
Railway Maintenance
Scheduling
Improving the trade-off between runtime
and solution quality for annual maintenance
possession scheduling with a new, complex
problem definition for the Dutch railways

Katja Schmahl

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Railway
Maintenance
Scheduling
Improving the trade-off between runtime

and solution quality for annual maintenance
possession scheduling with a new, complex
problem definition for the Dutch railways

by

Katja Schmahl
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday October 30, 2023 at 11:00 AM.

Student number: 4726022
Project duration: Feb 1, 2023 – Oct 30, 2023
Thesis committee: Dr. ir. N. Yorke-Smith, TU Delft, supervisor

Dr. ir. J. A. Baaijens, TU Delft
Dr. ir. H. J. Griffioen, TU Delft
Ir. M. Oudshoorn, Macomi B.V.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
There is increasingly more expensive maintenance that needs to be performed on the Dutch railway
network. Good maintenance schedules reduce costs, minimise hindrance to passenger and freight
travel, and follow restrictions imposed by available resources, legislation and other agreements. The
railway maintainer has modelled this maintenance scheduling problem, among others, on an annual
level. This problem definition is very precise with different conflicting non-linear constraints and cost
parts. The demands of the solving method depend on the phase of the scheduling process. In early
phases, low runtime is most important, whereas best solution quality outweighs this runtime when the
maintenance work is more finalised. In 2019, a simple greedy algorithm found good solutions fast, and
a hybrid greedy-evolutionary algorithm was developed that resulted in the best schedules. However,
since then, the problem definition has been made more realistic and thus complex. Therefore, this
hybrid greedy-evolutionary algorithm is no longer feasible, and creating a maintenance schedule takes
significantly longer than before. Research is necessary to better understand the impact of the more
realistic model, and to once more have a good trade-off between solving time and solution quality
available for the schedulers. In this thesis, we aim to achieve this by improving different aspects of
the problem and solving methods. Most experiments were done with the maintenance schedule of
2024, and results were verified on the years of 2023 and 2025. First, general problem analysis and
implementation improvements reduced the runtime from around twenty-four hours to three hours with
the greedy algorithm. Then, approximations were applied in the passenger hinder to further reduce the
runtime by around half with a negligible negative impact on the solution quality. Due to these speed-
ups, it was possible to use more elaborate solving methods. New experimental results showed that
the greedy algorithm still finds solutions fast. The hybrid greedy-evolutionary algorithm found better
quality schedules, but required more runtime. Furthermore, a novel solving method with look-aheads
was proposed, which showed some potential for cost reductions, but was dominated by the hybrid
algorithm. Every algorithm uses the greedy heuristic as a subroutine. Results showed the importance
of finding the right order for greedily scheduling the requests. A proposed new order function improved
the quality of the resulting maintenance schedules even further. To conclude, the increase in complexity
of the problem definition in recent years has made solving more difficult. To still find good solutions
in a similar time, a better performing greedy heuristic was necessary. By applying different runtime
optimisations to the objective evaluation and improving the solution quality of the greedy heuristic, a
good trade-off between runtime and solution quality, using different solving methods, was realised for
creating annual maintenance schedules for the Dutch railway network.

Preface
Before you lies the result of my thesis project for the master of Computer Science at the Delft Univer-
sity of Technology. This thesis outlines the research results, made possible through an internship at
Macomi. I originally chose to conduct my thesis at a company, because I wanted to work with a real-
world problem. If only I truly realised what this entailed beforehand. During the thesis project, I ran into
numerous advantages and disadvantages of exactly this decision. I ended up needing to change the
direction of my research multiple times. Despite the fact that it was frustrating at times, I have learned
a lot and working with a real-world problem helped keep me motivated. Even if it was just so I would
be delayed by maintenance on my own travels less.

I would like to thank my supervisor from the TU Delft, dr. ir. Neil Yorke-Smith, for connecting me with
the internship possibility at Macomi, and for always being available to provide constructive feedback
and answer my many questions. I want to thank everyone at Macomi for making me feel welcome
in your offices. I especially would like to express my gratitude to both Menno Oudshoorn and Timo
Koppenberg, who provided me with guidance and useful ideas throughout this project. Finally, I would
like to thank my family and friends, for all the support and some much-needed distraction.

Katja Schmahl
Delft, October 2023

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Research goal and questions . 3
1.4 Anonymity. 4
1.5 Structure of this document . 4

2 Background and Related Work 5
2.1 Previous work on the Dutch railway maintenance scheduling 5
2.2 Other railway maintenance scheduling work . 6
2.3 Research gap. 8

3 Detailed Problem Description 9
3.1 Input. 9

3.1.1 Maintenance projects. 9
3.1.2 Configuration input . 10
3.1.3 Other input . 10

3.2 Objective . 11
3.2.1 Constraints . 11
3.2.2 Cost function . 14

3.3 Input set characteristics . 16
3.3.1 2024. 16
3.3.2 Different years: 2023 and 2025 . 18
3.3.3 Sub-problems. 19

4 Current Algorithms and Initial Improvements 21
4.1 Background . 21
4.2 Greedy constructive algorithm . 21

4.2.1 Randomness . 22
4.3 Current objective algorithm . 23

4.3.1 Overlapping periods and constraint handling . 23
4.3.2 Availability costs . 26

4.4 Improvements to current algorithms . 28
4.4.1 Handling clusters . 28
4.4.2 Precompute changed hours . 28
4.4.3 Exact objective evaluation . 29
4.4.4 Memory management . 30
4.4.5 Improved usage of single source Dijkstra . 30

4.5 Conclusion . 31
4.5.1 Future work . 31

5 Detour Path Approximation 33
5.1 Background . 33
5.2 Graph Analysis . 34
5.3 Detour approximation algorithms . 35

5.3.1 Baseline. 36
5.3.2 Exact solution. 36
5.3.3 Edge domination . 37
5.3.4 Transit node routing . 37
5.3.5 Assume bus strategy . 40
5.3.6 Average delay strategy. 42

viii Contents

5.3.7 Additional algorithmic points . 42
5.4 Methodology for comparing detour path approximations 43

5.4.1 Separate test set . 44
5.5 Results . 44

5.5.1 Detour path approximation on isolated test set . 44
5.5.2 Impact on complete schedule . 46

5.6 Conclusion . 47
5.6.1 Future work . 48

6 Search Strategy Comparison 49
6.1 Background . 49

6.1.1 Evolution strategy . 49
6.1.2 Look-ahead techniques . 49

6.2 Existing algorithms . 50
6.2.1 Greedy constructive algorithm . 50
6.2.2 Evolutionary algorithm . 50
6.2.3 Hybrid greedy-evolutionary algorithm . 52

6.3 Greedy constructive algorithm with look-aheads . 53
6.3.1 Determining related project requests . 54
6.3.2 Additional look-ahead configurations . 56
6.3.3 Hyperparameter analysis for look-ahead addition 56

6.4 Results . 57
6.5 Conclusion . 58

6.5.1 Future work . 59

7 Schedule Order Optimisation 61
7.1 Motivation and background . 61

7.1.1 Motivation . 61
7.1.2 Background . 62

7.2 Designing order function . 62
7.2.1 Input features . 63

7.3 Optimising order function weights . 65
7.3.1 Optimisation strategy . 65
7.3.2 Constraint-guided mutation . 66
7.3.3 Cost-guided mutation. 67
7.3.4 Comparable sub-problem . 67

7.4 Results . 68
7.4.1 Hyperparameter analysis for order function weight optimisation 68
7.4.2 Order function weight optimisation. 68
7.4.3 Applying optimised order function with different search strategies 69
7.4.4 Comparison of weights from different sub-problems for order function 70

7.5 Conclusion . 71
7.5.1 Future work . 72

8 Generalisation to Different Input Years 73
8.1 Detour approximation techniques . 73

8.1.1 2023. 73
8.1.2 2025. 74

8.2 Search strategy comparison . 74
8.2.1 2023. 74
8.2.2 2025. 75

8.3 Schedule order model . 76
8.3.1 Optimising weights specifically for new year . 76
8.3.2 Performance in combination with different search strategies. 77
8.3.3 Re-using weights from 2024 . 78
8.3.4 Good order for greedy algorithm for the year 2023 79

8.4 Conclusion . 80
8.4.1 Future work . 80

Contents ix

9 Conclusion and Future Work 81
9.1 Conclusion . 81

9.1.1 Answer to the main research question . 82
9.2 Future work . 84

A Input properties of created sub-problems 87
A.1 2024. 88
A.2 Additional scheduling years . 90

A.2.1 2023. 90
A.2.2 2025. 92

B Convergence visualisation of different search strategies 95
B.1 Evolutionary algorithm . 95
B.2 Hybrid greedy-evolutionary . 96

B.2.1 Phase 1 . 96
B.2.2 Phase 2 . 97

1
Introduction

The Dutch railway infrastructure must be maintained to allow passenger and freight traffic to continue
safely. The infrastructure maintenance and expansion is the responsibility of ProRail, a Dutch gov-
ernment agency. ProRail determines both what maintenance needs to be done, and when that main-
tenance will be performed. For safety reasons, no trains are allowed to traverse the sections of the
network undergoing maintenance. The amount of required maintenance is too large to do it in the
train-free hours of the night. As such, trains will have to be hindered regularly. ProRail attempts to
schedule the maintenance works in a manner that optimises the triangle of reliability, availability, and
affordability. Scheduling the maintenance work is done on different levels, ranging from daily schedules
to multi-year schedules. In this thesis, research is conducted on the creation of the yearly schedule,
which contains the larger hindering projects. A precise objective has been defined for this by ProRail.
The current scheduling methods are insufficiently adapted to this objective. Therefore, the problem
and existing solving methods are researched and improved upon in this thesis.

1.1 Motivation
Trains are an integral part of the public transportation system in the Netherlands. ProRail is responsible
for the maintenance of more than seven thousand kilometres of rail [1]. The railway network can be
seen in fig. 1.1. Upon this railway, 157 million train kilometres were driven in 2022 [1]. The Dutch
railway network is the most intensively used of the European Regulator Group, as can be seen in
fig. 1.2. Usage is only expected to increase in the future [1]. This higher usage makes scheduling
more difficult, since there are fewer periods without trains during which maintenance can be scheduled
without hinder. Operating with more or larger trains also means that the degradation of the railway
infrastructure is expected to accelerate. The amount of maintenance required will only increase over
time. It increased with around 20% in 2022 compared to 2021, this increase is expected to continue
towards future years [1].

Increased availability of public transport is a current and important point on the Dutch political agenda,
both for sustainability and accessibility reasons [2]. Therefore, multiple investments are planned to
allow higher frequencies, for national and international trains. To implement these expansions, train
traffic will also inherently have to be hindered.

Minimising the costs of, and the hinder caused by, all infrastructure projects is therefore increasingly
important. This allows us to keep the public transport safe and available on both the short and long
term. Better schedules have two main advantages. The first advantage is financial: scheduling mainte-
nance intelligently can reduce the costs of maintenance projects, by for example reducing the personnel
costs. The second advantage is societal: better maintenance scheduling can reduce hindrance to pas-
senger and freight trains. Good schedules adhere to all rules set by the government, and agreements
made with other parties. Better solving methods could also save schedulers time. Moreover, it allows
schedulers to consider multiple different scenarios with all concerned parties.

2 1. Introduction

Passenger & Freight
High-speed line
Freight
Heritage
Station

Figure 1.1: The railway infrastructure in the Netherlands. [3]

Au
str
ia

Be
lgi
um

Bu
lga
ria

Cr
oa
tia

Cz
ec
h R
ep
ub
lic

De
nm
ark

Es
ton
ia

Fin
lan
d

Fra
nc
e

Ge
rm
an
y

Gr
ee
ce

Hu
ng
ary

Ire
lan
d
Ita
ly

Ko
so
vo
La
tvi
a

Lit
hu
an
ia

Lu
xe
mb
ou
rg

No
rth
Ma
ce
do
nia

Ne
the
rla
nd
s

No
rw
ay

Po
lan
d

Po
rtu
ga
l

Ro
ma
nia
Se
rbi
a

Slo
va
kia

Slo
ve
nia
Sp
ain

Sw
ed
en

Sw
itz
erl
an
d

Un
ite
d K
ing
do
m

Country

0

20

40

60

80

100

120

140

N
et
w
or
k
us
ag
e
in
te
ns
ity

(T
ra
in
s
pe
rd
ay

pe
rr
ou
te
km

)

Figure 1.2: The network usage intensity of countries in the Independent Regulator’s Group-Rail [4]. The Netherlands has the
highest usage intensity with 145 trains per day per route km.

1.2 Problem statement 3

Besides improving the resulting schedules, more research could provide improved understanding of the
problem and its possible solving methods. Better problem understanding could have a few advantages.
Difficult decisions in the maintenance management, such as prioritising which maintenance should be
done most urgently or how to (re-)train personnel, have to be made continuously. Having insight in
how these potential changes will impact the total amount of disruption, and the feasibility of getting all
required work done while keeping to the specified constraints, could support better decision-making.
Similarly, this understanding can aid in (political) discussions on the future of railway transport in the
Netherlands. Also, the advantages and drawbacks of this realistic cost and constraints modelling can
be investigated by analysing the impact of the current increase in model complexity. This could help to
change the model in the future, and provide insight that could improve both solving and modelling of
similar problems.

1.2 Problem statement
The Dutch railway manager (ProRail) decides on a set of maintenance projects per year, that should be
executed within predetermined time windows. It is necessary to create schedules which determine what
infrastructure maintenance will be performed when. To find the best possible maintenance schedule,
the problem is defined precisely, with a complex set of constraints and a precise objective function.

The scheduling problem is very high-dimensional, with hundreds of maintenance projects that need
to be scheduled. Many aspects of the problem objective are defined on a high level of granularity.
For example, passenger travel data is defined on an hourly level. Hindrance needs to be calculated for
every frequently travelled origin-destination pair, for every hour in the year-long schedule. Besides that,
there is a large amount of diverse constraint types, which introduces non-linearity into the objective.
Different cost parts and constraints are conflicting. For example, scheduling during the day means that
labour is cheaper, whereas scheduling at night hinders fewer passengers.

At ProRail, the final schedule is evaluated and made by a team of schedulers. Their demands have
been captured in the objective. This is however never completely representative of what is considered
most important. ProRail has partnered with Macomi to create a tool for finding good candidate sched-
ules of the defined set of required train-free periods. Macomi is a company specialised in simulation
and optimisation. It is important to note that throughout this scheduling process, the maintenance work
is changing and becoming more specific. As such, the requirements of this tool are also dynamic. In
earlier phases of the scheduling, the input is still less detailed, and solutions need not be optimised com-
pletely. When new projects or different configurations are considered, for example, rapidly determining
how this impacts the scheduling feasibility is more useful. When the input is (almost) finalised, solving
time is not nearly as important, but the schedulers care more about finding the very best solutions.

A few years ago, a fast greedy algorithm and a specialised evolutionary algorithm were developed for
finding good schedules, which were successfully combined into a hybrid greedy-evolutionary technique
[5]. However, the constraints and costs have been substantially altered since then, to more accurately
represent reality. This new objective is more computationally expensive to evaluate, making it difficult
to effectively go through the search space. The developed greedy algorithm, which cost about fifteen
minutes before, now takes over twenty-four hours. Because of this, the previously preferred hybrid
version is no longer currently in use, and designing good schedules has becomemore time-consuming.
Therefore, the impact of these changes to the problem definition on the solving methods needs to be
further researched.

1.3 Research goal and questions
The final goal of this thesis is to research and improve the solving of the maintenance scheduling
problem for the Dutch railways. Improvement would either be shorter runtime, better solution quality,
or preferably both. This would ideally make it possible to choose the current algorithm settings based
on the runtime-quality trade-off preference at that moment in the scheduling phase. Besides, better
understanding of this trade-off is another research goal, as it can be helpful for potential future changes
to the problem.

4 1. Introduction

The main research question that will be answered in this thesis is: “How can improving different
problem and solution aspects of the yearly maintenance scheduling on the Dutch railway net-
work help to obtain better understanding and improved usability of the trade-off between run-
time and solution quality?” This will be done by first answering each of the following sub-questions.
These answers will finally be combined to answer the main research question.

1. How do different aspects of the problem and the currently used algorithms influence the runtime
and solution quality?

2. How can approximation of passenger detour paths be used for faster solving?

3. How do different search strategies solve the scheduling problem in terms of solving time and
solution quality?

4. How can new prioritisation techniques be applied to improve the solution quality?

5. How do techniques that improve the available trade-off between the runtime and solution quality
for the schedule of 2024 generalise to different years of input data?

1.4 Anonymity
All problem input data used in this thesis is based on real maintenance required for the Dutch rail-
way network, and the real passenger and railway data. As these maintenance costs are considered
confidential, all objective values have been divided by a large constant, which is not given. As such,
cost improvements which may seem small in these anonymous values can still be very substantial
improvements for ProRail.

1.5 Structure of this document
The structure of the remainder of this thesis is as follows. First the background chapters 2 and 3, then
the content chapters 4 to 8 which aim to answer the research sub-questions, and finally the conclusion
in chapter 9.

Chapter 2 introduces the necessary related work. More background is given in the content chapters
where it is used. Chapter 3 provides a detailed description of the problem, as well as an analysis of the
most important characteristics of the used input.

Chapter 4 will explain the current algorithms for finding and evaluating solutions, and some first improve-
ments will be introduced. Chapter 5 will apply approximation to an important aspect of the evaluation
to reduce runtime. Chapter 6 shows how different search strategies allow trading off runtime and so-
lution quality. Chapter 7 will propose a new technique that is designed to improve the solution quality
obtained by each of the available search strategies. Chapter 8 will show how the results of all other
content chapters apply to different scheduling years, to analyse the robustness of the solutions.

Finally, in chapter 9, all conclusions from the content chapters are summarised and the main research
question is answered. Also, all future research directions are summarised.

2
Background and Related Work

In this chapter, the necessary background for this thesis is provided. First, an overview of research
relating railway maintenance scheduling on the Dutch railway is given in section 2.1. Then, an overview
of other related research in the field of railway maintenance scheduling is provided in section 2.2.
Finally, in section 2.3, the identified research gap that this thesis aims to fill is explained.

2.1 Previous work on the Dutch railway maintenance scheduling
The most important work is the thesis that this research most directly builds upon by Oudshoorn [5],
and the accompanying paper by Oudshoorn, Koppenberg, and Yorke-Smith [6]. This contains a com-
parison of solving methods on the yearly scheduling problem. This work used an earlier version of
the problem definition, with a simpler solution evaluation. In this research, a greedy constructive al-
gorithm and a specialised evolutionary algorithm were designed. These algorithms were successful
in reducing different aspects of the cost. Therefore, the two algorithms were combined into a hybrid
greedy-evolutionary, which was the best solving method found for the problem. Some algorithms in
this work are still applicable, and these will be explained further in chapters 4 and 6. Besides, a multi-
objective approach was also tested in this work; numerical results showed this was unsuitable for this
problem. A simulated annealing algorithm was also considered, but this was discarded as it was out-
performed by the evolutionary algorithm.

In 2011, a master thesis research was conducted on the annual Dutch maintenance schedule [7]. In this
work, the 10 most important maintenance activities were considered, and a case study was presented
for the maintenance in one railway yard.

Recently, another master thesis, by Weert [8], was written on the Dutch railway scheduling. This work
researched the effects of incorporating events into the scheduling. Themain conclusion of this work was
that an optimal solution could be found for creating schedules that minimise the passenger hindrance,
with a proposed method to add more flexibility. They used a mixed-integer linear programming model
of the problem, which was solved using a commercial optimiser.

Compared to the problem definition used in this thesis, they used a smaller scale and a more sim-
plified objective. Weert [8] included a subset of the constraints that will be used in this work, and it
seeks to optimise only the passenger hindrance. So, it does not take into account other aspects such
as the personnel costs. Moreover, the passenger hindrance was computed using the assumption that
passengers always travel on the shortest of the pre-computed 𝑘-shortest paths which is not blocked
by maintenance. The hindrance in this thesis is instead computed using a fully dynamic shortest path.
A case study was done for a schedule of 90 days using part of the Dutch railway network, as opposed
to the annual schedule using the full network in this thesis.

Hertog, Zante-de Fokkert, Sjamaar, et al. [9] suggested a division of the Dutch railway network in
working zones, for safety. No trains can be operated in the same zone where maintenance is being
performed. Zante–de Fokkert, Hertog, Berg, et al. [10] used these working zones to determine sets
of zones that can be blocked at the same time. They then designed a model for creating a weekly

6 2. Background and Related Work

repeating maintenance schedule for preventive maintenance that can be done at night. These weekly
schedules are used by ProRail for smaller maintenance, the larger maintenance is scheduled on a
longer time span. Nijland, Gkiotsalitis, and Berkum [11] later proposed a novel mixed-integer linear
programming (MILP) for the weekly schedules that considers the trade-off between hindrance for train
operators and the maintenance management. A multi-objective formulation of the problem, considering
contractor flexibility and train operator hindrance, was more recently proposed for this same problem
on Dutch railway maintenance scheduling by [12], [13].

Budai-Balke [14] studied the problem of clustering preventive maintenance possession for small rou-
tine tasks and larger projects together, with the goal to minimise possession and maintenance cost.
Pouryousef, Teixeira, and Sussman [15] developed themodel further by consideringmultiple segments,
improved handling of frequencies on routine tasks and traffic restrictions with penalties.

Besides the optimisation of railway infrastructure maintenance schedules, some recent work was done
on the effects of the maintenance. Bešinović, Widarno, and Goverde [16] introduced an exact model for
generating an alternative timetable in case of maintenance. An optimal alternative timetable is created
for both freight and passenger trains, with a limited impact on the original timetable. Trepat Borecka
and Bešinović [17] introduced the Multimodal Alternative Services for Possessions (MASP) problem,
which supports the planning of alternative services when maintenance blocks the regular train service.
The framework they developed provides schedules, passenger flow routing, and routes for alternative
services (such as buses).

2.2 Other railway maintenance scheduling work
This thesis is part of an extensive body of research in the field of railway trackmaintenance planning and
scheduling (RTMP&S). A categorisation and survey for problems in this category was given in Lidén
[18] (and more elaborately in Lidén [19]). The field was split in three different levels: strategical, tactical
and operational. The strategical level considers time spans of one to several years with larger strategic
problems, such as organisation. Tactical problems are on a medium long time span, of weeks to
years, and includes scheduling and timetabling. The operational category contains short-time problems
relating to the final implementation. In this thesis, the problem is defined on a tactical level. Each of
these levels were split into different classes. For the tactical level, these classes are: possession
scheduling, rescheduling, and maintenance vehicle and team routing. The problem from this thesis
is a possession scheduling problem. Possession scheduling was split up in four subclasses: major
possession scheduling, regular possession pattern construction, possession and work coordination,
and timetable compression. This thesis deals with a major possession scheduling problem.

Sedghi, Kauppila, Bergquist, et al. [20] expanded on this by covering the work done from 2015 to
2020. It also expanded the survey by developing a taxonomy with more attributes, and analysing the
research trends and gaps. They recognise a critical role for possession scheduling in RTMP&S. Within
the work in the class of possession scheduling, three main directions were identified. The first creates
a train timetable, and then schedules maintenance in the train-free periods. The second fixes the
maintenance schedule, and then creates a timetable for the trains in the periods without maintenance.
The final direction is to schedule the two simultaneously. The first category was the most common
approach, whereas the third category is receiving increased interest in recent years. This thesis falls
within the second category, where the timetabling is done separately later.

Another trend that was identified is the increase in work considering condition-based maintenance,
rather than predetermined maintenance. Condition-based maintenance results in more complex prob-
lem design, and is not done by ProRail on the yearly schedule level.

This work also identified the importance of creating a realistic estimation of the maintenance cost.
Simplified objectives may result in an inadequate analysis of the RTMP&S strategies and decisions, as
decision-makers often need to consider multiple conflicting objectives.

All work from this review, which falls in the same category as this thesis: possession scheduling, will
briefly be summarised. The papers referenced in this taxonomy in the possession scheduling class
with a network component level all used (mixed) integer programming. Solving was most often done
using commercial solvers, or otherwise various heuristics and metaheuristics were used.

In 1999, Cheung, Chow, Hui, et al. [21] developed a constraint programming model for weekly track
possession scheduling for the Hong Kong subway. The maintenance jobs are prioritised based on the

2.2 Other railway maintenance scheduling work 7

content, and are to be scheduled when no train traffic is taking place.
Peng, Kang, Li, et al. [22] try to minimise travel and penalty costs, and assigns a maintenance

team and time to each maintenance project. It schedules 333 projects in a year. A weekly precision is
used. The cost is based on the travel time of the teams, and penalties for the defined soft constraints.
This problem was extended in Peng and Ouyang [23], where more constraints were introduced and
the solving method was improved. An initial solution is obtained from a relaxed problem, which is then
improved with a parallel randomised local search.

Boland, Kalinowski, Waterer, et al. [24], and the accompanying paper [25], studied the problem of
adjusting a maintenance plan for a coal chain railway. The maintenance tasks should be scheduled to
maximise transportation throughput, while minimising the amount of changes from the original sched-
ule. Each maintenance task can be moved up to a week, with a precision of half an hour. To make this
problem tractable, multiple heuristics were applied to decrease the problem size and more efficiently
solve the maximum flow problem.

Forsgren, Aronsson, and Gestrelius [26] proposed a mixed-integer programming (MIP) model to
optimise train timetables and maintenance schedules together. Existing maintenance activities can be
moved within pre-defined time windows. This model includes moving scheduled trains to a different
time, rerouting trains, or cancelling trains. The total delay of the trains and the number of cancelled
trains are minimised. It is applied in two realistic scenarios, which use a part of the Swedish railway
network and a few track possessions.

Khalouli, Benmansour, and Hanafi [27] developed an ant colony optimisation (ACO) for the preven-
tive maintenance scheduling problem. They tested it with a two-year horizon and approximately thirty
projects. Using a commercial solver (CPLEX MIP), they solved 62% of instances within three hours.
Using the ACO algorithm, they reached the optimum in 55% of these cases, with an average runtime
of 200 seconds for ACO and 4808 seconds for the commercial solver.

Luan, Miao, Meng, et al. [28] worked on combined optimisation of the train and maintenance slot
schedule. Numerical results were presented that demonstrate the benefits of simultaneous scheduling
and time tabling, as compared to a sequential method.

Lidén and Joborn [29] present a mixed integer programming model for solving railway traffic and
network maintenance simultaneously. A long term tactical plan is created, that aims to reduce the train
operating cost and maintenance cost. Train operating cost is measured by total train running time,
cancellations, and deviation from preferred departure. Maintenance cost is measured by the direct
work time and the overhead time. The model is demonstrated on a weekly problem with synthetic test
instances. Lidén [30] extends this model with crew resource considerations. Lidén [31] continues on
this by doing a case study on a single-track railway line. In this case study, planning train traffic and
maintenance in an integrated manner improves upon sequential scheduling, with 11-17% maintenance
cost savings without incurring a large train traffic cost increase.

Zhang, Gao, Yang, et al. [32] used an enhanced genetic algorithm (GA) for solving a maintenance
scheduling problem, which considers the ‘importance’ of a track segment. It also combined mainte-
nance and train scheduling, specifically for night maintenance and sunset-departure and sunrise-arrival
trains.

D’Ariano, Meng, Centulio, et al. [33] created a bi-objective optimisation problem for minimizing the
deviation from the train planning, and maximise the number of maintenance works. It included robust-
ness to stochastic disturbances to the train travel time and maintenance work.

Zhang, Gao, Yang, et al. [34] introduced a heuristic algorithm using Lagrangian relaxation for solving
the timetable and maintenance problem. This included a dynamic constraint-generation technique
in the iterations of the sub-gradient optimization procedure. They apply the algorithm to a practical
problem concerning the Chinese railway network.

Furthermore, some novel aspects in the research done since this review in 2020 will be highlighted.
Most work found since 2020 was however not closely related to this thesis, because it focused on
condition-based maintenance [35]–[41]. This thesis instead uses a predetermined set of maintenance
projects.

Kalinowski, Matthews, and Waterer [42] proposed a model for the annual maintenance schedule of
a large railway network in Australia. It uses a granularity of one hour, and a matheuristic is designed
that allows solving of the full year problem. The objective is to minimise the total capacity reduction.

Zhang, Lusby, Shang, et al. [43] suggested a new model, which includes platforming besides train
timetabling and maintenance scheduling. This model created a daily schedule.

8 2. Background and Related Work

Mohammadi and He [37] used a deep reinforcement learning algorithm, for optimising a mainte-
nance policy. The reward is defined as a combination of maintenance cost-effectiveness and the safety.

Bababeik, Farjadamin, Khademi, et al. [44] scheduled trains and maintenance on a single railway
track in Iran. It uses a stochastic maintenance duration and handles different rail speed limits before
and after maintenance.

2.3 Research gap
Based on the existing work, a research gapwas identified. The problem handled in this thesis is different
from most related work on a few aspects. Related problems from the literature often have a smaller
search space. Either because the time window is smaller, meaning the created schedules were for less
than a year, or because the granularity is lower. Work for example needed to be assigned a week to be
scheduled in, rather than a specific starting hour. Besides, the objective is almost always less complex
than the problem definition from the Dutch railways scheduling. Most problems are modelled in a linear
programming model, whereas the problem definition in this work is non-linear. Specifically, the precise
definition of passenger hinder with fully dynamic shortest path calculations is unmatched in any other
work. The sheer number of constraints defined is also larger here than in the related work. Finally, the
required maintenance is defined beforehand in this work, which is not the case for most other works.

These differences show a potential gap in research. Analysing this problem, and the differences with
the earlier version from 2019, provides knowledge of how the increased realism in the objective function
impacts the solvingmethods. This could be useful to determine how to improve other simplified problem
definitions. This research will show how solving methods created on an older, simpler version still
function on themore complex problem. In this work, we also propose some novel methods for improving
the results, that have not been applied to the railway maintenance possession scheduling problem
before.

3
Detailed Problem Description

In this chapter, the scheduling problem as defined by the Dutch railway manager is explained in depth.
The objective of this problem is to find a good annual maintenance schedule. The problem input will first
be defined in section 3.1. A complete schedule assigns a starting date to every maintenance project.
To evaluate a schedule, an objective consisting of constraints and a cost function is given, which will
be explained in section 3.2. Minimising the number of broken constraints is considered the highest
priority. When the number of violations is equal, the lowest cost solution is preferred. The specific
problem inputs used in this work and their most important characteristics are reported in section 3.3.

3.1 Input
The most important input for the scheduling algorithm is a list of maintenance work and a set of config-
uration variables. For the configuration, default values will always be used. Besides that, there are a
few other input collections, which specify more static parts of the problem. These will also be the same
in all experiments done for this thesis.

3.1.1 Maintenance projects
The first important part of the input is a collection of maintenance work that needs to be scheduled.
For this, ProRail uses some specific terminology. For the maintenance that needs to be done, a set of
projects is created by ProRail. The project management can then make requests (also called project
requests) for work on that project. The terms request, project request, and sometimes block will be used
interchangeably, signifying a unit of work that needs to be scheduled. The annual schedule is only used
for project requests that hinder passengers or goods. As such, each project request requires a track
possession, meaning that a part of the railway network is taken out for a certain period to perform one
unit of maintenance work. Each project request needs to be assigned a single starting date; it always
needs to be scheduled in entirety, meaning it can not be split or paused.

Project requests can be clustered if work needs to be done simultaneously. All requests that are a
part of the same cluster need to be scheduled within the period of the longest request in the cluster.
There are some other constraints or exceptions relating to the clusters, which will all be explained in
section 3.2.1. Requests which are a part of the same project do not necessarily have to be planned
together.

There are two types of requests; regular project requests and concept project requests. For the most
part, these are the same. The main difference is the level at which the hinder is defined. Regular
project requests specify exactly which railway tracks are hindered. Concept project requests instead
define a larger part of the network; the minimum parts where hinder can be computed, with percentages
specifying how much of the freight and how much of the passenger travel is blocked. This larger part
is called a trajectory part, these terms are further explained in section 3.1.3. For the planning input
this thesis works with, only concept project requests were used, for uniformity. Since the handling of
concept and regular requests is similar, it is not expected to have a large influence on the results. All
requests mentioned in this report are concepts, so this will not be explicitly specified from here on.

10 3. Detailed Problem Description

Each project request is specified with a length (in hours), an earliest required start time and a latest
required end time. Besides that, the corresponding construction costs and personnel costs are defined.
These are scaled based on the assigned planned period. The other costs are constant extra costs,
incurred independent of the start time. For each project request, the required amount of essential
specialised personnel for three types of personnel with limited availability is specified. These types
are overhead contact line (OCL) personnel (Dutch: ‘bovenleiding’, abbreviated as BVL), exothermic
welding (ETW) personnel (Dutch: ‘exothermisch lassen’, abbreviated as THL), and 3) commissioning
(CMS) personnel (Dutch: ‘Bedrijfsklaar maken, functietesten and indienststellen’, abbreviated as BFI).
All parts of the railway network that are hindered by this request are also specified, with a factor of
hinder for goods and passengers.

Besides these requests, there is also a collection of pre-planned hinder specified. These are track
possessions that already have a fixed period.

3.1.2 Configuration input
Some basic configuration input also has to be defined. This includes some simple configurations, such
as the time window within which all projects need to be scheduled. Besides, it specifies some details
for how the schedule should be evaluated. This includes, for each of the constraint types, whether it is
considered ‘hard’ or ‘soft’ and what the corresponding penalty is. These inputs and their default values
are further explained in section 3.2.1. The configuration also includes the weights for certain parts of
the objective function, as well as some extra global limits that a schedule should adhere to. The exact
meaning of these configuration input values and the used default values are all specified in section 3.2.

3.1.3 Other input
Besides the project requests and the configuration, there are a few other problem aspects that need to
be specified to create a maintenance schedule.

Firstly, all track specifications are given. Every piece of railway track, station, bridge, etcetera is spec-
ified. For these specifications, a few definitions are required:

• Scheduling point. A scheduling point is a point where the railway parts are split up. There
are multiple types of scheduling points, such as stations, bridges, or junctions. Switches are not
included in the used network, so there is no detail on where you can go from one parallel track to
another. The layout within stations is also not specified.

• Macro track. A macro track is an independent piece of rail between two scheduling points. This
track can be used in both directions.

• Trajectory part. A trajectory part is one level higher in abstraction, it represents a minimal unit
that can be hindered. It has a link to each of the possible macro tracks that can be used. To allow
trains on this trajectory part, it needs to be supported by at least one macro track. Every macro
track can only be used by one trajectory part at a time.

• Subcorridor. A subcorridor is a collection of one or more trajectory parts.

• Transport flow. A transport flow represents a flow of trains. This is a collection of multiple
subcorridors. A subcorridor can be part of multiple transport flows.

• Corridor. A corridor is a collection of one or more transport flows.

All these collections need to be specified for the full Dutch railway network. For visualisation purposes,
the coordinates of the corresponding locations are also given for each scheduling point.

In order to determine the impact of the maintenance on passengers, all information on passenger travel
is specified: a collection of origin-destination pairs of passengers with the amount of passengers that
are travelling this route at a reference hour. These are the regular passenger streams. Every pair
with less than one per hour is filtered out. For every hour within the input period, a factor is given that
specifies how busy that hour is in comparison with the reference. For example, in the middle of the
night, there are very few passengers, so the factor is low. During peak travel hours, this factor is higher.
Besides, there is a collection of extra passenger streams. These passenger streams represent travel

3.2 Objective 11

that is not happening throughout the year equally, but is only present at specific dates or times. For
instance, passengers travelling to certain events or tourist spots. These streams are therefore specified
for a set of specific hours and a specific number of passengers at that hour. For every stream, regular
or extra, a default route is given. This is the route that passengers are expected to take when they
are not hindered. This route is given as an ordered list of stations where their train stops. Besides, all
holiday information is given. Every holiday has a name, start time, end time, region, and factor. Any
passenger stream starting in or ending in this region then has its passenger amount multiplied with this
factor during the holiday.

The input also contains a good deal of information on freight trains for determining the impact on freight
travel. A collection of freight streams, specified with a number of trains per hour, start date, end date,
route, and blockage information, is provided as input. This blockage information specifies what happens
to the freight when the default route is being blocked. This is specified with a percentage that will
be rescheduled, a percentage that will be cancelled, and a percentage that will be detoured. For
rescheduling and cancellation, a penalty is defined. For detouring, one or more alternative routes are
given with a percentage and the extra travel hours for this alternative route.

The constraints are another important part of the input. Lastly, there are some small other inputs
related to the objective, such as the personnel cost scale factors for every hour in the input period and
the amount of essential specialised personnel that is available. These small constraint and cost inputs
are further explained in section 3.2.

3.2 Objective
The objective consists of a set of constraints and a cost function. Minimizing the hard constraint vio-
lations is most important. In case of equal number of broken constraints, the lowest cost solution is
preferred. However, the final schedule is determined by a team of schedulers. Their final wishes can
impossibly be captured perfectly in a cost function and a set of constraints. Therefore, being able to
generate multiple possible schedules is also important.

3.2.1 Constraints
An extensive set of constraints is defined. Ideally, a maintenance schedule should satisfy all these
constraints, but this is generally impossible. Therefore, there is a prioritisation added to the constraint
types. Some constraints are considered hard. Satisfying these constraints is the first priority. Other
constraints are configured as soft constraints. Breaking these constraints results in a penalty in the
cost function. The division between which constraints are considered hard or soft can be configured
differently for each run. Constraint types can also be excluded for a certain run.

Every constraint type also specifies how violations are counted. Some constraints can only be
broken once, such as a request being scheduled too early. Others can result in a larger number of
violations. For example, if too much personnel is required, the number of violations is related to the
amount of personnel exceeding the global limit.

In this section, each of the constraints is explained. All constraints are also listed, with their default
severity configuration, in table 3.1.

Required time span. For each of the project requests, a time span is given within which the project
request should be planned. If the request is planned outside this time span, this is considered one
violation. In the configuration, a distinction is made between starting too early or ending too late. By
default, ending too late is considered a soft constraint violation, whereas starting too early is a hard
constraint violation.

Clusters. Some requests are defined as a cluster. These requests should all be scheduled together;
all shorter requests of the cluster need to be scheduled within the period of the longest request. For
each request in the cluster that is not completely contained in the longest request, there is one violation.
Besides that, there is a violation for every request that is not a part of this cluster, but overlaps on the
same trajectory part.

12 3. Detailed Problem Description

Personnel. There is only a limited amount of specialised personnel available for the maintenance.
There are three types of this personnel. By default, there is 70 CMS personnel, 100 OCL personnel
and 100 ETW personnel available. Every project request specifies an amount of required personnel
for each of these types. If, on a certain day, the maximum amount of required personnel exceeds the
available amount, this results in a broken constraint. The size of the violation is the amount of excess
required personnel on this day. So if, for example, request A is scheduled from Monday until Friday
morning and requires 50 CMS personnel. Request B requires 25 CMS personnel and is scheduled
from Thursday afternoon until Sunday. Then, there is a violation of size 5 on both Thursday and Friday,
so this schedule has 10 constraint violations for the constraint type ‘Essential CMS personnel’.

Location conflicts. The problem definition also contains a large conflict matrix. There are certain
pairs of trajectory parts which are not allowed to be blocked simultaneously. Each of these pairs also
has a type, based on the reason of the conflict. There are five types of conflicts: border, corridor,
junction, goods detour, and train maintenance facility. One violation is counted for each pair of project
requests with at least one conflicting pair of trajectory parts between them. These conflicts can also
exist between a planned request and a pre-planned hinder. There are three exceptions for the conflicts.
First, if there is one request which blocks both of the trajectory parts, these two can not cause a conflict
during this request. Second, some conflict types are only considered if there are passenger or freight
trains at that time. Third, if a request is a concept request with a hinder lower than a configurable
percentage (default 30%), this request can not be a part of a location conflict.

Weekdays. Two constraints are defined relating to the division of work between the week and the
weekend. The first constraint is the minimum percentage of hours that need to be planned on weekdays
outside the holiday period. The threshold can be configured and the default value for this is 25%. If too
little work is scheduled during the week, the size of the violation is equal to the number of hours below
the threshold. This required weekday maintenance work should be spread over different locations.
The second constraint is therefore a maximum number of weekdays that can be blocked per trajectory
part. This maximum number of weekdays is set for each trajectory part separately. Any day with at
least one hour of project request counts towards this maximum. One violation is counted per trajectory
part where the number of days exceeds this threshold. The current default values are larger than the
amount of weekdays in a year. Therefore, this constraint is not influencing the objective in this thesis.

Dependencies. Dependency constraints specify a period during which certain trajectory parts can
not be hindered. There are multiple types of dependencies:

• Foreign dependencies. Dependencies determined based on the maintenance calendar in neigh-
bouring countries.

• Road dependencies. Dependencies given by the institute responsible for construction and main-
tenance of waterways and roads (Rijkswaterstaat). When, for example, large road maintenance
is done, the alternative trains should not be hindered at the same time.

• Event dependencies. Some large events constitute a dependency. Events are prioritised on five
different levels, where dependencies from Events-1 are the most important and dependencies
from Events-5 are least important.

• Unwritten rules. Some dependencies are categorised as unwritten rules. For example, during
some work in the Port of Rotterdam, certain trajectory parts should not be hindered.

Prerequisites. Project requests can have a prerequisite project request defined. If a prerequisite
project request is not scheduled earlier, this constitutes a violation.

3.2 Objective 13

Constraint
category Optional Sub-Type Severity Penalty for violating

soft constraint (⋅10−3)

Conflicts

Border Hard 0
Corridor Hard 0
Goods detour Hard 0
Junction Hard 0
Passenger detour Hard 0
Train maintenance facility Hard 0

Train free period

Max per subcorridor Warning 0
Max per transport flow Warning 0
Max weekends transport flow Warning 0
Min time between subcorridor Soft 9
Min time between transport flow Soft 9

Dependencies

Foreign Hard 0
Road Hard 0
Unwritten rule Warning 0
Events-1 Hard 0
Events-2 Soft 47
Events-3 Soft 28
Events-4 Soft 9
Events-5 Warning 0

Concurrency
Max requests at 1 subcorridor Hard 0
Max concurrent globally Hard 0
Max concurrent per traj. part Hard 0

Personnel
Commissioning (CMS) Hard 0
Overhead contact line (OCL) Hard 0
Exothermic welding (ETW) Hard 0

Required timespan Request starting before Hard 0
Request ending after Soft 9

Cluster
Request planned outside Hard 0
Planned overlapping Hard 0
Standalone request overlaps Hard 0

Prerequisite Hard 0
Too much work in a quarter Exclude 0
Individual request planned overlapping Hard 0
Non-individual request planned individually Hard 0
Max weekdays per trajectory part Hard 0
Min percentage planned during weekdays Exclude 0
Min days between post change Warning 0

Table 3.1: All constraints defined for a maintenance schedule with their default severity configuration. A hard severity means
that satisfying these constraints is most important. Breaking soft constraints results in a penalty. This penalty is also specified in
the table. A warning severity means that no cost is added, but a warning is shown to the user. The severity level exclude means
nothing is done about this constraint type. For each constraint, it is also possible to specify an aggregation method. The default
aggregation for each of these constraints is linear, which means that it simply uses the size of violation. For soft constraints, the

corresponding penalty is multiplied with this size. It is also possible to use a constant or exponential aggregation.

14 3. Detailed Problem Description

Train free periods. A few constraints are defined on the number of train free periods. Train free
periods are periods where there is at least twenty-four hours of hindering maintenance work. Hindering
maintenance work is defined as maintenance with a passenger hinder percentage of at least 30%. The
following constraints are defined:

• Maximum number of weekends with a train free period per transport flow, default 13

• Maximum number of weekends with a train free period on a subcorridor, default 6

• Minimal days between two train free periods per transport flow, default 9

• Minimal days between two train free periods on a subcorridor, default 25

Concurrent work. Per subcorridor, only a certain number of project requests are allowed simultane-
ously. The default configured value for this is five. This constraint is not broken if all project requests
are a part of the same cluster. Besides that, there is also a maximum amount of project requests from
the same overarching project allowed at the same time. By default, there are at most two requests
longer than eight hours allowed simultaneously, and at most ten requests of shorter length. There is
also only one request per overarching project per trajectory part allowed at any time.

Too much work in a quarter. Preferably, the work is split evenly over the four fiscal quarters. For
this, a constraint violation is counted for each hour differing from the perfect split. This constraint
can therefore almost never be satisfied. It was specifically designed to be used as a warning or soft
constraint, and it is by default excluded.

(Non-)Individual requests. Some requests are defined to be individual or non-individual. Individual
requests should not be scheduled to overlap other requests on the same trajectory part. Any request
that overlaps with an individual request counts as one violation. Non-individual requests contrarily have
to be overlapping with another project request at the same location during each hour they are planned
at. This is used for simple and unimportant work which does not justify hindering any trains by itself,
such as painting.

Minimal days between post change. Some project requests have a post change defined. A post
change means that the project changes railway traffic post. There must be at least 28 days between
two of these post changes using the default configuration.

3.2.2 Cost function
The used objective function for a maintenance schedule is a minimisation objective, also called a cost
function. These two terms are used interchangeably throughout this thesis. The lowest number of
broken hard constraints makes for the best solution, where the cost is used for comparison when the
number of violations is equal. The objective is an aggregation of a few separate, conflicting parts.
It could therefore also be defined as a multi-objective problem. This alternative formulation was re-
searched in Oudshoorn [5], but was not further used due to significantly worse results. Therefore, this
work will only consider the single-objective formulation.

The cost function 𝑧 is determined from three parts: the financial costs (𝑐𝑓𝑖𝑛), the hinder costs (𝑐ℎ𝑖𝑛𝑑𝑒𝑟),
and the costs from soft constraint violations (𝑐𝑝𝑒𝑛). The cost of a schedule is defined as follows, where
𝑤𝑥 is the weight factor for part 𝑥. The default value is 1 for each of these weight factors.

𝑧 = 𝑤𝑓𝑖𝑛 ⋅ 𝑐𝑓𝑖𝑛 +𝑤ℎ𝑖𝑛𝑑𝑒𝑟 ⋅ 𝑐ℎ𝑖𝑛𝑑𝑒𝑟 +𝑤𝑝𝑒𝑛 ⋅ 𝑐𝑝𝑒𝑛

Financial costs. The financial costs consists of constant other costs (𝑐𝑐𝑜𝑛𝑠𝑡) and personnel costs
(𝑐𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙). These costs are defined as the sum of the costs of each scheduled project request:

𝑐𝑓𝑖𝑛 = ∑
𝑝∈𝑃

𝑐𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑝 + 𝑐𝑐𝑜𝑛𝑠𝑡𝑝

3.2 Objective 15

The personnel costs are multiplied based on the predefined personnel factor at the scheduled hour ℎ
(𝑤ℎ). For example, personnel is more expensive at night hours or in weekend hours. The personnel
cost for a request 𝑝 planned on time period 𝑇𝑝 is therefore:

𝑐𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑝 = ∑
ℎ∈𝑇𝑝

𝑤ℎ ⋅ 𝑐𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑝

The personnel costs also have to be scaled to a minimum shift length of eight hours. If a project request
𝑝 has a length 𝐿𝑝 shorter than eight hours, and there is no request planned directly adjacent on the
same trajectory parts, the cost needs to be scaled to eight hours.

𝑐𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑝 = {
𝑐𝑟𝑎𝑤_𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑝/𝐿𝑝 ⋅ 8 if 𝐿𝑝 < 8 and no adjacent request on traj. part ,

𝑐𝑟𝑎𝑤_𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙𝑖 else .

Hindrance cost. The hindrance cost is split into costs related to hindering passenger trains and costs
related to hindering freight trains.

𝑐ℎ𝑖𝑛𝑑𝑒𝑟 = 𝑐𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 + 𝑐𝑓𝑟𝑒𝑖𝑔ℎ𝑡

The passenger cost is partly made up of a penalty for extra travel time required for passengers, which
is computed for all hindered passenger streams 𝑆𝑝𝑎𝑠𝑠. For each passenger stream that is hindered,
it is assumed that passengers take the fastest available alternative route. The cost is the fraction of
passengers blocked 𝑏𝑠 times the number of passengers 𝑛𝑠 times the extra travel minutes for the shortest
alternative path 𝐸𝑇𝑀𝑠 (Dutch: ‘extra reizigers minuten’, abbreviated as ERM). This delay in minutes
is multiplied with a pre-defined penalty 𝑤𝐸𝑇𝑀 . Besides that, there is a cost for providing replacement
buses.

𝑐𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 = 𝑐𝑏𝑢𝑠 +𝑤𝐸𝑇𝑀 ∑
𝑠∈𝑆𝑝𝑎𝑠𝑠

𝑏𝑠 ⋅ 𝑛𝑠 ⋅ 𝐸𝑇𝑀𝑠

This cost is computed based on the number of passengers requiring a bus on their shortest available
detour route, for every subcorridor they use the bus on. The set of all subcorridors is defined as 𝐶. The
amount of passengers from stream 𝑠 requiring a bus on subcorridor 𝑐 is defined as 𝑝𝑠,𝑐.

𝑐𝑏𝑢𝑠 =∑
𝑐∈𝐶
𝐵𝑢𝑠𝐶𝑜𝑠𝑡(∑

𝑠∈𝑆𝑝𝑎𝑠𝑠

𝑝𝑠,𝑐)

The bus cost 𝐵𝑢𝑠𝐶𝑜𝑠𝑡 for 𝑛 passengers requiring a bus is defined using a table of costs for transporting
passengers on that subcorridor by bus. The lowest value from the table is used, for at least as much
passengers as the number of people requiring alternative transport. So, for example, if 675 people
require alternative transport, the nearest row in the table is for 700 passengers. In general, the values
in this table are computed as a small constant plus a set cost per passenger.

The freight hinder cost is the sum of costs for all freight travel streams which are hindered (𝑆𝑓𝑟𝑒𝑖𝑔ℎ𝑡).
For every hindered stream 𝑓, one predefined part of the freight trains is cancelled (𝑝𝑓_𝑐𝑎𝑛𝑐), one part is
rescheduled (𝑝𝑓_𝑟𝑒𝑠𝑐ℎ), and one part is detoured (𝑝𝑓_𝑑𝑒𝑡). For every cancelled train and every resched-
uled train, a fixed penalty is given; 𝑝𝑒𝑛𝑐𝑎𝑛𝑐 and 𝑝𝑒𝑛𝑟𝑒𝑠𝑐ℎ respectively.

𝑐𝑓𝑟𝑒𝑖𝑔ℎ𝑡 =

⎧
⎪

⎨
⎪
⎩

∑
𝑓∈𝑆𝑓𝑟𝑒𝑖𝑔ℎ𝑡

𝑝𝑓_𝑐𝑎𝑛𝑐 ⋅ 𝑝𝑒𝑛𝑐𝑎𝑛𝑐 + 𝑝𝑓_𝑟𝑒𝑠𝑐ℎ ⋅ 𝑝𝑒𝑛𝑟𝑒𝑠𝑐ℎ + 𝑐𝑑𝑒𝑡𝑠 if |𝑅_𝑎𝑙𝑡_𝑎𝑣𝑠| > 0 ,

∑
𝑠∈𝑆𝑓𝑟𝑒𝑖𝑔ℎ𝑡

𝑝𝑓_𝑐𝑎𝑛𝑐_𝑛𝑜𝑑𝑒𝑡 ⋅ 𝑝𝑒𝑛𝑐𝑎𝑛𝑐 + 𝑝𝑓_𝑟𝑒𝑠𝑐ℎ_𝑛𝑜𝑑𝑒𝑡 ⋅ 𝑝𝑒𝑛𝑟𝑒𝑠𝑐ℎ else .

16 3. Detailed Problem Description

If there are available detour paths, the detour costs of stream 𝑠: 𝑐𝑑𝑒𝑡,𝑠 is computed based on the delay in
hours. This delay is also called the extra freight hours: 𝐸𝐹𝐻 (Dutch: ‘extra goederen uren’, abbreviated
as EGU). This delay is multiplied with a cost factor defined for the freight: 𝑐𝐸𝐹𝐻. To determine the extra
travel time, a fixed list of alternative routes 𝑅_𝑎𝑙𝑡𝑠 is given for every goods stream 𝑠. For each route,
the desired percentage of detour trains 𝑝𝑠𝑟 using this route 𝑟 is defined. The desired split is scaled to
only the non-blocked alternative routes 𝑅_𝑎𝑙𝑡_𝑎𝑣𝑠 ⊆ 𝑅_𝑎𝑙𝑡𝑠.

𝑐𝑑𝑒𝑡𝑠 = 𝑝𝑔_𝑑𝑒𝑡 ⋅ 𝐶𝐸𝐹𝐻 ∑
𝑎∈𝑅_𝑎𝑙𝑡_𝑎𝑣𝑠

𝐸𝐹𝐻𝑎 ⋅ (
𝑓𝑎

∑𝑎∈𝑅_𝑎𝑙𝑡_𝑎𝑣𝑠 𝑓𝑎
)

If there are no available alternative routes 𝑅_𝑎𝑙𝑡_𝑎𝑣𝑠, the detoured part of the freight trains are resched-
uled and cancelled in the same ratio as the rest of the trains.

𝑝𝑓_𝑐𝑎𝑛𝑐_𝑛𝑜𝑑𝑒𝑡 = 𝑝𝑓_𝑐𝑎𝑛𝑐 + 𝑝𝑓_𝑑𝑒𝑡
𝑝𝑓_𝑐𝑎𝑛𝑐

𝑝𝑓_𝑐𝑎𝑛𝑐 + 𝑝𝑓_𝑟𝑒𝑠𝑐ℎ
𝑝𝑓_𝑟𝑒𝑠𝑐ℎ_𝑛𝑜𝑑𝑒𝑡 = 𝑝𝑓_𝑟𝑒𝑠𝑐ℎ + 𝑝𝑓_𝑑𝑒𝑡

𝑝𝑓_𝑟𝑒𝑠𝑐ℎ
𝑝𝑓_𝑐𝑎𝑛𝑐 + 𝑝𝑓_𝑟𝑒𝑠𝑐ℎ

Soft constraint penalties. The third and final part of the cost is the penalties from constraint viola-
tions of constraint types with a ‘soft’ severity. For each of these violations the penalty is given in the
configuration input. So, this cost from a soft constraint 𝑐 is simply the penalty (𝑝𝑒𝑛𝑐) multiplied with
the amount of violations (𝑣𝑐). There are different aggregation settings possible, but this aggregation is
used by default for each of the soft constraints.

𝑐𝑝𝑒𝑛 = ∑
𝑐∈𝐶𝑠𝑜𝑓𝑡

𝑝𝑒𝑛𝑐 ⋅ 𝑣𝑐

3.3 Input set characteristics
For experimentation with new solution methods, the project requests in the year 2024 are used. In
chapter 8, the years 2023 and 2025 are added to study generalisation of the developed methods.
For 2023 and 2024, the set of project requests was gathered in March 2023. At this time, the set of
project requests for 2024 was actively being used, and is therefore considered complete and realistic.
The input from 2023 was no longer as complete. For 2025, the set of project requests was gathered in
August 2023, at which time not all work was fully known. Some properties of these collections of project
requests can be found in table 3.2. For the most important properties, the distribution of the values is
also visualised in fig. 3.1. Some experiments required a smaller problem, so these were created from
the full year problems. The process of creating these as well as the most important characteristics are
shortly explained in section 3.3.3.

3.3.1 2024
In preprocessing the 2024 input data set, one project request had to be filtered for wrongly modelling
the required essential personnel. Personnel that is only required for part of the request was present.
Since the current problem definition could not yet handle that, this personnel was considered to be
required for the full length of this long request. Therefore, it was chosen to remove this project request.

An important characteristic of the 2024 input data set is its size; the resulting schedule will be very full.
There are 729 project requests, with an average length of 83.6 hours. This means that almost seven
hours of maintenance work needs to be scheduled per available hour.

Besides that, it can be seen that most attributes have some outliers. In the distribution of the length, it
can be seen that there are some outliers of extremely long requests. These extremely long project re-
quests are not very hindering. However, there are some longer project requests that are also hindering
passengers or requiring essential personnel.

3.3 Input set characteristics 17

2023 2024 2025

Project requests

total 539 729 597
in cluster 0 11 117
with personnel 463 414 226
blocking 353 682 540

Length (hours)

mean 93.6 83.6 70.7
min 12 24 24
Q1 50.0 48.0 48.0
median 52.0 48.0 48.0
Q3 52.0 48.0 48.0
max 6385 6480 1224

Blocked trajectory
parts

mean 1.9 2.5 2.3
min 0 0 0
Q1 0.0 1.0 1.0
median 1.0 2.0 2.0
Q3 3.0 3.0 3.0
max 29 23 18

Essential personnel

mean 7.5 8.0 4.8
min 0.0 0 0
Q1 0.0 0.0 0.0
median 5.0 0.0 3.0
Q3 10.0 10.0 6.0
max 92.0 120 75

Time window
size (days)

mean 283.6 265.7 277.1
min 2 9 15
Q1 245.5 223.0 229.0
median 321.0 284.0 349.0
Q3 365.0 344.0 349.0
max 365 344 349

Possible conflicts

mean 49.1 119.4 69.5
min 0 0 0
Q1 0.0 25.0 2.0
median 4.0 97.0 46.0
Q3 91.0 193.5 118.0
max 261 352 271

Trajectory parts total 344 344 344
blocked 239 200 197

Requests blocking
trajectory part

mean 2.4 7.5 5.5
min 0 0 0
Q1 0 1 1
median 1 5 3
Q3 3 11 8
max 64 40 22

Table 3.2: The most important characteristics of the maintenance work in the full year input sets. A request with personnel
means that a non-zero amount of personnel costs is specified for that project request. A blocking project request blocks at least

one trajectory part. The blocked trajectory parts are the number of blocked trajectory part by one request. The essential
personnel is the sum of the three types of essential personnel. The time window size is the rounded number of days that is

available within the required start time and required end time of the request. The possible conflicts are the sum of
dependencies, pre-planned hinder, and other requests with which a project request conflicts. The requests blocking trajectory
part is the number of requests which block a certain trajectory part, these values are therefore a distribution over all trajectory

parts.

18 3. Detailed Problem Description

0

500

1000
Length (hours)

0
10
20
30

Number of blocked trajectory parts

0
50
100

Amount of required essential personnel

0
100
200
300

Size of required time window (days)

2023 2024 2025
0

100
200
300

Possible conflicts

Figure 3.1: Violin plot of the distribution of the most important attributes for the full year input sets.

Most of the project requests have quite large time windows. Thus, these time windows are not expected
to make the scheduling more difficult. A few outliers have very small time windows, which do seriously
restrict scheduling freedom. These time windows are mostly problematic when it causes a hard con-
straint violation of starting too early. Starting too late is less problematic, as this is a soft constraint. In
the input data set for 2024, this soft constraint is not very relevant, since the time windows are mostly
restrictive in the earliest start time. The required end time is always close to the end of the year.

Another relevant property is the required essential personnel. Some requests for the year 2024 have
required personnel equivalent to the limit of that type of personnel. These requests can quickly cause
problems, since no other project with even a small essential personnel requirement can be scheduled
overlapping.

The number of possible conflicts is also quite high, mostly with conflicts between different requests.
This distribution contains fewer outliers, but some requests are conflicting with almost half the project
requests that need to be scheduled. This makes it very difficult to correctly schedule these.

3.3.2 Different years: 2023 and 2025
To investigate the generalisation to different years, the project requests defined for 2023 and 2025 are
used. Relevant aspects of how these were obtained will be explained. The characteristics of these
years are also presented in table 3.2 and fig. 3.1. The most notable differences with the 2024 input
data set are also explained.

3.3.2.1 2023
When the input data set for 2023 was obtained, not all requests were still available. These projects
were mostly defined with regular project requests, but were converted to concept project requests for
this thesis. The reason for this conversion is that there are some differences in the handling of concept
project requests and regular project requests. Throughout the scheduling process, concept project
requests are used more, so good results on these are more important. Besides, this makes it easier to
compare to the results and properties of the 2024 input data set.

3.3 Input set characteristics 19

In this conversion, very little needs to be changed. Themost important change is that the blocked tracks
in the regular project requests were converted to the trajectory parts they are a part of. This conversion
should generally not alter the properties too much. One request was problematic after conversion. This
project blocked a trajectory part in Amsterdam for many weeks. This was not a realistic hinder from a
maintenance work, so the length of this project was manually shortened.

There are a lot less requests in general, and a smaller percentage of these is hindering passengers or
freight. The mean length of the requests is larger than the requests for the year 2024. The number of
possible conflicts per year is a lot lower than 2024. More trajectory parts are blocked at least once by
the requests for 2023, than for 2024, showing that the maintenance is more spread out over different
locations.

Due to this conversion, no requests in the 2023 problem belong to a cluster. Most likely, some of
them were a cluster during the original schedule creation. This makes satisfying the constraints more
difficult, since being a part of the same cluster gives some constraint exceptions, most importantly for
the ‘concurrent work per overarching project’ constraints. These are therefore expected to be more
difficult to satisfy for the maintenance schedule for 2023.

3.3.2.2 2025
There were 597 project requests specified for the schedule of 2025. This set of projects is not expected
to be complete yet. Besides, the requests are less precisely defined. This can be seen in the lower
number of requests with specified personnel costs. The mean amount of required essential personnel
is also lower than it was for the requests of the year 2024.

A lot more clusters are specified for the year of 2025. More than 100 requests are a part of a cluster.
There is no clear reason for this large increase in the amount of clusters. The schedulers are possibly
appreciating cluster definitionsmore now, when new requests aremade. The expected consequence of
this is that, contrarily to 2023, it will likely be easier to schedule without constraints. This input year also
has less, on average shorter, requests with less possible conflicts. Therefore, as might be expected
from a less complete problem definition, this seems like an easier scheduling problem.

3.3.3 Sub-problems
For multiple experiments, a smaller, faster to solve scheduling problem is used, when many replications
are necessary. A method to create these was therefore designed. This uses a good existing candidate
schedule, which is split in either six 2-month periods or four 3-month periods (quarters). The reason
to split an existing schedule is that it is necessary to reduce both the schedule length and the number
of requests. This way, the resulting sub-problem will create a schedule that is equally full, and have a
comparable part of the maintenance that has to be performed at the same time as another request is
scheduled. Also, reducing the length of the schedule decreases the required runtime more than if only
the number of requests would be reduced.

Specifically, each request was assigned to a sub-problem based on the period in which it was sched-
uled. So if the schedule is split into quarters, all requests in January, February, and March are added
to the first sub-problem. Project requests that are in two periods are put in the sub-problem it is in for
the largest part. For example, if a request is scheduled from March 22nd until April 2nd, it is added to the
first sub-problem. For some very long requests, it is added to both. In both sub-problems, the length
is reduced to the amount that was scheduled in that period. For example, a request scheduled from
March 15th until April 12th, would be added with a length of sixteen days to the first sub-problem and
with a length of eleven days to the second sub-problem.

For some experiments in chapter 6, a smaller set of 2024 was required, to allow a more complete
hyperparameter analysis of an expensive, novel technique. For this, it was chosen to use a 3-month
period. The last quarter was most comparable to the full problem, so this was used and will further
be called 2024-Q4. For chapter 7, multiple sub-problems were required, for optimisation of an order
function. Besides that, more evaluations were necessary there. Therefore, six two-month periods were
created. These are called 2024-P1, 2024-P2, etc. In chapter 8, both the 2023 and 2025 data sets are
split into quarters, since these collections contain less maintenance work. The properties of all these
created sub-problems are expanded further in appendix A.

4
Current Algorithms and Initial

Improvements
Understanding what makes this problem complex and how this is currently being handled is vital for
improved solving. In this chapter, the first research question “How do different aspects of the problem
and the currently used algorithms influence the runtime and solution quality?” is answered. This is
done by first explaining the current method used to generate suitable schedules in section 4.2. The
objective evaluation has to be done many times, with every solving method; the most important parts
of this evaluation will be explained in section 4.3. In section 4.4, the general algorithmic improvements
that were applied to both this current solving algorithm and the objective evaluation are explained.
Finally, in section 4.5, the results will be used to formulate an answer to the research question.

4.1 Background
Greedy heuristics are simple and powerful techniques, and basic greedy algorithms are generally easy
to design and implement. For a more detailed explanation of greedy algorithms and its applications,
we refer to the textbook by Jon Kleinberg and Eva Tardos [45].

The basic principle behind greedy algorithms is to construct a solution by repeatedly adding a solution
component to the partial solution. The current addition with the highest benefit is always selected. The
benefit of an addition can be calculated either by applying the regular objective evaluation to the partial
solution or by using a custom evaluation. This results in relatively fast solutions. For some polynomial
time problems, a greedy algorithm can find a guaranteed optimal solution, such as the Kruskal algorithm
for minimum spanning trees. There are also NP-hard problems where a proven approximation bound
exists for a greedy algorithm [45].

There are many problems to which greedy algorithms have been effectively and efficiently applied,
such as conference paper assignment, cube packing and scheduling [46]–[49]. In the basic version,
this algorithm is deterministic; it finds a single solution. Greedy algorithms therefore require a smaller
amount of memory than population-based techniques.

A greedy algorithm has a very flexible framework, and as such, it can easily be combined with other
algorithms. It is commonly used for finding a good initial solution in scheduling problems [50]. Another
interesting approach is the iterated greedy algorithm. This algorithm repeatedly uses this construction
heuristic combined with a destruction process. Iterated greedy algorithms have in the past been used
to obtain state-of-the-art results on different permutation flow shop scheduling problems [51]–[53].

4.2 Greedy constructive algorithm
The currently used method to create a yearly maintenance schedule is a greedy constructive algorithm.
This algorithm first orders the maintenance work that needs to be scheduled based on a predefined
function. Clustered project requests are scheduled first. These clusters contain multiple requests and
thus probably affect more trajectory parts. Secondary, the requests are ordered based on the amount

22 4. Current Algorithms and Initial Improvements

of hindrance the request is expected to cause passengers. Requests hindering many passengers
should be scheduled earlier, since they benefit more from periods with less passenger travel, such as
weekends or holidays. The time window size is used as a tiebreaker, and is therefore defined to always
be smaller than one. Requests with a smaller time window are scheduled first. By default, the order
function for project request 𝑥 with affected trajectory parts 𝐴𝑇𝑃(𝑥) with a total amount of days in the
schedule 𝐷 is therefore as follows:

𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝐼𝑠𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑥) ⋅ 109
+ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑥) ⋅ ∑𝑡∈𝐴𝑇𝑃(𝑥)𝑁𝑢𝑚𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑃𝑒𝑟𝑇𝑟𝑎𝑗𝑃𝑎𝑟𝑡(𝑡)

+ 𝐷 − 𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤(𝑥)𝐷

(4.1)

After this ordering, the requests are greedily assigned a starting time one-by-one. This is done by
trying out all possible starting times, with a specified granularity. By default, this means every possible
starting day within the request’s required time window is attempted. The time of day is determined such
that the request will end at 05:00 AM. The best of all attempted starting times is chosen. This process
is repeated until the schedule is complete, so all requests have an assigned start time.

Whenever the request is a part of a cluster, the full cluster will be planned. This is done by first
finding the longest request(s), which is then greedily assigned a start time. After this, each of the
shorter requests are greedily scheduled within the time window of the longest request.

This algorithm is relatively efficient and requires little computation time, since it never moves project
requests that have already been scheduled. Besides, it does not include the requests that are still to be
added to the schedule in making the current scheduling decision. Previous research has shown that
some good results can be obtained using this method. The order function is very important to obtain
these results.

This algorithm also has some important downsides. Because it never moves requests again, only
a limited number of full schedules is tried; exploration is limited. Furthermore, the current request will
be assigned the best time, independent of the preferences of other requests. This can be detrimental
to the solution quality. This happens for example if the first request has multiple starting times with very
similar costs, where a request which will be planned later can only be scheduled on one of those times.

For an earlier version of this problem, more strategies to find good schedules were developed [5]. Due
to the updates to the objective and the resulting increase in objective evaluation time, these strategies
became infeasible. More details on these strategies, and a comparative analysis of how they perform
on the updated problem, will be presented in chapter 6.

4.2.1 Randomness
The greedy constructive algorithm is deterministic, as the optimal starting time is always chosen. How-
ever, for multiple reasons, it is beneficial to introduce some randomness. The first reason is that these
schedules may have better final solution quality, and the best option from multiple attempts can be
used. Secondly, this randomness allows better usage of this algorithm as a part of other algorithms.
The heuristic can, for instance, be used to create as a diverse starting population for an evolutionary
algorithm. Lastly, it makes it possible to more reliably measure the performance, which is necessary
for the experiments with solution quality done in this thesis.

In the work that proposed this algorithm, some comparisons were done with multiple ways of intro-
ducing randomness [5]. The two main methods were randomisation of the assigned start time and
randomisation of the order in which requests are assigned a start time.

The first method uses a list of probabilities to decide on a starting time from the best few possibilities.
So, for example, with the randomisation list (0.5, 0.35, 0.15), there is a probability of 0.5 that the best
starting time is selected, which is the same choice as the deterministic algorithm. With probability 0.35,
the second-best option is assigned to the request and with probability 0.15, the third best starting time
is assigned.

Similarly, with order randomisation, the order is randomised using a list of probabilities. In this case, the
deterministic order function is first used. Whenever another request should be added to the schedule,
the probability list is used to decide which of the upcoming requests are scheduled.

4.3 Current objective algorithm 23

The comparative research showed that, for the 2019 and 2020 input years and the old version of
this problem, the next request randomisation had on average a lower number of constraint violations,
whereas the next starting time randomised runs had a lower average cost. Based on these results, it
was chosen to use the order randomisation for all greedy algorithms with introduced randomness, as
minimising constraints is considered most important. The proposed probabilities, that will also be used
in this thesis, are (0.5, 0.35, 0.15).

4.3 Current objective algorithm
This objective function is computed incrementally based on changes to the schedule. Unchanged part
of the objective do not have to be recomputed this way. The basic principles andmost important aspects
of this algorithm are explained and analysed in this section. More details concerning this incremental
computation can be found in the thesis by Oudshoorn [5].
The algorithm is based on two basic operations: adding and removing a request. Moving is executed
by doing a remove operation followed by an add operation. Project requests are also called blocks in
this context. Throughout this process, the following things are stored and updated after every add or
remove operation:

• The currently planned blocks and their starting times
• The currently blocked tracks per hour
• The current constraint violations and their penalties
• The overlapping periods
• The added blocks since the last availability cost computation
• The removed blocks since the last availability cost computation
• The current financial costs

An overlapping period is a period where at least one block is scheduled. These are used to keep track of
constraints and the financial costs. This can be done on many levels, which allows to easily see when
project requests with a certain property have changed. More explanation of how these overlapping
periods work, which levels are used, and how they are updated is explained in section 4.3.1. Just
before the objective evaluation is required by the algorithm, the availability costs are also updated.
This process is explained in section 4.3.2.

4.3.1 Overlapping periods and constraint handling
Keeping track of the overlapping periods and the corresponding constraints is an important part of the
scheduling, which requires a substantial part of the runtime. A scheduling run of the 2024 input year
was profiled to quantify these computational demands. At the beginning of the scheduling, around of
quarter of the runtime is spent on this part of the objective. When the schedule gets fuller, this part
becomes larger. Towards the end, around a third of computational time is used for these computations.
Every constraint type is being tracked by a handler. These are two types of constraint handlers: general
handlers and handlers based on overlapping periods. When a block is added or removed, the general
handlers are notified of the operation and alter their state based on this. All overlapping periods are
updated with the change. For each resulting change to an overlapping period, constraint handlers on
this level are notified and update their state.

Overlapping periods. An overlapping period is a period in which one or more project requests are
scheduled. It is never adjacent to or overlapping with another overlapping period of the same type.
If, for example, request A is scheduled from 00:00 to 04:00 and request B is scheduled from 02:00 till
06:00, this results in a single overlapping period from 00:00 to 06:00. This overlapping period is on a
global level, but many levels are possible. For example, on a trajectory part level, request A hinders
trajectory parts X and Y and request B hinders trajectory part Y. In this case, trajectory part X has an
overlapping period from 00:00 to 04:00 and trajectory part Y has an overlapping period from 00:00 to
06:00. The following levels are used: global, transport flow, trajectory part, subcorridor, post change
and overarching project. The global level contains only one collection of overlapping periods. On the
other levels, multiple collections are stored, one for each property value. So, for every trajectory part
that is blocked at least once, a collection of overlapping periods is kept.

24 4. Current Algorithms and Initial Improvements

Every update to these overlapping periods is relatively simple. If a block is added, it needs to be added
to every overlapping period collection it belongs to. So, it is added to the global collection of overlapping
periods, but also, among others, to the overlapping period collection for every trajectory part it hinders.

Adding a request to a collection of overlapping periods is done by looking at the current overlapping
periods. If it overlaps with none of them, a new overlapping period is added. If it overlaps with one
of them, it is added to this one. If it overlaps with multiple existing overlapping periods, these are all
merged. This is done by removing all existing periods, and then adding one new overlapping period
with all their requests and the new request combined.

There is a reference stored from every request to all its overlapping periods. Then, when a request
is removed, each overlapping period it was a part of is updated. If the block is the only one in the
period, it is removed. If there are still blocks left, every hour of this block is checked. If there is no other
project request in the overlapping period still scheduled during the hour, it is removed from the period.
This may result in the overlapping period being split in multiple overlapping periods.

During these updates, all handlers that are registered to this level are updated using four types of
notifications. One notification for every removed overlapping period, one notification for every request
removed from an existing period, one notification for every new overlapping period, and one notification
for every project added to an existing period. These updates are then used by each handler to update
their state.

Financial cost updates. The financial costs are updated using a handler that is notified of any change
to the global overlapping periods. When a new overlapping period is created, the personnel and con-
struction costs for that period are calculated. This is done by first checking each request with a length
shorter than eight hours. If it is not scheduled directly adjacent to another request, the personnel costs
are scaled to a shift of at least 8 hours. After this, each hour of each request is scaled with the factor
of personnel at that hour and added to the total cost for that overlapping period. The cost calculated
for this overlapping period is then added to the overall cost, as well as stored separately. Whenever
an overlapping period is removed, this stored cost can then simply be subtracted from the total cost.
When a notification of a request added to or a request removed from an existing overlapping period
is received, this is handled by simply removing the current cost of the existing overlapping period and
then adding the cost of the changed overlapping period in the same manner as explained for a new
overlapping period.

General constraint handlers. Whenever a constraint can be considered based on add or remove op-
erations without using information from overlapping periods on any of the defined levels, this constraint
is handled by a so-called general constraint handler. This handler keeps track of the current violations
and its current state. The handler is notified of any addition or removal. The following constraint types
are handled by a general constraint handler:

- Prerequisites
- Request planned outside cluster
- Too much work planned in a quarter
- Minimum percentage during weekdays
- Required time span

An example of such a general constraint type is the prerequisite constraint. This constraint ensures that
certain requests must be scheduled after all of its prerequisite maintenance work has been finished.
Whenever a request is added, its prerequisites are checked. Each prerequisite that is scheduled, but
not finished before the new request means a constraint violation is added. Secondly, all requests
that have the newly added request as a prerequisite are checked. In the same manner, if that other
request has a scheduled starting time before the end time of the new block, a constraint violation is
added. When a request is removed from the schedule, all related prerequisite constraint violations are
removed.

4.3 Current objective algorithm 25

Overlapping period constraint handlers. Some handlers use the current state of the overlapping
periods to determine whether the constraint has been broken, and how many violations the current
schedule would give. Each handler is defined to act based on a certain level of overlapping periods.
Whenever a new request is added to the schedule, the overlapping periods are updated. Each update
to these overlapping periods is then used to update the constraint status. The following constraints are
handled by an overlapping period constraint handler:

Global level
– Personnel
– Conflicts

Transport flow level
– Train free periods per transport flow
– Maximum weekends per transport flow

Trajectory part level
– Cluster overlaps
– (Non-)Individual requests
– Maximum weekdays per trajectory part
– Dependencies

Subcorridor level
– Concurrent work per subcorridor
– Maximum weekends per subcorridor
– Train free periods per subcorridor

Post change level
– Minimal days between post change

Overarching project level
– Concurrent work per overarching project

These overlapping period constraint handlers are best explained using an example; the essential per-
sonnel constraint handler. These constraints are handled based on the notifications of updates to the
global overlapping periods.

Whenever the essential personnel constraint handler gets a notification of a new overlapping period
being added, the overlapping period is first split. Each part of the period with the same set of requests
scheduled is extracted. For example, a new overlapping period consists of two project requests, A
and B. Project request A is scheduled from Monday 12:00 till Thursday 12:00, request B is scheduled
from Wednesday 12:00 until Friday 12:00. Then, there are three relevant parts to split the period into:
Monday 12:00 –Wednesday 12:00 with only A, Wednesday 12:00 – Thursday 12:00 with both requests
and Thursday 12:00 – Friday 12:00 is only B. Then, if these parts have been found, the amount of
required essential personnel can easily be updated. If, for example, requests A and B both require
twenty essential personnel, the following updated are done. Monday, Tuesday, and Wednesday are
updated with value 20, Wednesday and Thursday are updated with value 40 and Thursday and Friday
are updated with 20. When a day is a part of multiple of these unique set periods, only the highest
amount of required personnel value is kept. So in this example, Wednesday and Thursday both store
an amount of required personnel of 40. Whenever a day goes over the limit, the violations are stored.
Thus, if the limit is 30 available personnel, there will be 2 days in violation. A reference is stored from
each violation to the overlapping period it occurs in.

When the essential personnel constraint handler is notified of the removal of an overlapping period,
it resets all maximum essential personnel values in the time window of this overlapping period to zero.
All violations referencing this overlapping period are also removed.

When a new item is added to an existing period or an item is removed from an existing overlapping
period, this is handled as first removing the period, and then adding a new overlapping period with the
change.

26 4. Current Algorithms and Initial Improvements

4.3.2 Availability costs
The availability costs represent the hinder to passenger and freight trains. The computation of availabil-
ity costs is responsible for more than a third of the computational time of the greedy algorithm. In the
beginning of a scheduling run, around half of the runtime is spent on computing these costs. Towards
the end, this decreases towards around a third of the runtime. The absolute amount of computation
spent on this per added request still increases, but more slowly than other parts of the computation.

These availability costs are not immediately recomputed after every remove or add operation. Instead,
it is only done just before the cost value is necessary, since this computation has a large complexity.
By handling the cost changes for multiple operations at once, the required computational efforts can
be reduced.

All operations that were done since the last availability cost update are used to determine during which
time periods the availability costs will have to be updated. At these periods, the freight and passenger
hindrance costs will then be updated separately. First, the process of determining where updates are
required is explained. Then, it is explained how the passenger hindrance costs are updated in this
period. Lastly, the freight hindrance updates will be explained.

4.3.2.1 Determining when the availability costs have to be updated
Updating hindrance to passengers and freight has to be done for every hour when something has
changed, since each hour can have different passenger and freight travel. Therefore, the first step that
needs to be done to update the availability costs is to find the hours which have been changed since
the last availability costs update. The pseudocode for this algorithm is given in algorithm 4.1.

Algorithm 4.1 Update availability costs
1: InputRemovedBlocks, AddedBlocks: all blocks added or removed since the last availability update

2: for Removed block ∈ removed blocks do
3: for Added block ∈ added blocks do
4: if (Added block is same request as removed block and

Added block is scheduled at same time as removed block) then
5: Delete removed block from set of removed blocks
6: Delete added block from set of added blocks
7: end if
8: end for
9: end for
10: for Removed block ∈ removed blocks do
11: for Hour ∈ removed block’s period do
12: Calculate passenger hindrance costs at hour (algorithm 4.2)
13: Calculate freight hindrance costs at hour (algorithm 4.3)
14: end for
15: end for
16: Determine the global level overlapping periods of the added blocks
17: Group added blocks by their overlapping period
18: for Overlapping period ∈ overlapping periods from added do
19: for Hour ∈ MinCover(added blocks in overlapping period) do
20: Calculate passenger hindrance costs at hour (algorithm 4.2)
21: Calculate freight hindrance costs at hour (algorithm 4.3)
22: end for
23: end for

All blocks that were removed and then added again at the same time are filtered from the operation.
Then all hours of the removed block operations are updated. Finally, the overlapping periods relating
to the added block are found. These can be used to group added requests which may be overlapping
together. Then, the minimal cover per group is determined. This is done to find all hours when one or
more blocks were added. An availability cost update is done for every one of these hours.

4.3 Current objective algorithm 27

4.3.2.2 Passenger hindrance costs
To update the passenger availability costs, the extra travel time for all hindered passengers is computed.
The pseudocode of this algorithm is given in algorithm 4.2. This is done for every hour when something
has changed separately. First, the stored costs of this hour are removed from the overall cost sum,
and reset to zero. Then, passenger streams which are affected by the current maintenance work are
found. A passenger stream is an origin-destination pair with a certain number of passengers. These
streams are defined for every hour in the scheduling year. Every stream has a default route, and the
trajectory parts required to use that route are known. The relation between the trajectory parts that are
blocked with the passenger streams requiring at least one of those trajectory parts on their default path
are cached. For all hindered passengers, the detour paths they will take with the current maintenance
hinder are computed. These paths are used to compute the costs for the extra travel time and the cost
for providing alternative buses.

Algorithm 4.2 Calculate passenger hindrance costs at a certain hour
1: Input the hour when passenger hindrance needs to be updated and the trajectory parts blocked

2: Set extra travellers minutes (ETM) at the hour to update to 0
3: Set bus costs at the hour to update to 0
4: if Set of passenger streams blocked by trajectory is not available in cache then
5: Find set of streams which requires the blocked trajectory parts on their default route
6: Add blocked streams to the cache
7: end if
8: Get blocked streams from the cache
9: Get detour paths for all blocked streams from cache or compute if not present
10: for Stream in the set of blocked streams do
11: Compute number of passengers blocked on stream at the hour to update
12: Increase ETM with number of passengers times difference between default and detour path
13: if Detour path requires traveling by alternative bus then
14: Update bus costs based on detour path and the number of blocked passengers
15: end if
16: end for

To determine the amount of extra minutes the travellers have to spend on their journey, shortest path
computations are required. All streams that can not use their default route due to the maintenance,
are grouped based on their origin. A single source Dijkstra algorithm is used to find the shortest paths
on the graph altered to include the hindrance. A single source Dijkstra algorithm means that from one
source, the paths to all destinations are found using a Dijkstra algorithm [54]. So, the shortest detour
path, not using any of the blocked trajectory parts, is found for every hindered passenger stream.

For efficiency reasons, this part of the objective is approximated in evaluation. This approximation is
done in two ways. First, the train transfer times are not handled completely exact. This aspect of the
approximation as well as more detailed explanation on these detour path computations are explained
in depth in chapter 5. Second, the streams that are below a configurable threshold are left out of the
computation during the scheduling algorithm. For the final schedule, these streams are included.

4.3.2.3 Freight hindrance
How the freight availability costs are modelled is explained in section 3.2.2. The pseudocode for how
this is computed can be found in algorithm 4.3. The freight hindrance costs are more straightforward
than the passenger availability costs. The amount of trains that will be rescheduled, cancelled and
rerouted as well as the detour routes to use are predefined. For each hindered freight stream, we
check which of these detour paths are not hindered by maintenance. If all detour routes are blocked,
the amount of cancellation and rescheduling is increased. Otherwise, a penalty per hour delay is
computed. This computation is also done for every changed hour, for every freight stream. It is less
complex than the passenger hinder, but also requires a substantial computational effort.

28 4. Current Algorithms and Initial Improvements

Algorithm 4.3 Calculate freight hindrance costs at a certain hour
1: Input: the hour when freight hindrance needs to be updated, and the trajectory parts blocked

2: Set freight hindrance costs at hour to update to 0
3: Determine freight streams that require the blocked trajectory parts on their default route
4: for Freight stream in blocked freight streams do
5: Determine which of the specified detour routes are available with blocked trajectory parts
6: if At least one available detour route then
7: Compute the ratio of detour over the available routes
8: Determine the detour penalty based on this ratio and the amount of detoured trains
9: else
10: Increase the amount of cancelled and rescheduled trains for this stream
11: end if
12: Increase freight hindrance costs at the hour with the cancel, reschedule and detour penalties
13: end for

4.4 Improvements to current algorithms
During the problem analysis, some significant improvements were found to the greedy algorithm and
the objective function. These improvements were not directly related to any research question or new
technique. All experiments in this work were run with these initial improvements applied. At the starting
point of this thesis, one greedy constructive scheduling for the year 2024 run took around twenty-four
hours, with a less precise cost calculation and more constraint violations. These first improvements
already decreased the runtime of a baseline greedy constructive run to only around three hours.

4.4.1 Handling clusters
In the greedy algorithm, clusters are handled by first scheduling the longest request, then each of the
shorter requests are scheduled greedily within the time period of the longest request. However, this
original method for handling clusters caused unnecessary hard constraint violations at times. This
happened when the longest request was scheduled on a location where one of the shorter requests
would not be able to be planned non-conflicting. Therefore, this has been adapted to schedule all
of them together. So, the longest request is assigned a start time based on the score of adding all
cluster requests in this time frame. This made the greedy solution a little slower, but it had a direct
improvement in the number of constraint violations. For the 2024 schedule, the number of constraint
violations reduced from an average of around 8 or 9 to an average of around 5 or 6 with this new cluster
handling. Therefore, this adaptation was used for all experiments with the greedy algorithm throughout
this thesis.

4.4.2 Precompute changed hours
An inefficiency was found in algorithm 4.1. Whenever the cost is required, the availability costs have
to be updated. All additions and removals that were done to the schedule since the last update to
the availability are stored. All availability costs are then first recomputed for the period of each of the
removed blocks. For each overlapping period where one of the added requests is a part of, the hinder
costs are updated. This results in unnecessary computation in two ways. First, if a request is moved,
and the new time period overlaps with its old time period, the availability costs for these hours will not
actually change, but will be recomputed. Second, whenever there is overlap between the periods of
two removed blocks, or one removal and one addition, these hours will then be recomputed twice.

This algorithm was therefore adapted to algorithm 4.4, which resolved both of these problems. In this
version, a check is done for each of the removed blocks to determine whether they are added again,
and if this new period overlaps with the old period. Then, these periods are subtracted from both the
removed block and the overlapping add block. This prevents the unnecessary computation from the
first case. After this process, a min-cover algorithm is used to determine all hours in which a block was
either added or removed. This way, an hour will not have more than one recalculation of the availability
costs within one update, so the double computation from the second case is resolved. Both of these
changes also have some possible downsides, that needs to be outweighed by the benefit.

4.4 Improvements to current algorithms 29

Algorithm 4.4 New algorithm: Update availability costs
1: Input all removed blocks and added blocks since the last availability update

2: for Removed block ∈ removed blocks do
3: for Added block ∈ added blocks do
4: if Added block is same request as removed block then
5: if Added block is scheduled at same time as removed block then
6: Delete removed block from set of removed blocks
7: Delete added block from set of added blocks
8: else if Added block overlaps with removed removed block then
9: Subtract removed period from added block’s period
10: Subtract added period from removed block’s period
11: end if
12: break
13: end if
14: end for
15: end for
16: for Hour ∈ MinCover(Periods of added blocks ∪ periods of removed blocks) do
17: Calculate passenger hindrance costs at hour (algorithm 4.2)
18: Calculate freight hindrance costs at hour (algorithm 4.3)
19: end for

The first check to find overlapping additions and removals requires some extra operations, especially
when many blocks have been removed and added. In the original algorithm, this loop was already done
to find blocks rescheduled to the exact same time. The reason this was deemed useful in the original
algorithm stems from the general usage. In most situations, this recalculation of the availability costs
is done after one moved block, so one removal and one addition of the same request. In this case, this
check is very fast and worth it to make the situation where it is rescheduled to its current starting time
faster. For example, if a move was tried and resulted in more constraint violations, it can be moved
back without computing availability costs. Since these reasons are still valid and the additional check
for overlap is not that much increase, the benefit of this part is expected to often outweigh the loss.
Only in cases where many moves are done at once, and blocks are moved outside their current period,
this will not be the case.

For the second part, computing the min cover, which requires some extra computation compared to
the original algorithm. The original algorithm grouped the added blocks before computing the min
cover, making it more efficient. It went over all removed blocks without a min cover algorithm. The
added blocks did require a min cover, but all added blocks were grouped first. The benefit of this
change is more dependent on the used algorithm. If multiple moves are made before requiring the
cost calculation, the probability of there being overlap in hours between multiple operations becomes
higher. However, with multiple changes, the min cover also takes longer, and the detriment from no
longer grouping by overlapping period is larger. This algorithm gives most improvement when multiple
moves, close together in the scheduling year, are done. It is slightly less efficient when multiple moves,
spread over the scheduling period, are done. It could be even better to dynamically choose between
using and not using this part based on the used algorithm and its mutations. However, in most cases,
it is expected that this second part will also decrease the required runtime. Therefore, this dynamic
switching was kept as future work, since it could better be added when the useful algorithms have been
more extensively researched.

4.4.3 Exact objective evaluation
Currently, the objective evaluation already contains some approximation in the process of computing
the passenger hindrance, for reduced objective evaluation runtime. However, when the search strategy
has created a complete schedule, it is preferable to have an exact final solution. This means that
different schedules can be compared based on an accurate calculation of the designed objective.

30 4. Current Algorithms and Initial Improvements

Therefore, the path computation was kept the same for evaluations during the search strategy, but
an exact computation was implemented for the final schedule. The difference between this hindrance
approximation and the exact computation of the extra travel time will be explained in section 5.3.

4.4.4 Memory management
In profiling results of the current implementation of the objective, it could be seen that the memory
management required a large part of the computational resources. Some efficiency improvements to
this aspect of the problem have been applied. There may be more to be gained here, and memory
management should be considered when designing new techniques.

All algorithms are implemented in C#, which means that releasing memory is done automatically [55].
When objects are no longer being used, the memory is made available for future allocations. This is
done using a generation-based memory. All new objects go to generation 0. This is the set of objects
that should contain short-lived objects. Whenever garbage collection is required, this generation will
first be cleaned. All objects that are not reclaimed in generation 0 are now moved to generation 1.
Finally, if these objects also remain in-use when generation 1 garbage collection is done, they are
moved to the final generation 2. The main advantage of this principle is that most short-lived variables
can be recollected fast; objects that are long-lived will not have to be checked as often.

The incremental implementation of the objective is very memory-consuming. There are a few large
caches that prevent having to recompute certain parts many times. Besides, especially when a sched-
ule becomes full, large collections of overlapping periods on all different levels are stored, as well as
different states for every constraint. Many of these variables are long-lived, and the generation 2 mem-
ory is by far the largest. Due to this large memory consumption, garbage collection becomes slower.
Any time a generation 2 collection is necessary, this requires a lot of computation time, since the ref-
erences of all these different objects need to be checked, and the entire generation is compacted.

Whenever the system has low physical memory available, a garbage collection will be forced. There-
fore, it is important to run on a machine that can handle the memory demands of this program. Most
experiments in this work are done on a machine with 16 GB of physical memory. This was enough, but
for very long runs, it was necessary to implement an emptying of caches to prevent these low physical
memory collections happening too often. The process also keeps an acceptable threshold by itself.
Whenever memory consumption is above this threshold, collection is done. This threshold is contin-
uously updated during the run. However, this will still cause many collections, due to the increasing
nature of the memory requirements of the greedy algorithm.

Overall, it can be seen that garbage collection pressure is around 30%, meaning almost a third of com-
putation time is spent on memory management. A few small improvements were done with limiting the
amount of unnecessary large lists by specifying the required capacity. Reusing lists, rather than creat-
ing a new list for repeated computation, also gave some small improvements. The largest improvement
was achieved by fixing two memory leaks. This means objects were not being collected despite them
not being required any more; occupying unnecessary memory. This pressure is still high, and it is
expected that more profit is achievable by focusing on a more memory-efficient implementation.

4.4.5 Improved usage of single source Dijkstra
As was explained in section 4.3.2, all required origin-destination pairs are grouped based on their
origin. Then, a Dijkstra algorithm is used to find all paths from every unique origin. This is done by first
labelling all nodes with the shortest found distance from the source. All edges are then traversed until
the shortest path tree from the origin to any destination is created. This tree can be traversed back to
generate all actual paths. The paths between the hindered origin-destination pairs are then used to
compute the passenger hindrance. Often, many paths from the same origin are blocked simultaneously.
As such, it is beneficial to compute these all using only a single labelling phase. This way, parts of the
shortest path tree are reused and do not have to be computed multiple times.

Only the used origin-destination pairs are cached. The reason for this is that the other destination paths
will often not be useful later. At most hours, the defined sets of passenger streams are very similar.
So if the current hour does not contain that origin-destination pair, there is low probability that it will be
required later. Therefore, the benefits of keeping the cache smaller outweighs the potential benefit of
not having to recompute this tree when the other path is required later.

4.5 Conclusion 31

In the original implementation, for each possible destination, the shortest path tree was traversed back
to find the complete detour route. In the improved implementation, the traversal through the search tree
is done only when that origin-destination pair is actually used for computing the hinder. The labelling
phase is still done for any possible destination, since checking when all required destinations have
been labelled is expected to generate too much overhead for too little benefit.

4.5 Conclusion
Good understanding of what makes this problem complex is essential for improving on the currently
used techniques. Determining the aspects that make finding a good schedule difficult and slow is
important. The fact that it takes a long time to evaluate the quality of a full schedule is an important
reason for this. It influences the runtime directly, and also makes it more difficult to find better quality
schedules. To find good schedules, some exploration is required. However, search is relatively slow
due to the slow objective evaluation. Speed-ups that make this evaluation more efficient have a direct
positive impact on the achievable runtimes and search.

The analysis and improvements in this chapter allow us to answer the first research sub-question:
“How do different aspects of the problem and the currently used algorithms influence the runtime and
solution quality?” The availability costs are the most complex part of the problem definition, as these are
defined with high precision. The passenger hindrance computations are most influential. Hindrance is
computed separately for every hour, with fully dynamic shortest paths for every origin-destination pair.
Besides, the large number of overlapping period collections that need to be updated also result in a
substantial runtime, especially towards the end of a greedy scheduling run. Most constraint handlers
in itself have limited impact, but they require these overlapping periods to be kept on this large amount
of levels, meaning they indirectly require more runtime. The path caches and overlapping periods
also require a lot of memory. The amount of physical memory in itself is not a limitation. However,
management of this memory has a strong negative impact on the runtime.

4.5.1 Future work
A few interesting future work directions were identified from the results of this chapter.

From the initial profiling work, already some improvements were found. However, more improvements
are definitely possible by more close analysis, especially of the most often executed code. In this
chapter, the importance of spending time to optimise the most essential parts of the computation is
shown. Evaluating the objective happens thousands to millions of times during an algorithm run, so
even very small improvements to this can have significant impact on the usability. By removing a
small inefficiency in the implementation of the shortest path finding, which is executed for all hindered
passenger travel, for every new combination of blocked trajectories, a significant improvement was
already be achieved.

In some cases, the most efficient algorithm for the incremental objective evaluation is dependent on the
type of mutations that are done. Some ability to make the objective evaluation dynamic depending on
the current situation could prove beneficial. For example, the greedy algorithm often moves a project
one day forward at a time. This move is handled as first removing the project from its overlapping
periods and then adding the project again to the overlapping periods. Many of the constraint handlers
then also handle this removing from the overlapping period as deleting the full period and adding a new
period. Then, adding the request is handled similarly as removing the overlapping period and creating
a new one. More efficient computation is possible here, especially by specialising the implementations
on this common usage of moving only a day.

Besides, the memory management improvements could be extended. Possibilities to store some parts
of the problem status more compact could be investigated. Looking into possibilities to change the
garbage collection settings to handle the large amount of longer-lived variables better could also im-
prove the runtime impact of the memory management. A specific suggestion that might, for instance,
improve memory management would be to look into a more efficient path caching method. If the path
cache keeps track of which combinations of blockages are not used often, these entries could be re-
moved. Ideally, this would be done before they reach generation 2.

32 4. Current Algorithms and Initial Improvements

Furthermore, some improvements found in this chapter emphasised a drawback of creating such a
complex problem definition and solution method. If a problem is this complex, and being altered reg-
ularly, small mistakes or inefficiencies easily slip into the implementation. Especially since not every
aspect of the problem definition is actively being profited from. For example, some limit values are
set quite high, meaning computation to check for that limit is useless. Another example is the fact
that there are no extra passenger streams defined, which are different for each hour. The possibility
to have extra passenger streams had a significant impact on the algorithm design, and the knowledge
that every hour has the same streams is not utilised in the computations. This is of course an extremely
difficult balance, between modelling as realistically as possible, while also reducing unnecessary com-
plexity which can cause inefficiencies. There are some model simplifications possible, which would not
reduce realism that much. Moreover, allowing to configure more parts of the complexity for each run
separately could improve the trade-off available for schedulers.

5
Detour Path Approximation

The passenger availability cost computation is one of the expensive parts of solving the yearly main-
tenance scheduling problem. An important reason for the large computational demands of this cost
computation is that it has to be done for every hour when something has changed. Every origin-
destination pair of passengers that is blocked requires a detour path. By applying approximation to the
detour paths and the passenger streams, it is possible to speed up any search strategy, while losing
some objective precision. Less accurate objective values could mean worse scheduling choices are
made, so these speed-ups need to be considered in relation to the effect on the solution quality.

In this chapter, the research question “How can approximation of passenger detour paths be used for
faster solving?” will be answered. First, the relevant background is given in section 5.1 The important
graph characteristics are analysed in section 5.2. Then, in section 5.3, all compared strategies are
motivated and explained in-depth. The experimental methods used for comparing these algorithms
are explained in section 5.4, before showing the results in section 5.5. The research question will
finally be answered based on these results.

5.1 Background
In this section, the required background for this chapter is explained. Some background on approxima-
tion of the objective is given. Some alternative approaches for considering passenger hinder are also
given. Besides, the inspiration for some of the shortest path techniques is briefly presented.

Objective approximation. The goal of this chapter is to apply approximation to a part of the objective.
Approximating the objective is a technique more commonly applied to expensive optimisation problems
[56]. This is commonly used in combination with evolutionary algorithms, since the similarity to its par-
ents can be used. This approximation can be used to more quickly search for solutions with a good
fitness, and only apply the full objective evaluation for a smaller set of individuals. The approximation is
sometimes also referred to as a surrogate [56]. There are many surrogate modelling techniques. The
approximation can be a problem specific approximation function, or a generic model which learns the
fitness. This generic model can be trained either online (during the optimisation), offline (before optimi-
sation) or a combination of the two. Many machine learning models have been used in the literature,
such as polynomial response surface, Kriging, radial basis functions and support vector machines [56].

Surrogate-assisted optimisation has been effective in numerous problem applications, and is often
applied in cases where the objective evaluation is a physical simulation. Energy-efficient building, ship,
satellite, or motor design are examples of problems it was successfully used for [56]. A downside of
this method is that good results of the optimisation requires the surrogate to be accurate enough. This
is difficult for high-dimensional problems, such as the problem used in this thesis.

A surrogate-modelling based algorithm in the field of scheduling was proposed by Hao, Liu, Lin, et
al. [57]. This solved the bottleneck stage problem by decomposing the problem into first assigning the
jobs to the different machine, and then finding the optimal sequences for each machine. Significantly
better results were obtained by partly replacing this second part with a surrogate model.

34 5. Detour Path Approximation

Passenger hindrance computation. More maintenance problems include an approximation of the
amount of hinder to passengers. Weert [8] computes the passenger hindrance based on the assump-
tion that one of the k-best paths would be taken. In some other works, the hindrance is modelled as the
amount of disruption to the train timetable [12], [26]. This indirectly also determines the passenger hin-
drance, but neglects the difference between busier and less busy trains. Boland, Kalinowski, Waterer,
et al. [24] minimised passenger hindrance by maximising the total flow over time.

Shortest path techniques. In this chapter, the shortest path techniques that are used to determine
the routes that will be taken by the passengers, especially when they are hindered, are considered.
In literature computing the shortest paths for passengers using public transport, the routes taken by
passengers are often modelled more precise, using timetable information [58]. An example of fast
shortest path computation on railway graphs which uses edges independent of the time was found in
Holzer, Schulz, and Wagner [59], which also applies the same technique on road networks. Shortest
path calculations on road networks are often more similar, as this does not use time information. The
work by Bast, Funke, Matijevic, et al. [60] proposes a similar solution for shortest path computation on
road networks. This work uses the hierarchical structure of road networks. Longer distance paths often
travel through the same important points.

5.2 Graph Analysis
In order to choose themost suitable approximation algorithms, the structure of the underlying graph was
analysed. The railway infrastructure it is modelling can be seen in fig. 1.1. In this section, some basic
characteristics of the graph are given. The used railway network is a weighted directed graph, with
transfer times. Every node represents a station where trains can stop. Every edge represents a direct
travel connection: it is possible to travel from the edge’s origin to the edge’s destination with a train that
does not stop. In reality, whenever a passenger has to transfer from one train to another, some extra
walking and waiting time is required. The average time of the full transfer from one edge to another
is specified for the network. These transfer times are given for 1078 tuples of three nodes, specifying
which nodes are surrounding the transfer (from, through and to). If transfer time is not specified for the
edge pair, zero transfer time is counted.

First, the basic graph characteristics were computed based on the full graph. These can be found
in table 5.1. The total amount of nodes and edges makes this a relatively small network. From these
statistics, it can be seen that many of the edges are dominated, meaning there is another edge connect-
ing the same nodes with a shorter edge. The most important reason for this is that there are alternative
travel edges defined. These edges are meant for when a certain edge is blocked by maintenance;
buses will then be provided to transport passengers. These are therefore edges on the same connec-
tion, but with a different length. A few outlier cases in which multiple train connections are present, but
these are not very relevant. From all edges, 718 edges are considered symmetric, meaning an edge in
the opposite direction with the same length exists. So there is a difference in the travel time depending
on the direction for more than half the edges.

Graph characteristic Value

Nodes total 804
connected 391

Edges
total 2150
symmetric 718
dominated 1063

Degree outgoing edges 5.5
unique edge targets 2.7

Table 5.1: General graph characteristics of the graph used to compute detour paths for travellers hindered by maintenance.
Symmetric edges are edges which have another edge in the opposite direction with the same length. Dominated edges are
edges where another edge with the same source and destination, but a shorter length, is present in the graph. The degree is

given with the mean value for all nodes in the graph.

5.3 Detour approximation algorithms 35

Besides, it can be seen that a node has on average 5.5 outgoing edges, but only 2.7 unique nodes
that can be reached. This difference is again explained by the alternative travel edges. An exponential
or power law degree distribution was found in multiple public transport and railway networks [61]. The
degree distribution of this graph is similar to an exponential distribution. This means that many nodes
have a small degree, and a few larger hubs have a substantially larger amount of outgoing edges.

Some basic characteristics of the passenger streams paths are given in table 5.2. These characteristics
give some insight into the train travel used for determining passenger hindrance in the maintenance
scheduling problem. All origin-destination paths with a number of passengers below a configurable
threshold are filtered out during the algorithm. It can be seen that more than three quarters of the
passenger streams are filtered out. These are thus only used for computing the final solution quality.
Paths with fewer passengers are on average a lot longer, both in the number of edges and in the travel
time. The mean length of a path was computed, both with equal weight for every path and weighted
by the amount of passengers travelling over this path on the default hour. The weighted mean of the
paths is around 28 minutes, which is almost eight minutes shorter than the unweighted mean. This
shows that most passengers travel shorter routes.

Default path characteristic Value
All passenger streams

Amount (o, d) pairs 20605

Length (num. edges) mean 5.90
weighted mean 3.51

Length (min) mean 61.58
weighted mean 33.14

Passenger streams above threshold

Amount (o, d) pairs 4229

Length (num. edges) mean 4.00
weighted mean 3.09

Length (min) mean 36.21
weighted mean 28.49

Table 5.2: General characteristics of the default paths taken by travellers. Statistics were computed for the full set of
passengers streams and the set of passenger streams with amount of passengers above the threshold. Only streams above
this threshold are used during the search for a good schedule. The length of a path is given in minutes as well as in number of

edges. Besides that, a weighted mean was added, the length of the path was then weighted based on the amount of
passengers travelling over that path at a default hour.

5.3 Detour approximation algorithms
For this research, we have compared different methods to approximate the passenger hindrance com-
putation. Each algorithm assumes as input a set of blocked trajectory parts and a collection of streams.
Each stream consists of the number of passengers, source node, target node, and default path. The
desired output is the total number of minutes that travellers will have to spend extra in comparison to
using the default path.

In this section, six possible ways of determining the detour paths are explained. First, the currently
used baseline method is explained. Then, an exact strategy which better handles the passenger’s
transfer times is presented. An improved version of the baseline will be given after that. Transit node
routing is the next new strategy that will be explained. Then, a strategy that assumes passengers
always use the alternative transport is given. The last method that is explained is a strategy that tries to
approximate the detour paths based on average detours found in a preprocessing step. Besides these
six different strategies, we present a few additional algorithmic points.

36 5. Detour Path Approximation

5.3.1 Baseline
In the baseline solution, a single source Dijkstra computation is done to compute the distances from ev-
ery distinct source in the passenger streams to all nodes reachable. For an explanation of single source
Dijkstra, the user is referred to the short explanation in section 4.2. The baseline is the implementation
as currently used in production.

This does not always find the absolute shortest path, since this version of Dijkstra only incorporates
the transfer time in choosing the second edge of the transfer. This is easiest explained using a simple
example, as seen in fig. 5.1a. In this example, the weighted directed graph of 4 stations is given, with
an edge for every direct travel connection. The red edges correspond to the transfer times for a transfer
from the one edge to another. These are not specified for every node. When finding the shortest path
from node A to node D, a Dijkstra algorithm first finds the shortest path to C, which is the direct edge
from A to C. Then the final path will be A-C-D, which has a weight of 7. However, the shortest path is
A-B-C-D, which has a total weight of 5. So, the basic assumption required by Dijkstra that any shortest
path from A through C to D will contain the shortest path of A to C is made invalid by the transfer times.

(a) The graph used by the baseline. The red edges represent the transfer times, these are incorporated when adding the outgoing edge to the
path.

(b) The expanded graph as created by the exact algorithm, to allow Dijkstra search to find the exact shortest path. The red edges represent the
transfer times. The dashed edges have a weight of 0.

Figure 5.1: An example case to explain the difference between the currently used solution and the created exact solution,
where the baseline does not find the correct shortest path from A to D due to the existence of transfer times, and the expanded

version of the network.

5.3.2 Exact solution
For the exact solution, the graph used by the baseline is expanded based on the transfer times. These
transfer times are given for a collection of (from, through, to) station tuples. Any unspecified transfer
is assumed to be length zero. To allow shortest path algorithms to handle these transfer times, the
transfer times need to be modelled as edges. The expansion principle will be explained based on a
small example graph: fig. 5.1. Any node where at least one transfer time is defined with this node
as the through node is expanded. In the example network, only node C has to be expanded. The
transfer station node is expanded to create edges for the transfer time. The node is replaced by a set
of nodes: one source node, one target node, one ‘from’ node for every incoming edge into the node,
and one ‘to’ node is added for every outgoing edge. The original incoming and outgoing edges are
then changed from the original node to the corresponding new node. In the example, there are two
incoming edges: from A and from B, and one outgoing edge: towards D. So, two ‘from’ nodes and
one ‘to’ node are added. Then, one edge from every ‘from’ node towards the target node and one
edge from the source node to every ‘to’ node is added. These are the striped edges in fig. 5.1b, with

5.3 Detour approximation algorithms 37

weight 0. These nodes are necessary, since we always want to use the same source node when a
passenger starts at this station and, similarly, the same destination node. Finally, an edge is added for
every ‘from’-‘to’ combination, with the weight equal to the transfer time of that switch. These are the
red edges in fig. 5.1b.

With this construction, the shortest path can be exactly found for every possible graph and route, using
the same single source Dijkstra algorithm as in the baseline. However, it does increase the size of the
graph and therefore has a negative impact on the runtime of the detour path calculation.

5.3.3 Edge domination
In the graph analysis, it was seen that many edges are dominated. When there exists an edge with
the same source and target with a shorter length, this edge will never be a part of the shortest path.
By design, there are many of these dominated edges, corresponding to alternative bus travel options.
However, the baseline shortest path algorithm still considers these edges while finding the shortest
path.

The first new strategy is therefore an improved version of the baseline solution, which reduces the
runtime spent on searching for paths over dominated edges. In the baseline solution, these alternative
travel edges are also considered when the original edge is not hindered by maintenance. Therefore,
an alternative graph is considered, which only considers the non-dominated edges. For every edge
that is blocked, the best alternative is added before calculating the shortest paths.

This is done by starting with a preprocessing step before every shortest path calculation, which removes
all dominated edges and adds a reference to this dominated edge from the dominating edge. Then,
when the blocked trajectory parts are known, every edge which is currently hindered by maintenance
is removed from the list of edges. All the corresponding dominated edges are added. These removals
and additions are stored, so they can be undone as soon as shortest paths need to be computed with
a different set of blocked trajectory parts.

In this first section, this will be treated as a separate solution, to show how much improvement this
already gives. However, since this is not actually an approximation compared to the currently used
solution in production, this will later just be used as an improved version of the baseline. This strategy
will be referred to as ‘Add Dominated When Needed’ (ADWN) from here on.

5.3.4 Transit node routing
The third new strategy for shortest path calculation compared in this section is transit node routing
(TNR). The railway graph is very structured. Passengers often change trains on the same large hub
stations. By incorporating this knowledge with this technique, the shortest paths can be computed more
efficiently.

Besides, hierarchical algorithms were successfully applied to similar problems before. The name tran-
sit node routing was first used in Bast, Funke, Matijevic, et al. [60]. Holzer, Schulz, and Wagner [59]
independently developed a very similar technique with more than two levels on the German train net-
work. These papers were combined and adapted to be more suitable for this use case. This strategy
exploits the strong hierarchical structure of the railway graph. The important assumption here is that
many shortest paths have similar transfer patterns. When looking at the shortest paths in this graph,
it can be seen that especially longer paths often go through the same nodes. Therefore, there is also
often a lot of overlap between the paths. These overlapping parts only have to be computed once.

This technique was not actually designed to be used as an approximation technique. However, this
technique is especially suitable if the same nodes are travelled through on many paths. Every path
from a less important node has to go through the same few nodes for most of its paths. The expansion
that is done in the exact solution makes the algorithm less successful, since these important hub nodes
are split up into many nodes. Therefore, this transit node routing is applied on the baseline graph. This
makes it an approximation, which handles the transfer times worse than the baseline algorithm.

To profit from the hierarchical network characteristics, the first step is to determine these ‘important’
nodes. There are many strategies to do this. The most promising ones are explained and compared in
section 5.3.4.1. The nodes that are selected as important will be called the high-level nodes, the others
will be called low-level nodes. Then, using this set of high-level nodes, we create an overlay graph.

38 5. Detour Path Approximation

In this research, due to the relatively smaller size of the railway network in comparison with other use
cases of this technique, it was chosen to only use a single higher level graph.

This is done by removing the low-level nodes one-by-one and contracting the edges going to or from
the node. The procedure for this is described in algorithm 5.1. To merge edges and still incorporate
transfer times, edges are extended with a ‘first target’ and a ‘last source’. The first target is the node
that should be used to determine the transfer time when transferring to this edge. This is the target of
the first edge in the merged edges. The last source similarly represents the source that should be used
to calculate the transfer time when transferring towards another edge.

Algorithm 5.1 Contracting the high-level graph.
1: procedure Removing node and contracting graph(Node to remove)
2: for Incoming edge towards node to remove do
3: for Outgoing edge out of node to remove do
4: Merge incoming edge and outgoing edge to create new edge
5: Add new edge to graph
6: end for
7: Delete incoming edges from graph’s edges
8: end for
9: Delete node from graph’s nodes
10: end procedure

11: procedure Merge edges(Edge e1, Edge e2)
12: output: Edge merged
13: merged.Source ← e1.Source
14: merged.Target ← e2.Target
15: merged.FirstTarget ← e1.FirstTarget if e1.IsMerged else e1.Target
16: merged.LastSource ← e2.LastSource if e2.IsMerged else e2.Source
17: T ← transfer time from e1.LastSource through e1.Target to e2.FirstTarget
18: merged.Weight ← e1.Weight + T + e2.Weight
19: merged.TrajectoryParts ← e1.TrajectoryParts ∪ e2.TrajectoryParts
20: merged.IsTrain ← e1.IsTrain ∧ e2.IsTrain
21: end procedure

The next step is to determine which passenger streams will use this overlay graph, and which are local.
Any stream for which there exists a path that does not pass through any high-level node is considered
local. These are the shorter paths, that are not expected to benefit from the overlay graph. The detour
paths for these local passenger streams will therefore still be computed using a secondary regular
algorithm on the original graph. The difference is made in the long distance paths, which are split into
3 different parts: an access part, a high-level part and an exit part. Each of these parts can also be
empty.

To efficiently calculate the shortest paths, some preprocessing is done. For every low-level node, the
potential access and exit nodes are determined. The access points are the high-level nodes that can be
reached from the node without passing any other high-level node first. The exit points are determined
the same way but in the opposite direction. For every access/exit point, the default access/exit path is
computed.

Now, whenever a long-distance passenger stream’s default path is blocked, the detour path is com-
puted. This is done by first recomputing the path from the source to every access point of the source,
and from every target’s exit point to the target, if the stored default path for this access/exit is blocked.
Besides that, every edge in the high-level graph that is blocked needs to be replaced. This is done
by recomputing the path on the original, full graph. Then, for every access/exit pair, the path from the
access point to the exit point is recomputed on the overlay graph. The access and exit combination
with the shortest combined length of access, overlay, and exit path is returned.

This is illustrated with an example in fig. 5.2. In this case, it can directly be seen that all paths originating
from B, C or D will travel through their access nodes A or E, except the paths be going to B, C or D.

5.3 Detour approximation algorithms 39

These are the local paths. Any paths without origin or destination B, C or D will not have to consider
this low-level part of the graph. They will only use the high-level graph. In the high level graph, this
low-level part is replaced by an edge from A to E.

If, for example, the edge from C to D is blocked by maintenance, the edge A to E is recomputed
on the full graph to. Besides that, the access paths towards E are recomputed for B and C, and the
access path towards A is recomputed from D.

Figure 5.2: An example to illustrate how the transit node routing with the high-level graph and low-level nodes works. The
square nodes are high-level nodes. The edge from A to E is a high-level edge, which was created by contracting the original
graph and merging the edges from A to B, B to C, C to D, and D to E. A and E are the access/exit nodes for low-level nodes B,

C, and D.

This strategy suffers from the same problem of not correctly incorporating transfer times as the original
baseline. As previously explained, the baseline only looks at the transfer time in choosing the ’to’
edge. However, the transit node routing determines the shortest paths for all 3 parts independent of
the transfer times for the transition points: from the access to the high-level and from the high-level to
the exit part of the path. Therefore, this will find somewhat worse paths than the baseline algorithm.

5.3.4.1 Determining the high-level nodes
The full comparative results of all strategies will be given in section 5.5. To determine the right nodes
in the high-level node, some preliminary experiments were done. Specifically, we have done a full
factorial comparison of possible high-level graph construction strategies. This is done with different
hyperparameter settings for the criterion, edge filter and high-level size. Each of these hyperparameters
and their levels will be discussed. Then, the results of the comparative experiments are given and
analysed.

First, the criterion to determine which nodes should be in for the high-level graph. The chosen ver-
tices for the high-level graph strongly impact the result. There are many possible strategies for this. A
thorough comparison of eight global selection criteria was done by Holzer, Schulz, and Wagner [59],
using real-life railway networks. This research shows the best results are obtained with either a be-
tweenness criterion or a degree criterion for the railway graphs. They also obtain good results with an
approximation of the betweenness, but the network size we use does not require approximation.

Manually inspecting the resulting high-level graphs showed that the degree was generally quite
suitable, but in some cases, the high degree was not actually related to people often travelling through
there. For example, there is one train line which does not always stop at all stations on the route.
This causes some stations on that line to have direct connections to a larger number of other stations.
However, these stations are on a single line and are rarely a hub for passengers. The betweenness
did not have this issue, but had some other drawbacks. Some parts of the Dutch railway network have
a very high betweenness, but would not be desirable to have in the high-level graph. The design of the
Dutch railway network has one very central point, where many travellers have to go through: Utrecht
Central. However, many smaller stations around this one node also have a very high betweenness.
This is not desirable, since these stations will not add much use to the high-level graph, since almost
all travellers passing through there will also pass through Utrecht Central, which is a better hub to have
in the overlay graph.

40 5. Detour Path Approximation

Based on the good initial results of using the degree criterion on our graph instance and this manual
inspection of the results of these two criteria, we have chosen to also include two altered versions. In
this altered version, a secondary criterion is used as a tiebreaker in case of equal degree. The first
strategy is ‘transfer-degree’, where nodes which have a specified transfer time in the input data are
preferred in the case of equal degree. This criterion was added, since the important nodes that are
good in the high-level often overlap with nodes where passengers transfer from one train to another.
Within the problem definition, these stations are given by having a specified transfer time when this
node is the ’through’ station. The second additional strategy is ‘between-degree’, where nodes with
the high betweenness are preferred when the degree is equal.

The second parameter is the high-level graph size. If the high-level graph is too small, a large part of
the streams is local and can not benefit from the contracted graph. If the high-level graph is too large,
the benefit of contracting the high-level graph is lost. We used the same high-level sizes as Holzer,
Schulz, and Wagner [59], namely 3%, 5%, 8%, 10%, and 15% of the total graph size.

The final part of the high-level graph construction that is varied is the usage of an edge filter. Whenever
two edges are merged, the first target and the last source on the path represented by the contracted
edge are also stored (see algorithm 5.1). This is necessary to make sure that the transfer time is
computed correctly. After each node removal, edges which are dominated by another edge are filtered.
This means that if there are two edges with the same source, target, first target and last source, only
the shortest edge is kept. If the additional edge filter setting is used, in the last round of filtering, any
edge with the same source and target is considered for domination. This means that only one method
of transferring towards this direction is kept. When the transfer time for this direction is high, one of the
edges that was removed may have been better. This means that there are fewer edges, resulting in
faster computation, although it might result in a suboptimal path on the high-level graph being found.

The complete results of this comparison can be found in table 5.3. Each of these factors has an impact
on the results. It can be seen that using only 3% of the vertices in the higher-level graph results in
the longest execution times. Some results even reach the time-out, meaning it performs worse than
the exact solution. 5% is also too small; results using these high-level graphs are all dominated by
other hyperparameter settings. For the remaining sizes, it can be seen that the larger sizes have lower
errors, but generally higher runtimes. This same trade-off can be seen in the other hyperparameters.
The betweenness criterion for example results in a lower error, but higher runtime. The same applies
for the edge filter.

These trade-offs are not always completely even, the results are generally better with the edge filter
and with the degree-based criteria. Overall, the differences are not that large between the results of
these good sizes (8-15%), with edge filter and some degree-based criterion. From now on we will use 2
distinct hyperparameter settings, which were chosen from this experiment to cover the available range
of the runtime-error trade-off. These settings are highlighted in table 5.3. Both will have the edge filter.
The first has the size 15%, the other has the size 8%. The first will be slower and more precise, and the
second will be faster and less precise. The first will have a degree criterion, where having a transfer
time is used as tiebreaker. The second will have a degree criterion, with random tie breaks.

5.3.5 Assume bus strategy
The fourth new strategy for approximating the travel time delays is based on an assumption that the
shortest path will often still follow the same path. The passenger uses the provided alternative travel
where regular train traffic is hindered. Based on this assumption, the blocked edges on the default
path can be directly replaced with an alternative travel edge. This will of course not find available
detour paths over a different route and is therefore expected to have worse solution quality. However,
the direct replacements can be precomputed for every edge, which can result in very fast detour path
computations.

The initial results for this showed that the solution quality was very bad. Themain problem was that very
long edges were completely replaced by a bus edge. While taking a train to the station closest to the
maintenance work, and only using the alternative transport for a smaller section, is faster. An attempt
was done to resolve this by attempting a recursive replacement strategy. A longer train edge would
first be replaced by multiple shorter train edges, after which only the shorter ones that are blocked will
be replaced by an alternative travel edge. To ensure that this still follows the same assumption of using

5.3 Detour approximation algorithms 41

Hyperparameters High-level graph Runtime Error per stream

Criterion Edge
filter

High-level
nodes (%) Nodes Edges Access

nodes Setup (s) Test (ms) Mean (%) Stddev
(%)

betweenness T 15 121 374 1.76 29 98.56 1.48 4.52
degree T 15 121 415 1.57 27 95.47 1.34 4.48
transfer-degree T 15 121 413 1.56 30 93.92 1.43 4.60
between-degree T 15 121 407 1.55 30 102.36 1.48 4.69
betweenness F 15 121 616 1.76 34 112.19 1.28 4.30
degree F 15 121 522 1.57 29 104.52 1.40 4.63
transfer-degree F 15 121 520 1.56 30 102.07 1.32 4.30
between-degree F 15 121 518 1.55 28 97.25 1.40 4.63

betweenness T 10 80 276 1.97 26 90.84 1.42 4.37
degree T 10 80 299 1.79 22 72.15 1.56 4.82
transfer-degree T 10 80 301 1.82 22 77.12 1.54 4.81
between-degree T 10 80 295 1.85 24 77.61 1.49 4.72
betweenness F 10 80 615 1.97 26 103.80 1.37 4.34
degree F 10 80 460 1.78 22 77.40 1.49 4.74
transfer-degree F 10 80 460 1.81 22 76.50 1.49 4.74
between-degree F 10 80 460 1.85 21 78.12 1.45 4.69

betweenness T 8 64 230 2.20 26 94.32 1.39 4.34
degree T 8 64 255 1.96 19 70.95 1.53 4.82
transfer-degree T 8 64 261 1.94 19 69.39 1.56 4.85
between-degree T 8 64 252 1.99 19 68.41 1.77 5.09
betweenness F 8 64 609 2.20 24 101.60 1.33 4.30
degree F 8 64 487 2.07 21 81.14 1.56 4.84
transfer-degree F 8 64 453 1.93 20 74.05 1.50 4.75
between-degree F 8 64 458 1.99 19 72.94 1.60 4.90

betweenness T 5 40 186 2.81 29 153.46 1.17 4.06
degree T 5 40 188 2.38 20 78.03 1.79 5.13
transfer-degree T 5 40 184 2.28 20 79.58 1.67 5.02
between-degree T 5 40 180 2.34 20 78.23 1.67 5.02
betweenness F 5 40 627 2.81 29 162.42 1.13 4.02
degree F 5 40 559 2.61 20 95.14 1.54 4.76
transfer-degree F 5 40 503 2.43 19 82.47 1.60 4.93
between-degree F 5 40 487 2.34 20 83.53 1.50 4.82

betweenness T 3 24 114 3.74 75 >360 1.11 3.64
degree T 3 24 152 3.88 49 267.44 1.37 4.23
transfer-degree T 3 24 154 3.38 43 250.18 1.40 4.27
between-degree T 3 24 148 3.34 42 202.37 1.41 4.28
betweenness F 3 24 1033 3.74 116 >360 1.08 3.59
degree F 3 24 688 3.16 28 210.37 1.45 4.53
transfer-degree F 3 24 878 3.40 50 324.17 1.26 3.80
between-degree F 3 24 930 3.34 43 207.29 1.31 4.17

Table 5.3: A full factorial evaluation of different hyperparameter settings for generating a high-level graph for transit node
routing. The settings chosen for further experiments are boldfaced. These are selected to cover the trade-off between good

runtime and lowest error as well as possible.

42 5. Detour Path Approximation

the same route, this is only done when the shorter train edges use a subset of the route of the edge
to replace. This is necessary since we want to have a fixed precomputed replacement per edge. If it
is not enforced that these are sub-edges, this can result in cycles in the recursive replacement. These
additions did not improve the results sufficiently, as the shorter edges were not always correctly found.
Besides, the case that most of the longer edge is blocked is also regularly occurring. In this case,
splitting it into smaller edges before replacing the edges with alternative transport results in a longer
path than just replacing the full edge.

It may be possible to resolve this by precomputing both replacement possibilities, replacing with shorter
train sub-edges and with a full bus edge. Then, based on the number of sub-edges available, the right
replacement is chosen. This would increase the complexity of the strategy, which was designed to be
very simple, even more. Besides, the resulting path would still often be far off. Another downside of
this method is that it will not help to prevent maintenance from being scheduled on a common detour
route for passengers.

These results led to the conclusion that the same path assumption has too many drawbacks, and it
is difficult to successfully use as a strategy. Since another fast implementation yielded better initial
results, this strategy was not experimented with further.

5.3.6 Average delay strategy
The fifth approximation strategy we developed is an average delay strategy (AD). An average amount
of extra travellers minutes is precomputed for every edge in the graph. This strategy was explored to
find a solution in the lower end of the runtime range. However, based on the results of the ‘assume bus’
method, a strategy was required that incorporates whether there are alternative train routes available.
Therefore, the delay is based on which specific edge is blocked and not just the length of blockage.

For the total cost computation, it is also necessary to know how many passengers use the alternative
travel and on which subcorridors they use these buses. Therefore, to make a constant delay per edge
strategy feasible, it needs to precompute for every edge, the expected travel time delay as well as the
expected alternative travel behaviour. a percentage of the passengers which will be using the bus and
on which subcorridor we want to add these bus users.

To precompute this average delay, we compute the hindrance of scheduling all the project requests
one-by-one. The extra traveller minutes are divided over the blocked edges of the default path based
on the length of the blocked edge. The same is done for the bussed subcorridors. Take for example a
passenger stream with 10 passengers with a default route blocked on two edges, A and B. Edge A has
length 20 and edge B length 10. If the detour path takes 6 minutes longer, and uses the bus on one
subcorridor. Then a blockage of edge A is stored to have an expected delay of 4 minutes and two thirds
of the passengers will use the bus on the subcorridor. Blocking edge B receives an expected delay of
2 minutes and one third of the passengers using a bus from this stream. When this preprocessing is
done based on many streams and averaged based on the amount of passengers on the pre-processed
streams, we are able to estimate how important every edge is and whether there are easy possibilities
for different routes.

This loses a lot of accuracy. Especially the mapping between which edge is blocked and which subcor-
ridors will have bussed passengers is far from optimal. However, no shortest path computations are
necessary during the search, making it much faster than the previous implementations.

5.3.7 Additional algorithmic points
Two additional points, concerning the approximation techniques presented before, are explained in
this section. First, an improvement based on symmetry is presented. Then, an explanation of the bias
present in some methods is given.

5.3.7.1 Exploiting symmetry
An important observation that was made during the problem analysis is that the difference between
a path from station A to station B and from station B to station A is generally quite small. Therefore,
another approximation was done by combining these two passenger streams. The new stream consists
of passengers equal to the sum of the number of passengers of the two. The length of the default path
of the new stream is the mean length of the default paths of the two streams.

5.4 Methodology for comparing detour path approximations 43

To distinguish between passenger streams with the same source and target following a different default
path and streams following the same path, only streams that require the same trajectory parts are
combined. This will prevent cost differences caused by the original passenger stream being blocked,
whereas the new passenger stream is not, and vice versa.

To reduce the amount of shortest paths that will have to be computed, it is most important to reduce the
number of distinct sources. This is the most important factor determining the possible speed up, since
the objective evaluation uses a single source Dijkstra strategy. Therefore, we use a simple greedy
precomputation to determine in which direction the detour path should be computed for each stream.
This means going over all streams one by one. If either the source or the target is already in our set
of chosen sources, this one in used as source. Otherwise, the one with the lowest unique identifier is
used as source.

This results in a symmetrical version, which has 2101 streams rather than 4229 streams with the default
threshold. It has 241 distinct source nodes, compared to the original 357 distinct source nodes. This
strategy can be applied in combination with each of the aforementioned strategies, since it works on
the passenger streams rather than the actual shortest path computation.

5.3.7.2 Scaled versions of the detour path approximation techniques
Some of the proposed techniques are always overestimating the delay of the passengers. Both the
baseline and the transit node routing technique are based upon using actually feasible routes. Time is
saved by accepting that sometimes non-optimal routes are chosen. So, each result is either equal to
or longer than the exact path. This means that the passenger costs are always overestimated.

The alternative travel costs can either be overestimated or underestimated. The non-optimal path
could either be a route without alternative travel, while there is a faster detour route available that uses
the provided buses. Or, the suboptimal algorithm may choose a route with a bus, while there is a faster
detour route which only uses train edges.

This general overestimation of delay can negatively impact decision-making. When the algorithm needs
to make a decision between higher passenger hinder costs and higher costs in a different part of the
cost function, it may sooner choose to incur costs in different parts when using an overestimating
approximation technique. However, the exact path computation is actually an underestimation of the
hinder costs, since streams below a configurable threshold are not considered.

A different downside of the overestimation is that when comparing between different detour path
approximation techniques, the reported error is difficult to interpret. If all paths are equally overesti-
mated, this may result in better choices during the scheduling process, as compared to paths that have
more uneven errors. The choices between different starting times, with different passenger hinder, is
more likely to be optimal with even overestimation.

For these two reasons, some experiments were also done with a version of the approximation tech-
niques that linearly scaled the approximation technique. The results were similar for the different ap-
proximation techniques. And since the impact on the complete schedule was very small, it was chosen
not to continue with this scaling, since the hard-coded changing of the path lengths is not very desirable
from a code quality perspective.

5.4 Methodology for comparing detour path approximations
To compare the different strategies, it is important to quantify the trade-off in runtime and solution quality.
The impact on the solution quality can be measured on different levels. Three different levels were used
in this work. Each of these levels contribute to evaluating a method. For all of them, five replications
are done.

The first level we consider is the error in travel delay per stream. This is the lowest level we use,
which gives the most direct and easy to interpret results, as it gives a feeling of the amount of minutes
travel-time the solution is off. Besides, we can see the error independent of any aggregation. However,
since the symmetric version does not have the same passenger streams, this can not be used for these
versions. Since only computing a single path has a very short runtime, this will not be measured on
this level.

44 5. Detour Path Approximation

Second, the complete cost of expected extra travel time and alternative transport for one hour are
considered. This level is important, since it allows evaluation of the symmetric versions. Besides,
it gives a measure of all impact from the approximation, by including the alternative transport. The
alternative travel costs are also dependent on the found detour paths. Methods which have a bias will
perform worse on this. If, for example, an approximation method always overestimates the length of
a path, this will have a larger aggregated error. However, overestimating may not necessarily perform
worse in making the best scheduling decisions. The runtime is measured for the computation of these
costs, for updating one hour, without using any cached paths.

Last, the most promising strategies on the first tests are used in a complete greedy scheduling run to
quantify the impact on a complete schedule. The full runtime is measured for creating and evaluating
a schedule with the greedy algorithm.

5.4.1 Separate test set
To evaluate the performance of different methods separately from the rest of the algorithm, an isolated
test set of realistic detour paths to compute is required. Therefore, a large test set was created from
that could be executed separately from the scheduling to see the impact on paths, resulting costs,
and runtime the new method has. This test set is used for comparing the detour path approximation
strategies on the most precise levels.

This isolated test set was created by randomly extracting the information of 0.5% of availability cost
calculations in a greedy algorithm. For each availability cost calculation, the set of detour paths and
the hour were stored. Then. each of the detour path approximations can be used to find the shortest
path, and compute the error from the exact shortest paths.

5.5 Results
First, the results from the isolated test set are given, both on a path level and an hourly level. Then,
the results of applying the approximation to create a full schedule are provided.

5.5.1 Detour path approximation on isolated test set
The results of experiments to compare the detour path approximation techniques on the isolated test
set are presented in this section. The most specific path level results are given in table 5.4. The results
of the complete hour test set are given in table 5.5. The mean runtime and approximation errors on
both levels are also shown more visually in fig. 5.3.

Method Path length error

Absolute (min) Relative (%)

Exact 0.0 0.0
ADWN/Baseline 0.5 0.8
TNR1 0.8 1.4
TNR2 0.9 1.5
AD 9.6 20.4

Table 5.4: Five repetitions of computing all detour paths from the isolated test set with the detour path approximation algorithms.
The best result is boldfaced. ADWN is the improved version of the baseline. TNR is transit node routing, with two different
hyperparameter settings. AD is the average delay strategy. The details of these techniques are explained in section 5.3.

When analysing the results of the path length error, it can be seen that the average delay has the
largest errors by far. These errors are spread out, some paths are more than twice as long as the exact
detour path. The length of the paths found using the average delay strategy are on average over 20%
different from the exact shortest path, which is quite high. This shows that this average delay per edge
is quite a large simplification, which was expected.

All other approximations have a mean error of less than a minute for the approximated paths. The
difference between the two hyperparameter settings of the transit node routing is very small. These
are very small differences, and it is not expected that this will have a large negative impact in the

5.5 Results 45

Method Runtime (ms) Cost error

Mean Stddev Absolute (⋅10−3) Relative (%)

Exact 322.1 26.2 0.00 0.00
ExactSymm 223.8 19.6 1.46 1.67
Baseline 161.1 14.7 2.04 2.26
BaselineSymm 110.6 10.9 2.37 3.04
ADWN 127.0 11.4 2.04 2.26
ADWNSymm 88.1 8.6 2.37 3.04
TNR1 84.5 9.4 2.63 3.04
TNR1Symm 67.7 7.8 2.77 3.52
TNR2 63.1 9.3 2.60 3.00
TNR2Symm 48.2 6.5 2.90 3.57
AD 17.2 2.7 13.43 21.02
ADSymm 8.3 1.4 21.08 26.76

Table 5.5: Five repetitions of the isolated test set for hourly passenger availability cost computations with different detour path
approximation techniques. The best result for each column is boldfaced. ADWN is the improved version of the baseline. TNR

is transit node routing, with two different hyperparameter settings. AD is the average delay strategy. The details of these
techniques are explained in section 5.3. The Symm techniques uses the symmetrical version of the passenger streams.

0 5 10 15 20 25
Passenger- and alternative travel costs error per hour (⋅10−3)

0

50

100

150

200

250

300

R
un
tim

e
(m
s)

TNR2

TNR2-SYM

BASE-SYM

BASE

AD
AD-SYM

ADWN

ADWN-SYMTNR1

TNR1-SYM

EXCT-SYM

EXCT

(a) The error of different detour path approximations per hour on an
isolated test set. The mean difference in the sum of the passenger and

alternative travel costs is used.

0 5 10 15 20 25
Error per path (%)

0

50

100

150

200

250

300

R
un
tim

e
(m
s)

TNR2

BASE

AD

ADWN

TNR1

EXCT

(b) The error of different detour path approximations per stream on an
isolated test set. The mean relative difference of length per origin,

destination pair is used.

Figure 5.3: The error of different detour path approximation techniques on an isolated test set. The runtime is the mean time
spent on running the isolated test set, which is one hour of calculating the total extra travellers minutes and the resulting

passenger hinder and alternative travel costs. The x-axis shows two different measures of the quality of the approximation.
ADWN is the improved version of the baseline. TNR is transit node routing, with two different hyperparameter settings. AD is
the average delay strategy. The details of these techniques are explained in section 5.3. The Symm techniques uses the

symmetrical version of the passenger streams.

46 5. Detour Path Approximation

scheduling process. Most paths were perfectly found, many of the mistakes were only a few minutes.
A few outliers had larger errors. This happened especially at paths where the defined transfer times
were high.

The results of the hourly test set shows that the symmetrical solution has a clear positive impact on
the runtime. The symmetrical strategy also results in an increase in cost error. These errors are small
enough that the symmetrical versions often result in a new non-dominated solution.

The improved version of the baseline performs as expected, the same paths are found as the baseline,
but the runtime is significantly lower. The average delay still has the largest errors, but is also more
than twice as fast as the fastest alternative in recomputing the passenger hindrance for one hour. The
difference in the error between the two versions of the transit node routing is even smaller on the
hourly results. The transit node routing 2 with a smaller high-level graph has a faster computation of
the availability costs.

From the plot of the errors as compared to the runtime (see fig. 5.3), it can be seen that the solutions
forms a convex Pareto front. A Pareto front is a commonly used method to visualise and analyse
different solutions in a multi-objective problem. In fig. 5.3, also the Pareto-dominated solutions are
kept, but the shape can still be analysed. The runtime and the cost error can be seen as two objectives.
These two objectives are opposing. Decreasing the runtime comes at a certain cost to the error. From
the convex shape, it can be seen that the largest part of the runtime can be decreased by only incurring
a limited error. The last bit of improvement is most expensive. There are multiple, non-dominated
approximation techniques found, which can be beneficial for trading off solution quality and runtime.

5.5.2 Impact on complete schedule
The results of the isolated test set were used to determine the most promising techniques. These
techniques were then applied to the full scheduling problem. Only one hyperparameter setting for the
transit node routing was continued with. As can be seen in fig. 5.3a, the TNR1 approximation was very
close in runtime to the symmetrical version of the improved baseline, but with higher mean error. The
symmetrical version of TNR1 was dominated by TNR2, meaning it was both slower and with worse
solution quality. Therefore, only TNR2 is used, which will from here on be called TNR instead. The
old baseline was slower than the improved baseline (ADWN) approximation, with exactly equal detour
paths being found. The old baseline path computation will therefore also not be used in the comparison
of the impact on the complete schedule.

For the remaining four techniques, both the symmetrical and the regular version were applied to the full
problem. The runtimes and quality of the resulting schedule solving are provided in table 5.6. There are
no clear differences in number of constraint violations between any of the approximation techniques
with this number of replications. This is as expected; even if slightly worse decisions relating to the
passenger hinder are made, it is not expected that this has a direct impact on the number of broken
constraints. When a constraint violation can directly be prevented, this always has precedence over
reducing the cost in the greedy scheduling algorithm.

The result that stands out the most is the average delay strategy. This strategy results in a worse
solution quality. The errors that were found in the isolated test set result in slightly worse scheduling
decisions being made. This difference is only around 13.3, which is approximately 1%, but that is still
a cost difference that is considered important for the schedule quality. Another interesting result for
the average delay strategy is the fact that this strategy is not the fastest, which it was on the isolated
test set. The paths found by the average delay strategy generally require more subcorridors where
alternative travel needs to be provided. One passenger stream can result in many small amounts of
passengers using different buses. This makes calculating the alternative costs based on this path a bit
slower. This alternative travel calculation has to be done very often, also when re-using the path from
the cache. This is why this has a stronger impact on the runtime in the complete schedule, compared
to the isolated test set. In the end, this made it not competitive with other approximation methods with
a higher quality and faster runtime. This shows the importance of speeding up this alternative travel
costs handling, in order to find a faster approximation.

5.6 Conclusion 47

Detour
approximation
technique

Cost Hard constraint
violations Runtime

Mean Stddev Mean Stddev Mean
(hh:mm)

Stddev
(mm:ss)

Exact 1107.46 1.48 4.8 2.5 03:19 05:40
ExactSymm 1109.08 0.47 3.6 0.6 02:23 02:53
ADWN 1107.87 3.67 5.2 1.8 02:02 02:00
ADWNSymm 1109.28 0.47 5.6 1.3 01:32 01:23
TNR 1106.53 5.36 5.0 0.7 01:44 02:45
TNRSymm 1108.28 5.00 5.0 1.2 01:22 01:14
AD 1119.93 0.28 4.4 2.8 02:10 04:38
ADSymm 1121.67 1.89 3.4 0.9 01:32 02:20

Table 5.6: Five repetitions of a greedy scheduling run for the year 2024 with different detour path approximation techniques.
The best mean results are highlighted for each column. ADWN is the improved version of the baseline. TNR is transit node
routing, and AD is the average delay strategy. The details of these techniques are explained in section 5.3. The Symm

techniques uses the symmetrical version of the passenger streams.

For the other approximation techniques, the runtime differences are more similar to the results from the
isolated test set. Exact is clearly the slowest algorithm. Transit node routing is the fastest. The improved
version of the baseline (ADWN) is between these two. The differences are of course smaller than on
the isolated test set, since only a part of the execution is influenced by the shortest path calculation.
Whether the symmetrical strategy is used makes relatively more difference in the full run. When the
symmetrical version is used, this also speeds up calculation when all paths are already present in the
cache, since fewer paths have to be accessed and used in cost computation. The symmetrical version
of the improved baseline is therefore faster than the non-symmetrical version of TNR when using a full
schedule run, whereas it was the other way around on the isolated test cases.

The mean costs for all approximation techniques except the average delay based strategies are all
very close. No strategy clearly outperforms the others. This shows that the symmetrical version of
the transit node routing does not result in a large solution quality loss, while being substantially faster,
compared to the exact detour path calculation.

5.6 Conclusion
Multiple approximation methods are possible, with small differences between the detour paths found
by the exact method and the approximation technique. Most paths were the same, when a different
path was found, it was often only a few minutes longer. Only a few paths were further off, when the
defined transfer times were high. The developed techniques show a trade-off between runtime and
solution quality on an isolated test set.

When applying those techniques to solve the full scheduling problem, the average delay approximations
were dominated by other techniques. The faster computation did not hold up for a full scheduling run,
due to too complex handling of the alternative travel costs. However, if a better handling of the bus
costs could be found, it shows that a potential approximation which has mean errors of up to 30% for
this part of the objective, the loss of solution quality is still less than 2%. All other techniques resulted
in a similar final solution quality, where the symmetrical version of a transit node routing was fastest.
This shows the possibility to solve the year 2024 with negligible loss of solution quality in less than half
the time that would be required to solve it with an exact solution.

Using these results, the research question: “How can approximation of passenger detour paths be
used for faster solving?” can be answered. Approximation of this part of the objective is an effective
way to reduce runtime, with negligible impact on the solution quality. By using methods to find short
paths that are not necessarily the shortest path, there was only limited error in the path length and in
the resulting passenger availability costs. This error is small enough that it has no detrimental effects
to the decisions made by the greedy scheduling algorithm, and find equal quality solutions.

48 5. Detour Path Approximation

A critical note that should be added to these results is that there is a downside to the usage of the exact
passenger streams. These paths are used for comparison to determine the errors in this chapter, as
well as for the final costs. The assumption is made that passengers always take the shortest path on
the modelled graph. There are two problems with this. First, passengers do not always use the shortest
path. They can have other preferences that supersede the travel time in some cases, such as fewer
transfers [62]. Second, the travel time graph is not a perfect representation of reality, and the resulting
shortest path can sometimes show weird choices. The main reason here is the addition of transfer
times. Having some penalty when passengers switch trains makes it more realistic, however these
transfer times are not given for all stations. When nothing is specified, this is interpreted as having no
transfer time. This causes shortest paths to sometimes take stranger routes, which are faster only due
to having no specified transfer times.

5.6.1 Future work
The work done in this chapter has given rise to a few potential future research directions that could
improve the solving of the railway maintenance scheduling further, using the approximation of the pas-
senger detour paths.

The most important future research direction is to look further into finding a smaller, representative
subset of passenger streams. Merging paths that took the same path in different directions resulted
in significant speed-ups. An important advantage of this approximation is that it does not only reduce
the number of detour paths that needs to be computed, but it also reduces the effort of calculating the
hinder when the detour paths were already calculated earlier. The first suggestion for further decreasing
the number of streams, and specifically the number of sources, would be to group streams based on
having many edges in common. Then, using the most average stream as representative for that group,
preferably with as many streams with the same origin, could reduce runtime further. However, other
ways of merging passenger streams or even merging stations and their corresponding nodes in the
graph could be interesting future research possibilities.

In the other used detour path approximation strategies, some improvement possibilities were also en-
countered. The transit node routing could be further improved by more research into caching the (par-
tial) paths. The average delay approximations may be improved by simplifying the alternative travel
cost approximation. From the results on this technique, it would be interesting to approximate the cost
based on average delays for a complete hour, rather than averaging bus costs per path. This could
give more reliable results, and reduce the runtime of computing the costs a lot further. This hourly
approximations could also be used outside the average delay strategy; approximation per hour instead
of per path has potential to obtain more efficiency improvement than a path approximation.

Another future research direction is determining related trajectory parts. Whenever a different set of
trajectory parts is blocked, new detour paths are computed for all passengers. However, passengers
travelling a detour path in the northernmost part of the country, will most likely not be hindered by
maintenance in the south. So, whenever there is a second request scheduled simultaneously, but
geographically far apart, all detour paths are recomputed, despite it probably not affecting most of the
existing hindered passengers. By precomputing for every passenger stream which trajectory parts may
be relevant in a possible detour path, this situation could be prevented. In that case, only the overlap
between the related trajectory parts and the blocked trajectory parts is considered for reusing paths.

The results from this chapter also show that if a different part of the objective has a trade-off comparable
to this one, where a large part of the runtime can be reduced by incurring a small error in the objective,
this could be beneficial for the solving. This principle could be further applied to both this problem,
and the specific strategies proposed here could be applied to other expensive optimisation problems
involving detour path calculations.

The final future work direction would be to use a more realistic model of the passenger behaviour during
maintenance. As concluded previously, more realistic modelling of the passenger hinder is necessary to
fix the problems in some strange paths being found due to wrong transfer times, and to be able to more
correctly evaluate approximation strategies. Improving the transfer time modelling would therefore be
the first recommendation. Another aspect that could be considered here is whether passengers will
still travel when maintenance occurs. Part of passengers will delay their journey, depending on the
moment.

6
Search Strategy Comparison

Having different search strategies available to create a maintenance schedule is an important way
to make a larger part of the trade-off between runtime and solution quality available for the ProRail
scheduling team. After the general optimisations explained in section 4.4 and the detour path approx-
imations explained in chapter 5, computing the objective is faster. The greedy algorithm that took
around twenty-four hours at the beginning of this work can now be run in around an hour and a half.
Therefore, the strategies proposed by Oudshoorn [5] are feasible again. The existing search strate-
gies are explained briefly in section 6.2. Then, a new look-ahead addition to the greedy constructive
algorithm is proposed in section 6.3. All strategies are compared based on solution quality and runtime
in section 6.4. Finally, the research question “How do different search strategies solve the scheduling
problem in terms of solving time and solution quality?” is answered based on these results.

6.1 Background
In this section, the necessary background is given for the discussed search strategies in this chapter.
The background on greedy algorithms was provided in chapter 4. The background concerning the
evolution strategy and the proposed look-ahead technique will be given here.

6.1.1 Evolution strategy
Evolution strategies (ES) are a large family of nature-inspired algorithms, and one of the common types
of evolutionary algorithms. Originally, there were 2 main rules for ES: 1) change all variables at a time,
mostly slightly and randomly and 2) if the fitness does not decrease keep the new individual, otherwise
keep the original [63]. Besides this, one of the main features of an ES is the self-adaptive mutation
strength [63]; the size of the mutations is changed based on the current success rate.

This has been extended with larger populations and different ways to select the new population [63],
such as tournament selection. Recombination was also added in some versions of ES. Mutations
used in evolution strategies, which generate offspring from a parent, are problem-dependent [63]. The
mutations have become increasingly de-randomised in newer variants of the evolution strategy [64].
Evolution strategies have been successfully applied to numerous optimisation problems, and are still
continuously being developed further [64].

6.1.2 Look-ahead techniques
Themain idea of look-ahead based techniques is to look forward towards the next steps of an algorithm,
before making the current decision.

Applying this look-ahead in combination with a greedy algorithm is explained in the work by Chen
[65]. This combination has been successfully used for solving multiple problems, such as job shop
scheduling and circle packing [65], [66]. More recently, a similar principle was applied to the VNF-FG
embedding problem [67], where decisions within the horizon ℎ are used. This improves the solution
quality and allows trading off runtime and solution quality based on the value for ℎ.

50 6. Search Strategy Comparison

The same general principle can also be seen in other solving methods besides greedy algorithms. In
some value ordering heuristics for constraint satisfaction problems, the number of conflicts occurring
with the current value is counted [68]. The least conflicting value can then be tried first. Look-ahead
strategies have also been researched extensively in game theory, especially to the occurrence of patho-
logical situations, where looking ahead is counterproductive [69].

An example of look-aheads being applied in research to public transportation is given by Pätzold,
Schiewe, Schiewe, et al. [70]. Here, they add three enhancements to include an approximation of
the cost in the next stage using a simple upper bound. These enhancements allow them to find signifi-
cantly lower costs for line planning, timetabling and vehicle scheduling for integrated planning in public
transportation.

6.2 Existing algorithms
In this section, the algorithms proposed by Oudshoorn [5] are explained: a greedy heuristic algorithm,
an evolutionary algorithm, and a hybrid greedy-evolutionary algorithm. The hybrid version provided the
best results on the schedule of 2020, with an older version of the problem definition.

6.2.1 Greedy constructive algorithm
The first solving method is a greedy constructive algorithm. This is a simple, but effective algorithm,
which is considered the baseline for solving, as it is currently the only algorithm actively being used by
the ProRail scheduling team. This method was explained in more depth in section 4.2.

This algorithm assigns a starting time to the requests one-by-one. This is done by trying out each
possible starting time with a specified granularity. This granularity is by default daily. Each day is
tried and the lowest cost starting moment is assigned. This way, a schedule is created greedily. This
algorithm is relatively fast, since a request is not moved after it has been assigned a start time. However,
the exploration of this method is limited.

To plan clusters correctly, whenever the current request is a part of a cluster, the full cluster will be
added to the schedule. This is done by first finding the longest request(s), and trying all its start times.
For every start time, the other requests from the cluster are scheduled greedily within the period of the
longest request. The longest request is thus scheduled greedily based on the cost of adding all cluster
requests in this time window.

6.2.2 Evolutionary algorithm
Another existing strategy is an evolutionary algorithm, which was developed for solving the mainte-
nance possession scheduling for the Dutch railway network [5]. Oudshoorn [5] presents it as an evo-
lution strategy (ES), although it does not contain the concept of self-adaptation of step size. This
self-adaptation is considered one of the main features of evolution strategies [71]. The algorithm may
therefore be more adequately described as the more broad term evolutionary algorithm or a population-
based local search. In this thesis, we will call it an evolutionary algorithm (EA).

In this algorithm, each chromosome represents a complete schedule as the list with a starting time for
each of the requests. The starting population is initialised using a simple heuristic. Then, for a certain
number of generations, offspring 𝑂 is generated from the current population. A rank-based selection
is used, which selects the best 𝑛 individuals from 𝑃𝑡 + 𝑂 for the next population 𝑃𝑡+1. To create this
set of offspring, 𝑚 mutations are done. For each mutation, a parent is randomly selected from 𝑃𝑡, with
uniform probabilities.

Using the evolutionary algorithm, the found solutions for the year 2019 and 2020 were slightly worse
than the greedy constructive algorithm [5]. However, it could be seen that this algorithm performed
well on different aspects than the greedy solution. The evolutionary search was better in reducing the
availability costs.

Due to the updated problem definition and the slower objective function, the realistically possible num-
ber of generation is lower than it was at the time of this original work. Besides that, the mutations were
designed back then. These have not been updated to result in a competitive solution quality. The EA
is still included in the comparison from this chapter, because seeing how the EA performs on this new
problem formulation and input can help to evaluate the hybrid algorithm.

6.2 Existing algorithms 51

6.2.2.1 Mutations
Each of the mutations is explained briefly in this section; for more detail, the reader is referred to the
original work by Oudshoorn [5]. The mutations are separated in three groups. The first group contains
shift mutations, which randomly shifts blocks. The second group contains bucket mutations, which try
to group requests effectively. The last group contains fix mutations, these try to resolve conflicts and
dependency constraint violations. Each of these groups are selected with equal probability. Then, a
mutation is selected from the group following a predefined distribution.

Shift mutations. The shift mutations are the simplest types of mutation. These mutations do simple
shifts to a different start time. The first two types in this group are the day shift and hour shift mutation,
selected with probability of 0.2 each. These take a random request not in any bucket and move it to a
random day in the year, or a random time, preserving the selected day. Similarly, the bucket day shift
mutations are selected with probability 0.25, and the bucket hour shift mutations, with probability 0.15.
These do the same shifts for a random bucket. Lastly, there is the multiple day shift mutation type,
which moves ten requests at once to a different day.

Bucket mutations. A bucket is a set of two or more requests that are grouped. A bucket will always
be scheduled overlapping, with the goal of decreasing availability costs. In other mutations, all requests
in a bucket will be moved simultaneously to keep this overlap intact. A bucket must consist of requests
which are closely related, but not conflicting. This means that they can be scheduled simultaneously
and that they block some of the same subcorridors. The reason for this is that cost is mostly reduced
when these subcorridors have to be blocked only once for all maintenance in a bucket. There are three
types of bucket mutations.

A create bucket mutation selects two requests that are currently not in a bucket and creates a new
bucket from those two requests. The bucket is planned at the starting time of one of the requests with
equal probability. Possible pairs to create a bucket from are precomputed. Specifically, two requests
can be in the same bucket if the number of overlapping subcorridors is higher than the number of non-
overlapping subcorridors of the request of the least impacting request. For this comparison, impact
is determined based on length multiplied with number of affected subcorridors. The create bucket
mutation is chosen with probability 0.4 from the bucket mutation group.

The second mutation within this group is the expand bucket mutation, which is also chosen with a
probability of 0.4. This mutation selects a random request which is not a part of any bucket and tries
to add it to a bucket. This is retried a configurable amount of times if no suitable bucket is available. A
request can only be added to a bucket if the number of non-overlapping subcorridors times the length
is smaller than the sum of the overlap length between the overlapping subcorridors.

The final mutation in this group is the shrink bucket mutation, which is selected with the remaining
probability of 0.2. This mutation picks a random bucket and removes one of the requests from the
bucket. This request is assigned a random new start time.

Fix mutations. The final group of mutations is the fix mutations. These are designed to resolve hard
constraint violations.

The first type is the fix bucket mutation, chosen from this group with probability of 0.5. This searches
for a bucket breaking a hard constraint and finds all available periods where it would not cause any
constraint violations. It randomly chooses one of these available periods. Periods that do not require
a different time are preferred. If no conflict free periods are available, the bucket is randomly shifted
instead.

The second mutation in this group is a fix conflict mutation, which is chosen with a probability of
0.25. It selects a random project request not in a bucket which is currently causing a conflict, and moves
it according to the same rules as the bucket fix mutation.

The final mutation is the fix dependency mutation, which reschedules a request not in a bucket that
is causing a dependency constraint violation in the same way.

52 6. Search Strategy Comparison

6.2.2.2 Constraint cooling
The evolutionary algorithm was improved with the addition of constraint cooling. At the start of the
search, a certain number of hard constraint violations are allowed. This strategy allows the algorithm
a bit more exploration space. This exploration space is important to reduce the cost. These hard
constraint violations can then be fixed at later iterations.

This principle will not be explained in depth, since the results of initial experiments showed that this
constraint cooling was not influencing the results of the evolutionary algorithm. With the current mu-
tations and amount of generations possible, the individuals always had more broken constraints than
the allowed amount of constraint violations.

6.2.3 Hybrid greedy-evolutionary algorithm
When analysing the schedules for the years 2019 and 2020 created by the evolutionary algorithm
and the greedy algorithm, it could be seen that the EA was better at decreasing the availability costs
[5]. Besides that, the evolutionary algorithm was also better at doing more exploration in complete
schedules. Contrarily, the greedy algorithm was better at decreasing the soft constraint penalties, and
finding decent solutions fast. This was the motivation for designing a hybrid algorithm [5]. This search
strategy obtained the best solution quality for the 2019 and 2020 schedules, with a runtime of twenty-
four hours.

This hybrid algorithm uses the greedy heuristic with randomness to create starting individuals for an
evolutionary algorithm. Besides that, it splits the evolutionary search in multiple phases. In each phase,
it first assigns only part of the requests a starting time with the greedy heuristic. Then, it applies the
evolutionary algorithm to improve this partial schedule. A flowchart of this process is shown in fig. 6.1.

Figure 6.1: Visualization of the hybrid greedy-evolutionary algorithm with a population size P.

6.3 Greedy constructive algorithm with look-aheads 53

The best results were obtained by Oudshoorn [5] with two phases, so that is the setting that will be
considered here. The population size, offspring size and number of generations were all decreased in
comparison with the original work, to adapt for the new, slower objective evaluation. All hyperparam-
eters are given in table 6.1. It was decided not to use constraint cooling in this strategy. Some first
results showed that constraint cooling was not working with the new problem definition and the 2024
problem input. The number of constraint violations was higher at the beginning, as expected, due to
the higher allowed constraint violations. However, within the generations that were allowed, some of
these new violations were not resolved during the cooling process. The final result of the evolutionary
search using constraint cooling therefore had more constraint violations than the starting population.

Parameter Value

Population size 10
Offspring size 30
Number of phases 2
Requests per phase (100, N-100)
Generations per phase (5000, 2500)
Constraints allowed at start 0

Table 6.1: The default hyperparameter settings used with the hybrid greedy-evolutionary algorithm.

6.3 Greedy constructive algorithm with look-aheads
A look-ahead addition was implemented as a possible improvement to the greedy constructive algo-
rithm. With this look-ahead, the impact of the chosen starting time on some still-to-plan project requests
will be considered when greedily scheduling requests. To do this, the algorithm plans a few extra re-
quests for every considered starting time. So, in a manner similar to the improved handling of schedul-
ing a cluster, the request is no longer scheduled only based on its own incurred cost. It also includes
the information of some other costs that have a high interaction with this request. If, for example, a
request with a large time window has two possible starting times with only a small difference in cost.
When another, conflicting, request could for example only be planned on the first starting time, it would
be better to choose the second starting time for the first request. If this differentiation can be made
by including the effect on the second request in the first decision, this may improve the final solution
quality.
To demonstrate the process of the greedy constructive algorithm with a look-ahead, two examples are
used. In example 1, an example of how a look-ahead can prevent a conflict, as compared to a regular
greedy run, is shown. Example 2 shows how unnecessary conflicts can not always be prevented by
the addition of a look-ahead. This happens when the number of requests that need to be planned on
their cost suboptimal location to prevent the conflict is higher.

Example 1. Two conflicting requests, global available time window 00:00-02:00, greedy schedule
order:

• Request A, time window: 00:00-02:00, length: 1 hour
• Request B, time window: 00:00-01:00, length: 1 hour

Desired solution: 0 constraint violations. Request A is scheduled at 01:00-02:00 and request B at
00:00-01:00.

Without look-ahead: 1 constraint violation. Request A will be scheduled at 00:00-01:00. In this
example, this period results in a lower passenger hindrance cost. Then, request B will be scheduled,
this request has to be scheduled at 00:00-01:00, so there will be one constraint violation.

With look-ahead: 0 constraint violations. Request A will be scheduled at 01:00-02:00. Both start
times are tried. Although 00:00-01:00 has lower cost, look-ahead shows it will cause a constraint
violation later on. After this, request B will be scheduled at 00:00-01:00.

54 6. Search Strategy Comparison

Example 2. Three conflicting requests, global available time window 00:00-03:00, greedy schedule
order:

• Request A, time window: 00:00-03:00, length: 1 hour
• Request B, time window: 00:00-02:00, length: 1 hour
• Request C, time window: 00:00-01:00, length: 1 hour

Desired solution: 0 constraint violations. Request A should be scheduled at 02:00-03:00, request
B at 01:00-02:00 and request C at 00:00-01:00.000

Without look-ahead: 1 constraint violation. Request A will be scheduled at 00:00-01:00, since this
results in the lowest passenger hindrance cost. Next, request B will be scheduled at 01:00-02:00,
since this is the only start time for request B which does not result in a conflict. Lastly, request C
has to be planned at 00:00-01:00, which will result in one constraint violation.

With look-ahead: 1 constraint violation. Project request A will first be scheduled. Every start time is
tried, starting at 00:00 has the lowest cost both before and after look-ahead. The look-ahead shows
that this decision would result in one constraint violation. Starting request A at 01:00 or at 02:00 will
have higher cost. In both cases, request B will be greedily scheduled at 00:00, since this results
in lower passenger hindrance costs. This means that request C will cause a constraint violation in
both look-aheads. Therefore, request A will be scheduled at 00:00-01:00, each look-ahead shows
a conflict and this has the lowest cost. Request B can then only be planned at 01:00-02:00 without
a conflict. Finally, request C has to be planned at 00:00-01:00, so one conflict constraint will be
broken.

The complete look-ahead addition is described in algorithm 6.1. Doing look-aheads to quantify the
impact of the current decision on other requests strongly increases the required runtime. Therefore,
only the most promising 𝑇 starting times are considered and only a limited number of requests (𝑁)
are scheduled during that look-ahead. Some of the most promising times are just one day apart. In
this case, it is not to be expected that a large difference can be found in a look-ahead. Therefore, all
starting times which have a starting time with lower cost within 72 hours are removed from consideration
for the look-ahead comparison. The different methods for determining which 𝑁 requests are looked
ahead to will first be explained. Then a few additional variations are explained. Finally, the results of a
comparative analysis to determine the best configuration for the look-ahead are shown.

6.3.1 Determining related project requests
Since only a small subset of all requests can be considered in a look-ahead, it is important to determine
which of the still unplanned requests are most influenced by the current request. In the look-ahead
addition, a set of related project requests is therefore found for the current request. Then, these are
sorted based on a priority function, and only the top 𝑇 are scheduled as a part of the look-ahead.
Multiple methods for both determining and prioritising the related project requests were considered.
The goal of these methods is to find the requests which are most strongly influenced by the current
decision.

When the required time window of the current request does not overlap with the required time window
of the other request, they are considered to be unrelated, since in that case the current request is not
expected to influence that future decision. Two requests which would cause a conflict when scheduled
at the same time are considered related. In this case, the current request will restrict the available
conflict-free scheduling periods of the other request, which could strongly influence that second deci-
sion. If at least one trajectory part is blocked by both requests, they are also considered related. In
this case, they will often have the same best starting times. This makes the influence of the current
decision on the cost incurred later larger.

6.3 Greedy constructive algorithm with look-aheads 55

Algorithm 6.1 Schedule a request greedily with look-ahead
1: input: request 𝑟 to be scheduled in schedule 𝑠

2: Initialise empty list of best starting times and their costs
3: for time 𝑡 ∈ request’s required time window do
4: Move request to time 𝑡
5: Add time and current schedule cost to list of best times and cost
6: end for
7: Sort list of starting times by ascending cost
8: Remove similar starting times from list
9: Remove all but the 𝑇 best starting times

10: Initialise variable for best starting time and best cost after look-ahead
11: for Remaining time in list of best starting times do
12: Determine list of requests related to 𝑟
13: Order related requests based on chosen priority metric
14: Schedule 𝑁 first requests greedily without look-ahead
15: if Current cost < best cost found so far after look-ahead then
16: Update best cost and best starting time after look-ahead with current time
17: end if
18: end for
19: Schedule request 𝑟 at best starting time after look-ahead

These rules for relatedness do not cover the full range of possible ways in which a current decision
influences further decisions. For example, if the two requests have a lot of the same required essential
personnel type, they also influence each other’s scheduling freedom. However, these constraints were
not as prevalent in the schedules for 2024, and often required different scheduling decisions to be
made for multiple requests. Since the two earlier mentioned rules often already resulted in more related
requests than can be looked ahead to, it was decided not to include more rules.

Then, when the set of related requests has been determined, this set needs to be pared down. This is
done by taking the top 𝑁 requests according to some metric. Three options for this were implemented
and compared.

The first is to only take the 𝑁 related requests that are first up in the regular scheduling order, which
will be short-handed as the ‘first’ method. The most important advantage of this method is that it results
in look-aheads that are closest to the actual greedy scheduling that will happen after the current request
is scheduled. There are still unrelated requests that will be scheduled between the requests from the
look-ahead during the actual scheduling, but no related requests are skipped. A possible downside is
that the requests that are later in the scheduling order, but more influenced by the current request, may
provide more information in the look-ahead.

Therefore, an alternative was considered, which takes the 𝑁 requests which have the highest re-
latedness score. This score is computed based on the request currently being scheduled and each
possible request to include in the look-ahead. This score was increased by 1000 if the two requests
were a part of the same cluster. This was done to include cluster handling in the look-ahead princi-
ple. The score was then increased with the number of possible conflicts between the two requests.
If requests conflict in multiple different ways, this means they are influencing each other more. This
influence is expected to still be there even if many others are scheduled in between. The score was
increased by one if the two requests have at least one trajectory part in common. Requests at the
same location can be desirable to schedule together, in which case the first decision influences the
next. This prioritisation method will be short-handed as the method ’largest‘.

The third and final considered method is short-handed as ’most‘, this method will prioritise requests
that are related to many others. The reason for this method is that requests which are conflicting with
a lot of requests are expected to be difficult to schedule without conflict. Therefore, if such a request
is looked ahead to more, it may make it easier to keep some starting times available for this request.
The ordering is thus done based on the highest number of requests it is considered related to.

56 6. Search Strategy Comparison

6.3.2 Additional look-ahead configurations
Besides different methods to determine the set of requests to include in the look-ahead, two additional
variations on the basic look-ahead strategy were implemented.

6.3.2.1 Recursive look-aheads
An important weakness of the look-ahead strategy can be seen in example 2. When a conflict can be
prevented by scheduling two or more requests in a suboptimal location, the look-ahead might not show
this possibility. During the look-ahead, all requests are planned greedily. Therefore, this is a shallow
look-ahead, that will not incorporate how future requests may also be influenced by their look-ahead.
A possible, simple to implement, method to resolve this would be to use recursive look-aheads. Each
of the requests in the look-aheads is planned using a look-ahead. This can theoretically be done to
any depth. However, this results in an exponential increase in required computational time. In this
thesis, we therefore only considered one level deeper. These recursive look-aheads would already
take very long for a single full-year schedule, but it gives some insight in whether there are many of
these constraint violations that can be resolved when the look-aheads are one level deeper.

6.3.2.2 Constraint-only look-aheads
One of themotivations for trying out a look-ahead strategy was to see if these look-aheads could prevent
constraint violations, similar to example 1. For this reduction in the number of broken constraints, it
is unnecessary to compute the full costs. Therefore, a constraint-only look-ahead was implemented.
When this setting is used, the availability costs are not computed during the look-aheads. The look-
ahead will therefore focus mainly on reduction of the constraint violations. This will reduce the time
required for a look-ahead.

6.3.3 Hyperparameter analysis for look-ahead addition
To find the best possible configuration for the look-ahead, a small comparative experiment was done.
These experiments were all done on the 2024-Q4 sub-problem. This problem was chosen, since it it is
a lot faster, which makes it feasible to do some replications for these different configurations. It has a
higher number of constraint violations than the full year problem, so it is suitable for seeing the ability
to reduce this constraint violations.
The three prioritisation methods were compared. Based on these results, one method was chosen for
each of the other experiments. Then, a full-factorial experiment with three different levels for the number
of start times (𝑇) is considered, using values 3, 5 and 25. The number of requests in a look-ahead (𝑁)
was included with two levels, 10 and 50. Besides, the recursive version was tested once. In this
recursive version, the requests were scheduled with a look-ahead, one level deeper. Since the runtime
for this was very large and the results were not very promising, no further schedules were created
with this. The faster constraint-only variation was also experimented with. One setting combined with
the most promising values of 𝑇 and 𝑁 was done, as well as one setting with the largest levels. Each
parameter setting was repeated three times. All mean results are reported in table 6.2.
As can be seen in table 6.2, no large differences are visible between the three different prioritisation
algorithms. Results were within one standard deviation of each other. Therefore, it was chosen to
continue with the prioritisation that used the first requests in the greedy schedule order. The main
reason for this is that further research will attempt to improve this greedy ordering (see chapter 7),
these improvements could then also improve the look-ahead results further.
The results of the full-factorial algorithm show that the lowest level for the number of start times has
the lowest cost results. This can be explained by the fact that if only the three best greedy options are
considered, there are only limited cost incurring choices that can be made for reducing the number of
violations. These costs are all lower than the best of five runs without look-aheads. This shows that
this extra knowledge on requests being scheduled later is useful, and allows making better decisions.
However, the extra computational efforts are quite large, so the trade-off is steep. Considering five
starting times instead of three starting times has slightly higher costs, but lower number of broken
constraints. Comparing 25 starting times does not clearly improve the results, but does influence the
runtime markedly. Most likely, these starting times are almost never chosen.
In the amount of requests that should be looked ahead to, it can be seen that the lower level almost
always performs better. This was explained by looking into the choices that were different from the

6.4 Results 57

𝑇 𝑁 Priority Additional Runtime
(hh:mm) Cost Constraint

violations

0 0 n.a. 00:15 410.69 13.0

5 10 First 01:59 407.30 9.3
5 10 Most 01:41 407.10 10.3
5 10 Largest 01:44 406.20 9.3

3 10 First 01:13 403.77 13.7
3 50 First 02:20 404.57 11.3
5 10 First 01:59 407.30 9.3
5 50 First 03:29 413.12 10.3
25 10 First 03:18 405.85 12.0
25 50 First 05:27 408.60 10.0

3 10 First Recursive 18:46 404.33 11.7
5 10 First Constraint-only 00:50 409.86 13.7
25 50 First Constraint-only 02:31 417.45 9.7

Table 6.2: Hyperparameter analysis on the 2024-Q4 problem, to compare different settings and techniques of the greedy
constructive algorithm with the addition of a look-ahead. 𝑇 is the amount of starting times that are compared with a look-ahead,
𝑁 is the maximum length of this look-ahead. The prioritising method determines the order of the look-ahead requests. The best

result in each column is boldfaced. Three repetitions were done with each configuration.

greedy. In the case of the longer look-aheads, these decisions are more often based on something
happening further away in the scheduling. In some cases, this had different behaviour than what would
actually happen in the remainder of the scheduling. This happened because there are no look-aheads
within the look-ahead, and because the look-ahead schedules only part of the requests of the actual
algorithm. Adapting your choice to expected future behaviour that is too far from reality made the
decisions worse on average.

In conclusion, the five best starting times with a look-ahead of ten request will be used for the search
strategy comparison. The look-ahead requests will be chosen based on their location in the scheduling
order. However, from these three repetitions, no confident conclusions can be drawn, as the results
are close. It is also not certain that this will outperform the regular greedy algorithm. It is expected
that it has more potential on a full year schedule, since this will more often have to make decisions
between multiple starting times that have a similar objective value on the partial solution, but influence
future requests. The hyperparameters may not be optimised perfectly, as the look-ahead length will be
relatively shorter compared to all requests, when using the full year.

6.4 Results
In table 6.3, the best and average results obtained by all solving methods for the railway maintenance
scheduling are presented.

The hybrid greedy-evolutionary strategy found the best results, and was especially better at reducing
the broken constraints. However, there was still quite a large variance in the number of hard constraint
violations. Often, when more violations were present from the beginning of the second phase, only a
few could be fixed. The cost of the hybrid is also significantly lower than the greedy algorithm.

The hybrid process per stage is visualised in appendix B.2. In the first stage, around 474 cost
was generated, without any constraint violations. The first part of the improvement compared to the
greedy algorithm comes from choosing the best of the 10 random greedy runs. This best individual had
on average around 5 cost less than the worst starting individual. Afterwards, an average further im-
provement of around 22 was found in the first evolutionary search phase. Finishing the best individual
greedily with the remaining request increased the cost by another 502, and on average 6 broken con-
straints. Lastly, the search when the schedule is full, caused a small cost increase of 1.5, with a mean
decrease of the amount of broken constraints of 3.5. Solving these constraint violations cost more than

58 6. Search Strategy Comparison

Search strategy Runtime (hh:mm) Mean solution quality Best solution quality

Mean Stddev Cost Constraint
violations Cost Constraint

violations

Greedy 01:32 00:01 1109.28 5.6 1106.17 3.0
Greedy with look-ahead 26:42 00:54 1084.98 8.2 1077.99 5.0
Hybrid 23:18 00:44 1089.41 3.4 1091.13 1.0

Table 6.3: Five repetitions of the most promising search strategies. The best value is boldfaced in every column. The best
solution quality was found by the hybrid greedy-evolutionary strategy, which especially does best in reducing the hard

constraint violations.

cost improvements could decrease. From this approximate behaviour, it can be seen that by doing the
evolutionary search early, a lot of progress is possible. The mutations at the final full schedule are also
useful, but for fixing some constraint violations, without a large cost decrease. Providing the current
hybrid with even more runtime will most likely not give large further cost improvements. At the end of
both evolutionary search phases, the improvements were smaller and further apart.

The look-ahead strategy did not prevent broken constraints in the way that was hoped. Many violations
require either a change not found in the limited starting times or a larger amount of preventive changes
which are not found by the shallow look-aheads. The constraint violations are higher than the greedy
algorithm, due to suboptimal handling of the clusters. The cost is however consistently lower than the
regular greedy. This shows that there is useful knowledge extracted from the look-ahead. However,
the hybrid algorithm finds better results in a similar runtime. The look-ahead on average finds lower
cost solutions than the hybrid algorithm, though more experimentation is required to establish whether
these cost improvements would hold when the constraint violations are resolved.

The evolutionary algorithm, as expected, did not perform competitively. Two runs were done for 48
hours, the results of this are also visualised in appendix B.1. The best random starting individual has
over 1,000 broken constraints. These were at first resolved fast, incurring high costs. After only 200
generations, the amount of hard constraint violations were reduced to only around 600 with a large
increase in the costs. After that point, the hard constraint violations are dropping increasingly slow,
but more cost improvements are also happening. After the first thousand generations, the solution
still had more than 200 broken constraints. The cost at this point was still around 190 higher than
the worst greedy solution found. After 48 hours, the cost was still around 95 higher than the average
greedy solution found. This shows the progress slowing down, and the expected amount of iterations
required being too high for the evolutionary to be a useful algorithm by itself. The convergence is
different it was working for the year of 2019 and 2020, with the older problem definition. Back then, the
cost is first further improved in a range lower than the final solution, before finally using the cooling to
force resolving the violations, incurring some cost. However, the reduction of the number of constraint
violations was too slow and the cost increase too high, to achieve a similar convergence with constraint
cooling, also due to the smaller number of available generations.

6.5 Conclusion
To conclude, the two strategies that were able to provide a nice trade-off on the older problem definition
and the years 2019 and 2020, are still performing well on this updated problem. The look-ahead addition
shows a bit of cost reduction, however the constraint violations are on average higher. Therefore, the
results are not competitive with the hybrid, which uses a similar amount of runtime.

Using these results, we are able to answer the research question “How do different search strategies
solve the scheduling problem in terms of solving time and solution quality?”. Different search strategies
can be a good method to provide a better trade-off between runtime and solution quality to the sched-
ulers. The hybrid finds the best solution, whereas greedy finds worse schedules, but faster. Adding a
look-ahead does not add significant value to this trade-off at this point. By further adapting the hyper-
parameters for the hybrid, it is expected that the trade-off can be extended with possibilities between
the fast greedy and the slower hybrid algorithm.

6.5 Conclusion 59

6.5.1 Future work
Based on the results of the researched search strategies, some potential future research into better
solving of the maintenance scheduling problem is identified.

Greedy constructive algorithm. A few potential improvements to the greedy constructive algorithm
were identified in this research.

The first and foremost one is to improve the order function used to determine the scheduling order.
In chapter 7, this improvement will be further motivated and some results on this will be presented.

Besides, an important difference was seen between the greedy and the evolutionary algorithm.
In the greedy algorithm, the schedule is created by trying out each day in the available time period.
However, the same starting time is used for each of these. Evolutionary search is not limited by the
granularity of the tried starting times. In some cases, being able to use different times of day makes it
easier to fit requests which have lengths not an exact multiple of 24 in a good location. Some future work
could therefore be done by trying the greedy with a smaller step size or some commonly successful
times of day found in the hybrid algorithm.

Another identified possible research direction is an algorithm overarching the greedy. This could,
similarly to the hybrid, do multiple randomised runs. Based on the intermediate results, it could filter
and finish only the most promising ones. This is expected to be faster than the hybrid, but may already
help in finding the best of multiple random runs with less runtime. By including a destruction heuristic,
some of the techniques that were seen in the literature for iterated greedy algorithms could also be
applied [53].

Look-ahead based greedy algorithm. Two main potential future research directions are identified
for the look-ahead based algorithm.

The first is a rather simple change to the algorithm, which is strongly recommended. The greedy
with look-ahead does not use the improved cluster handling from section 4.4.1. The reason for this
was that the related requests always contained the cluster’s other requests, so it was deemed less
necessary. However, the broken constraints were at times still related to the shorter requests in a
cluster. In some cases, the top 𝑇 considered start times did not include any time suitable for these
shorter requests. Therefore, including the shorter requests from the cluster in the original scheduling,
instead of as a part of the look-ahead, is an important potential improvement.

Secondly, it may be beneficial to use less static hyperparameter settings. By making both the
amount of start times and the length of the look-ahead more dynamic, the computational efforts can
be spent more focused. Especially since the look-ahead mainly seems to be successful in reducing
the costs. For example, if the top 10 start times are all very close, doing a look-ahead with more start
times would be more likely to result in a cost reduction. In some situations, the first starting time is
clearly better than the other. Doing look-aheads is not as likely to result in a different assigned starting
time. Besides, doing look-aheads seems to provide more cost benefit in the beginning. Shortening the
maximum look-ahead length and number of starting times towards the end could therefore reduce the
runtime with only a limited decrease in solution quality.

Hybrid greedy-evolutionary algorithm. In the third search strategy, a good deal of future research
could be done.

The mutations used by the hybrid algorithm are limited in its ability to solve certain constraint vio-
lations. More specialised mutations designed specifically to fix a certain constraint type could improve
solving. Similarly, specialised mutations to decrease the costs further could be experimented with,
either by solving soft constraints or by moving requests with higher availability costs in some heuristic
method. Instead of designing new mutations, it may also be possible to achieve this to some extent
with the current mutation. Research could be done into steering the mutations more towards important
requests and adapting the probabilities of selecting certain types of request based on their success.
For example, shift mutations could be more focussed on requests causing high cost other constraint
violations.

A variance in the number of constraint violations was discovered in the results of the hybrid algo-
rithm. The main reason was that the amount of constraints being broken in the second greedy phase
of the scheduling differentiated quite a bit. Therefore, doing this part of the hybrid multiple times with
some randomness may give the final evolution stage a better starting point, reducing this variance. This

60 6. Search Strategy Comparison

could be as simple as greedily scheduling the rest of the requests for all individuals in the population,
or something more complicated could be investigated that immediately does some evolutionary search
or restarts when constraints are broken during this second greedy phase.

In general, only very limited hyperparameter comparison was done for the hybrid algorithm, so this
could also still be an interesting future research direction.

Adding look-aheads to hybrid. Ultimately, if improvements to the look-ahead strategy could make
it faster and reduce the variance, we believe that this addition to the greedy may also provide improved
solution quality in the hybrid greedy-evolutionary. The look-ahead gets lower cost than any of the
greedy runs. Therefore, using this, especially for this first phase, but possibly also in the second greedy
phase could potentially find even better solutions. This will of course increase the runtime even further,
but for some phases within the creation of a schedule, this would be worth it if the solution quality is
improved. Further research is necessary, especially to see if the cost reduction of the look-ahead still
holds if the violations have to be resolved at a later stage. In general, breaking hard constraints allows
more freedom to get low costs. Also, the benefit from the look-ahead and from the mutations in the
evolutionary stage of the hybrid may have some overlap. If a better starting population is used, it needs
to be researched whether this could still be improved as much by the evolutionary search. The hybrid
has more freedom in assigning different times of day, and the look-ahead finds better cost solutions.
This supports the possibility that there may be something to be gained from combining the two.

7
Schedule Order Optimisation

The performance of the greedy constructive algorithm strongly depends on finding the right order to
construct the solution. All promising algorithms for solving the maintenance scheduling problem of
ProRail use this greedy heuristic. In this chapter, the research question “How can new prioritisation
techniques be applied to improve the solution quality?” is answered. This is done by first providing
some necessary background and a more detailed motivation for focusing on this aspect of the algorithm
in section 7.1. Then, a new order function design is proposed in section 7.2. This order function has
weights that needs to be optimised, so in section 7.3 a strategy for this is proposed. Finally, the results
of applying this proposed optimisation strategy, and the resulting optimised order function are given in
section 7.4. Based on these results, the research question will be answered.

7.1 Motivation and background
7.1.1 Motivation
Some previous results support researching the schedule order. Adding randomness to the schedule
order resulted in a large variance for both the cost and the number of constraint violations. This was
seen both in some small additional experiment done now, and in the randomness experiments done
for the year 2020 [5]. Some of these randomised order results were better than using the deterministic
greedy plan order. Another motivation for this research direction is that positive results are applicable
to each of the promising search strategies discussed in chapter 6. The performance of the greedy con-
structive algorithm is strongly influenced by having a good schedule order. This is a common property
of greedy constructive algorithms [72]. Besides that, spending some effort to find a good order function
may be beneficial as opposed to using this computational time in the search, since this order function
can be re-used for multiple scheduling runs.

Order Cost Constraint
violations

2024 default 1109.69 5
manual 1107.97 0
random 1140.28 11

2024-Q4 default 408.80 14
manual 403.73 0
random 419.21 35

Table 7.1: A single greedy deterministic run using the default order function, a manually created order, and a completely
random order for two different input problems: one full year (2024) and one created sub-problem of the fourth quarter

(2024-Q4). The best result is boldfaced for both problems.

62 7. Schedule Order Optimisation

A manual order was created to evaluate the potential of improving the solution quality by finding a better
greedy schedule order. Requests that were regularly involved in constraint violations and requests with
large variable costs were moved forward in the order. This manual order creation was first done for the
difficult 2024-Q4 sub-problem, and later also for the full year of 2024. The differences between using
the default order function (eq. (4.1)), the manual order, and a completely random order are given in
table 7.1. The completely random order shows the large impact that the order has on the performance;
with a random order, substantially worse schedules are found, with more constraint violations and
higher costs. With the manual order, all constraint violations could be resolved for both problems
without a decrease in costs.

7.1.2 Background
In this section, some background for the techniques used in this chapter is given. Some related work
with the usage of an order function is given first. Then, the background on the simulated annealing that
is used to optimize the weight in section 7.3 is given. Finally, some background concerning conflict-
guided methods, which are similar to the mutation used in the simulated annealing, is provided.

Priority-based algorithms. (Incremental) priority algorithms is an alternative name used for the
group of algorithms that are greedy, where the order of the additions to the partial solution is deter-
mined based on some priority metric [73]. The greedy algorithm in this thesis falls within this definition
of priority algorithms. This priority can either be fixed or adaptive, a fixed priority means that the prior-
ity is determined only on the properties of the possible next additions to the constructed solution. An
adaptive priority also includes information of the current partial solution to determine the priority [73].

Priority metrics are also often used in online scheduling, where priority rules are required to de-
termine the schedule for jobs that arrive stochastically [74]. Priority algorithms have also successfully
been applied to numerous other problems, such as subset-sum [72].

Simulated annealing. In 1983, simulated annealing was introduced by Kirkpatrick, Gelatt Jr, and
Vecchi [75]. It is a nature-inspired metaheuristic for optimisation. For a predefined number of itera-
tions, a heuristic is used to find a neighbouring state of the current solution. If the update improves the
quality, it is always accepted. If the quality decreases, it is accepted with a probability based on the
current temperature and the amount of quality decrease. Every iteration, the temperature decreases
and the algorithm becomes increasingly less likely to accept worse quality solutions. The most impor-
tant advantage of this method is that it can be generically applied to many problems, without tuning
a lot of hyperparameters. It is especially well suited to problems with “either numerous, contradictory
constraints, or [a] complex, baroque cost function” [76]. Only one solution is kept at a time, which also
makes it memory-efficient in comparison to population-based methods.

Conflict-guided methods. In this chapter, the principle of trying to learn from where failure occurs is
used. This principle can be seen in numerous algorithmic techniques. An example is in conflict-guided
search in SAT solvers, where a conflict clause is learned to speed up search. Another example of
learning from conflicts is given by Boussemart, Hemery, Lecoutre, et al. [77], where constraints are
weighted based on the amount of time it caused a failure. The variables are then ordered based on
the sum of all weights of this variable’s constraints. This principle was later extended by Balafoutis
and Stergiou [78] with ageing and a weighting based on the amount of domain reduction the constraint
caused, rather than only the number of conflicts.

7.2 Designing order function
It is preferred that the order is determined with a method that can be used for multiple input problems.
The function can then be experimented with on a smaller, comparable (sub-)problem. This allows op-
timising the function with more iterations. Besides, when new requests become available, the existing
function is also suitable for this updated problem. Optimising the order for every change to the requests,
or configuration variables, is not desirable. These changes might often happen during certain stages
of the scheduling process. Besides, being able to try out the impact of these changes quickly makes it
easier to identify how realistic this request is, and how much it would influence the schedule.

7.2 Designing order function 63

A simple approach was decided on, which may be limited in its ability to find the optimal order. This
decision was made, since this function will by design be less prone to overfitting to a specific input
problem. Besides that, explainability of the results is better for simpler functions. However, every
aspect of difficulty can impossibly be captured by this simplistic function. The main goal of this is to
see if the result improvement is possible with a simple improved order, using some domain knowledge.
Better order functions could in that case be researched using this as a starting point.

As such, a simple linearly weighted function was created with seven input features. This function
was then used as an importance score for each of the requests that had to be scheduled. The requests
are thus ordered from high importance score to low importance score, before greedily adding them to
the schedule one-by-one.

7.2.1 Input features
Domain knowledge was used for determining features that are important in determining the priority of a
request. Generally, themost difficult or most important requests should be scheduled first. For example,
when a request conflicts with many other requests, it may not have any starting time available when it is
scheduled later. There are only a limited number of weekends in a year. In the weekend, there are fewer
passengers, meaning that maintenance work scheduled in the weekend will have lower availability
costs. Having a request which hinders a lot of passengers early in the planning order increases the
likelihood that there is a suitable weekend available for this request.

All the input features are explained one-by-one in this section. These input features do not cover
every property of a request. Some experimentation was done with a few other features. However, with
the following seven features, enough dimensions were present to prioritise the requests most often
resulting in constraint violations for the 2024 input set. Besides, the largest aspects of the expected
variable costs are covered, so other cost-related features are not expected to make a large difference.

Length. The length of the request is an important attribute influencing the priority of a request. Longer
requests should generally be scheduled earlier. If a long request is scheduled later, the probability of
there being a starting time available without any conflicts is lower. Besides, when a request needs to be
planned at a suboptimal starting point, the expected extra incurred cost is larger for a longer request.

Personnel costs. The personnel costs are multiplied with a factor based on the scheduled time. For
example, personnel is more expensive at night than during the day, and Sundays are more expensive
than other days. Besides that, if a short request can be scheduled together with another request at the
same trajectory part, the costs do not have to be scaled up to at least eight hours. The requests with
the largest personnel costs with limited passenger hinder would ideally be scheduled in these limited,
cheaper periods. In order to achieve this, these need to be scheduled earlier.

Conflicts. Another attribute that influences how difficult it is to correctly schedule a request, is how
many potential conflicts there are. Therefore, the total sum of other requests, preplanned hinder and
hard constraint level events with which the request conflicts forms the third input feature.

Essential personnel. The amount of required essential personnel can be important for preventing
broken constraints. When only requests with low personnel demands are early in the plan order, these
will generally be spread out over the year to improve on other aspects of the objective. This could then
leave no available spots for requests with high essential personnel. The project request attribute for
this is computed as the sum of the three types of required essential personnel. Currently, the limits
of the three types of essential personnel are comparable, if these grow further apart, these numbers
should be weighted relative to the limit.

Time window size. The size of the time window shows how much freedom there is in finding a
starting time for the project request. A small time window is more restrictive for longer requests than
shorter requests. Therefore, the time window size relative to the project request length is added to
the importance function. This attribute is thus defined as the length of the request divided by the time
window size.

64 7. Schedule Order Optimisation

Passenger hinder. An important part of the variable costs is directly related to the number of blocked
passengers. Only a limited amount of time is available when less passenger travel than regular, such
as holidays. Therefore, it would be preferred to use this space for the requests which hinder most
passengers, and they should have a higher importance. Therefore, the sixth attribute is the number of
blocked passengers at the default hour by the request.

Goods hinder. Another part of variable costs is related to the goods hinder. Similarly to the passenger
hinder, scheduling requests with a high hindrance of freight travel earlier could decrease the total cost.
So, the number of freight streams requiring trajectory parts affected by the project request is the last
feature.

7.2.1.1 Feature normalisation
Normalising the features gives them a comparable value range. This makes optimisation of function
weights better, as mutations are more comparable. Furthermore, it makes the results easier to inter-
pret. To do this, a simple mapping of all features to a [0,1]-range and a z-standard normalisation were
implemented. Based on the initial results, the simple mapping to the unit interval was used with a
mean-based starting point.

The first, simple option for normalising the input features is to map all values to the range between 0
and 1. In this case, each value was divided by the maximum value in the set of input project requests,
except for time window size, which is already between 0 and 1. When using this method, the distribution
could still be different within this interval. If all weights of the order function are equal, this does not
mean that all attributes are equally influential. Therefore, an equal weight increase will have more
impact on the scheduling order for one feature than for another.

To reduce this, it was decided to use it with a mean-based starting point. Each of the weights was
determined such that the mean value of each attribute multiplied with that weight is equal. This already
resulted in a better score as a starting point, and also made it find more diverse orders and better quality
early in the optimisation.

Besides, a z-standard normalisation was implemented. In this normalisation, the mean of the attribute
values is subtracted from all attribute variables, and they are divided by the standard deviation [79].
Contrary to the expectations, this did not improve upon the initial results. Therefore, this standardisation
was not used in further experiments. This might be because the values with a larger variance were
more suitable for smaller changes. However, it could also well be that the mutations were just better
tuned to the first normalisation.

7.2.1.2 Adding interaction with length
Many of these features are expected to have a strong interaction with the length of the request. A
request which conflicts with many others would for example be of higher importance, as it would be
more difficult to have a non-conflicting spot for it. However, if the request is very small, it does not need
to be as early in the scheduling to still have good starting time available.

Because of this, a small attempt was done to see whether multiplying some of these properties with the
length of the request would improve results. The length multiplication seemed to influence the attribute
value too much, and it became too similar to a length-based order. Besides, the difference in difficulty
between for example a 24-hour and a 36-hour maintenance request is not actually that large.

Therefore, an alternative for this length interaction was created, where the length was mapped to a
multiplication factor as follows:

length multiplication =
⎧⎪
⎨⎪⎩

0.4 if length ≤8 ,
0.7 if length ≤48 ,
0.9 if length ≤168 ,
1.0 else.

Requests that can be performed in one night are valued lowest. Requests that can be scheduled
within a weekend are somewhat higher. Everything above a week is valued again a little higher. These
multiplication factors slightly improved the quality of the resulting order function in initial results and
were therefore used in further experiments.

7.3 Optimising order function weights 65

7.3 Optimising order function weights
Now that an order function has been designed, the next step is to optimise the weights to find the impor-
tance of these different attributes. The relevant problem characteristics and the chosen optimisation
strategy will first be explained. Then, some problem-specific mutations that were developed will be
explained. Finally, the results of these weight optimisations will be given and analysed.

7.3.1 Optimisation strategy
Many numerical optimisation methods could be applied to optimise the weights of the order function.
One of the important properties of the problem is that back-propagation to update weights is difficult,
since we do not know the perfect order. We only know the score that indirectly results from this order
function. A gradient descent based technique is therefore not expected to be very successful for this
problem. Small changes to a certain weight may barely impact the resulting weight. It may for example
only cause one small change at an unimportant position, that reduces the quality slightly. Whereas a
larger change to that same weight could move more requests in the resulting order and improve the
quality.

Furthermore, an optimisation strategy with the option to include problem-specific mutations to the
weights would be preferred. In the process of manually reordering the requests, it could be seen that
including knowledge on which requests cause large increases in variable costs or broken constraints
might increase the speed of finding good weights.

Based on these aspects, combined with the background as explained in section 7.1, it was decided to
use simulated annealing as the optimisation strategy. This is a simple strategy, expected to be good
for an expensive objective. Besides, it works well with continuous variables, and allows for adding
custom mutations. The individuals for the weight optimisation are not very memory efficient and can
not be parallelised well, so the fact that simulated annealing is not a population-based method is also
preferred.

The simulated annealing starts with a single individual, which is a list of weights for the order function.
These are evaluated by applying the function with these weights to the requests, and using the resulting
order to create a schedule with the greedy algorithm. The quality of this resulting schedule is used as
the fitness for the optimisation. For 𝑛 generations, a mutation is done which updates those weights, by
sampling a new weight from a normal distribution centred at the current weight. The standard deviation
is decreased based on the current temperature. During the beginning of the run, larger mutations can
be useful for good exploration. When the temperature is decreased, smaller steps are preferred, to
better converge to the best local point. The new weights are evaluated and compared to the current
fitness. The temperature is updated after every generation, 𝑇𝑖+1 = 𝛼 ⋅ 𝑇𝑖.

To determine if the new weights are accepted, a few different situations are relevant. If the fitness
improves, the proposed weight is always accepted. If the current fitness has no constraint violation
and the proposed weights do result in violations, a separate acceptance probability is used, since this
moves from feasible space to infeasible space. This acceptance probability is configured for the start
and the end, and exponentially decreases over iterations. If the fitness gets worse, but the feasibility of
the current and the proposed individual are equal, the mutation is accepted with a probability depending
on the current temperature and the amount of decrease in quality as given in eq. (7.1). If the number
of constraint violations increases, this is most important. A constraint violation is scaled to the same
magnitude as the costs. If the number of constraint violations is equal, the cost difference is used for
determining the acceptance probability

𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = 𝑒−
Δ𝑎𝑐𝑐𝑒𝑝𝑡

𝑇 (7.1)

Δ𝑎𝑐𝑐𝑒𝑝𝑡 = {
Δconstraint violations if Δ constraint violations > 0
Δcosts else

(7.2)

If no improvements are found for a certain number of iterations, the entire search process is restarted.
The best solution found in all iterations and restarts is stored, to use as the final solution.

66 7. Schedule Order Optimisation

7.3.2 Constraint-guided mutation
In order to find good weights as fast as possible, it is desirable to steer the search towards good regions.
A conflict-based approach for this was considered. Using knowledge from where the computation runs
into problems can help to find a good solution faster. Which requests caused a constraint violation is
stored. Specifically, the request that was scheduled in the greedy construction step where the violation
occurred is considered. For violations involving multiple requests, the earlier scheduled request that it
conflicts with is thus not used for the constraint-guided mutation. The assumption behind this mutation
is that if the constraint-violating request had been scheduled earlier, there may have been a starting
time available that did not cause any violations. This is supported by the success of using this when
manually reordering to find a good schedule order, as explained in section 7.1.1.

This mutation was at first done by increasing the weights of the importance function proportionally with
the attributes of all requests causing a constraint violation. However, it was quickly seen that this did not
always have the desired effect of moving this request forward. At times, there were more other requests
with higher values for the highest value attribute, while a lower value attribute had fewer higher ranked
requests. Therefore, the relative value of the feature was used instead of the absolute value. The
weight increase was done in proportion to the position the request would have in the order if only that
specific attribute was used for sorting. With the set of conflict causing requests 𝑃𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 and the index
of request 𝑥 when sorting only using attribute 𝑎 as 𝐼𝑥,𝑎. A weight for the constraint-guided mutation
strength is defined as 𝑤𝑐𝑔. This weight is linearly decreased for every constraint violation later in the
original schedule order. The first constraint violation is hardest to resolve by moving it forward in the
ordering. It has the least available weight changes that will move it forward. So, by giving this update
the most weight, this request will have better probability of being moved forward, since its changes will
not immediately be undone by the later constraint violations. The complete formula of the constraint
guided mutation is therefore:

𝑤𝑖,𝑥+1 =
⎧

⎨
⎩

𝑤𝑖,𝑥 + ∑
𝑝𝑘∈𝑃𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡

𝐼𝑝𝑘 − 𝐼𝑝𝑘 ,𝑖
𝐼𝑝𝑘

⋅ 𝑤𝑐𝑔 ⋅
𝑘

|𝑃𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡|
⋅ 𝑇
𝑇𝑠𝑡𝑎𝑟𝑡

if 𝐼𝑝𝑘 > 𝐼𝑝𝑘 ,𝑖

𝑤𝑖,𝑥 else

In this formula, it can be seen that the constraint-guided mutations are also weighted based on the
temperature. The constraint-guided mutation is done as an addition to a regular, normally distributed
mutation, to maintain some randomness. The standard deviation of the regular mutation is divided by
two when a constraint guided mutation has already been done.

To further demonstrate the desired function of the constraint-guided mutation, example 3 is used.
This shows how the weight values of properties that could increase the request’s importance value are
increased.

Example 3. Current weights: 𝑤𝑙𝑒𝑛𝑔𝑡ℎ = 0.9, 𝑤𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠 = 0.8, 𝑤𝑐𝑔 = 1.0
Order:

• Project request A: length 50, conflictingness 100
• Project request B: length 100, conflictingness 50, constraint violation

First, constraint-guided, project request B causes violation:
𝑤𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠 = 0.8 +

2−1
2 = 1.3

𝑤𝑙𝑒𝑛𝑔𝑡ℎ = 0.9
Then, normal mutation with half the standard deviation:

𝑤𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑛𝑔𝑛𝑒𝑠𝑠 = 1.3 +𝒩(0, 0.5) = 1.18
𝑤𝑙𝑒𝑛𝑔𝑡ℎ = 0.9 +𝒩(0, 0.5) = 0.87

7.3 Optimising order function weights 67

7.3.3 Cost-guided mutation
A mutation was designed with the goal of decreasing the costs, similar to the constraint-guided muta-
tion. A preprocessing step is added, which schedules each request in an empty year schedule. The
number of variable costs this incurs is stored. This will also be called the reference cost. After the cur-
rent weight function is tested, we can check how much more expensive the current schedule choice is
in comparison to that original incurred cost. So, for example, a request could cause a cost increase of
10 if the schedule were empty, whereas it increases the total variable costs with 20 when scheduled at
the end. The requests with the largest difference between this current incurred cost and the reference
cost are attempted to be moved forward in the planning order. For this ‘moving forward’, the same
principle was used as in the constraint-guided mutation. The five requests with the highest relative
variable cost increase were used in this mutation.

However, looking into the effects of this mutation, it was seen that this did not result in the desired cost
decreases. One important possible cause was found for this. Some of the requests that cause high
relative cost increases can not be scheduled earlier without some constraint violation happening later.
Or there is some other, conflicting, project request that has a larger cost benefit from using the starting
time used to obtain the reference cost. So, attempting to get closer to achieving this reference cost
does not improve solution quality, since that would cause more detriment to other requests than gain
to this request. One method was implemented to counteract this. After every iteration, the reference
cost 𝑟𝑐 was updated with the current increased variable cost 𝑐𝑖 as follows:

𝑟𝑐 = 𝛼 ⋅ 𝑟𝑐 + (1 − 𝛼) ⋅ 𝑐𝑖

Different values were tried for 𝛼. This adaptation did not improve the results of the cost-guidedmutation.
It either took a long time to stop trying to move requests forward that could not decrease the cost, or the
relative cost differences converged to zero and the requests chosen to be moved forward were almost
random.

Some possible future research directions into better mutations are worked out in section 7.5.1. How-
ever, for this thesis, it was chosen to focus on different aspects of improving the order function opti-
misation. The cost-guided mutation is thus not used in the optimisation of the weights for the order
function.

7.3.4 Comparable sub-problem
When the weight optimisation is run for the full year, each evaluation takes at least an hour. This means
that only a limited number of weights can be tried. This makes optimisation difficult. Therefore, it was
decided to use a smaller, comparable problem. The weights can be optimised based on this smaller
problem, and then applied to better solve the full year problem.

Weights that perform well on this sub-problem are expected to also perform well on the full problem,
if the smaller problem is representative. This means that the smaller problem is comparable in which
parts of the cost can be optimised most and which constraints are difficult to satisfy. Finding this repre-
sentative sub-problem is a challenge, and might not be equally possible for every input data set. For the
year 2024, it was chosen to use six sub-problems. How these sub-problems were created is explained
in section 3.3.3, and some more characteristics are given in appendix A.

Each of these sub-problems was solved with the greedy constructive algorithm. The results for this
with the data set of 2024 can be found in table 7.2. From this, it can be seen that the requests are quite
evenly spread over the periods. The most hours, highest costs, and most constraint violations can be
found in period 5. Since the full year also had some constraint violations, this period was chosen as it
was expected to be themost comparable. This sub-problemwas used to tune the hyperparameters and
design good mutations for the simulated annealing. It is used to show how much improvement could
be obtained, first on this sub-problem and then also by applying these weights to the order function
for the full year. It was also used for trying the new order function in combination with different search
strategies. At a later stage, the best-performing hyperparameters and mutations were then also applied
to each of the other sub-problems, to also be able to evaluate the importance of the chosen sub-
problem.

68 7. Schedule Order Optimisation

Period Number of
requests

Schedule
hours Cost Constraint

violations
Runtime
(mm:ss)

1 132 10680 158.71 0.0 11:07
2 139 8904 190.68 0.0 13:06
3 138 8928 162.71 0.0 11:45
4 88 7200 192.20 1.0 08:49
5 131 11040 241.03 9.0 12:31
6 100 7704 186.96 0.0 09:01

Table 7.2: Characteristics of the six sub-problems of 2024, and the result of solving with the greedy scheduling algorithm.

7.4 Results
In this section, the results of all experiments to identify the performance of using the proposed order
function are given. No runtimes were measured for these experiments, as the order function does not
have a large impact on the runtime compared to the same search strategy with the regular order.

7.4.1 Hyperparameter analysis for order function weight optimisation
To find the right hyperparameters for the simulated annealing process, a small comparison was done.
Due to the limited effectiveness of the simulated annealing independent of the hyperparameters, the
decision was made not to do a complete comparison.

First, a few small tests were done to find the most important configurations, and the approximate range
of values for these hyperparameters to use. The starting temperature was set at ten million. A hard
constraint violation was valued as five million per violation. The cost-guided mutations were not used,
and the constraint guided mutations were done with a probability of 0.5, and a weight of 0.05. There
were two parameters left to compare. The first is the standard deviation of the mutations (𝜎), which
was included with levels 0.025 and 0.05. Second, the decrease of the temperature (𝛼) was included
with the levels 0.95 and 0.975. For all four combinations, seven repetitions with the 2024-P5 problem
were done. It can be seen that the mean based starting point already starts at only one constraint
violation. The results with the smallest mutations were generally the worst, so an extra configuration
was included with a standard deviation of 0.1.

The results of one experiment per configurations can be seen in fig. 7.1. The other experiments are left
out of the figure for clarity. The behaviour of the algorithm was equally inconsistent in the different runs.
The improvement during the optimisation process is not very large and there is no good convergence
visible. When temperature drops too far, even in very suboptimal sport, no more changes are accepted.
After the restart period of thirty iterations without improvement, the process restarts. This happens quite
often in the process, as can be seen by some longer stretches of suboptimal solutions. The lines do not
converge nicely, it seems to almost be a random search. The search space might be too irregular for
this optimisation method. This is seen from the fact that improvements are found at random moments
with larger jumps. Almost no exploitation is done when a better quality solution is found.

However, the total number of constraint violations and cost is decreasing a bit, and the starting point
is already an improvement compared to the original order function. Therefore, the slightly better per-
forming hyperparameters with the larger mutation size and a higher temperature (𝛼=0.95 and 𝜎=0.1)
are used from here on. In order to improve the weights of this linear order function, a more consistent
optimisation is necessary. For this work, the decision was made to focus on evaluating the potential of
using a new order function.

7.4.2 Order function weight optimisation
The simulated annealing was done for 200 iterations for each of the six sub-problems. This took on
average around 25 hours per sub-problem. The results of this can be found in table 7.3. All sub-periods
have a better solution quality than they had with the original order. Part of the improvement results from
the newly designed function independent of the weights. A bit more profit was found during the weight
optimisation.

7.4 Results 69

242

244

246

248

250

252

254

C
os
t

𝛼=0.95, 𝜎=0.025
𝛼=0.95, 𝜎=0.05
𝛼=0.95, 𝜎=0.1
𝛼=0.975, 𝜎=0.025
𝛼=0.975, 𝜎=0.05

0 25 50 75 100 125 150 175 200
Iterations

0

1

2

3

4

5

C
on
st
ra
in
tv
io
la
tio
ns

Figure 7.1: Convergence plot of different hyperparameter settings. One run of the simulated annealing per configuration for
optimising the weights of the order function for 2024-P5 is shown for clarity. Seven replications were done for each

hyperparameter setting.

The optimised weights are quite a bit apart. Which shows that either the sub-problems require very
different weight values, or the process of finding good weights is not very consistent. Based on the
hyperparameter analysis, this second reason is most likely. Weights that are quite different could still
have almost equal resulting solution quality. The starting point of the simulated annealing is dependent
on the distribution of the attribute in the sub-problem, so each weight optimisation starts at a different
point. This spread is also still seen in the final found weights.

Problem
used to
optimise

Optimised weights Solution quality

𝑤𝑒𝑠𝑠_𝑝𝑒𝑟 𝑤𝑝𝑎𝑠𝑠 𝑤𝑔𝑜𝑜𝑑 𝑤𝑐𝑜𝑛𝑓𝑙 𝑤𝑤𝑖𝑛𝑑𝑜𝑤 𝑤𝑙𝑒𝑛 𝑤𝑟𝑒𝑔_𝑝𝑒𝑟𝑠 Cost Constraint
violations

2024-P1 1.073 0.126 0.492 0.279 3.640 0.666 0.724 156.58 0.0
2024-P2 0.050 1.015 0.784 0.190 4.837 0.045 0.079 181.81 0.0
2024-P3 0.605 0.052 0.300 0.300 4.274 0.432 1.036 155.02 0.0
2024-P4 1.573 0.223 0.372 0.144 3.837 0.167 0.685 184.43 0.0
2024-P5 0.918 0.473 0.503 0.290 3.023 1.296 0.497 244.81 1.0
2024-P6 0.678 1.388 0.245 0.164 3.100 0.476 0.949 180.31 0.0

Table 7.3: The solution quality and weights resulting from the simulated annealing to optimise the weights of the order function
after 200 iterations, on each of the six sub-problems.

7.4.3 Applying optimised order function with different search strategies
To see the impact of the new order on finding a complete annual schedule, the new order function
is applied to the year of 2024. The function with the weights optimised on the 2024-P5 problem was
applied with the search strategies from chapter 6. The results of this experiment are displayed in
table 7.4.

70 7. Schedule Order Optimisation

Search strategy Mean solution quality Best solution quality

Cost Constraint
violations Cost Constraint

violations

Greedy 1110.86 0.0 1106.83 0.0
Greedy with look-ahead 1087.50 1.3 1087.64 1.0
Hybrid 1089.81 0.0 1084.42 0.0

Table 7.4: The three most promising search strategies with the new order function, using the weights optimised using the
sub-problem 2024-P5. The highest quality mean and best solutions are boldfaced.

With all strategies, better schedules were created with the new order function as opposed to the default
order function. The number of broken constraints is always lower. The fast, greedy algorithm already
finds a better schedule when a good order is used, than any solution found with the default order for
the 2024 dataset.

The greedy search strategy obtains a very similar cost. This is especially good, since satisfying con-
straints often incurs a cost. The hybrid generates the best quality results, as it did with the default order
function. The cost of the look-ahead is again slightly lower, but this still has one broken constraint. This
constraint violation seems to be the result of the limitations in cluster handling.

The difference between hybrid and greedy is smaller with the new order function. Both solve the prob-
lem without any constraint violations. The hybrid greedy-evolutionary algorithm has a higher cost than
with the default order. This smaller difference with greedy is to be expected; the starting point is al-
ready better, so finding improvements in the evolutionary search is more difficult. When no constraint
violations are present, the space to make mutations is more restricted. With a few broken constraints,
mutations that resolve a constraint violation and break a different one are possible.

7.4.4 Comparison of weights from different sub-problems for order function
To determine the robustness of the results, and to see the importance of which sub-problem is chosen
to optimise the weights, all the optimised weights were tested with the greedy algorithm on the full year.
The results of this are given in table 7.5.

Order Mean solution quality Best solution quality

Cost Constraint
violations Cost Constraint

violations

default 1109.28 5.6 1106.17 3.0
2024-P1 1112.86 0.0 1109.78 0.0
2024-P2 1101.35 0.0 1096.69 0.0
2024-P3 1113.04 0.0 1112.03 0.0
2024-P4 1110.98 0.0 1109.20 0.0
2024-P5 1110.86 0.0 1106.83 0.0
2024-P6 1106.75 0.4 1106.42 0.0

Table 7.5: The mean and best solution of five repetitions of the greedy algorithm, solving the 2024 problem with different order
functions. The default is the original order function, the new order function is the proposed function with the different weights
optimised on the different sub-problems. These weights can be found in table 7.3. The lowest cost mean and best solution is

boldfaced.

It can be seen that the order function performs better than the default order function with all optimised
weights. Almost all runs have no broken constraints. The weights optimised on the 2024-P2 sub-
problem result in the best final solution quality. As can be seen in table 7.3, these weights are also a bit
more extreme. The reason for this is that many changes to the order function weights had only small
impact on the quality of this sub-problem. This caused the simulated annealing to get further away from

7.5 Conclusion 71

the starting point, where a local optimum was found. This optimum had more cost focused weights,
which resulted in better cost scores. This shows that the order function may be further improved with
a better weight optimisation, that could also find these weights on different sub-problems.

From the fact that it always improves compared to the default, it can be concluded that the precise
weight values are not as important as the design of the order function. The sub-problems are generally
comparable enough to optimise the weights to obtain a function that reduces the constraint violations
consistently, often to zero, without large increases in cost. If better weights are found, even more
improvement is possible

7.5 Conclusion
Improving the scheduling order is a powerful tool to obtain better results, which can improve every
successful search strategy defined in the previous chapter. None of the search strategies was able
to resolve all constraint violations with the default order function. When problematic requests arrive
late during the scheduling order, it is extremely difficult to still plan these feasibly. It often requires
moving many requests to a different starting time. The hybrid algorithm therefore already does a first
round of mutations before the schedule is too full. This gives the ability to solve constraint violations
(or higher cost) before the freedom to move requests is too restricted by a full schedule. However,
even with the hybrid algorithm, the project requests that are being scheduled only in the second phase
can still be very difficult to plan feasibly or with a low cost. Moving multiple requests in the correct way
is often impossible to achieve when the schedule is already quite full. Designing mutations that are
better at satisfying the constraints requires more problem-specific algorithm design. With the limited
amount of generations that are currently used, the quality of the greedy starting population becomes
more important. A good order function is shown to be a good way to improve these starting individuals.

This leads us to an answer to the research question considered in this chapter: “How can new prioriti-
sation techniques be applied to improve the solution quality?” Applying a new order function shows a
lot of potential for improving the solution quality. The computational time required for finding the order
function does not necessarily have to be updated for every change to the input data or configuration.
This is very desirable, since the scheduling team can get better results in the more orienting phase,
despite the desired fast solving. This way, they can better see the impact of changes to the configu-
ration or fixing the starting time of certain requests. Since this prioritisation is used in all techniques, it
improves results of each search strategy. The look-ahead improves relatively more, since it struggled
most with constraint violations.

Since each input data set may be different, an ideal solution to this scheduling order problem would
be to find some prioritisation or ordering method that is reusable, but can also be optimised to handle
different areas of difficulty. For example, if a certain year has many constraint violations caused by high
essential personnel, the ordering method needs to be adaptable to this. Or, if the conflict constraints
cause most violations, requests which are more likely to be creating conflicts need to be scheduled
earlier.

In this chapter, we have proposed a possible function for improving the order function, which sig-
nificantly improves the solution quality of the maintenance schedules for 2024. The most important
advantage of this method is the fact that it is a function that can easily be applied to different input
problems. On the 2024 schedule it performs very well and results in some strong improvements to the
constraints with limited increase in costs. Good weight optimisation is not that essential for its perfor-
mance. However, with the right weights the greedy algorithm can even result in lower cost solutions
without constraint violations.

There are a few drawbacks to the proposed solution. The first drawback is that to keep the feature
dimensionality low, some domain knowledge based features were created. These do not cover all
possible constraints, and may therefore not be as functional on different input years. Besides that,
the proposed weight optimisation does not consistently perform well. Quite different, optimised weight
values perform similarly. The function design more strongly impacts the good results than the weight
optimisation. The constraint-guided mutation helps to guide the search a bit, but besides that, it is
almost exclusively exploration and no exploitation.

72 7. Schedule Order Optimisation

7.5.1 Future work
Based on the results from the presented order function research, some future work is identified. Possi-
ble improvements to different aspects of the proposed method are given. Then, some possible future
research into new techniques related to the priority of the requests is identified.

Design of order function. The current input features do not cover all possible types of constraints.
Adding more features could allow finding more complex orders, which also take these constraint types
into account. Furthermore, interactions between the different features could be further researched.
Some attributes may only be relevant when combined with others. In the current function, only the
interaction with the length is taken into account. An adaptive order function could be another interesting
improvement. Including the current state of the schedule into determining which request needs to be
scheduled next could provide information that could improve the order. For example, requests which
have a larger part of their available time window already filled with other requests should be scheduled
earlier.

Optimisation of order function. From the performance of the proposed method, it can be seen that
changing the schedule order can reduce both cost and constraint violations. The latter is easier to
obtain, since reordering based on where the constraint violations occur is a very simple and effective
method. To find orders that reduce the cost, it was more difficult to learn from the performance of the
current order. Without this ability to learn directly from the current order, improving this is more depen-
dent on finding a comparable sub-problem. More direct learning or different cost-related attributes are
aspects that could be investigated more. Besides, not just looking at moving requests earlier, but also
at different aspects that define a good schedule order, could be an interesting future research direc-
tion. For example, for some requests, scheduling them at the same time can reduce the costs. If these
are immediately after each other in the schedule order, the probability that the second one can still be
feasibly scheduled at the same spot is higher. These are some possible directions to consider in devel-
oping new mutations in the function optimisation. Doing research into completely different optimisation
methods could also be interesting.

Other techniques. The most important future research direction would be to look into other tech-
niques for determining the order. An importance function can maybe not completely capture the diffi-
culty of determining a good order for a problem with such a large amount of conflicting goals, with all
constraints and different aspects of the cost function. Priority rules, or ensembles of priority rules, such
as used in online scheduling, would also be a way to allow capturing more information on the difficulty
as compared to the current linear attribute weighting. These rules could be used for comparing a pair
of requests, which can then be applied to find an order for the complete set of requests that follows
these pairwise decisions as well as possible.

Besides that, directly learning an order, rather than a function, may provide better results. This
would require spending more computational resources for finding these good orders, and this would
not be as reusable. However, the results in this chapter show that this might actually be worth the
additional runtime, due to the large positive impact on the solution quality that is obtained with a simple
function already. It would also make reducing the constraint violations simpler, as the concept behind
the constraint-guided mutation could then be applied easily.

It may also be possible to learn the order function completely. Some previous work on using genetic
programming for priority rules was done [80]. However, the computational requirements of evaluating a
function are quite high. Besides, the resulting score does not provide direct feedback to which aspects
of the current function do or do not function well. Based on the results from this chapter, it would
therefore be difficult, and the other future research seems more promising. However, if successful, it
could provide new insights on the problem and result in more reusable functions that can be retrained
on new problem input. Learning a pairwise comparison could be interesting to consider when using
genetic programming to learn an order. Comparing two requests and determining which one should be
greedily added to the schedule first can potentially be more easily labelled for supervised learning.

A different possibility would be to add a manual priority. Some requests may be found more impor-
tant by the scheduling team or the contractor than others. Incorporating this into the scheduling order
would maybe help in finding good orders. Besides, it would improve the quality of the solution for the
end users, independent of the corresponding cost value.

8
Generalisation to Different Input Years

The research from the previous chapters provided more insight into the trade-off between runtime
and solution quality that can be obtained in the solving of the yearly maintenance scheduling of 2024.
However, for these techniques to be useful on the long-term, it is important that they have a similar
effect in different trade-offs of the problem input of different years. The last research sub-question:
“How do techniques that improve the available trade-off between the runtime and solution quality for the
schedule of 2024 generalise to different years of input data?” will be answered in this chapter. This will
be done by applying the different techniques to the years of 2023 and 2025. In section 8.1, the detour
approximation techniques are used. The different search strategies are compared in section 8.2, and
in section 8.3 the order function is applied to the different years. The properties of these input problems
were given in section 3.3.2.

8.1 Detour approximation techniques
The detour approximation techniques are the first techniques that were applied to different input years.
The decision was made to leave out the average delay strategy here. This technique was dominated
by other strategies on the 2024 input year, as it had both worse runtime and worse solution quality. The
results are given separately for 2023 and 2025. The main conclusion from these results is that these
techniques are also able to reduce runtime with negligible impact on the solution quality for different
input years. The impact is smaller for these problems as they have less passenger hinder.

8.1.1 2023
The results of applying the detour path approximation techniques to the input year 2023 are given in
table 8.1.

Detour
approximation
technique

Cost Constraint
violations Runtime

Mean Stddev Mean Stddev Mean
(hh:mm:ss)

Stddev
(mm:ss)

ADWN 472.75 3.34 5.0 0.0 00:44:20 00:21
ADWNSymm 474.09 1.99 5.0 0.0 00:37:15 00:18
Exact 471.90 1.53 5.4 0.6 01:02:06 03:05
ExactSymm 473.58 0.95 5.6 0.6 00:48:32 03:20
TNR 472.31 3.55 5.4 0.6 00:39:24 00:20
TNRSymm 474.38 1.55 5.0 0.0 00:33:51 00:07

Table 8.1: Five repetitions of a greedy scheduling run for the input year of 2023, with different detour path approximation
strategies. The best result for each column is boldfaced. ADWN is the improved version of the baseline. TNR is transit node
routing. The Symm techniques uses the symmetrical version of the passenger streams. A detailed explanations of these

techniques is given in section 5.3.

74 8. Generalisation to Different Input Years

The greedy algorithm solves the maintenance schedule for 2023 more than three times as fast as
the 2024 schedule. Using an exact path calculation, the year of 2023 is solved in around an hour
and 2024 takes over three hours. This is explained by the fact that the year of 2023 contains fewer
project requests, with on average shorter length. The project requests also block less trajectory parts.
Since less detour paths need to be computed, the runtime saved by using a detour path approximation
strategy is also less than it was in 2024.

However, similar reductions in runtime are seen for the schedule of 2023 as well as the schedule
of 2024. The symmetrical strategies are again faster than the non-symmetrical versions. The exact
strategy is slowest. The transit node routing with symmetrical path merging is the fastest strategy and
saves almost 50% of computation time, as it also did for the year 2024.

The solution quality is very close for all of these strategies. Compared to the 2024 input year, the
difference between the symmetrical and non-symmetrical is larger. However, all cost differences are
still within one standard deviation.

8.1.2 2025
The results of applying the detour path approximation techniques to the input year 2025 can be found
in table 8.2.

Detour
approximation
technique

Cost Constraint
violations Runtime

Mean Stddev Mean Stddev Mean
(hh:mm)

Stddev
(mm:ss)

ADWN 563.36 1.19 0.0 0.0 01:20:46 00:01:13
ADWNSymm 564.09 2.13 0.0 0.0 01:01:27 00:01:09
Exact 562.79 0.61 0.0 0.0 02:03:23 00:02:45
ExactSymm 562.45 1.14 0.0 0.0 01:29:23 00:01:58
TNR 564.41 3.36 0.0 0.0 01:08:16 00:01:22
TNRSymm 564.44 3.71 0.0 0.0 00:55:56 00:00:41

Table 8.2: Five repetitions of a greedy scheduling run for the input data set of 2025, with different detour path approximation
strategies. The lowest cost and runtime is boldfaced, constraint violations were always zero. ADWN is the improved version of
the baseline. TNR is transit node routing. The Symm techniques uses the symmetrical version of the passenger streams. A

detailed explanations of these techniques is given in section 5.3.

The computational time required for solving the 2025 input year is between the 2023 and 2024 greedy
solving times. The strategies obtain a speed-up with negligible cost differences, as it also did for the
years of 2023 and 2024. By using detour path approximation, the runtime can be reduced with more
than 50% compared to the exact computation. In five replications, the randomness added to the greedy
algorithm has more impact on the solution quality than the chosen technique.

8.2 Search strategy comparison
The different search strategies that performed best on the 2024 dataset were the greedy algorithm and
the hybrid greedy-evolutionary algorithm. It is important to see if this performance can also be achieved
on different problem inputs. The look-ahead addition is also experimented with in this chapter, since
the results were close to the hybrid technique for the year 2024. Besides, it may provide some more
insight into the strengths and drawbacks of this method and aid potential future research into (parts of)
this technique.

8.2.1 2023
The results of the different search strategies on the 2023 input problem are given in table 8.3. In
comparison to the 2024 results of the different search strategies, a few differences were discovered.

8.2 Search strategy comparison 75

Search strategy Runtime (hh:mm) Mean solution quality Best solution quality

Mean Stddev Cost Constraint
violations Cost Constraint

violations

Greedy 00:37 <00:01 474.09 5.0 471.65 5.0
Greedy with look-ahead 08:31 00:17 449.61 2.3 447.46 1.0
Hybrid 12:31 00:47 462.71 3.3 460.75 3.0

Table 8.3: Five repetitions of the greedy algorithm and three repetitions of the greedy algorithm with look-aheads and the hybrid
greedy-evolutionary algorithm with the input for the year 2023. The best result in each column is boldfaced.

The runtime is always lower than it was for the 2024 data set. This is caused by having fewer and less
hindering requests. The distribution of the runtime over the different methods is also not the same.
When running the techniques with the 2024 maintenance, the look-ahead addition was around 10%
slower than the hybrid greedy-evolutionary algorithm. Using the same hyperparameter settings, the
look-ahead addition is substantially faster than the hybrid for the 2023 dataset. The main reason for
that is the fact that the 2023 requests have fewer related requests than the 2024 requests. Because of
this, the look-ahead is more often shorter than the configured cut-off.

Besides, there are some other differences in performance of the search strategies, concerning the
solution quality. The greedy algorithm still gets the fastest results, and has worse solution quality
compared to the more elaborate search strategies. However, the greedy algorithm with the additional
look-ahead strategy obtains the best schedules for the 2023 input, whereas it had more constraint
violations than the hybrid for the 2024 year. The cost difference between these two strategies is also
larger in 2023. The hybrid has a similar reduction in both cost and constraint violations as the 2024
input. The main difference is that the look-ahead addition performs better using the 2023 data. The first
explanation is the lack of clusters in this input year, with which the look-ahead addition has problems.
This may not fully explain the larger cost difference yet. To be more confident in why the look-ahead
works better here, more experiments are required. It may be due to the fact that there are generally
less related requests, which cause more focused look-aheads. If, for example, a request has only 20
conflicting requests, taking 10 of these into account is more likely to yield a better decision, than when
there are over 80 conflicting requests. The fact that constraint violations were reduced compared to the
greedy algorithm suggests that more violations could be prevented with these look-aheads for 2023.

8.2.2 2025
The results comparing the runtime and solution quality of the different search strategies can be found
in table 8.4.

Search strategy Runtime (hh:mm) Mean solution quality Best solution quality

Mean Stddev Cost Constraint
violations Cost Constraint

violations

Greedy 01:01 00:01 564.09 0.0 560.71 0.0
Greedy with look-ahead 07:39 00:04 560.19 34.7 563.18 23.0
Hybrid 14:19 01:34 555.82 0.3 555.84 0.0

Table 8.4: Five repetitions of the greedy algorithm and three repetitions of the greedy algorithm with the look-ahead and the
hybrid greedy-evolutionary strategy with the input for the year 2025. The best result of each column is highlighted.

From these results, it could immediately be concluded that the 2025 input was not suitable for the
look-ahead addition, as this year contains many clusters. The greedy algorithm with the look-aheads
does not include all requests from the cluster to determine which times need to be compared with a
look-ahead. Therefore, only one replication of this was done. The runtime of this version was lower
than the hybrid due to the smaller number of related requests, similar to the 2023 input data.

76 8. Generalisation to Different Input Years

The greedy algorithm already consistently solves the problemwithout constraint violations, which shows
that this input year is less difficult to feasibly solve. The only remaining objective in this case is to re-
duce the cost. The cost of the hybrid is around 8.5 lower, which is relatively less than both 2023 and
2025. This problem has more freedom in scheduling available, due to less restriction from the hard
constraints. Most maintenance work could already be scheduled in low hinder hours with the greedy
algorithm, so moving requests can not reduce the hinder as much. This may also mean that the amount
of generations could be lower for the hybrid version with 2025, without losing as much solution quality.

8.3 Schedule order model
In chapter 7, results showed that changing the order function could reduce the constraint violations in
schedules created for the 2024 maintenance with only a small cost increase. To see if this proposed
order function can be usefully applied to different years, this method for creating an order function
will also be applied to the input years 2023 and 2025. Besides gaining insight in the advantages
and drawbacks of this proposed order function, it will also show if similar improvements in quality are
possible on different problems. First, the weights optimised for 2023 and 2025 are given, and the results
obtained with these weights combined with different strategies. Then, the comparison is made between
reusing the weights that performed well on 2024, as opposed to optimising these weights specifically
for this year. Finally, the results of a small additional experiment are presented, which further analysed
the potential of changing the order to reduce the number of constraint violations.

8.3.1 Optimising weights specifically for new year
For both 2023 and 2025, the same process was applied to generate representative sub-problems as
for 2024, as explained in section 7.3.4. However, since both these years have a smaller number of
requests, it was decided to use quarterly periods, instead of two-month periods, since this would be
a more comparable problem size. For 2023, the third quarter was used for optimisation, as this had
the highest cost and two constraint violations in a greedy scheduling run. For 2025, the fourth quarter
was used, which contained the most project requests and incurred the highest cost using the greedy
algorithm. The weights that were found with simulated annealing are given in table 8.5, which also
includes the 2024 weights used for the result of the year 2024 for comparison.

Used
problem

Optimised weights

𝑤𝑝𝑒𝑟𝑠 𝑤𝑝𝑎𝑠𝑠 𝑤𝑔𝑜𝑜𝑑 𝑤𝑐𝑜𝑛𝑓𝑙 𝑤𝑤𝑖𝑛𝑑𝑜𝑤 𝑤𝑙𝑒𝑛 𝑤𝑃𝐸𝐴𝑇
2023-Q3 0.848 1.137 0.835 0.798 1.671 0.492 1.219
2024-P5 0.918 0.473 0.503 0.290 3.023 1.296 0.497
2025-Q4 1.229 0.395 0.613 0.382 3.183 0.641 0.556

Table 8.5: The weights found using simulated annealing to optimise the weights of the order function with 200 iterations, for
2023, 2024, and 2025.

The simulated annealing process resulted in the most different weights with the 2023-Q3 sub-problem.
This set of requests had different mean attribute values, which determine the starting point. Besides,
that, the algorithm eventually found a local optimum, where the violations of the sub-problem were
reduced from 2 to 1, which was further away from the starting point. The constraint guided mutations
also had a different effect here, as the requestsmost often breaking a constraint had different properties.

During the simulated annealing process for the 2025 sub-problem, both the constraint violations and
around 2.5% of the cost were reduced compared to the starting point. Especially the essential personnel
weight was increased due to those constraint violations. These constraint violations were not found on
this sub-problem with the default order, but were there with the mean-based starting point for the 2025
simulated annealing.

8.3 Schedule order model 77

8.3.2 Performance in combination with different search strategies
The results of the comparison can be found in table 8.6, which also includes the default order results
for comparison. The results from the year 2024 are also included to provide a clear overview of the
effects of the order function on all years. From these results, a few observations are highlighted.

Input
year

Search strategy Default order New order function

Cost Constraint
violations Cost Constraint

violations

2023
Greedy 474.09 5.0 474.11 8.2
Greedy with look-ahead 449.61 2.3 452.85 3.3
Hybrid 462.71 3.3 452.89 2.0

2024
Greedy 1109.28 5.6 1110.86 0.0
Greedy with look-ahead 1084.98 8.2 1090.54 1.0
Hybrid 1089.41 3.4 1089.81 0.0

2025
Greedy 564.09 0.0 560.53 0.0
Greedy with look-ahead 560.19 34.7 563.45 26.7
Hybrid 555.82 0.3 557.11 0.0

Table 8.6: Overview of all three input years with the most promising search strategies, both with the default order function and
the new proposed order function. The new proposed order functions use the optimised weights as explained in section 8.3.1.
For 2024, five replication of all algorithms were done. Five greedy replications were done on the 2023 and 2025 datasets, and
three hybrid greedy-evolutionary replications and the greedy algorithm with look-ahead addition. The highest quality mean and

best results are boldfaced for all three years.

The proposed order function performs best on the 2024 input data, which shows that the design of the
function and the optimisation process was possibly too focussed on this specific problem. Changing
the weights to the specific properties of the input year did not result in equally large solution quality
improvements for other years as it did for 2024.
From the greedy algorithm results, it can be seen that 2023 greedy algorithm finds worse schedules.
The cost and constraint violations of a greedy scheduling run per newly scheduled request is visualised
in fig. 8.1. It can be seen that the objective of the constraint-guided mutations is achieved well for
the 2023 scheduling, as all violating requests are early in the schedule with the new order function.
However, this did not reduce the violations as was expected. There are multiple potential causes for
this, and to better explain these results, a small additional experiment was done, which is explained in
section 8.3.4. The greedy algorithm does find better schedules with the new order for the year 2025,
No constraint violations could be reduced, but a nice cost reduction was found.
The look-ahead addition improves with the new order function on the 2024 and 2025 input, but in both
cases, it does not result in schedules as good as the hybrid strategy. For the 2023 year, the look-ahead
addition was actually the best technique with the default order. However, this algorithm performs worse
with the new order function.
The hybrid solving method is improved when the order function moves more cost and constraint break-
ing requests towards the beginning of the greedy scheduling process, into the first phase. The proposed
order function is able to do this moving forward well for both 2023 and 2024, as can be seen in fig. 8.1.
With the hybrid strategy, this resolves all violations for 2024 and some for 2023, while improving the
cost in the 2023 case. For the 2025 case, the cost is not moved forward as much. This may explain
the fact that the hybrid greed-evolutionary did not reduce the costs equally well as for 2023 and 2024.
The mean constraint violations did improve. With the default order, one of the three repetitions had a
constraint violation, and this did not occur with the new order. The run with the constraint violation also
had the lowest cost. This influences the mean cost of the hybrid with the default order.
From these results, it can be concluded that the performance of the proposed order function depends
both on the used search strategy, and on the properties of the input data. A method for determining
the right order should ideally incorporate both of these factors into the analysis.

78 8. Generalisation to Different Input Years

0

200

400

600

800

1000

C
os
t

2023 new order
2023 default

2024 new order
2024 default

2025 new order
2025 default

0 100 200 300 400 500 600 700
Number of requests planned

0

1

2

3

4

5

6

7

C
on
st
ra
in
tv
io
la
tio
ns

Figure 8.1: The cost and constraint violations during a greedy scheduling run, for all input years, with both the default order and
the new order functions.

8.3.3 Re-using weights from 2024
In order to see how well the weights that were optimised for the year 2024 perform for different input
years, some of the weights are also applied to the other input years. The results of this are given
in table 8.7. It was done both for the weights that were used for most experiments, as they were
optimised based on the most comparable sub-problem: 2024-P5. The weights optimised based on
2024-P2, which had the lowest cost greedy schedules for 2024, were also tested on different years.

This shows that for the 2023 input year, the greedy algorithm performs worse when using the new
function with all the tried weights, compared to the default order function. The weights as optimised
on 2024 perform better than the weights specifically optimised using a sub-problem for 2023. It is
important to note that this performance on the greedy algorithm does not necessarily mean that it
would also perform better with a hybrid algorithm. From previous results, it was seen that the demands
of a good order are different depending on the used algorithm.

For 2025, the new order function with the weights optimised on 2024-P5 result in the lowest cost sched-
ules being created. All order functions did not result in any constraint violations. The new order function
with the weights optimised specifically for 2025 do perform better than the default order function, con-
trary to the 2023 results.

The 2024-P2 weights were also included in these results, as these weights were best at reducing the
cost for the 2024 greedy algorithm. The weights are more extreme; they more strongly weigh some
features. They were included here to see if these best performing weights for the greedy on 2024,
were also best for the other years. Results show that these weights do not generalise as well as the
2024-P5 weights, and perform worse on both 2023 and 2025. The cost is also higher than the weights
optimised for these years specifically.

So, it can be concluded that weights optimised on one input year can also perform well on another.
However, the best-performing weights can not be determined independent of the problem.

8.3 Schedule order model 79

Search strategy Order function Mean solution quality Best solution quality

Cost Constraint
violations Cost Constraint

violations

2023

default 474.09 5.0 471.65 5.0
new with 2023 weights 474.12 8.2 472.75 7.0
new with 2024-P2 weights 477.49 7.0 474.71 7.0
new with 2024-P5 weights 472.47 6.6 471.72 6.0

2025

default 564.09 0.0 560.71 0.0
new with 2025 weights 560.53 0.0 558.17 0.0
new with 2024-P2 weights 564.87 0.0 563.45 0.0
new with 2024-P5 weights 559.11 0.0 557.14 0.0

Table 8.7: The mean and best schedule quality for 5 replications of the greedy algorithm for different ordering function. The
new order function and the 2024-P2 and 2024-P5 weights are explained in chapter 7. The 2024-P5 weights were used for most
experiments, since this sub-problem was most similar to the full problem in the first analysis. The 2024-P2 weights performed
best, out of the six tried weights with the greedy algorithm, on the 2024 input data. The 2023 and 2025 weights are explained in

section 8.3.1. For both years, the best obtained solution qualities are boldfaced.

8.3.4 Good order for greedy algorithm for the year 2023
As was already briefly stated in section 8.3.1, some unexpected results were obtained when using the
newly proposed order function in combination with the 2023 year. To fully explain these results, and
understand the changes required to design an order method that can handle this input data set as
well as the year 2024, some more research is required. A small start on this was done, which will be
explained here. This experiment was not enough to completely explain the results, but helps provide
more confidence in the strength of optimising the order to obtain better quality solution for the yearly
maintenance scheduling problem in the Netherlands.

The proposed order function does not properly cover some required differentiations to find this right
order for the 2023 input data. A few different reasons for the order function not being able to find a
successful order were found.

First, 2023 had more defined preplanned hinder and dependencies than 2024 and 2025. These are
included in the order function, but with an equal weight as other conflicts. So, a request that conflicts
with another request in the input gets an equal value for the conflicts feature as a request that conflicts
with a preplanned hinder. However, it may be easier to prevent conflicts with these other requests, as
these are not fixed. Therefore, this is an aspect of difficulty that is not properly covered by the proposed
order function.

Secondly, there were more instances of constraint violations in 2023 occurring due to too much
concurrent work per project. Some projects in 2023 had a large number of requests. Since none of
these were clustered, they all had to adhere to the concurrency constraints. This constraint is not
covered in the order function.

Moving requests that are breaking constraints forward was possible to some extent, but did not re-
duce the number of constraint violations. It seems that the performance of the greedy is also more
dependent on the specific order within these first, most difficult requests. Based on these missing as-
pects in the order function, it is hypothesised that an order function in general could improve greedy
solving in 2023. However, the order function proposed in this thesis was unsuccessful. There it was
attempted to validate this hypothesis, and show that the constraints are not actually too difficult to find
a solution with fewer violations using a greedy algorithm with a better order. This was done using a
very simple algorithm, that did many greedy iterations of the 2023 problem. After each iteration, the
requests breaking a constraint were moved forward, to around halfway between the first request and
its current position. Since the greedy algorithm for the year of 2023 was fast, it was possible to do quite
a few iterations. After having tried around a hundred different orders, it found an order that only had 2
constraint violations with a greedy algorithm. This is significantly better than both the default order and
the new order function. This shows that improvement of the greedy algorithm is possible with a better
order, also for the year of 2023.

80 8. Generalisation to Different Input Years

8.4 Conclusion
The research question that this chapter aimed to answer is: “How do techniques that improve the
available trade-off between the runtime and solution quality for the schedule of 2024 generalise to
different years of input data?”. The answer of course strongly depends on the used technique, as
these can have different effect on the algorithm’s ability to cope with certain difficulties. Some obtained
results were similar to the results of 2024. Other aspects of the research done had somewhat different
outcomes when applied to a different year of maintenance scheduling input.

More efficient computation of the objective and detour path approximations, which have only very limited
effect on the objective precision, were seen to be effective ways to speed up computation, which could
be readily applied on different years. For both 2023 and 2025, substantial speed-ups were again
achieved, with negligible reduction of solution quality.

The search strategies did not perform the same for all input problems, especially the greedy algorithm
with a look-ahead addition turned out to be problem-dependent. For all input years, the greedy algorithm
found decent quality results, and the hybrid greedy-evolutionary algorithm improved the solution quality
using more runtime. Where the hybrid algorithm required slightly less runtime than the greedy with
look-ahead for the year 2024, it required more for both 2023 and 2025. The greedy algorithm with
look-ahead had the best solution quality for the schedule of 2023, but found substantially worse quality
solutions than all other search strategies for the year 2025.

A priority function to determine the greedy scheduling order can improve an algorithm’s ability to cope
with constraints with all input years. However, the requirements of this order are dependent on the
characteristics of the problem and the used solving method. The new order function, as proposed in this
thesis, was not equally successful on the different input years. Whether an order function is successful
was also seen to be more strongly dependent on the used strategy in different years, while it improved
the results with all search strategies for the year 2024. For example, the 2023 hybrid algorithm improved
with the new order function, whereas the other two search strategies obtained worse schedules than
with the default order. The proposed order function was not solid enough to consistently improve
performance, but the potential to reduce constraint violations by finding a good order was seen in all
used years. Small improvements are obtainable with a generally good order function, but the ability to
optimise based on the problem input characteristics and used search strategy is necessary for larger
improvements.

8.4.1 Future work
First and foremost, creating a larger set of representative input problems to test with would be an
important future research direction. These input problems could be synthetic, or based on historic
data. Having access to a quick assessment of how a proposed change to an algorithm would work
could help to find more robust algorithms. This would require a set of problem inputs with different
degrees of precise specifications, as well as different areas of the objective that are more complicated.

In this chapter, it was seen that the greedy algorithm with look-aheads performed very well on the 2023
input year. Better understanding of why this algorithm performed better here can aid understanding of
this method, and how it can potentially be used in the future.

Improving the order for the greedy scheduling algorithm improved resulting solution quality for the
different years as well. However, future research into better ways for adapting the order based on the
problem input and the search strategy is necessary to find a more robust solution. This could improve
solution quality, without additional runtime for every schedule generated. For example, it was seen that
the order function, when used in combination with the hybrid algorithm, had different requirements. The
best results were obtained when it moves the right requests into the first phase. This knowledge could
be used to optimise directly based on only these first 100 requests if the order will be used for a hybrid
algorithm. This would make order optimisation faster, and it could potentially make the resulting orders
better in combination with the hybrid algorithm.

In the weight optimisation for the different input years, a mean-based starting point was used. However,
the 2024 weights resulted in better schedules with the greedy algorithm. Therefore, some research into
using the weights from a different year as a starting point for optimisation could be interesting.

9
Conclusion and Future Work

In this chapter, the main takeaways from this research are reiterated and the main research question
is answered. Finally, the most important future work directions resulting from the work in this thesis are
presented.

9.1 Conclusion
The conclusions and answers to the research questions defined in section 1.3 are shortly summarised.
These answers are used to answer the main research question.

1. How do different aspects of the problem and the currently used algorithms influence the
runtime and solution quality?
The runtime and solution quality are negatively impacted by the high problem complexity. The
large number of constraints and cost parts, many of which are specified on a very high level
of precision, are the most important aspects giving this problem its complexity. These are not
all linear, and many are conflicting. The high dimensionality is also complicating; a schedule
contains hundreds of maintenance works. This makes finding good solution quality difficult. The
current algorithms allow some speed-ups by storing the current state and only computing the
impact of changes made to the schedule. However, the resulting algorithm complexity and the
high memory demands are important drawbacks of this algorithm. A substantial improvement to
the computation time was achieved by removing some implementation inefficiencies.

2. How can approximation of passenger detour paths be used for faster solving?
Approximation of this part of the objective is an effective way to reduce runtime, with negligible
impact on the solution quality. Especially the methods that find feasible alternative paths, which
are not necessarily the optimal shortest path, performed well. With these methods, there is only
limited error in the path length and in the resulting passenger availability costs. This has no detri-
mental effects to the decisions made by the greedy scheduling algorithm. Therefore, solutions of
equal quality can be found. The fastest approximation developed is a transit node routing strat-
egy. This approximation uses the structure of the network and the common transfer patterns in
different paths to more efficiently compute a detour path. Even faster scheduling is possible by
estimating the hindrance of passengers from station A to station B based on the detour paths
from station B to station A.

3. How do different search strategies solve the scheduling problem in terms of solving time
and solution quality?
Different search strategies are a strong way to allow schedulers to choose between runtime and
solution quality based on the demands of the current phase in the scheduling process. The hybrid
greedy-evolutionary finds the best solution, whereas the greedy algorithm finds worse solutions,
but substantially faster. A novel strategy was developed to search for good maintenance sched-
ules, by adding a look-ahead to the greedy scheduling. These look-aheads allow finding lower
cost solutions. However, due to a higher number of constraint violations, it does not add value to
the trade-off at this point.

82 9. Conclusion and Future Work

4. How can new prioritisation techniques be applied to improve the solution quality?
Applying a different order for greedily adding elements to a maintenance schedule shows great
potential for improving the solution quality. A good order prioritises project requests that benefit
most from having increased scheduling freedom. The success of a prioritisation was discovered to
be dependent on the input data set characteristics. The computational time required for optimising
the order only has to be spent once for the input year. Since the greedy heuristic is used in
all algorithms, it can improve the solution of each search strategy. For the 2024 maintenance
schedule, a simple order function based on domain knowledge can resolve all constraint violations
with negligible incurred cost.

5. How do techniques that improve the available trade-off between the runtime and solution
quality for the schedule of 2024 generalise to different years of input data?
On different input years, some techniques performed as well as they did in the 2024 schedule,
others were more dependent on the specific problem input. Detour path approximations could
be readily applied to different years. Runtime was reduced with negligible reduction of solution
quality for the years 2023 and 2025. The optimal search strategy was problem-dependent; the
greedy algorithm with a look-ahead addition performed better than hybrid for 2023, but substan-
tially worse for 2025. A strong priority function to determine the greedy scheduling order can
improve the ability to cope with difficult constraints for different input years. However, the re-
quirements of this order is dependent on the characteristics of the problem and current solving
method.

9.1.1 Answer to the main research question
The main research question to be answered in this thesis is: “How can improving different problem
and solution aspects of the yearly maintenance scheduling on the Dutch railway network help
to obtain better understanding and improved usability of the trade-off between runtime and
solution quality?” This question can impossibly be answered in totality based on this research, due
to the very broad formulation. In this thesis, a few directions for better understanding and improved
solving are explored. With the combination of the improvements obtained in these directions, this
research achieved faster solving and better solution quality. It gives schedulers the ability to once more
trade off runtime and solution quality based on the current requirements in the scheduling process. All
results are first summarised. Then, the main takeaways from this thesis are explained.

9.1.1.1 Overview of results
A compact overview of the results from all content chapters is found in table 9.1. The first row of
this table displays the starting point of this thesis, which can be considered the baseline. However, the
objective function was still slightly different here, as it used a path approximation for this final evaluation
as well, and a small mistake was present in one of the constraint handlers. With the first improvements
to the greedy algorithm and the objective calculation, which were explained in chapter 4, a first big
reduction in the required runtime was made. The scheduling of clustered requests was also improved;
this reduced the cost and constraint violations of the solutions found by the greedy algorithm for the
years 2024 and 2025.

By applying detour path approximation techniques, the runtime was reduced further by around half.
With these runtime improvements, more complex search strategies became feasible. A comparison
was made between the greedy algorithm, a novel variation on the greedy algorithm with look-aheads,
and a hybrid greedy-evolutionary. The results showed that it is possible to obtain better solutions, but
it requires more runtime. The hybrid greedy-evolutionary algorithm resulted in the best schedules for
the years 2024 and 2025. The greedy algorithm with look-ahead found better schedules for 2023.

Finally, a new order function was introduced that could be applied to each of these strategies. With
this new order, all constraint violations could be resolved for 2024 and the solution quality of all search
strategies was improved. The results of the proposed order function was not consistent for the different
years, and was also seen to be more dependent on the used solving method. In conclusion, the new
order combined with the hybrid greedy-evolutionary resulted in the best mean solution quality for all
three considered years.

9.1 Conclusion 83

Used techniques 2024 Chapter 8

2023 2025

Search strategy Detour
approx.

New
order

Runtime
(hh:mm) Cost Constraint

violations
Runtime
(hh:mm) Cost Constraint

violations
Runtime
(hh:mm) Cost Constraint

violations

Unimproved
greedy1 25:23 1181.1 22.0 14:32 476.5 12.0 10:27 600.9 24.0

Greedy 03:29 1107.5 4.8 01:02 471.9 5.4 02:03 562.8 0.0

Greedy × 01:32 1109.3 5.6 00:37 474.1 5.0 01:01 564.1 0.0

Greedy with
look-ahead × 26:42 1085.0 8.2 08:31 449.6 2.3 07:39 560.2 34.7

Hybrid greedy-
evolutionary × 23:18 1089.4 3.4 12:32 462.7 3.3 14:19 555.8 0.3

Greedy × × 1110.9 0.0 474.1 8.2 560.5 0.0

Greedy with
look-ahead × × 1087.5 1.3 452.9 3.3 563.5 26.7

Hybrid greedy-
evolutionary × × 1089.8 0.0 452.9 2.0 557.1 0.0

Table 9.1: Compact overview of all results from this thesis. All 2024 results are the mean values of five repetitions. The 2023
and 2025 result with greedy algorithms are also the mean from five repetitions. The hybrid greedy-evolutionary and the greedy
with look-ahead algorithm was done with three repetitions for 2023 and 2025. The differences between the unimproved and the

regular greedy are explained in chapter 4. The different solving methods are all explained in chapter 6. The detour
approximation is done using the symmetrical version of the improved baseline (ADWNSymm), as explained in chapter 5. The

new order function is the order function optimised on a sub-problem from that year, as proposed in chapter 7.
1The final evaluation used slightly higher cost evaluation here, as sometimes suboptimal passenger detour paths were found, a
small mistake was also present that sometimes resulted in inaccurate number of essential personnel constraint violations.

9.1.1.2 Main takeaways
Better understanding of the most important aspects of the problem was achieved throughout this pro-
cess. This knowledge could help to improve the problem modelling now and in the future. The schedul-
ing problem is still being updated with more detailed information. Potential inefficiencies in the problem
model and how these can be prevented in the future were identified throughout this research. Two
main examples are given here.

First, the high granularity in the passenger data was shown to increase the runtime unnecessarily.
By merging certain origin-destination pairs, no solution quality was lost. Also, the fact that passen-
ger data can be specified differently for every hour increases runtime. However, this addition only
marginally increases the accuracy of the model.

The second example is the impact of the high number of unique precision levels used to define
constraints. Removing some of these levels could help in reducing the high memory demands and
speed up computation. When designing new constraints, it should be considered whether they can be
defined on one of the existing levels rather than adding a new level.

Another important takeaway from this research is the two important methods that were discovered to
handle the consequences of the more realistic objective; reducing the computational demands of the
objective evaluation and improving the performance of the greedy algorithm.

Reducing the computational demands of the objective evaluation is one of the most important meth-
ods to speed up solving. More efficient evaluation is necessary to find decent schedules quickly, or
better schedules with more available runtime. The main improvements to the objective evaluation run-
time were achieved by focussing on the aspects of computation that were repeated most often. These

84 9. Conclusion and Future Work

most frequent calculations can be improved by spending more time on the implementation details, or
applying approximation techniques.

The second method was to improve the greedy algorithm. It became more important to obtain good
results with the simple heuristic algorithm. Metaheuristics generally require more objective evaluations
and are therefore less effective with the more complex objective. The improved heuristic performance
will in turn also improve algorithms using this heuristic as a subroutine. In this problem, for example,
improving the greedy algorithm by finding a better schedule order was a good way to resolve difficult
constraints.

The conclusions derived from this research provide direct improvements for this problem, however
these conclusions can also be of interest for other use cases.

The results in this research can be useful for other countries scheduling their railway maintenance.
Better understanding of the advantages and drawbacks of more realistic problem modelling can help
guide their decision-making. Schedules that are created using a more accurate model can more easily
be used, as many of the complicated constraints are taken into account. Besides, realistic modelling
of passenger hinder allows better to reduce this hinder, which can have large societal benefits. How-
ever, this work also shows that increased accuracy requires large and complex objective calculations,
and limits the available solving methods. To make sure good schedules are found, re-evaluating the
algorithms is necessary when the problem definition undergoes changes.

Furthermore, some different real-world problems that need to be modelled as realistically as the
Dutch railway maintenance scheduling problem can benefit from the conclusions from this thesis. Many
of the common drawbacks of solving a real-world problem came forward in this process. Therefore, the
general conclusions on improving the problem definition and the solving method could also be useful
for different problems on this precise, complex level. There is limited work on problems of a similar
scale and complexity. And since using domain knowledge is essential in such a complex function, no
existing solving methods can be applied out of the box.

9.2 Future work
In this section, the most important future work directions from the content chapters are highlighted.
Then, some additional general future work directions will be presented.

The main future research direction obtained from analysis and first improvements to the current algo-
rithm is to further research the implementation of the current objective calculation. More inefficiencies
in implementation and memory managements could be identified. For example, multiple aspects of the
objective could benefit from being calculated only just before the schedule is evaluated. This means
they are done based on multiple changes to the schedule, rather than re-evaluating after every change.
Besides, some points where the model could be simplified were discovered. These have only limited
effects on the expected solutions, but do impact the runtime. Most importantly, the computation and
caching of costs per passenger stream could be reduced by simplifying the passenger hinder definition.

From the approximation of the detour paths, themain takeaway for future research would be to research
a new definition of passenger routes, and specifically the transfer times. The current assumption that
passengers always take the shortest path on this graph does not always correspond with the routes
expected in reality. Furthermore, approximating the costs for travellers being delayed and their required
alternative travel per hour, or even per project request, would be a potential way to reduce runtime
further. This is expected to have a small negative impact on the solution quality. However, scheduling
with this error might result in a final solution that is good enough to be helpful in some phases of
scheduling.

From the comparison of different search strategies, a good deal of possible future research was identi-
fied. Each of the compared search strategies could be further researched. Most importantly, the hybrid
greedy-evolutionary strategy could be improved by doing more hyperparameter analysis and creating
better mutations. An iterated greedy algorithm could also be an interesting future research. Besides,
some possible improvements to the greedy algorithm with look-aheads were identified from the analy-
sis of the look-ahead behaviour. Integrating these look-aheads into the hybrid algorithm could also be
investigated.

9.2 Future work 85

From the research into using an improved order for better solution quality with the greedy algorithm,
the most important future research direction is to try other techniques for finding a new order. This
could for example be an adaptive prioritisation, meaning that the next request to add to the schedule
is selected based on the current partial solution. The proposed order function improved results, but
has some limitations. It does not take into account all aspects of a problem’s potential difficulty and is
quite a simplified representation of a request’s ‘importance’. Besides, the simulated annealing is unable
to reliably find good weights that improve solution quality. Therefore, further research to improve the
design and optimisation of the order function is also interesting.

Finally, from the generalisation of the results to different input years, the main recommendation would
be to research methods to create a more representative set of problems. These problems can be used
to test different algorithms with. Currently, only limited historical data is available, and no synthetic
representative problems have been created. Besides that, a few potential future research directions
were identified from the results on different years. The most important one is to research different order
methods and how they generalise to different input problem characteristics and solving methods.

Besides the future work identified in the content chapters, there were a few potential future research
directions identified that are not directly related to any of the research questions:

• Creating better human-machine interaction between schedulers and algorithm. Currently,
the interaction between decision-makers and the algorithm is very limited. The algorithm suggests
a schedule based on the current configuration settings, or it evaluates a full schedule created by
the scheduling team. However, there are many ways in which this cooperation between the
schedulers and the schedule algorithms could be improved. For example, providing direct feed-
back of the change in cost from a scheduler-made mutation to the schedule. Or alternatively,
asking a user to provide input on some decisions made by the greedy constructive algorithm, as
a tie-breaker for example.

• Improving robustness to possible unexpected maintenance. Besides the preventive main-
tenance that can be determined for the full year ahead of time, there are also inevitably failures,
which require corrective maintenance. Research into a suitable way to take robustness of the
schedule to this corrective maintenance into account in the objective function could therefore
increase the quality of how the schedule can finally be executed.

• Pre-computing lowest hinder spots for certain lengths. In general, the passenger travel is
modelled to be very regular. The passenger travel at a certain day of the week and time is the
same for all weeks outside the holidays. Therefore, it is possible to pre-compute good locations
for scheduling a project request. Determining these good locations on a shorter scale, and then
re-using these good spots on a larger scale could, for instance, make the solving faster.

• Combining different levels of maintenance. Currently, only the larger requests are scheduled
within a yearly schedule. Shorter requests are often done during nights, and are scheduled on
a shorter term, or using reservations [11], [13]. Incorporating this information in the scheduling
could improve the way these two are aligned. Similarly, better combination of this level with the
multi-year level of the maintenance schedule could improve the research schedules.

• Coupling with timetabling. An important trend identified in the field of maintenance scheduling
is to couple it with the timetabling problem [20]. This is not directly applicable for this case, as
the timetable is handled by different companies and is not done on the same scale. However, by
integrating some timetable information, it is possible to determine situations where the passenger
hinder could be further reduced by adapting the timetable or train routes to the maintenance work.

• Increasing number of replications and hyperparameter tuning. Due to the large computa-
tional resources required to create the yearly maintenance schedules, only a limited number of
replications were done for all experiments. This does not allow identifying smaller differences
between certain algorithms. Besides, more replications could increase confidence in the results.
No complete hyperparameter analyses were done for all algorithms, so this could still improve
solution quality further.

A
Input properties of created sub-problems
For different experiments in this thesis, smaller size problem inputs were required. Therefore, synthetic
problem instances were created by using a subset of the maintenance from an annual problem. This
smaller set of maintenance then needs to be scheduled on a smaller period. The process of how these
were created is explained in section 3.3.3. Some more detailed properties of every sub-problem are
provided here.

88 A. Input properties of created sub-problems

A.1 2024
For the year of 2024, a single three-month scheduling problem was created to schedule from October
1st till December 31st: 2024-Q4. Besides that, six two-month scheduling problems were created: 2024-
P1, 2024-P2, etc. The properties of these sub-problems are given in fig. A.1 and in table A.1.

Most properties are quite similar in all periods. It can be seen from this that periods later in the year have
shorter time periods. This is due to the fact that almost all required time periods have more restricting
start times. Therefore, the shorter time windows are scheduled later in the year. The periods later in
the year also have a higher number of possible conflicts. This is expected to make these sub-problems
more difficult to solve. Besides this, the 2024-P4 sub-problem has a smaller number of requests, so
this is expected to be faster to solve.

0

500

1000
Length (hours)

0
10
20

Number of blocked trajectory parts

0
50
100

Amount of required essential personnel

0
100
200
300

Size of required time window (days)

2024 2024-P1 2024-P2 2024-P3 2024-P4 2024-P5 2024-P6 2024-Q4
0

100
200
300

Possible conflicts

Figure A.1: Violin plot of the distribution of the most important problem characteristics for all (sub-)problems for the scheduling
year 2024.

A.1 2024 89

2024 P1 P2 P3 P4 P5 P6 Q4

Projects

total 729 132 139 138 88 131 100 188
in cluster 11 0 2 1 3 3 2 3
with PEAT 414 84 74 70 45 82 59 118
blocking 682 98 134 137 88 126 98 178

Length (hours)

mean 83.6 80.9 64.1 64.7 81.8 84.3 77.0 85.5
min 24 24 24 24 24 24 24 24
Q1 48 48 48 48 48 48 48 48
median 48 48 48 48 48 48 48 48
Q3 48 48 48 48 48 48 72 54
max 6480 744 384 384 432 1008 384 384

Blocked trajectory
parts

mean 2.5 2.0 2.5 2.1 2.7 2.2 4.3 2.5
min 0 0 0 0 1 0 0 0
Q1 1 0 1 1 1 1 1 1
median 2 1 2 2 2 1 2 2
Q3 3 2 3 2 3 3 4 3
max 23 23 15 9 15 13 15 15

Essential
personnel

mean 8.0 5.3 5.9 6.5 9.1 11.9 10.4 10.8
min 0 0 0 0 0 0 0 0
Q1 0 0 0 0 0 0 0 0
median 0 0 5 5 0 5 0 5
Q3 10 10 10 10 10 15 20 15
max 120 120 80 65 120 70 60 120

Time window
size (days)

mean 265.7 341.2 294.4 281.3 254.1 197.1 205.4 192.3
min 9 313 253 192 131 70 9 9
Q1 223 344 284 253 162 100 70 70
median 284 344 284 284 284 162 284 177
Q3 344 344 313 344 344 284 313 284
max 344 344 344 344 344 344 344 344

Possible conflicts

mean 119.4 9.0 18.0 22.0 18.5 25.3 29.2 29.0
min 0 0 0 0 0 0 0 0
Q1 25 0 2.5 11 6 4 11 4
median 97 0 14 18 20 27 25 31.5
Q3 193.5 17 28 31 31.2 39 44 43.2
max 352 43 61 63 51 74 68 101

Trajectory parts total 344 344 344 344 344 344 344 344
blocked 200 89 115 105 98 95 109 132

Requests blocking
trajectory part

mean 7.5 2.1 2.9 2.7 2.4 2.9 3.9 3.3
min 0 0 0 0 1 0 0 0
Q1 1 0 1 1 1 1 1 1
median 5 1 3 2 2 2 2 3
Q3 11 3 4 3 3 4 4 5
max 40 14 8 13 8 9 15 15

Table A.1: The most important characteristics of the maintenance work in sub-problems of the year 2024. A request with
personnel means that a non-zero amount of personnel costs is specified for that project request. A blocking project request
means that it blocks at least one trajectory part. The blocked trajectory parts are the number of blocked trajectory part by a
certain request. The essential personnel is the sum of the three types of essential personnel. The time window size is the
rounded number of days that is available within the required start time and required end time of the request. The possible

conflicts are the sum of dependencies, pre-planned hinder and other request with which a project request can not be planned
overlapping. The request blocking trajectory part is the sum of requests which block a certain trajectory part, these values are

therefore a distribution over all trajectory parts.

90 A. Input properties of created sub-problems

A.2 Additional scheduling years
Most experiments were done with in schedule input for the year 2024. In chapter 8, the most promising
techniques were also applied on the (sub-)problems for the years 2023 and 2025. These sub-problems
were created in the same manner as for 2024. Some more detailed properties of these sub-problems
are presented here.

A.2.1 2023
For 2023, there are four sub-periods for three-month schedules. The properties of these sub-problems
as well as the full year problem are presented in fig. A.2 and in table A.2.

The third quarter has the longest requests and the most blocked trajectory parts. There are also the
highest mean number of requests blocking the same trajectory pars. The fourth quarter blocks the
most different trajectory parts. In three of the periods, there are some very small time windows. The
essential personnel demands are more equally spread over the different quarters. Most time windows
are very large for the first quarter, the other three quarters have more restrictive time windows. The
number of possible conflicts becomes higher towards the end of the year.

0

500

1000
Length (hours)

0
10
20
30

Number of blocked trajectory parts

0

50

Amount of required essential personnel

0
100
200
300

Size of required time window (days)

2023 2023-Q1 2023-Q2 2023-Q3 2023-Q4
0

100
200

Possible conflicts

Figure A.2: Violin plot of the distribution of the most important problem characteristics for all (sub-)problems for the scheduling
year 2023.

A.2 Additional scheduling years 91

2023 Q1 Q2 Q3 Q4

Project requests

total 539 189 88 115 145
in cluster 0 0 0 0 0
with PEAT 463 159 80 101 121
blocking 353 49 53 105 145

Length (hours)

mean 93.6 66.2 66.8 86.3 64.6
min 12 12 14 14 14
Q1 50 52 32 52 48
median 52 52 52 52 52
Q3 52 53 52 52 52
max 6385 340 556 1223 376

Blocked trajectory
parts

mean 1.9 0.6 1.6 3.3 2.8
min 0 0 0 0 1
Q1 0 0 0 1 1
median 1 0 1 2 2
Q3 3 1 2 3 4
max 29 7 7 29 10

Essential personnel

mean 7.5 7.0 7.5 8.0 7.9
min 0 0 0 0 0
Q1 0 0 0 0 0
median 5 4 3 6 5
Q3 10 10 10.2 12 10
max 92 72 92 80 88

Time window
size (days)

mean 283.6 322.7 260.2 267.7 258.5
min 2 2 58 2 2
Q1 245.5 304 198 155 184
median 321 351 274 304 290
Q3 365 365 365 365 348
max 365 365 365 365 365

Possible conflicts

mean 49.1 9.6 18.3 21.4 32.1
min 0 0 0 0 0
Q1 0 0 0 4 4
median 4 0 4 4 15
Q3 91 0 27 22 55
max 261 139 78 124 150

Trajectory parts total 344 344 344 344 344
blocked 239 73 62 97 123

Requests blocking
trajectory part

mean 2.4 0.5 1.5 3.5 3.2
min 0 0 0 0 1
Q1 0 0 0 1 1
median 1 0 1 2 2
Q3 3 1 2 3 3.5
max 64 8 8 26 27

Table A.2: The most important characteristics of the maintenance work in sub-problems of the year 2023. A request with
personnel means that a non-zero amount of personnel costs is specified for that project request. A blocking project request
means that it blocks at least one trajectory part. The blocked trajectory parts are the number of blocked trajectory part by a
certain request. The essential personnel is the sum of the three types of essential personnel. The time window size is the
rounded number of days that is available within the required start time and required end time of the request. The possible

conflicts are the sum of dependencies, pre-planned hinder and other request with which a project request can not be planned
overlapping. The request blocking trajectory part is the sum of requests which block a certain trajectory part, these values are

therefore a distribution over all trajectory parts.

92 A. Input properties of created sub-problems

A.2.2 2025
There are four sub-periods created from the 2025 schedule year. The distribution of the general prop-
erties of these sub-problems are presented in table A.3. The most important ones are also visually
presented as a violin plot in fig. A.3.

In the properties from the 2025 sub-problems, it can be seen that the length, blocked trajectory parts
and possible conflicts are distributed more equally than in the other years. The size of the required
time window is smallest in later quarters, similarly to the year 2024. This is explained by the restrictive
start times. The requests are also quite unevenly spread over the different quarters. The fourth quarter
contains by far the most requests, and these requests also have the most possible conflicts.

0

500

1000
Length (hours)

0

10

Number of blocked trajectory parts

0

50

Amount of required essential personnel

0
100
200
300

Size of required time window (days)

2025 2025-Q1 2025-Q2 2025-Q3 2025-Q4
0

100
200

Possible conflicts

Figure A.3: Violin plot of the distribution of the most important problem characteristics for all (sub-)problems for the scheduling
year 2025.

A.2 Additional scheduling years 93

2025 Q1 Q2 Q3 Q4

Project requests

total 597 151 104 126 216
in cluster 117 18 24 31 46
with PEAT 226 57 36 49 84
blocking 540 129 97 112 203

Length (hours)

mean 70.7 61.7 70.6 71.6 76.7
min 24 24 24 24 24
Q1 48 48 48 48 48
median 48 48 48 48 48
Q3 48 48 48 48 72
max 1224 1008 552 720 1224

Blocked trajectory
parts

mean 2.3 2.8 2.3 2.4 2.0
min 0 0 0 0 0
Q1 1 1 1 1 1
median 2 2 2 1 2
Q3 3 3 3 3 3
max 18 15 15 18 15

Essential personnel

mean 4.8 3.0 5.5 5.3 5.5
min 0 0 0 0 0
Q1 0 0 0 0 0
median 3 0 3 3 3
Q3 6 4.5 6 6 6
max 75 18 45 45 75

Time window

size (days)

mean 277.1 343.3 309.8 249.2 231.5
min 15 290 198 106 15
Q1 229 349 259 168 106
median 349 349 349 259 290
Q3 349 349 349 349 349
max 349 349 349 349 349

Possible conflicts

mean 69.5 13.3 15.0 16.0 23.5
min 0 0 0 0 0
Q1 2 0 5 2.5 6
median 46 4 12.5 7 16
Q3 118 25.5 26 28 38
max 271 53 46 61 90

Trajectory parts total 344 344 344 344 344
blocked 197 98 99 100 136

Requests blocking
trajectory part

mean 5.5 3.5 2.2 2.6 2.9
min 0 0 0 0 0
Q1 1 1 1 1 1
median 3 2 2 2 2
Q3 8 5 3 4 4
max 22 13 8 8 11

Table A.3: The most important characteristics of the maintenance work in sub-problems of the year 2025. A request with
personnel means that a non-zero amount of personnel costs is specified for that project request. A blocking project request
means that it blocks at least one trajectory part. The blocked trajectory parts are the number of blocked trajectory part by a
certain request. The essential personnel is the sum of the three types of essential personnel. The time window size is the
rounded number of days that is available within the required start time and required end time of the request. The possible

conflicts are the sum of dependencies, pre-planned hinder and other request with which a project request can not be planned
overlapping. The request blocking trajectory part is the sum of requests which block a certain trajectory part, these values are

therefore a distribution over all trajectory parts.

B
Convergence visualisation of different

search strategies

In this chapter, some extra figures visualising the behaviour of different search strategies are given.

B.1 Evolutionary algorithm
Two repetitions of the evolutionary algorithm are visualised in fig. B.1.

1250

1300

1350

1400

1450

1500

1550

1600

C
os
t

0 500 1000 1500 2000 2500 3000 3500
Number of generations

200

400

600

800

1000

1200

C
on
st
ra
in
tv
io
la
tio
ns

Figure B.1: Two repetitions of the evolutionary algorithm. The orange line was done for 32 hours, the blue run was 48 hours.
Both results are substantially worse than each of the other algorithms.

96 B. Convergence visualisation of different search strategies

B.2 Hybrid greedy-evolutionary
The hybrid greed-evolutionary algorithm was replicated five times on the year of 2024, resulting in the
best schedules. The results of every step of the algorithm is separately visualised in this section, for
both phases.

B.2.1 Phase 1
In the first phase, ten greedy runs are done with the first 100 requests. These are used as a starting
population for 5000 generations of evolutionary search. In fig. B.2a, the ten different runs for one of
the replications are given. In fig. B.2b, the best out of these ten was visualised for each of the five
replications.

0 20 40 60 80
Number of requests planned

100

200

300

400

500

C
os
t

(a) Ten different greedy heuristic runs to create a starting population for
evolutionary search.

0 20 40 60 80
Number of requests planned

0

100

200

300

400

500

C
os
t

(b) The best of the ten greedy starting individuals for five replications of
the hybrid greedy-evolutionary algorithm.

Figure B.2: Creating an evolutionary starting population using the greedy algorithm.

0 1000 2000 3000 4000 5000
Generation

485

490

495

500

505

C
os
t

Figure B.3: The first phase of evolutionary search in the hybrid greedy-evolutionary algorithm.

B.2 Hybrid greedy-evolutionary 97

B.2.2 Phase 2
In the second phase, the best individual at the end of the first evolutionary search is used as a starting
point. First, the rest of the project requests are scheduled greedily. The process of this is visualised
in fig. B.4. Finally, the result of this greedy process is cloned to create ten individuals, as a starting
population for the second round of evolutionary search. The convergence of this part is visualised in
fig. B.5.

500

600

700

800

900

1000

1100

C
os
t

0 100 200 300 400 500 600
Generation

0

2

4

6

8

C
on
st
ra
in
tv
io
la
tio
ns

Figure B.4: The error of different detour path approximations per hour on an isolated test set. The mean difference in the sum
of the passenger and alternative travel costs is used.

1090

1092

1094

1096

1098

1100

1102

C
os
t

0 500 1000 1500 2000 2500
Number of requests planned

1

2

3

4

5

6

7

8

C
on
st
ra
in
tv
io
la
tio
ns

Figure B.5: The error of different detour path approximations per hour on an isolated test set. The mean difference in the sum
of the passenger and alternative travel costs is used.

Bibliography
[1] ProRail,ProRail Jaarverslag 2022, nl, 2022. [Online]. Available: https://www.jaarverslagprorail.nl/

FbContent.ashx/pub_1001/downloads/v230502111910/ProRail_Jaarverslag_2022.pdf (visited
on 09/07/2023).

[2] “Ontwikkelagenda Toekomstbeeld OV,” nl, Ministerie van Infrastuctuur enWaterstaat, Tech. Rep.,
Jan. 2021. [Online]. Available: https://open.overheid.nl/documenten/ronl-2311ee8d-89c9-4278-
9f75-8dd8f3e4db51/pdf (visited on 09/01/2023).

[3] Dennistw, Nederlands: Railway map the netherlands, Sep. 2017. [Online]. Available: https : / /
commons.wikimedia.org/w/index.php?curid=62275026 (visited on 10/06/2023).

[4] “Eleventh Annual Market Monitoring Report,” Independent Regulator’s Group - Rail, Tech. Rep.
11, Apr. 2023. [Online]. Available: https://irg-rail.eu/download/5/957/IRG-Rail-11thMMReport-
Mainreport.pdf.

[5] M. Oudshoorn, “Solving a real-world rail maintenance scheduling problem,” en, M.S. thesis, Delft
University of Technology, Jul. 2019. [Online]. Available: http://resolver.tudelft.nl/uuid:95e95789-
19d9-4c86-b386-00f147306bbe.

[6] M. Oudshoorn, T. Koppenberg, and N. Yorke-Smith, “Optimization of annual planned rail main-
tenance,” en, Computer-Aided Civil and Infrastructure Engineering, vol. 37, no. 6, pp. 669–687,
2022, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12764, issn: 1467-8667. doi:
10.1111/mice.12764. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.
12764 (visited on 02/02/2023).

[7] A. R. Jenema, “An optimization model for a Train-Free-Period planning for ProRail based on the
maintenance needs of the Dutch railway infrastructure,” en, M.S. thesis, Sep. 2011.

[8] Y. deWeert, “Improving the scheduling of railwaymaintenance projects by considering passenger
hindrance and event requests of passenger operators,” en, M.S. thesis, Jun. 2022.

[9] D. den Hertog, J. I. van Zante-de Fokkert, S. A. Sjamaar, and R. Beusmans, “Optimal working
zone division for safe track maintenance in The Netherlands,” Accident Analysis & Prevention,
vol. 37, no. 5, pp. 890–893, Sep. 2005, issn: 0001-4575. doi: 10 .1016 / j . aap .2005 .04 .006.
[Online]. Available: https : / /www.sciencedirect . com/science /article /pii /S0001457505000680
(visited on 09/10/2023).

[10] J. I. v. Zante–de Fokkert, D. den Hertog, F. J. v. d. Berg, and J. H. M. Verhoeven, “The Nether-
lands Schedules Track Maintenance to Improve Track Workers’ Safety,” Interfaces, vol. 37, no. 2,
pp. 133–142, Apr. 2007, Publisher: INFORMS, issn: 0092-2102. doi: 10.1287/inte.1060.0246.
[Online]. Available: https://pubsonline.informs.org/doi/abs/10.1287/inte.1060.0246 (visited on
09/10/2023).

[11] F. Nijland, K. Gkiotsalitis, and E. C. van Berkum, “Improving railway maintenance schedules by
considering hindrance and capacity constraints,” en, Transportation Research Part C: Emerging
Technologies, vol. 126, p. 103 108, May 2021, issn: 0968-090X. doi: 10.1016/j.trc.2021.103108.
[Online]. Available: https : / /www.sciencedirect . com/science /article /pii /S0968090X21001273
(visited on 02/07/2023).

[12] B. Buurman, “Railway maintenance reservation scheduling considering train traffic and mainte-
nance demand,” M.S. thesis, University of Twente, 2021.

[13] B. Buurman, K. Gkiotsalitis, and E. C. van Berkum, “Railway maintenance reservation scheduling
considering detouring delays andmaintenance demand,” en, Journal of Rail Transport Planning &
Management, vol. 25, p. 100 359, Mar. 2023, issn: 2210-9706. doi: 10.1016/j.jrtpm.2022.100359.
[Online]. Available: https : / /www.sciencedirect . com/science /article /pii /S2210970622000592
(visited on 02/03/2023).

https://www.jaarverslagprorail.nl/FbContent.ashx/pub_1001/downloads/v230502111910/ProRail_Jaarverslag_2022.pdf
https://www.jaarverslagprorail.nl/FbContent.ashx/pub_1001/downloads/v230502111910/ProRail_Jaarverslag_2022.pdf
https://open.overheid.nl/documenten/ronl-2311ee8d-89c9-4278-9f75-8dd8f3e4db51/pdf
https://open.overheid.nl/documenten/ronl-2311ee8d-89c9-4278-9f75-8dd8f3e4db51/pdf
https://commons.wikimedia.org/w/index.php?curid=62275026
https://commons.wikimedia.org/w/index.php?curid=62275026
https://irg-rail.eu/download/5/957/IRG-Rail-11thMMReport-Mainreport.pdf
https://irg-rail.eu/download/5/957/IRG-Rail-11thMMReport-Mainreport.pdf
http://resolver.tudelft.nl/uuid:95e95789-19d9-4c86-b386-00f147306bbe
http://resolver.tudelft.nl/uuid:95e95789-19d9-4c86-b386-00f147306bbe
https://doi.org/10.1111/mice.12764
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12764
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12764
https://doi.org/10.1016/j.aap.2005.04.006
https://www.sciencedirect.com/science/article/pii/S0001457505000680
https://doi.org/10.1287/inte.1060.0246
https://pubsonline.informs.org/doi/abs/10.1287/inte.1060.0246
https://doi.org/10.1016/j.trc.2021.103108
https://www.sciencedirect.com/science/article/pii/S0968090X21001273
https://doi.org/10.1016/j.jrtpm.2022.100359
https://www.sciencedirect.com/science/article/pii/S2210970622000592

100 Bibliography

[14] G. Budai-Balke, Operations research models for scheduling railway infrastructure maintenance.
Rozenberg Publishers, 2009.

[15] H. Pouryousef, P. Teixeira, and J. Sussman, “Track maintenance scheduling and its interactions
with operations: Dedicated and mixed high-speed rail (hsr) scenarios,” in Joint Rail Conference,
vol. 49071, 2010, pp. 317–326.

[16] N. Bešinović, B. Widarno, and R. M. Goverde, “Adjusting freight train paths to infrastructure pos-
sessions,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), Sep. 2020, pp. 1–6. doi: 10.1109/ITSC45102.2020.9294192.

[17] J. Trepat Borecka and N. Bešinović, “Scheduling multimodal alternative services for managing
infrastructure maintenance possessions in railway networks,” Transportation Research Part B:
Methodological, vol. 154, pp. 147–174, Dec. 2021, issn: 0191-2615. doi: 10.1016/j.trb.2021.10.
009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0191261521001946
(visited on 09/11/2023).

[18] T. Lidén, “Railway Infrastructure Maintenance - A Survey of Planning Problems and Conducted
Research,” en, Transportation Research Procedia, 18th Euro Working Group on Transportation,
EWGT 2015, 14-16 July 2015, Delft, The Netherlands, vol. 10, pp. 574–583, Jan. 2015, issn:
2352-1465. doi: 10.1016/j.trpro.2015.09.011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2352146515001982 (visited on 02/07/2023).

[19] T. Lidén, “Survey of railway maintenance activities from a planning perspective and literature
review concerning the use of mathematical algorithms for solving such planning and scheduling
problems,” en, 2014.

[20] M. Sedghi, O. Kauppila, B. Bergquist, E. Vanhatalo, and M. Kulahci, “A taxonomy of railway
track maintenance planning and scheduling: A review and research trends,” en, Reliability En-
gineering & System Safety, vol. 215, p. 107 827, Nov. 2021, issn: 0951-8320. doi: 10 . 1016 /
j . ress .2021.107827. [Online]. Available: https : / /www.sciencedirect .com/science /article /pii /
S0951832021003483 (visited on 02/06/2023).

[21] B. S. N. Cheung, K. P. Chow, L. C. K. Hui, and A. M. K. Yong, “Railway track possession as-
signment using constraint satisfaction,” Engineering Applications of Artificial Intelligence, vol. 12,
no. 5, pp. 599–611, Oct. 1999, issn: 0952-1976. doi: 10.1016/S0952-1976(99)00025-1. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0952197699000251 (visited on
09/10/2023).

[22] F. Peng, S. Kang, X. Li, Y. Ouyang, K. Somani, and D. Acharya, “A Heuristic Approach to the Rail-
road Track Maintenance Scheduling Problem,” en, Computer-Aided Civil and Infrastructure Engi-
neering, vol. 26, no. 2, pp. 129–145, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8667.2010.00670.x, issn: 1467-8667. doi: 10.1111/j.1467-8667.2010.00670.x. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.2010.00670.x (visited on
02/07/2023).

[23] F. Peng and Y. Ouyang, “Track maintenance production team scheduling in railroad networks,”
Transportation Research Part B: Methodological, vol. 46, no. 10, pp. 1474–1488, Dec. 2012, issn:
0191-2615. doi: 10.1016/j.trb.2012.07.004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0191261512000975 (visited on 09/13/2023).

[24] N. Boland, T. Kalinowski, H. Waterer, and L. Zheng, “Mixed integer programming based main-
tenance scheduling for the Hunter Valley coal chain,” en, Journal of Scheduling, vol. 16, no. 6,
pp. 649–659, Dec. 2013, issn: 1094-6136, 1099-1425. doi: 10.1007/s10951-012-0284-y. [On-
line]. Available: http://link.springer.com/10.1007/s10951-012-0284-y (visited on 02/07/2023).

[25] N. Boland, T. Kalinowski, H. Waterer, and L. Zheng, “Scheduling arc maintenance jobs in a
network to maximize total flow over time,” Discrete Applied Mathematics, Matheuristics 2010,
vol. 163, pp. 34–52, Jan. 2014, issn: 0166-218X. doi: 10.1016/ j .dam.2012.05.027. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0166218X12002338 (visited on
09/13/2023).

https://doi.org/10.1109/ITSC45102.2020.9294192
https://doi.org/10.1016/j.trb.2021.10.009
https://doi.org/10.1016/j.trb.2021.10.009
https://www.sciencedirect.com/science/article/pii/S0191261521001946
https://doi.org/10.1016/j.trpro.2015.09.011
https://www.sciencedirect.com/science/article/pii/S2352146515001982
https://www.sciencedirect.com/science/article/pii/S2352146515001982
https://doi.org/10.1016/j.ress.2021.107827
https://doi.org/10.1016/j.ress.2021.107827
https://www.sciencedirect.com/science/article/pii/S0951832021003483
https://www.sciencedirect.com/science/article/pii/S0951832021003483
https://doi.org/10.1016/S0952-1976(99)00025-1
https://www.sciencedirect.com/science/article/pii/S0952197699000251
https://doi.org/10.1111/j.1467-8667.2010.00670.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.2010.00670.x
https://doi.org/10.1016/j.trb.2012.07.004
https://www.sciencedirect.com/science/article/pii/S0191261512000975
https://www.sciencedirect.com/science/article/pii/S0191261512000975
https://doi.org/10.1007/s10951-012-0284-y
http://link.springer.com/10.1007/s10951-012-0284-y
https://doi.org/10.1016/j.dam.2012.05.027
https://www.sciencedirect.com/science/article/pii/S0166218X12002338

Bibliography 101

[26] M. Forsgren, M. Aronsson, and S. Gestrelius, “Maintaining tracks and traffic flow at the same
time,” en, Journal of Rail Transport Planning & Management, Robust Rescheduling and Capacity
Use, vol. 3, no. 3, pp. 111–123, Aug. 2013, issn: 2210-9706. doi: 10.1016/j.jrtpm.2013.11.001.
[Online]. Available: https : / /www.sciencedirect . com/science /article /pii /S2210970613000267
(visited on 02/07/2023).

[27] S. Khalouli, R. Benmansour, and S. Hanafi, “An ant colony algorithm based on opportunities for
scheduling the preventive railway maintenance,” in 2016 International Conference on Control,
Decision and Information Technologies (CoDIT), Apr. 2016, pp. 594–599. doi: 10.1109/CoDIT.
2016.7593629.

[28] X. Luan, J. Miao, L. Meng, F. Corman, andG. Lodewijks, “Integrated optimization on train schedul-
ing and preventivemaintenance time slots planning,” en, Transportation Research Part C: Emerg-
ing Technologies, vol. 80, pp. 329–359, Jul. 2017, issn: 0968-090X. doi: 10.1016/j.trc.2017.04.
010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X17301237
(visited on 02/07/2023).

[29] T. Lidén and M. Joborn, “An optimization model for integrated planning of railway traffic and
network maintenance,” en, Transportation Research Part C: Emerging Technologies, vol. 74,
pp. 327–347, Jan. 2017, issn: 0968-090X. doi: 10.1016/j.trc.2016.11.016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X16302340 (visited on 02/07/2023).

[30] T. Lidén, Concurrent planning of railway maintenance windows and train services, en. Linköping
University Electronic Press, Nov. 2018, Google-Books-ID: Fsp6DwAAQBAJ, isbn: 978-91-7685-
201-9.

[31] T. Lidén, “Coordinatingmaintenancewindows and train traffic: A case study,” en,Public Transport,
vol. 12, no. 2, pp. 261–298, Jun. 2020, issn: 1613-7159. doi: 10.1007/s12469-020-00232-2.
[Online]. Available: https://doi.org/10.1007/s12469-020-00232-2 (visited on 02/07/2023).

[32] C. Zhang, Y. Gao, L. Yang, U. Kumar, and Z. Gao, “Integrated optimization of train scheduling
and maintenance planning on high-speed railway corridors,” en, Omega, vol. 87, pp. 86–104,
Sep. 2019, issn: 0305-0483. doi: 10 .1016 / j . omega .2018 .08 .005. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0305048317310575 (visited on 02/07/2023).

[33] A. D’Ariano, L. Meng, G. Centulio, and F. Corman, “Integrated stochastic optimization approaches
for tactical scheduling of trains and railway infrastructure maintenance,” en, Computers & In-
dustrial Engineering, vol. 127, pp. 1315–1335, Jan. 2019, issn: 0360-8352. doi: 10 . 1016 / j .
cie . 2017 . 12 . 010. [Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0360835217305764 (visited on 02/03/2023).

[34] C. Zhang, Y. Gao, L. Yang, Z. Gao, and J. Qi, “Joint optimization of train scheduling and main-
tenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation,” en,
Transportation Research Part B: Methodological, vol. 134, pp. 64–92, Apr. 2020, issn: 0191-
2615. doi: 10 .1016 / j . trb .2020 .02 .008. [Online]. Available: https : / /www.sciencedirect . com/
science/article/pii/S0191261519300840 (visited on 02/07/2023).

[35] Y. Chang, R. Liu, and Y. Tang, “Segment-condition-based railway track maintenance schedule
optimization,” en, Computer-Aided Civil and Infrastructure Engineering, vol. 38, no. 2, pp. 160–
193, 2023, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12824, issn: 1467-8667.
doi: 10.1111/mice.12824. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/
mice.12824 (visited on 02/02/2023).

[36] M. Sedghi, B. Bergquist, E. Vanhatalo, and A. Migdalas, “Data-driven maintenance planning and
scheduling based on predicted railway track condition,” en,Quality and Reliability Engineering In-
ternational, vol. 38, no. 7, pp. 3689–3709, 2022, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.3166,
issn: 1099-1638. doi: 10.1002/qre.3166. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/qre.3166 (visited on 02/03/2023).

[37] R. Mohammadi and Q. He, “A deep reinforcement learning approach for rail renewal and main-
tenance planning,” en, Reliability Engineering & System Safety, vol. 225, p. 108 615, Sep. 2022,
issn: 0951-8320. doi: 10.1016/j.ress.2022.108615. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0951832022002575 (visited on 02/03/2023).

https://doi.org/10.1016/j.jrtpm.2013.11.001
https://www.sciencedirect.com/science/article/pii/S2210970613000267
https://doi.org/10.1109/CoDIT.2016.7593629
https://doi.org/10.1109/CoDIT.2016.7593629
https://doi.org/10.1016/j.trc.2017.04.010
https://doi.org/10.1016/j.trc.2017.04.010
https://www.sciencedirect.com/science/article/pii/S0968090X17301237
https://doi.org/10.1016/j.trc.2016.11.016
https://www.sciencedirect.com/science/article/pii/S0968090X16302340
https://doi.org/10.1007/s12469-020-00232-2
https://doi.org/10.1007/s12469-020-00232-2
https://doi.org/10.1016/j.omega.2018.08.005
https://www.sciencedirect.com/science/article/pii/S0305048317310575
https://www.sciencedirect.com/science/article/pii/S0305048317310575
https://doi.org/10.1016/j.cie.2017.12.010
https://doi.org/10.1016/j.cie.2017.12.010
https://www.sciencedirect.com/science/article/pii/S0360835217305764
https://www.sciencedirect.com/science/article/pii/S0360835217305764
https://doi.org/10.1016/j.trb.2020.02.008
https://www.sciencedirect.com/science/article/pii/S0191261519300840
https://www.sciencedirect.com/science/article/pii/S0191261519300840
https://doi.org/10.1111/mice.12824
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12824
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12824
https://doi.org/10.1002/qre.3166
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.3166
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.3166
https://doi.org/10.1016/j.ress.2022.108615
https://www.sciencedirect.com/science/article/pii/S0951832022002575
https://www.sciencedirect.com/science/article/pii/S0951832022002575

102 Bibliography

[38] A. Kasraei and J. Ali Zakeri, “Maintenance Decision Support Model for Railway Track Geom-
etry Maintenance Planning Using Cost, Reliability, and Availability Factors: A Case Study,” en,
Transportation Research Record: Journal of the Transportation Research Board, vol. 2676, no. 7,
pp. 161–172, Jul. 2022, issn: 0361-1981, 2169-4052. doi: 10.1177/03611981221077089. [On-
line]. Available: http : / / journals . sagepub . com /doi / 10 . 1177 /03611981221077089 (visited on
02/03/2023).

[39] I. Stipanovic, Z. A. Bukhsh, C. Reale, and K. Gavin, “A multiobjective decision�making model
for risk�based maintenance scheduling of railway earthworks,” en, Applied Research on English
Language, vol. 11, no. 3, 2021, issn: 2252-0198. doi: 10.3390/app11030965. [Online]. Available:
https://repository.tudelft.nl/islandora/object/uuid%3A621bd481-1d62-428b-8a03-a4fa59dacc7f
(visited on 02/03/2023).

[40] R. Mohammadi, Q. He, and M. Karwan, “Data-driven robust strategies for joint optimization of
rail renewal and maintenance planning,” en, Omega, vol. 103, p. 102 379, Sep. 2021, issn: 0305-
0483. doi: 10.1016/j.omega.2020.102379. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0305048320307337 (visited on 02/06/2023).

[41] A. Consilvio, A. D. Febbraro, and N. Sacco, “A Rolling-Horizon Approach for Predictive Mainte-
nance Planning to Reduce the Risk of Rail Service Disruptions,” IEEE Transactions on Reliability,
vol. 70, no. 3, pp. 875–886, Sep. 2021, Conference Name: IEEE Transactions on Reliability, issn:
1558-1721. doi: 10.1109/TR.2020.3007504.

[42] T. Kalinowski, J. Matthews, and H. Waterer, “Scheduling of maintenance windows in a mining
supply chain rail network,” en, Computers & Operations Research, vol. 115, p. 104 670, Mar.
2020, issn: 0305-0548. doi: 10 . 1016 / j . cor . 2019 . 03 . 016. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S0305054819300760 (visited on 02/07/2023).

[43] Q. Zhang, R. M. Lusby, P. Shang, and X. Zhu, “A heuristic approach to integrate train timetabling,
platforming, and railway network maintenance scheduling decisions,” en, Transportation Re-
search Part B: Methodological, vol. 158, pp. 210–238, Apr. 2022, issn: 0191-2615. doi: 10.1016/
j . trb . 2022 . 02 . 002. [Online]. Available: https : / /www . sciencedirect . com / science / article / pii /
S0191261522000212 (visited on 02/03/2023).

[44] M. Bababeik, M. Farjadamin, N. Khademi, and A.-H. Fani, “Simultaneous schedule of trains and
track maintenance according to stochastic blockage time,” en, International Journal of Rail Trans-
portation, vol. 10, no. 5, pp. 562–580, Sep. 2022, issn: 2324-8378, 2324-8386. doi: 10.1080/
23248378.2021.1978884. [Online]. Available: https://www.tandfonline.com/doi/full /10.1080/
23248378.2021.1978884 (visited on 02/03/2023).

[45] Jon Kleinberg and Eva Tardos, “Greedy Algorithms,” eng, in Algorithm Design, 1st ed., Pearson,
2005, pp. 115–183, isbn: 978-0-321-29535-4. [Online]. Available: http : / / archive . org / details /
AlgorithmDesign1stEditionByJonKleinbergAndEvaTardos2005PDF (visited on 09/26/2023).

[46] D. K. Pradhan, J. Chakraborty, P. Choudhary, and S. Nandi, “An automated conflict of inter-
est based greedy approach for conference paper assignment system,” Journal of Informetrics,
vol. 14, no. 2, p. 101 022, May 2020, issn: 1751-1577. doi: 10.1016/j.joi.2020.101022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1751157719301373 (visited on
09/14/2023).

[47] W. Li, W. Huang, D. Jiang, and X. Liu, “A heuristic algorithm for cube packing with time schedule,”
en, Science in China Series F: Information Sciences, vol. 53, no. 1, pp. 18–29, Jan. 2010, issn:
1869-1919. doi: 10.1007/s11432- 010- 0022- z. [Online]. Available: https: / /doi .org/10.1007/
s11432-010-0022-z (visited on 09/14/2023).

[48] M. Huysmans, K. Coolen, F. Talla Nobibon, and R. Leus, “A fast greedy heuristic for scheduling
modular projects,” en, Journal of Heuristics, vol. 21, no. 1, pp. 47–72, Feb. 2015, issn: 1572-
9397. doi: 10.1007/s10732-014-9272-z. [Online]. Available: https://doi.org/10.1007/s10732-
014-9272-z (visited on 09/14/2023).

[49] A. G. Lagodimos and V. Leopoulos, “Greedy heuristic algorithms for manpower shift planning,”
International Journal of Production Economics, vol. 68, no. 1, pp. 95–106, Oct. 2000, issn: 0925-
5273. doi: 10.1016/S0925-5273(99)00099-7. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925527399000997 (visited on 09/14/2023).

https://doi.org/10.1177/03611981221077089
http://journals.sagepub.com/doi/10.1177/03611981221077089
https://doi.org/10.3390/app11030965
https://repository.tudelft.nl/islandora/object/uuid%3A621bd481-1d62-428b-8a03-a4fa59dacc7f
https://doi.org/10.1016/j.omega.2020.102379
https://www.sciencedirect.com/science/article/pii/S0305048320307337
https://www.sciencedirect.com/science/article/pii/S0305048320307337
https://doi.org/10.1109/TR.2020.3007504
https://doi.org/10.1016/j.cor.2019.03.016
https://www.sciencedirect.com/science/article/pii/S0305054819300760
https://www.sciencedirect.com/science/article/pii/S0305054819300760
https://doi.org/10.1016/j.trb.2022.02.002
https://doi.org/10.1016/j.trb.2022.02.002
https://www.sciencedirect.com/science/article/pii/S0191261522000212
https://www.sciencedirect.com/science/article/pii/S0191261522000212
https://doi.org/10.1080/23248378.2021.1978884
https://doi.org/10.1080/23248378.2021.1978884
https://www.tandfonline.com/doi/full/10.1080/23248378.2021.1978884
https://www.tandfonline.com/doi/full/10.1080/23248378.2021.1978884
http://archive.org/details/AlgorithmDesign1stEditionByJonKleinbergAndEvaTardos2005PDF
http://archive.org/details/AlgorithmDesign1stEditionByJonKleinbergAndEvaTardos2005PDF
https://doi.org/10.1016/j.joi.2020.101022
https://www.sciencedirect.com/science/article/pii/S1751157719301373
https://doi.org/10.1007/s11432-010-0022-z
https://doi.org/10.1007/s11432-010-0022-z
https://doi.org/10.1007/s11432-010-0022-z
https://doi.org/10.1007/s10732-014-9272-z
https://doi.org/10.1007/s10732-014-9272-z
https://doi.org/10.1007/s10732-014-9272-z
https://doi.org/10.1016/S0925-5273(99)00099-7
https://www.sciencedirect.com/science/article/pii/S0925527399000997
https://www.sciencedirect.com/science/article/pii/S0925527399000997

Bibliography 103

[50] Ahmed Abdulmunem Hussein, Esam Taha Yaseen, and Ahmed Noori Rashid, “Learnheuristics in
routing and scheduling problems: A review,” en, Samarra Journal of Pure and Applied Science,
vol. 5, no. 1, pp. 60–90, Mar. 2023, issn: 2789-6838, 2663-7405. doi: 10.54153/sjpas.2023.
v5i1.445. [Online]. Available: https: / /sjpas.com/index.php/sjpas/article/view/445 (visited on
05/15/2023).

[51] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem,” European Journal of Operational Research, vol. 177, no. 3, pp. 2033–
2049, Mar. 2007, issn: 0377-2217. doi: 10.1016/j.ejor.2005.12.009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0377221705008507 (visited on 09/12/2023).

[52] V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan, “A new vision of approximate methods for
the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation,”
en, European Journal of Operational Research, vol. 257, no. 3, pp. 707–721, Mar. 2017, issn:
03772217. doi: 10.1016/j.ejor.2016.09.055. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0377221716308074 (visited on 09/12/2023).

[53] R. Ruiz, Q.-K. Pan, and B. Naderi, “Iterated Greedy methods for the distributed permutation
flowshop scheduling problem,” Omega, vol. 83, pp. 213–222, Mar. 2019, issn: 0305-0483. doi:
10.1016/j .omega.2018.03.004. [Online]. Available: https:/ /www.sciencedirect.com/science/
article/pii/S0305048317306990 (visited on 09/12/2023).

[54] E. W. Dijkstra, “A note on two problems in connexion with graphs:(numerische mathematik, 1
(1959), p 269-271),” 1959. [Online]. Available: https://doi.org/10.1007/BF01386390.

[55] Fundamentals of garbage collection - .NET, en-us, Feb. 2023. [Online]. Available: https://learn.
microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals (visited on 09/29/2023).

[56] C. He, Y. Zhang, D. Gong, and X. Ji, “A review of surrogate-assisted evolutionary algorithms for
expensive optimization problems,” en, Expert Systems with Applications, vol. 217, p. 119 495,
May 2023, issn: 0957-4174. doi: 10.1016/j.eswa.2022.119495. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0957417422025143 (visited on 02/07/2023).

[57] J.-h. Hao, M. Liu, J.-h. Lin, and C. Wu, “A hybrid differential evolution approach based on surro-
gate modelling for scheduling bottleneck stages,” en,Computers & Operations Research, vol. 66,
pp. 215–224, Feb. 2016, issn: 0305-0548. doi: 10.1016/j.cor.2015.08.005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054815002002 (visited on 05/15/2023).

[58] H. Bast, E. Carlsson, A. Eigenwillig, et al., “Fast Routing in Very Large Public Transportation
Networks Using Transfer Patterns.,” ESA (1), vol. 6346, pp. 290–301, 2010.

[59] M. Holzer, F. Schulz, and D. Wagner, “Engineering multilevel overlay graphs for shortest-path
queries,” ACM Journal of Experimental Algorithmics, vol. 13, 5:2.5–5:2.26, Feb. 2009, issn: 1084-
6654. doi: 10.1145/1412228.1412239. [Online]. Available: https://doi.org/10.1145/1412228.
1412239 (visited on 02/03/2023).

[60] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit to constant time shortest-
path queries in road networks,” in 2007 Proceedings of the Ninth Workshop on Algorithm Engi-
neering and Experiments (ALENEX), SIAM, 2007, pp. 46–59.

[61] H. Lu and Y. Shi, “Complexity of public transport networks,” Tsinghua Science and Technology,
vol. 12, no. 2, pp. 204–213, Apr. 2007, Conference Name: Tsinghua Science and Technology,
issn: 1007-0214. doi: 10.1016/S1007-0214(07)70027-5.

[62] H. Bast, D. Delling, A. Goldberg, et al., “Route planning in transportation networks,” Algorithm
engineering: Selected results and surveys, pp. 19–80, 2016.

[63] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – A comprehensive introduction,” en, Natu-
ral Computing, vol. 1, no. 1, pp. 3–52,Mar. 2002, issn: 1572-9796. doi: 10.1023/A:1015059928466.
[Online]. Available: https://doi.org/10.1023/A:1015059928466 (visited on 09/06/2023).

[64] M. Emmerich, O. M. Shir, and H. Wang, “Evolution Strategies,” en, in Handbook of Heuristics,
R. Martí, P. Panos, and M. G. C. Resende, Eds., Cham: Springer International Publishing, 2018,
pp. 1–31, isbn: 978-3-319-07153-4. doi: 10.1007/978-3-319-07153-4_13-1. [Online]. Available:
https://doi.org/10.1007/978-3-319-07153-4_13-1 (visited on 09/14/2023).

https://doi.org/10.54153/sjpas.2023.v5i1.445
https://doi.org/10.54153/sjpas.2023.v5i1.445
https://sjpas.com/index.php/sjpas/article/view/445
https://doi.org/10.1016/j.ejor.2005.12.009
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://doi.org/10.1016/j.ejor.2016.09.055
https://linkinghub.elsevier.com/retrieve/pii/S0377221716308074
https://linkinghub.elsevier.com/retrieve/pii/S0377221716308074
https://doi.org/10.1016/j.omega.2018.03.004
https://www.sciencedirect.com/science/article/pii/S0305048317306990
https://www.sciencedirect.com/science/article/pii/S0305048317306990
https://doi.org/10.1007/BF01386390
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://doi.org/10.1016/j.eswa.2022.119495
https://www.sciencedirect.com/science/article/pii/S0957417422025143
https://www.sciencedirect.com/science/article/pii/S0957417422025143
https://doi.org/10.1016/j.cor.2015.08.005
https://www.sciencedirect.com/science/article/pii/S0305054815002002
https://doi.org/10.1145/1412228.1412239
https://doi.org/10.1145/1412228.1412239
https://doi.org/10.1145/1412228.1412239
https://doi.org/10.1016/S1007-0214(07)70027-5
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1007/978-3-319-07153-4_13-1
https://doi.org/10.1007/978-3-319-07153-4_13-1

104 Bibliography

[65] M. Chen, “A Greedy Algorithm with Forward-Looking Strategy,” en, in Greedy Algorithms, In-
techOpen, Nov. 2008, isbn: 978-953-7619-27-5. doi: 10.5772/6351. [Online]. Available: https:
//www.intechopen.com/chapters/5850 (visited on 09/14/2023).

[66] W. Q. Huang, Y. Li, H. Akeb, and C. M. Li, “Greedy algorithms for packing unequal circles into a
rectangular container,” en, Journal of the Operational Research Society, vol. 56, no. 5, pp. 539–
548, May 2005, issn: 1476-9360. doi: 10.1057/palgrave.jors.2601836. [Online]. Available: https:
//doi.org/10.1057/palgrave.jors.2601836 (visited on 09/14/2023).

[67] A. Ebrahimzadeh, N. Promwongsa, S. N. Afrasiabi, et al., “H-Horizon Sequential Look-ahead
Greedy Algorithm for VNF-FG Embedding,” in 2021 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN), Nov. 2021, pp. 41–46. doi: 10.1109/NFV-
SDN53031.2021.9665063.

[68] D. Frost and R. Dechter, “Look-ahead value ordering for constraint satisfaction problems,” en, in
IJCAI (1), 1995, pp. 572–578.

[69] D. S. Nau, M. Luštrek, A. Parker, I. Bratko, and M. Gams, “When is it better not to look ahead?”
Artificial Intelligence, vol. 174, no. 16, pp. 1323–1338, Nov. 2010, issn: 0004-3702. doi: 10.1016/
j .artint .2010.08.002. [Online]. Available: https: / /www.sciencedirect .com/science/article /pii /
S0004370210001402 (visited on 09/12/2023).

[70] J. Pätzold, A. Schiewe, P. Schiewe, and A. Schöbel, “Look-Ahead Approaches for Integrated
Planning in Public Transportation,” en, 16 pages, 2017, Artwork Size: 16 pages Medium: applica-
tion/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,Wadern/Saarbruecken,
Germany. doi: 10.4230/OASICS.ATMOS.2017.17. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2017/7894/ (visited on 09/14/2023).

[71] T. Bäck, “Evolution strategies: An alternative evolutionary algorithm,” in European Conference
on Artificial Evolution, Springer, 1995, pp. 1–20.

[72] Y. Ye and A. Borodin, “Priority algorithms for the subset-sum problem,” en, Journal of Combinato-
rial Optimization, vol. 16, no. 3, pp. 198–228, Oct. 2008, issn: 1573-2886. doi: 10.1007/s10878-
007 - 9126 - 9. [Online]. Available: https : / / doi . org / 10 . 1007 / s10878 - 007 - 9126 - 9 (visited on
09/12/2023).

[73] A. Borodin, M. N. Nielsen, and C. Rackoff, “(Incremental) Priority Algorithms,” en, Algorithmica,
vol. 37, no. 4, pp. 295–326, Dec. 2003, issn: 1432-0541. doi: 10.1007/s00453- 003- 1036- 3.
[Online]. Available: https://doi.org/10.1007/s00453-003-1036-3 (visited on 09/12/2023).

[74] F. J. Gil-Gala, C. Mencía, M. R. Sierra, and R. Varela, “Evolving priority rules for on-line scheduling
of jobs on a single machine with variable capacity over time,” en, Applied Soft Computing, vol. 85,
p. 105 782, Dec. 2019, issn: 1568-4946. doi: 10.1016/j.asoc.2019.105782. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494619305630 (visited on 07/11/2023).

[75] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,” science,
vol. 220, no. 4598, pp. 671–680, 1983.

[76] R. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits and Devices Maga-
zine, vol. 5, no. 1, pp. 19–26, Jan. 1989, Conference Name: IEEECircuits and Devices Magazine,
issn: 1558-1888. doi: 10.1109/101.17235.

[77] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting Systematic Search by Weighting
Constraints.,” Jan. 2004, pp. 146–150.

[78] T. Balafoutis and K. Stergiou, “On conflict-driven variable ordering heuristics,” in Proceedings of
Thirteenth Annual ERCIM International Workshop on Constraint Solving and Constraint Logic
Programming, CSCLP-08, 2008.

[79] S. Ozdemir and D. Susarla, Feature Engineering Made Easy: Identify unique features from your
dataset in order to build powerful machine learning systems. Packt Publishing Ltd, 2018.

[80] M. �urasević and D. Jakobović, “Creating dispatching rules by simple ensemble combination,”
en, Journal of Heuristics, vol. 25, no. 6, pp. 959–1013, Dec. 2019, issn: 1572-9397. doi: 10.1007/
s10732-019-09416-x. [Online]. Available: https://doi.org/10.1007/s10732-019-09416-x (visited
on 07/11/2023).

https://doi.org/10.5772/6351
https://www.intechopen.com/chapters/5850
https://www.intechopen.com/chapters/5850
https://doi.org/10.1057/palgrave.jors.2601836
https://doi.org/10.1057/palgrave.jors.2601836
https://doi.org/10.1057/palgrave.jors.2601836
https://doi.org/10.1109/NFV-SDN53031.2021.9665063
https://doi.org/10.1109/NFV-SDN53031.2021.9665063
https://doi.org/10.1016/j.artint.2010.08.002
https://doi.org/10.1016/j.artint.2010.08.002
https://www.sciencedirect.com/science/article/pii/S0004370210001402
https://www.sciencedirect.com/science/article/pii/S0004370210001402
https://doi.org/10.4230/OASICS.ATMOS.2017.17
http://drops.dagstuhl.de/opus/volltexte/2017/7894/
http://drops.dagstuhl.de/opus/volltexte/2017/7894/
https://doi.org/10.1007/s10878-007-9126-9
https://doi.org/10.1007/s10878-007-9126-9
https://doi.org/10.1007/s10878-007-9126-9
https://doi.org/10.1007/s00453-003-1036-3
https://doi.org/10.1007/s00453-003-1036-3
https://doi.org/10.1016/j.asoc.2019.105782
https://www.sciencedirect.com/science/article/pii/S1568494619305630
https://doi.org/10.1109/101.17235
https://doi.org/10.1007/s10732-019-09416-x
https://doi.org/10.1007/s10732-019-09416-x
https://doi.org/10.1007/s10732-019-09416-x

	Introduction
	Motivation
	Problem statement
	Research goal and questions
	Anonymity
	Structure of this document

	Background and Related Work
	Previous work on the Dutch railway maintenance scheduling
	Other railway maintenance scheduling work
	Research gap

	Detailed Problem Description
	Input
	Maintenance projects
	Configuration input
	Other input

	Objective
	Constraints
	Cost function

	Input set characteristics
	2024
	Different years: 2023 and 2025
	Sub-problems

	Current Algorithms and Initial Improvements
	Background
	Greedy constructive algorithm
	Randomness

	Current objective algorithm
	Overlapping periods and constraint handling
	Availability costs

	Improvements to current algorithms
	Handling clusters
	Precompute changed hours
	Exact objective evaluation
	Memory management
	Improved usage of single source Dijkstra

	Conclusion
	Future work

	Detour Path Approximation
	Background
	Graph Analysis
	Detour approximation algorithms
	Baseline
	Exact solution
	Edge domination
	Transit node routing
	Assume bus strategy
	Average delay strategy
	Additional algorithmic points

	Methodology for comparing detour path approximations
	Separate test set

	Results
	Detour path approximation on isolated test set
	Impact on complete schedule

	Conclusion
	Future work

	Search Strategy Comparison
	Background
	Evolution strategy
	Look-ahead techniques

	Existing algorithms
	Greedy constructive algorithm
	Evolutionary algorithm
	Hybrid greedy-evolutionary algorithm

	Greedy constructive algorithm with look-aheads
	Determining related project requests
	Additional look-ahead configurations
	Hyperparameter analysis for look-ahead addition

	Results
	Conclusion
	Future work

	Schedule Order Optimisation
	Motivation and background
	Motivation
	Background

	Designing order function
	Input features

	Optimising order function weights
	Optimisation strategy
	Constraint-guided mutation
	Cost-guided mutation
	Comparable sub-problem

	Results
	Hyperparameter analysis for order function weight optimisation
	Order function weight optimisation
	Applying optimised order function with different search strategies
	Comparison of weights from different sub-problems for order function

	Conclusion
	Future work

	Generalisation to Different Input Years
	Detour approximation techniques
	2023
	2025

	Search strategy comparison
	2023
	2025

	Schedule order model
	Optimising weights specifically for new year
	Performance in combination with different search strategies
	Re-using weights from 2024
	Good order for greedy algorithm for the year 2023

	Conclusion
	Future work

	Conclusion and Future Work
	Conclusion
	Answer to the main research question

	Future work

	Input properties of created sub-problems
	2024
	Additional scheduling years
	2023
	2025

	Convergence visualisation of different search strategies
	Evolutionary algorithm
	Hybrid greedy-evolutionary
	Phase 1
	Phase 2

