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Vehicular loads hazard mapping through a Bayesian Network in the State of Mexico
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Traffic counts collect information that is valuable, for example, in bridge and road design or maintenance processes.
The average daily traffic volume is often the most collected measure of vehicular traffic, which is used in the design
or assessment of major highways. Permanent control stations, situated in key locations of the highway network,
gather data the entire year. However, one of the disadvantages of traffic count data is that most counters used,
do not measure total vehicle weight and axle load data. Traffic counts display only the classification of vehicles,
traffic volume, average daily traffic, and annual average daily traffic. Axle loads on the other hand are required, for
example, as input in the design of pavement and new bridges, and the reliability assessment of existing ones. Weigh-
in-motion (WIM) systems are usually used to collect vehicle load data. The State of Mexico (in central Mexico) has
115 permanent vehicle counting stations with 745 traffic counting points in its federally administered road network.
However, due to the lack of WIM stations, it is not possible to obtain axle load data. In this paper, a Bayesian
Network (BN) quantified with data from WIM stations in the Netherlands is used to describe the weight and length
distribution of heavy vehicles registered in the permanent vehicle counting stations of the State of Mexico federal
highways. The Dutch and Mexican vehicle types are matched according to similar characteristics. Later, synthetic
WIM observations from the BN model are analysed through extreme value theory and vehicle loads with selected
return periods are computed for all study counting points. The outcome is a mapping methodology with a linked
database. The traffic volumes and extreme loads can then be easily found and compared with other highways in the
network. This work shows that hazard maps can be implemented to provide importantly and summarized information
to understand the risks of extreme traffic loads and to help in the reliability assessment and maintenance strategies
of pavements and bridges.

Keywords: Traffic counts, Weigh in Motion, Bayesian Network, ,traffic loads, mapping, State of Mexico.

1. Introduction
The State of Mexico is one of the 32 states of
Mexico, located in center of the country. Its road
infrastructure, with around 1716 km of federal ad-
ministered roads (IMT-SCT-INEGI, 2020), makes
the entity one of the states with a strategic ge-
ographic position for the freight flow that circu-
lates through the national territory. For this reason,
there has been a significant increase in traffic loads
on federal roads and bridges within the state’s
territory. Vehicular loads change over time pre-
senting great uncertainty and increasing the safety
concerns for the road infrastructure (OBrien et al.,
2012). Additionally, because of the increase in
traffic loads, accurate of mapping extreme traffic
loads at the road network is relevant (Walubita
et al., 2019).

Hazard maps can be constructed to provide im-
portantly and summarized information to under-
stand risks related to extreme traffic loads and to

help in the design and implementation of main-
tenance strategies to improve the durability of
pavements and bridges. Traffic loads maps, as
described for example in Sprung et al. (2018);
Li et al. (2012); Titi et al. (2014), have been
developed to analyse oversize–overweight trucks
for building optimal routes for priority loads and
for investigating the pavement damage caused by
permitted heavy trucks. de Leeuw, Rob and New-
ton Sean and Menist (2019) mapped trucks for
establishing a safe and secure network of truck
parking areas and. Although these maps are useful
they are not focused on the computation of design
loads and databases used are not for open access.

In order to map vehicular loads the most re-
liable source of information is WIM systems.
This technology provided information about traf-
fic volume, axle loads, inter-axle distances, and
vehicle classification among others. This data is
also required, for example, as input in the design
of pavement, new bridges, and in the reliability
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assessment of existing ones. Several WIM-based
traffic load models for bridge analysis have been
formulated (see Mendoza-Lugo et al. (2019); Li
et al. (2020); Anitori et al. (2017) for example).
However, some of the limitations for the wide
installation of permanent WIM stations on the
road network are the high installation, operation,
and maintenance costs. On the other hand, the
cheapest alternative to “easily-obtained” traffic
data is traffic counts through pneumatic traffic
tubes. These types of counters are used to gather
data such as the classification of vehicles, volume
counts, and average daily traffic. However, data
regarding inter-axle distances or individual axle
loads is not provided by such devices (Beyer,
2015; Kusimo and Okafor, 2016).

There exist 115 permanent vehicle counting
stations with 745 traffic counting points (CP) on
the federally administered road network of the
State of Mexico. However, in Mexico, the use of
WIM systems is not common and public databases
are not available. Consequently, no information
regarding individual axle loads or inter-axle dis-
tances is available. A possible way to overcome
this is through modeling data based on other avail-
able databases. Previous studies have done this
by means of simple deterministic models, linear
correlations, and copulas (see S. et al. (2006);
Kim and Song (2019) for example). These stud-
ies focus only on modeling axle loads (and not
inter-axle distances) or provide at best fixed inter-
axle distances. In previous studies, such as Walu-
bita et al. (2019); Papagiannakis et al. (2006);
Sayyady et al. (2010), traffic load spectra are
estimated by using clustering techniques where
permanent WIM stations are not installed. Never-
theless, these models are used to obtain input data
for the Mechanistic-empirical pavement design
(MEPDG) method.

All things considered, a methodology is re-
quired for: (i) straightforward computation of sim-
ilar WIM data by using other traffic data sources
more “easy” to be obtained and (ii) compute and
map extreme vehicle loads. Mapping extremes has
been proved to be an essential engineering de-
sign tool in hydraulic engineering. Using similar
techniques to analyse the road network vehicular
loads can be useful for constructing or improv-
ing probability-based codes. The aim of this re-
search is to estimate extreme traffic loads at the
federally administered road network of the State
of Mexico. Traffic counters data from the study
area are used to compute synthetic WIM observa-
tions. This synthetic dataset is generated through
a WIM data-based Non-parametric Bayesian Net-
work (NPNB) of heavy vehicles (with a total
weight above 3.5 tons). The outcome will be pre-
sented in maps of extreme vehicle loads processed
through geographic information systems (GIS)
based tools. The rest of the paper is organized as
follows. In Section 2 the methods are described

together with concepts regarding Bayesian Net-
works and extreme value theory. In Section 3 the
results of applying the methodology are summa-
rized. Next, in Section 4 the results are discussed.
Finally, in Section 5 the conclusion of this work
are drawn and some research lines for future work
are proposed.

2. Methods
The method consists of different steps. First, the
Mexican road database, Datos Viales, of traffic
counts was collected (see subsection 2.1 for fur-
ther details). The database was filtered and pre-
processed to extract information about the State
of Mexico’s heavy vehicles, i.e, motorcycles and
automobiles were left out. Mexican vehicle types
were matched according to their silhouette with
the Dutch NPBN WIM model (sub section 2.3).
Simulated WIM observations, for each counting
point (that is, every geographical point where data
is available in the Datos Viales database), were
computed by the NPBN WIM model with in-
formation of the Mexican traffic counts database
as input. Daily maxima of total vehicle weight
(Wmax) were derived with more than 6900 sim-
ulations. Wmax were fitted to probability distri-
butions in order to calculate the return periods of
extreme vehicular loads in all counting points of
the State of Mexico federally administered roads.
Finally, 50, 75, and 1000 year return period ve-
hicular weight maps for main roads in the state of
Mexico were produced. The method is explained
in detail in the next sections.

2.1. Data
We use the Datos Viales (road data) 2018 database
published by the Department of Infrastructure
(IMT-SCT-INEGI, 2020). The database includes
the following information: name of the road, name
of the counting point (CP), lane direction, annual
average daily traffic (AADT), and the proportion
of vehicle types that form the traffic flow.

The data were filtered with the open-source GIS
software QGIS to take into account CPs located
at the federally administered road network of the
State of Mexico. A total of 745 CPs were ob-
tained, of which, we eliminate the duplicates and
choose the ones in the lane direction with higher
AADT. After these filters, 151 counting points
were studied. Furthermore, vehicle types M and
A corresponding to motorcycles and automobiles
were left out of the records since the interest is in
heavily loaded traffic. Subtracting the correspond-
ing proportion of categories M and A to AADT we
obtained the average daily truck traffic (AADTT).
The codes of the Mexican vehicle types are given
by the Ministry of Communications and Trans-
port or SCT for its acronym in Spanish (SCT,
2008). The main heavy vehicles that conform to
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the traffic of the database are buses (B), single unit
vehicles of two and three axles (C2, C3), three-
axle tractors plus two-axle semitrailer (T3S2), and
three axles semitrailer (T3S3), three-axle tractors
plus two-axle semitrailer plus four-axle trailer
(T3S2R4) and, others (Otros).

2.2. Bayesian Networks
Bayesian Networks (BNs) are effective tools for
modeling multivariate probability distributions
(Pearl, 1988). BNs are directed acyclic graphs
(DAG), consisting of nodes and arcs. The nodes
of BNs represent random variables which for the
case of non-parametric BNs (NPBN) can be either
continuous, discrete (in an ordinal scale), or func-
tional. The arcs represent probabilistic relations
between the variables represented as nodes in the
BN. The direct predecessors of a node are called
the parents. The set of parents of node Xi will be
denoted pa(Xi). The direct successors of a node
are the children. For this work, a NPBN is applied.

A BN encodes the probability density or mass
function on a set of variables X = {X1, ..., Xn}
by specifying a set of conditional independence
statements in the DAG associated with a set
of conditional probability functions (Morales-
Nápoles and Steenbergen, 2015). In (Hanea et al.,
2006), (Neil et al., 2000), Pearl (1988), and Mar-
cot and Penman (2019) for example more infor-
mation and overviews of applications of BNs may
be found.

The theory of non-parametric Bayesian Net-
work is built around bivariate copulas (Kurow-
icka and Cooke, 2005). Copulas are a class of
bivariate distributions whose marginals are uni-
form on the (0,1) interval (Genest and MacKay,
1986). Zero correlation implies independence for
the normal copula. Denote by Φρ the bivariate
standard normal cumulative distribution function
with product-moment correlation ρ and Φ−1 the
inverse of the one dimensional (1D) standard nor-
mal distribution function, the normal copula, with
ρ as a parameter is:

Cρ(u, v) = Φρ[Φ
−1(u),Φ−1(v)];

(u, v) ∈ [0, 1]2
(1)

The rank correlation is the product-moment
correlation of the ranks of variables Xi andXj
and measures the strength of the monotonic rela-
tionship between variables. The conditional rank
correlation is the dependence measure of interest
because of its close relationship with conditional
copulas. In a NPBN, every node is assigned with a
one dimensional distribution and every arc with an
(un)conditional rank correlation. For each variable
Xi with m-parents X1 = pa1(Xi), ..., Xk =
pam(Xi), associate the arc paj(Xi) → Xi with
the rank correlation.

r[Xi, paj(Xi)]; j = 1

r[Xi, paj(Xi)|pa1(Xi), ..., paj−1(Xi)];
j = 2, ...,m

(2)

The assignment is empty if pa(Xi) = ∅. The
indices 1, ...,m are the indices of the parents of
variable i in the sampling order (1, ..., n). This
order may be different from the original labeling
of variables and is not unique. More details may
be found in Hanea et al. (2015). In order to find
a given conditional distribution in a NPBN, it
is a matter of computing the conditional distri-
bution on the standard normal transformation of
the corresponding NPBN, then transform back to
the original units through the inverse of the 1D
marginal distribution.

2.3. NPBN WIM model
WIM data corresponding to April 2013 for three
Dutch locations in both right (R) and left (L)
driving directions, were used. The measurements
were taken on highways A12 (km 42), A15 (km
92), and A16 (km 41). Considering the database
size it is not practical to examine the complete
configuration of axle loads for each vehicle code.
Therefore, 26 vehicle types were further consid-
ered. These are presented in Table 1, grouped per
vehicle configuration and per number of axles.
The codes used in the WIM system, consist of
a letter and a number of digits that define the
sequence of axle groups. The digits represent the
number of axles. The letters represent vehicle con-
figurations: buses (B), tractor plus semitrailer plus
trailer (R), tractor plus semitrailer (T), and single-
unit multi-axle vehicle (V). For example, a five-
axle vehicle with the configuration tractor plus
semitrailer with one axle at the front of the cabin
and one at the rear and semitrailer with a group of
three axles is coded as T11O3. The corresponding
created vehicle type, of the previously mentioned
configuration, is a T5 type (tractor plus semitrailer
with five axles in total).

For each axle load of each vehicle type, a
one-dimensional marginal distribution is approx-
imated by a Gaussian Mixture (GM, McNicholas
and Murphy (2008)). A GM is a weighted sum of
G Gaussian densities (each one referred to as a
component) expressed as follows:

f(x) =

G∑
g=1

πgφ
(
x | µg, σg

)
(3)

Where g = 1, ...G,
∑
g πg = 1 are the mix-

ture weights and φ
(
x | µg, σg

)
are components

of Gaussian densities with parameters µg and σg .
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Table 1. Created vehicle types with their correspond-
ing WIM codes.

Vehicle (i) Type No. Axles (ni) Code

1 B2 2 B11
2 B3 3 B11A1 B12 B21
3 O3 3 O3
4 O4 4 O4
5 O5 5 O5
6 O6 6 O6
7 O8 8 O8
8 O9 9 O9
9 O10 10 O:
10 O11 11 O>
11 R5 5 R11111
12 R6 6 R111111 R11112 R11211 R1122
13 R7 7 R111121 R11113 R11221 R1123 R1222
14 R8 8 R112121 R12221 R1223
15 R9 9 R121221
16 T3 3 T11O1
17 T4 4 T11O2 T11O11 T12O1
18 T5 5 T11O3 T11O21 T11O111 T12O2 T12O11 T21O11
19 T6 6 T11O4 T11O1111 T12O3 T12O21 T12O111
20 T7 7 T12O4 T12O1111
21 V2 2 V11
22 V3 3 V11A1 V12 V21 V111
23 V4 4 V11A2 V11A11 V13 V22 V211 V1111
24 V5 5 V11A12 V12A2 V12A11
25 V6 6 V12A12 V22A2 V22V11
26 V7 7 V22A12

The expectation maximization (EM) algorithm
(McLachlan, G. J. and Peel, 2000) was used in
the fitting procedure and the Akaike information
criterion (AIC) was used to assess goodness-of-
fit (Mutua, 1994). For the inter-axle distances fit-
ting GM distribution may not be a good approach
because, contrary to axle loads, there are a finite
number of vehicle lengths based on vehicle mak-
ers. Therefore, for each inter-axle distance and for
the total vehicle length, the empirical cumulative
distribution function (ECDF) defined in Eq. (4)
was used.

Fn(x) =
1

n+ 1

n∑
i=1

I {Xi ≤ x} (4)

Where I is the indication function, namely
I {Xi ≤ x} = 1 if Xi ≤ x and I {Xi ≤ x} = 0
otherwise. Next, the dependence structure of the
WIM observations was modeled with a NPBN. A
representation of the NPBN for highway A12 in
the left direction is presented in Figure 1. The arcs
represent correlations between axle loads Xi,j ,
where j = {1...ni} and ni is the number of axles
per vehicle type i as specified in Table 1. Total
vehicle length is node Xi,ni+1 while the inter-
axle distances areXi,ni+1+j . The model is imple-
mented in MATLAB with the toolbox BANSHEE
(Paprotny et al., 2020). The full model (Figure 1)
consists of 324 nodes and 2136 arcs.

Next, to use the NPBN WIM model, the Mexi-
can vehicle types were matched with the NPBN
vehicles according to their visual representation
and number of axles as can be seen in Figure 2. We
omit the vehicle type “others” in the simulations
since there is no visual representation correspond-
ing to it or the number of axles specified. As a
result, we have a sub-model of the NPBN with
6 of the 26 vehicle types available (according to

Fig. 1. NPBN model for A12-L highway of the WIM
system in the Netherlands. The left side of the network
represents the Xi,j axle loads. The right side represents
the vehicle length Xi,n1+1 and the inter-axle distances
Xi,ni+1+j . Where i = {1, 2, ..., 26} vehicle types.

Table 1) that represents the Mexican vehicle types
presented in the traffic counts database.

Fig. 2. Vehicle comparison between SCT vehicle
types and NPBN WIM model vehicle types.

Once the vehicle types were selected and know-
ing the proportion of vehicle types from the Datos
Viales database, we simulate with the NPBN the
number of vehicles that match the AADTT vehicle
amount for each one of the 151 counting points
of interest. To clarify, when a SCT vehicle type
has two equivalent WIM NPBN vehicle types, the
corresponding vehicle for the simulation is ran-
domly selected. Moreover, for the NPBN model
we use the so-called “hypothetical highway” (HH)
this HH is a combination of all six available WIM
locations in the model. Therefore, each simulated
vehicle is a realization of a randomly chosen loca-
tion. In total, 6795 simulations and more than 20
million heavy vehicles were computed to obtain
45-day data. Figure 3 shows an example of the
sub-NPBN model used for one simulation of the
counting point El dorado to compute N = AADTT
= 5812 vehicles with the proportions: B = B3 =
20.2%, C2 = V2 = 36.7%, C3 = V3 = 10.6%, T3S2
= T5 = 22.9%, T3S3 = T6 = 5.3% and T3S2R4 =
R9 = 4.3%. As a result, the NPBN has 83 nodes
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and 527 arcs.

Fig. 3. NPBN model for one sumilation of El dorado
CP.

The output of the NPBN is similar WIM ob-
servations describing the weight and the length of
the simulated vehicles presented in a 26 columns
table (see Table 2 and Table 3). The first column
represents the number of observation, the second
vehicle type, the third the total vehicle weight (W)
in kN, columns 4th to 14th individual axle load
(AW) in kN, column 15th vehicle length (L) in m,
and columns 16th to 26th individual inter-axle dis-
tances (AD) in m. A Not a number (nan) notation
is placed in fields where no data is computed.

Table 2. Exaple of the NPBN output for El dorado CP.

Item Type W AW1 AW2 AW3 AW4 AW5 AW6 AW7 AW8 AW9 AW10 AW11

1 T6 491.36 72.11 21.15 103.67 98.57 97.00 98.87 nan nan nan nan nan
2 T5 246.97 54.96 71.70 44.27 34.85 41.20 nan nan nan nan nan nan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5812 T5 410.35 92.22 108.14 96.08 48.99 64.92 nan nan nan nan nan nan

Table 3. Table 2 (Continued).

L ADF1 AD12 AD23 AD34 AD45 AD56 AD67 AD78 AD89 AD100 AD111

13.26 1.66 2.76 1.30 1.30 1.31 1.29 nan nan nan nan nan
18.61 1.89 4.77 1.35 6.88 1.79 nan nan nan nan nan nan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.47 1.73 4.79 1.40 6.27 1.35 nan nan nan nan nan nan

2.4. Extreme value analysis
In this section, extreme value analysis is per-
formed to obtain traffic loads corresponding to dif-
ferent return periods. The most common approach
to describe the traffic loads and their effects is
fitting the data to an Extreme Value (EV) distri-
bution. As noted in previous studies regarding the
precision of estimations, data quality is often more
important than the extrapolation method (OBrien
et al., 2015). In this study we use the Gumbel

distribution with location parameter µ and scale
parameter β (see Eq. 5). The reason being that in
general, based on the AIC, this was the best fit for
the counting points included in this study.

Return periods of vehicle loads were calculated
by obtaining the maximum total vehicle weight
per day of the NPBN simulations per CP. The
45-daily maxima (Wd) obtained were fitted to a
parametric probability distribution. We computed
and compared extrapolated values obtained from
daily maxima to the extrapolated values derived
from the yearly maxima. The values obtained
with daily maxima are on average 1.5% higher
than those computed with yearly maxima. Hence,
the use of one or another does not represent a
significant difference in the results. Therefore, in
this work and to reduce computational load we
use the extrapolated values of the daily maxima
distribution.

f(x, µ, β) =
1

β
e−(z+e−z); z =

x− µ
β

(5)

3. Results

3.1. Return periods
In Mexico, the SCT and the Mexican Institute of
transport (IMT, (Rascó-Chávez, 2004)) establish
that the period of non-exceedance for the road
bridge design loads should be 50 years. Similarly,
in the United States of America, according to the
Load and Resistance Factor Design (LRFD) of
the American Association of State Highway and
Transportation (AASHTO, (Grubb et al., 2015))
the serviceability criteria for bridges is 75 years.
While, the traffic road models for road bridges,
load model one (LM1), and load model two
(LM2) (European Committee, 2010) specified the
characteristic value of 1000-year return period for
traffic on the main roads in Europe. Consequently,
we computed the vehicle loads with 50 year return
period ( W50) assuming 254 working days per
year excluding weekends and holidays. Similarly,
the total vehicle weight for a 75-year (W75) and a
1000-year return period (W100) were computed.
The calculated Wd, W50, W75, and W1000 for
all studied counting points are presented in Figure
4. Notice that there is not a significant difference
between W50 and W75. There is a clear trench
among three peak maxima, with a Wd, W50,
W75, and W1000 high mean of about 1160 kN,
1192 kN, 1195 kN, and 1212 kN correspondingly.
In general, the results show that W75 is at most
1% higher than W50. W1000 is 1% to 3% higher
in comparison with W75 while, compared to Wd
it is 1% to 13% higher.

For illustration purposes, the results of the com-
putations for W50 per counting point are pre-
sented in the main map in Figure 5. Likewise,
the results for W75 and W1000 are presented in
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Fig. 4. Total vehicle weight maxima comparison.

Figure 6 and Figure 7 respectively. The smaller
map in each one of the three main maps represents
the computed daily maximum total vehicle weight
in 2018. The maps were built in QGIS. In all cases,
an increase of extreme W is expected, especially
in the north part of the state.

Fig. 5. Total vehicle weight [kN] for a 50-year return
period.

4. Discussion
Although the extreme vehicular loads calculated
here were based on Dutch WIM observations. To
investigate, if the data generated with the NPBN
model is capable of reproducing Mexican vehic-
ular loads. We use the relative entropy (I) (Kull-
back and Leibler, 1951), which is a measure of
how two probability distributions are different.
The relative entropy of W is estimated from data
generated in the sub-model computed with the
matched vehicle types (see Figure 2) and the
observed distributions for the Mexican vehicles

Fig. 6. Total vehicle weight [kN] for a 75-year return
period.

Fig. 7. Total vehicle weight [kN] for a 1000-year
return period.

reported in Chavez Ayvar et al. (2013). This re-
sulted in a relative entropy of 0.25. While fifth and
95th percentiles of the distribution of I computed
with a sample of 100 observations generated 500
times are 0.16, and 0.28, respectively. This shows
that the difference is between the 5% and 95%
differences for the Dutch WIM data. Seemingly,
synthetic observations computed from the NPBN
can be used as an alternative for Mexican data.

The results show that for W50 there are three
CPs with total vehicle weight higher than 1276
kN (black CPs in Figure 5) while forW75 another
two CP pass that threshold. For W100 the number
of CPs with W > 1276kN is doubled (10 black
CPs in Figure 7) compared to W50. The CP with
the highest W75 and W1000 can be found in the
northeast part of the state (counting point X. C.
Tizayuca – Otumba, black triangle in Figure 7).
The CP is located in km number 37.5 of the road
Venta de Carpio - T. C. (Pachuca - Túxpam) with
a total vehicle weight of 1288 kN for W75 and
1309 kN for W1000. Additionally, as expected in
the majority of the CPs, the heaviest vehicle is the
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T3S2R4 type. The highest proportion of the nine
axle vehicles T3S2R4 is located in the counting
station X. C. Venta de Carpio - T. C. (Pachuca
- Tulancingo). The CP is located in km number
151.11 of the road Libramiento Norte de la Ciu-
dad de Mexico (Cuota) with around 17.1% of
T3S2R4 vehicles that compound the traffic (black
square in Figure 7).

The highest AADTT can be found in the count-
ing station T. Izq. Aculco. It is located in the
km number 125 of the road Mexico - Queretaro
(Cuota) with an AADTT of 11 207 trucks (black
diamond in Figure 7). It is noted that the highway
57D Mexico – Queretaro has three of the ten CPs
withW > 1276 kN, this can be explained because
this highway connects the country’s capital (Mex-
ico City) with the city of San Juan del Rio which
according to its geographical location, works as
a commercial exchange hub between the center
of the country, the bajio and the northern regions
of the country. Another case of interest is federal
highways number 15 and number 55 which are
two of the fifteen of Mexico’s main corridors, con-
necting Mexico City with the U.S.-Mexico border.
These roads across the State of Mexico passing by
the cities of Toluca, Ixtlahuaca, and Atlacomulco.
As can be seen in Figure 7, the CPs near these
cities have a W , for a 1000-year return period,
over 1276kN .

5. Conclusions
This paper presented the development of a
methodology to compute and map extreme vehi-
cle loads in the federally administered roads of
the State of Mexico. The methodology uses one
the one hand, non-parametric Bayesian Networks
quantified with Weigh-in-Motion observations of
six locations in The Netherlands. The model was
employed to generate synthetic Weigh-in-Motion
observations. The input for the non-parametric
Bayesian Network was data obtained from traffic
counters of the 115 permanent vehicle stations in
the State of Mexico. On the other hand, extreme
value theory analyses the synthetic observations
for the State of Mexico to compute extreme ve-
hicle loads with 50, 75, and 1000-years return
periods. The results were presented in maps, using
GIS, for each return period.

The methodology and results of this work have
various applications for road design, bridge en-
gineering, and road reliability analysis. For ex-
ample, the methodology for computing synthetic
WIM observations through NPBN can be applied
virtually in any WIM location, using site-specific
WIM records and site-specific vehicle types. This
research shows that using data gathered by tra-
ditional traffic counts, such as pneumatic traffic
counters, together with WIM observations of dif-
ferent locations it is possible to have an insight
into the axle loads and inter-axle distance distri-

butions.
The purpose of the methodology is to deliver a

spatially explicit dataset of extreme vehicle loads
with certain return periods for the federally ad-
ministered roads of the State of Mexico. The re-
sults could be used in large-scale traffic loads anal-
yses, serving as input for the reliability analysis
of the existent road infrastructure from which op-
timal long-term road infrastructure maintenance
plans can be derived. The next step of our research
is to extend the results here presented nationwide
while joining traffic count to the national inven-
tory of bridges to better assess the reliability of
existing infrastructure.
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