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Abstract

Seaport operators are becoming more environmentally conscious and are looking to electrify their ter-
minals to reduce their greenhouse gas emissions. This leads to higher energy-related costs and more
congestion on the electricity grid. This thesis investigates the potential of demand response as a viable
strategy to reduce energy-related costs. By modifying operational planning, energy consumption could
be deferred from peak to off-peak hours, resulting in cost savings. Different potential ways within the
terminal to provide demand response are identified. I propose a two-stage stochastic mixed-integer
programming model to optimize operations planning, incorporating energy-related costs. Both energy
demand and supply uncertainties are accounted for, exploring various scenarios for vessel arrival times
and fluctuating electricity prices. The model is decomposed using a progressive hedging algorithm.
Operational aspects considered in this model include vessel arrival scheduling, temperature control
of refrigerated containers, allocation of handling capacity across quay cranes, yard cranes, and au-
tomated guided vehicles, as well as a charging schedule for the automated guided vehicles. A case
study of the Altenwerder container terminal in Hamburg was conducted to test the model. Preliminary
results suggest potential cost savings in the range of 12.0-13.2 % with a varying electricity prices based
on wholesale market rates. Furthermore, it was found that stochastic modeling improved the solutions
found of up to 20.6 % compared to a deterministic model. These findings underscore the substantial
potential of demand response strategies in the context of container terminal operations.

ii



Contents

Preface i

Abstract ii

Nomenclature vii

1 Introduction 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scientific contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Potential of demand response in Container terminals 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Demand Response programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Dutch electricity markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Demand Response in container terminals . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Energy management systems in container terminals . . . . . . . . . . . . . . . . 8
2.2.2 Peak shaving in container terminals . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Vehicle-to-grid charging in container terminals . . . . . . . . . . . . . . . . . . . 10

2.3 Flexibility Potential for Demand Response . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Identifying Major Energy Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Consumption Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Demand response programs in container terminals . . . . . . . . . . . . . . . . . . . . . 17
2.5 Conclusion potential of demand response . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Problem description 20
3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Solution approach 29
4.1 Uncertainty modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Stochastic decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Scenario generation and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Experiments & Results 35
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 CTA Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Evaluation of stochastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.5 Evaluation of Demand Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.6 Evaluation of On-shore power supply . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Stochastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Demand response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



Contents iv

5.2.4 Price sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.5 On-shore power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Discussion 52
6.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Stochastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.3 Demand response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.4 Price Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.5 On-shore Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Recomendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 57

References 59

A Research paper 65

B Method literature review 101
B.1 Search method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.2 Classification of literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C Graphs 103



List of Figures

2.1 Electric Power System and Demand Response implementation timescales [65] . . . . . 7
2.2 Electricity consumption of Quay Crane in a typical day [67] . . . . . . . . . . . . . . . . 13
2.3 Electricity consumption of Yard Crane in a typical day [67] . . . . . . . . . . . . . . . . . 14
2.4 Electricity consumption of Reefer in a typical day [67] . . . . . . . . . . . . . . . . . . . 15
2.5 Electricity consumption of Lighting in a typical day [67] . . . . . . . . . . . . . . . . . . . 15
2.6 Electricity consumption of Buildings in a typical day [67] . . . . . . . . . . . . . . . . . . 16
2.7 Electricity consumption of the entire port in a typical day [67] . . . . . . . . . . . . . . . 17

3.1 Planning problems in container terminals [3] . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Operational problems, Energy loads and Information and Energy flows within the terminal 22
3.3 Decision timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Sequential planning of seaside operations [3] . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 An overview of optimization methods under uncertainty [56] . . . . . . . . . . . . . . . . 31
4.3 Scenario generation approaches for energy price . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Clusters of daily electricity prices in 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Layout of container terminal altenwerder in Hamburg [24] . . . . . . . . . . . . . . . . . 37
5.2 Ship schedule and hourly energy consumption for different pricing strategies . . . . . . 45
5.3 Average energy demand with No pricing and Real-time pricing . . . . . . . . . . . . . . 47
5.4 Comparison No pricing and Real-time pricing for different variables . . . . . . . . . . . 48
5.5 Historical electricity prices for the day-ahead market in the Netherlands . . . . . . . . . 49
5.6 Energy demand with the introduction of on-shore power supply . . . . . . . . . . . . . . 51

v



List of Tables

1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 EMS in container terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Peak shaving in container terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 V2G charging in container terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Seaport activities and loads variation [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Methods to control the energy consumption with a container terminal . . . . . . . . . . . 19

3.1 Planning problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Sets, Parameters, and Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Technical data of Container Terminal Altenwerder [24] . . . . . . . . . . . . . . . . . . . 38
5.2 Parameters of terminal machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Ship parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Reefer container parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 AGV charging parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Validation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7 Cost comparison between EV and SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Influence of stochastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 Comparison of different pricing strategies with 2022 prices . . . . . . . . . . . . . . . . . 46
5.10 Pearson Correlation Coefficient (r) for Different Pricing Strategies . . . . . . . . . . . . . 47
5.11 Peak to Average Ratio (PAR) for Different Pricing Strategies . . . . . . . . . . . . . . . . 47
5.12 Flexibility coefficient (FC) for different variables . . . . . . . . . . . . . . . . . . . . . . . 48
5.13 Comparison of different pricing strategies with 2019 prices . . . . . . . . . . . . . . . . . 50
5.14 Average cost per year between 2016-2022 with Real-time prices . . . . . . . . . . . . . 50

B.1 search query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

vi



Nomenclature

Abbreviations

Abbreviation Definition

AGV Automated Guided Vehicle
BACAP Berth Allocation and Quay Crane Assignment Problem
BAP Berth Allocation Problem
BRP Balancing Responsible Party
CPP Critical Peak Pricing
CP Constant Price
CTA Container Terminal Altenwerder
DLC Direct Load Control
DR Demand Response
DSM Demand Side Management
EEV Expectation of Expected Value Problem
EMS Energy Management System
ESS Energy Storage System
EV Electric Vehicle
EVPI Expected Value of Perfect Information
HHLA Hamburger Hafen- und Lagerhaus-Aktiengesellschaft
KPI Key Performance Indicator
MAS Multi Agent System
MIP Mixed Integer Programming
NP No Price
OPS On-shore Power Supply
QC Quay Crane
QCAP Quay Crane Assignment Problem
QCSP Quay Crane Scheduling Problem
RTP Real-Time Price
SP Stochastic Problem
TEU Twenty-foot Equivalent Unit
TOU Time-Of-Use
TOS Terminal Operation System
TSO Transmission System Operator
V2G Vehicle to Grid Charging
VSS Value of Stochastic Solution
WS Wait-and-See Problem
YC Yard Crane

Symbols

Notation Description
Sets
V Set of vessels to be served, i ∈ 1, 2, . . . , N , where N is the

number of vessels to be served, 10.
T Set of time periods (1 hour), t ∈ 0, 1, . . . , H − 1, where H is

48 hours.
Continued on next page

vii



List of Tables viii

Table 1 – continued from previous page
Pi Handling rate that can be assigned to a ship i ∈ V , where p is

the mininum of up,m ∗ hm .
M Types of machinery present in the terminal m ∈

QC, Y C,AGV .
S Set of scenarios w ∈ S.
Parameters
km Amount of machinery m ∈M available .
hm Handling rate of machinery m in containers per hour .
di,w The total demand of containers to be handled (loaded + un-

loaded) for ship i ∈ V in scenario w ∈ S.
up,m The amount of machinery of type m used in pattern p

lshipi The quay length that ship i takes up.
ltotal The total length of the quay.
eati Expected arrival time of vessel i ∈ V .
efti Expected berthing finishing time of vessel i ∈ V .
ai,w Actual arrival time of vessel i ∈ V in scenario w ∈ S.
eship energy consumption for one hour of a ship using on shore

power supply .
emachinery
m Energy consumption of machinery m for operating for one

hour
echarge Energy consumed by one charger.
echarge,max Maximum Energy consumed by all chargers.
bmin Minimum AGV battery level.
bmax Maximum AGV battery level.
ηcharge Charging efficiency.
ereefer Energy consumption of one reefer connection
ereefer,max Maximum energy consumption of all reefer connection
tcmin Minimum reefer temperature.
tcmax Maximum reefer temperature.
ηreefer Cooling efficiency.
ta Ambient temperature
mcp Specific heat capacity of a reefer.
ua Heat transfer coefficient of a reefer.
cdat,w Day electricity price at time t in scenario w ∈ S.
clatei Penalty cost of exceeding the expected finishing time (EFT)

for vessel i ∈ V for one hour.
creschedulei cost of changing the initial schedule by one hour.
csur cost of having a surplus of energy.
cshor cost of having a shortage of energy.
M A large positive number.
ρw Probability of scenario w occurring (1/S).
Decision variables
SDA
i ∈ Z+ Scheduled berthing start time of vessel i ∈ V

Si,w ∈ Z+ Berthing start time of vessel i ∈ V in scenario w ∈ S

Searly
i,w ∈ Z+ Time the vessel i ∈ V arrives ahead of schedule in scenario

w ∈ S
Slate
i,w ∈ Z+ Time the vessel i ∈ V arrives behind schedule in scenario

w ∈ S
FDA
i ∈ Z+ Scheduled berthing end time (time when handling ends) of

vessel i ∈ V
Fi,w ∈ Z+ Berthing end time (time when handling ends) of vessel i ∈ V

in scenario w ∈ S
Li,w ∈ Z+ Lateness of operations for ship i ∈ V in scenario w ∈ S

Continued on next page



List of Tables ix

Table 1 – continued from previous page
Ai,t,w ∈ B 1 if vessel i ∈ V is assigned at to a berth in period t in scenario

w ∈ S, 0 otherwise
Hi,p,t,w ∈ B 1 if handling rate p is assigned to serve vessel i ∈ V at time

period t in scenario w ∈ S, 0 otherwise
Blevel

t,w ∈ R+ Battery level at time t in scenario w ∈ S

TCtemperature
t,w ∈ R Reefer temperature at time t in scenario w ∈ S

Echarge
t,w ∈ R+ Energy consumed to charge AGVs at time t in scenario w ∈ S

Ereefer
t,w ∈ R Energy consumed to cool the reefers at time t in scenario w S

Pt,w R+ Power used from the utility grid at time t in scenario w S
P da
t R+ Power purchased at the day ahead market at time t

P sur
t R+ Power surplus at time t

P shor
t R+ Power shortage at time t

IMstate
t B Imbalance state, 1 if there is a surplus and 0 if there is a deficit



1
Introduction

Climate change has become an urgent global challenge, necessitating significant reductions in green-
house gas (GHG) emissions across all industries and sectors. To address the challenge of climate
change and reduce our reliance on fossil fuels, a global energy transition is necessary. This transition
will affect every industry and present a host of technological and logistical challenges.

Seaports operators have put greater focus on reducing energy cost and environmental friendly oper-
ations due to economic and environmental considerations. The share of the shipping industry in the
emissions was 2.89 percent in 2018 [31]. The ESPO periodically publishes a list with the environmental
priorities of the European port sector. In 2004 the topic of energy consumption was not in the top ten,
while by 2013 it had become the third highest priority [77]. In recent years infrastructure within the port
is electrified to reduce energy cost and GHG emissions [59]. In order to make up for the energy gap left
by diesel engines, port operations will need to increase their electricity consumption as a result of the
port electrification process [59]. To reduce the energy cost it is essential for port operators to manage
their electricity consumption.

Grid operators are facing a challenge to provide electricity to everyone due to the integration of large
amounts of renewable energy in the grid. Renewable energy from solar and wind is depend on the
weather and can vary widely throughout the day. The necessity to maintain the balance between load
and generation at all timescales creates technical issues when more uncertain generation from variable
renewable energy sources (VRES) is introduced into the grid [47].

An option to deal with the uncertainty of VRES is to mange the demand of electricity to match the gen-
eration [47]. Demand side management is the ability for end-use customers to change their normal
consumption patterns in response to an incentive to induce less consumption at times of high whole-
sale market prices or when system reliability is at risk [35].

Seaports could potentially save electricity cost by implementing demand side management strategies.
The logistic process within the port are highly dynamical, resulting in a complex planning of operations.
The energy consumption that varies widely throughout a day, depending on the planning [2]. By consid-
ering electricity prices when determining planning, container terminals can identify different operational
schedules that are more cost-effective. This means that by changing their scheduling, container termi-
nals can potentially reduce their costs while helping the grid operator mange the grid.

In this thesis the potential of demand side management in ports will be investigated. First, in section
1.1 the scope of the thesis will be set. Second, in section 1.2 the research gabs that this thesis will
fill are identified. Third, the research questions and objective are formulated in section 1.3. Finally the
structure of the report is presented in 1.4.

1



1.1. Scope 2

1.1. Scope
The aim of this study is to find the potential of demand response programs within a container terminal.
The processes with seaports are complex, making demand response also a complex issue.

The scope of this study is limited to only consider a container terminal within a port. A more in depth
analysis of the energy consumption within the container terminal is performed than would not be pos-
sible if the entire port was considered. While conducting a literature review on demand response in
container terminals the most prominent electrical loads that could provide demand response were iden-
tified. Only these loads were considered when optimizing the operational planning.

On-site (renewable) generation and large scale battery storage are considered out of scope for this
research. Both methods could provide demand response in the terminal. The potential of batteries
and wind turbines or solar panels in a container terminal is consider by various authors researching
port micro grids and energy managements systems (EMS). Roy et al. have provided an overview of
microgrids in seaport in their literature review [58]. Often the potential of providing demand response by
changing operational schedule is ignored or insufficiently investigated. It has therefore been decided
to focus on the operational flexibility in this thesis and consider common elements of microgrids / EMS
such as battery storage and onsite wind and solar generation out of scope.

The scope is further narrowed down by not considering all forms of demand side management, only
demand response. As stated fore demand side management is the ability for end-use customers to
change their normal consumption patterns in response to an incentive. Two types of demand side man-
agement can be identified; Energy Efficiency (EE) and Demand Response (DR) [35]. Energy efficiency
refers to decreasing the overall demand by implementing energy saving measures. Demand response
refers to the ability of consumers to shift their electricity usage [35]. Measures to reduce the overall
energy consumption are considered out of scope in this thesis.

The scope of this thesis does not include the physical electrical systems involved in the demand re-
sponse program of a container terminal. It should be noted that in order to implement a demand
response program in a container terminal, certain changes to the existing electrical infrastructure may
be required, such as the installation of measuring devices. For this thesis we will focus on control-
ling the active power. Reactive power regulation, voltage regulation and frequency regulation are not
considered in this thesis.

1.2. Scientific contribution
This thesis is not the first to investigate the energy consumption in Ports. In a review paper by Iris
and Lam different strategies to increase the energy efficiency in ports are presented [32]. Demand
response is a widely applied concept in many industries, and therefore also the maritime industry. A
literature review was conducted to find what the existing state of research is for demand response pro-
grams within container terminals. From the literature review research gabs were identified.

This thesis makes the following 3 contributions to the implementation of DR programs in container ter-
minals:

First, an overview is provided of the potential for DR in container terminals by identifying the factors
that drive energy consumption in large electric loads and assessing the feasibility of controlling that
consumption. While conduction the literature review no such overview was found. In a review paper by
Baker et al. a overview of large electric loads with some factors that could influence their consumption
was given [2]. It was however missing what factors influence the consumption the most, over what time
periods the consumption happens, and whether the loads are critical, curtail-able or reschedule-able.
To be able to find whether a load has the potential for demand response such factors are important.

Second, this study is the first to consider the impact of DR on an entire container terminal solely in the
context of operational flexibility. Previous studies have focused on the flexibility of individual loads [11]
[7] [40] [61]. Alternatively studies focus on entire terminal mostly providing demand response with bat-
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teries and on-site generation [33] [36]. Most researchers keep the energy flows simple, and therefore
do not take into consideration the potential operating flexibility of transportation scheduling, which is
key for energy management [50]. Providing DR using the operational flexibility requires less investment
compared to on-site generation and battery packs and can be implemented quicker. It is therefore in-
teresting to see what would be the potential of providing DR with solely the operational flexibility to see
if some quick and easy gains can be made.

Third, uncertainty is considered in electricity demand and supply. The daily processes in a container
terminal are highly dynamical and depended on the number of ships and container to be handled [15].
This makes the forecast of the electricity demand complicated and introduces a lot of uncertainty [15].
Additionally, as stated in the introduction, introducing more variable renewable energy sources like
wind and solar into the grid makes the supply of electricity uncertain. Most existing literature does not
take this uncertainty into account when optimizing the energy consumption. Some studies on energy
consumption took into account uncertainty of supply or demand. Only Iris and Lam considered un-
certainty to a limited extend in [33]. Here the authors assumed a uncertain production in the on-site
solar generation. However all operations within the terminal were still considered deterministic. Mao et.
al. recommend to do conduct more multiscenario seaport energy management studies to analyze the
social benefits of optimal scheduling and flexible berth allocation while accounting for different types
of uncertainties such as vessel arrival, electricity price, and fuel cost [50]. It can be concluded that
considering uncertainty in both supply and demand is needed to accurately estimate the potential of
demand response in a container terminal.

Overall, this thesis provides valuable insights into the potential of DR programs in container terminals
and attempts to quantify the potential by looking and the cost savings that can be achieved.

1.3. Research question
This section outlines the primary research question and its related sub-questions. For each sub-
question, a brief explanation is provided on how to address them and the expected results.

Primary Research Question:

What is the potential of demand response for reducing the energy and operational costs of a
container terminal?

Sub-Questions:

1. What demand flexibility exists in a container terminal?

Literature identifies the primary sources of electricity consumption within a container ter-
minal. For these sources, the factors that most significantly influence consumption were
investigated. Based on this, a consumption pattern throughout a day was estimated for ev-
ery load. Different ways to adjust this consumption were researched to ultimately estimate
the potential for flexibility.

2. Which demand response programs would be suitable for a container terminal to participate in?

Different demand response programs, their characteristics, and operating timescales were
identified from the literature. A connection was then made with the demand flexibility found
in the first question to identify potential energy markets.

3. How can the energy consumption of terminal operations be modeled and analyzed, given uncer-
tain electricity demand and supply?

The main sources causing uncertainty in electricity demand and supply were identified. Var-
ious methods for creating an optimization model with uncertainty were outlined. The appro-
priate method was chosen based on the characteristics of the container terminal and the
electricity markets. Scenarios representing the uncertainty were created based on these
uncertain parameters.
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4. What is the impact of demand response in a container terminal on peak energy consumption and
energy consumption throughout the day?

The effects of demand response were identified by comparing the operational planning with-
out considering electricity prices to a situation where a constant price and real-time prices
based on wholesale market are considered. The correlation coefficient between electric-
ity consumption and price, as well as the peak-to-average ratio of energy demand, were
compared in both situations.

5. How do different electricity prices influence the potential for demand response?

The potential for demand response was calculated with electricity prices from different years
to evaluate the price’s influence.

1.4. Thesis outline
In this section, the structure of the thesis is explained, providing an overview of each chapter and its
content.

Chapter 2 focuses on investigating the potential of demand response in a container terminal. Firstly,
it explores the equipment that contributes to the electricity consumption of a container terminal. Sec-
ondly, it identifies the factors influencing the consumption and controllability of electricity usage. Finally,
it highlights promising demand response programs that can be implemented.

Chapter 3 presents the optimization model developed in this thesis, outlining the assumptions made in
the model and providing a detailed explanation of the mathematical formulation used.

Chapter 4 describes the methodology employed in this thesis. It compares different modeling ap-
proaches for dealing with uncertainty and justifies the selection of stochastic programming as the pre-
ferred modeling approach.

Chapter 5 presents the results obtained from the model. It begins with the validation of the model, fol-
lowed by a case study conducted on the HHLA Container Terminal Altenwerder. Various experiments
are then performed to analyze the impact of demand response on the container terminal.

Chapter 6 discusses the results in detail. It interprets the findings, addresses the limitations of the
research, and provides recommendations for future studies.

Chapter 7 concludes the thesis, summarizing the key findings and contributions made.

Table 1.1 provides an overview of all the chapters and specifies the research questions addressed in
each chapter, highlighting the alignment between research questions and chapters.

Chapter Title Research Questions
1 Introduction -
2 Potential of demand response 1,2
3 Problem description -
4 Solution approach 3
5 Experiments & Results 4,5
6 Discussion 4,5
7 Conclusions -

Table 1.1: Thesis Structure



2
Potential of demand response in

Container terminals

in this chapter we will discuss the potential of demand response (DR) in a container terminal. Firstly, it
will be explained what demand response is and how the electricity markets in the netherlands work in
section 2.1. In section 2.2, an overview of existing literature on DSM in container terminals is presented.
A breakdown of which sources contribute to the energy consumption and the flexibility potential of the
main sources is stated in section 2.3 . In section 2.4 it is explained how the flexible loads can be used
for demand response. Finally conclusions are drawn in section 2.5.

2.1. Background
Electricity is a highly perishable good, because it needs to be consumed the moment it is produced.
At any time the amount of electricity produced has to be equal to the amount consumed, otherwise
the grid frequency will deviate from the nominal 50 Hz. The keep the balance either the demand to
electricity or the supply of electricity has to adjusted. Demand response is a way to adjust the demand
for electricity to be able prevent/restore system imbalances.

In section 2.1.1 an overview will be given on the different demand response programs that exist. Dif-
ferent markets exist on which electricity can be bought or sold. An explanation of the dutch electricity
markets will be given in section 2.1.2.

2.1.1. Demand Response programs
Demand response, or demand-side flexibility, refers to consumers’ ability to adjust their electricity us-
age from their planned consumption. Electricity prices fluctuate significantly throughout the day, week,
and year due to the uncertainty of the amount of electricity produced and consumed. With demand
response, it is possible for consumers to reduce their electricity costs by shifting their consumption
from times with high prices to times with low prices. Simultaneously, they aid in balancing supply and
demand and reducing peak loads on the electricity grid.

Two types of demand response programs exist: price-based programs and incentive-based programs.
These can be further divided into different types of demand response strategies as detailed below [53]
[1] [35] [17]. Incentive-based programs can be further split into direct load control, interruptible/cur-
tailable rates, Emergency Demand Response programs, Demand bidding/buyback, Capacity market
programs, and Ancillary services. Time-based programs can be divided into Time-of-use rates, Critical
peak pricing, and Real-time pricing.

Incentive-based demand response programs reward consumers for altering their consumption upon
request [66]. These programs help maintain reliable system operations [66]. Based on papers from
Albadi and El-Saadany (2007), Han and Piette (2008), and Jordehi (2019), descriptions are formulated
for each of the demand response programs [1] [17] [35].

5
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Direct load control (DLC) allows the utility grid operator to remotely shut down customers’ loads on
short notice. DLC programs are typically implemented for residential and small commercial cus-
tomers.

Interruptible/curtailable rates offer customers a discount on their electricity rate if they agree to re-
duce load during contingencies. Customers are penalized if they do not comply.

Emergency Demand Response is a program similar to the one described above, where customers
get paid to reduce their load during contingencies. The difference, however, is that curtailing
loads is voluntary.

Demand bidding/buyback is a demand response program where large customers offer load reduc-
tions in the wholesale market based on their willingness to curtail their operations. These pro-
grams are typically called on a day ahead based on demand predictions.

Capacity market programs allow consumers to commit to a pre-specified load reduction in case the
system is overloaded. Consumers usually receive a one-day advance notice. Even if the system
is not overloaded, consumers still get paid. If a contingency occurs and customers do not reduce
their load, they are penalized.

Ancillary services are services that a consumer can deliver to the grid operator to balance the grid. An
auction is held one day ahead, during which consumers can offer reserve capacity. If their bid is
accepted, they get paid and must stand by to deliver balancing services. Additionally, consumers
are paid based on the load reduction that is requested by the grid operator.

In price-based demand response (DR) programs, consumers pay a time-varying electricity rate [66].
This provides a price incentive for them to shift consumption away from times with high prices [66]. With
price-based incentives, consumers respond based on their willingness and capability [66]. Descriptions
of each of the DR programs are formulated based on papers from Albadi and El-Saadany (2007), Han
and Piette (2008), and Jordehi (2019) [1] [17] [35].

Time-of-use rates (TOU) are based on historical pricing experience, with electricity rates set high dur-
ing times of high demand and low during off-peak times. TOU is the oldest and most used DR
program. TOU rates may vary based on daily or seasonal cycles.

Critical peak pricing (CPP) is a program in which consumers are charged high electricity rates during
critical peaks. This typically happens a few times a year.

Real-time pricing (RTP) charges the wholesale market electricity price directly to customers. To allow
consumers the opportunity to plan their demand, RTP signals can be given from one hour up to
one day in advance.

Not all loads are suitable for demand response. Generally, three types of loads exist [60]. First, crit-
ical loads are those that must be met at all times. Second, curtailable loads are those that can be
temporarily switched off or lowered. Lastly, reschedulable loads can be shifted in time. Among these,
curtailable and reschedulable loads can participate in demand response, while critical loads cannot
[60]. An overview of all the DR programs along with the timescale at which they operate can be found
in Figure 2.1.

2.1.2. Dutch electricity markets
To facilitate the trade of electricity production and consumption several markets exist. Each markets
has different characteristics, and therefore different requirements for demand response.

There are two types of markets of interest for this thesis, the wholesale and balancing market. All con-
sumers and producers need to purchase their electricity consumption and production on the wholesale
market for specific time slots. In case an actor didn’t produce/consume as much as contracted a imbal-
ance occurs. Additional reserved electricity from balancing market is used to restore this imbalance,
The actor causing the imbalance has to pay for the additional electricity based on the imbalance price.
The balancing market is operated by the Transmission System Operator (TSO) of each country. In the
Netherlands the TSO is Tennet [68]. To be allowed to trade on the wholesale market an actor needs to
be either a Balance Responsible Party (BRP) or have a external BRP balance on their behalf [70]. The
wholesale market in the Netherlands consists out of the forward and futures market, the day-ahead
market and the intraday market [70]. Below a description is given of the different types of markets
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Figure 2.1: Electric Power System and Demand Response implementation timescales [65]

based on information provided by Tennet [71][68]. An overview of all the electricity markets is shown
in figure 2.1.

Forward and future market On this market long term agreements between producers and consumers
are made. Any time between four year and onemonth before delivery the electricity can be traded.
The time over which a contract can last differs per contract. The Forward and futures market is
used to protect producers and consumers from the volatility of the prices of the Day-ahead and
Intraday market.

Day-ahead market In the day ahead markets electricity is purchased and sold for the next day. Every
day at 12:00 an auction is held. During the auction electricity bids are made for every hour of the
next day. All the bid to consume and produce energy and ranked the clearing price comes about
if the marginal bid to produce electricity is equal to the bid to consume. All bids lower then the
clearing price are automatically accepted for the clearing price as well.

Intraday market After the Day-ahead market closes the Intraday market opens. If actors on the Day-
ahead market didn’t estimate their power consumption/ production correctly they can buy or sell
extra capacity on this market. In the Intraday market it is possible to trade electricity in 15 minute
time slots. all bids need to be made at least 5 minutes before the power is scheduled to be
consumed. A pay-as-bid principle is present on the Intraday market were individual producers
and consumers make a deal between the two of them. This means that there is not a single
electricity price on the Intraday market but instead it is a range.

Balancing market Balacing in the Netherlands is done re-actively based on disturbances. In the
Netherlands the main there products for balancing that are offered are; Frequency Contain-
ment Reserve (FCR), automatic Frequency Restoration Reserve (aFRR) and manual Frequency
Restoration Reserve (mFRR). Each product different minimum bid sizes, activation duration and
ramp up/down rates.

To be keep the electricity grid stable and operating several so called Ancillary services are needed.
Tennet lists 5 ancillary services in the netherlands; Balancing reserves (the traded capacity on the
balancing market), Reactive power, Redispatch, Black start facility and Guarantees of Origin [69].
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2.2. Demand Response in container terminals
The daily operations in a container terminal are dynamic, resulting in quickly changing electricity de-
mand. If this demand can be managed, a beneficial electricity consumption pattern can be achieved.
A literature review was conducted to find the current state of research into Demand Response (DR)
within container terminals. Three fields of research were identified: energy management systems,
peak shaving, and vehicle-to-grid charging within container terminals.

2.2.1. Energy management systems in container terminals
A field of research was found for the integration of energy management systems (EMS) in container
terminals. EMSs are defined as automated systems that collect data on energy measurements and
make it available to operators, thus enabling the management of energy resources [64]. An EMS con-
sists of energy demand planning, energy supply planning, and a system linking demand and supply
[32]. Demand response is therefore an important aspect of an EMS since it dictates the planning of
demand. For the supply side of the EMS, often distributed energy resources, like wind turbines and PV
panels, are used in combination with a grid connection. The term EMS is sometimes used to refer to
the supervisory controller of a microgrid, and both terms are often used interchangeably [51]. Below,
the main literature on EMSs in container terminals is discussed, and the important conclusions are
mentioned.

Iris and Lam (2021) discussed an EMS in a seaport considering the uncertainty of renewable energy
generation [33]. This EMS consists of the energy consumption of on-shore power supply (OPS) for
berthed ships, quay cranes (QC), yard cranes (YC), and refrigerated containers (reefers). Iris and Lam
used a Mixed Integer Programming (MIP) model to solve the integrated operations planning and energy
management problem. The objective of the model was to minimize the cost related to the purchasing
of electricity as well as the lateness cost related to ships departing the terminal later than scheduled.
Iris and Lam compared different energy pricing strategies. The strategies used were based on a con-
stant electricity price, a time of use price, and a real-time pricing scheme where day-ahead wholesale
market energy prices are directly used. The authors found that the costs of the market pricing scheme
are 18.5-21 percent lower compared to a constant electricity price. This shows that significant cost
savings can be achieved with an EMS.

Pu et al. (2020) investigated EMS in ports in general [55]. Their study considered an integrated energy
system with electricity, heat, and cooling demand. Various installations such as a combined cooling,
heating, and power plant, electric coolers/boilers, and heat exchangers were used to link the different
energy flows to each other. A MIP model was used to optimize the energy demand. Pu et al. cat-
egorized all the loads in the container terminal into fixed, reducible, and shiftable loads. Fixed loads
consist of port machinery and lighting, reducible loads are reefers and continuous operation loads, and
shiftable loads include OPS for ships, QC , YC, other lifting machinery, electric tractors, electric vehi-
cles (EVs), and so on. They found a cost reduction between 5 and 19 percent if demand response is
done with a time-of-use pricing scheme.

In a similar vein, Mao et al. (2022) conducted a study on EMS in ports, also taking into consideration
an integrated energy system with electricity, heat, and cooling demand [50]. Their research consid-
ered the power supply to container and cruise ships specifically. The container ships had an additional
cooling demand due to the reefers onboard, and the cruise ships had an additional heating demand.
Mao et al. compared a constant electricity price with a dynamic price based on the real-time day-ahead
energy price. Their findings revealed that the yearly costs are 5-6 percent lower when using a dynamic
pricing scheme.

Another author suggesting EMS in container terminals is Kanellos (2017-2019) [37] [38] [36] [12]. Kanel-
los investigates multi agent systems with decentralized demand response with flexible loads and power
generation from renewable energy. Different agents represent different loads within the terminal. The
loads considered are reefer containers, EVs that is Automated Guided Vehicles (AGVs) and OPS for
berthed ships [38]. Furthermore Kanellos designed a real time controller for reefers and EVs to react to
fast power fluctuations of wind turbines [37]. In the same paper it was found that the proposed system
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Source Method Energy Load
Gennitsaris and Kanellos
. (2019) [12]

Multi-Agent Systems Reefer, OPS

Iris and Lam (2021) [33] Two stage stochastic .
Mixed Integer Programming

OPS, QC, YC,
Reefer

Kanellos (2019) [36] Multi-Agent Systems Reefer, OPS, EV
Kanellos (2017) [37] Multi-Agent Systems Reefer, EV
Kanellos et al. (2019) [38] Multi-Agent Systems Reefer, EV, OPS
Mao et al. (2022) [50] Mixed Integer Programming OPS, heating / cool-

ing demand
Pei et al. (2021) [54] Two stage hierarchical controller Reefer
Pu et al. (2020) [55] Mixed Integer Programming Port, heating / cool-

ing demand
Wang et al. (2019) [75] Two stage stochastic simulation OPS, QC, YC

Table 2.1: EMS in container terminals

was very efficient in providing ancillary services to the electricity grid.

In the paper from Wang et al. (2019) a two stage optimization is proposed to optimize the energy con-
sumption and generation of a container terminal [75]. In the first stage the installed capacity of wind
turbines, energy storage systems and on-shore power supply are determined. In the second stage
stochastics of wind generation and loads are considered. In the end the goal is to minimize the opera-
tion cost.

Pei et al. (2021) also propose a multi stage EMS, similar to Wang [54]. Pei et al. attempt to manage
the energy demand from a reefer container park. In the first stage day-ahead electricity prices are con-
sidered and in the second stage intraday price. Finally, a emergency control unit is present to make
sure that the temperature of the reefers is always within the bounds. Time of use critical peak pricing
schemes are used for the electricity supply. The proposed energy management system reduces the
overall operating cost by about 14.7-18 percent.

Table 2 provides a comprehensive overview of research conducted on energy management systems
within container terminals. The table highlights the methods employed and the energy loads consid-
ered in these studies. The commonly utilized methods include Multi-Agent Systems (MAS) and Mixed
Integer Programming (MIP). Among the various energy loads proposed in energy management sys-
tems, Reefers, Quay Cranes (QCs), Yard Cranes (YCs), Electric Vehicles (EVs), and On-shore Power
Supply (OPS) are frequently addressed.

In conclusion, The findings suggest that implementing demand-side management through an energy
management system in container terminals can lead to a significant reduction in operating costs. By
effectively managing and optimizing energy consumption, container terminals can enhance their cost
efficiency and sustainability. The research highlights the potential benefits of deploying energy manage-
ment systems in container terminals, with demand-side management playing a vital role in achieving
substantial cost reductions.

2.2.2. Peak shaving in container terminals
Peak shaving refers to operational strategies aimed at reducing peak energy consumption in ports [32].
High energy demand peaks are undesirable as they increase the risk of power system failure and inflate
supply costs, due to the necessity of occasionally activating expensive generators [72]. The electricity
bill for ports and other consumers comprises a variable portion that depends on the peak power con-
sumption for the year [32]. For ports, this consumption accounts for 25-30 percent of the monthly bill
[11]. The three major strategies for peak load shaving are Demand Response (DR), Energy Storage
Systems (ESS), and the integration of electric vehicles into the grid as mobile energy storage [72]. Two
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Source Method Energy Load
Geerlings et al. (2018) [11] Discrete event simulation QC
Kermani et al. (2018) [41] Particle swarm optimization QC
Kermani et al. (2018) [42] Particle swarm optimization QC
Kermani et al. (2019) [40] Particle swarm optimization QC
Kermani et al. (2022) [43] Economic evaluation QC, YC, OPS,

AGV, SC & Reefer
Van Duin et al. (2018) [7] Discrete event simulation Reefer

Table 2.2: Peak shaving in container terminals

opportunities to perform peak shaving in a container terminal using DR are discussed below.

Kermani et al. (2018) explore the potential to apply DR for peak shaving of Quay Cranes (QCs) using
particle swarm optimization [41]. They reduced the peak load by coordinating the duty cycles of differ-
ent cranes to prevent simultaneous lifting. This delay in duty cycle led to a peak load reduction of 17.7
percent. In subsequent research, Kermani incorporated a Flywheel ESS or ultracapacitor and a Hybrid
ESS to further decrease the peak load [42] [40].

Geerlings et al. (2018) also examined operational strategies to reduce the peak load of quay cranes,
similar to Kermani [11]. They proposed two rules of operation: limiting the number of lifting cranes
and capping the maximal energy demand. They observed a reduction in peak energy demand of 38
percent for the former strategy and 50 percent for the latter, while the handling time increased by less
than half a minute per hour.

In a study by van Duin et al. (2018), peak shaving is investigated in the context of reefer stacks [7].
They examined two operational strategies: intermittent power distribution among reefer racks and re-
striction of peak power consumption. The first strategy showed a significant reduction in peak energy,
up to 80 percent.

Table 3 provides an overview of the research conducted on peak shaving. The most commonly consid-
ered loads for peak shaving are reefers and quay cranes. The methods used for peak shaving include
particle swarm optimization and discrete event simulation.

In conclusion, peak loads contribute significantly to the energy-related costs of a container terminal.
Substantial reductions in peak consumption can be achieved by preventing individual quay cranes
or reefer containers from consuming energy simultaneously. By implementing effective peak shav-
ing strategies, container terminals can effectively manage their energy consumption and reduce costs
associated with peak demand.

2.2.3. Vehicle-to-grid charging in container terminals
Another research community focused on demand-side management within container terminals is the
Vehicle-to-grid (V2G) charging community. V2G refers to the use of batteries in electric vehicles to pro-
vide services to the grid. V2G charging offers various services to the grid operator, such as regulation
of active and reactive power, load balancing, peak load shaving, and current harmonics filtering [16].
Electric vehicles hold substantial potential for Demand Response (DR) [52]. Several papers were found
utilizing V2G charging with a fleet of Battery Electric Automated Guided Vehicles (B-AGV) to provide
DR in a container terminal.

Schmidt et al. (2015) proposed six potential business cases for using V2G to save costs for the termi-
nal operator [61]. The first two cases involve modifying the company’s load curve to reduce the grid
fees dependent on peak loads, a strategy known as peak shaving. The third business case employs
the batteries in AGVs to balance other loads due to uncertainties within the terminal. The fourth case
controls the charging process based on the variable electricity prices throughout the day. This control
aims to charge the batteries during times of low electricity prices. The last two business cases involve
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Source Method Energy Load
Schmidt et al. (2015) [61] Economical evaluation DRmeth-

ods
AGV

Schmidt et al. (2014) [62] Economical evaluation .
charging strategies

AGV

Ihle et al. (2016) [30] Logistic simulation + .
Energy optimization

AGV

Kolenc et al. (2019) [45] Experimental setup AGV
Holly et al. (2020) [29] Review ongoing work AGV
Harnischmacher et al.
. (2023) [18]

Rain flow counting analysis AGV

Table 2.3: V2G charging in container terminals

providing ancillary services to the grid operator, where the batteries are used to balance the electricity
grid in real-time based on the grid operator’s needs. Schmidt et al. identified charging during tines
of low electricity prices and peak shaving as the most promising and easiest to implement. Moreover,
they found that peak shaving with AGVs can reduce the annual grid fees by up to 80 percent.

Several papers on the implementation of V2G charging at the Container Terminal Altenwerder (CTA) in
Hamburg were found [30] [45] [29] [18]. Ihle et al. (2016) reported that the charging cost of B-AGV can
be lowered by 10 percent with V2G [30]. Kolenc et al. (2019) investigated a communication protocol
between a virtual power plant and an AGV to reliably provide ancillary services to the grid [45]. They
found that ramping and latency could be potential issues for AGVs providing V2G services. Holly et
al. (2020) reviewed ongoing work and proposed a method to manage the uncertainty and variability
of AGV scheduling logistics while maintaining high reliability for ancillary services like frequency con-
tainment reserve [29]. Harnischmacher et al. (2023) found that AGVs are only operational between
12 and 13 hours per day [18]. Therefore, they proposed a secondary use for the AGV fleet, providing
ancillary services to the grid for additional profit during the AGVs’ downtime. Harnischmacher et al.
demonstrated that V2G services with AGVs are both economically and ecologically feasible.

Table 4 provides an overview of V2G charging with AGVs. Due to different research objectives, the
presented methods vary widely. The table highlights the methods employed and the energy loads con-
sidered in these studies. All research on V2G charging in container terminals only considers AGVs.

In conclusion, vehicle-to-grid charging with AGVs can be utilized for demand response in container
terminals in several ways. Promising implementations include charging the batteries during off-peak
hours to provide demand response and performing peak shaving for other loads within the terminal.
Additionally, the CTA terminal is working on using AGVs to provide ancillary services to the grid operator.

2.3. Flexibility Potential for Demand Response
The presence of flexible loads is key for effective Demand Response (DR) [38]. In addition to flexibility,
the cycle time of the load is also of interest. This can provide an indication over which time period a load
can be shifted. Section 2.3.1 first identifies the most relevant loads for DR. The subsequent section
2.3.2 discusses the flexibility for each load.

2.3.1. Identifying Major Energy Loads
Only a limited number of container terminals track their energy consumption [76]. Tracking loads is im-
portant because, without it, effective measures to increase energy efficiency cannot be taken [76]. The
distribution of loads can vary significantly from terminal to terminal [76]. When investigating electricity
consumption, it’s important to consider whether certain equipment runs on electricity or fuel.

In a paper by Baker et al. (2021), different loads within container terminals are identified, along with
the factors that affect energy consumption [2]. An overview of these loads is given in Table 5.
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Seaport’s services Load Factor Influnece Energy
Consumption

Vessel

Passenger ships (cruise, ferry),
container ships, electric ships, tugs,
gliders, bunkers, boats, tankers,

hovercraft, sailboats,
submarines, yachts

Size of the ship, activity conduct
on the ship, time of operation,

weather, wave, speed

Goods handling

Cargo, container, quay, logistic,
freight forwarder, customs

warehouse, storage, security,
loading-unloading

Number of cranes, amount of
cargo, hours of operation

Administration
Management and administrative

building, planning, service solution,
IT, monitoring

Type of electrical equipment,
weather, building material,

hours of operation,
occupant behavior

Transportation Electric vehicles, cranes, trucks, yard
tractors, trains

Number of transportation, hours
of consumption

Electric Facility Cold ironing, charging station for
electric vehicles

Time of berthing, number of
ships per berthing, size,

and ship’s load
Maintenance Repair and maintenance Type of maintenance

Table 2.4: Seaport activities and loads variation [2]

Due to variations in the degree of electrification and the size of container terminals, different authors
have found varying distributions of energy loads. In a paper by Iris and Lam, an overview of different
studies into greenhouse gas emissions and energy consumption within ports is provided [32]. Com-
monly mentioned sources of energy demand include cargo handling cranes, (yard) vehicles, trucks,
reefer cooling, buildings, lighting, hoteling, maneuvering, and the arrival and departure of ships. For
estimating the potential for DR, only energy consumption in the form of electricity is of interest.

Based on the reviews by Baker et al. and Iris and Lam, the largest electrical loads were found to be
on-shore power supply for ships, quay cranes, yard cranes, reefer containers, buildings, lighting, and
battery electric automated guided vehicles. The consumption patterns for each of these sources are
investigated in the next section.

2.3.2. Consumption Patterns
Very limited understanding exists within the container terminal industry regarding energy consumption
patterns [76]. Unlike other industries, container terminals do not have continuous and recurrent produc-
tion cycles [15]. Instead, daily processes are highly dynamic due to their dependency on the number
of containers and ships arriving [15]. This makes the forecasting of electricity demand difficult [15].

Due to highly dynamic and stochastic logistics, it is not possible to plan detailed transportation and
handling activities for more than 5-10 minutes ahead [15]. Therefore, logistic processes are usually
controlled in real-time [15]. Not every detail of the logistic processes needs to be known to estimate
energy demand. Short term deviations in planning can impact logistic processes but not so much the
energy consumption if a 15-minute mean power demand is taken [15]. Below, the consumption patterns
of the largest loads are explained.

Ships
predominantly use auxiliary engines to provide electricity to the loads on the ship. To reduce environ-
mental pollution, it is possible for ships to receive electricity from the grid through On-shore Power
Supply (OPS). The power consumption of a ship mostly depends on their load and size [2]. The cruis-
ing speed of a ship can be considered as a demand response tool [10]. By changing the speed, the
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Figure 2.2: Electricity consumption of Quay Crane in a typical day [67]

arrival time of a ship can be changed. The departure and arrival times of a ship dictate the consumption
pattern [2]. The average berthing duration for a container ship is 21 hours [4], and the average power
requirement of a container ship ranges from 1 to 4 MW [4]. The total load of the OPS can be divided
into essential and time-shiftable loads [23]. Vessels with long berthing times can provide flexibility by
shifting their demand to more economically advantageous operating hours [23]. It was not found what
percentage of the OPS load can be shifted to different berthing hours, so additional research is required.

Quay Cranes
(QCs) contribute significantly to the total energy consumption of a container terminal, accounting for
up to 20-30 percent depending on the traffic volume [63]. Quay cranes, in particular, have a substan-
tial impact on the peak power consumption. In the Port of Long Beach, for instance, 36.6 percent of
the maximum power consumption is due to QCs [43]. The energy consumption of a QC varies widely
between different movements of the crane . Six movements necessary to move a container from a
ship to the shore, of these movements, hoisting the container requires the most energy [11]. One con-
tainer cycle takes around 112 seconds [41]. The energy consumption of a quay crane also depends on
the handling rate [10]. By reviewing several papers about berth assignment and quay crane schedul-
ing problems, it was assumed that the handling rate is constant for one hour. Quay cranes operate
only when a ship is berthed, so their energy consumption is dependent on the berthing schedule. A
simulation by Tao et al. (2014) for the Container Terminal Altenwerder in Hamburg illustrates the con-
sumption pattern (Figure 2.2) [67]. The frequent spikes (orange line) represent the hoisting, traveling,
and lowering of a container. When a sample time of 15 minutes is used (blue line), most of these peaks
are smoothed out. Quay cranes are most suited for providing very short-term flexibility because their
operation is subject to strict time constraints [37].

Yard Cranes
(YCs) have an energy consumption pattern similar to quay cranes. The energy consumption is cyclical,
based on the container movements and handling rate. Like QCs, YCs also have a high peak power
load. In the Port of Long Beach, YCs account for 34.2 percent of the peak load of the terminal [43]. The
berthing of ships influences the consumption pattern of YCs in a similar manner to QCs. Additionally,
YCs can consume energy by re-marshalling containers even when no ship is present. Re-marshalling
is mostly done when there are not many ships berthed and there is additional capacity left for the yard
cranes to move the containers. Figure 2.3 shows the daily demand profile of a YC.
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Reefers
consume between 26 and 48 percent of the energy within a container terminal [14] [76] [67]. The
temperature within the reefer has to be controlled precisely to prevent the contents from spoiling. When
a reefer’s cooling is turned off, it will heat up approximately 1°C every 9 hours [37]. The mass of a
container is the factor that affects temperature fluctuations the most [7]. Containers with a high mass
experience slower temperature variations. The electricity consumption can be controlled by managing
the times at which the cooling is turned on. The reefers are then used as so-called heat storage. The
characteristics of reefers in terms of heat storage are similar to that of buildings [54]. Reefers are very
flexible loads, but their potential for DR is underutilized [37]. Most reefers stay within the terminal for
two to three days [37]. Furthermore, one cycle of a reefer heating up and cooling down lasts between
7-40 hours [7]. During this time cycle, the energy consumption is zero most of the time when the reefer
is heating up. The energy consumption pattern of reefers also depends on the day-night cycle. More
energy is needed for cooling during the day when ambient temperatures are higher. A simulation of
the energy consumption of a reefer park throughout a day is shown in Figure 2.4.

Lighting
is required to illuminate the container yard at night. The energy consumption depends on the time of
day, with consumption only during the night. Lighting contributes 7 to 21 percent of the total electricity
consumption of a container terminal [14] [76] [67]. Lighting can be considered a critical load. As
explained in Section 2.1.1, it is therefore not suited for DR. The energy consumption of lighting over a
day is shown in Figure 2.5.

Figure 2.3: Electricity consumption of Yard Crane in a typical day [67]
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Figure 2.4: Electricity consumption of Reefer in a typical day [67]

Figure 2.5: Electricity consumption of Lighting in a typical day [67]
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Buildings
are a significant energy consumer within container terminals, responsible for between 3 to 20 percent
of the total electricity consumption [14] [76] [67]. The electricity demand of buildings also follows a
day-night cycle [67]. The electricity within buildings is predominantly consumed by lighting, heating,
ventilation, and air conditioning (HVAC) [2]. While lighting cannot be controlled since it is considered
critical, HVAC systems can be managed by allowing the temperature in the building to fluctuate by a
few degrees throughout the day. Building energy management systems can be used to optimize the
demand for buildings [37]. A graph of the electricity consumption of buildings within a port is shown in
figure 2.6.

Automated Guided Vehicles
(AGVs), or more precisely Battery-electric Automated Guided Vehicles (B-AGVs) and other electric ve-
hicles, can be considered as flexible loads. Future ports may be able to provide a substantial portion
of demand flexibility by controlling the charging cycles of AGVs [37] [38]. AGVs only operate between
12 and 13 hours per day [18], and charging them takes around 6 hours [62]. AGVs could be used
for demand response during the times of day when they are not operating [18]. Besides the charging
schedule, the charging rate can also be used to control energy consumption. The charging rate can
even be negative, allowing the batteries to provide power to the terminal or grid. Batteries can be dis-
charged during peak consumption hours to reduce peak loads [61]. Additionally, batteries can be used
to reduce imbalances between the scheduled and actual energy consumption of the container terminal
during an Imbalance Settlement Period [61]. In the Netherlands, one Imbalance Settlement Period is
15 minutes [70]. By controlling the charging rate of the battery, it is possible to provide ancillary services
to the grid operator [61]. To provide ancillary balancing services to the grid operator, the charging rate
has to be controlled within 30 seconds, 5 minutes, or longer, depending on the type of balancing being
performed [69]. Several business cases exist for making use of the flexibility potential of AGVs. In a
paper by Schmidt et al. (2015), six were identified, ranging from flexibility in the microseconds to pro-
vide ancillary services, to flexibility over a day to take advantage of price fluctuations in the day-ahead
market [61].

Container Terminal
The consumption patterns within the port vary significantly, suggesting a great potential for DR. In Figure
2.7, the average electricity demand of a container terminal over a day is depicted. This figure does not

Figure 2.6: Electricity consumption of Buildings in a typical day [67]
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Figure 2.7: Electricity consumption of the entire port in a typical day [67]

include the energy consumption of OPS and AGVs. The most considerable variation in consumption
is observed in quay and yard cranes.
In conclusion, there is significant flexibility in the loads within a terminal, but different loads have flexi-
bility over different time periods. The energy consumption of ships, quay cranes, yard cranes, reefers,
buildings, and automated guided vehicles can all be considered reschedulable to some extent. How-
ever, due to the critical nature of the load, lighting is not suited for DR. The berthing schedule is one of
the major factors influencing the energy consumption within the terminal.

2.4. Demand response programs in container terminals
There are several ways through which a container terminal can reduce their electricity costs by man-
aging their consumption. As discussed in 2.1, different demand response programs exist in which a
container terminal can participate. Not all programs are as well-suited for a container terminal. In this
section, the different demand response programs and electricity markets found in 2.1 will be compared
with the demand flexibility found in ??. Interesting demand response programs will be identified.

In a paper by Jordehi et al., a review is conducted on demand response optimization [35]. Jordehi found
that real-time pricing is most commonly used in demand response optimization research, followed by di-
rect load control and time-of-use pricing. Jordehi concluded that most research into demand response
focuses on residential customers, and more research into industrial and commercial demand response
is recommended.

Research on demand response within container terminals mostly focuses on price-based demand re-
sponse programs. As explained in 2.1, demand response programs can be categorized as price-based
and incentive-based. Most of the literature presented in section ?? (implicitly) used a price-based incen-
tive for demand response, with time-of-use rates or real-time pricing being employed. Only researchers
investigating Vehicle-to-Grid charging of AGVs considered an incentive-based demand response pro-
gram in the form of ancillary services. No argumentation was found in any of the research as to why a
particular type of demand response was chosen.

The issue of precise forecasting of future energy consumption poses a significant hurdle for many de-
mand response programs, as highlighted by Schmidt et al. in their research [61]. This is particularly
challenging in terminal operations, where factors such as fluctuating operations and changing condi-
tions can lead to unpredictable changes in electricity demand, resulting in imbalances. Section 2.3.2
further explains that forecasting electricity demand far ahead is difficult due to the uncertainty associ-
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ated with consumption patterns.

To address this challenge, terminal operators should strive to improve their demand forecasting ca-
pabilities to accurately contract the required amount of electricity. Additionally, utilizing the intraday
market can be a viable option to buy additional electricity or sell surplus electricity to mitigate electricity
imbalances.

Certain demand response programs, such as capacity market programs, demand bidding, and ancil-
lary services, face even greater complexities as they require commitments to be made at least one
day prior to delivery. In a study by Holly et al., it is investigated how BAGVs can be used to provide
a frequency containment reserve (an ancillary service) on the balancing market [29]. Holly noted that
the major challenge is to provide a critical grid service, requiring high reliability, with a process that is
characterized by high uncertainty and variability. By taking measures like improving the forecast on
the availability of AGVs and integrating the AGV fleet in a pool with other distributed energy resources,
among others, Holly found that it was possible to provide ancillary services with AGVs. For other loads
in the container terminal, it might be harder to achieve the forecast accuracy required for capacity mar-
ket programs, demand bidding, and ancillary services.

Since price-based demand response programs do not require any upfront commitment in electricity
consumption, they are considered better suited for most loads within the container terminal. For these
programs, port operators are notified upfront about the electricity prices for every hour, and they have
to pay more if the prices are high. However, they do not receive any fines in case they don’t deliver the
required capacity, as would be the case for some of the incentive-based programs. Alternatively, de-
mand response programs without upfront commitment, such as Emergency DR or Direct load control,
can be used in a port.

For this thesis, it has been decided to focus on real-time pricing demand response. This type of de-
mand response is in line with other research done on demand response in container terminals. The
price signals on which the demand response program will work will be based on the day-ahead elec-
tricity price and the imbalance (surplus and shortage) price.

2.5. Conclusion potential of demand response
In this chapter, the potential for demand response in container terminals has been investigated by ex-
amining existing research on demand response in container terminals. energy consumption patterns
and the major energy loads within these terminals were identified. The objective was to determine
the sources of demand flexibility and explore the suitability of different demand response programs for
container terminals to answer the first two research questions presented in 1.3.

Through the literature review, three topics of research were found considering demand response within
container terminals. First, several papers about energy management systems showed that demand
side management can significantly reducing the operating cost of a terminal. Second, peak shaving
which showed that that reducing the peak power consumption can reduce the grid usage fees from the
grid operator. Within the terminal Quay cranes and reefer are mostly responsible for the peak loads.
Lastly, with the switch to an electric AGV fleet vehicle to grid charging can provide additional revenue
to the terminal operator, by providing ancillary services, peak shaving, the reduction of imbalances and
with off-peak charging.

Form the literature review several research gabs where found. First, no review was found on all the
ways the ways demand response can be applied in a container terminal. Second, most studies on
demand response in a container terminal either focus on a single load or on a micro grid the major
loads and a battery and onsite generation. No studies have been found focusing solely on demand
response potential of the entire terminal. Third, no studies into demand response do not consider the
uncertainty in both the energy supply and demand. The uncertainty in the energy consumption is often
not taken into account in research into demand response within a container terminal. Often the loads
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Load Factors to control Energy
Consumption cycle time

Vessel Berthing schedule ,
flexible loads on the ship

21h
-

Quay crane
Berthing schedule
handling rate
lifting speed

21h
1h
120s

Yard crane
Berthing ( + re-marshaling ) schedule

handling rate
lifting speed

21h
1h
120s

Reefer Heating/Cooling rate 7h-40h
Building Heating/Cooling rate 24h
AGV Charging rate 24h - 30s

Table 2.5: Methods to control the energy consumption with a container terminal

are considered deterministic, leading to a incomplete picture when estimating the potential for demand
response. More information on how these research gabs found are solved in this thesis can be found
in 1.2.

By investigating the energy consumption, it was found that container terminals have several major en-
ergy loads, including ships, quay cranes, yard cranes, reefers, buildings, lighting, and battery-electric
automated guided vehicles (AGVs). These loads contribute significantly to the overall energy consump-
tion of container terminals. The consumption patterns of these loads were analyzed, revealing various
factors that can be controlled to adjust energy consumption. For example, ships’ energy consumption
is influenced by factors such as size, load, cruising speed, and berthing schedule. Quay cranes and
yard cranes exhibit cyclic energy consumption patterns based on container movements, while reefers
have temperature-dependent consumption patterns. Buildings and AGVs offer potential for demand
response through temperature control and charging schedule optimization, respectively. An overview
of all the methods to control the energy consumption is shown in table 2.5.

It was observed that different loads exhibit flexibility over different time periods, with some offering
short-term flexibility and others having the potential for longer-term adjustments. However, it is impor-
tant to note that critical loads, such as lighting, may not be suitable for demand response due to their
essential nature. Future research is needed to determine the specific extent of flexibility for each load
and develop effective demand response strategies in container terminals.

After reviewing different demand response programs, it was found that price-based demand response
programs, such as real-time pricing, are well-suited for container terminals. These programs provide
price signals based on day-ahead electricity prices, allowing terminals to adjust their consumption ac-
cordingly without upfront commitments. Incentive-based programs, such as capacity market programs
and ancillary services, present challenges in terms of forecasting and reliability requirements. However,
price-based programs offer a practical and feasible approach for container terminals to manage their
electricity costs and contribute to a more efficient energy system.

In conclusion, container terminals demonstrate a significant potential for demand response through the
flexibility of their energy loads. Ships, quay cranes, yard cranes, reefers, buildings, and AGVs can be
adjusted or rescheduled to some extent, providing opportunities for demand response. Price-based
demand response programs, particularly real-time pricing, offer a suitable framework for container ter-
minals to optimize their energy consumption and contribute to a sustainable energy future. Future
research should address the research gaps identified in this thesis and further explore the implemen-
tation and effectiveness of demand response in container terminals.
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Problem description

As has been explained in chapter 2 there is a potential for demand response in a container terminal.
To quantify the potential a energy-aware optimization of operations is conducted. As explained in 2
both the energy consumption of a container terminals and energy prices are highly dynamic and unpre-
dictable. To get a accurate result the uncertainty in both energy demand and supply should be taken
into account in the when formulating the problem.

In this section a stochastic model is formulated. First the outline of the model is given in section 3.1.
Here the structure of the model is explained and the assumptions are stated. Second the mathematical
formulation of the model is given in section 3.2.

3.1. Model description
The aim of the optimization model is to quantify the potential of demand response in a container termi-
nal. To do so, a model is developed to optimize the operational planning in a container terminal. Based
on the timing of operations, the energy consumption can be calculated. An energy-aware optimization
of container terminal planning is conducted, by considering energy-related costs in the model. By using
price-based demand response, it is possible to reduce energy-related costs.

This section first explains how demand response is modeled in 3.1.1. Then, it describes how uncer-
tainty is included in the model in 3.1.2. Finally, the main assumptions are highlighted in 3.1.3.

3.1.1. Outline
For this thesis, the energy consumption of vessels, quay cranes (QCs), yard cranes (YCs), reefers, and
automated guided vehicles (AGVs) in the container terminal is considered. As explained in Chapter 2,
the energy consumption of buildings in the terminal can also be used for demand response. However,
it is ignored in this thesis. It can be argued that the building energy management system in a container
terminal is similar to that of other office buildings. The energy consumption of terminal buildings is also
expected to be independent of other operations in the terminal and can therefore be studied separately.
Demand response in office buildings is a well-studied problem, and it has been decided not to consider
it in this thesis. Figure 3.2 provides an overview of all the energy loads considered.

All the operations are controlled by the Terminal Operations System (TOS). The energy consumption of
all different loads is mangaged by the energy mangement system (EMS). In figure 3.2 the information
and energy flows are shown between all the considered energy loads and the TOS and EMS.

In a container terminal, various planning problems can be identified. These problems can be catego-
rized into three levels: strategic, tactical, and operational planning, each with a different time frame.
This thesis focuses on operational planning, as it has the most significant impact on energy consump-
tion. Moreover, the planning problems can be distinguished based on their location: seaside, yard,

20
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and landside. For this thesis, the focus is on the seaside and yard, as it is what makes a container
terminal unique compared to the rest of the transportation industry. This focus means that the energy
consumption related to the transportation of containers out of the terminal with trucks and rail is not
considered. Figure 3.1 provides an overview of all the planning problems in a container terminal.

Figure 3.1: Planning problems in container terminals [3]

Some modifications are made to the QCAP to include the assignment of Yard Cranes (YCs) and Au-
tomated Guided Vehicles (AGVs). Instead of assigning a specific number of Quay Cranes (QCs) to a
ship, a handling rate is assigned. For each handling rate, a specific number of QCs, YCs, and AGVs
are required. The handling rate is calculated by taking the minimum handling capacity among the three
types of machinery assigned. The handling rate can be calculated using Equation 3.1, where p repre-
sents the handling rate, N is the number of each type of machinery assigned, and h is the handling
capacity of each individual type of machinery.

p = min(NQC · hQC , NY C · hY C , NAGV · hAGV ) (3.1)

Based on the number of AGVs assigned in the QCAP problem, the energy consumption of the AGVs is
calculated. An Electric Vehicle (EV) charging scheduling problem is formulated, similar to the one pre-
sented in [73]. The AGV assignment problem and the EV charging scheduling problem are combined
to control the charging rate.

As stated in Section 2.3, the energy consumption of reefer containers depends on heat transfer with
the environment. A problem is formulated to control the reefer containers temperature, similar to the
problem mentioned by Verzijlbergh and Lukszo in [74] problem is formulated. This formulation allows
for the determination of the optimal control of the cooling rate.

The operational planning problems considered in this thesis were selected based on the factors that
can control energy consumption, as stated in Chapter 2. Table 3.1 relates the planning problems to the
factors that can control energy consumption. All the operational problems considered was simplified as
much as possible by ignoring everything that doesn’t influence the energy consumption. All planning
problems considered are shown in Figure 3.2.

3.1.2. Uncertainty
In Chapter 2, it was mentioned that uncertainty has a significant impact when scheduling the energy
demand of a container terminal. The uncertainty in logistics supply chains leads to unpredictable elec-
tricity demand for a container terminal, while uncertainty in the power system results in unpredictable
electricity supply. Therefore, when developing a model for demand response in a container terminal, it
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Figure 3.2: Operational problems, Energy loads and Information and Energy flows within the terminal

Load Factors to control Energy
Consumption Planning problem

Vessel Berthing schedule Berth Assignment problem

Quay crane Berthing schedule
handling rate

Berth Assignment problem
Quay Crane Assignment Problem

Yard crane Berthing ( + re-marshaling ) schedule
handling rate

Berth Assignment problem
Yard Crane Assignment Problem

Reefer Heating/Cooling rate Temperature control problem

AGV Charging rate AGV Assignment Problem+
EV charging schedule problem

Table 3.1: Planning problems

is crucial to consider uncertainty.

In a review paper by Roald et al., an overview is provided of the main sources of uncertainty in power
systems [56]. Roald mentions renewable energy generation, component outages, the price of electric-
ity, precipitation (for hydro power plants), ambient conditions, and the occurrence of extreme weather
as sources of uncertainty in power systems. Given the scope of this thesis, the uncertainty of the price
of electricity is most relevant when optimizing the operational planning of a container terminal.

Complex supply chains introduce uncertainty in container terminal operations in several ways. The
arrival times of ships have been identified as the most significant factor of uncertainty in container ter-
minal operations. Ksciuk et al. consider unexpected ship delays and uncertain demand or supply of
empty containers as the primary sources of operational uncertainty for ship routing and scheduling [48].
In a review paper by Rodrigues and Agra, the most prominent sources of uncertainty considered in the
Berth Assignment Problem (BAP) and Quay Crane Assignment Problems (QCAP) were found to be
ship arrival times and handling times [57].

For this thesis, it has been assumed that the arrival times of ships and the electricity prices are uncer-
tain. To deal with this uncertainty a so called two stage stochastic model is formulated. In Chapter 4,
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will be discussed why this is the best approach. Based on predicted arrival times and electricity prices,
a here-and-now decision is made for the electricity consumption and a berthing schedule in the first
stage of the two-stage stochastic optimization model. Afterwards, in the second stage, a wait-and-see
decision is made to change the initial consumption and schedule based on the specific scenario pa-
rameters of the arrival times and electricity prices. Additionally, a decision is made for the assignment
of the quay cranes, yard cranes, and automatic guided vehicles. The cooling and charging rate of the
reefers and AGVs are also decided in this stage. A diagram with all the decisions and their respective
stages is shown in Figure 3.3.

Figure 3.3: Decision timeline

3.1.3. Assumptions
To formulate the model several assumptions had to be made. Below list of the main assumptions is
shown.

• Ships only use energy when they are berthed.
• The energy consumption is the same for every ship and constant over time.
• The location where a ship is berthed does not influence the energy consumption.
• Berthing space is available if the combined length of all berthed ships is less then the quay length.
• The energy consumption of QCs, YCs and AGVs only depends on the handling rate.
• The loading and unloading consume the same amount of energy for QCs and YCs.
• Every container consumes the same amount of energy for loading and unloading (so no influence
on the mass).

• The energy needed move QCs to the correct location is negligible.
• The amount of reefers in the yard is constant throughout the day.
• The reefer cooling requirements are the same for every container.
• The reefer park can be modeled as one large refrigerated storage.
• The reefer energy consumption is dependent on the ambient temperature.
• The ambient temperature is considered to be constant.
• The AGV fleet can be modeled with one large battery.
• The energy consumption of the container terminal does not influence the electricity price.
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3.2. Mathematical formulation
In this section, a model is presented that builds upon the work of Iris and Lam [33]. While the basic
framework of the model remains the same, several enhancements have been made. These include
the addition of AGV operations, improved reefer operations, and the incorporation of uncertainty in
ship arrival times and electricity prices. Table 3.2 provides an overview of all the sets, parameters, and
decision variables used in the model, along with their descriptions.

The section begins by explaining the objective function employed in the model. Subsequently, it pro-
ceeds to describe the constraints that bound the model and ensure its validity.

Notation Description
Sets
V Set of vessels to be served, i ∈ 1, 2, . . . , N , where N is the

number of vessels to be served, 10.
T Set of time periods (1 hour), t ∈ 0, 1, . . . , H − 1, where H is

48 hours.
Pi Handling rate that can be assigned to a ship i ∈ V , where p is

the mininum of up,m ∗ hm .
M Types of machinery present in the terminal m ∈

QC, Y C,AGV .
S Set of scenarios w ∈ S.
Parameters
km Amount of machinery m ∈M available .
hm Handling rate of machinery m in containers per hour .
di,w The total demand of containers to be handled (loaded + un-

loaded) for ship i ∈ V in scenario w ∈ S.
up,m The amount of machinery of type m used in pattern p

lshipi The quay length that ship i takes up.
ltotal The total length of the quay.
eati Expected arrival time of vessel i ∈ V .
efti Expected berthing finishing time of vessel i ∈ V .
ai,w Actual arrival time of vessel i ∈ V in scenario w ∈ S.
eship energy consumption for one hour of a ship using on shore

power supply .
emachinery
m Energy consumption of machinery m for operating for one

hour
echarge Energy consumed by one charger.
echarge,max Maximum Energy consumed by all chargers.
bmin Minimum AGV battery level.
bmax Maximum AGV battery level.
ηcharge Charging efficiency.
ereefer Energy consumption of one reefer connection
ereefer,max Maximum energy consumption of all reefer connection
tcmin Minimum reefer temperature.
tcmax Maximum reefer temperature.
ηreefer Cooling efficiency.
ta Ambient temperature
mcp Specific heat capacity of a reefer.
ua Heat transfer coefficient of a reefer.
cdat,w Day electricity price at time t in scenario w ∈ S.
clatei Penalty cost of exceeding the expected finishing time (EFT)

for vessel i ∈ V for one hour.
creschedulei cost of changing the initial schedule by one hour.
csur cost of having a surplus of energy.
cshor cost of having a shortage of energy.

Continued on next page
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Table 3.2 – continued from previous page
M A large positive number.
ρw Probability of scenario w occurring (1/S).
Decision variables
SDA
i ∈ Z+ Scheduled berthing start time of vessel i ∈ V

Si,w ∈ Z+ Berthing start time of vessel i ∈ V in scenario w ∈ S

Searly
i,w ∈ Z+ Time the vessel i ∈ V arrives ahead of schedule in scenario

w ∈ S
Slate
i,w ∈ Z+ Time the vessel i ∈ V arrives behind schedule in scenario

w ∈ S
FDA
i ∈ Z+ Scheduled berthing end time (time when handling ends) of

vessel i ∈ V
Fi,w ∈ Z+ Berthing end time (time when handling ends) of vessel i ∈ V

in scenario w ∈ S
Li,w ∈ Z+ Lateness of operations for ship i ∈ V in scenario w ∈ S
Ai,t,w ∈ B 1 if vessel i ∈ V is assigned at to a berth in period t in scenario

w ∈ S, 0 otherwise
Hi,p,t,w ∈ B 1 if handling rate p is assigned to serve vessel i ∈ V at time

period t in scenario w ∈ S, 0 otherwise
Blevel

t,w ∈ R+ Battery level at time t in scenario w ∈ S

TCtemperature
t,w ∈ R Reefer temperature at time t in scenario w ∈ S

Echarge
t,w ∈ R+ Energy consumed to charge AGVs at time t in scenario w ∈ S

Ereefer
t,w ∈ R Energy consumed to cool the reefers at time t in scenario w S

Pt,w R+ Power used from the utility grid at time t in scenario w S
P da
t R+ Power purchased at the day ahead market at time t

P sur
t R+ Power surplus at time t

P shor
t R+ Power shortage at time t

IMstate
t B Imbalance state, 1 if there is a surplus and 0 if there is a deficit

Table 3.2: Sets, Parameters, and Decision Variables

3.2.1. Objective
There is an inherent tradeoff between the optimal operating schedule and the optimal electricity con-
sumption schedule in an energy-aware optimization of operations. Both the scheduling cost and the
energy cost are considered in the objective function.

In a review paper by Jordehi [35], four different objectives for demand response (DR) optimization prob-
lems are mentioned. First, bill saving maximization aims to reduce the cost of purchasing electricity.
Second, comfort maximization focuses on minimizing the inconvenience of DR for the consumer. Third,
generation cost minimization considers both the cost of purchasing electricity and the cost of onsite gen-
eration. Lastly, peak average ratio minimization is commonly used to minimize peak demand.

Rodrigues and Agra [57] conducted a review paper on Berth Assignment Problems (BAPs) under un-
certainty, where they identified different objectives used in BAPs. These objectives were categorized
into four categories: Services, Deviations, Cranes, and performance measures. Services refers to the
time a ship spends in a port. Objectives in this class are waiting times before being berthed, handling
times, completions times ( sum of waiting and handling times) and Lateness of delays between the
planned and actual departure time. Deviations refers to the difference between the obtained and ref-
erence solution. Here the authors consider berth position deviations, deviations in the start time of
operations and finish time deviations. In the third category the number of quay cranes and the number
of crane movements between vessels are considered as objectives. The the last category consists of
objectives of risk measures and robustness criteria.

For the demand response in this thesis, the focus is on maximizing bill savings and comfort. This ob-
jective is reformulated as a minimization problem, considering the cost of purchasing electricity and the
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inconvenience experienced by the terminal operator due to DR. The purchasing cost of electricity is
quantified by the cost needed to buy electricity on the day-ahead electricity market. Inconvenience is
quantified based on common objectives in BAPs, where the cost due to lateness is used. Waiting time
is ignored as cruising speed is considered a tool for providing DR by adjusting the actual arrival time to
the planned arrival time.

Additional objectives need to be considered to minimize deviations between the day-ahead schedule
made in the first stage and the real-time schedule made in the second stage. A penalty is added to
the objective function to minimize deviations in power consumption and berthing start. In case of a
power imbalance, additional power can be bought in the case of a shortage, and extra power can be
sold in the case of a surplus. Similar to Crespo-Vazquez et al. and Tajeddini et al., the cost of power
imbalance is quantified by multiplying a factor with the day-ahead electricity price. This factor is less
than one for a shortage and greater than one for a surplus.

In Equation 3.2, the objective function is shown. The first two terms represent the scheduling cost of
a container terminal, taking into consideration the cost of ships departing later than expected and the
cost of rescheduling ships. The last two terms represent the cost related to energy. The first term
represents the cost of purchasing power on the day-ahead market, while the last two terms represent
the cost of having a power surplus or deficit. In the equation, V represents the set of all vessels, and T
represents the set of all time periods.

min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (S late
i,w + Searly

i,w )+

∑
t∈T

cdat,wP
da
t +

∑
t∈T

cdat,w(c
shorP shor

t,w − csurP sur
t,w)

) (3.2)

3.2.2. Constraints
In this section, we present the constraints that govern the mathematical model for container terminal
operations and energy consumption. These constraints ensure the feasibility and optimization of the
system. Each constraint is listed below, along with a brief explanation of its purpose and interpretation.
Constraint 3.3 ensures that the energy consumed by the ships, quay cranes (QCs), yard cranes (YCs),
automated guided vehicle (AGV) charging, and reefer cooling matches the power drawn from the grid.

∑
i∈V

eship Ai,t +
∑
i∈V

∑
p∈Pi

up,′QC′ Hi,p,t e′QC′+

∑
i∈V

∑
p∈Pi

up,′Y C′ Hi,p,t e′Y C′ + Ereefer
t + Echarge

t = Pt

(3.3)

Constraints 3.4 - 3.12 are associated with the berth assignment of ships and the handling capacity
assignment. For example, Constraint 3.4 guarantees that the start time of vessel operation is either
equal to or later than its expected arrival time. Constraint 3.5 defines the lateness time, which is the
time a ship departs after the expected departure time. To ensure that the ships are berthed during
every hour between the berthing start time and end time, Constraints 3.6, 3.8, and ?? are introduced.
Constraint 3.9 prevents overcrowding of the berth by ensuring that the length of all berthed vessels is
shorter than the quay length. A handling rate is assigned to every ship for every hour it is berthed. This
is accomplished by Constraints 3.10 and 3.11. Constraint 3.12 guarantees that the machinery capacity
is not exceeded for QCs, YCs, and AGVs.

Si,w ≥ ai,w ∀i ∈ V, ∀w ∈ S (3.4)

Li,w ≥ Fi,w − efti ∀i ∈ V, ∀w ∈ S (3.5)

∑
t∈T

Ai,t,w = Fi,w − Si,w ∀i ∈ V, ∀w ∈ S (3.6)
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(t+ 1)Ai,t,w ≤ Fi,w ∀i ∈ V, t ∈ T, ∀w ∈ S (3.7)

tAi,t,w + tmax(1−Ai,t,w) ≥ Si ∀i ∈ V, t ∈ T, ∀w ∈ S (3.8)

∑
i∈V

Ai,t,wl
ship
i ≤ ltotal ∀t ∈ T, ∀w ∈ S (3.9)

∑
p∈Πi

Hi,p,t,w = Ai,t,w ∀i ∈ V, t ∈ T, ∀w ∈ S (3.10)

∑
p∈Πi

pHi,p,t,w ≥ di ∀i ∈ V, t ∈ T, ∀w ∈ S (3.11)

∑
i∈V

∑
p∈Pi

up,mHi,p,t,w ≤ km ∀t ∈ T,m ∈M, ∀w ∈ S (3.12)

A day-ahead schedule is formulated for both the arrivals of the ships and power consumption. Con-
straint 3.13 establishes the day-ahead start time of the ships, which remains consistent across all
scenarios. The difference between the start time and day-ahead start time is equivalent to the devia-
tion of start time. Similarly, Constraint 3.16 defines this for the day-ahead energy consumption. It is
impossible to have a surplus and a deficit in energy consumption simultaneously. A binary variable
IMstate

t is used to keep track of whether there is a surplus or shortage, with Constraints 3.14 and 3.15
capturing this dynamic.

Slatei, w − Searlyi, w = Si, w − Sda
i ∀i ∈ V, ∀w ∈ S (3.13)

P short, w − P surt, w = Pt, w − P da
t ∀t ∈ T, ∀w ∈ S (3.14)

P surt, w ≤M · IMstatet, w ∀t ∈ T, ∀w ∈ S (3.15)

P short, w ≤M · (1− IMstatet, w) ∀t ∈ T, ∀w ∈ S (3.16)

Constraint 3.17 - 3.22 concern the operation of AGVs and regulate their charging and discharging pro-
cedures. The total power used to charge the AGVs is constraint based on the number of charging sta-
tions and the number of AGVs available for charging. These restrictions are described by Constraints
3.17 and 3.18. Constraint 3.19 ensures that the battery level always remains within the minimum and
maximum allowed levels. The state of battery charge should fluctuate based on the amount of energy
charged and discharged. This principle is captured by Constraints 3.20 and 3.21 for time periods 1 to
H and for time period zero respectively. Constraint 3.22 asserts that the battery level at the start of the
day should be equivalent to the level at the end of the day, thereby preventing overcharging. It also
ensures that over one day, the amount of energy consumed equals the energy charged.

Echarge
t,w ≤ echarge,max ∀t ∈ T, ∀w ∈ S (3.17)

Echarge
t,w ≤ (km −

∑
i∈V

∑
p∈Pi

ui,p,m ·Hi,p,t) · echarge m = {AGV }, ∀t ∈ T, ∀w ∈ S (3.18)

bmin ≤ Bt,w ≤ bmax ∀t ∈ T, ∀w ∈ S (3.19)

Bt,w = Bt−1,w + ηcharge · Echarge
t,w −

∑
i∈V

∑
p∈Pi

em · ui,p,m,w ·Hi,p,t,w

m = {AGV }, ∀t ∈ T, ∀w ∈ S

(3.20)
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c

Bt,w = bmin + ηcharge · Echarge
t,w −

∑
i∈V

∑
p∈Pi

em · ui,p,m,t ·Hi,p,t,w

m = {AGV }, t = {0}, ∀w ∈ S

(3.21)

∑
t∈T

ηcharge · Echarge
t,w =

∑
t∈T

∑
i∈V

∑
p∈Pi

em · ui,p,m ·Hi,p,t,w m = {AGV }, ∀w ∈ S (3.22)

The following five constraints ensure the proper operation of the reefers. The temperature of the reefers,
represented by TCt, should always be within the minimum and maximum temperature levels to ensure
the quality of the stored goods, as indicated by Constraint 3.23. The energy consumed by the reefers
at any time should not exceed the rated power of all the reefer connections, as dictated by Constraint
3.24. The reefers lose heat to the environment through convection. This heat loss depends on the
temperature difference between the container and the environment, both of which are assumed to be
constant for every hour. Constraint 3.25 is the cooling balance constraint, which stipulates that the
temperature change of the reefer container depends on the heat loss and the cooling energy supplied.
Constraint 3.27 is the reefer energy constraint, which ensures that the total energy lost through heat
transfer equals the total energy consumed by cooling.

tcmin ≤ TCt,w ≤ tcmax ∀t ∈ T, ∀w ∈ S (3.23)

Ereefer
t,w ≤ ereefer,max ∀t ∈ T, ∀w ∈ S (3.24)

mcp · (TCt,w − TCt−1,w) = ua · (ta− (tcmin + tcmax)/2)− ηreefer · Ereefer
t,w ∀t ∈ T, ∀w ∈ S (3.25)

mcp · (TCt,w − tcmax) = ua · (ta− (tcmin + tcmax)/2)− ηreefer · Ereefer
t,w t = {0}, ∀w ∈ S (3.26)

∑
t∈T

ua · (ta− (tcmin + tcmax)/2) =
∑
t∈T

ηreefer · Ereefer
t,w ∀w ∈ S (3.27)

These constraints together manage the energy consumption of ships, quay cranes, yard cranes, au-
tomated guided vehicles, and reefer containers, while adhering to the constraints based on the opera-
tional planning.



4
Solution approach

The problem described in section 3 is difficult to solve due to the considered uncertainty. In this chapter
it will be explained how to problem presented can be solved, given this uncertainty.

In section 4.1 different methods of dealing with uncertainty are discussed, and it is argued why stochas-
tic programming is the most suited. Afterwards techniques to improve the solving speed of the stochas-
tic model are discussed in section 4.2. Finally it is explained how scenarios for the optimization model
can be generated based on historical data and how the amount of scenarios can be reduced in section
4.3.

4.1. Uncertainty modeling
The problem described in Chapter 3 is difficult to solve due to the considered uncertainty. The addition
of several scenarios to the problem significantly increases the computational load, making it impractical
to solve the extensive form of the problem. Various modeling approaches exist to deal with this, which
will be discussed below.

Rodrigues and Agra presented three general approaches to dealing with uncertainty [57]. These ap-
proaches differ in terms of when decisions are made and when the operational planning is executed.
Firstly, in a proactive approach, all decisions are made at the beginning of the time horizon when the
uncertainty is still present. Secondly, a reactive approach involves making decisions after some uncer-
tain parameters become known. Finally, a combination of the two can be employed, where an initial
planning is made considering the uncertainty, and recourse actions are taken once the uncertainty is
resolved.

The sequential nature of electricity markets and container terminal planning makes the proactive/reac-
tive approach the preferred choice. The container terminal needs to purchase electricity when the exact
amount required is uncertain. Bids on the day-ahead market must be made without perfect information
on electricity prices, power demand, and available flexibility [66]. These bids can later be adjusted by
buying or selling electricity on the intraday market. Decisions on one market will influence decisions
on subsequent markets and must be taken into account [66]. In a survey by Bierwirth and Meisel, dif-
ferent planning problems for seaside operations are considered. They suggest that Berth Assignment
Problems (BAP), Quay Crane Assignment Problems (QCAP), and Quay Crane Scheduling Problems
(QCSP) can be integrated by considering them sequentially [3]. The initial berthing plan from the BAP
can be used to assign quay cranes, and then the QC assignment can be used for the scheduling of the
cranes. An overview of the sequential planning of seaside operations is shown in Figure 4.1. Having
an optimization method that allows for proactive bids on the day-ahead market and reactive bids on
the intraday market is best suited for this problem.

For the proactive/reactive approach, a two (or more) stage optimization problem can be formulated.
The first stage represents the proactive decision, known as the ”here-and-now” decision, where deci-
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Figure 4.1: Sequential planning of seaside operations [3]

sions are made before the values of uncertain parameters are known. The second stage represents the
reactive decision, also known as the ”wait-and-see” decision, where decisions are made in response
to the realization of the uncertain parameters. A generalized two-stage optimization problem is shown
in Equation 4.1. Here, x represents the first stage decision variables, yξ represents the second stage
decision variables, and ξ represents the uncertain parameters. The objective consists of a first stage
cost and a second stage cost, where Rcost is an operator quantifying the risk of excessive costs. Simi-
larly, for the constraints, first stage equality and inequality constraints (hF and gF ) and a second stage
(hS and gS) exist.

min
x,yξ

fF (x) + Rcost[f
S(x,yξ, ξ)] (4.1a)

s.t. hF (x) = 0, (4.1b)
gF (x) ≥ 0, (4.1c)
hS(x,yξ, ξ) = 0, (4.1d)
gS(x,yξ, ξ) ≥ 0 (4.1e)

There are four commonly used formulations that explicitly consider the impact of uncertainty in the ob-
jective [56]. Stochastic optimization considers the expected cost and tries to minimize that cost across
all realizations of the uncertain parameters. Similarly, a risk-averse version of stochastic optimization
can be formulated by considering the variance, value at risk, or conditional value at risk. For the value
at risk, it bounds the largest cost that will occur with a probability higher than a preset level. Similarly,
the conditional value minimizes the expected value of a portion of the worst realizations. Robust op-
timization considers the worst-case cost and tries to minimize that. Robust optimization can be used
in case only the bounds of the uncertain parameter are known but not the distribution. Finally, distri-
butionally robust optimization considers the worst-case expected cost of different potential uncertainty
distributions. An overview of the four methods is shown in Figure ??. Additional information on how
these methods work can be found in [56].

For this thesis, it has been decided to use the expected cost as a second-stage objective. The most
common approach used in the literature on BAP is a stochastic optimization approach where the ex-
pected cost is optimized [57]. For both of the uncertain parameters considered in this thesis, ship
arrival times and electricity prices, sufficient historical data is available. With this data, a probability
density function can be created. Only considering the bounds of the uncertain parameters, as done in
(distributionally) robust optimization, would therefore discard valuable information that is known. Using
risk-averse optimization is predominantly interesting when best-case and worst-case realizations are
not considered to have the same weight. In this thesis, all the different objectives present can be calcu-
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Figure 4.2: An overview of optimization methods under uncertainty [56]

lated back to costs for the terminal operator, which in the end should be minimized. Bad results of one
day can easily be compensated with days with good results. If every day is considered independent
from the other, the total cost over the year depends on the expected cost of all the days.

No BAP or QCAP papers using the (conditional) value at risk were found, and it is unclear why this
has not been considered. Rodrigues and Agra reviewed 62 papers about BAP and QCAP and found
stochastic programming and robust optimization to be the most commonly used approaches [57]. Ro-
drigues and Agra state that the choice between robust and classical stochastic optimization depends
on the risk the decision-maker is willing to take, with robust being strongly risk-averse and stochastic
programming being risk-tolerant [57]. Rodrigues only mentioned two papers considering risk in the
optimization, namely Golias [13] and Karafa et al. [39]. However, both papers didn’t use value at risk
but instead used a bi-objective model. Having a method like the conditional value at risk could be a
good middle ground between expected value stochastic optimization and robust optimization, where
you can quantify the level of risk. It could be interesting to research.

To conclude, the best approach for a model optimizing the operational planning while considering en-
ergy consumption is found to be a two-stage stochastic optimization model. This model first makes
an initial here-and-now decision considering the uncertainty of electricity prices and the arrival times of
ships. Afterwards, this decision can be changed based on the realization of the uncertain parameters.
The stochastic optimization model should optimize based on the expected cost across all realizations
of the uncertain parameters.

4.2. Stochastic decomposition
Optimization problems that involve uncertainty can be complex and challenging to solve, both theoret-
ically and numerically. One strategy for solving such problems is to use decomposition strategies for
stochastic programming models. This involves breaking down the problem into smaller subproblems
that are easier to solve individually, leading to a simpler overall optimization process and reduced com-
putational complexity. By using decomposition strategies, we can solve optimization problems under
uncertainty more efficiently and effectively, taking into account the range of possible outcomes and
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generating feasible solutions. This approach addresses uncertainty directly and can help us reduce
complexity while producing accurate results.

Several decomposition algorithms exist to solve two-stage stochastic MIP problems faster. The most
commonly used approaches are Benders decomposition, dual decomposition, and progressive hedging
[56]. Each of these algorithms divides the original problem into subproblems, with each scenario rep-
resenting a different problem. Benders decomposition divides the problem into a first-stage problem
and a second-stage problem, where the second-stage problem becomes scenario-independent and
can be solved separately. Dual decomposition splits up the problem by creating scenario-dependent
first-stage decision variables and adds a constraint to prevent differences between the first-stage vari-
ables. With dual decomposition, the problem is split up into scenario-dependent subproblems, each
with a first and second stage. Similarly, progressive hedging also introduces scenario-dependent first-
stage variables, allowing the problem to be decomposed into smaller problems for each scenario. In
progressive hedging, differences between first-stage decision variables are penalized in the objective
function. More information on how these three methods work can be found in the paper by Roald et al.
[56].

For this thesis, a progressive hedging approach is used to decompose the problem. In Equation 4.2
and Figure 1, the general mathematical description and a brief description of the algorithm are given.
Here, all the functions and decision variables are the same as in equation 4.1, and s is realisation of
all the decision variables for one specific scenario. The last two terms of the objective represent the
penalty introduced due to deviations of the first-stage decision variables from the average value, x̄,
among all scenarios.

min
xs,ys

πsf
F (xs) + πsf

S(xs,ys, ξs) + λT
s (xs − x̄) +

ρ

2
||xs − x̄||2 (4.2a)

s.t. hF (xs) = 0, (4.2b)
gF (xs) ≥ 0, (4.2c)
hS(xs,ys, ξs) = 0, (4.2d)
gS(xs,ys, ξs) ≥ 0 (4.2e)
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Algorithm 1 Progressive Hedging
1: Initialization: Let ν ← 0 and w(t,ν)(ξ)← 0, ∀ξ ∈ Ξ, t = 1, . . . , T. Compute for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argmin
x

f1(x1) +

T∑
t=2

ft

(
xt;−→x t−1(ξ),

−→
ξ t

)
2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute for each t = 1, . . . , T − 1 and each D ∈ Gt:

x̄(ν)(D)←
∑

ξ∈D−1

πξx
(t,ν)(ξ) /

∑
ξ∈D−1

πξ

4: Price Update: Compute for each t = 1, . . . , T − 1 and each ξ ∈ Ξ:

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
x(t,ν)(ξ))− x̄(ν)(Gt(ξ))

]
5: Decomposition: Compute for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argmin
x

f1(x
1) +

T∑
t=2

ft

(
xt;−→x t−1(ξ),

−→
ξ t

)
+

T−1∑
t=1

[
w(t,ν)(ξ)T · xt + ρ · 1

2
∥xt − x̄(ν)(Gt(ξ))∥2

]
6: Termination: If a criterion is met, Stop. Otherwise, go to step 2.

4.3. Scenario generation and reduction
For stochastic programming, scenarios need to be created for the electricity prices and ship arrival
times. As there are infinite combinations possible for both of these random variables, one of the most
common ways to represent them is by taking a finite set of samples [56]. While a larger number of sam-
ples may provide more accurate identification of the problem, it also increases the problem’s complexity.
Therefore, an attempt should be made to represent uncertainty with the fewest amount of samples.

To create scenarios for the arrival times of ships, a quasi random sampling approach was taken. In a
paper by Kolley et al. [46], different methods were used to find the normal distribution of the arrival times
of ships up to 24 hours before arrival. Kolley found a standard deviation of the arrival times compared
to the estimated arrival times of 3 hours. It was also assumed that the average of the arrival times is
the same as the estimated arrival time. Instead of randomly taking samples from the distribution, the
samples were drawn quasi-randomly using the Halton sampling technique. Halton sampling results
in more uniformly distributed samples through the search space compared to random sampling. This
ensures that the created scenarios are more distinct, resulting in more accurate results for stochastic
optimization. All arrival time samples are rounded to the nearest hour, and a probability can be calcu-
lated for each hour, resulting in a probability of every ship.

In a paper by Crespo-Vazquez [6], different approaches to generate scenarios for electricity prices were
explained. First, historical data is obtained and split up by day. Scenarios can be obtained by taking
random samples or by clustering the electricity prices by day and taking the centroid of each cluster. Ad-
ditionally, weight for each scenario can be assigned, equiprobabilistic, by using a frequentist approach
or with Bayesian reasoning. Figure 4.3 shows the approaches.
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Figure 4.3: Scenario generation approaches for energy price

For this thesis, an approach similar to the clustering - frequentist approach proposed byCrespo-Vazquez
in [6] and the approach in [65] is used. Crespo-Vazquez found that the dynamic approach gave the
best results [6]. However, this approach was found to be too complex for this thesis. Therefore, a static
approach was selected since it also significantly outperforms the approach where random samples are
taken [6]. Historical electricity prices for the German day-ahead market were obtained from ENTSEO
[8]. A k-means clustering algorithm was used to create clusters of days with similar electricity prices.
From every cluster, the median day was taken to represent the entire cluster. The amount of clusters
was selected based on the elbow method. Additionally, a weight of the cluster was obtained by normal-
izing the amount of days within the cluster. Figure 4.4 shows 3 clusters of electricity prices alongside
the mean and standard deviation of the prices throughout a day.

Figure 4.4: Clusters of daily electricity prices in 2022

After obtaining scenarios for the arrival times and electricity prices, a total set of scenarios can be
created by taking the Cartesian product of the two sets. The probability of each scenario is obtained
by multiplying the probability of the arrival time with the electricity prices. With the method described
above, uncertainty can be accurately represented with fewer scenarios resulting in lower computation
times for the optimization model.



5
Experiments & Results

In this chapter the results obtained from the optimization model discussed in 3 are presented. The
computations were all conducted using the commercially available solver Gurobi v10.0.1, in combina-
tion with the Pyomo modeling language. For the stochastic decomposition, the mpi-sppy package was
utilized [44]. The optimization model was run on an Intel i7-7700HQ processor with a 2.80 GHz clock
speed and 8.00 GB of RAM.

All optimizations were solved using the progressive hedging algorithm, as described in section 4.2. Ten
iterations and a penalty parameter of 8000 were employed for each scenario’s solution to converge. A
convergence threshold of 0.01 was set. For most of the experiments the convergence was lower 0.01,
however not in every experiment the threshold was reached within 10 iterations. In all case the con-
vergence metric was lower then 0.05. For all models, a mixed-integer programming optimality gap of
5 percent was used. The solve time for each individual scenario was limited to 300 seconds. Unless
stated otherwise, each experiment was repeated ten times with different randomly generated parame-
ters.

The chapter begins with explaining the setup of all the experiments conducted in section 5.1. This
is followed by presenting the results of the experiemtns in section 5.2. Based on the experiments
conducted the fourth and fifth research question outlined in 1.3 can be answered.

5.1. Experimental setup
In this section the validation and verification of the model to ensure its accuracy and relevance, as
presented in section 5.1.1 and 5.1.2. The practicality of the model is evaluated by applying it to a real-
world case study: the Altenwerder container terminal in Hamburg, as outlined in Section 5.1.3. This
provides deeper insights into the model’s actual application and performance in a realistic scenario.
The evaluation of the impact of stochastic modeling is explained in Section 5.1.4. Subsequently, the
evaluation of the impact of demand response is explained in Section 5.1.5.

5.1.1. Verification
To ensure that the model is functioning as intended, verification was conducted. The model has been
built modularly, starting with a minimal viable problem formulated to determine a berth assignment
schedule considering energy consumption. Additional modules were then added to increase complex-
ity. The minimal viable problem consisted of a deterministic berth assignment problem. Subsequently,
the energy consumption of quay cranes, yard cranes, AGVs, and reefers was sequentially incorporated
into the model. Stochasticity was introduced by considering ship arrival times and electricity prices. Ver-
ification experiments were conducted after each additional module was implemented.

Verification involved conducting constraint verification and checking the model’s behavior under differ-
ent scenarios and conditions. For constraint verification, the right-hand side and left-hand side of each
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constraint were calculated and compared. The model’s behavior was checked by changing a single
parameter and observing if the results changed as expected. Special attention was given to checking
edge cases.

5.1.2. Validation
To validate the model’s results, a comparison is made with the model presented by Iris and Lam [33].
As explained in Section ??, Iris and Lam’s model accounts for energy consumption through On-shore
Power Supply, Quay Cranes, Yard Cranes, and Reefers. It also considers the energy supply from the
grid, solar panels, and a battery storage system. Different scenarios with varying solar production are
considered in their model. Iris and Lam conducted an experiment to determine sensitivity to solar pro-
duction, including a scenario without PV production. The results from this experiment are compared
with those obtained from the model presented in this thesis.

Both Iris and Lam’s model and the model presented in this thesis share similar implementations and
should, therefore, yield comparable results. However, certain differences exist. The key disparities
between Iris and Lam’s model and this thesis are outlined below:

• Iris and Lam consider multiple scenarios of solar production. However, in the zero PV production
experiment they conducted, the solar energy generated is zero in every scenario, resulting in the
same results for every scenario.

• In the model presented in this thesis, uncertainty in ship arrival times and electricity prices is
considered. Since Iris and Lam do not account for these uncertainties, the expected values of
both parameters were used in the comparison.

• Iris and Lam’s model includes a battery. However, if the solar panels do not produce power, the
battery cannot deliver power to the terminal or the grid.

• Iris and Lam considered the potential for PV panels to return power to the grid. Since the PV
production is zero, no power is returned in this case.

• Electricity consumption due to the setup of quay cranes was considered in Iris and Lam’s model.
However, as this constituted only 0.02 percent of the total energy consumption, it was not included
in the thesis model.

• Iris and Lam modeled the electricity consumption of reefers based on the berthing of ships. They
assumed a constant energy consumption for the reefers for every hour a ship was berthed. In
this thesis, the energy demand of reefers depends on the heat transfer with the environment. For
the validation, the heat transfer with the environment was set to zero, and instead, a constant
heat transfer based on the berthing time of ships was considered.

• Since Iris and Lam did not account for energy consumption from AGV charging, it was also not
consider in the thesis model for this comparison.

• Iris and Lammodeled the constraint related to the occupancy of the quay differently. They created
an initial berthing schedule where ships were already assigned to one of several discrete berths.
In this thesis, the quay occupancy was accounted for by assigning a length to every ship and the
quay.

To compare the results of Iris and Lam with the model presented in this thesis, the same parameters
were used wherever possible. However, due to minor differences in how ships are assigned a berth,
some additional parameters related to ship and quay length had to be estimated. For the ships, it
was assumed that the length for Feeder, Medium, and Jumbo ships is uniformly distributed. Similar
to another paper by Iris and Lam [34], lengths of U(70,200), U(210,300), and U(300,400) were used
for Feeder, Medium, and Jumbo ships, respectively. The quay length was estimated using the quay
occupancy with a simple calculation, as shown in Equation 5.1. Literature suggests that the average
quay utilization was 64 percent under normal workload conditions [19]. For this comparison, a quay
utilization of 0.6 was used.

∑
i∈V

lshipi · ehti = ηquay · lquay · thorizon (5.1)
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5.1.3. CTA Case study
To explore the potential for demand response, a case study was conducted on the HHLA Container
Terminal Altenwerder (CTA) in Hamburg. Altenwerder is a state-of-the-art container terminal with a high
degree of automation and operates in a climate-neutral manner. Due to these reasons, this terminal
was selected for the case study. In this section, an overview is of the Container Terminal Altenwerder
(CTA) and its operational characteristics.

The CTA is a large container terminal that, along with two other HHLA-owned container terminals in
Hamburg, handled a combined throughput of 6.1 million TEU in 2022 [25]. A sail list from the CTA
revealed that between April 10, 2023, and May 7, 2023, a total of 190 ships arrived at the CTA terminal,
averaging 7 per day [26]. Containers can access the terminal via ships, trucks, or trains. The terminal
employs a fleet of battery electric Automated Guided Vehicles (AGVs) to transport containers from the
seaside to the yard, where Automated Stacking Cranes (ASCs) store them. Containers destined for
the landside are picked up from the yard by trucks or terminal trucks, which move the containers to
the rail terminal. Rail-mounted gantry cranes then pick up the containers and load them onto trains.
An overview of the CTA terminal layout is presented in Figure 5.1. The travel distance of AGVs is
estimated based on the terminal layout described by Zhang et al. [78]. According to the layout of the
CTA, the average travel distance and time for AGVs are estimated to be 947 meters and 237 seconds,
respectively. The CTA is currently expanding its fleet of Battery Electric AGVs and has installed 18
charging stations with a total capacity of 4 MW [27]. While HHLA is working on establishing On Shore
Power (OPS) stations for container ships to recharge, such facilities are not yet available at the CTA
terminal [9]. Further technical details of the terminal can be found on the HHLA website [24]. Table ??
provides a summary of all the technical data related to the CTA.

Figure 5.1: Layout of container terminal altenwerder in Hamburg [24]
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Parameter Value
Ships arriving daily 7
Length of quay wall 1400m
AGV travel distance 947m
AGV travel time 237s
Quay cranes 14

Battery electric AGVs 74
Automated yard blocks 26
Reefer connections 2200
Charging points 18
Charging capacity 4 MW

On Shore Power capacity 0 MW

Table 5.1: Technical data of Container Terminal Altenwerder [24]

The parameters for the three types of machinery considered in the model were determined based on
the terminal data. He et al. conducted a study on the tradeoff between energy saving and time saving,
and their research provides estimates for the energy consumption of a Quay Crane (QC) and Yard
Crane (YC) as 8 kW and 2 kW per container move, respectively [20][21]. They also assumed that both
the QC and YCs have a handling speed of 30 containers per hour. Furthermore, in another paper by
He, the energy consumption of Automated Guided Vehicles (AGVs) was estimated per meter [22]. The
average energy consumption for AGVs was found to be 0.00935 kW/m. Additionally, based on the AGV
travel distance at the CTA, the handling rate is calculated to be 15 containers per hour.

Machinery type km hm emachinery
m

Quay Crane 14 30 8 kW
Yard Crane 52 30 2 kW

AGV 74 15 9 kW

Table 5.2: Parameters of terminal machinery

Three types of ships were considered to arrive at the container terminal: Feeder, Medium, and Jumbo
ships. Similar to Iris and Lam’s study [33], it was assumed that 40 percent of the ships are feeders, 40
percent are Medium, and 20 percent are Jumbo ships. The length of the ships is distributed uniformly
between 70 and 200 for Feeders, 210 and 300 for Medium ships, and 300 and 400 for Jumbo ships
[34]. The container demand was also assumed to be distributed uniformly between 200 and 600 for
Feeders, 600 and 1600 for Medium ships, and 1600 and 4500 for Jumbo ships [33]. The minimum and
maximum handling rates considered in each of the patterns are calculated based on the minimum and
maximum number of QC cranes that can be assigned to a ship class, as suggested by Iris and Lam.
The estimated time of arrival of the ships is randomly generated between 0 and 24. According to Kolley
et al. [46], the standard deviation of the estimated time of arrival is 3 hours, 24 hours prior to arrival.
The estimated time of finishing is calculated by dividing the container demand by the minimum handling
rate and adding the estimated time of arrival. If a ship is departing later than the estimated finishing
time, a penalty is applied. This penalty is obtained by converting the penalty stated by Iris and Lam to
euros, assuming an exchange rate of 0.63 euro/SDG [33]. Finally, a penalty of 20 percent of the late
penalty is assumed with regards to changing the berthing schedule created on the previous day, simi-
lar to the approach used by Liu et al. [49]. An overview of all the ship parameters is provided in Table ??.

Ship Class Share li di pmin
i , pmax

i eati efti clatei

Feeder 0.4 U(70,200) U(200,600) [50,100] U(0,24) di

pmin
i

+ eati 630
Medium 0.4 U(210,300 ) U(600,1600) [100,200] U(0,24) di

pmin
i

+ eati 1260
Jumbo 0.2 U(300, 400) U(1600,4500) [200,300] U(0,24) di

pmin
i

+ eati 1890

Table 5.3: Ship parameters
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For the energy consumption of reefer containers, it was assumed that all reefers are of the same type.
According to a breakdown by van Duin et al. [7], frozen reefer containers are the most common type.
The temperature range allowed for frozen products, such as meat and fish, is between -20 and -16 de-
grees Celsius [7]. The mass, specific heat, heat transfer coefficient, and area of a reefer container are
based on the average values for a 40ft container as reported by Kanellos [37]. The cooling efficiency
was estimated based on the ratio between cooling power and electrical power for a container with a
temperature of -18 degrees Celsius [37]. Additionally, the maximum cooling power was also obtained
from Kanellos’s study. It was assumed that out of the 2200 available reefer connections, on average
1500 connections are used at the same time. An overview of all reefer parameters can be found in
Table 5.4.

Parameter Value
Reefer connections used 1500
Maximum cooling power 6.0 kWh/h

Allowed temperature range [-20,-16] °C
Mass 24500 kg

Specific heat 2.76 Kj/ kg K
Heat transfer coefficient 0.4 W/m2K

Area 135.26 m2

Ambient temperature 11.6 °C
Cooling efficiency 0.95

Table 5.4: Reefer container parameters

In the CTA container terminal, there are 18 charging points available with a combined capacity of 4
MW. Information obtained from the HHLA website indicates that it takes approximately 1.5 hours to
fully charge one AGV [28]. Consequently, the total charging time for the entire AGV fleet is calculated
to be 6.2 hours. Assuming a charging speed of 4 MW over this duration, the total battery capacity re-
quired for all AGVs amounts to 24.7 MWh. Similar to Kanellos [37], a charging efficiency of 90 percent
is employed. An overview of all AGV charging parameters can be found in Table 5.5.

Parameter Value
Charging points 18
Charging capacity 4 MW
Fleet charging time 6.2 h
Battery capacity 24.7 MWh

Charging efficiency 0.95

Table 5.5: AGV charging parameters

Historical prices from the day-ahead market in Germany were obtained from the ENTSEO website [8]
to determine the electricity prices. To account for energy surplus or shortage, a penalty equivalent to
20 percent of the day-ahead price was assumed, following the approach by Crespo-Vazquez et al. [6].
The maximum allowed imbalance was set to 10 MW.

5.1.4. Evaluation of stochastic modeling
To evaluate the impact that stochastic modeling has on the solution, the results should be compared
with a deterministic solution. This allows for a trade-off between the added complexity and accuracy
that a stochastic model brings. In Section 4.1, the mathematical formulation of a two-stage stochastic
model with recourse was presented, as shown in Equation 5.2. In the formulation, x represents the
first-stage decision variables, yξ represents the second-stage decision variables, and ξ represents the
uncertain parameters.
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min
x,yξ

fF (x) + EP [f
S(x,yξ, ξ)] (5.2a)

s.t. hF (x) = 0, (5.2b)
gF (x) ≥ 0, (5.2c)
hS(x,yξ, ξ) = 0, (5.2d)
gS(x,yξ, ξ) ≥ 0 (5.2e)

The stochastic model can be simplified to what is known as the Expected Value (EV) problem. This
problem transforms the original stochastic formulation into a deterministic one by replacing all uncer-
tain parameters ξ with their corresponding expected value EP [ξ]. In Chapter 2, it was explained that
literature on demand response in container terminals often adopts a deterministic approach and solves
the EV problem. The formulation of the EV problem is presented in Equation 5.3. The use of the EV
solution can lead to a significant underestimation of costs since it does not account for stochasticity
in the model. For the problem discussed in this thesis, the EV solution does not consider the costs
associated with rescheduling and imbalance.

min
x,yξ̄

f(x,yξ̄, ξ̄) (5.3a)

where ξ̄ = EP [ξ] (5.3b)

To address this limitation and incorporate the rescheduling and imbalance costs, a reactive approach
(RE) can be employed. In a reactive problem, the first-stage decision variables are fixed, and for each
scenario, an optimization is conducted to minimize the second-stage costs. The mathematical formu-
lation of the RE problem is provided in Equation 5.4.

min
x0,yξ

fF (x0) + EP [f
S(x0,yξ, ξ)] (5.4a)

where x0 : fixed (5.4b)

A special version of the RE problem is known as the Expected Expectation Value (EEV) problem. In
the EEV problem, the first-stage decision variables are fixed based on the optimal solution obtained
from the EV problem. The mathematical formulation of the EEV problem is presented in Equation 5.5.
To quantify the impact of stochastic modeling, the Value of Stochastic Solution (VSS) can be calculated.
The VSS is defined as the difference between the expected cost of the EEV problem and the expected
cost of the Stochastic Problem (SP). This relation is expressed by Equation 5.13.

min
x̄,yξ

fF (x̄) + EP [f
S(x̄,yξ, ξ)] (5.5a)

where x̄ : optimal x in EV (5.5b)

V SS = EEV − SP (5.6)

Similar to the VSS, the Expected Value of Perfect Information (EVPI) can be utilized to evaluate the im-
pact of stochastic modeling. The EVPI can be calculated by taking the difference between the expected
cost of the Stochastic Problem (SP) and the cost of the Wait and See solution (WS), as presented in
Equation 5.14. The WS solution represents an ideal scenario where perfect information is available
for decision-making. In the WS solution, each individual scenario is treated separately, allowing for
different first-stage decisions for each scenario. However, it is important to note that the WS solution
is unattainable in practice since perfect information does not exist. The objective of the WS solution is
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given by Equation 5.7.

min
x,yξ

EP [f(x,yξ, ξ)] (5.7)

EV PI = RP −WS (5.8)

In summary, metrics like VSS and EVPI offer valuable insights into the benefits of stochastic modeling
in decision-making. The WS and EEV solutions provide upper and lower bounds for evaluating the
stochastic solution. To further explore stochastic modeling and its evaluation, the book by Birge and
Louveaux, ”Introduction to Stochastic Programming,” serves as a comprehensive resource [5].

5.1.5. Evaluation of Demand Response
To assess the impact of demand response on the solution, different electricity pricing schemes are
considered: No Price (NP), Constant Price (CP), and Real-Time Price (RTP) cases.

In the NP case, all energy-related costs in the objective function are disregarded. The objective func-
tion is simplified by removing the energy cost terms, resulting in equation 5.9.

min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (S late
i,w + Searly

i,w )

)
(5.9)

In the CP case, the electricity price cdat,w in the objective function is replaced with a constant price
c̄daw for each hour. The objective function is modified accordingly, resulting in equation 5.10.

min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (S late
i,w + Searly

i,w )+

∑
t∈T

c̄daw P da
t +

∑
t∈T

c̄daw (cshorP shor
t,w − csurP sur

t,w)

) (5.10)

The mathematical formulation presented in Section 3.2 remains the same for the RTP case. However,
for the CP and NP cases, minor adjustments need to be made. Specifically, Constraint 3.22 and Con-
straint 3.24 are replaced with Constraint 5.11 and Constraint 5.12, respectively. These changes ensure
that the energy consumed by operations, such as charging and cooling, matches the energy demand
for each time period without considering different prices. Constraints 5.11 and 5.12 prevent unneces-
sary rescheduling of charging and cooling times that would occur under the assumption of a constant
or no price.

ηcharge · Echarget, w =
∑

i ∈ V
∑
p∈Pi

em · ui,p,m ·Hi,p,t,w m = AGV , ∀t ∈ T, ∀w ∈ S (5.11)

ua · (ta− (tcmin + tcmax)/2) = ηreefer · Ereefer
t,w ∀t ∈ T, ∀w ∈ S (5.12)

By enforcing these constraints, unnecessary rescheduling of charging and cooling times is avoided, as
the timing of consumption becomes irrelevant in the CP and NP cases.

Overall, the evaluation of demand response involves comparing the results obtained from the NP, CP,
and RTP cases, taking into account the different pricing schemes and their impact on the solution.



5.2. Results 42

5.1.6. Evaluation of On-shore power supply
Currently, the CTA container terminal does not offer the option for ships to utilize an On-shore Power
Supply (OPS). However, considering the ongoing investigation by the terminal operator, HHLA, regard-
ing the installation of OPS in other container terminals in Hamburg, it is worthwhile to evaluate the
potential impact of OPS on the electricity consumption of the terminal.

Since OPS is not yet widely implemented, obtaining specific data on its usage is challenging. As
discussed in Section 2.4, the energy consumption of ships can be categorized into critical and time-
shiftable components. However, no breakdown of the share of energy demand from ships that falls
under the critical category was found. As a result, it is assumed that the entire energy consumption of
ships is critical, leading to a constant demand throughout the duration of a ship’s berthing period. Fur-
thermore, it is assumed that all ships have the capability to utilize OPS, and no constraints are imposed
on the number of available ”charging stations” for ships.

By assessing the impact of OPS on the electricity consumption of the CTA container terminal, valuable
insights can be gained, aiding the decision-making process regarding the potential implementation of
OPS in the future.

5.2. Results
This section presents the results of the conducted experiments. It begins with a validation experiment
in subsection 5.2.1 to assess the performance of the developed model. Subsequently, the impact of
stochastic modeling is analyzed in subsection 5.2.2. The following subsection, 5.2.3, presents the
findings of an experiment investigating the effect of demand response. The subsequent subsection,
5.2.4, explores the price sensitivity of the demand response experiment by repeating it with different
electricity prices. Finally, the impact of introducing on-shore power supply in the terminal is examined
in section 5.2.5.

5.2.1. Validation
The results of a validation experiment comparing the model presented in this study with the model
developed by Iris and Lam are summarized in Table ??. Two pricing strategies were considered: a
constant energy price for each hour of the day, and a real-time energy price that varies based on the
wholesale electricity market. The experiment was conducted by running the models 10 times with dif-
ferent randomly generated arrival times for ships. In the first five runs, 30 ships were considered, while
in the remaining runs, 40 ships were expected to arrive within the two-day time window.

Iris & Lam (Zero PV production) Thesis model
Total cost [€] Total cost [€]

# Real-time price Constant price Real-time price Constant price
1 108788.1 119311.4 104387.0 117257.4
2 104460.2 112578.6 83132.7 98409.2
3 101185.3 121967.3 91191.9 102404.0
4 97015.2 109504.1 83677.0 100286.8
5 110036.9 128185.7 75326.9 93376.9
Avg. 104297.1 118309.4 87543.1 102346.9
6 132014.2 157487.6 106498.1 137411.4
7 121328.8 151907.5 99464.1 121513.5
8 147648.2 164447.0 112440.5 130757.9
9 131308.0 155608.0 105591.5 125700.4
10 127688.2 154309.1 109421.1 133906.4
Avg. 131997.5 156751.8 106683.0 129857.9

Table 5.6: Validation experiment
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A comparison of the total costs obtained from Iris and Lam’s model and the thesis model reveals no-
table differences. On average, the costs calculated by Iris and Lam were approximately 15-20 percent
higher than the costs obtained in this study.

Furthermore, the impact of pricing schemes can be analyzed. Both Iris and Lam’s model and the thesis
model demonstrated cost reductions when utilizing real-time pricing compared to constant pricing. Iris
and Lam achieved cost reductions of 12 percent and 16 percent for 30-ship and 40-ship alternatives,
respectively. Similarly, the thesis model achieved cost reductions of 14 percent and 18 percent for the
same alternatives.

Additionally, the cost difference between 30-ship and 40-ship alternatives was examined. Iris and Lam’s
model experienced a 27 percent increase in the objective function for the real-time price alternative and
a 32 percent increase for the constant price alternative. In contrast, the thesis model demonstrated a
22 percent increase for the real-time price alternative and a 27 percent increase for the constant price
alternative.

These validation results provide insights into the performance and accuracy of the developed model,
indicating its ability to capture cost dynamics and generate comparable outcomes to an existing model.

5.2.2. Stochastic modeling
This section presents the results of the stochastic problem (SP) and compares them with the solutions
obtained from the expected value problem (EV), reactive problem (RE), expectation of the expected
value problem (EEV), and wait and see problem (WS). The problem was solved 10 times for all problem
formulations.

Table 5.7 provides a comparison between the EV and SP problems. As discussed in 5.1, the EV prob-
lem underestimates the total operational cost by considering only the First Stage Cost (FSC), which
combines the late and day-ahead energy costs. The remaining costs, namely reschedule and imbal-
ance, are grouped as the Second Stage Cost (SSC).

EV SP
# FSC [€] FSC [€] SSC [€]

1 36685.3 39086.8 11051.8
2 41680.7 42223.5 4825.6
3 45963.7 47097.0 10362.0
4 34575.3 35757.0 4071.9
5 50004.6 52365.7 10172.6
6 45651.0 48725.9 4078.5
7 47160.2 49402.4 11751.8
8 33573.2 37112.1 2802.2
9 44801.1 48264.2 6291.7
10 37797.4 41539.6 11176.6
Avg 41789.3 44157.4 7658.5

Note: EV (Expected value problem ), SP (Stochastic problem),
FSC (First stage cost), SSC (Second stage cost),

Table 5.7: Cost comparison between EV and SP

The comparison reveals that the first stage costs of the EV and SP are similar. However, when the
second stage costs are included, the total cost of the SP is €10,026.6 higher than that of the EV.
To incorporate the second stage costs, the reactive problem (RE) is formulated by making assumptions
about the first stage decision variables. Two reactive strategies, RE and RE+, are defined to determine
the energy consumption for each hour and the start time for each ship. In the RE strategy, it is assumed
that no day-ahead prediction of energy consumption is available, leading to all energy being purchased
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in the second stage based on the imbalance price. The start time of operations is assumed to be equal
to the estimated arrival time. In the RE+ strategy, the daily average energy consumption (estimated at
8.5 MWh for the CTA case) is purchased on the day-ahead market for each hour, while the start time
of operations remains the same as in the RE scenario. The EEV strategy utilizes the solution of the EV
problem for the day-ahead energy consumption and start time.

Table 5.8 displays the costs for the four strategies (RE, RE+, EEV, and SP) used to incorporate uncer-
tainty in the model. Additionally, the WS strategy is included to demonstrate the hypothetical maximum
cost reduction. However, the WS solution is not practically feasible as it assumes a perfect forecast.
The cost reduction gap with respect to the RE solution is determined for each strategy. By employing
the EEV strategy, a cost reduction of 16.6 percent can be achieved. The stochastic problem presented
in this thesis further increases the cost reduction to 20.6 percent. The hypothetical maximum reduction
achievable is 32.4 percent.

RE RE+ EEV SP WS
# Total cost [€] Total cost [€] Total cost [€] Total cost [€] Total cost [€]

1 62863.8 58775.9 53217.3 50138.7 38999.6
2 62074.0 57967.5 53056.8 47049.1 42296.7
3 69925.5 63784.6 59770.4 57459.1 47054.6
4 53117.1 51103.7 40004.2 39828.8 35364.0
5 81891.7 74881.7 67645.8 62538.3 52268.0
6 67430.5 61454.6 53747.0 52804.4 48830.5
7 75826.3 69324.2 62984.9 61154.2 49513.6
8 48113.5 45913.3 41666.9 39914.3 37006.6
9 71876.7 65269.8 56203.4 54556.0 48370.4
10 59377.4 55685.1 55818.4 52716.3 41260.9
Avg 65249.7 60416.1 54411.5 51815.9 44096.5
Gap (%) 0.0 -7.4 -16.6 -20.6 -32.4

Note: RE (Reactive problem), EEV (Excpectation of the expected value problem ), SP (Stochastic problem),
WS (Wait-and-see problem), Gab (%) = (x−AvgRE) ∗ 100/AvgRE

Table 5.8: Influence of stochastics

Based on the differences between the EEV and SP solutions, the Value of the Stochastic Solution
(VSS) is calculated using Equation 5.13. Similarly, the Expected Value of Perfect Information (EVPI) is
computed using Equation 5.14, which represents the difference between the SP and WS solutions.

V SS = EEV − SP = 54992.1− 53185.9 = 1806.2€ (5.13)

EV PI = SP −WS = 53185.9− 44096.5 = 9089.4€ (5.14)

These results demonstrate the value and benefits of incorporating stochastic modeling in decision-
making processes, allowing for cost reductions and providing insights into the potential value of perfect
information in uncertain environments.

5.2.3. Demand response
In this section, three different pricing strategies, namely No Price (NP), Constant Price (CP), and Real-
Time Price (RTP), are compared. Price scenarios were created using the electricity prices in Germany
for 2022, and ten instances were run for each pricing strategy.

Figure 5.2 illustrates the ship schedule and energy consumption for the second instance in the fourth
scenario. By plotting the ship schedule and energy consumption, a visual comparison can be made
between the different pricing strategies, including the decisions made in the first and second stage.
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(a) Ship schedule - No price (b) Energy demand - No price

(c) Ship schedule - Constant price (d) Energy demand - Constant price

(e) Ship schedule - Real-time price (f) Energy demand - Real-time price

Figure 5.2: Ship schedule and hourly energy consumption for different pricing strategies
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For the NP alternative, power imbalances can be observed for most hours, resulting in higher energy
costs. When the cost of electricity is taken into account in the CP alternative, these imbalances are
significantly reduced, leading to lower energy costs. Once real-time prices are considered in the op-
timization (RTP scenario), the energy consumption pattern also changes, with reduced consumption
during times of high prices. Some differences in the berthing schedule can be observed between the
different alternatives, although they are minor. Most of the differences are noticeable between the RTP
scenario and the other two scenarios. For example, in the RTP scenario, Ship 1 departs later to take
advantage of lower prices in the afternoon, while Ship 9 departs earlier to finish just before the evening
peak price.

Table 5.9 presents the results of the different pricing strategies, including No Price, Constant Price, and
Real-Time Price. The costs are divided into energy-related costs and schedule-related costs. It can be
observed that introducing a constant price scheme reduces the total cost by 5.9 percent. With real-time
prices, the cost further decreases by 13.2 percent.

No price Constant price Real-time price
# EC [€] SC [€] TC [€] EC [€] SC [€] TC [€] EC [€] SC [€] TC [€]

1 44628.1 13482.0 58110.1 43325.8 13692.0 57017.8 38798.7 11340.0 50138.7
2 49746.6 6804.0 56550.6 47013.8 6602.4 53616.2 42317.8 4731.2 47049.1
3 53979.6 11390.4 65370.0 50921.5 10735.2 61656.7 47429.5 10029.6 57459.1
4 45266.7 3931.2 49197.9 39856.1 4989.6 44845.7 35544.8 4284.0 39828.8
5 57095.3 11793.6 68888.9 55677.2 11844.0 67521.2 52357.5 10180.8 62538.3
6 55265.5 3376.8 58642.3 52559.4 4737.6 57297.0 48559.9 4244.5 52804.4
7 55561.2 10533.6 66094.8 52899.1 9626.4 62525.5 48999.4 12154.8 61154.2
8 46231.0 4284.0 50515.0 40303.2 3780.0 44083.2 35991.5 3922.8 39914.3
9 54584.0 8618.4 63202.4 51742.4 6442.8 58185.2 47626.0 6930.0 54556.0
10 50439.0 9651.6 60090.6 45624.5 8794.8 54419.3 41401.5 11314.8 52716.3
Avg 51279.7 8386.6 59666.3 47992.3 8124.5 56116.8 43902.6 7913.3 51815.9
Gap (%) 0.0 0.0 0.0 -6.4 -3.1 -5.9 -14.4 -5.6 -13.2

Note: EC (Energy cost), SC (Schedule cost), TC (Total cost), Gab (%) = (x−AvgNP ) ∗ 100/AvgNP

Table 5.9: Comparison of different pricing strategies with 2022 prices

Figure 5.3 displays the average energy demand across all instances for the NP and RTP schemes.
A negative correlation between energy demand and electricity price is observed in the real-time case.
The average demand increases at night and in the early afternoon when prices are lowest. To quantify
this correlation, the Pearson correlation coefficient is calculated between energy demand and electricity
price. Table 5.10 presents the Pearson coefficient for NP, CP, and RTP. No correlation exists between
price and demand in the case of NP and CP pricing schemes. However, when RTP is considered, the
Pearson correlation coefficient becomes -0.85, indicating a strong negative correlation.

Furthermore, increased volatility in electricity demand for RTP can be observed in Figure 5.3. Table
5.11 shows the Peak-to-Average Ratio (PAR) calculated for all different pricing schemes. The NP and
CP schemes have PAR values of 1.17 and 1.19, respectively. In contrast, the RTP scheme exhibits a
significantly higher PAR of 2.05.

Similarly, other decision variables can be compared between different pricing schemes. Figure 5.4
illustrates the number of berthed ships, the handling rate of ship loading/unloading, the rate of AGV
charging, and the rate of reefer cooling. Each of these variables responds to price signals, with a higher
difference between NP and RTP indicating a greater responsiveness to price changes. To compare the
sensitivity of each variable to price changes, the standard deviation of the difference between the NP
and RTP schemes is computed. Each standard deviation is then normalized by dividing it by the mean.
The Flexibility Coefficient (FC), calculated using Equation 5.15, quantifies the degree of flexibility for
each variable (X).
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Figure 5.3: Average energy demand with No pricing and Real-time pricing

# No Price Constant Price Real-Time Price

1 0.15 0.21 -0.79
2 -0.35 -0.08 -0.87
3 -0.16 -0.35 -0.84
4 0.23 0.14 -0.86
5 -0.07 -0.04 -0.80
6 -0.17 -0.12 -0.86
7 0.09 0.05 -0.84
8 -0.19 -0.40 -0.87
9 -0.29 -0.29 -0.88
10 0.09 0.03 -0.86
Avg -0.07 -0.08 -0.85

Table 5.10: Pearson Correlation Coefficient (r) for Different Pricing Strategies

# No Price Constant Price Real-Time Price

1 1.35 1.37 2.24
2 1.21 1.15 2.06
3 1.10 1.10 1.90
4 1.34 1.35 2.44
5 1.04 1.05 1.77
6 1.07 1.09 1.87
7 1.07 1.11 1.85
8 1.30 1.35 2.33
9 1.08 1.11 1.89
10 1.19 1.18 2.11
Avg 1.17 1.19 2.05

Table 5.11: Peak to Average Ratio (PAR) for Different Pricing Strategies
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FC =
σ(XNP −XRTP )

X̄NP
(5.15)

(a) Average amount of ships berthed (b) Average handling rate

(c) Average charging rate (d) Average cooling rate

Figure 5.4: Comparison No pricing and Real-time pricing for different variables

In Table 5.12 the flexibility coefficient is given for the variables mentioned above. Here it can be ob-
served that the cooling rate is the most flexible, with a normalised standard deviation of 1.48. This
implies that the rate at which reefers are cooled can be adjusted more readily in response to price
changes. Following this, the AGV charging rate also demonstrates notable flexibility. The handling
rate and the number of ships berthed exhibit relatively lower levels of flexibility compared to the other
variables, and other therefore more constraint by the operational planning.

Variable FC [-]

Ships berthed 0.12
Handling rate 0.18
Charging rate 0.41
Cooling rate 1.48

Table 5.12: Flexibility coefficient (FC) for different variables

These results highlight the impact of different pricing strategies on various decision variables and
demonstrate the effectiveness of demand response mechanisms in optimizing costs and adapting op-
erations based on real-time price.
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5.2.4. Price sensitivity
In light of the ongoing energy crisis in Europe, the electricity prices in 2022 were significantly higher
compared to previous years. To assess the impact of demand response under different price scenarios,
a sensitivity analysis was conducted. Figure 5.5 illustrates the electricity prices in the Netherlands from
2016 to 2022. It can be observed that there was a notable increase in day-ahead electricity prices be-
tween 2020 and 2022. This upward trend, coupled with the rising standard deviation of energy prices,
signifies increased volatility in the energy market.

Figure 5.5: Historical electricity prices for the day-ahead market in the Netherlands

To evaluate the influence of prices, the experiments described in Subsection 5.2.3 were repeated us-
ing the price data from 2019. The results are presented in Table 5.14. Since the energy prices were
lower in 2019, the energy-related costs exhibit a significant decrease compared to the higher prices of
2022. When comparing the gap between the constant price and real-time price schemes, a total cost
reduction of 1.3 percent and 12 percent is observed, respectively.

To further investigate the impact of rising electricity prices, the cost based on the real-time price scheme
was calculated for each year from 2016 to 2022. For each year, ten instances were simulated, and the
average cost of all instances, as well as the cost increase compared to 2016, are shown in Table 5.14.
It can be seen that due to the upward trend in electricity prices, the energy costs have increased by
more than 800 percent since 2016. Consequently, the total costs have also risen significantly. Based
on the simulations conducted in this study, no clear relationship can be observed between the schedul-
ing costs and the rising electricity prices.

In summary, the sensitivity analysis highlights the considerable impact of electricity prices on the energy-
related costs and the overall cost of operations. The results underscore the importance of incorporating
demand response strategies to mitigate the effects of fluctuating electricity prices and improve cost
efficiency in port operations.
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No price Constant price Real-time price
# EC [€] SC [€] TC [€] EC [€] SC [€] TC [€] EC [€] SC [€] TC [€]

1 5880.4 11844.0 17724.4 5719.5 10180.8 15900.3 4818.0 11491.2 16309.2
2 6420.6 7106.4 13527.0 6236.1 7812.0 14048.1 5283.5 3628.8 8912.3
3 7079.7 8013.6 15093.3 6715.2 10827.6 17542.8 5882.2 8693.5 14575.7
4 5896.8 4384.8 10281.6 5322.6 3024.0 8346.6 4416.5 3880.8 8297.3
5 7389.1 9374.4 16763.5 7287.6 11877.6 19165.2 6540.4 11852.4 18392.8
6 7127.7 4435.2 11562.9 6873.5 4183.2 11056.7 6056.7 3074.4 9131.1
7 7144.6 10836.0 17980.6 6939.1 12322.8 19261.9 6099.3 9618.0 15717.3
8 6042.9 4284.0 10326.9 5294.0 3376.8 8670.8 4319.7 3780.0 8099.7
9 7127.2 7761.6 14888.8 6744.7 5594.4 12339.1 5971.8 7761.6 13733.4
10 6617.9 9651.6 16269.5 5987.5 10155.6 16143.1 5131.2 8744.4 13875.6
Avg 6672.7 7769.2 14441.8 6312.0 7935.5 14247.4 5451.9 7252.5 12704.4
Gap (%) 0.0 0.0 0.0 -5.4 2.1 -1.3 -18.3 -6.7 -12.0

Note: EC (Energy cost), SC (Schedule cost), TC (Total cost), Gab (%) = (x−AvgNP ) ∗ 100/AvgNP

Table 5.13: Comparison of different pricing strategies with 2019 prices

Average energy cost Average schedule cost Average total cost
Year € % € % € %

2016 5124.8 100.0 7646.5 100.0 12771.3 100.0
2017 6537.3 127.6 7208.2 94.3 13745.6 107.6
2018 7604.0 148.4 7174.4 93.8 14778.4 115.7
2019 5451.9 106.4 7252.5 94.8 12704.4 99.5
2020 4418.7 86.2 7232.4 94.6 11651.1 91.2
2021 29074.0 567.3 7279.4 95.2 36353.5 284.6
2022 43902.6 856.7 7913.3 103.5 51815.9 405.7

Table 5.14: Average cost per year between 2016-2022 with Real-time prices
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5.2.5. On-shore power supply
An experiment was conducted to assess the potential impact of implementing On-Shore Power Supply
(OPS) on a large scale. Three alternatives were formulated to evaluate the effect of OPS on energy
consumption. Based on a study that investigated container ships with a capacity of 65,000 TEUs, an
average hourly demand of 2 MWh/h was reported [79]. For each alternative, a different average hourly
demand was assumed: 0 MWh/h, 1 MWh/h, and 2 MWh/h. Ten optimizations were performed for each
alternative, with different randomly generated schedules.

Figure 5.6 presents the average energy demand for all three alternatives. It can be observed that the
introduction of OPS leads to a significant increase in the energy consumption of a container terminal.
In the case where no power demand is assumed (0 MWh/h), the total daily consumption is 194 MWh.
However, if an average power demand of 2MWh/h is assumed for each ship, the total daily consumption
rises to 329 MWh.

Figure 5.6: Energy demand with the introduction of on-shore power supply



6
Discussion

The Discussion chapter serves as a critical analysis and interpretation of the results presented in Chap-
ter 5.2. This chapter delves into a comprehensive examination of the findings and their implications,
aiming to provide a deeper understanding of the research outcomes. Section 6.1 focuses on the in-
terpretation of the results, where key insights, trends, and patterns are identified and discussed. Fur-
thermore, in Section ??, the research contribution of this thesis is explored, highlighting the practical
implications and potential applications of the findings. The limitations encountered during the research
process are addressed in Section 6.3. Lastly, Section 6.4 presents potential avenues for future re-
search, suggesting areas that could benefit from further investigation and advancement.

6.1. Interpretation
This section aims to provide an interpretation of the results presented in Chapter 5.2. The findings
from each experiment will be discussed in their respective subsections, allowing for a comprehensive
analysis of the outcomes.

6.1.1. Validation
When comparing the results of the Iris and Lam model with the model presented in this thesis, a dif-
ference of 15-20 percent in the total cost was observed. This cost difference can be attributed to the
disparity in objective functions. In the Iris and Lam model, two terms are used to calculate the energy
cost. One term calculates the energy cost for the base scenario, while an additional term calculates
the energy cost for each of the other four scenarios, weighted by their expected occurrence (5 percent
each). The variation between the scenarios is due to the photovoltaic (PV) production. In the zero PV
production experiment, all scenarios are effectively the same. On the other hand, the thesis model
utilizes only the base scenario, without considering the energy cost of alternative scenarios. Therefore,
it is expected that a 20 percent energy cost would be observed (4× 5 = 20 percent), which aligns with
the results obtained in this thesis model.

Regarding the comparison between real-time and constant price alternatives, it can be concluded that
both models exhibit similar responses to energy prices. However, there is a notable difference be-
tween the 30-ship and 40-ship cases, indicating different scaling behaviors. This discrepancy can be
explained by the way both models handle berth assignment. Iris and Lam create a pre-determined
schedule based on ships expected to use the same berth, but it is unknown whether the schedule for
the 40-ship alternative allows for more available berths compared to the 30-ship alternative. In the
thesis model, the length of the quay is scaled according to the expected number of arriving ships.

In conclusion, the validation experiment demonstrated that the model behaved as anticipated based
on the literature. Adjusting the results of the Iris and Lam model based on differences in the objective
yields similar outcomes. Both models exhibit consistent responses to changes in electricity prices, but
they differ slightly in their scaling behaviors when the number of ships increases. Overall, the results
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of the validation experiment indicate similar behavior between the two models.

6.1.2. Stochastic modeling
The results in Section 5.2.2 reveal that simply using expected values (EV) for electricity prices and ship
arrival times leads to a significant underestimation of costs.

Similar to other studies, this thesis assumes an additional cost of 20 percent for rescheduling and im-
balances. In the renewable energy (RE) scenario, where all energy is considered an imbalance, it is
logical that the total cost is 20 percent higher. If a higher value were used for rescheduling and imbal-
ances, a larger difference between the RE and standard planning (SP) solutions could be expected.

The additional cost reduction for the SP compared to the EV solution is lower than expected. Two rea-
sons were identified for this minimal impact. Firstly, examining the energy price scenarios as shown
in Section 4.3, it can be observed that all scenarios are temporally aligned, with peaks and troughs
occurring simultaneously. This implies that operations are shifted to the same times in every scenario.
Despite significant differences in the size of the peaks and troughs and themean price, distinct solutions
are not generated. Secondly, the ship arrival time windows were broad enough to mitigate uncertainty
caused by late arrivals. If a ship arrived late, it was often still possible to complete handling the ship be-
fore the estimated finish time, thereby avoiding late fees. Since starting the handling of a ship earlier in
another scenario would not lead to reduced late costs, especially considering the incurred rescheduling
costs, the optimal solutions for each individual scenario are similar. As a result, only a modest increase
in cost is observed due to the introduction of uncertainty.

In summary, the impact of stochastic modeling on costs is substantial, highlighting the limitations of
using expected values alone. The introduction of uncertainty and considering a range of scenarios
leads to a more accurate assessment of costs, particularly in terms of rescheduling and imbalances.

6.1.3. Demand response
The results clearly demonstrate that implementing a demand response program can lead to a significant
reduction in operational costs. Even considering a constant electricity price alone yields a substantial
benefit, with a 5.9 percent cost reduction. When real-time prices are taken into account, this benefit in-
creases further to a 13.2 percent cost reduction. It can be concluded that there is potential for demand
response in container terminals.

Interpreting the influence of energy-related costs on scheduling costs is challenging. In some instances,
both the constant price and real-time price schemes resulted in lower scheduling costs compared to
the no-price scheme, while in other instances, the opposite was observed. On average, scheduling
costs decreased in 2022 for both the constant and real-time price schemes. However, in 2019, a small
cost increase was observed for scheduling costs. In all cases, the absolute cost reduction or increase
was small, always lower than 400 euros. To draw more conclusive findings, it would be beneficial to
repeat the experiments more then ten times and with better lower convergence threshold between the
scenarios.

An unexpected result is that the real-time pricing (RTP) strategy led to higher peak loads. Generally,
it is not desirable to have these peak loads. Since the peak electricity cost is not considered in this
model, there is no penalty to incentivize reducing peak consumption.

The flexibility of the cooling rate of reefer containers was found to be greater than anticipated. When
estimating the heat loss of reefers, factors such as variations in ambient temperature or solar irradiance
were not included. Additionally, the heat loss was assumed to be independent of the temperature of the
reefer container, resulting in a constant heat loss throughout the day. Treating all reefers as one large
cold storage would cause them to turn on simultaneously, leading to high peak loads generated by
the reefers, which is undesirable. Modeling each reefer container independently, considering accurate
heat losses, would provide a more realistic assessment of reefer flexibility.
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6.1.4. Price Sensitivity
The price sensitivity experiment revealed that the potential for demand response is not strongly cor-
related with electricity prices. It is expected that demand response will have a lower impact on costs
when electricity prices are lower. However, when comparing the electricity prices of 2019 and 2022, an
eight-fold increase can be observed, while the cost reduction from the no-price scenario to the real-time
price scenario only decreased from 13.2 percent to 12.0 percent.
Increasing energy prices do not significantly affect scheduling costs. It was expected that as energy
costs increase, scheduling costs would also slightly increase. However, a different tradeoff was ob-
served, where higher scheduling costs were not necessarily accompanied by much lower energy costs.

6.1.5. On-shore Power Supply
The results of the on-shore power supply (OPS) experiment clearly demonstrate the significant impact
of implementing OPS on a container terminal’s electricity demand. However, practical considerations
must be taken into account, particularly regarding the availability of capacity on the electricity grid in the
port, as additional capacity may not be readily accessible. These findings underscore the substantial
influence of OPS implementation on a terminal’s energy requirements, emphasizing the importance
of considering energy consumption patterns and optimizing scheduling strategies in conjunction with
OPS to achieve efficient resource utilization and minimize environmental impact.

6.2. Implication
The insights garnered from this research bear significant implications for the operations and manage-
ment of container terminals. By incorporating electricity prices into operational planning, the study
demonstrates the potential for substantial cost reductions, ranging from 12-13.2 percent. It becomes
apparent that the balance between minimizing electricity costs and additional operational expenses
leans towards reducing electricity costs. Failing to account for electricity demand in operational re-
search can lead to inaccurate portrayals of actual operational costs experienced by a terminal.

The findings of this thesis align with existing literature. Iris and Lam identified cost reductions between
CP and RTP of 12-19 percent when neither solar panels nor battery storage were factored in, and re-
ductions of 18.5-21 percent when considering these sources, albeit with uncertainty in solar production.
Mao reported cost savings of 5-6 percent between CP and RTP, considering the heating system as
well. Pu found a cost reduction between NP and a time of use pricing scheme of between 5-19 per-
cent. This thesis’ cost reduction result of 12-13.2 percent between NP and RTP (or 7.8 - 10.3 percent
between CP and RTP) aligns with those found in previous studies. Unlike those studies, this thesis
modeled a higher quantity of flexible loads but did not factor in potential cost savings associated with
shifting on-shore power supply, which may become more prevalent in the future. Additionally, consid-
ering uncertainty in arrival times and electricity prices resulted in a modest gain from demand response.

This thesis provides an overview of different methods for controlling electricity demand. This ground-
work can be employed by other researchers to investigate each potential source more deeply, analyz-
ing how electricity demand can be managed and the operational implications thereof. Some of these
sources, such as modulating the cooling rate of reefers or the lifting cycle of quay cranes, have been
studied to a certain extent. As evidenced in this thesis, numerous unexplored opportunities (even be-
yond those presented here) exist to decrease energy consumption and costs, aspects that have largely
been overlooked in the scientific literature.

As noted in Section 2, most research into energy consumption at container terminals is centered on
port loads, in tandem with the deployment of energy storage technologies or renewable energy infras-
tructure, such as large battery packs, solar power plants, or wind turbines. The flexibility of loads is sel-
dom considered. The findings presented in this thesis suggest that research into energy management
systems or microgrids in future ports should not solely focus on the introduction of new technologies.
More efficient control of existing loads can significantly reduce energy-related costs. Importantly, these
reductions can be achieved without significant investments into storage or renewable generation—
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improvements in terminal operations software alone could lead to substantial savings.

Another practical implication of this thesis is that future research employing a similar methodology
should consider accounting for uncertainty within the optimization process. By incorporating a suffi-
cient number of distinct scenarios, significant cost savings can be achieved. When stochasticity is
taken into account, a less computationally intensive approach, such as the expectation of the expected
value problem, can provide results that are close to those obtained with a two-stage stochastic problem.

6.3. Limitations
This study provides valuable insights into the potential for demand response in container terminals.
However, to fully appreciate the accuracy of these findings, it is crucial to understand the limitations of
the model.

As discussed in chapter 2, our understanding of energy consumption within container terminals is lim-
ited. It is challenging to determine precisely how much energy is used and from which sources. There
is a lack of publicly accessible data detailing the breakdown of energy consumption within terminals.
Because of this it is necessary to make certain assumptions in any study exploring energy consumption.

Furthermore, container terminals represent highly complex systems, and modeling their operations
carries inherent complexities. Numerous interconnected planning problems exist within a terminal, as
mentioned in section 3.1.1. This thesis examined the aspects of these planning problems that have
the most significant impact on energy consumption. Yet, to more accurately evaluate a terminal’s flex-
ibility potential, all operational costs should be considered. This research primarily focused on the
operational costs related to ship scheduling. A more comprehensive trade-off analysis, including all op-
erational costs and energy costs, would provide a more accurate depiction of the potential for demand
response.

Another consideration in assessing the accuracy of our results involves the time-step used in the model.
For this study, average energy consumption was measured over one hour, a decision driven primarily
by computational constraints. This approachmay have overlooked potential demand response sources
that operate on the scale of minutes or even seconds.

Lastly, this study didn’t fully account for the electricity costs associated with peak loads. As outlined
in chapter 2, peak loads can significantly contribute to overall electricity costs. As shown in section
2.3, the peak demand of a group of eight quay cranes can reach around 20 MW, which is similar to
the overall hourly peak demand of the HHLA container terminal described in section 5.2.3. However,
these peak loads are typically brief, often lasting only a few seconds, and are therefore not reflected
in hourly averages. Therefore, including peak loads in the model would not be possible, as the model
only account for hourly loads.

6.4. Recomendations
Based on the findings of this thesis, several recommendations for future research can be made.

Firstly, enhancements to the model presented in this thesis can be considered. In particular, alongside
modeling the energy consumption of every load, an addition to consider is the peak power of each load.
By accurately modeling this, an additional objective could be integrated to account for the peak load of
the container terminals. This would provide a more precise estimation of energy-related costs.

Secondly, improvements could be made to the modeling of reefer energy consumption. Taking into
account precise weather conditions, treating individual reefers rather than one large reefer park as a
single entity, and constraining the peak load of reefers may lead to a more accurate consumption pat-
tern.
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Moreover, there’s a notable need for further research into the simulation of energy consumption within
container terminals. Currently, understanding of how specific operations impact energy consumption is
limited, with many values found in the literature based on assumptions. Precise simulations of energy
usage within a container terminal, combined with validation using real-life data, are crucial. This could
forge a more robust link between the operational decisions made and the resulting energy demand.

Lastly, conducting energy price-aware optimization of the most common operational research problems
within container terminals is recommended. This would help to identify additional opportunities for cost
savings and efficiency improvements.



7
Conclusion

This thesis investigated the potential for demand response within a container terminal. The central
research question for this study was:

What is the potential of demand response for reducing the energy and operational costs of a
container terminal?

In this thesis, it was demonstrated that a cost reduction of 12-13 percent can be achieved when imple-
menting a real-time price demand response program compared to a situation where energy cost are
not considered. With a energy aware optimization the energy-related costs decrease while the other
operational costs remain the same.

Sub-Questions:

1. What demand flexibility exists in a container terminal?

The primary sources of energy consumption in an electrified terminal were identified as ves-
sels, quay cranes, yard cranes, automated guided vehicles, refrigerated containers, build-
ings, and lighting. Among these, all except lighting can be utilized for demand response to
some extent. It was discovered that adjusting the berthing schedule could alter the consump-
tion of vessels, quay cranes, and yard cranes. Similarly, flexible loads on the ship, handling
rates, lifting speed, and the charging rate of automated guided vehicles can influence the
energy consumption. Moreover, the demand of refrigerated containers and buildings can be
varied by adjusting the heating/cooling rate of the (HV)AC system.

2. Which demand response programs would be suitable for a container terminal to participate in?

Price-based demand response programs, such as real-time pricing, were identified as hav-
ing the greatest potential for container terminals. Given the challenge of accurately fore-
casting energy consumption in a terminal, price-based demand response programs allow
for consumption adjustment without upfront commitment, therefore requiring less precise
forecasting.

3. How can the energy consumption of terminal operations be modeled and analyzed, given uncer-
tain electricity demand and supply?

Ship arrival times and electricity prices were identified as the most significant sources of un-
certainty for both supply and demand. Due to the sequential nature of electricity markets and
operational planning in container terminals, a two-stage optimization model was determined
as the best method to represent this uncertainty. The day-ahead costs were calculated in
the first stage, and real-time costs were calculated based on expected values in the second
stage. A decomposition method like progressive hedging can be used to solve the stochastic
model more rapidly.
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4. What is the impact of demand response in a container terminal on peak energy consumption and
energy consumption throughout the day?

When considering a constant energy price, no correlation was found between price and
consumption. However, with a real-time pricing strategy, a strong negative correlation was
observed with a Pearson correlation coefficient of -0.85 . Additionally, the introduction of
real-time prices increased peak energy consumption, with the peak to average ratio rising
from 1.17 to 2.05.

5. How do different electricity prices influence the potential for demand response?

It was found that the potential cost reduction from demand response was not strongly corre-
lated with the electricity prices. with an eight increase in the energy prices resulting the cost
reduction only increased from 12.0 to 13.2 percent.

To summarize, the implementation of demand response strategies presents a promising approach to
managing electricity demands in container terminals, potentially leading to significant reductions in
operational costs. The findings of this study provide a strong foundation and highlight the need for
future research in this field.
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Abstract

Amidst the ongoing energy crisis in Europe, escalating energy costs pose
a significant impact on operational costs for container terminal operators.
This paper investigates the potential of demand response as a viable strat-
egy to reduce energy-related costs. By modifying operational planning, en-
ergy consumption could be deferred from peak to off-peak hours, resulting in
cost savings. We propose a two-stage stochastic mixed-integer programming
model to optimize operations planning, incorporating energy-related costs.
Both energy demand and supply uncertainties are accounted for, exploring
various scenarios for vessel arrival times and electricity prices. The model
was decomposed using a progressive hedging algorithm. Operational aspects
considered in this model include vessel arrival scheduling, temperature con-
trol of refrigerated containers, and the allocation of handling capacity across
quay cranes, yard cranes, and automated guided vehicles. A case study of
the Alterwerder container terminal in Hamburg was conducted to test the
model. Preliminary results suggest potential cost savings of 5.9 % with a
constant electricity price incorporated in the operational planning. This sav-
ing increases to 13.2 % when considering varying electricity prices based on
wholesale market rates. These findings underscore the substantial potential
of demand response strategies in the context of container terminal operations.

Keywords: Demand Response, Container Terminal, Load flexibility,
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1. Introduction

Due to the energy crisis in Europe that began in the summer of 2021,
electricity prices have soared. Between 2019 and 2022, the average yearly
electricity price has increased from 38 €/MWh to 235 €/MWh, representing
an increase of 518 percent (ENTSO-E). This price surge has resulted in higher
operational costs for container terminal operators, particularly those with a
high level of electrification, who have been significantly impacted by the rising
electricity prices. Unfortunately, there is a limited understanding among ter-
minal operators regarding energy consumption patterns (Wilmsmeier et al.,
2014).

One effective approach to reduce energy costs is by implementing en-
ergy efficiency measures to decrease overall energy consumption. Alterna-
tively, demand response measures can be employed. Demand response (DR)
programs aim to shift consumption from high-price periods to lower-price
periods. By implementing demand response programs, container terminals
can effectively lower energy costs by reducing overall energy consumption
and strategically shifting consumption from high-price periods to lower-price
periods.

The logistics process within a port are uncertain, leading to complex
operational planning and a unpredictable energy demand. Energy consump-
tion fluctuates significantly throughout the day, depending on the scheduling
(Bakar et al., 2021). Terminal operators currently possesses limited knowl-
edge about energy consumption patterns (Wilmsmeier et al., 2014) . Unlike
other industries, container terminals lack continuous and recurring produc-
tion cycles (Grundmeier et al., 2014). Instead, daily processes are highly
dynamic due to their dependence on the number of containers and ships ar-
riving (Grundmeier et al., 2014). This dynamic nature makes forecasting
electricity demand challenging (Grundmeier et al., 2014).

Simultaneously, the supply of electricity is uncertain due to the increasing
utilization of variable renewable energy sources, such as solar and wind power.
The availability of renewable energy depends on weather conditions, causing
significant variability throughout the day. Maintaining a balance between
load and generation at all timescales poses technical challenges when inte-
grating uncertain generation from variable renewable energy sources (VRES)
into the grid (Kroposki, 2017).

This study aims to investigate the relationship between operational planning
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and energy consumption. We optimize the planning of operations within a
container terminal, considering the associated energy costs. This optimiza-
tion takes into account the cost of purchasing electricity from the whole-
sale market and the cost of imbalances resulting from inaccurate consump-
tion predictions. We enhance the planning process by directly incorporating
these energy costs into the objective function, using both a constant price
throughout the day and varying prices per hour. To address the uncertainty
of electricity demand and supply, we consider multiple scenarios of ship ar-
rival times and electricity prices. We examine the impact of this uncertainty
by comparing the solutions to deterministic modeling approaches.

This paper contributes to the field in two ways:

1. We quantify the effect of demand flexibility on terminal operations
using an existing terminal as a case study.

2. We consider uncertainty in both energy supply and demand.

For our case study, we focus on the HHLA Container Terminal Altenwerder
(CTA) in Hamburg, Germany. Altenwerder is a state-of-the-art container ter-
minal with a high degree of electrification. Additionally, CTA is the world’s
first container handling facility to be certified as climate neutral (HHLA, c).

The remainder of this paper is organized as follows. Section 2 provides a
literature review. Section 3 defines the problem and Section 4 gives the
mathematical formulation of the problem. Section 5 discusses the method-
ology. The numerical results and their implications are presented in Section
6. Based on these results, managerial insights are provided in Section 7.
Finally, Section 8 presents the conclusions.

2. Related works

Energy consumption in ports has not been widely studied in the literature.
In a review paper by Iris and Lam (2019b), an overview is provided on op-
erational strategies, technologies, and energy management systems aimed
at increasing energy efficiency in ports. The authors emphasize the need
for future research in operational strategies that incorporate energy-aware
planning of operations, particularly in integrated planning problems. Ad-
ditionally, the importance of an energy management system for balancing
energy demand with supply is highlighted. However, this task is challenging
due to fluctuating energy supply from renewable sources and the difficulty
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in predicting energy demand resulting from the high operational complexity.
Similarly, a review by Bakar et al. (2021) emphasizes the growing significance
of energy management in future ports.

A review was conducted on energy-aware planning problems within con-
tainer terminals, with a focus on demand response for integrated planning
problems involving multiple energy loads. Several studies were found that
focus on demand response using a single load. In a study by van Duin
et al. (2018) demand response of reefers is considered to lower the peak
load. Geerlings et al. (2018) and Kermani et al. (2018) investigate strate-
gies to reduce the peak loads of Quay cranes. These two loads account for
the majority of peak demand in container terminals. Another intriguing ap-
plication of demand response is the use of Vehicle-to-Grid (V2G) charging
for Automated Guided Vehicles (AGVs) within the terminal. Schmidt et al.
(2015) explore various business cases for V2G charging with AGVs, and Har-
nischmacher et al. (2023) further investigate the use of AGVs for frequency
containment reserves. As the trend towards electrification continues within
terminals, ships become a significant electric load through on-shore power
supply. Yu et al. (2022) perform a multi-objective optimization considering
energy-related costs and emissions for berth allocation and quay crane as-
signment (BACAP) problems. Similarly, He (2016) quantify the impact of
energy-aware planning on operational costs by comparing optimization re-
sults of energy-saving strategy with a constant electricity price with a time-
saving strategy with no electricity related cost. He also quantified the effect
that energy-aware planning has on the yard crane and automated guided
vehicle scheduling has on the operational cost in (He et al., 2015a) and (He
et al., 2015b).

Literature specifically focusing on energy-aware integrated planning prob-
lems involving multiple energy loads is scarce. Table 1 provides an overview
of the most relevant literature, categorized based on the pricing schemes
considered for price-based demand response programs. Table 2 adds all the
sources of energy demand and supply considered in these studies.

Kanellos et al. have conducted multiple studies on demand response
in container terminals ((Kanellos, 2019); (Kanellos et al., 2019); (Kanellos,
2017); (Gennitsaris and Kanellos, 2019)), developing a multi-agent system
where different loads communicate with each other. Mao et al. (2022) focus
on loads within an integrated energy system encompassing electricity, heat,
and cooling demands, employing mixed-integer programming optimization.
Pu et al. (2020) also address an integrated energy system but estimate the
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Uncertainty Pricing scheme

Reference Focus D S NP CP TOU RTP

Gennitsaris and Kanellos (2019) Demand response
√

Iris and Lam (2021) Smart grid
√ √ √ √

Kanellos (2019) Demand response
√

Kanellos (2017) Demand response
√

Kanellos et al. (2019) Demand response
√

Mao et al. (2022) Integrated energy system
√ √

Pu et al. (2020) Integrated energy system
√ √

This paper Demand response
√ √ √ √ √

Uncertainty: D (Electricity demand), S ( Electricity supply)
Pricing scheme: NP (No price), CP (Constant price), TOU (Time-of-use price), RTP (Real-time price)

Table 1: Area of Focus and Pricing Scheme

total amount of fixed, reducible, and shiftable loads. In a study by Iris
and Lam (2021), an integrated operations planning and energy management
problem is solved using stochastic mixed-integer optimization.

When proposing energy-aware operational planning, authors often stress
the importance of considering the stochastic nature of both electricity de-
mand and supply. However, only one study identified in the literature partly
utilized a stochastic modeling approach, specifically Iris and Lam (2021),
which considered multiple scenarios of solar energy production to account
for stochastic electricity supply. In the study of Iris and Lam no uncertainty
in the operations, nor the energy demand was considered.
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Demand Supply

Reference SH QC YC AGV RE ESS Other EG WT PV ESS Other

Gennitsaris and Kanellos (2019)
√ √ √ √

Iris and Lam (2021)
√ √ √ √ √ √ √ √

Kanellos (2019)
√ √ √ √

Kanellos (2017)
√ √ √ √

Kanellos et al. (2019)
√ √ √ √

Mao et al. (2022)
√ √ √ √ √ √ √ √ √

Pu et al. (2020)
√ √ √ √

This paper
√ √ √ √ √ √

Demand: SH (Ship), QC (Quay crane), YC (Yard crane), AGV (Automated guided vehicle), RE (Reefer), ESS ( Energy storage system)
Supply: EG (Electricity grid), WT (Wind turbine), PV (Photovoltaic panel), ESS ( Energy storage system)

Table 2: Demand and Supply

3. Problem description

This study builds upon the work of Iris and Lam (2021) and proposes
an optimization model to assess the potential of demand response in a con-
tainer terminal. On the demand side, the energy consumption of vessels,
quay cranes (QCs), yard cranes (YCs), reefers, and automated guided ve-
hicles (AGVs) is considered. On the supply side, the energy is purchased
from the electricity grid. This study takes into account the uncertainty in
both the demand and supply of energy. Different pricing schemes, namely
no price, constant price, and real-time price, are considered to quantify the
impact that demand response has on the operations in the terminal. Figure 1
provides an overview of the considered loads within the terminal. Various as-
pects from different operational research problems are included to accurately
represent the operations within the terminal. Additionally Figure 1 shows,
the energy and information flows between all the loads and the electricity grid
are depicted. The information flows are controlled by the terminal operation
system, while the electricity flows are coordinated by the energy management
system. The terminal operation and energy management systems exchange
information to match the operational and electricity aspects.

This problem contains several sources of uncertainty, both in the sup-
ply and demand of electricity. Notably, the prices of electricity and the
arrival times of ships are the most significant uncertainties when optimizing
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Figure 1: Overview of operational planning problems, energy flows and information flows

a container terminal’s operational planning. We use a two-stage optimization
problem to take this uncertainty into account. The first stage, known as the
”here-and-now” decision, takes place before the values of the uncertain pa-
rameters are known. These decisions are taken one day ahead of the when the
operations are performed. The second stage, the ”wait-and-see” decision, is
a response to the realization of these uncertain parameters. These decisions
are made in real-time just before performing the operations. In equation
1 the mathematical formulation of a two-stage stochastic optimization with
recourse is given. In this equation ξ is the realisation of the uncertain param-
eters, EP is the expected value of all realisations of ξ, x are the first stage
decision variables and yξ the second stage decision variables.

min
x,yξ

fF (x) + EP [f
S(x,yξ, ξ)] (1a)

s.t. hF (x) = 0, (1b)

gF (x) ≥ 0, (1c)

hS(x,yξ, ξ) = 0, (1d)

gS(x,yξ, ξ) ≥ 0 (1e)
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In this model, a time step of one hour is considered. Electricity prices
from the day ahead market are obtained every hour. Additionally, the en-
ergy demand of different loads is averaged over a hour assuming a constant
consumption within the hour.

In the model, N Vessels arrive in the terminal over H hours. For every
vessel a start time S and finish time F are decided upon. Each vessel has a
specific container demand d of containers that need to be handled between
those times. Instead of assigning a ship to a specific berth, like is consumary
in berth assignment problems, a simplification is made were a ship is allowed
to berth if there is available space on the quay. Once berthed a number
of QCs, YCs and AGVs are assigned to the ship for every hour to load
and unload the containers. A handling rate p is determined based on the
minimum of the assigned handling capacity of QCs, YCs and AGVs.

In the yard, all reefer containers are modelled as one large cold storage
tank, with heat transfer to the ambient. Specific bounds are set in between
the temperature is allowed to fluctuate. The amount of reefers present in the
yard is assumed to be constant.

There are five electric loads considered. The energy consumption of Ships
through On-shore power supply. The consumption is present for every hour
that a ship is berthed and assumed constant for every hour. The energy
consumption of the QCs and YCs which depends on the handling rate. The
energy consumption of AGVs happens through the charging of the battery.
All AGVs are modelled as one large battery that is deplated based on the
handling rate of the AGVs. The reefers consume energy through required for
cooling.

For every hour the amount of energy consumed is equal to the amount of
energy supplied from the grid. The required energy P is purchased from the
day ahead market.

The second stage objective is based on the expected value of all the differ-
ent scenarios. Different weights are assigned to every scenario based on the
likelihood of occurrence. The uncertainty of the arrival times and electricity
prices are considered to be independent from each other.

Within this problem the arrival times of vessels and the day-ahead elec-
tricity price are considered uncertain. Different scenarios are created to rep-
resent this uncertainty, each with their own probability. One day before a
baseline schedule is created were the expected start time Sda

i for every vessel
and the expected energy consumption P da

t for every hour are decided upon.
Then for every scenario changes to the baseline schedule are made.
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The objective is to minimize the ship lateness cost and energy-related
cost. Additionally, deviations from the baseline schedule are minimized by
considering rescheduling cost and power imbalance cost.

4. Mathematical model

in this section, a mixed integer linear programming mode is formulated for
the problem described above. In tables 3, 4 and 5 an overview is given of all
the sets, parameters and decision variables used in the model.

Sets Description
V Set of vessels to be served, i ∈ 1, 2, . . . , N ,

where N is the number of vessels to be served.
T Set of time periods t ∈ 0, 1, . . . , H − 1, where

H is 48 hours.
Pi Set of possible handling rate p that can be

assigned to a ship i ∈ V .
M Types of machinery present in the terminal

m ∈ {QC, Y C,AGV }.
S Set of scenarios w ∈ S.

Table 3: Sets

The objective function consists of schedule and energy-related cost. The ini-
tial two components of the objective function in Equation 2 serve to minimize
the total cost of lateness for all ships (

∑
i∈V clateiLi, w) and the cost associ-

ated with deviations from the baseline schedule (
∑

i∈V creschclatei(Slatei, w +
Searlyi, w)). The subsequent two elements aim to minimize the cost con-
nected to energy purchase on the day-ahead market (

∑
t ∈ Tcdat, wP dat)

and the cost associated with power imbalances in both shortage and surplus
(
∑

t ∈ Tcdat, w(cshorP short, w − csurP surt, w)). These costs are calculated for
each scenario and the weighted average of all scenarios is minimized.

min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (Slate
i,w + Searly

i,w )+

∑
t∈T

cdat,wP
da
t +

∑
t∈T

cdat,w(c
shorP shor

t,w − csurP sur
t,w )

) (2)
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Parameters Description
km Amount of machinery m ∈M available .
hm Handling rate of machinery m in containers per hour .
di The total demand of containers to be handled (loaded + un-

loaded) for ship i ∈ V .
up,m The amount of machinery of type m used in pattern p
lshipi The quay length that ship i takes up.
ltotal The total length of the quay.
eati Expected arrival time of vessel i ∈ V .
efti Expected berthing finishing time of vessel i ∈ V .
ai,w Actual arrival time of vessel i ∈ V in scenario w ∈ S.
eship energy consumption of a ship for on shore power for one hour.
emachinery
m Energy consumption of machinery m for operating for one

hour
echarge Energy consumpted by one charger.
echarge,max Maxiumum Energy consumpted by all chargers.
bmin Minimum AGV battery level.
bmax Maximum AGV battery level.
ηcharge Charging efficiency.
ereefer Energy consumption of one reefer connection
ereefer,max Maxiumum energy consumption of all reefer connection
tcmin Minimum reefer temperature.
tcmax Maximum reefer temperature.
ηreefer Cooling efficiency.
tat Ambient temperature at time t
mcp Specific heat capacity of a reefer.
ua Heat transfer coefficient of a reefer.
cdat Day electricity price at time t
clatei Penalty cost of exceeding the expected finishing time (EFT)

for vessel i ∈ V for one hour.
creschedulei cost of changing the initial schedule by one hour.
csur cost of having a surplus of energy.
cshor cost of having a shortage of energy.
M A large positive number.
ρw Probability of scenario w occurring

Table 4: Parameters
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Decision
variables

Description

SDA
i ∈ Z+ Scheduled berthing start time of vessel i ∈ V

Si,w ∈ Z+ Berthing start time of vessel i ∈ V in scenario w ∈ S

Searly
i,w ∈ Z+ Time the vessel i ∈ V arrives ahead of schedule in scenario

w ∈ S
Slate
i,w ∈ Z+ Time the vessel i ∈ V arrives behind schedule in scenario

w ∈ S
FDA
i ∈ Z+ Scheduled berthing end time (time when handling ends) of

vessel i ∈ V
Fi,w ∈ Z+ Berthing end time (time when handling ends) of vessel i ∈ V

in scenario w ∈ S
Li,w ∈ Z+ Lateness of operations for ship i ∈ V in scenario w ∈ S
Ai,t,w ∈ B 1 if vessel i ∈ V is assigned at to a berth in period t in scenario

w ∈ S, 0 otherwise
Hi,p,t,w ∈ B 1 if pattern p of quay cranes, yard cranes and agvs is assigned

to serve vessel i ∈ V at time period t in scenario w ∈ S, 0
otherwise

Blevel
t,w ∈ R+ Battery level at time t in scenario w ∈ S

TCtemp
t,w ∈ R Reefer temperature at time t in scenario w ∈ S

Echarge
t,w ∈ R+ Energy consumed to charge AGVs at time t in scenario w ∈ S

Ereefer
t,w ∈ R Energy consumed to cool the reefers at time t in scenario

w ∈ S
Pt,w ∈ R+ Power used from the utility grid at time t in scenario w ∈ S
P da
t ∈ R+ Power purchased at the day ahead market at time t

P sur
t ∈ R+ Power surplus at time t

P shor
t ∈ R+ Power shortage at time t

IM state
t ∈ B Imbalance state, 1 if there is a surplus and 0 if there is a

deficit

Table 5: Decision Variables
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The model is subject to the following set of constraints. Constraint 3 ensures
the energy consumed by the ships, quay cranes (QCs), yard cranes (YCs),
automated guided vehicle (AGV) charging, and reefer cooling, matches the
power drawn from the grid.

∑
i∈V

eship Ai,t +
∑
i∈V

∑
p∈Pi

up,′QC′ Hi,p,t e′QC′+∑
i∈V

∑
p∈Pi

up,′Y C′ Hi,p,t e′Y C′ + Ereefer
t + Echarge

t = Pt

(3)

Constraints 4 - 12 are associated with the berth assignment of ships and
the handling capacity assignment. For example, Constraint 4 guarantees that
the start time of vessel operation is either equal to or later than its expected
arrival time. Constraint 5 defines the lateness time, which is the time a
ship departs after the expected departure time. To ensure that the ships are
berthed during every hour between the berthing start time and end time,
Constraints 6, 8, and 7 are introduced. Constraint 9 prevents overcrowding
of the berth by ensuring that the length of all berthed vessels is shorter than
the quay length. A handling rate is assigned to every ship for every hour it
is berthed. This is accomplished by Constraints 10 and 11. Constraint 12
guarantees that the machinery capacity is not exceeded for QCs, YCs, and
AGVs.

Si,w ≥ ai,w ∀i ∈ V, ∀w ∈ S (4)

Li,w ≥ Fi,w − efti ∀i ∈ V, ∀w ∈ S (5)

∑
t∈T

Ai,t,w = Fi,w − Si,w ∀i ∈ V, ∀w ∈ S (6)

(t+ 1)Ai,t,w ≤ Fi,w ∀i ∈ V, t ∈ T,∀w ∈ S (7)

tAi,t,w + tmax(1− Ai,t,w) ≥ Si ∀i ∈ V, t ∈ T,∀w ∈ S (8)

∑
i∈V

Ai,t,wl
ship
i ≤ ltotal ∀t ∈ T,∀w ∈ S (9)
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∑
p∈Πi

Hi,p,t,w = Ai,t,w ∀i ∈ V, t ∈ T,∀w ∈ S (10)

∑
p∈Πi

pHi,p,t,w ≥ di ∀i ∈ V, t ∈ T,∀w ∈ S (11)

∑
i∈V

∑
p∈Pi

up,mHi,p,t,w ≤ km ∀t ∈ T,m ∈M,∀w ∈ S (12)

A day-ahead schedule is formulated for both the arrivals of the ships and
power consumption. Constraint 13 establishes the day-ahead start time of the
ships, which remains consistent across all scenarios. The difference between
the start time and day-ahead start time is equivalent to the deviation of
start time. Similarly, Constraint 16 defines this for the day-ahead energy
consumption. It is impossible to have a surplus and a deficit in energy
consumption simultaneously. A binary variable IM statet is used to keep
track of whether there is a surplus or shortage, with Constraints 14 and 15
capturing this dynamic.

Slatei, w − Searlyi, w = Si, w − Sda
i ∀i ∈ V, ∀w ∈ S (13)

P short, w − P surt, w = Pt, w − P da
t ∀t ∈ T,∀w ∈ S (14)

P surt, w ≤M · IM statet, w ∀t ∈ T,∀w ∈ S (15)

P short, w ≤M · (1− IM statet, w) ∀t ∈ T,∀w ∈ S (16)

Constraint 17 - ?? concern the operation of AGVs and regulate their
charging and discharging procedures. The total power used to charge the
AGVs is constraint based on the number of charging stations and the num-
ber of AGVs available for charging. These restrictions are described by
Constraints 17 and 18. Constraint 19 ensures that the battery level always
remains within the minimum and maximum allowed levels. The state of
battery charge should fluctuate based on the amount of energy charged and
discharged. This principle is captured by Constraints 20 and 21 for time
periods 1 to H and for time period zero respectively. Constraint 22 asserts
that the battery level at the start of the day should be equivalent to the level

13



at the end of the day, thereby preventing overcharging. It also ensures that
over one day, the amount of energy consumed equals the energy charged.
To prevent the complete discharge of the battery, the energy consumed in
every time period should be less than the energy stored in the battery. This
principle is enforced by Constraints ?? and ?? for each time period.

Echarge
t,w ≤ echarge,max ∀t ∈ T,∀w ∈ S (17)

Echarge
t,w ≤ (km −

∑
i∈V

∑
p∈Pi

ui,p,m ·Hi,p,t) · echarge

m = {AGV }, ∀t ∈ T, ∀w ∈ S

(18)

bmin ≤ Bt,w ≤ bmax ∀t ∈ T, ∀w ∈ S (19)

Bt,w = Bt−1,w + ηcharge · Echarge
t,w −

∑
i∈V

∑
p∈Pi

em · ui,p,m,w ·Hi,p,t,w

m = {AGV }, ∀t ∈ T, ∀w ∈ S

(20)

Bt,w = bmin + ηcharge · Echarge
t,w −

∑
i∈V

∑
p∈Pi

em · ui,p,m,t ·Hi,p,t,w

m = {AGV }, t = {0}, ∀w ∈ S

(21)

∑
t∈T

ηcharge · Echarge
t,w =

∑
t∈T

∑
i∈V

∑
p∈Pi

em · ui,p,m ·Hi,p,t,w

m = {AGV }, ∀w ∈ S

(22)

The following five constraints ensure the proper operation of the reefers.
The temperature of the reefers, represented by TCt, should always be within
the minimum and maximum temperature levels to ensure the quality of the
stored goods, as indicated by Constraint 23. The energy consumed by the
reefers at any time should not exceed the rated power of all the reefer connec-
tions, as dictated by Constraint 24. The reefers lose heat to the environment
through convection. This heat loss depends on the temperature difference
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between the container and the environment, both of which are assumed to
be constant for every hour. Constraint 25 is the cooling balance constraint,
which stipulates that the temperature change of the reefer container depends
on the heat loss and the cooling energy supplied. Constraint 27 is the reefer
energy constraint, which ensures that the total energy lost through heat
transfer equals the total energy consumed by cooling.

tcmin ≤ TCt,w ≤ tcmax ∀t ∈ T,∀w ∈ S (23)

Ereefer
t,w ≤ ereefer,max ∀t ∈ T,∀w ∈ S (24)

mcp · (TCt,w − TCt−1,w) = ua · (ta− (tcmin + tcmax)/2)−
ηreefer · Ereefer

t,w ∀t ∈ T,∀w ∈ S
(25)

mcp · (TCt,w − tcmax) = ua · (ta− (tcmin + tcmax)/2)−
ηreefer · Ereefer

t,w t = {0}, ∀w ∈ S
(26)

∑
t∈T

ua · (ta− (tcmin + tcmax)/2) =
∑
t∈T

ηreefer · Ereefer
t,w ∀w ∈ S (27)

These constraints together manage the energy consumption of ships, quay
cranes, yard cranes, automated guided vehicles, and reefer containers, while
adhering to the constraints based on the operational planning.

5. Solution procedure

In this section it is explained how the solutions are obtained. First the
stochastic decomposition method, progressive hedging is explained. Second
it is explained how the scenarios can be obtained.

5.1. Stochastic decomposition with Progressive Hedging

Optimization problems under uncertainty are notoriously complex to solve,
both in theory and practice. A practical method to tackle these problems
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involves the use of decomposition strategies in stochastic programming mod-
els. This process breaks down the overarching issue into manageable sub-
problems, simplifying the overall optimization process and reducing compu-
tational complexity. Efficient and effective solutions to optimization prob-
lems under uncertainty are thus feasible, thanks to these strategies, which
accommodate a spectrum of potential outcomes.

To handle this complexity efficiently, we chose to implement the progres-
sive hedging algorithm, a notable decomposition method. This algorithm
splits the problem into smaller subproblems, each representing a different
scenario. In the Algorithm 1 the pseudo-code of the algorithm is given.

Algorithm 1 Progressive Hedging

1: Initialization: Let ν ← 0 and w(t,ν)(ξ) ← 0,∀ξ ∈ Ξ, t = 1, . . . , T.
Compute for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argmin
x

f1(x1) +
T∑
t=2

ft

(
xt;−→x t−1(ξ),

−→
ξ t

)
2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute for each t = 1, . . . , T − 1 and each D ∈ Gt:

x̄(ν)(D)←
∑

ξ∈D−1

πξx
(t,ν)(ξ) /

∑
ξ∈D−1

πξ

4: Price Update: Compute for each t = 1, . . . , T − 1 and each ξ ∈ Ξ:

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
x(t,ν)(ξ))− x̄(ν)(Gt(ξ))

]
5: Decomposition: Compute for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argmin
x

f1(x
1) +

T∑
t=2

ft

(
xt;−→x t−1(ξ),

−→
ξ t

)
+

T−1∑
t=1

[
w(t,ν)(ξ)T · xt + ρ · 1

2
∥xt − x̄(ν)(Gt(ξ))∥2

]
6: Termination: If a criterion is met, Stop. Otherwise, go to step 2.
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5.2. Scenario generation

In stochastic programming for electricity prices and ship arrival times, gen-
erating and reducing scenarios accurately is crucial. For efficiency and accu-
racy, a balance between sample size and complexity is sought, with a prefer-
ence for the least number of samples (Roald et al., 2023).

For ship arrival times, a quasi-random sampling technique, specifically
Halton sampling, was utilized, to get distinct scenarios. The arrival distri-
bution was obtained from a paper by Kolley et al. (2023). This method
promotes uniform distribution and distinct scenarios, leading to more ac-
curate optimization results. The arrival times were rounded to the nearest
hour, with corresponding probabilities for each hour.

In terms of electricity price scenarios, an approach similar to the Crespo-
Vazquez et al. (2018) clustering - frequentist method was used . Using his-
torical data from the German day-ahead market, a k-means clustering algo-
rithm was implemented to group days with similar prices. The median day
represented each cluster, with cluster weights derived from normalizing the
number of days in each cluster.

Upon obtaining the individual scenarios for both the arrival times and
electricity prices, the total set of scenarios was generated using the Cartesian
product of the two sets. The associated probability for each scenario was
the product of the probabilities of arrival time and electricity prices. This
method led to a reduced, yet accurate representation of uncertainty and lesser
computational times for the optimization model.

6. Experimental Study

In this section the results obtained from the optimization experiments are
presented. The computations were all conducted using the commercially
available solver Gurobi v10.0.1, in combination with the Pyomo modeling
language. For the stochastic decomposition, the mpi-sppy package was uti-
lized (Knueven et al., 2020). The optimization model was run on an Intel
i7-7700HQ processor with a 2.80 GHz clock speed and 8.00 GB of RAM.

All optimizations were solved using the progressive hedging algorithm.
Ten iterations and a penalty parameter of 8000 were employed for each sce-
nario’s solution to converge. A convergence threshold of 0.01 was set. For
most of the experiments the convergence was lower 0.01, however not in ev-
ery experiment the threshold was reached within 10 iterations. In all case
the convergence metric was lower than 0.05. For all models, a mixed-integer
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programming optimality gap of 5 percent was used. The solve time for each
individual scenario was limited to 300 seconds.

To find what potential for demand response is present a case study of the
HHLA Container Terminal Altenwerder (CTA) in Hamburg. Altenwerder is
a state-of-the-art container terminal with a high degree of automation. Ad-
ditionally, it is operating climate neutral. Due to these reasons this terminal
was selected for a case study.

6.1. Model parameters

In this section, the parameters used in the study are presented. A sailing
list from the CTA revealed that between April 10, 2023, and May 7, 2023,
190 ships arrived at the CTA terminal, averaging 7 per day (HHLA, b). The
terminal utilizes 14 quay cranes (QCs), 74 battery electric automated guided
vehicles (AGVs), and 52 yard cranes (YCs) for container handling (HHLA,
a). Containers are delivered and dispatched via ship, truck, or train. No
onshore power facilities are currently present at the CTA terminal. The
length of the quay at CTA was found to be 1400 meters (HHLA, a). Based
on the container layout, it is estimated that the AGVs travel an average
distance of 947 meters in 237 seconds to move a container (Zhang et al.,
2023). Currently, there are 18 charging stations with a combined capacity of
4 MW for these AGVs (HHLA, c).

The energy consumption for QCs and YCs to move one container is es-
timated to be 8 kWh and 2 kWh, respectively (He, 2016; He et al., 2015a).
Additionally, the handling speed of both QCs and YCs is set to 30 containers
per hour (He, 2016; He et al., 2015a). The average energy consumption of
AGVs per meter is 0.00935 kW/m (He et al., 2015b). By multiplying the
energy consumption per meter with the average travel distance, the energy
consumption for AGVs is estimated to be 9 kW per container move. Further-
more, based on the travel time, the handling rate for the AGVs is calculated
to be 15 containers per hour.

Three types of ships are assumed to arrive at the container terminal:
feeder, medium, and jumbo ships. Following the work of Iris and Lam, it is
assumed that 40 percent of ships are feeders, 40 percent are medium-sized,
and 20 percent are jumbo ships (Iris and Lam, 2021). The ship lengths are
distributed uniformly in the ranges [70, 200] for feeders, [210, 300] for medium
ships, and [300, 400] for jumbo ships (Iris and Lam, 2019a). The container
demand is also assumed to be uniformly distributed in the ranges [200, 600]
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for feeders, [600, 1600] for medium ships, and [1600, 4500] for jumbo ships
(Iris and Lam, 2021). Based on the number of QCs, YCs, and AGVs assigned
to fulfill the demand, the ship unloading rate varies. The handling rate is
defined as the minimum of the handling speed multiplied by the number of
QCs, YCs, and AGVs assigned. For feeders, the handling rate can be one of
30, 45, 60, for medium ships 60, 75, 90, 105, 120, and for jumbo ships 120,
135, 150, 165, 180.

The estimated time of arrival for each ship is distributed uniformly in
the range [0, 24], and it is different for every ship. The standard deviation
of the estimated time of arrival is 3 hours, 24 hours prior to arrival (Kolley
et al., 2023). The estimated time of finishing is calculated by dividing the
container demand by the minimum handling rate and adding the estimated
time of arrival. If a ship departs later than the estimated finishing time, a
penalty is applied. This penalty is obtained by converting the penalty stated
by Iris and Lam to euros, assuming an exchange rate of 0.63 euro/SDG,
resulting in penalties of 630 euros, 1260 euros, and 1890 euros for feeder,
medium, and jumbo ships, respectively Iris and Lam (2021). Additionally, a
penalty of 20 percent of the late penalty is assumed with regards to changing
the berthing schedule created on the previous day, similar to the approach
used by Liu et al. Liu et al. (2020).

For the energy consumption of reefer containers, it is assumed that all
reefers are of the same type. According to a breakdown by van Duin et al.
(2018), frozen reefer containers are the most common type (van Duin et al.,
2018). The temperature range allowed for frozen products like meat and
fish is between -20 and -16 degrees Celsius (van Duin et al., 2018). The
mass, specific heat, heat transfer coefficient, and area of a reefer container
are based on the average values for a 40ft container from Kanellos and are
24500 kg, 2.76 kJ/kg K, 0.4 W/m² K, and 135.26 m², respectively Kanellos
(2017). A cooling efficiency of 0.95 is used, similar to Kanellos Kanellos
(2017). The maximum cooling power is also obtained from Kanellos. At the
CTA terminal, there are 2200 reefer connections, of which it is assumed that
an average of 1500 are used simultaneously HHLA (a).

According to the HHLA website, it takes 1.5 hours to charge one AGV
HHLA (2022). Based on the charging rate and the number of AGVs, it can
be calculated that all AGVs together can store 24.7 MWh of electricity. A
charging efficiency of 90 percent, similar to Kanellos, is assumed Kanellos
(2017).

Historical electricity prices from the day-ahead market in Germany were
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obtained from the ENTSO-E (n.d.) website. A penalty of 20 percent of the
day-ahead price was assumed for having an energy surplus or shortage, fol-
lowing the approach of Crespo-Vazquez et al. (2018). The maximum allowed
imbalance was set to 10 MW.

6.2. The impact of stochastic modeling

In this study a two-stage stochastic problem has been formulated in equation
1. For this uncertainty in the arrival times of ships and electricity prices are
considered. To find the impact that stochastic modeling has on the results,
a comparison is made between the stochastic problem (SP) and several re-
active approaches. For these reactive approach the first stage variables of
the stochastic problem are fixed to some specific values. In the problem de-
scribed in Section 3 the first stage variables are the start time of operations,
Sda
i , and the energy purchased on the day-ahead market, P da

t . Three reac-
tive approaches are formulated, RE, RE+ and EEV. For the RE and RE+
approach Sda

i is set to the estimated arrival time eati, and P da
t is set to 0 and

the average daily consumption P̄ da for the RE and RE+ approach respec-
tively. For the expectation of the expected value problem (EEV) Sda

i and P da
t

are set to the solutions that can be obtained by solving the expected value
problem. The mathematical formulation of the reactive approach is given in
equation 28

min
x0,yξ

fF (x0) + EP [f
S(x0,yξ, ξ)] (28a)

where x0 : fixed (28b)

For comparison the results of the stochastic model can be compared with
the wait-and-see solution (WS). This solution gives a lower bound to the
problem in case a perfect forecast of the first stage decision variables is known.
the wait and see solution is however not achievable in practice, since no per-
fect forecast exists.

In Table 6 the total cost for the RE, RE+, EEV, SP and WS approaches
is given. The optimization was done ten different times for each appraoch,
using different random seeds. For every approach the cost reduction with
regards to the RE approach is calculated. By employing the EEV strategy,
a cost reduction of 16.6 percent can be achieved. The stochastic problem
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presented in this paper further increases the cost reduction to 20.6 percent.
The hypothetical maximum reduction achievable is 32.4 percent.

RE RE+ EEV SP WS
# Total cost [€] Total cost [€] Total cost [€] Total cost [€] Total cost [€]

1 62863.8 58775.9 53217.3 50138.7 38999.6
2 62074.0 57967.5 53056.8 47049.1 42296.7
3 69925.5 63784.6 59770.4 57459.1 47054.6
4 53117.1 51103.7 40004.2 39828.8 35364.0
5 81891.7 74881.7 67645.8 62538.3 52268.0
6 67430.5 61454.6 53747.0 52804.4 48830.5
7 75826.3 69324.2 62984.9 61154.2 49513.6
8 48113.5 45913.3 41666.9 39914.3 37006.6
9 71876.7 65269.8 56203.4 54556.0 48370.4
10 59377.4 55685.1 55818.4 52716.3 41260.9
Avg 65249.7 60416.1 54411.5 51815.9 44096.5
Gap (%) 0.0 -7.4 -16.6 -20.6 -32.4

Note: RE (Reactive problem), EEV (Excpectation of the expected value problem ), SP (Stochastic problem),
WS (Wait-and-see problem), gap (%) = (x−AvgRE) ∗ 100/AvgRE

Table 6: Influence of stochastics modelling

Based on the differences between the EEV and SP solutions, the Value of
the Stochastic Solution (VSS) is calculated using Equation 29. Similarly, the
Expected Value of Perfect Information (EVPI) is computed using Equation
30, which represents the difference between the SP and WS solutions.

V SS = EEV − SP = 54992.1− 53185.9 = 1806.2 (29)

EV PI = SP −WS = 53185.9− 44096.5 = 9089.4 (30)

6.3. The impact of demand response

To assess the impact of demand response on the solution, different electricity
pricing schemes are considered: No Price (NP), Constant Price (CP), and
Real-Time Price (RTP) cases.

In the NP case, all energy-related costs in the objective function are
disregarded. The objective function is simplified by removing the energy
cost terms, resulting in equation 31.
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min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (Slate
i,w + Searly

i,w )

)
(31)

In the CP case, the electricity price cdat,w in the objective function is
replaced with a constant price c̄daw for each hour. The objective function is
modified accordingly, resulting in equation 32.

min
V,T

∑
w∈S

πw

(∑
i∈V

clatei Li,w +
∑
i∈V

creschclatei (Slate
i,w + Searly

i,w )+

∑
t∈T

c̄daw P da
t +

∑
t∈T

c̄daw (cshorP shor
t,w − csurP sur

t,w )

) (32)

The mathematical formulation presented in Section 3 remains the same
for the RTP case. However, for the CP and NP cases, minor adjustments need
to be made. Specifically, Constraint 22 and Constraint 24 are replaced with
Constraint 33 and Constraint 34, respectively. These changes ensure that
the energy consumed by operations, such as charging and cooling, matches
the energy demand for each time period without considering different prices.
Constraints 33 and 34 prevent unnecessary rescheduling of charging and cool-
ing times that would occur under the assumption of a constant or no price.

ηcharge · Echarget, w =
∑

i ∈ V
∑
p∈Pi

em · ui,p,m ·Hi,p,t,w

m = AGV , ∀t ∈ T, ∀w ∈ S

(33)

ua · (ta− (tcmin + tcmax)/2) = ηreefer · Ereefer
t,w ∀t ∈ T, ∀w ∈ S (34)

By enforcing these constraints, unnecessary rescheduling of charging and
cooling times is avoided, as the timing of consumption becomes irrelevant in
the CP and NP cases.

Ten optimizations were performed for all three pricing schemes. For the
optimization electricity prices of Germany in 2022 were used.

Figure 2 illustrates the ship schedule and energy consumption for the
second instance in the fourth scenario. By plotting the ship schedule and
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(a) Ship schedule - No price (b) Energy demand - No price

(c) Ship schedule - Constant price (d) Energy demand - Constant price

(e) Ship schedule - Real-time price (f) Energy demand - Real-time price

Figure 2: Ship schedule and hourly energy consumption for different pricing strategies
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energy consumption, a visual comparison can be made between the different
pricing strategies, including the decisions made in the first stage and how
they changed in the second.

For the NP alternative, power imbalances can be observed for most hours,
resulting in higher energy costs. When the cost of electricity is taken into
account in the CP alternative, these imbalances are significantly reduced,
leading to lower energy costs. Once real-time prices are considered in the
optimization (RTP scenario), the energy consumption pattern also changes,
with reduced consumption during times of high prices. Some differences in
the berthing schedule can be observed between the different alternatives,
although they are minor. Most of the differences are noticeable between
the RTP scenario and the other two scenarios. For example, in the RTP
scenario, Ship 1 departs later to take advantage of lower prices in the after-
noon, while Ship 9 departs earlier to finish just before the evening peak price.

Table 7 presents the results of different pricing strategies, including No Price,
Constant Price, and Real-Time Price. The costs are divided into energy-
related costs and schedule-related costs. By considering a constant price or a
real-time price of electricity, the energy-related costs decrease by 6.4 percent
and 14.4 percent, respectively. It appears that scheduling costs also slightly
decrease. However, the absolute difference in scheduling costs between the no
price and real-time price is small, at 400 euros. No definitive conclusions can
be drawn regarding the impact of energy-aware optimization on scheduling
costs. However, it can be concluded that it will not have a significant impact.
By considering energy prices, the total operational cost of the terminal is
reduced by 5.9 percent and 13.2 percent for the constant and real-time pricing
schemes, respectively.

Figure 3 displays the average energy demand across all instances for the
NP and RTP schemes. A negative correlation between energy demand and
electricity price is observed in the real-time case. The average demand in-
creases at night and in the early afternoon when prices are lowest. To quan-
tify this correlation, the Pearson correlation coefficient is calculated between
energy demand and electricity price. The average Pearson coefficient for NP,
CP, and RTP was calculated. For the NP and CP pricing schemes a cor-
relation of 0.09 and 0.03 was found, so no correlation exists between price
and demand. However, when RTP is considered, the Pearson correlation
coefficient becomes -0.85, indicating a strong negative correlation.

Furthermore, increased volatility in electricity demand for RTP can be
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No price Constant price Real-time price
# EC [€] SC [€] TC [€] EC [€] SC [€] TC [€] EC [€] SC [€] TC [€]

1 44628.1 13482.0 58110.1 43325.8 13692.0 57017.8 38798.7 11340.0 50138.7
2 49746.6 6804.0 56550.6 47013.8 6602.4 53616.2 42317.8 4731.2 47049.1
3 53979.6 11390.4 65370.0 50921.5 10735.2 61656.7 47429.5 10029.6 57459.1
4 45266.7 3931.2 49197.9 39856.1 4989.6 44845.7 35544.8 4284.0 39828.8
5 57095.3 11793.6 68888.9 55677.2 11844.0 67521.2 52357.5 10180.8 62538.3
6 55265.5 3376.8 58642.3 52559.4 4737.6 57297.0 48559.9 4244.5 52804.4
7 55561.2 10533.6 66094.8 52899.1 9626.4 62525.5 48999.4 12154.8 61154.2
8 46231.0 4284.0 50515.0 40303.2 3780.0 44083.2 35991.5 3922.8 39914.3
9 54584.0 8618.4 63202.4 51742.4 6442.8 58185.2 47626.0 6930.0 54556.0
10 50439.0 9651.6 60090.6 45624.5 8794.8 54419.3 41401.5 11314.8 52716.3
Avg 51279.7 8386.6 59666.3 47992.3 8124.5 56116.8 43902.6 7913.3 51815.9
Gap (%) 0.0 0.0 0.0 -6.4 -3.1 -5.9 -14.4 -5.6 -13.2

Note: EC (Energy cost), SC (Schedule cost), TC (Total cost), gap (%) = (x−AvgNP ) ∗ 100/AvgNP

Table 7: Comparison of different pricing strategies with 2022 prices

Figure 3: Average energy demand with No pricing and Real-time pricing
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observed in Figure 3. The Peak-to-Average Ratio (PAR) calculated for all
different pricing schemes. The NP and CP schemes have PAR values of 1.17
and 1.19, respectively. In contrast, the RTP scheme exhibits a significantly
higher PAR of 2.05. This shows that in Case of RTP the consumption is
more concentrated.

Similarly to the energy demand, other decision variables can be compared
between different pricing schemes. Figure 4 illustrates the number of berthed
ships, the handling rate of ship loading/unloading, the rate of AGV charging,
and the rate of reefer cooling. Each of these variables responds to price
signals, with a higher difference between NP and RTP indicating a greater
responsiveness to price changes. To compare the sensitivity of each variable
to price changes, the standard deviation of the difference between the NP
and RTP schemes is computed. Each standard deviation is then normalized
by dividing it by the mean. The Flexibility Coefficient (FC), calculated
using Equation 35, quantifies the degree of flexibility for each variable (X).
When comparing the flexibility coefficient for the variables above it can be
observed that the cooling rate is the most flexible, with a normalised standard
deviation of 1.48. This implies that the rate at which reefers are cooled can
be adjusted more readily in response to price changes. Following this, the
AGV charging rate also demonstrates notable flexibility. The handling rate
and the number of ships berthed exhibit relatively lower levels of flexibility
compared to the other variables, and other therefore more constraint by the
operational planning.

FC =
σ(XNP −XRTP )

X̄NP

(35)

7. Managerial Insights

The research conducted in this thesis provides valuable managerial insights
for the operations and management of container terminals. By considering
the implications energy-aware optimization of the operations , the following
key insights emerge:

• Properly accounting for uncertainty in the demand and supply of en-
ergy is crucial when optimizing energy consumption and operational
planning in container terminals. Failing to consider this uncertainty
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(a) Average amount of ships berthed (b) Average handling rate

(c) Average charging rate (d) Average cooling rate

Figure 4: Comparison No pricing and Real-time pricing for different variables
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can result in up to 20 percent higher costs, on average, due to the need
for subsequent operational plan changes.

• Implementing an energy-aware optimization approach based on hourly
varying electricity prices can lead to significant cost reductions in con-
tainer terminals, with potential savings ranging from 13.2 percent of
the operational costs.

• There is no significant trade-off between energy-related costs and schedul-
ing costs. The inclusion of energy-related costs has minimal to no im-
pact on the scheduling costs. Instead, the optimization focuses on min-
imizing energy consumption within the existing constraints imposed by
the terminal’s logistical operations.

• By considering real-time prices the peak energy demand increases. This
study fails to accurately incorporate what effect this will have on the
peak-related electricity cost.

• The control of reefer energy consumption has the most potential to
alter the overall energy consumption pattern, followed by adjusting
the charging times of Automated Guided Vehicles (AGVs). Modify-
ing the handling rate of ship (un)loading and adjusting ship arrival
and departure times have some potential to influence energy consump-
tion throughout the day, although their impact is smaller compared to
reefers and AGVs.

• Efficient control of existing loads can significantly reduce energy-related
costs without necessitating substantial investments in storage or renew-
able energy infrastructure.

These insights highlight the potential for cost savings and operational im-
provements by considering electricity demand and implementing efficient con-
trol measures. By adopting these insights, container terminals can optimize
their operations, reduce energy-related expenses, and make informed deci-
sions that align with their sustainability goals.

8. Conclusions

This paper presents an integrated energy-aware optimization approach for
the operations of a container terminal, with a specific focus on identifying
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the existing flexibility within an operational terminal. A case study was
conducted at the HHLA Container Terminal Alternwerder to examine the
practical implications. The optimization process considered uncertainty in
ship arrival times and electricity prices to evaluate their impact on the results.
Various pricing strategies were analyzed to assess the potential benefits of
demand response.

Future research endeavors should aim to enhance the current model in
several aspects. These include refining the modeling of peak power for indi-
vidual loads, conducting a more detailed analysis of reefer energy consump-
tion. Additionally, exploring energy price-aware optimization for common
operational challenges in container terminals could unveil additional oppor-
tunities for cost savings and efficiency improvements. To better understand
the practical implications of demand response, simulations of the operation
can be conducted in which energy consumption is taken into account. Ul-
timately, this research underscores the crucial role of energy-conscious op-
erational planning in reducing operational costs and enhancing performance
within container terminals.
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B
Method literature review

The appendix describes the method used to conduct the literature research. Several database, search
terms were used to find relevant scientific literature. The literature found was categorised to be able to
make generalised conclusions.

B.1. Search method
Initially databases of scientific literature, such as Science Direct, IEEE and Scopus were used to find
literature. Based on this literature forward and backward snowballing was used to find related articles.
No filters were applied while searching the databases. Originally the search was confined to demand
response in container terminal, which didn’t generate a lot of results. Therefore the search area was
expanded to included demand side management (DSM) in general. The search words were the for the
literature research were the following:

• Demand side management
• Demand side flexibility
• Demand flexibility
• Demand response
• Container terminal
• Port

• electricity price
• Micro grid
• Smart grid
• Real-time pricing
• Time-of-use
• critical peak pricing

These words were organised in a query with the use of Boolean operators. The first four words are
synonyms for DSM, which was combined with either the word container terminal or port. One common
application of DSM was alongside micro grid or smart grids. Therefore an additional search query was
created to find those papers which did use DSM but did not explicitly mention it. Finally different types
of DSM (see section ??) were searched for. In the table ?? the exact search query along side the
database used and the date of search is shown.

B.2. Classification of literature
The literature found was classified to create some structure. Three fields of research were found work-
ing on DSM in container terminals. Research is being conducted in the introduction of an energy
management system in a container terminal, to manage the electricity demand. Furthermore peak
shaving within container terminals is field that is being researched. Lastly the application of vehicle-to-
grid charging of an electric vehicle fleet is being researched.

For all the literature found the research aim was stated. Furthermore the energy loads investigated in
the paper were found. Lastly to get insight in the dynamics of the loads the time horizon and the time
step used in the simulation/optimization were found. This has been defined as the critical time.
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B.2. Classification of literature 102

Search query Database Search date
(”Demand Side Management” OR ”Demand Response” OR
”Demand side flexibility” OR ”Demand flexibility”) AND ”Con-
tainer Terminal”

Science direct 05-01-2023

(”Demand Side Management” OR ”Demand Response” OR
”Demand side flexibility” OR ”Demand flexibility”) AND (”Con-
tainer Terminal” OR ”PORT”)

IEEE 06-01-2023

(”Demand Side Management” OR ”Demand Response” OR
”Demand side flexibility” OR ”Demand flexibility”) AND (”Con-
tainer Terminal”)

SCOPUS 09-01-2023

”electricity price” AND ( ”Mirco grid OR ”Smart grid”) AND
”Container terminal” NOT (”Demand Side Management” OR
”Demand Response” OR ”Demand side flexibility” OR ”De-
mand flexibility”)

Science direct 10-01-2023

(”Real-time pricing” OR ”Time-of-use” OR ”critical peak pric-
ing” ) AND ”Container Terminal”

Science direct 12-01-2023

Table B.1: search query
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