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Acoustic remote sensing techniques for mapping sediment properties are of interest due to their low

costs and high coverage. Model-based approaches directly couple the acoustic signals to sediment

properties. Despite the limited coverage of the single-beam echosounder (SBES), it is widely used.

Having available model-based SBES classification tools, therefore, is important. Here, two model-

based approaches of different complexity are compared to investigate their practical applicability.

The first approach is based on matching the echo envelope. It maximally exploits the information

available in the signal but requires complex modeling and optimization. To minimize computa-

tional costs, the efficient differential evolution method is used. The second approach reduces the in-

formation of the signal to energy only and directly relates this to the reflection coefficient to obtain

quantitative information about the sediment parameters. The first approach provides information

over a variety of sediment types. In addition to sediment mean grain size, it also provides estimates

for the spectral strength and volume scattering parameter. The need to account for all three parame-

ters is demonstrated, justifying computational expenses. In the second approach, the lack of infor-

mation on these parameters and the limited SBES beamwidth are demonstrated to hamper the

conversion of echo energy to reflection coefficient. VC 2011 Acoustical Society of America.

[DOI: 10.1121/1.3569718]

PACS number(s): 43.30.Pc [NPC] Pages: 2878–2888

I. INTRODUCTION

Up-to-date information regarding sea or river floor com-

position is of high importance for a large number of appli-

cations. These include marine geology, marine biology,

off-shore construction projects, as well as cable and pipeline

route planning. Currently, often samples of the sediments are

taken for obtaining the required information. These samples

are then analyzed in a laboratory, which is a time-consuming

and costly process. An appealing approach, therefore, con-

sists of using acoustic remote sensing techniques for classi-

fying the sediments, employing measurement equipment

such as single-beam echosounders (SBES) and multibeam

echosounders (MBES), which are already in common use for

depth measurements. Whereas SBES acquire a single mea-

surement per ping, the MBES can take up to 500 measure-

ments per ping along a wide swath perpendicular to the

direction of navigation. A number of classification

approaches for the MBES are presented in literature.1–7

Despite the advantages of the MBES, the SBES is still

extensively used. Methods that base the sediment classifica-

tion on SBES measurements are consequently of high inter-

est. Different approaches toward a classification with SBES

systems can be found in the literature.8–10 In general, these

approaches can be divided into two groups, the phenomeno-

logical (or empirical) and the model-based (or physical)

approaches. In the phenomenological approaches, features

such as energy or time spread are determined for the

received echo signals. These features are known to be indic-

ative for the sediment type. However, independent measure-

ments, such as sediment samples or cores, are needed to link

the sediment classes, obtained from signal features, to real

sediment properties or sediment type.11,12 In contrast, the

model-based approaches make use of physical models and

determine the seafloor type by maximizing the match

between modeled and measured signals or signal features,

where seafloor type, or parameters indicative for seafloor

type, are input into the model. The advantage of this

approach is that, in principle, no independent measurements

are needed and the application of a model-based approach

directly provides the sediment parameters.

In literature, several approaches toward model-based

classification are presented.13–15 These approaches mainly

differ in the complexity of the sound propagation and sedi-

ment interaction accounted for.

In Ref. 13, an approach is proposed that employs a so-

phisticated model for predicting the SBES echo envelope.

This is further described in Ref. 16. The received echoes are

modeled as being the result of scattering at the rough sedi-

ment interface and at inhomogeneities in the sediment vol-

ume. The complexity of the medium accounted for comes at

the price of a series of unknowns, requiring efficient optimi-

zation methods. For maximizing the agreement between

modeled and measured echoes, a combination of different

optimization techniques is employed in Ref. 13. Three sedi-

ment parameters are searched for, being the sediment mean

grain size, the surface roughness, expressed as the spectral

strength, and the volume scattering parameter. Inversion of

SBES measurements at positions where sediment samples
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were taken show a good agreement between optimized and

measured mean grain sizes.

In Ref. 14, the classification is based on the assumption

that the SBES echo energy is proportional to the square of

the amplitude reflection coefficient. By employing empirical

relations between the sediment mean grain size and the

reflection coefficient, the echo energy is used to infer the

mean grain size for each ping. A comparison of the thus

inferred mean grain sizes with the values determined from a

sample analysis shows promising results. Increased agree-

ment is obtained by introducing additional complexity in the

modeling through the use of a transition layer with a continu-

ous change of sound speed and density.

The fact that model-based approaches allow for obtain-

ing information about the actual sediment parameters, with-

out the need for taking many costly sediment samples,

makes them very attractive. In this paper, we therefore inves-

tigate the two model-based approaches described above,

with the aim to assess their performance for a practical appli-

cation, which is mapping sediment parameters over areas of

interest. The basic principles of the different approaches are

taken similar to those described in Refs. 13 and 14. These

methods differ in the complexity of the interaction of sound

with the sediment accounted for. We investigate the per-

formance of the different approaches, by applying the meth-

ods to SBES data taken in an area with a large number of

different sediment types. The data used for testing the two

approaches were acquired at the Cleaver Bank in the North

Sea, The Netherlands.

The first approach is taken similar to Ref. 13 and consid-

ers the full echo envelope. As in Ref. 13, the model of the

echo envelope comprises both scattering at the water–sedi-

ment interface due to roughness and scattering within the

sediment body due to inhomogeneities. We reveal the impor-

tance of the spectral strength and the volume scattering pa-

rameter for obtaining a reliable estimate of the mean grain

size. Furthermore, having available information about the

spectral strength and volume scattering parameter is of im-

portance, for example, for sonar performance predictions. To

compensate for the additional computational effort, when

inverting for these two additional parameters, efficient opti-

mization methods are required. For the work presented here,

we employ the differential evolution (DE) method, a fast

version of the genetic algorithm (GA).17 It is demonstrated

that this approach, in principle, allows for mapping sediment

properties over large areas of interest.

Despite the fact that currently such efficient optimiza-

tion methods are available, inverting for the full echo enve-

lope is still computational expensive. The actual need of

accounting for the full complexity of the backscatter mecha-

nism is investigated by analyzing the approach of Ref. 14,

which considers echo energy only. Our analysis reveals the

sensitivity of this method to the limited SBES beamwidth

and the fact that the actual spectral strength and volume scat-

tering parameter are often not known, which can lead to a

non-unique relation between mean grain size and echo

energy for SBES systems with small beamwidths.

Section II presents the classification approach which is

based on the full echo envelope. In Sec. III, the classification

based on the energy of the SBES signal is described. The

results of applying these approaches to an SBES data set

acquired in the North Sea are discussed in Sec. IV. Finally, con-

clusions are drawn and recommendations are given in Sec. V.

II. MODEL-BASED CLASSIFICATION USING THE
ECHO ENVELOPE

The approach taken for the classification is schematized

in Fig. 1. Use is made of a physical model that predicts the

received SBES return. An optimization algorithm is

employed that searches for those input parameters that maxi-

mize the agreement between the measured and predicted

return. To obtain an overview of the sediment properties

over large areas, large numbers of pings need to be inverted

for, requiring efficient optimization methods.

The main components of the SBES classification

approach are listed below and are described in the following:

(1) the model for predicting the received echo envelopes;

(2) the cost function; and

(3) the optimization method.

A. Modeling the received echo envelope

For the envelope of the received SBES signal, we can

write

y tð Þ ¼
ð

A tð Þ
rb hð Þ B hð Þ e

�4ar

r4
S rð ÞdA; (1)

with AðtÞ the instantaneously ensonified area that contributes

to the sound received at time t and rbðhÞ the backscattering

cross section at the angle of incidence h, which on its turn

depends on t. BðhÞ is the transmit=receive directivity pattern

of the transducer and S(r) is the shape of the emitted signal,

projected on the footprint to account for the variation of sig-

nal amplitude over the footprint. It depends on the slant

FIG. 1. Schematic of the SBES classification approach.
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range r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ H2
p

, with x the horizontal distance toward

the receiver and H the water depth. A schematic is given in

Fig. 2. The signal further is corrected for the absorption a in

the water column.

Equation (1) can be expanded as follows:

y tð Þ ¼
ðx2 tð Þ

x1 tð Þ
rb tan�1 x

H

� �� �

� B tan�1 x

H

� �� � e�4ar

r4
S

2

c
r2 � rð Þ

� �
2pxdx: (2)

Here, x1 and x2 denote the two x-values that bound

A ¼ pðx2
2 � x2

1Þ; and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 þ H2
p

is the slant range at x2.

We have the upper bound

x2 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2

4
� H2

r
; (3)

with c the speed of sound in the water, which is assumed to

be constant. The lower bound x1 is dependent on t according

to

x1 tð Þ ¼ 0 for t � t0 þ T;

x1 tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct

2
� cT

2

� �2

�H2

s
for t > t0 þ T; (4)

with t0 ¼ 2H=c and T the pulse duration.

In general, the transducer characteristics, such as the

beam pattern, the signal length, and its shape, are known.

This also holds for the data considered in this paper. The

water depth can be derived from the measured two-way

travel time and the water column sound speed. Conse-

quently, the only unknown in Eq. (2) is the backscattering

cross section rb hð Þ. In literature, several expressions for

rb hð Þ are discussed.16,18,19 These expressions differ in the

level of detail accounted for describing the interaction

between sound and sediment. We have considered the con-

siderably detailed and well-established backscattering cross

section as presented in Ref. 19, where both the backscatter

cross section due to interface roughness scattering rr and the

one due to volume scattering rv are accounted for

rb hð Þ ¼ rr hð Þ þ rv hð Þ: (5)

Here, rr is obtained by appropriate interpolation between the

three following approximations:

(1) the Kirchhoff approximation, valid for smooth to moder-

ately rough sediments and angles near nadir;

(2) the composite roughness approximation, valid for

smooth to moderately rough sediments and angles away

from nadir; and

(3) the large-roughness scattering with a scattering cross

section determined from an empirical expression, which

is derived for rough sediments like gravel and rock.

For more details, we refer to Ref. 19. The sediment pa-

rameters that affect the backscatter cross section are listed in

Table I. In Ref. 19, a value of 3.25 for the exponent of the

bottom relief spectrum c is found to work well for many

types of sediments. Further, empirical expressions are pro-

vided in Ref. 19 that relate the density, sound speed, and

absorption coefficient (expressed as q, m, and d), and the pa-

rameters affecting the scattering due to surface roughness

and volume inhomogeneities (expressed as w2 and r2) to a

single parameter, being the mean grain size. The mean grain

size is often expressed in / units as

Mz ¼ � log2 d; (6)

where d denotes the mean grain size in millimeters. For

mean grain sizes of �1/ to 9/, the empirical parameter val-

ues of the above mentioned parameters are listed in Table II.

FIG. 2. Schematic of the SBES footprint.

TABLE I. Seafloor parameters and their symbols.

Seafloor parameter Symbol

Mean grain size Mz

Ratio of sediment mass density to water

mass density

q

Ratio of sediment sound speed to water

sound speed

m

Imaginary to real wave number ratio d
Sediment volume scattering cross section

to attenuation coefficient ratio (volume

scattering parameter)

r2

Exponent of the bottom relief spectrum c
Strength of the bottom relief spectrum (cm4)

(spectral strength)

w2

TABLE II. Empirical values of the model parameters.

Mz (/) q(�) m(�) d(�) r2(�) w2 (cm4)

�1.0 2.492 1.337 0.0171 0.002 0.0129

0.0 2.314 1.278 0.0163 0.002 0.0086

1.0 2.151 1.224 0.0165 0.002 0.0056

2.0 1.615 1.140 0.0161 0.002 0.0035

3.0 1.339 1.080 0.0173 0.002 0.0021

4.0 1.223 1.036 0.0202 0.002 0.0011

5.0 1.169 1.000 0.0126 0.002 0.0005

6.0 1.149 0.987 0.0039 0.001 0.0005

7.0 1.147 0.985 0.0024 0.001 0.0005

8.0 1.146 0.982 0.0016 0.001 0.0005

9.0 1.145 0.980 0.0015 0.001 0.0005
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By employing these empirical expressions, the search for

these parameters can be reduced to a search for the mean

grain size only. However, the spectral strength w2 and the

volume scattering parameter r2 are known to possibly devi-

ate significantly from default values obtained from expres-

sions relating them to Mz and are, therefore, included in the

search. To assess the need to indeed account for all three

unknowns, we also present inversions where only the mean

grain size is optimized and the empirical expressions are

used to assign values to the spectral strength and volume

scattering parameter, based on the mean grain size.

B. The cost function and the optimization method

In the model-based approach, parameters of the seafloor

are derived by maximizing the match between the measured

signal and the modeled signal. As a measure for the agree-

ment between modeled echo signal [conform Eq. (1)] and

measured echo signal, the following cost function E has

been defined

E ¼ 1X
k

y2
meas tkð Þ þ y2

mod tkð Þ
� �X

k

ymeas tkð Þ � ymod tkð Þ½ �2:

(7)

Here, ymeas and ymod denote the measured and modeled echo

envelope, respectively, and k is the number of time samples

considered, with tk denoting the corresponding times.

In order to obtain an overview of the sediment distribu-

tion over an area, a large number of SBES measurements

needs to be inverted for. This requires the use of efficient

optimization methods for minimizing E. In Ref. 20, DE,

which is a fast version of a GA, was demonstrated to be an

efficient global optimization method. Therefore, we have

employed this method for minimizing E. A description of

DE is given in Ref. 17. Based on a synthetic study21 and pre-

liminary inversions, DE settings were selected such that

2400 forward calculations were applied.

III. MODEL-BASED CLASSIFICATION USING
THE ECHO ENERGY

Since information of the full echo envelope is not

always available and employing it for the inversion of Mz

has proven to be computational extensive (Sec. II), the merit

of alternatively employing the echo energy only for classify-

ing the sediment is analyzed in the following.

From existing phenomenological classification approa-

ches, it is well known that the energy of the received signal

allows for discriminating sediment types.11,12 This knowl-

edge is fully exploited in Ref. 14, where the received echo

energy is assumed to be directly proportional to the square

of the amplitude reflection coefficient at normal incidence.

Empirical relations then relate the reflection coefficient to

the mean grain size.

Assuming that all received energy is the result of reflec-

tion at the water–sediment interface, the amplitude reflection

coefficient can be determined from the SBES echo energy as

R ¼ 1ffiffiffiffiffiffiffiffi
ETX

p 2H
ffiffiffiffiffiffiffiffi
ERX

p

e�2aH
; (8)

with R the amplitude reflection coefficient, H the water

depth, ETX the energy of the transmitted pulse, ERX the

energy of the received pulse, and a the absorption coefficient

in the water.

Based on the empirical relations in Ref. 19, the relation

between Mz and the reflection coefficient, R, is calculated

based on the sediment–water ratio of mass density, q, and

the sediment–water ratio of sound speed, m, under the

assumption of normal incidence.

RðMzÞ ¼
qðMzÞ � mðMzÞ � 1

qðMzÞ � mðMzÞ þ 1
: (9)

The resulting reflection coefficient is presented in Fig. 3.

Whereas Eq. (9) potentially allows for estimating the mean

grain size from the received echo energy, Fig. 3 illustrates

that R is not sensitive to mean grain sizes larger than 5.5/.

IV. APPLICATION OF THE METHODS TO SBES DATA

A. Description of the data set

To assess the performance of the classification methods,

described in Secs. II and III, for real data, SBES data

acquired from the North Sea in November 2004 are consid-

ered. The area where the data were taken is located close to

the Cleaver Bank and Botney Cut, north-west of the Nether-

lands. The area is of interest due to its variability in sediment

types, which was already indicated in Ref. 22. Water depths

in the area vary between 30 and 60 m, as illustrated in Fig. 4.

A dense pattern of east-west tracks was sailed, while

taking the SBES measurements. The measurements consid-

ered here were taken by a 38 kHz Kongsberg EA600 SBES

system (Kongsberg Maritime, Kongsberg, Norway). This

echosounder has a beamwidth of 9.6� and a pulse length of

256 ls. Ping rates typically are 5 Hz.

FIG. 3. Theoretical relation between sediment mean grain size and reflec-

tion coefficient, obtained from Eq. (9).
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The individual SBES returns indicate a clear ping-to-

ping variability, which is due to the stochastic nature of the

backscatter process, motions of the ship, and presence of

bottom features. To constrain these effects at least partly and

instead capture the effects of seafloor type on the received

echoes, a series of sequential pings is averaged. Here, the

averaging was carried out over 50 sequential pings, which

cover a distance of approximately 50 m. This value was cho-

sen as a compromise between the aim to average out the

above described effects and still keeping an acceptable spa-

tial resolution.

Information about the sediment composition is available

from an earlier sea trial in November 2000. During this trial,

a series of bottom grab samples was taken. The laboratory

FIG. 4. Water depth in the trial

area.

FIG. 5. Overview of the sediment

Folk classes in the trial area, taken

from Ref. 21.
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analysis of the sediment samples comprised the following

steps. First, the samples were dried. Then, the samples were

sieved with a mesh of 2 mm, thereby separating the gravel

and shells from the sand and mud. Both, the gravel and shell

weight percentage were subsequently determined. The pre-

cise grain size distribution of the sediment samples (after the

gravel was removed) was then determined by optical micros-

copy. From these, values for the 10%, 50%, and 90% thresh-

old of the grain sizes were determined. Additionally, the

grab samples were labeled according to the Folk scheme

based on the percentages of mud, sand, and gravel.23

An overview of the Folk classes in the trial area is given in

Fig. 5.

Mean grain sizes have been assigned to the grab samples

by relating them to Folk classes, as shown in Table III. This

relation is based on Ref. 19. No use was made of the also

available values for 10%, 50%, and 90% thresholds of the

grain sizes, since these are based on the sand fraction only,

thereby not accounting for the presence of gravel.

In total, 20 grab samples were taken in the area under

investigation, comprising legs 3–6 in Fig. 5. However, dis-

tances between the grab positions and the SBES tracks are at

least 50 m.

Further, small-scale variations in the sediment distribu-

tion in the 4-yr time span between the sediment sampling

(2000) and the acoustic measurements (2004) are expected.

However, we expect these small-scale variations to have lit-

tle influence on the overall sediment distribution in the area.

Therefore, we assume that the sediment samples can still

be used for comparison with the acoustic classification

results.

B. Classification based on employing the full echo
envelope

The averaged SBES pings were used in the inversion

process that accounts for the full echo envelope, as schema-

tized in Fig. 1. In total, about 16 000 averaged pings have

been inverted, covering the entire trial area. The parameters

inverted for are the mean grain size Mz, the spectral strength

w2, and the volume scattering parameter r2. The resulting

estimates for mean grain size are shown in Fig. 6. In addi-

tion, mean grain sizes as determined from the Folk classes of

the grab samples are included in the plot.

The spatial behavior indicated by the Folk classes,

showing coarser sediments in the center part of the area, is in

agreement with that of the inverted mean grain size. For the

60-m deep trench in the south-western part of the area,

inverted Mz values indicate the presence of fine sediments

(�4/). This is expected due to the, in general, lower currents

in the deeper area and is in agreement with the Mz values

obtained from the grab samples. In the remainder of the area,

both sets of Mz values are lower, indicating coarser sedi-

ments. Here, however, they agree to a lesser extent.

Whereas, the grab samples indicate only a minor variation in

composition for the south-eastern area, resulting in the same

mean grain size of typically 1.5/, the inversions reveal con-

sistent regions with different mean grain size values, span-

ning a range of about 4/. The ability to identify these

structures from the grab samples is at least partly hampered

by the small number of grab samples.

A more detailed comparison, for example, aiming at

establishing a relation between the estimated Mz and all

other parameters of the samples (shell percentage; gravel

percentage; and values for the 10%, 50%, and 90% threshold

for grain sizes) is not feasible due to the limited number of

grab samples. In addition, the grab samples are located not

exactly along the acoustic tracks. Distances between grab

samples and acoustic samples are at least 50 m, whereas the

acoustic classification indicates variability on typically these

scales.

TABLE III. Relation of Folk classes to mean grain size.

Folk class Mz (u)

Sandy gravel �1

Muddy sandy gravel 0

Gravely sand 0.5

Slightly gravelly sand (also denoted as gravelly

muddy sand in Ref. 19)

1

Sand (also denoted as medium sand in Ref. 19) 1.5

Muddy sand 3

Slightly gravelly sandy mud (also denoted as

sandy silt (or gravelly mud) in Ref. 19)

5

Sandy mud 6

FIG. 6. Map of inverted mean grain

size. Also shown is the measured

mean grain size as obtained from the

grab samples as the colored squares.

For the grab samples the Folk

classes are displayed, which are

related to Mz according to Table III.
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Figures 7 and 8 present the estimates for the spectral

strength and the volume scattering parameter, respectively.

In general, these two estimated parameters reveal a similar

spatial pattern as Mz, dividing the area into three distinct

regions.

In Fig. 7, clear lines are visible in the eastern part. In

Ref. 14, it is hypothesized that these lines are caused by fish-

ing gear dragged over the seafloor. As can be observed from

the inversion results, these plough marks affect the spectral

strength, but not the mean grain size and volume scattering

parameter, as expected.

Figure 8 indicates higher values for the volume scatter-

ing parameter for clay (0<r2< 0.0075) than for fine sand

(0.005<r2< 0.0175). As expected from Ref. 19, the highest

values are found for the coarsest sediments that include

gravel (r2> 0.00175).

For w2 and r2, no independent measurements are avail-

able for validation purposes. In order to assess the sensitivity

of the inversion to these two parameters, we have also car-

ried out inversions where only Mz is estimated and empirical

relations (Table II) are employed that express the spectral

strength and volume scattering parameter as a function of

mean grain size. The results are presented in Fig. 9. Compar-

ing these to the results in Fig. 6, where Mz is determined

from the inversion of all three parameters, it can be seen that

both figures indicate the same distribution of the coarse and

fine sediments. Inverting for Mz only, however, features

higher Mz estimates, thus finer sediment grains, resulting in a

decreased correspondence with the mean grain size estimates

from the grab samples. In contrast, correspondence is some-

what enhanced in the center part of the coarse grained area.

Furthermore, the presence of plough marks is now revealed

in the map as lines with lower Mz values.

The parameters w2 and r2 are known to often deviate

significantly from the values as predicted by the empirical

relations; see Table II as taken from Ref. 19. For the results

shown in Fig. 9, the deviation of w2 and r2 from the empi-

rical expressions contributes to mean grain sizes that differ

from their real values. By not relying on these empirical

relations, more realistic values for Mz will consequently

be obtained and, therefore, Fig. 6 should represent the real-

ity better than Fig. 9. Furthermore, the obtained estima-

tes for the spectral strength and volume scattering parameter

provide additional information about the sediment

characteristics.

Computation times, however, are significant for the

three-parameter model. Using a standard personal computer

(PC) and MATLAB as the programming language, inverting a

single averaged ping requires several minutes computation

time. Despite these computation times for the three-parameter

FIG. 7. Map of the inverted spectral

strength w2.

FIG. 8. Map of the inverted volume

scattering parameter r2.
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model, off-line mapping is feasible as shown by Figs. 6–8.

Beside its possibility of classifying and mapping sea bottom

sediments, this approach can also contribute to a gain of

insight into the scattering process, when applied to a large

number of different data sets. This would, consequently,

allow for improving the modeling capabilities.

C. Classification based on the reflection coefficient

The second classification approach under consideration

estimates the mean grain size from the SBES reflection coef-

ficient, which can be obtained from Eq. (8), by using Eq. (9).

Due to the resulting direct coupling between echo energy

and sediment mean grain size, no optimizations are needed,

making this a tempting approach.

Here, the same averaged SBES signals are considered as

used for the inversions employing the full echo envelope

(Sec. IV B). Figure 10 presents the reflection coefficients

estimated from these signals, whose values lie in the range

from 0.05 to 0.3. According to the theoretical relation in Fig.

3, these values of the reflection coefficient can be related to

Mz values larger than 2/. However, from the analysis of the

samples and also from the inversion results for the full echo

envelope, see Fig. 6, lower Mz values are known to occur in

the area.

To investigate possible causes of this effect, we have

used Eq. (2) to predict the envelope of the SBES returns for

a series of mean grain size values. For the grain sizes consid-

ered, all other sediment parameters of the model, including

also w2 and r2, are calculated according to the empirical

relations of Ref. 19, as given in Table II. For each of the pre-

dicted signals, the echo energy is determined. Then, Eq. (8)

is used to obtain an estimate for the reflection coefficient

based on this echo energy. The left plot in Fig. 11 shows the

results for an SBES with a beamwidth of 9.6�, as considered

throughout this paper.

Clearly, the reflection coefficient estimated from the

simulated signal is much lower for the coarse grains than

expected. The main reason for this deviation is the limited

beamwidth of the transducer, which strongly reduces the

amount of sound that impinges upon the SBES at angles

away from normal incidence. This also causes non-unique-

ness in the conversion of energy to mean grain size, hamper-

ing the mapping of the mean grain sizes based on the

reflection coefficient. Using an SBES with a larger beam-

width will reduce these effects.24 This is demonstrated in the

right plot of Fig. 11, where the same procedure as above is

followed for an SBES with an increased beamwidth of 30�.
However, the contribution of the volume scattering now

FIG. 9. Map of the mean grain size

obtained from optimization where

only Mz is searched for.

FIG. 10. Map of the reflection coef-

ficient as determined from the aver-

aged SBES returns. The white lines

indicate equal bathymetry contours.
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results in a reflection coefficient that slightly exceeds the the-

oretical curve for the fine grained sediments.

Still, for the SBES with a standard beamwidth, as the

9.6� considered here, regions with different sediment types

are revealed by the echo energy.

An additional effect, hampering the coupling of the

detected regions of the estimated reflection coefficient to

mean grain size, is the uncertainty in the spectral strength

and volume scattering parameter, as shown in the following.

Again, the only parameter searched for is the mean grain

size, whereas all other parameters affecting the interaction of

sound with the seafloor are taken according to the assumed

empirical relations (Table II). As mentioned before, these

relations are known to hold well for the sediment sound

speed, density, and attenuation, but less for the spectral

strength and volume scattering parameter.19 While, in gen-

eral, these parameters are not known, here, the inversions of

the full echo envelope (Sec. IV B) have provided estimates

for w2 and r2 for each averaged signal, in addition to the

estimates for Mz. This allows for assessing the influence of

deviations in w2 and r2 from their empirical values on the

estimates of the reflection coefficient.

For this purpose, the measured values of the reflection

coefficient are plotted in Fig. 12 versus the available esti-

mates of Mz, obtained from the inversions using the full echo

envelope, as mapped in Fig. 6. Additionally, the graph of

Fig. 11, showing the theoretical relationship between the

reflection coefficient and mean grain size for an SBES with

9.6� beamwidth, is added for comparison. In case the empiri-

cal relations between the mean grain size and the spectral

strength and volume scattering parameter hold, the measured

reflection coefficient versus inverted mean grain size would

repeat the theoretical relation. However, the values of the

reflection coefficient show a spread around the theoretical

values, further adding to the non-uniqueness of their relation.

Maximum measured values of R can be twice as large as the

simulated values. An exception holds for mean grain sizes

between 2/ and 5/, where the upper bound of the reflection

coefficient is more restricted (only 1.5 times of the simulated

value). The lower bound of R, on the other hand, is approxi-

mately 0.05 throughout the entire range of mean grain sizes,

disallowing an allocation of mean grain sizes at these small

reflection coefficients.

We hypothesize that a major part of the spread is caused

by deviations of the spectral strength and volume scattering

parameter from their empirical values, in addition to effects

of a possibly not fully converged optimization and a possible

imperfectness of the model. In Fig. 12, the spectral strength

is indicated by the color. For the relation between the reflec-

tion coefficient and the inverted mean grain size, the colors

represent the inverted spectral strength, whereas for the theo-

retical relation, spectral strength values as obtained from the

empirical expressions are shown. The latter indicate an

increasing spectral strength with decreasing Mz. Despite the

large spread, the same trend is visible from the estimates for

the spectral strength obtained from the inversion.

Considering the variation of the spectral strength per

mean grain size, the plot indicates a decreasing reflection

coefficient as a function of increasing spectral strength. This

is expected, since increased roughness results in an increased

amount of scattering away from normal incidence and conse-

quently a lower signal strength received by the SBES. The

spread in R can thus, at least partly, be related to a spread in

w2. The largest deviation of the spectral strengths from their

empirical values is found for coarse sediments. On the other

hand, deviations in the volume scattering parameter from

their empirical values (not shown here) mainly contribute to

the softer sediments. The values for the volume scattering

FIG. 11. Theoretical relation between

the mean grain size and the reflection

coefficient, one reproduced from

Fig. 3 (gray squares) and the other

obtained from the energy of the simu-

lated SBES signals (black squares) for

SBESs with a beamwidth of 9.6�

(left) and 30� (right).

FIG. 12. The relation between the mean grain sizes inverted from the full

echo envelope and the measured reflection coefficients (dots). The color of

the dots represents the inverted spectral strength. For comparison, the graph

of the simulated reflection coefficient is reproduced from Fig. 11. Here, the

color of the squares represents the empirical value of the spectral strength.
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parameter, as obtained from the inversions, are higher than

those predicted by the empirical relations for the higher Mz

values, resulting in increased signal energies and conse-

quently increased estimates for the reflection coefficient,

compared to that theoretically expected.

V. CONCLUSIONS

In this paper, two model-based approaches toward acous-

tic sediment classification with an SBES are investigated. The

first bases the classification upon matching the complete echo

envelope and inverting for the three parameters, mean grain

size Mz, spectral strength w2, and volume scattering parameter

r2, whereas the second approach merely considers energy

from the received signal to estimate Mz only.

An application of the first approach to real data indicates

its feasibility to estimate sediment parameters for a range of

different sediment types. The estimates for the mean grain

size are confirmed by the distribution of Folk classes, as

determined from sediment samples taken in the area. No in-

dependent measurements are available for the spectral

strength and volume scattering parameter. However, all three

maps reveal a similar pattern of sediment distribution, as

expected from the existence of empirical expressions relat-

ing these parameters. Plough marks in the area are clearly

present in the map of the spectral strengths, and almost

absent for the other two parameters, as expected. Whereas

many applications mainly require information about the

sediment mean grain sizes, information regarding the rough-

ness and volume scattering parameters are of high relevance

for application such as sonar performance prediction. The

search for three parameters, however, makes this approach

computationally demanding. Using a standard PC and MAT-

LAB as the programming language, real-time processing is

not feasible, but on-line applications are expected to become

feasible in the near future. A less computational demanding

approach is to reduce the inverted parameters to Mz only.

This approach was found to still reveal a similar pattern for

the sediment distribution. However, discrepancies between

the inverted Mz values and the values of Mz from the grab

samples are enlarged.

Classification based on a direct relation between echo

energy and mean grain size, considered to eliminate the need for

inversions completely, was found to be hampered by the limited

beamwidth of the SBES. Coarse grained sediments were found

to result in the same estimates for the mean grain size as finer

grained sediments. The use of an SBES system with a larger

beamwidth would allow for increased discriminating perform-

ance. Still, also the variation of the volume scattering parameter

and the spectral strength around their empirical values prevents

the coupling between echo energy and mean grain size; the

unknown spectral strength and volume scattering parameter

might then result in Mz estimates that deviate from their true

values.

Overall, it can be concluded that for model-based SBES

classification, in practice, an approach based on the full echo

envelope and accounting for Mz, w2, and r2 is recommended.

However, inverting for Mz only or considering the echo

energy, instead of using the full echo envelope, are

approaches that are extremely useful for a first quick assess-

ment of an area, on which for example decisions for further

surveying can be based.
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