92].

Cone angle
The Tolman cone angle (denoted by θ), from here on simply referred to as the cone angle, is defined as the
apex angle of a cylindrical cone centred at a distance of 2.28 Å and extended to touch the van der Waals radii
of the outermost atoms of the ligand [34, 93].

Donor-metal bond length
The donor-metal bond length is the Euclidean distance between the central metal atom of the catalyst and
the chelating atom(s) of the ligand. For example, in the case of a P-P bidentate ligand, two descriptors would
be calculated, the M −P1 bond length and the M −P2 bond length. Bond length is useful as a descriptor
since the bond length is generally correlated to bond strength. Bond length’s dependence on bond strength
originates from the potential energy terms of the Hamiltonian which are Coulombic, and are consequently
inversely proportional to distance [94]. On the other side, bond-length bond-strength correlation is not a law
but simply an empirical correlation and bond length is influenced by many other factors such as strain, steric
effects, dispersion stabilization, hybridization defects and so on [95]. One or all of these effects can void this
empirical correlation.
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Figure 2.4: Schematic representation of 3 descriptors. Left: Bite angle (β) is the angle between the bidentate chelating phosphorus atoms
and metal centre. Middle: 3D representation of the percent buried volume (%Vbur. Grey is empty space of the buried volume sphere,
blue is how much of the ligand occupies the sphere. Right: The solvent accessible surface area is how much the solvent (dark blue)
can roll over the van der Waals radii of the molecules. Colour code of atoms: light blue = rest groups, purple = metal centre, orange =
phosphorus.

2.5.2. Steric descriptors
Enantioselectivity often comes down to very small energy differences in the order of ±3 kcal/mol [96]. These
energy differences are caused by chiral ligands and their steric hindrance. As such steric descriptors try to
modulate steric hindrance and are key in differentiating between enantioselective and non-enantioselective
ligands.

Buried volume
The per cent buried volume (%Vbur ), from here on referred to simply as buried volume, is a metric for steric
hindrance in TM complexes similar to Tolman’s cone angle [97]. It is the per cent of the total volume of a
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sphere centred around the metal that a ligand occupies, see Figure 2.4B [98, 99]. In this illustration R denotes
the radius of the sphere, the blue part is how much of the ligand occupies the sphere and the grey part is
how much of the sphere is empty. As such, %Vbur determines what percentage of a metal-centred sphere
of the defined radius is occupied by the ligand [91]. The sphere radius and metal-donor distance affect this
parameter but have been shown to correlate highly with cone angles [97]. Though initially developed for
N-heterocyclic carbenes, which could not be described by cone angles, its use is also common in bidentate
phosphine ligands [100]. Computationally, %Vbur is calculated as atoms either being present in the sphere
or adding their respective volume cumulatively. That volume term is then divided by the total volume of the
sphere to obtain the per cent buried volume.

Quadrant and octant buried volume
In asymmetric catalysis, chirality and asymmetry are crucial. Reactions happen on specific sections of the
catalyst to favour one reaction giving rise to an excess of one enantiomer over the other. To this extent, the
quadrant and octant per cent buried volume descriptors were developed. The approach is exactly the same
as for %Vbur , see Figure 2.4B but the sphere is cut twice vertically to obtain quadrants and once horizontally
to obtain octants, see Figure 2.5. These regions can highlight optimal reaction pathways for enantioselectivity
[101].
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z

x

Quadrant Octant

Figure 2.5: Quadrant (left) and octant (right) %Vbur schematic. Curved lines showcase the excluded volumetric parts. Colour code of
atoms: light blue = rest groups, purple = metal centre, orange = phosphorus.

.

SASA
The Solvent-Accessible Surface Area (SASA) is the surface area of a molecule that can be accessed by the
solvent, see Figure 2.4C. In this illustration, the solvent (light blue) "rolls" along the van der Waals surfaces
of the molecules, creating the accessible surface which is drawn with dashed lines. This accessible surface
serves as the metric for steric hindrance.

2.5.3. Electronic descriptors
After approximating the Schrödinger equation, the total energy of the system is known, but there is still a
need to relate this energy in the form of physical descriptors to catalyst activity. Electronic descriptors stem
from the LCAO-molecular orbitals (LCAO-MO) theory. In this model, every AO is a basis set for the MO. From
linearly combining one AO, two MOs are formed: a bonding- and an anti-bonding orbital. This can be seen
in Figure 2.6, where every black horizontal line represents a molecular orbital.

Electrons (black arrows) fill these orbitals in a bottoms-up manner. Bonding orbitals are lower in energy,
as such correspond to the lower three (electron-filled) MOs. The upper three MOs are anti-bonding orbitals
and each anti-bonding orbital corresponds with its respective bonding orbital.

Many electronic descriptors are then calculated from either filled or empty MOs, again see Figure 2.6.

Dispersion
The dispersion descriptor (Pint) is a universal quantitative descriptor of London dispersion interaction po-
tentials [72, 99]. The London dispersion force is a force emerging from attractions between instantaneously
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Figure 2.6: Schematic of 4 electronic descriptors as acquired from the LCAO-MO method. Electron affinity (green), lowest unoccupied
molecular orbital (blue), highest occupied molecular orbital (red), band gap (brown).

induced dipoles on neighbouring atoms, see Figure 2.7 [102]. In this schematic, an instantaneous dipole
moment in the atom gives an unsymmetrical distribution of charge, creating partially charged atoms. Sim-
ilarly, this will affect the neighbouring atom by creating an attractive force on behalf of two (local) charge
differentials. The dispersion on an atom is calculated as the average dispersion interaction energy of an atom
with respect to its van der Waals surface. While London dispersion forces have been ignored by the scientific
community until recently, increasing effects of dispersion are being noticed in organometallic and inorganic
compounds [102, 103]. As such behaviour of such complexes needs to be modelled and often has a defining
structural role. Dispersion is usually calculated as the dispersion on the metal centre but can be calculated
on every atom individually.
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Figure 2.7: Schematic representation of London dispersion forces. A: Unsymmetrical distribution of atoms creates instantaneous dipole
moment across atoms. B: Unsymmetrical distribution of atoms 1 and 2 creates charge distribution across molecules.

Dipole
The molecular dipole is an effect arising from the uneven distribution of the electrons between two atoms in
a molecule, due to different electronegativity values of atoms [104]. Dipole is then calculated as the length of
a vector that represents the distribution of charges over a molecule, see Equation (2.5).

−→µ =∑
i

qi
−→ri (2.5)

In this equation, −→µ is the dipole moment vector, q is the magnitude of charge i , and −→ri is the vector
representing the position of charge i . Convention is that the vector of dipole points from positive to negative.
The larger the difference in electronegativity between atoms, the larger this vector becomes.

HOMO-LUMO gap
The highest occupied molecular orbital (HOMO) is the highest filled orbital in the LCAO-MO theory, whilst
the lowest unoccupied molecular orbital (LUMO) is the lowest empty orbital, see Figure 2.6. In this schematic,
the black arrows represent electrons. In line with the definition, electrons are only filled until the HOMO. The
energy difference between these two is the HOMO-LUMO gap, also known as the band gap. This difference in
energy is imperative for optoelectronic materials since photovoltaic effects originate from exciting electrons
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through this barrier. In TM complexes HOMO-LUMO gap has been used to predict the strength and stability
of the respective complex [105]. The HOMO serves as a potential place where the electron could attack and
the LUMO as the potential place where nucleophiles could attack [106].

HOMOs and LUMOs are paramount in QC methods, since their levels themselves are a parent metric for
many descriptors, due to the influence of Koopmans’ theorem [107, 108].

Ionisation potential & Electron affinity
The ionisation potential (IP), also known as ionisation energy, is the amount of energy required to remove an
electron from the isolated molecule or atom. Quantitatively it can be expressed as follows:

X(g) + energy → X+(g) + e− (2.6)

The electron affinity (EA) is the exact opposite of the IP, instead, it is the amount of energy required to
add an electron to the isolated molecule or atom [109]. It is thus the energy required to excite an electron
to vacuum (infinitely away) from the LUMO, as can be seen in Figure 2.6. Quantitatively it can therefore be
expressed as follows:

X(g) + e− → X−(g) + energy (2.7)

From Koopmans’ theorem, it can be stated that IP and EA are equivalent to the negative of the HOMO
and LUMO, respectively [107]. For (semi-empirical) DFT, this technique is used to simplify calculations by
skipping solving the Hamiltonian for an excited state.

Nucleophilicity & Electrophilicity
A nucleophile is an atom or functional group that has an electron pair available for bonding. It can then
donate this pair to form a new bond either with an electron-poor atom, which is called an electrophile. Nu-
cleophilicity (NP) refers to the ability of a nucleophile to donate electrons, whilst electrophilicity (EP) refers
to the ability of an electrophile to accept electrons [110, 111].

The formula for electrophilicity from DFT is given in Equation (2.8) [112].

( 1
2 ∗LUMO+HOMO)2

2∗ ( 1
2 (LUMO−HOMO)

(2.8)

Nucleofugality & Electron fugality
Nucleofugality (NF) is the ability of a chemical species to depart from the bonding electron pair. On the other
hand, electrofugality (EF) describes the ability of a chemical species to depart and leave behind the bonding
electrons [113, 114].

Electronegativity
Electronegativity is a fundamental measure of the ability of an atom to attract electrons and can be used to
predict the polarity of a bond and the distributions of electrons in a molecule. The equation for electronega-
tivity as defined by Mulliken is given in Equation (2.9) [112, 115].

−1

2
∗ ((LUMO+HOMO) (2.9)
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Hardness & Softness
Lewis acids/bases are species that donate/accept a pair of electrons to form a coordinate bond. The concept
of hardness (η) and softness (σ) originates from the hard and soft acids and bases (HSAB) principle.

According to the HSAB principle, Lewis acids and bases can be divided into hard or soft types [116].

• Hard Lewis acids are characterized by small ionic radii, high positive charge and high-energy LUMOs.

• Soft Lewis acids are characterized by large ionic radii, low positive charge and low-energy LUMOs.

• Hard Lewis bases are characterized by small ionic radii, high electronegativity and high-energy HO-
MOs.

• Soft Lewis bases are characterized by large ionic radii, intermediate electronegativity and low-energy
HOMOs.

While the HSAB principle is qualitative, DFT calculations found a theoretical basis from the chemical
potential to quantify the hardness and softness of a system [117]. The equation for hardness is given in 2.10.

η= IP−EA

2
= LUMO−HOMO

2
(2.10)

Where IP is the ionisation potential and EA is the electron affinity. Note that by utilizing Koopmans’ the-
orem once again, the IP and EA can be translated to the LUMO and HOMO energies.

The softness is simply the reciprocal of the hardness: σ= 1
η

Natural bond orbital
Natural bond orbitals (NBOs) are localized charge orbitals on a specific atom and represent how much of an
atom orbital is part of the bond [118]. A natural population analysis (NPA) is done to obtain NBOs. From the
NPA, AOs are transformed into natural atomic orbitals (NAOs). NAOs list which atoms an NAO is attached to,
the orbital type, the orbital occupancy and the orbital energy. Natural hybrid orbitals (NHOs) are combined
then with NAOs to obtain NBOs. This is done by examining all possible interactions between filled (donor)
Lewis-type NBOs and empty (acceptor) non-Lewis-type NBOs and estimating their importance through 2nd-
order perturbation theory. Finally, a model is obtained where interactions of orbitals are quantified.

Mulliken population analysis
Mulliken populations characterize the electronic charge distribution of a molecule, as well as the bonding,
antibonding or nonbonding character of MOs for pairs of atoms. Mulliken analysed the probability density
of the charge distribution of two normalized AOs, see Equation (2.11).

1 = c2
i j + c2

i k +2ci j ci k S j k (2.11)

Where i j and i k are the respective electrons, ci j is the first AO, ci k is the second AO, and S j k is the overlap
integral of the two AOs.

Here, both electrons contribute a square term, c2
i j and ci k 2, to the electronic charge. The overlap integral

is called the overlap population and is > 0 for a bonding MO, < 0 for an anti-bonding MO and exactly 0 for a
non-bonding MO. For every MO these values can be transformed into matrix form to obtain the population
matrix.

2.5.4. Root mean-square deviation
The Root Mean Square Deviation of atomic positions (RMSD) is a metric to quantify how much geometries
of the same complex differ from each other. RMSD is widely used to compare enzymes [119]. The RMSD
is calculated by the minimum distance between the positions of the same atoms’ Cartesian coordinates, see
Equation (2.12):

RMSD(A,B) =
√√√√ 1

N

N∑
i=1

((Ai x −Bi x )2 + (Ai y −Bi y )2 + (Ai z −Bi z )2) (2.12)

In this equation, A is complex 1, B is complex 2, N is the number of atoms and xyz refers to the Cartesian
coordinates in their respective dimension.
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hRMSD
One variation on the standard RMSD is heavy-atom RMSD (hRMSD), where all atoms except hydrogen are
considered. It has been used in previous literature for comparing TM complexes [79]. Hydrogen atoms "cor-
rupt" the RMSD by having wildly different positions compared to the central atoms. In this way, the chemical
structure (and thus activity) does not differ much, but RMSD values are relatively quite high. Omitting them
can be justified in this manner.

In this thesis specifically, hRMSDs were calculated with a Python script by J.C. Kromann that uses the
Kabsch algorithm to rotate and align complexes and calculate their respective minimum hRMSD [120, 121].
No reordering or reflection methods were included, nor were any molecules ignored.

The script for complex 1 and complex 2 works as follows:

1. Recenters both molecules to the centroid (mean position of all coordinates in the molecule

2. An optimal rotation matrix which minimizes the RMSD, is calculated through the Kabsch algorithm
[121]

3. The second molecule is rotated to the centre on the first molecule coordinates and the true minimal
RMSD is calculated



3
Methods

In this chapter, the methods and workflow are described to calculate descriptors of the TM complexes. In
Section 3.1, supercomputers that were used in this research are showcased and credited. In Section 3.2, the
in-house workflow that generates complexes and calculates descriptors is outlined. In Section 3.3, the com-
plexes and their method of generation are presented.

3.1. High performance computing
For the work in this thesis, three different supercomputers were used for running the in-house workflow,
described in Section 3.2. These high-performance computers (HPCs) were:

• DelftBlue - Technical University Delft’s supercomputer [122]

• Tetralith - National Supercomputer Centre at Linköping University [123]

• Snellius - Dutch National Supercomputer [124]

3.2. OBeLiX
Open Bidentate Ligand eXploration tool (OBeLiX) is the fully Python-based workflow used to generate non-
biased 3-D representations of TM complexes, which as discussed in Chapter 1, is necessary for proper explo-
ration of the chemical space. OBeLiX has been developed in parallel to the research done in this thesis with
as goal automated in silico high-throughput TM catalyst screening. Furthermore, OBeLiX is open-source and
can be found on Github: https://github.com/EPiCs-group/obelix. After generating 3-D TM complexes, the
OBeLiX workflow automatically calculates descriptors on these structures. OBeLiX consists of a combination
of multiple in-house and open-source tools of which the relevant tools and their function will be discussed
below. Note that the module of ChemSpaX, which automatically substitutes (bidentate) ligands in TM com-
plexes, was not used in this research and therefore will not be discussed, but is a core part of the OBeLiX
workflow [125].

3.2.1. MACE
MetAl Complexes Embedding (MACE) is an open-source library for automated screening and discovery of
metal complexes. It is able to discover all possible configurations for square-planar and octahedral TM-based
complexes. MACE utilizes RDKit Uniform Force Field Molecular Mechanics (UFF-MM) to optimize geome-
tries so that 3D structures are generated that are suitable for further computation. MACE as a standalone
package is currently freely available on Github: https://github.com/EPiCs-group/obelix.

MACE carries out an exhaustive conformational search, where the lowest energy conformer is then cho-
sen so that only a single structure retains. However, next to conformers, MACE also creates isomers, which is
done in two ways: 1. By putting the substituents on different parts of the ligand 2. By putting the ligands on
different parts of the metal centre. In an octahedral TM complex, ligands can then be placed either axially or
equatorially leading to many different isomers. However, in a simpler complex, atoms can also be placed in
different places on the ligand itself, creating isomers of the ligand. When placing the ligand subsequently on
the metal centre, isomers of the complex are generated.

17
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3.2.2. GFN family
The GFN (Geometry Frequency Non-covalent) family consist of methods developed by Grimme et al. [79,
126]. In this research, from the GFN family, the GFN-FF (Force Field) and GFN2-xTB methods were used for
geometry optimization [47, 81].

GFN-FF is the non-electronic generic force field-based GFN approach. It is the computationally most
efficient member of the GFN family and is useful for (metallo-) proteins, supramolecular assemblies and
metal-organic frameworks. For the MM calculations, the GFN-FF package version 1.0.1 was used.

xTB is a QC semi-empirical based method that extends the original density functional tight binding model
and is primarily useful for fast calculation for molecular systems (including metals) up to 1000 atoms [79].
GFN2 is the novel approach of this semi-empirical method which uses Grimme’s D4 dispersion model [82].
For the semi-empirical calculations, the GFN2-xTB (Geometry Frequency Non-covalent eXtended Tight Bind-
ing) package version 6.5.1 was used.

For the metal centre atoms, Rh (I) and Ir (III) at their ground state were chosen. All calculations were
performed in the gas phase to create the simplest model with the least interactions possible. No solvent
was present either. However, omitting solvent was a big simplification. For other results, which did include
solvent, see Appendix B.

3.2.3. Density Functional Theory
DFT calculations were performed using Gaussian 16 C.01 suite [127]. In this research, DFT was the "golden"
standard for benchmarking geometries and descriptors. DFT use has been ubiquitous in both the ISE group
and literature, therefore served as a reasonable choice for high-level benchmark [125, 128–134] GD3BJ was
used for dispersion correction [135]. Natural bond order NBO calculations were included to obtain phospho-
rus lone pair NBO descriptors. The basis set of choice was def2-SVPP which contained both the standard
basis set of def2-SVP and an additional set of polarization functions [64]. def2-SVPP was less accurate than
def2-TZVP but was computationally cheaper. Furthermore, the PBE1PBE (in literature also known as PBE0)
hybrid exchange-correlation functional was used [136–139]. PBE0 has been proven in the ISE group to be
adequate for TM complexes and was in good agreement with experimental data [140]. An ultrafine grid was
used for increased accuracy against small additional computational costs. All geometry optimizations and
single-point calculations were done in the gas phase. The combination of this functional and basis set gave
good geometries with modest computational costs for organometallic complexes [141, 142]. A (nigh) per-
fect correlation between Gibbs free energy and electronic energy has been found previously in the ISE group
[140]. As such, Gibbs free energy could be estimated through electronic energy, thus for screening purposes
the Hessian matrix calculations were omitted.

3.2.4. Morfeus
Morfeus (MOleculaR FEatUreS for machine learning) is a tool developed by K. Jorner at AstraZeneca UK in
collaboration with the Aspuru-Guzik, Sigman and Gensch groups [143] for calculating descriptors. It had
been used before to study monodentate phosphorus ligands and calculate descriptors on those complexes
[130]. The research of Gensch et al. served as inspiration for the research on bidentate phosphorus complexes
of this thesis. Morfeus was therefore ingrained in the OBeLiX workflow to calculate steric and electronic
GFN2-xTB descriptors.

Morfeus calculated descriptors through single-point GFN2-xTB calculations and subsequently extracted
descriptors. Some descriptors contained slight adaptations from the definition in Section 4.2.2. One such
descriptor was the SASA. Morfeus calculated the SASA based on the CRC Handbook of Chemistry and Physics
van der Waals radii and atomic positions as well as a modified version of the Shrake and Rupley algorithm
[144, 145]. Another adaptation was regarding the dispersion descriptor. A modified version of dispersion,
which used electron densities instead of an electron density isosurface, was used to save computational costs.
A third adaption to Morfeus originated from the OBeLiX workflow. Regarding the %Vbur, in literature as well
as in the default setting of Morfeus, the radius of the buried volume sphere was 3.5 Å. In OBeLiX, however,
the radius had been increased iteratively to find an optimum value, similar to the approach of Gensch et al.
[130].

3.3. Structure generation & descriptor calculation
As mentioned in Chapter 1, the ISE group cooperated with an industrial partner to research Ir and Rh organometal-
lic complexes. For the research done in this thesis, the industrial partner presented an (experimental) set of
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ligands and substrates to combine with either the Rh or Ir metal centres. These ligands served as the basis for
computational modelling and descriptor calculation.

Actual molecular geometries (.xyz files) of the ligands have not been issued publicly yet, however, will be
able to be found on the OBeLiX Github: https://github.com/EPiCs-group/obelix.

For the research done in this thesis, MACE was used to generate Rh and Ir-based structures from 2D
Simplified Molecular-Input Line-Entry System (SMILES) [146].

Investigation of geometry optimization level
To investigate objective 1, structures needed to be generated. As such, 186 complexes containing only Rh (I)
and the bidentate ligand were generated through MACE. These complexes are hereby referred to as pristine
complexes. As mentioned above, some of the generated pristine complexes were isomers of each other, as
such only 99 complexes were unique structures. In addition, 1 complex wrongly contained monodentate
ligands. Therefore, 98 unique pristine complexes possessed a bidentate ligand. From these 98 complexes, the
majority (88) were P,P bidentate ligands, whilst the rest were P,N bidentate ligands.

The next step in investigating objective 1, was to look at a single descriptor on four levels of geometry
optimization: MACE (UFF MM), GFN-FF, GFN2-xTB and DFT, in order of predicted accuracy. Subsequently,
geometry optimization was executed on MACE complexes for GFN-FF, GFN2-xTB and DFT, as can be seen
in Figure 3.1. Since MACE had already been automatically optimized with UFF MM, the optimization level
is referred to as MACE. DFT was chosen as the benchmark geometry since it possessed the highest accuracy
and highest computational cost.

MACE

GFN-FF

DFT

Lvl 0:

Lvl 1:

Lvl 2:

Lvl 3:

C
t
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l

ff
rt

Ir

GFN2-xTB

Figure 3.1: Illustration of the workflow to generate optimized structures for different levels of theory. The levels refer to the level of theory
of the geometry optimization methods. Higher levels have increased accuracy but a higher computational cost. Pristine complexes
consisting of an Ir metal centre and a bidentate ligand, are generated through MACE. Geometry optimization is subsequently done on
the MACE-generated structures for every level of theory.

Next, descriptors were calculated through the descriptor_calculator.py script of the OBeLiX workflow. This
script utilized Morfeus, which performed xTB single-point calculations to extract descriptors. To test the
results, the HOMO-LUMO gap was used as a preliminary descriptor, since it had been used earlier in the ISE
group [125, 147].

However, extracting descriptors through Morfeus contained one major flaw: all descriptors are extracted
from xTB single-point calculations. For every level theory up until GFN2-xTB this could be permitted since
xTB was considered a higher level of theory. However, for DFT this method was scientifically unsound, due to
DFT being theoretically more accurate in representing structures than xTB. This effect was therefore investi-

https://github.com/EPiCs-group/obelix
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gated by extracting descriptors from single-point DFT calculations on both xTB and DFT-optimized geome-
tries.

In the case of geometric and steric descriptors, it was deduced that comparing those would lead to little
gain. First of all, for these descriptors correlations between different levels of theory were quite consistent.
Second of all, the calculation of angles was independent of the level of theory, i.e. only dependent on geom-
etry. However, for electronic descriptors, this logic did not hold. Especially for the dipole moment and the
HOMO-LUMO gap which had low correlations, a multilevel comparison was deemed appropriate. Ultimately
3 electronic descriptors were correlated against each other for xTB and DFT level descriptors and geometries.

Investigation of structure representation
For objective 2, two sets of complexes were generated via MACE, which were an Ir (III)-based octahedral
(OH) and an Ir (III)-based pristine set that served as model structures for OH complexes. The bidentate
ligands used in the Ir (III) set were identical to the ligands used in the Rh (I) set. The model structure is shown
in Figure 3.2 on the left. In this schematic, the three colours refer to a combination of atoms contained in
the ligands. The bidentate ligands consisted either of the P-P or P-N class and the C groups were the atoms
attached to the chelating ligand. Note that a pristine bidentate complex could have never existed in practice
and only served as a model structure to calculate descriptors on. The OH structure is shown on the right in
Figure 3.2. Note the addition of the hydrides and the acetonitrile.

Ir
Ir

P

P

N P C H R

Figure 3.2: Schematic overview of the complexes used to calculate descriptors on. On the left, the bidentate pristine Iridium complex
in 2D with the circle representing different kinds of ligands is depicted. On the right, the octahedral Iridium complex in 3D is depicted.
Color codes: purple = TM centre, blue = nitrogen, orange = phosphorus, grey = carbon, green = hydrogen, and brown = rest group.

For the pristine set, 217 complexes were generated, of which 111 were isomers of some form. For the
OH set, 435 complexes were generated of which 360 were isomers. Note that the mismatch in the number
of unique complexes (106 vs 75) stemmed from converging issues during MACE. To match the two datasets,
a single isomer of every complex was needed, due to the mismatch of isomers present. As such, the lowest
energy isomer was chosen in both sets. Note, however, that this isomer does not necessarily need to be the
same isomer across both sets.

Subsequently, DFT geometry optimization was done for all unique complexes.
To find correlations between the two sets, the datasets needed to be merged. Note that 1. Some complexes

in one set could have failed during MACE generation but could have been successfully generated in the other
set. 2. Some complexes could have failed in one set during the geometry optimization but could have re-
mained successful in the other set, therefore the sets did not contain the exact same structures. Descriptors
were then calculated through an updated version of the descriptor_calculator.py script of the OBeLiX work-
flow, which extracted both xTB and DFT level descriptors. Again, during xTB single-point calculation some
complexes could have failed in one set but could have ran successfully in the other set. As such, during the
merging of both datasets, some complexes were excluded and ultimately, only 57 complexes, of which 5 P-N
ligands, were left to correlate descriptors with.



4
Results & Discussion

In this chapter, the main results of this thesis are presented and discussed. All descriptors in this chapter
are either made bold or made abbreviated for comprehensibility. In Section 4.1, MACE, GFN-FF, and GFN2-
xTB are correlated to a benchmark level of theory (DFT), for a single electronic descriptor (HOMO-LUMO
gap). In Section 4.2, the same computational methods are correlated to DFT for 22 additional descriptors,
which are subdivided into the following categories: geometric, steric and electronic. In Section 4.3, xTB and
DFT geometries are compared to each other, through hRMSDs. In Section 4.4, geometries obtained from
xTB and DFT geometry optimization are compared to descriptors obtained from xTB and DFT single-point
calculations. In Section 4.5, descriptors obtained from xTB and DFT single-point calculations are correlated
to each other for simplified model structures and octahedral complexes.

4.1. Level of theory: Simple regression analysis
Simple correlation plots for the HOMO-LUMO gap can be seen in Figure 4.1. In this figure, hardly any correla-
tion between MACE (UFF) and DFT geometry-optimized structures is observed (R2 = 0.10 and RMSE = 0.028
a.u.). R2 in this context is determined as the coefficient of determination.

Figure 4.1: HOMO-LUMO gap correlations (R2) and spread (RMSE) for different levels of theory. Scatter plots showcasing the correlation
of MACE versus DFT (left), GFN-FF versus DFT (middle) and GFN2-xTB versus DFT (right).

Correlation is observed to be completely absent for GFN-FF (R2 = 0.01 and RMSE = 0.028 a.u.). The
RMSE indicates that there is a high level of spread in both methods as well. Since both methods use force
field optimization, it is theorized that the results are similar due to force field optimization.

In the case of xTB versus DFT correlation is observed, but is not conclusive by any means (R2 = 0.50
and RMSE = 0.006 a.u.). However, since the spread is significantly smaller, outlier analysis is applicable.
Manual inspection of structures with a high standard deviation from the set did not show consistency among
chemical classes. Some ligands of the complexes with high standard deviation contained large steric hindered
ligands, others very small ligands. Similarly, some ligands contained polar atoms, e.g. oxygen and nitrogen,
while other ligands were completely apolar, e.g. due to benzene rings. Another method of extracting outliers
is the interquartile range (IQR), see Appendix A.2 for a detailed description of the IQR method. Inspecting the
complexes marked as outliers through IQR also did not show any consistency among the chemical classes of
the ligands. Therefore, no discernible trend was found among outlier ligands.

21
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4.2. Correlation matrix of descriptors
The same correlation plots as in the previous section have been done for an additional 22 descriptors, see
Appendix A.1. Descriptors were split into three groups: geometric, steric and electronic, based on a similar
method done by Sigman’s group [130, 131]. The 23 descriptors were subdivided as follows: 4 are geometric:
bite angle, cone angle and Rh-Donor length (from Rh to donor atom 1 and Rh to donor atom 2). 8 are steric:
SASA and 7x buried volume with different radii and centring. 11 are electronic descriptors: dispersion on
Rh and donors, dipole, ionisation potential (IP), electron affinity (EA), electrofugality (EF), nucleofugality
(NF), nucleophilicity (NP), electrophilicity (EP), and HOMO-LUMO gap.

Now with increased dimensionality originating from increased descriptor count, a heatmap is more suit-
able to visualize the correlations, see Figure 4.2. This heatmap will be discussed in the coming sections.
Every value corresponds to a correlation between a descriptor and optimization level, and the lighter the
colour, the better the correlation. Note however, that r 2 here refers to the Pearson correlation coefficient
squared, whereas in Section 4.1, R2 referred to the coefficient of determination. While sometimes r 2 and R2

correspond, the coefficient of determination (R2), and the Pearson correlation coefficient squared, r 2, are not
equal [148, 149].

Figure 4.2: Correlation matrix for all calculated descriptors on MACE, GFN-FF and GFN2-xTB level of theory against DFT. Values repre-
sent Pearson correlation coefficients squared. Lighter boxes signify a higher correlation.
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4.2.1. Geometric descriptors
To begin with, in Figure 4.2, a very low correlation is observed for geometric descriptors calculated on MACE
structures. Rh-Donor max length and Rh-Donor min length, descriptors which were included to signify
bond strength, contain no correlation compared to DFT structures. Similarly, for the bite angle no correlation
was observed either. While there is a certain degree of correlation with the cone angle (r 2 = 0.40), it does not
provide conclusive evidence.

MACE (i.e. UFF MM) is relatively crude in finding geometries on the PES, due to being the lowest level of
theory. Based on these geometric descriptors, the initial impression is that geometries found by MACE are
not representative of the chosen benchmark of DFT. Further analysis in comparing geometries quantitatively
is done in Section 4.3.

On the GFN-FF level structures, geometric descriptors show increased correlation. With the bite angle
descriptor a certain degree of correlation is observed (r 2 = 0.39) and the cone angle shows slightly higher
correlation than its MACE counterpart (r 2 = 0.56), though again not sufficient to be conclusive. Rh-Donor
max length shows very low correlation, however, Rh-Donor min length abruptly shows excellent correla-
tion (r 2 = 0.87). This result is peculiar and warrants extra inspection. Upon inspection, the distribution
of Rhodium-Donor min length data points, see Appendix A.1, shows 10 big outliers clustered together at
smaller bond lengths. The other data points are clustered 0.3 Å higher. Since this trend is both present on
DFT and GFN-FF levels, the trendline goes through the middle of both clusters. The correlation of Rhodium-
Donor min length therefore ends up being quite high. After the removal of the outliers, clusters are reduced
in size and no correlation is present anymore (r 2 = 0.27).

Closer inspection of the outlier complexes on the GFN-FF level shows that all outliers in the smaller cluster
contain P-N bidentate ligands. In this specific case, the minimum donor thus refers to a nitrogen atom, which
possesses a smaller shell radius, hence the bond length can be smaller.

Inspecting the Rhodium-Donor min length descriptor for MACE structures interestingly shows no clus-
tering, see Appendix A.1. In the case of MACE structures, the data distribution is much more evenly spread
than with GFN-FF and therefore there are no clusters to be considered.

Two of the outlier complexes, L184 and L127, form a "tridentate" complex with a carbon atom being close
enough to the metal centre to signify a bond, 2.11 & 2.08 Å, respectively. L184 connects to a carbon in an
ether group and L127 connects to a carbon in a phenyl group. Lastly, two other complexes, L81 and L73 form
a "quadridentate" complex with both having two hydrogen atoms close to the metal centre (1.77, 1.78; 1.80,
1.79 Å). L81 and L73 have the highest distance to the metal centre of the cluster of P-N bidentate complexes
(0.02 Åhigher), which could be attributed to having formed this "quadridentate" complex.

In the case of GFN2-xTB structures, correlations of geometric descriptors are much higher than in the
previous two methods. Bite and cone angle show enough correlation to assert that they are comparable to
DFT structures. Scatterplots of bite and cone angle on xTB level versus DFT, which showcase the distribution
of the data, can again be found in Appendix A.1. For the descriptor Rh-Donor max length correlation is
observed to be low, similar to the other two levels of theory. It can be discerned that Rh-Donor max length
is very sensitive to different geometries and therefore contains no correlation. Rh-Donor min length shows
good correlation, same as with MACE and GFN-FF structures. Further inspection, shows that two clusters are
formed once more, with the smaller cluster containing a nitrogen atom as the donor min.

4.2.2. Steric descriptors
Correlation for SASA is excellent for all levels of theory (r 2 ≥ 0.99). It is known that the SASA depends solely
on the size of the system, i.e. the number of electrons, and not on the atomic positions [150]. As such, values
across different optimization levels should correlate well, which is validated by this result. However, with
correlations being consistently close to 1, the question should be raised if the SASA is suitable as a descriptor
for novel catalyst design. SASA will always have very good correlations and therefore it does not quantify the
steric hindrance of the system, which is the primary objective of steric descriptors.

In the case of MACE structures, the correlation of %Vbur Rh is observed to be relatively low up until 5 Å.
As can be discerned from Figure 4.2, for increasing radii of %Vbur correlation increases: r 2 = 0.37 for %Vbur

on 3.5 Å, r 2 = 0.43 on 4 Å, r 2 = 0.56 on 5 Å, r 2 = 0.78 on 6 Å, and r 2 = 0.96 on 7 Å. Increasing the radius of the
sphere by definition means that the sphere encompasses more of the complex. As such, if the radius goes to
infinity the correlation would go to 1, since all atoms are found in the sphere. Logically, at 7 Å most of the
complex is included in the sphere, therefore creating a good correlation.

One adaptation on the standard model of percent buried volume was to calculate the %Vbur centred on
either donor atom instead of the metal centre, again with 3.5 Å. Correlations of %Vbur on the donor atoms
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are found to be quite good (r 2 = 0.80 & 0.86), contrary to %Vbur on the metal centre with 3.5 Å (r 2 = 0.37). It
is theorized that this is due to the centring of the sphere on the phosphorus or nitrogen atoms. In that case,
the sphere does not need to be as large to fully encompass all molecules, because in the pristine model, the
ligand is exactly in the middle of the complex, not the metal centre.

For GFN-FF level descriptors, a trend across correlations is observed, similar to MACE level descriptors.
With larger radii of %Vbur , correlations increase. However, the lowest radius (3.5 Å) of GFN-FF level %Vbur

shows better correlation than MACE (r 2 = 0.68 versus r 2 = 0.37, respectively). For donor-centred %Vbur cor-
relation is about equal, likely due to the reasons mentioned above. However, it is sensible to say that GFN-FF
seems to describe steric hindrances better than MACE.

xTB is better than the previous two levels by quite a large margin. All correlations are quite good (r 2 ≥ 0.9).
A trend across correlations with increasing radii of %Vbur is present again, reinforcing the previously stated
theory. At 7 Å xTB is almost as good as DFT in describing buried volume (r 2 = 0.99). It is assumed that this
very high correlation is due to the previously stated theory as well as the fact that xTB structures are similar
to DFT ones.

Correlations of xTB-level donor atom centred %Vbur (r 2 = 0.91 & 0.95, for max and min respectively) are
better than their MACE (r 2 = 0.8 & 0.86) and GFN-FF (r 2 = 0.77 & 0.85 counterparts. One possible explana-
tion for higher xTB correlations is that xTB geometries are qualitatively more similar to DFT geometries than
their respective MACE and GFN-FF counterparts. Geometry comparison will be discussed more in-depth in
Section 4.3.

4.2.3. Electronic descriptors
Correlation for dispersion Rh is found to be quite good (r 2 = 0.7) for MACE-level structures. Correlations
of dispersion Donor max and dispersion Donor min are observed to be completely absent, however. The
primary reason for the absence of correlation is due to 8 data points/complexes having a value of 0 at either
MACE or DFT level. Filtering out these data points gives marginally better correlations for dispersion Donor
max and dispersion Donor min (r 2 = 0.21 & r 2 = 0.18, respectively), but these correlations are far too low to
be conclusive.

In the case of GFN-FF level structures results are similar to MACE level structures. The correlation of
dispersion on Rh is found to be quite good, but no correlation is found in the case of dispersion Donor max
and Dispersion Donor min. Once more, outliers with a value of 0 decrease the correlation to being almost
completely absent. Even after filtering these values out, no significant correlations are observed.

In the case of xTB level structures, the correlation for dispersion Rh is found to be excellent. Correlation
for dispersion Donor Max and dispersion Donor min is once again low. By filtering the 0 points out, the
correlation increases again for both dispersion Donor max and dispersion Donor min (r 2 = 0.49 & r 2 = 0.52,
respectively). In line with expectations, correlation is best for dispersion on xTB-level structures.

The dipole moment shows a poor correlation for both MACE and GFN-FF. For xTB level structures corre-
lation is present. By inspecting the scatter plots, trends are discernible, see Appendix A.1, but there is high
variance in the data. It is theorized that this is due to the level of theory used to calculate descriptors, which
is discussed more in detail in section 4.4.

For the HOMO-LUMO gap results and discussion, see the previous section, Section 4.1.
The descriptors electrophilicity (EP), nucleophilicity (NP), electrofugality (EF) and nucleofugality (NF)

are all calculated directly from the ionisation potential (IP) and the electron affinity (EA). Note that IP and
EA themselves are dependent on the HOMO and the LUMO levels, due to Koopmans’ theorem. These 6
descriptors are very codependent on each other. To showcase this interdependence, the correlations between
descriptors calculated on DFT structures are shown in Figure A.2. In that figure, correlations are calculated
between descriptors and shown in a codependence matrix.

As can be seen in Figure 4.2, nucleophilicity and ionisation potential does not follow the same trend as
the other 4 descriptors. In Morfeus’ source code, NP is calculated as the negative of the IP, therefore IP and
NP contain the exact same correlation. The other 3 descriptors are both dependent on the EA as well as the
IP.

The correlation of IP in MACE structures is mediocre and by virtue of it, so is the correlation of NP. Surpris-
ingly, for EA, EF, NF, and EP an increased correlation is found, perhaps due to the EA dependency term. For
GFN-FF structures correlation of all 6 electronic descriptors is slightly lower. On xTB level structures, correla-
tions for all 6 electronic descriptors are excellent (r 2 ≥ 0.9), alluding to the fact that xTB describes electronic
structure better than MACE and GFN-FF.

Interestingly, IP correlation is the lowest for all 3 levels, while NF correlation is among the highest. It is
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assumed that the discrepancy in the correlation of EA, EF, NF and EP is simply due to standard deviation.
From statistics, it follows that if two variables are strongly positively correlated, the resulting standard devi-
ation will be larger than simply the product of both standard deviations. Both variables tend to vary in the
same direction, which increases the variability of the product. Therefore, higher values of EF compared to IP
are theorized to be simply statistical variations. It should be noted that the magnitude of the variation is not
considerable and that a strong correlation among all the aforementioned electronic descriptors exists at the
xTB level.

Filtration methods
Lastly, the IQR method has also been applied to this dataset to improve correlation, however, the correlations
did not change in a meaningful manner. Descriptors with low correlation continued to have low correlation
and descriptors with good correlations continued to have good correlation. Though this method has been
used successfully before on a previous dataset, see Figure B.1, it showcases that data filtration methods are
not always applicable, but instead are system specific. This result highlights the pitfalls of data massaging.
Filtration methods should be applied to data only if need be. Next to that, if filtration methods are applied,
then it is crucial to pick an appropriate filtration technique for the dataset.

4.3. hRSMD
One problem with the previous approach of comparing levels of theory is that all descriptors are calculated
on GFN2-xTB level, regardless of the level of geometry optimization. RMSD has been used before to measure
structures between different levels of theory [47, 79, 151]. In literature, it has been accepted that hRMSD
values < 0.6 Å signify that structures are more or less equal [152].

Figure 4.3: hRMSDs (versus DFT) of all GFN2-xTB complexes. Bars dyed black are complexes classified as outliers by the IQR filtering
method. Std refers to the standard deviation of the set.

As can be seen in Figure 4.3, the mean hRMSD is quite low (0.597±0.380 Å), thus xTB geometry optimiza-
tion is qualitatively quite good compared to DFT. Furthermore, since the mean is lower than 0.6 Å, on average
xTB geometry-optimized structures more or less coincide with DFT geometry-optimized structures. Similar
hRMSD figures of MACE and GFN-FF geometries versus DFT geometries have also been generated and can
be found in Figure A.3. The mean hRMSD of xTB level structures is 0.4 Å lower than MACE (0.884± 0.433
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Å) and GFN-FF (0.925±0.655 Å). The spread of the xTB dataset is also lower than both MACE and GFN-FF,
suggesting that the xTB level of theory is not only better on average but is also the most consistent method
of the three geometry optimization methods considered in this thesis. Interestingly, the mean of the MACE
dataset is slightly lower than the mean of the GFN-FF dataset (0.884 versus 0.925), alluding to GFN-FF being
the worst method for geometry optimization. Possibly this is due to TM elements not being quite as well
parameterized as is the case with UFF. The spread of the MACE dataset is also lower than the GFN-FF dataset
(0.433 versus 0.655), making GFN-FF also the least consistent method in finding good geometries.

Outlier hRMSDs are denoted in black. Outlier detection was done based on the IQR method, see Ap-
pendix A.5. Subsequently, outlier structures were visualized and compared using structure overlay plots, see
Figure 4.4. Inspecting the outlier structures does not show similarities among ligands. Most complexes con-
tain a single phenyl group and are at least in some way polar, however, this is the case with most ligands in
the dataset, due to their steric nature.

Figure 4.4: Structure overlay plot of all complexes classified as outliers by IQR method. GFN2-xTB geometry optimized structure is
overlaid on DFT geometry optimized structure. xTB atoms are denoted in silver, whilst DFT atoms are denoted in green. Rhodium
(purple), phosphorus (orange), nitrogen (blue), and oxygen (red) are the same colour for both levels.

L98 has the highest hRMSD by quite a substantial margin, as seen in Figure 4.3 as the first bar from the
right. The cause of the inflated hRMSD can be attributed to the fact that the xTB structure forms a haptic
binding site between Rh and a phenyl group which is bound to the nitrogen. DFT on the other hand does not
form this haptic binding site, as is confirmed by the structure of L98 which can be seen in Figure 4.4 on the
bottom left. All DFT atoms, even the Rh centre, are in a significantly different Cartesian position than their
xTB counterparts. Interestingly, this formation of a haptic binding site also occurs for L172, but is present
on both levels of theory, as such hRMSD is much lower. It can be inferred, however, that the creation of
haptic binding sites, therefore folding the ligand over, creates larger hRMSDs. This effect would originate
from a larger degree of freedom of the ligands in pristine complexes, creating much more possibilities for
local minima on the PES. It is then possible that DFT finds a lower local minimum than xTB.
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4.4. Multiple levels of theory comparison
For the comparison between descriptors on multiple levels of theory, single-point xTB and DFT calculations
were done on both xTB and DFT optimized structures leading to 4 combinations:

• Structures generated from xTB geometry optimization and descriptors obtained from xTB single-point
calculations

• Structures generated from xTB geometry optimization and descriptors obtained from DFT single-point
calculations

• Structures generated from DFT geometry optimization and descriptors obtained from xTB single-point
calculations

• Structures generated from DFT geometry optimization and descriptors obtained from DFT single-point
calculations

In Figure 4.5, the first term (e.g. xTB) refers to the level of geometry optimization, while the second term
(e.g. DFT) refers to the level of single-point calculation in which the descriptors are calculated. For exam-
ple, the combination of xTB-DFT would refer to DFT single-point calculations on DFT geometry-optimized
structures.
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Figure 4.5: Descriptors calculated on xTB & DFT level for three electronic descriptors: electrophilicity, HOMO-LUMO gap, and dipole
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HOMO-LUMO gap
The most interesting investigation for objective 1, is to compare all geometry optimizations (marked with
red labels) and single-point descriptor calculation (marked with blue labels) combinations to the benchmark
level of DFT-DFT. As can be seen in Figure 4.5 on the top left, the correlation of the HOMO-LUMO gap exists
for xTB-xTB versus DFT-DFT (r 2 = 0.56) but is very not significant. This is in line with expectations since xTB-
xTB has the least overlap with the combination of DFT-DFT due to having neither geometry optimization nor
single-point calculations on the same level of theory. In the case of xTB-DFT versus DFT-DFT, the correlation
is substantially better (r 2 = 0.73). As seen from Section 4.3, xTB structures are similar to DFT structures
for most complexes. It is expected that doing single-point calculations for descriptors would lead to similar
values as well. In the case of DFT-xTB versus DFT-DFT, the correlation is similar (r 2 = 0.75), showcasing that
an xTB single-point calculation is quite decent at calculating the HOMO-LUMO gap.

Figure 4.6: Structure overlay plot of L138_SP4. xTB atoms are denoted in silver, whilst DFT atoms are denoted in green. Rhodium
(purple), phosphorus (orange), nitrogen (blue), and oxygen (red) are the same colour for both levels.

In the case of xTB-xTB versus DFT-xTB, a low correlation (r 2 = 0.52) is found, showcasing that xTB single-
point calculations are substantially dependent on the geometry, contrary to DFT single-point calculations.
For xtB-xTB versus xTB-DFT, a good correlation (r 2 = 0.76) is observed, which can possibly be attributed to
the fact that DFT single-point calculations are more accurate, regardless of structure. In the case of xTB-DFT
versus DFT-xTB, the lowest correlation is found (r 2 = 0.47), which can be attributed to the fact that neither
calculation is done on the same level. Assuming there is an error margin while comparing levels, this would
propagate most into DFT-xTB and xTB-DFT.

An in-depth inspection of the data shows one large outlier, L138 on both xTB and DFT levels. This
anomaly can be explained since L138 has two oxygen atoms on the edges of the ligand, see Figure 4.6. These
oxygen atoms have a lone pair and can coordinate to the metal centre, creating a square planar structure,
which has different geometry and electronic structure. Removing this ligand from the dataset does not sub-
stantially alter the correlation, however.

Electrophilicity
Electrophilicity is inherently linked to the HOMO-LUMO gap by being dependent on the HOMO and the
LUMO level. As can be seen in Figure 4.5 on the top right, correlation for electrophilicity is absent for xTB-
xTB versus DFT-DFT (r 2 = 0.06). In the case of DFT-xTB versus DFT-DFT, the correlation is equally bad (r 2 =
0.05). For xTB-DFT versus DFT-DFT however, the correlation is excellent (r 2 = 0.99). This can be attributed
to the fact that both combinations utilize single-point DFT calculations to extract descriptors. Even if the
level of geometry optimization is slightly different, doing the same DFT single-point calculations gives very
similar results. This result is also validated by xTB single-point calculations. In the case of xTB single-point
calculation, xTB-xTB correlates excellently with DFT-xTB (r 2 = 0.94). As such, it is more important to have
the same level of theory for descriptor extraction than it is for geometry optimization. This is confirmed by
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xTB-DFT versus DFT-xTB and xTB-xTB versus xTB-DFT ((r 2 = 0.05 & r 2 = 0.06) where correlation are absent
for both.

Accordingly, it can be discerned that if the single-point calculations’ level of theory differs, the elec-
trophilicity values will be dissimilar, even if their geometries are identical.

Dipole
As can be seen in Figure 4.5 on the bottom left, dipole moment correlation supports the findings of 4.4. Cor-
relations are absent for combinations where the level of theory for single-point calculations differ. Only
xTB-DFT versus DFT-DFT contains great correlation (r 2 = 0.90), again due to both doing DFT single-point
calculations to extract descriptors.

In essence, this means single-point calculations are not comparable across the two levels.

4.5. Molecular geometry comparison
In Figure 4.7, a scatter plot is shown for the correlation between all octahedral complex and pristine complex
descriptors.

4.5.1. Geometric xTB descriptors
Starting on the left with quadrant and octant %Vbur, no correlation is found between descriptors. This can be
attributed to the fact that steric hindrance does not apply in the pristine model. Ligands have unrestricted
movement, therefore it is illogical to divide the %Vbur into sections.

Figure 4.7: Scatter plot of the Pearson correlation coefficients of octahedral- versus pristine complex descriptors. Both xTB and DFT
descriptors are included. Every point is a correlation of 57 complexes.

The bite angle does show some correlation (r 2 = 0.62), although it is lower than initially anticipated. One
explanation for the lower correlation could perhaps be due electronic effects of the hydrides and ACN. In this
scenario, the hydrides and ACN repulse the phosphorus/nitrogen and thus lower the bite angle. This is sup-
ported further by the means of both sets, which are 94.95° and 92.57° for the pristine and OH set, respectively.
Another contribution could be the steric hindrance introduced in OH complexes due to the ACN substrate.
In pristine complexes, the ligand can coordinate to the metal centre and fold itself, lowering the bite angle.



4.5. Molecular geometry comparison 30

Correlation of the cone angle is surprisingly completely absent. The cone angle is theoretically only de-
pendent on the bidentate ligand, so at least some correlation was initially expected. Further inspection of the
data shows that cone angle values of the pristine set are often very high (> 270°). The mean of the pristine
set is also much higher than the mean of the OH set, 291° versus 233°, respectively. The reason for this dis-
crepancy is the lack of steric hindrance in the pristine complexes, which allows ligands to fold over and move
towards the metal centre, even without forming bonds. The cone angle is defined as the cone towards the van
der Waals radii of the last atoms of the ligand, see Section 4.2.1. As such, if the ligand folds over then the cone
angle will be much larger than its non-folded counterpart. Cone angle is therefore not a suitable descriptor
for pristine complexes.

The correlation between Ir-Donor min length exhibits an acceptable degree of correlation, which is sig-
nificantly superior to correlations observed between Ir-Donor max length. This discrepancy is attributed to
the considerably smaller bond length of nitrogen atoms in comparison to phosphorus atoms. As 10% of the
data constitutes nitrogen, the resultant distribution is clustered. While a regression line can be drawn through
the centre of the two clusters, indicating an acceptable correlation, the resulting correlation is deceptive.

4.5.2. Steric xTB descriptors
In buried volume Donor min and buried volume Donor max good correlation is observed (r 2 = 0.73 & 0.71,
respectively), which can be attributed to the fact that most of the atoms in the ligand are being included in
the circle sphere, similarly to Section 4.2.2, even though the OH set now additionally contains the hydrides
and ACN ligands.

The descriptors of buried volume Ir follow the same trend as buried volume Rh in Section 4.2. The higher
the radius of the buried volume sphere, the higher the correlation. Again, this is due to a bigger sphere en-
compassing all the atoms of the complex. The default value of 3.5 Å shows no correlation, however.

The dispersion on Rh exhibits some correlation (r 2 = 0.44) however with dispersion on either donor min
or donor max, correlation is absent. For the metal centre, Pi nt in a pristine complex is only the interaction
with the bidentate ligand. For an OH complex, interactions of the hydrides and ACN are added. Although
these interactions are constant for every ligand, this dissimilarity could explain the lower correlation, by virtue
of geometric variations. For the donor atoms, the first shell atoms to the donor atom consist again of the
metal, but also a lot of distinct classes (C H2,O,C −O,C5H6,etc. with high variation in polarity between them.
These different groups change the geometry significantly as well, which can theoretically change the Pi nt by
large amounts. As such, a correlation on dispersion is absent for the donor atoms.

SASA exhibits very good correlation (r 2 = 0.97), similar to Section 4.2. Again, it is generally known that
SASA scales with the number of electrons in the system [150]. The amount of electrons scales linearly in
both the pristine and the OH complexes since the only difference is the constant electrons obtained from the
hydrides and ACN.

4.5.3. Electronic xTB descriptors
Dipole xTB, as determined by the dipole vector in Morfeus, contains no correlation. The dipole moment is
a measure of a molecule’s polarity, and it is hypothesized that the dipole values diverge due to the higher
polarity of the OH complexes. This hypothesis is supported by the observation that, on average, the dipole
xTB of OH complexes is twice as large as their pristine counterparts (3.04 versus 1.54 for OH and pristine,
respectively).

For all electronic HOMO/LUMO dependant xTB descriptors (EA, IP, NF, NP, EF, EP) good correlation is
observed (r 2 ≥ 0.7), similar to in Section 4.2. IP and NP once again exhibit the lowest correlation (r 2 = 0.71),
while for EP the highest correlation is found (r 2 = 0.91). This is in line with the hypothesis presented in
Section 4.2.3, where differences in correlation are solely due to statistical deviations.

Correlation of HOMO-LUMO gap xTB is completely absent. Initially, it was theorized that the method of
finding MO orbitals might not be exact enough. In other words, a higher level of theory single-point calcu-
lation would be needed to accurately determine the HOMO and LUMO levels. However, the correlation of
HOMO-LUMO gap DFT is also completely absent. In addition, the descriptors HOMO and LUMO also show
no correlation. This finding is interesting, since HOMO-LUMO gap has been used in previous studies as a
useful electronic descriptor [125]. In an online database of descriptors, the tmQM database, HOMO-LUMO
gap has been calculated on a higher accuracy DFT (TPSSh-D3BJ/def2-SVP). In that research, Balcells and
Skjelstad compared HOMO-LUMO gap to other electronic descriptors for 86k TM complexes [153]. A low
correlation was found between electronic properties. As such, in general, electronic descriptors, and espe-
cially HOMO and LUMO levels are very sensitive to geometry changes. Nonetheless, a plethora of reasons is
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possible why HOMO and LUMOs do not correlate on pristine versus OH complexes.

4.5.4. Electronic DFT descriptors
Correlation on dipole moment DFTis completely absent, similar to dipole moment xTB. Means here are very
dissimilar, 30.12 and 6.22D for the pristine and OH sets, respectively. In the pristine set, values range from
−10 to 60 Debye, whilst for the OH sets values are within 0 and 13 Debye. The pristine complexes are models
and thus very chemically unstable, which could lead to very volatile dipole moment values. These values will
then not correspond with the much more stable OH complexes.

Dispersion DFT exhibits extremely good correlation (R2 = 0.99). Dispersion energy from DFT refers to the
length of the vector of dispersion on the whole system, contrary to Di pser si onxT B . This value is thus de-
pendent on the size of the system. Adding extra ligands to the metal centres in the form of ACN and hydrides
changes the size of the system with a constant value. Thus it is logical that the energies will correspond.

NBO charge Donor min exhibits strong correlation (r 2 = 0.83), whereas for NBO charge Ir and NBO
charge Donor min low correlations are found. The observed strong correlation of the minimum donor is
attributed to the formation of two clusters containing either N or P donor atoms, which distorts the corre-
lation coefficient. By excluding the complexes with a nitrogen minimum donor, the correlation becomes
non-existent and similar to the correlation between the metal centre and the maximum donor.

Correlation for Mulliken charge Donor min is observed to be good (R2 = 0.76), but correlation for Mul-
liken charge Ir and Mulliken charge Donor max is absent. Once again, this is due to the same reason as
mentioned above. Clusters are formed and skew the correlation coefficient. Clusters themselves contain no
correlation.

For the descriptors hardness, softness, electronegativity, and electrophilicity DFT no correlation is ob-
served. The lack of correlation can be attributed to the fact that HOMO and LUMO levels themselves do not
show a correlation either. The above descriptors are again all fully dependent on the HOMO and the LUMO
level, whether linearly or quadratically, due to Koopmans’ theorem. Since HOMO and LUMO levels do not
correlate, correlations remains absent for these descriptors as well.
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Conclusion & outlook

5.1. Conclusion
The aim of this research was to compare possible simplification methods for in silico homogeneous TM-
based catalyst screening workflow.

Objective 1 was to compare geometries and descriptors of 3 lower levels of theory versus DFT. The 3 levels
of theory considered were: MACE (UFF-MM), GFN-FF, and GFN2-xTB. Geometry optimizations have been
done, for each level of theory, on a set of chemically relevant pristine rhodium complexes. On these com-
plexes, geometric, steric and electronic descriptors have been extracted from xTB single-point calculations.
In general, descriptors from MACE and GFN-FF optimized structures lacked correlation versus DFT descrip-
tors, except for SASA and high radii %Vbur. It was concluded that a good correlation of SASA originated
because of dependence system size and good correlation of %Vbur due to all atoms being found in larger
spheres. However, most descriptors obtained from xTB-optimized structures correlated very well with their
DFT counterpart. Possibly this was due to descriptors being extracted from xTB single-point calculations.

As such, to further investigate objective 1, hRMSDs were computed for the same set of complexes for
each level of theory against DFT. By using hRMSD, purely the geometries of the structures are being matched
and possible bias originating from single-point xTB calculations is omitted. The hRMSDs mean and stan-
dard deviation of the xTB set were much lower than the mean and standard deviation of both the MACE and
the GFN-FF set. Outlier inspection of the xTB dataset via the IQR method showed that some ligands formed
bonds with the metal centre, therefore creating a polydentate ligand. These ligands, however, do not corre-
spond with realistic structures. By considering the small mean value and unrealistic outlier structures, it can
be concluded that xTB geometry optimization is adequate for obtaining structures with comparable levels of
precision to DFT geometry-optimized structures.

To again omit possible bias originating from single-point xTB calculation, additional DFT single-point
calculations were done for both xTB and DFT geometry-optimized structures. From these DFT single-point
calculations, 3 electronic descriptors were extracted and correlated to their xTB counterpart for both xTB and
DFT geometries. From these results, it was deduced that xTB single-point descriptors do not correlate well
with DFT descriptors, even when considering the exact same geometries. On the other hand, DFT single-
point descriptors do correlate well with xTB and DFT geometries. For objective 1 it can be concluded that
xTB geometry optimization is adequate in comparison to DFT geometry optimization, xTB single-point level
descriptors are not comparable to DFT single-point descriptors however. Thus, the workflow ideally should
be:

1. Generate structures with MACE

2. Optimize structures with GFN2-xTB geometry optimization

3. Extract descriptors with single-point DFT calculation

Objective 2 of this research was to simplify the digitally represented structures. For this reason, two sets of
complexes were generated. The first set contained realistic octahedral iridium bidentate complexes based on
precatalyst structure. The second set contained a simplified version of the octahedral set, consisting of just

32
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the iridium metal centre and the bidentate ligands, which were named pristine complexes. These pristine
complexes served as the model structure for the octahedral complexes, which contained additional acetoni-
trile and hydrides bonded to the metal centre. DFT geometry optimization was done on both sets of com-
plexes, and both xTB level descriptors and DFT level descriptors were extracted for both sets. Subsequently,
the descriptors were subjected to intercorrelation analysis. In most cases, correlations were not observed,
which could be attributed to the descriptor not being suited for ligands capable of deforming towards the
metal centre. In the case of high %Vbur radii and SASA correlations were excellent, similar to the results ob-
tained from the rhodium set. Electronic descriptors that depend on HOMO/LUMO level, extracted from xTB
single-point calculations, generally exhibited strong correlations as well. However, it should be noted that
these correlations do not extend to DFT descriptors, as per the previous paragraph. High correlations were
also observed for descriptors centred on the min donor, however, upon inspection these high correlations
were observed to be misleading. The presence of two distinct bidentate ligand classes in the dataset, namely
P-P and P-N, formed two separate clusters. Although a trendline through both clusters yielded good correla-
tions, no correlations were present within the clusters.

This finding, however, raises the question of the applicability of doing regression methods on a set of
chemically dissimilar complexes, at least for atom-centred atoms. Instead, clustering methods might be more
suitable to describe different classes.
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5.2. Outlook
From the research in this thesis, a concrete conclusion can be drawn: Do xTB geometry optimization and
get descriptors from single-point DFT calculations. This change can be implemented in the workflow of
OBeLiX, see Figure 5.1, to obtain faster screening with similar accuracy.
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Figure 5.1: Possible improvement to the current workflow of OBeLiX

Next to that implementation, several other possible paths of research can be envisioned. In the dataset
obtained from the pharmaceutical partner, approximately 40% of the complexes possessed ligands contain-
ing ferrocenes. Ferrocenes are not able to be accurately generated from 2D SMILES notation, as such cannot
be automated. However, ferrocenes are a key part of the homogeneous catalysis field, and the dataset used
in this research is thus not truly representative of the TM catalysts used experimentally. As such, it should be
considered to use the OBeLiX workflow to calculate descriptors for the whole dataset, including (hand-made
and DFT optimized) ferrocenes.

It is known that good ligands on a complex have similar descriptors to each other. By varying the metal
centre, it can be investigated if descriptors remain similar even across different metal centres, which could
potentially lead to novel catalyst structures. Further research on the transferability of descriptors can thus
be done by changing the TM centre and running the OBeLiX workflow. Whether the metal centre needs to
be changed by elements in the same group (vertical) or series (horizontal) on the periodic table, e.g. Ir → Rh
or Ir → Mn, is something that needs to be validated. This undoubtedly needs to be preceded by obtaining
extensive (experimental) data on the stable pre-catalyst structure, so that the multiplicity and oxidation state
of the complex is known.

For future comparison of descriptors, it should be carefully evaluated if regression models are applicable.
As mentioned in Section 5.1, chemically dissimilar complexes show clusters for descriptors on atoms which
skew the correlation coefficient. It might be better to use other methods to handle these clusters better, e.g.
logistic regression, dimensionality reduction techniques followed by clustering descriptors, or deep learning.
Another possible approach to keep using regression methods is modifying descriptors to average out over
multiple atoms, which would create a continuous distribution of data. However, if one applies this method,
valuable chemical insight gets lost, since in chemistry interesting findings lie within the outliers. Another ad-
ditional approach is to calculate descriptors on structures of different geometry optimization levels, exactly
as has been done in this research, but followed by principal component analysis to reduce the dimensionality
of all the descriptors. Subsequently, by plotting the first two or three PCs in a scatter plot, then colour code/-
mark the level of theory and the structures, both clustering and overall differences in the descriptor data can
be found.

In general, since the field of homogeneous in silico catalyst design is quite new, benchmarking studies
are mandatory to advance the field. The goal of benchmarking studies is to identify the most accurate and
efficient methods for predicting new catalysts. Using a lower level of theory can speed up calculations by
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dozens of times. If the same accuracy is kept, this can lower the amount of resources used a great deal.
Benchmarking needs to be done on DFT programs, DFT basis sets and DFT methods (functionals). For

programs, the in-this-research-used Gaussian needs to be compared to other DFT programs such as Turbo-
Mole, ORCA or VASP. Gaussian is the most well-known and is traditionally used the most, but newer DFT
programs provide options for newer basis sets (TubroMole), use plane-wave basis sets (VASP), or are simply
free to use (ORCA). DFT basis sets provide the basis for orbitals and the electronic structure. Generally, using
larger basis sets increases accuracy, but comes with an increased computational cost. Having said that, the
list of basis sets is enormous, in which some are atom-based and some are molecule-based, and others are
combinations of the two. Then polarization and diffusion functions are sometimes added, increasing the list.
To determine whether the use of widely used basis sets, such as STO-3G or cc-pVDZ, or the exploration of
the effectiveness of other basis sets developed by Aldrich et al. (Def2SVP, Def2TZVP or QZVP), could lead to
improved results, benchmarking studies are required. Lastly, DFT functionals can be varied to be either pure
(combination of exchange + correlation functionals) or hybrid. It can be investigated to use simplified pure
functionals, such as GGA (TPSS) or LDA, and comparing energies or descriptors. These calculations will cost
much less than a PBE0 calculation. It is also possible to consider other prevalent hybrid functionals, such as
B3LYP or MO6-L, but theoretical considerations need to be made since no best functional exists and they are
all system specific.

Benchmarking studies also extend towards semi-empirical methods. Possible options to try, include but
are not limited to: GFN0-xTB, the most contemporary GFN method, MOPAC, AM1 and PM6. Again, methods
should be chosen on a theoretical basis. For example, MOPAC has been tested extensively for biological
systems, not TM-based systems.

Taking all these aspects into consideration, the field of in silico homogeneous TM catalyst design is un-
charted though fresh and exciting.

The DFT functional heaven sky is the limit.
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A
Supporting plots of Rh (I) bidentate

complexes

A.1. Detailed regression plots
Regression plots in the form of scatter matrices of all descriptors calculated for pristine Rhodium complexes.
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A.2. Interquartile range method
The interquartile range (IQR) is a measure of the spread of the data. When the data is ordered from high to
low it can be divided into 4 segments, called quartiles. The point exactly in between the second and third
quartile is then by definition the mean. IQR only uses the second and third quartiles as data and filters the
extreme values (both high and low) out.
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Figure A.1: Heatmap of the descriptors with IQR filtering

A.3. Filtered heatmap
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A.4. Covariance of descriptors

Figure A.2: Covariance heatmap of electronic descriptors



Appendix – 30

A.5. hRMSD of MACE and GFN-FF vs DFT

Figure A.3: hRMSD representation of MACE
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Figure A.4: hRMSD representation of GFN-FF



B
Intermediary dataset

During this research, correlations were investigated for another (preliminary) dataset obtained from the phar-
maceutical partner. This dataset contained some of the same ligands, but also ligands outside of the main
dataset. IQR filtering has been done upon all descriptors, to filter out large (chemically interesting) outliers.
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Figure B.1: Both filtered and unfiltered descriptor values of the old dataset.
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