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ORIGINAL RESEARCH ARTICLE

Understanding spatial patterns in the drivers of greenness 
trends in the Sahel-Sudano-Guinean region
Min Jianga, Li Jiaa, Massimo Menentia,b and Yelong Zenga,c

aState Key Laboratory of Remote Sensing Sciences, Aerospace Information Research Institute, Chinese 
Academy of Sciences, Beijing, China; bDepartment of Geoscience and Remote Sensing, Delft University of 
Technology, Delft, The Netherlands; cUniversity of Chinese Academy of Sciences, Beijing, China

ABSTRACT
The region-wide spatial pattern of the drivers of vegetation trends 
in the African Sahel-Sudano-Guinean region, one of the main dry-
lands of the world, has not been fully investigated. Time-series 
satellite earth observation datasets were used to investigate spa-
tiotemporal patterns of the vegetation greenness changes in the 
region and then a principal component regression method was 
applied to identify the region-wide spatial pattern of driving factors. 
Results find that vegetation greening is widespread in the region, 
while vegetation browning is more clustered in central West Africa. 
The dominant drivers of vegetation greenness have a distinct spa-
tial pattern. Climatic factors are the primary drivers, but the impacts 
of precipitation decrease from north to south, while the impacts of 
temperature are contrariwise. Coupled with climatic drivers, land 
cover changes lead to greening trends in the arid zone, especially in 
the western Sahelian belt. However, the cluster of browning trends 
in central West Africa can primarily be attributed to the human- 
induced land cover changes, including an increasing fractional 
abundance of agriculture. The results highlight the spatial pattern 
of climatic and anthropic factors driving vegetation greenness 
changes, which helps natural resources sustainable use and mitiga-
tion of climate change and human activities in global dryland 
ecosystems.
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1. Introduction

The Sahel-Sudano-Guinean region is a typical transition zone between the arid northern and 
the humid southern eco-regions of Africa (Fensholt et al., 2017). It is one of the largest drylands 
in the world and is highly vulnerable to climate change and anthropogenic activities (Kaptué 
et al., 2015). In the 1970s and early 1980s, the prolonged “Sahel drought” hit the region and 
resulted in land degradation as a major threat to regional livelihoods, which led to widespread 
public attention (Charney, 1975; Nicholson et al., 1998; Toulmin & Brock, 2016). With the 
increasing rainfall since the middle of the 1980s, in-situ and remote sensing observations 
started to show that the vegetation in the region is recovering, a process known in the 
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literature as re-greening (Nicholson et al., 1998; Prince et al., 1998). With the boom of remote 
sensing technology in recent years, lots of studies at global and local scales using time series of 
satellite earth observation data have also demonstrated the vegetation re-greening in this 
region (Eklundh & Olsson, 2003; Fensholt et al., 2017; Kaptué et al., 2015). In the context of 
greening earth, however, decreased vegetation greenness, known as browning, has also been 
observed in some areas of the Sahel-Sudano-Guinean region (Chen et al., 2019; Ogutu et al., 
2021). Moreover, previous studies argue that the trend in vegetation greenness in the region 
varies in different periods, for instance, the rate of greening in recent 15 years (2000–2015) is 
slower than that in the period from 1982 to 2000 (Ogutu et al., 2021), which suggests that 
continuous regional monitoring of this region is required. In addition, due to the negative 
effects of the insufficient sensor cross-calibration, sensor degradation, atmospheric contam-
ination of satellite sensor signals and various temporal and spatial resolutions (Tian et al., 2015), 
vegetation greenness trends estimated using different satellite data are not always consistent 
(Chen et al., 2019; Piao et al., 2019). Thus, it is imperative to make a further investigation on the 
vegetation greenness changes in the region based on the nearest and latest time series of 
satellite data.

Understanding the driving factors of the dynamics of vegetation greenness is an essential 
process in understanding current situations and projecting future changes (Lamchin et al., 
2020), which is useful information for environment protection and sustainable use of natural 
resources in the region. Previous studies at global and local scales have revealed that 
precipitation (Fensholt et al., 2012), temperature (Xu et al., 2013), CO2 fertilization (Zhu et al., 
2016) are the main drivers of vegetation dynamics. At the same time, human-managed land 
use, including afforestation and agriculture, is the principal anthropogenic driving factor (Chen 
et al., 2019). Moreover, the dominant driver of vegetation greenness varies from region to 
region (Piao et al., 2019). For instance, CO2 fertilization is a major factor driving vegetation 
greening at the global scale (Zhu et al., 2016), while warming is the key driving factor of 
increasing vegetation greenness at the high latitudes (Mishra & Mainali, 2017), and intensive 
agriculture is leading to the increasing greening in China and India (Chen et al., 2019).

Specific to the Sahel-Sudano-Guinean region, the re-greening has been attributed to 
several factors including wetter climatic conditions (Brandt et al., 2015, 2016; Kaptué et al., 
2015), CO2 fertilization due to increased CO2 in the atmosphere (Lu et al., 2016; Zhu et al., 2016), 
and increase in woody vegetation (Anchang et al., 2019; Brandt et al., 2015, 2016). Vegetation 
evolution is water-limited in this region, thus precipitation is the key driving factor of vegeta-
tion changes, and precipitation at different time scales has different impacts on vegetation 
dynamics (Zhou et al., 2021). The current year and previous year precipitation may both have 
impacts on vegetation greenness because precipitation accumulated in the soil at different 
depths and with different durations leads to a multi-scale soil “memory effect”. Land use and 
cover change, grazing, agriculture, and deforestation, reflecting anthropogenic impacts, also 
play an important role in vegetation greenness changes in the Sahel-Sudano-Guinean region 
(Brandt et al., 2017b). To date, however, a region-wide study is still needed on the spatial 
patterns of the drivers of vegetation changes. Most of the previous studies either focused on 
vegetation greenness change and its drivers at a global scale (Chen et al., 2019; Zhu et al., 
2016), with little or no specific focus on the Sahel-Sudano-Guinean region, or on the contrary 
on drivers of green change in a particular hotspot such as the Sahel region (Brandt et al., 2017a; 
Kaptué et al., 2015; Leroux et al., 2017), failing to reflect how climate and human interactions 
affect vegetation changes in the entire Sahel-Sudano-Guinean region.
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In fact, the Sahel-Sudano-Guinean region is an excellent case study of the spatio- 
temporal pattern of vegetation response to climatic and human influences in a climatic 
transition zone. The region has a steep precipitation gradient and is characterized by arid, 
semi-arid, dry sub-humid, and humid conditions, supporting various ecosystems, includ-
ing shrubland, dry sub-humid savannas, woodlands, forest, and so on (Ogutu et al., 2021; 
Zhou et al., 2021). Different sub-regions with different vegetations may have different 
drivers of vegetation changes (Piao et al., 2019). A systematic and structural analysis of the 
drivers of vegetation greenness changes can help us to understand better the spatial 
pattern in the trends in vegetation dynamics. This improved understanding may shed 
light on how to advance the sustainable use of natural resources and mitigation of the 
impacts of climate change and of human activities in drylands ecosystems.

Therefore, this study mainly aimed at revealing the spatial pattern of the underlying 
drivers (i.e. precipitation, air temperature, and land cover changes) of changes in vegeta-
tion greenness as captured by the normalized difference vegetation index (NDVI) in the 
Sahel-Sudano-Guinean region. To achieve the aim of this study, the following two major 
questions were investigated: (1) what are the spatio-temporal patterns of vegetation 
greenness changes in the region from 2001 to 2019; (2) what is the spatial pattern of 
the drivers of observed trends.

2. Study area and materials

2.1. Study area

The African Sahel-Sudano-Guinean region (0–25°N, 20°W–60°E) stretches from the south of 
the Sahara Desert to the equator, which includes the Sahelian, Sudano Sahelian, Sudanian 
and Guinean zones in West Africa and the Great Horn of Africa in East Africa. According to 
the aridity index developed by FAO, the region is characterized by hyper-arid, arid, semi- 
arid, dry sub-humid, and humid conditions from the north to south (Figure 1(b)). The 
climate in the west is mainly dominated by the West African monsoon (Nicholson, 2009). In 
contrast, the climate in the east is driven mainly by Sea Surface Temperature (SST) 
dynamics in the Equatorial Pacific and Indian Ocean (Endris et al., 2019). The African Sahel- 
Sudano-Guinean region shows a structured N-S climatic gradient, and the amount of 
annual rainfall increases from less than 100 mm/yr in the north (Sahel region) to more 
than 2000 mm/yr in the south (the Guinean zone) (Zhou et al., 2021). Due to the complex 
topography, the precipitation pattern in the east exhibits a distinct heterogeneous spatial 
distribution compared with that in the west (Ali & Lebel, 2009). These spatial variations and 
gradients in climatic conditions, in turn, result in a diversity of ecosystems that ranges from 
desert and shrubland in arid conditions, savannah in semi-arid conditions, woodlands in 
sub-humid conditions to forest in humid conditions (Figure 1(a)). The region has more than 
a billion inhabitants, with the wetter southern region being more densely populated than 
the northern drier region (Ogutu et al., 2021). Livestock pastoralism is the main economic 
activity in the drier northern rural regions, while subsistence agriculture is dominant in the 
wetter southern regions. In recent years, the increasing population led to human-related 
activities, such as grazing, deforestation, and agriculture, which have distinct effects on 
local land cover and ecosystems (Asenso Barnieh et al., 2020; Herrmann et al., 2020).
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2.2. Data

In this study, the Normalized difference vegetation index (NDVI) time-series from 
Moderate Resolution Imaging Spectroradiometer NDVI product (MOD13A2 Collection 6 
data) was used to represent the vegetation changes, and precipitation from the inte-
grated multi-satellite Global Precipitation Measurement (GPM IMERG), air temperature 

Figure 1. Study area (African Sahel-Sudano-Guinean region): (a) land cover map, (b) bioclimatic zone. 
The land cover information is extracted from the ESA CCI-LC map of 2018. The bioclimatic zone is 
defined by the Aridity Index (AI) following the classification developed by FAO. The Aridity Index (AI) 
data is derived as the reciprocal of the aridity index layer extracted from the Global Aridity dataset 
released by CGIAR Consortium for Spatial Information (CGIAR-CSI). The AI is defined as the ratio of 
precipitation to reference evapotranspiration.
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from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 
Land (ERA5-Land) dataset, and land cover datasets from the European Space Agency (ESA) 
Climate Change Initiative (CCI) Land Cover (LC) were applied to represent the candidate 
driving factors of the vegetation changes. Due to the differences in the spatial resolution 
of the various datasets and products, all the data were resampled to 0.05 degrees (median 
value among the spatial resolutions of all datasets) using the aggregation and resample 
functions from the Python package “gdal”. The resampling was done by snapping the 
resampled raster to a reference one to ensure that the new resized pixels were perfectly 
aligned and occupied the same position across the time series. Finally, we reprojected all 
the data to the same coordinate system (i.e. WGS 1984 projection).

2.2.1. Normalized difference vegetation index
The NDVI is one of the most widely used indicators of vegetation conditions in assessing 
vegetation greenness and its changes from local to global scales (Mishra & Mainali, 2017; 
Ogutu et al., 2021; Wang et al., 2021). To evaluate temporal trends and spatial patterns in 
the evolution of vegetation conditions, we used the latest version of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) NDVI 16-day composite 1-km product 
(MOD13A2 Collection 6 data) covering the period from 2001 to 2019 (downloaded from 
www.reverb.echo.nasa.gov). Different from collection 5 which used composited daily 
data, collection 6 of MOD13A2 uses pre-composited data which is atmospherically 
corrected with a modified pre-compositing algorithm employing a minimum blue band 
approach to minimize aerosols and other contaminants (Didan et al., 2015). To further 
reduce the atmospheric contamination due to clouds and aerosols that remained in the 
original MODIS NDVI products, which are then still affected by noise, we utilized an 
improved Harmonic Analysis of Time Series (iHANTS) method to identify and remove 
clouds and aerosols contaminated observations, then reconstruct a consistent time series 
of NDVI data. The Harmonic ANalysis of Time Series (HANTS) algorithm, derived from the 
Fourier transformation theory, is widely applied to eliminate noise and reconstruct in the 
NDVI time series. iHANTS is updated from the classical HANTS by several reasonable 
parameter settings and design schemes, including inter-annual harmonic components, 
dynamic fitting error tolerance (FET) scheme, and dynamic update of weights (Zhou et al., 
2016, 2021). When implementing the iHANTS, we used the quality control information of 
data products to improve the NDVI reconstruction performance. The reconstructed NDVI 
time series of different land cover types in our study area show good performance of the 
iHANTS method (Supplementary Figures S1, S2).

We resampled the reconstructed 16-day NDVI time-series data from the original spatial 
resolution to 0.05° using the mean function in the Python package “gdal”, and calculated 
the annual mean NDVI for each pixel. As most outliers of the NDVI time-series data have 
been removed by the iHANTS, the annual mean of the reconstructed NDVI time series can 
be used for the trend analysis.

2.2.2. Precipitation data
To evaluate the impacts of precipitation on the trend in vegetation greenness, we used 
the integrated multi-satellite Global Precipitation Measurement (GPM IMERG) monthly 
product with a spatial resolution of 0.1° × 0.1° provided by the National Aeronautics and 
Space Administration (NASA) (Huffman et al., 2020). As the successor of the Tropical 

BIG EARTH DATA 5

http://www.reverb.echo.nasa.gov


Rainfall Measuring Mission (TRMM), GPM enables more precise and reliable rainfall 
estimations (Li et al., 2021). The GPM IMERG product uses sensors onboard satellites in 
different constellations to detect precipitation and provides more accurate and reliable 
spatio-temporal data by using a multi-satellite integrated inversion algorithm and proces-
sing program (Iguchi et al., 2010). The IMERG has been widely used in many studies (Li 
et al., 2021; Tang et al., 2020). We calculated the annual sums from the monthly GPM 
IMERG data covering the period from 2000 to 2019 and then resampled them from the 
original spatial resolution to 0.05° using the cubic convolution function, which is appro-
priate for continuous data and is geometrically less distorted than the raster achieved by 
running the nearest neighbor resampling algorithm

2.2.3. Air temperature data
To evaluate the impact of temperature on vegetation greenness, we extracted air tem-
perature data from the European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis v5 Land (ERA5-Land) dataset available at https://doi.org/10.24381/cds. 
68d2bb30. ERA5-Land is a reanalysis dataset providing a consistent view of the evolution 
of land variables over several decades at an enhanced spatial resolution compared to 
ERA5 (Muñoz et al., 2021). ERA5-Land is provided at 0.1° spatial resolution and at hourly, 
daily or monthly temporal resolution. In this study, we selected the monthly average 
product for the period from 2001 to 2019 (Muñoz, 2019) to calculate the annual averages, 
and then resampled them to 0.05° using the cubic convolution function.

2.2.4. Land cover data
To evaluate the impact of land cover changes on vegetation greenness, we utilized the 
European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover (LC) annual 
maps from 2001 to 2019 to represent continuous land-surface cover (downloaded from 
http://www.esa-landcover-cci.org/). The ESA-CCI-LC dataset was produced by the ESA-CCI 
program at 300 m spatial resolution using observations from multiple sensors, for exam-
ple, the Advanced Very High-Resolution Radiometer (AVHRR), the Systeme Probatoire 
d’Observation de la Terre Vegetation (SPOT-VGT), and the PROBA-V. The ESA-CCI-LC 
dataset uses the LC Classification System defined by the FAO and applies 37 LC types 
(ESA, 2017). For this study, to facilitate the attribution of observed vegetation trends to 
human-managed vegetation changes, we reclassified the 37 original LC classes into 3 
major types: agriculture (reflecting human-managed vegetation), natural vegetation, and 
non-vegetation. The original and adapted LC classes are presented in Table 1.

We then estimated and mapped the fractional abundance of the reclassified 3 LC types 
data at 0.05° × 0.05° spatial resolution (i.e. the ratio of the number of pixels at 300 m 
resolution per class to the number of all pixels at 300 m resolution in the 0.05° pixel) and 
yearly time interval, based on the ESA-CCI-LC dataset at 300 m spatial resolution for the 
period from 2001 to 2019. Since the fractional abundances of the three reclassified LC 
types add up to 1, the fractional abundance of the third class is determined by the sum of 
two out of the three LC types. To avoid this duplicated LC information in the assessment 
of the relative importance of each driver, we only included the fractional abundance of 
classes 1-agriculture class and 2-natural vegetation class to represent the land use and 
land cover driver in our analysis.
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3. Methods

In this study, we applied the Mann–Kendall test to assess the trends in vegetation 
greenness in the Sahel-Sudano-Guinean region, as estimated with the MODIS MOD13A2 
Collection 6 NDVI data. Then we assumed that the observed trends in vegetation green-
ness were due to a combination of climate change and human activities. The principal 
component regression analysis method was applied to estimate the relative importance 
of climatic and anthropic potential driving factors on the vegetation greenness changes 
and finally to identify the spatial pattern of the candidate drivers in the region. Figure 2 
shows the workflow of data pre-processing and analysis in this study.

3.1. Detecting trends in vegetation greenness

To evaluate the trends in vegetation greenness, we applied a non-parametric Mann- 
Kendall (MK) test to the time series of annual averaged NDVI data at the pixel level. The 
MK test is commonly used as a test of significance for the Theil-Sen estimator, which is 
a non-parametric method to detect a monotonic trend in a time series and is widely used 
in the analysis of trends in climatic and vegetation variables (Yue et al., 2002). We 
conducted the MK trend test using the Yue-Pilon pre-whitening method provided by 
the Python package “pyMannKendall”. In order to remove potential temporal autocorre-
lation of the data, the Yue-Pilon pre-whitening method detrends the time series and then 
removes a lag 1 autoregressive process from the time series prior to applying the MK test 
to assess the significance of trend. Then MK test is used to detect trend in the residual (or 

Table 1. Lookup table applied to reclassify land cover types from the ESA CCI land cover products.
LC classes reclassified in this 
study Land types used in the original CCI-LC dataset

1. Agriculture 10, 11, 12 Rainfed cropland
20 Irrigated cropland
30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous 

cover) (<50%)
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/ 

cropland (<50%)
2. Natural vegetation 50 Tree cover, broadleaved, evergreen, closed to open (>15%)

60, 61, 62 Tree cover, broadleaved, deciduous, closed to open (>15%)
70, 71, 72 Tree cover, needleleaved, evergreen, closed to open (>15%)
80, 81, 82 Tree cover, needleleaved, deciduous, closed to open (>15%)

90 Tree cover, mixed leaf type (broadleaved and needleleaved)
100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
160 Tree cover, flooded, fresh or brakish water
170 Tree cover, flooded, saline water
110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
130 Grassland

120, 121, 122 Shrubland
140 Lichens and mosses

150, 151, 152, 
153

Sparse vegetation (tree, shrub, herbaceous cover)

3. Non-vegetation 200, 201, 202 Bare areas
190 Urban
210 Water
180 Shrub or herbaceous cover, flooded, fresh-saline or brakish water
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prewhitened) series. The trends with a confidence level of 95% (p ≤ 0.05) were considered 
to be statistically significant in this study.

3.2. Relative importance of candidate driving factors

As mentioned in the Introduction, we chose precipitation (current year precipitation and 
previous year precipitation), air temperature, and land cover, specifically the fractional 
abundance of post-classified agriculture and natural vegetation according to the re- 
classified rules (Table 1), as candidate drivers of vegetation greenness in the Sahel- 
Sudano-Guinean region (Chen et al., 2019; Ogutu et al., 2021; Piao et al., 2019; Zhu et al., 
2016). As the collinearity may exist in the candidate drivers, we adopted the Principal 
Component Regression (PCR) approach (Abel et al., 2021; Seddon et al., 2016), to 
estimate the relative importance of each candidate driver. This approach is 
a regression analysis technique that is based on the principal component analysis 
(PCA), which can reduce the impact of collinearity between the independent variables, 
that is, the drivers in our case. We analogously used the PCR approach as Abel et al. 
(2021) did and the implementation of the PCR is divided into three major steps 
(Figure 3).

First, at the pixel level, we normalized all yearly time series of input variables into 
z-scores anomalies using their yearly means and standard deviations. We then used PCA 
to transform all normalized input variables (the z-score time series) into a set of principal 
components that are now uncorrelated but still explain all the variation in the data. The 
number of principal components (5 principal components) is equivalent to the number of 
input variables. Each of the components has scores and loadings, with the latter indicating 
the correlation between the principal component and the input variables.

Then, taking NDVI as the dependent variable and the principal components as inde-
pendent variables, an ordinary least-squares regression (OLS) was performed to obtain 

Figure 2. Workflow of data pre-processing and analysis.
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the estimated regression coefficients of each principal component. The significant coeffi-
cients (p ≤ 0.05) were selected for further analysis.

Finally, the significant regression coefficients of principal components from PCR were 
multiplied with the respective loadings from the PCA. The absolute values of these results 
for each driving factor were added to obtain the final coefficients for each driving factor. 
As the loading indicates the correlation between the principal component and the input 
variables and the significant coefficients indicate the relative importance of the principal 
components on the NDVI, these final coefficients can reflect the relative importance of 
each driving factor on the NDVI. The driving factor with the highest relative importance 
was regarded as the dominant driver of the changes in NDVI for one pixel.

We performed the PCR analysis only on pixels with a significant trend in vegetation 
greenness using Python scripts.

4. Results

4.1. Trends in vegetation greenness

Our trend analysis of NDVI indicates that greening, that is, increasing greenness presented by 
increasing NDVI, is widespread in the African Sahel-Sudano-Guinean region, while browning 
(declining greenness) is relatively concentrated in a few areas (Figure 4(a)). Approximately 
one-third (31%, 0.81 million km2) of the Sahel-Sudano-Guinean region shows significant 
trends (either positive or negative) in NDVI over the past two decades (2001–2019). This 
translates into 25.5% (0.67 million km2) positive and 5.4% (0.14 million km2) negative trends 
(Figure 4). In general, positive trends indicate greening, and negative trends point towards 
browning. Greening is widely observed in the region. The humid bioclimatic zone in the south 
has the largest share of pixels with a positive trend, followed by part of the arid bioclimatic 
zone in the southern Sahelian core region (Figure 4(c)). Browning is prominently clustered in 
the semi-arid and sub-humid bioclimatic zone in Central West Africa (mainly in Central Nigeria 
and Southern Chad), accounting for more than 60% of the entire browning area (Figure 3(a,c)).

Figure 3. Flow-chart of the method used to estimate the relative importance of each driver variable.
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In addition, the issues of NDVI saturation effect in dense canopies and soil background 
variations in spare canopies may raise concerns about uncertainties in the trends results. We 
compared the results of trend analysis based on NDVI and the enhanced vegetation index 
(EVI, less saturated in dense vegetation) using the same method. The trends in vegetation 
greenness obtained from the EVI (MOD13A2 product) have a similar pattern to that obtained 
from NDVI in our study (Supplementary Figure S3). Our trend analysis based on NDVI is robust.

4.2. Spatial pattern of the underlying drivers of the changes in vegetation 
greenness

Our PCR analysis shows that more than two-thirds of significant trends in pixelwise 
vegetation greenness (greening or browning) are mainly driven by climate (69.4%), and 
approximately one-third is mainly attributed to land cover (30.6%). Specifically, climatic 
and LC drivers contribute to 70.4% and 29.6% of greening trends, respectively, while 
contributing to 64.9% and 35.1% of browning trends.

Figure 4. Trends in vegetation greenness in the Sahel-Sudano-Guinean Region: (a) spatial pattern of 
the significant vegetation greenness trends (Mann–Kendal test, p ≤ 0.05) at 0.05° × 0.05° grid cells; (b) 
fractional abundance of greening, browning, and no significant trends in the entire region; (c) 
fractional abundance of greening, browning and no significant trends in each bioclimatic zone. (b) 
and (c) share the same legend, i.e. green color for “greening”, brown color for “browning”, and grey 
color for “not-significant”.
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The dominant drivers of the significant vegetation greenness trends show a clear 
spatial pattern in the Sahel-Sudano-Guinean region (Figure 5(b)). In general, the fraction 
of the pixels with significant vegetation greenness trends mainly attributed to precipita-
tion decreases from north to south, while the fraction attributed to temperature increases 
(Figure 5(a)). The influence of LC factors starts increasing in the Sahel belt (south than 20° 
N), then reaches a maximum around 10°N. The browning trends in the north (15°N–25°N) 
and the south (0°–5°N) are mainly caused by precipitation, while LC factors are the main 
drivers in the central part of the region (near 10°N, 5°E) (Figure 5(a,c)).

Figure 6 shows the contribution of each driver to the greenness trends in each 
bioclimatic zone. The contribution is calculated as the fraction of pixels in a certain 
bioclimatic zone with a significant greening trend caused by each driver. The contribution 
of climate to the greening trend decreases from the hyper-arid zone (94.8%) to the humid 
bioclimatic zone (65.3%), while the trends in the influence of land cover are opposite. The 
trends are particularly evident in the browning areas, with climate factors accounting for 
almost 100% of significant browning trends in the hyper-arid zone and losing dominance 
in the dry semi-humid and humid zones (24.9% and 44.5%, respectively). Both precipita-
tion and temperature have the strongest significant influence on greenness trends in the 
hyper-arid bioclimatic zone, but the trends from arid bioclimatic zone to humid biocli-
matic zone are opposite, that is, the contribution of precipitation decreases, while the 
influence of temperature increases. In addition, the temperature accounts for more 
greening trends in the humid bioclimatic zone and more browning trends in the hyper- 
arid bioclimatic zone.

The browning trends driven by LC changes increase from the arid to the humid 
bioclimatic zone, whereas the significant greening trends driven by LC changes in each 

Figure 5. Dominant drivers of the significant vegetation greenness trends in the Sahel-Sudano- 
Guinean Region: (a) latitudinal profile of the number of the pixels with significant vegetation green-
ness trends caused by each dominant driving factor; (b) spatial pattern at 0.05° × 0.05° grid cells; (c) 
longitudinal profile of the number of the pixels with significant vegetation greenness trends caused by 
each dominant driving factor.
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bioclimatic zone keep steady. The browning clustered areas in the semi-arid and semi- 
humid bioclimatic zone in central West Africa are mainly driven by land cover change 
(Figures 5 and 6).

5. Discussion

In this study, we provided a region-wide assessment of trends in vegetation greenness 
and the spatial pattern of the dominant drivers of observed trends in the Sahel-Sudano- 
Guinean region. Based on the latest MODIS collection 6 NDVI dataset (MOD13A2), we 
found that greening trends in vegetation are widely distributed in the region from 2001 to 
2019, which is consistent with the trends evaluated in previous studies using different 
datasets in different periods, such as MODIS LAI (2001–2017) (Chen et al., 2019), SPOT-VGT 
NDVI (2001–2010) (Hoscilo et al., 2015), MODIS EVI (2001–2009) (Cho et al., 2015), and 
MODIS NDVI (2000–2015) (Leroux et al., 2017). Previous studies suggest a greening trend 
from 1982 to 2015 (Chen et al., 2019; Ogutu et al., 2021; Piao et al., 2019). Our findings 
applying the most recent years further show a continuing greening trend in the region. At 
the same time, we also found that the areas with browning trends are clustered in the 
semi-arid and semi-humid bioclimatic zone in central West Africa. The browning trends 
are in line with the browning trends in earlier periods reported by many studies using 

Figure 6. Contributions of underlying driving factors to the significant trends (greening and browning) 
in each bioclimatic zone (i.e. hyper-arid, arid, semi-arid, dry sub-humid, and humid bioclimatic zone) in 
the Sahel-Sudano-Guinean Region. The contribution is defined as the fraction of pixels with significant 
greening trends in a certain bioclimatic zone caused by each dominant driver. The statistics for the 
areas with a significant browning trend are plotted on the left side of the central red line, while on its 
right side are the statistics for the areas with a significant greening trend.
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various EO datasets (Leroux et al., 2017), which indicates a continued deterioration of 
vegetation conditions in these browning areas.

Few previous studies focus on the drivers of vegetation greenness trends in the entire 
Sahel-Sudano-Guinean region to reflect how climate and human interactions affect 
vegetation changes. Most previous studies are at a global scale (Chen et al., 2019; Zhu 
et al., 2016), or at a particular hotspot, such as the Sahel region (Brandt et al., 2017a; 
Kaptué et al., 2015; Leroux et al., 2017). Our analysis of the drivers of the trends in 
vegetation greenness filled this gap and revealed a spatial pattern in drivers, which is 
related to the climate gradient characteristic of the region.

Precipitation and temperature are the primary drivers of the trends in vegetation 
greenness. Precipitation has the strongest influence on vegetation greenness trends in 
the hyper-arid bioclimatic zone, but the influence decreases from the arid zone to the 
humid bioclimatic zone. This is because, in the arid and semi-arid zones, water availability 
is a key limiting factor for vegetation growth, but the water limitation decreases from the 
arid bioclimatic zone to the humid bioclimatic zone, which has been documented by 
many previous studies (Brandt et al., 2019; Fensholt et al., 2012; Piao et al., 2019). In 
addition, previous studies indicate that vegetation dynamics have a different response to 
precipitation changes at different timescales (Zhou et al., 2021). Our results also show that 
in hyper-arid and humid zones the influences of the previous year precipitation are larger 
than the current year precipitation. According to the “pulse-reserve” paradigm (Collins 
et al., 2014; Noy-Meir, 1973; Reynolds et al., 2004), the intermittent rainfall input to dryland 
ecosystems might be accumulated in the soil at different depths and with different 
durations, which leads to a multi-scale soil “memory effect” and in turn regulates biolo-
gical processes such as plant growth or reproduction at multiple spatial and temporal 
scales. Since the hyper-arid bioclimatic zone is the most water-limited area and has the 
largest water depths of soil among the 5 bioclimatic zones, the effect of multi-annual 
accumulation is much stronger than in other climatic regions, which may lead to a lagged 
response of vegetation greenness to precipitation and increases the importance of the 
previous year precipitation. In the humid zone, the forest is the major vegetation type 
(Figure 1(a)) and has a slower response to the changes in precipitation because of the 
deeper rooting system, which also highlights the influences of the previous year 
precipitation.

In contrast to the decreasing proportion of the significant trends driven by the 
precipitation, the fraction of the significant trends in vegetation greenness driven by air 
temperature in each bioclimatic zone shows an increasing trend from the arid to the 
humid zone. This can also be attributed to the shift in sensitivity factors of vegetation 
growth from water availability to radiation availability. From the water-sensitivity regions 
to the radiation-sensitivity regions, the effect of water restriction gradually weakens. In 
contrast, the radiation restriction gradually increases, which in turn causes vegetation 
changes to become more and more sensitive to temperature changes. Furthermore, the 
air temperature is generally increasing in the region (Figure 7(a)). We found that the 
largest fraction of the browning trends (Figure 4) driven by the air temperature is in the 
hyper-arid bioclimatic zone. The largest fraction of the greening trends (Figure 4) driven 
by the temperature is in the humid zone, which suggests that the increasing air tempera-
ture may restrict the vegetation growth in the hyper-arid bioclimatic zone, but promotes 
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the vegetation growth in the humid zone, possibly because of the higher mean annual air 
temperature in the north.

Most previous studies have demonstrated that land cover change is one of the 
dominant drivers (Chen et al., 2019; Piao et al., 2019). Our study shows that land 
cover changes drive approximately one-third of the trends in greenness. The propor-
tion of the significant trends driven by land cover changes, especially the human- 
induced agriculture changes, increases from the arid to humid zone, which may be 
attributed to growing human activities caused by the increased population density in 
the humid zone. In the arid zone, especially the Niger river basin in Mali in the west 
Sahel region (about 15°N) (Figure 4), the observed greening is driven by the increas-
ing fractional abundance of natural vegetation (Figures 6 and 7(c)), which may be 
due to the combined impacts of increased precipitation (Figure 7(b)) and human 
activities (for example, the “Great Green Wall” project, cropland expansion) (Anchang 
et al., 2019; Brandt et al., 2015, 2016). However, the most significant trends have 
a negative correlation with land cover changes in the sub-arid and sub-humid zones. 
We found that the observed browning areas in the semi-arid and semi-humid zones 
in central West Africa (Figure 4) are primarily driven by land cover changes, largely 
overlapping with areas experiencing a significant increasing trend in the fractional 
abundance of agriculture and decreasing in the fractional abundance of natural 
vegetation, reflecting increasing human activities (Figures 5 and 7(d)). At the same 
time, the observed greening trends driven by LC changes in the north of Ethiopia 
(near 10°N, 37°E) and northwest (near 4°N, 20°E) and east regions (near 3°N, 30°E) of 
the Democratic Republic of the Congo and Central Africa are associated with 
a decreasing trend in agriculture and increasing in natural vegetation (Figures 5 
and 7(d)). The expansion of agriculture led to vegetation browning in this region 
(Brandt et al., 2017b), contrary to the finding that intensive agriculture in India 
promotes greening of vegetation (Chen et al., 2019). With the projected continuing 
growth of the population in Africa (Gerland et al., 2014), more cropland is needed, 
which may lead to aggravating environmental degradation in the Sahel. More atten-
tion should be paid to the sustainable use of the land resources in this region.

This study highlighted the spatial pattern of the factors driving the significant trends in 
vegetation greenness in the Sahel-Sudano-Guinan region with a steep climatic gradient. 
There are a few limitations in the study, however. First, we did not evaluate the role of the 
CO2 fertilization, which has been reported as a dominant driver of global vegetation 
greening, due to the lack of a geospatial dataset covering the study period. Second, we 
used the PCR method to investigate the impacts of each underlying driver quantitatively 
and then determined the dominant drivers based on the absolute importance scores. 
However, the absolute value cannot reflect the direction of the impacts of drivers, which 
may fail to reflect the positive or negative relationship between the drivers and observed 
trends directly. The detection of the direction of the drivers needs to rely on other methods. 
Finally, the original datasets had different spatial and temporal resolutions. Aggregating 
these data through temporal and spatial resampling probably resulted in some information 
loss and smoothing, thereby introducing some uncertainties in the results.
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Figure 7. Trends in temperature and precipitation and natural vegetation and agriculture at locations 
identified by a significant (Mann-Kendall trend test, p ≤ 0.05) on NDVI trends: (a) temperature; (b) 
precipitation; (c) natural vegetation; (d) agriculture.
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6. Conclusion

This study revealed the spatial pattern of the vegetation greenness trend and evaluated the 
dominant drivers across the Sahel-Sudano-Guinean region. Vegetation greening trends are 
widespread in the region, while vegetation browning trends are more clustered in central West 
Africa. The dominant drivers of the observed trends have a distinct spatial pattern, responding 
to the climatic gradient in the region. Precipitation and temperature are the primary drivers in 
this region, but spatial patterns were observed. The impacts of precipitation decrease from the 
arid to the humid zone, conversely the impact of temperature increases from the arid to the 
humid zone. Coupled with climate changes, land cover changes mainly led to increasing 
natural vegetation and resulted in more greening trends in the arid zone, especially in the 
western Sahelian belt. However, in the semi-arid and semi-humid zones, land cover changes 
contributed to vegetation browning trends. The cluster with browning trends, located in 
central West Africa, is primarily driven by human-induced land cover changes, including the 
increasing fractional abundance of agriculture, and decreasing fractional abundance of natural 
vegetation, which indicates that more attention should be paid to the sustainable use of 
natural resources in the region with projected increased population. The findings from this 
study could shed light on the mitigation of the impacts of climate change and human activities 
in the global dryland ecosystems and on global climate change mitigation strategies.
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