

Delft University of Technology

Automated Configuration and Usage of Strategy Portfolios for Mixed-Motive Bargaining

Renting, Bram M.; Hoos, Holger H.; Jonker, Catholijn M.

Publication date
2022
Document Version
Final published version
Published in
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022

Citation (APA)
Renting, B. M., Hoos, H. H., & Jonker, C. M. (2022). Automated Configuration and Usage of Strategy
Portfolios for Mixed-Motive Bargaining. In International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2022 (pp. 1101-1109). (Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS; Vol. 2). International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS).
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Automated Configuration and Usage of Strategy Portfolios for
Mixed-Motive Bargaining

Bram M. Renting
Leiden University

Delft University of Technology
Leiden & Delft, The Netherlands
B.M.Renting@liacs.leidenuniv.nl

Holger H. Hoos
RWTH Aachen

Leiden University
University of British Colombia

hh@liacs.nl

Catholijn M. Jonker
Delft University of Technology

Leiden University
Delft & Leiden, The Netherlands

C.M.Jonker@tudelft.nl

ABSTRACT
Bargaining can be used to resolve mixed-motive games in multi-
agent systems. Although there is an abundance of negotiation strate-
gies implemented in automated negotiating agents, most agents are
based on single fixed strategies, while it is acknowledged that there
is no single best-performing strategy for all negotiation settings.

In this paper, we focus on bargaining settings where opponents
are repeatedly encountered, but the bargaining problems change.
We introduce a novel method that automatically creates and deploys
a portfolio of complementary negotiation strategies using a training
set and optimise pay-off in never-before-seen bargaining settings
through per-setting strategy selection. Our method relies on the
following contributions. We introduce a feature representation that
captures characteristics for both the opponent and the bargaining
problem. We model the behaviour of an opponent during a nego-
tiation based on its actions, which is indicative of its negotiation
strategy, in order to be more effective in future encounters.

Our combination of feature-based methods generalises to new
negotiation settings, as in practice, over time, it selects effective
counter strategies in future encounters. Our approach is tested
in an Automated Negotiating Agents Competition (ANAC)-like
tournament, and we show that we are capable of winning such a
tournament with a 5.6% increase in pay-off compared to the runner-
up agent.

KEYWORDS
Bargaining;Algorithm Configuration;Algorithm Selection;Mixed-
Motive Games

ACM Reference Format:
BramM. Renting, Holger H. Hoos, and CatholijnM. Jonker. 2022. Automated
Configuration and Usage of Strategy Portfolios for Mixed-Motive Bargain-
ing. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
9 pages.

1 INTRODUCTION
Bargaining or negotiation is a prominent method to decentrally
solvemixed-motive problems through reaching amutual agreement.
Problems from this area occur prominently in many real-world
applications (e.g., transportation of goods using warehouse robot-
ics, coordination of autonomous vehicles, calendar scheduling).

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Since the 1980s, there has been research aimed at designing com-
puter negotiators that can replace or assist humans in negotiation.
Following early contributions by Jelassi and Foroughi [12], Klein
and Lu [14], Robinson [23], Rosenschein [24], Smith [27], Sycara
[29], Sycara-Cyranski [30], this research area has evolved consider-
ably, and at the time of this writing, there are regular negotiation
competitions (e.g., Automated Negotiating Agents Competition
(ANAC) [3]) and standardised test-beds (e.g., General Environment
for Negotiation with Intelligent multi-purpose Usage Simulation
(GENIUS) [15]) that support the development of algorithmic negoti-
ation strategies. There are now more than one hundred negotiation
strategies freely available that can be used as opponents to test
against — which is important, since we know that the success of a
negotiator also depends on the strategy of the opponent [4].

The improvement of negotiation strategies over time is promis-
ing; however, we observe that the strategies almost always remain
monolithic, i.e. single strategy with fixed behaviour for every set-
ting. It has been observed that no single strategy is optimal for
all negotiation settings [11, 15]. Therefore, a good way to further
improve pay-off appears to select from a portfolio of strategies,
based on the negotiation setting. This introduces the problem of
algorithm selection [22] into bargaining. An early attempt on ap-
plying algorithm selection in automated negotiation was made by
Ilany and Gal [10, 11], but they only selected a strategy based on
the bargaining problem, without considering the opponent, which
we know to be an important factor [4]. Furthermore, they relied on
a portfolio of existing strategies to select from, which potentially
limits robustness.

Our contributions in this paper are as follows: (i) we apply au-
tomated algorithm configuration techniques to not only create a
single negotiation strategy, but a portfolio of complementary ne-
gotiation strategies; and (ii) we introduce a procedure to learn and
exploit opponent and problem characteristics during a simulated
ANAC tournament. The first contribution uses the approach by
Renting et al. [21] to automatically configure negotiation strategies,
which we extend by implementing Hydra [31] for portfolio con-
struction and AutoFolio [16] to create a portfolio selector. Empirical
results on a variety of bargaining settings show that our method
beats the runner-up agent by a (comfortable) margin of 5.6%.

2 RELATEDWORK
Thanks to ANAC, new negotiation strategies are developed every
year and collected in the GENIUS test-bed [15], to support future
research; they are categorised and empirically evaluated [2, 4] to
provide a basis for new strategies.

Main Track AAMAS 2022, May 9–13, 2022, Online

1101

Most negotiation strategies contain policy parameters that influ-
ence the behaviour of the agent. To optimise the performance of
the agent, the parameters need tuning. So far, tuning is mostly done
manually while testing on the available opponents in the GENIUS
test-bed. Although manual configuration is conceptually easy, it
is also tedious and often leads to unsatisfactory results. Follow-
ing earlier attempts at automatically configuring strategies using
genetic algorithms [7, 8, 18], or reinforcement learning [6, 26], a re-
cent successful approach used a model-based algorithm procedure
SMAC [9] to automatically configure a negotiation strategy [21].

As there is no single best strategy for all negotiation problems [11,
15], we should be able to improve pay-off by exploiting differences
in problem instances by selecting different strategies per negotia-
tion setting. We see this as a variation of the algorithm selection
problem [22]. While algorithm selection methods have been suc-
cessfully applied to SAT-solving [32], pattern recognition [28] and
other problems, only few attempts have been made to apply them
in the area of automated negotation. Ilany and Gal [10, 11] used a
set of past ANAC strategies and predicted which strategy would
perform best on a given bargaining problem; they then entered that
strategy into the negotiation session. Although they managed to
improve the pay-off of the agent in this manner, they were unable
to win ANAC. Kawata and Fujita [13] used a portfolio of 7 strategies
that previously competed in ANAC. They applied a multi-armed
bandit approach to find the best performing strategy for every com-
bination of an opponent and problem, while repeating precisely
the same bargaining setting 100 times. Unfortunately, this strategy
does not generalise to new negotiation settings and problems.

3 PRELIMINARIES
Agent systems that are built to negotiate contain a software-based
negotiation strategy. This negotiation strategy must function ac-
cording to the rules (or protocol) that is set for a negotiation setting.
The protocol used in this work is the Stacked Alternating Offers Pro-
tocol [1], an extension of the Alternating Offers Protocol [19, 25]. A
deadline of 60 seconds is used, normalised to 𝑡 ∈ [0, 1], after which a
negotiation is aborted without agreement. We refer to a bargaining
problem as 𝑝 ∈ 𝑃 , which we will negotiate between our own agent
and an opponent 𝑜 ∈ 𝑂 . The combination of a bargaining problem
and an opponent is a bargaining setting defined as 𝑠 ∈ 𝑆 = 𝑂 × 𝑃 .
Protocols, problems and opponents are all available through the
GENIUS test-bed [15] (GPL v3), which we use for benchmarking.

3.1 Bargaining problem
We negotiate over multi-issue (or multi-objective) problems that
are defined according to a common standard in automated negotia-
tion [2, 17, 20]. Here, an issue 𝑖 ∈ 𝐼 is an objective in the problem for
which an agreement must be found. The set of possible solutions
for an issue is denoted by 𝑉𝑖 , and the Cartesian product of all the
solutions of issues in a problem forms the total outcome space, such
that

∏
𝑖∈𝐼 𝑉𝑖 = Ω. An outcome is denoted by 𝜔 ∈ Ω.

Preferences over the outcome space Ω are expressed through a
utility function 𝑢 (𝜔), such that 𝑢 : Ω → [0, 1], where a value of 1
represents the best possible outcome. We refer to our own utility
function as𝑢 (𝜔) and to that of the opponent as𝑢𝑜 (𝜔). Negotiations

Table 1: Configuration space of DA(\) as set by Renting et al.
[21]

Description Symbol Domain Purpose

Scale factor 𝛼 [1, 1.1] Accepting
Utility gap 𝛽 (0, 0.2] Accepting
Accepting time 𝑡𝑎𝑐𝑐 [0.9, 1] Accepting
Lower boundary 𝛾 {MAX𝑊 ,AVG𝑊 } Accepting
Trade-off factor 𝛿 [0, 1] Bidding
Conceding factor 𝑒 (0, 2] Bidding
Conceding goal 𝑛 {1, 2, 3, 4, 5} Bidding
Population size 𝑁𝑝 [50, 400] Searching
Tournament size 𝑁𝑡 [1, 10] Searching
Evolutions 𝐸 [1, 5] Searching
Crossover rate 𝑅𝑐 [0.1, 0.5] Searching
Mutation rate 𝑅𝑚 [0, 0.2] Searching
Elitism rate 𝑅𝑒 [0, 0.2] Searching

are performed under incomplete information, so the utility of the
opponent is predicted, which we denote as 𝑢𝑜 (𝜔).

3.2 Dynamic agent
Renting et al. [21] built a flexible agent and automatically configured
it using SMAC (described later in this section). They demonstrated
that this agent, DA(\), was able to win an ANAC-like tournament
by a significant margin. We implemented the same DA(\) with
configuration \ ∈ Θ. The full configuration spaceΘ of DA(\) can be
found in Table 1. There are three types of parameters that influence
the behaviour of DA(\): four accepting parameters that influence
when the agent accepts an offer, three bidding parameters that
determine the utility to demand, and six parameters that influence
searching in the solution spaces for suitable solutions.

3.3 Automated Configuration
Automated algorithm configuration procedures evaluate configura-
tions of a given algorithm, observe their performance, and use this
information to find better-performing configurations for a given
set or distribution of problem instances. We attempt to optimise
the utility 𝑟 (\, 𝑠) ∈ [0, 1] obtained by playing strategy \ in a nego-
tiation setting 𝑠 . As we work with a set of settings 𝑆 , we define the
optimisation metric as the average utility:

𝑅(\, 𝑆) = 1
|𝑆 | ·

∑︁
𝑠∈𝑆

𝑟 (\, 𝑠), (1)

To optimise average utility, we use the freely available general-
purpose algorithm configurator SMAC [9] to automatically con-
figure DA(\), which was shown to be successful by Renting et al.
[21]. A pseudocode version of SMAC can be found in Algorithm 1,
where the notation is modified for this work. Here, SMAC is used
to optimise on single settings (𝑠 ∈ 𝑆) in a training set to signifi-
cantly reduce computational expense. SMAC trains a model that
maps configurations and setting characteristics to an expected per-
formance. This allows for searching for promising configurations
on a model before actually testing the performance. To do so, it

Main Track AAMAS 2022, May 9–13, 2022, Online

1102

requires bargaining setting features that capture information on
setting complexity. We describe these features in Section 3.4.

Algorithm 1 SMAC [9]
Input Θ Configuration space

𝑆 Negotiation settings
𝑟 Performance metric
𝑡𝑜𝑝𝑡 Optimisation time budget

Variables 𝐻𝑖 Runhistory of pool 𝑖
𝐻𝑓𝑢𝑙𝑙 Full runhistory of parallel pools, where

𝐻𝑓𝑢𝑙𝑙 = [𝐻1, . . . , 𝐻𝑚]
M Random forest regression model
𝜽𝑛𝑒𝑤 List of promising configurations

Output \𝑖𝑛𝑐 Optimised parameter configuration
1: [𝐻𝑖 , \𝑖𝑛𝑐] ← Initialise(Θ, 𝑆)
2: loop until GetTime() > 𝑡𝑜𝑝𝑡
3: 𝐻𝑓𝑢𝑙𝑙 ← ReadParallelRunhistories()
4: M ← FitModel(𝐻𝑓𝑢𝑙𝑙)
5: 𝜽𝑛𝑒𝑤 ← SelectConfigurations(M, \𝑖𝑛𝑐 ,Θ)
6: [𝐻𝑖 , \𝑖𝑛𝑐] ← Intensify(𝜽𝑛𝑒𝑤 , \𝑖𝑛𝑐 , 𝐻𝑖 , 𝑆, 𝑟)
7: return \𝑖𝑛𝑐

Algorithm 2 Intensify(𝜽𝑛𝑒𝑤 , \𝑖𝑛𝑐 , 𝐻, 𝑆, 𝑟) [9]
Input 𝜽𝑛𝑒𝑤 List of promising configurations

\𝑖𝑛𝑐 Incumbent configuration (current best)
𝐻 Runhistory
𝑆 Negotiation settings
𝑟 Performance metric
𝑡𝑖𝑛𝑡 Time budget for intensify procedure

Variables \𝑛𝑒𝑤 Challenging configuration
Output 𝐻 Runhistory

\𝑖𝑛𝑐 Incumbent configuration (current best)

1: for 𝑖 := 1, . . . , |𝜽𝑛𝑒𝑤 | do
2: 𝑆′ ← {𝑠′ ∈ 𝑆 : Count(\𝑖𝑛𝑐 on 𝑠′) ≤ Count(\𝑖𝑛𝑐 on 𝑠′′), ∀𝑠′′ ∈ 𝑆 }
3: 𝑠 ← Random(𝑆′)
4: 𝐻 ← ExecuteNegotiation(𝐻, 𝐷𝐴(\𝑖𝑛𝑐), 𝑠)
5: \𝑛𝑒𝑤 ← 𝜽𝑛𝑒𝑤 [𝑖]
6: 𝑁 ← 1
7: loop
8: 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ← {𝑠 ∈ 𝑆 : \𝑖𝑛𝑐 is evaluated on 𝑠 but \𝑛𝑒𝑤 is not}
9: 𝑆𝑡𝑜𝑟𝑢𝑛 ← random subset of 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 of size Min(𝑁, |𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 |)
10: for 𝑠 ∈ 𝑆𝑡𝑜𝑟𝑢𝑛 do 𝐻 ← ExecuteNegotiation(𝐻, 𝐷𝐴(\𝑛𝑒𝑤), 𝑠)
11: 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ← 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔/𝑆𝑡𝑜𝑟𝑢𝑛
12: 𝑆𝑐𝑜𝑚𝑚𝑜𝑛 ← {𝑠 ∈ 𝑆 : \𝑛𝑒𝑤 and \𝑖𝑛𝑐 are evaluated on 𝑠 }
13: if

∑
𝑠∈𝑆𝑐𝑜𝑚𝑚𝑜𝑛

𝑟 (\𝑛𝑒𝑤 , 𝑠) <
∑

𝑠∈𝑆𝑐𝑜𝑚𝑚𝑜𝑛
𝑟 (\𝑖𝑛𝑐 , 𝑠) then break

14: else if 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 = ∅ then \𝑖𝑛𝑐 ← \𝑛𝑒𝑤 ; break
15: else 𝑁 ← 2 ∗ 𝑁
16: if (GetTime() > 𝑡𝑖𝑛𝑡) ∧ 𝑖 ≥ 2 then break
17: return [𝐻,\𝑖𝑛𝑐]

3.4 Bargaining setting features
SMAC needs a feature description of the bargaining settings that
captures key properties of those settings. We also need these fea-
tures for strategy selection (Section 5), which is a multi-class clas-
sification problem with features as input and a prediction of the
best-performing strategy as output.

Renting et al. [21] created a set of features to describe a bar-
gaining setting, which was partly based on previous work by Ilany
and Gal [11] and Baarslag et al. [5]. We adopt this set of features

Description Definition

Number of issues |𝐼 |
Average number of
values per issue

1
|𝐼 | ·

∑
𝑖∈𝐼
|𝑉𝑖 |

Number of possible
outcomes

|Ω |

Standard deviation of
issue weights

√︄
1
|𝐼 | ·

∑
𝑖∈𝐼

(
𝑤𝑖 − 1

|𝐼 |

)2

Average utility of all
possible outcomes

1
|Ω | ·

∑
𝜔 ∈Ω

𝑢 (𝜔) = 𝑢 (�̄�)

Standard deviation utility
of all possible outcomes

√︂
1
|Ω | ·

∑
𝜔 ∈Ω
(𝑢 (𝜔) − 𝑢 (�̄�))2

Table 2: Bargaining problem features (𝑋𝑝) [11]

Description Definition

The time it takes to
reach an agreement

𝑡

Concession rate of
opponent

{
1 if 𝑢𝑜 (𝑥−𝑜) ≤ 𝑢𝑜 (𝜔+),
1−�̂�𝑜 (𝑥−𝑜)
1−�̂�𝑜 (𝜔+) otherwise.

Average offer rate
of opponent

{
1 if 𝑢𝑜 (𝑥) ≤ 𝑢𝑜 (𝜔+),
1−�̂�𝑜 (𝑥)

1−�̂�𝑜 (𝜔+) otherwise.

Default strategy
performance

{
0 if 𝑢 (𝜔𝑎) ≤ 𝑢 (𝜔−),
𝑢 (𝜔𝑎)−𝑢 (𝜔−)

1−𝑢 (𝜔−) otherwise.

Table 3: Opponent features (𝑋𝑜) [21]. 𝑥−𝑜 is the lowest offer by
the opponent in their utility.𝜔+/𝜔− is our best/worst possible
outcome. 𝑥 is the (fictional) average offer by the opponent in
their utility. 𝜔𝑎 is the agreement.

consisting of problem features (𝑋𝑝) and opponent features (𝑋𝑜)
(Equation 2). An overview of the bargaining setting features we
use is given in Table 2 & Table 3. Opponent behaviour depends
partly on the problem and is not always deterministic. We therefore
calculate both the mean and covariance of the opponent features
over multiple bargaining settings as opponent features for a total
of eight opponent features.

F : 𝑆 → (𝑋𝑝 × 𝑋𝑜) (2)

3.5 Problem definition
Strategy portfolio creation. We have an agent with a dynamic

strategy DA(\) based on configuration space Θ. Can we create a
portfolio of configurations 𝜽 ⊂ Θ using a training set of negotiation
settings 𝑆 consisting of configurations that outperform each other
on specific subsets of a test set of negotiation settings 𝑆 ′𝑡𝑒𝑠𝑡 ⊂ 𝑆𝑡𝑒𝑠𝑡
that have never been encountered before?

Algorithm selection. We have an agent with a dynamic strategy
DA(\), and a portfolio of configurations 𝜽 = {\1, \2, . . . , \𝑛}, where
\1 is the single best-performing configuration (Equation 4). Can

Main Track AAMAS 2022, May 9–13, 2022, Online

1103

we apply an algorithm selection method \𝑠 = 𝐴𝑆 (𝜽 , 𝑠) that selects
a configuration \𝑠 from 𝜽 based on negotiation setting 𝑠 , such
that 𝑅(𝐴𝑆 (𝜽 , 𝑠), 𝑆𝑡𝑒𝑠𝑡) > 𝑅(\1, 𝑆𝑡𝑒𝑠𝑡). The real goal here is to let
𝑅(𝐴𝑆 (𝜽 , 𝑠), 𝑆𝑡𝑒𝑠𝑡) approach the performance of the oracle selector
(Equation 3) 𝑅(𝑂𝑅(𝜽 , 𝑠), 𝑆𝑡𝑒𝑠𝑡) as closely as possible.

𝑂𝑅(𝜽 , 𝑠) ∈ arg max
\ ∈𝜽

𝑟 (\, 𝑠) (3)

\1 ∈ arg max
\ ∈𝜽

𝑅(\, 𝑆) (4)

4 PORTFOLIO CREATION
As a basis for algorithm selection, we need a portfolio of negotiation
strategies to select from. A simple approach is to build a portfolio
of negotiation strategies that already exist within the GENIUS
environment, which is the approach used by Ilany and Gal [11].
However, for several reasons, we consider this a less-than-ideal
approach:

(1) It relies on strategies that already exist, thus limiting our
choices for a portfolio to strategies that have been previously
implemented and are available to be re-used.

(2) The strategies might not be optimised or optimised for a
different objective, resulting in a low-performance portfolio.

(3) There might be dominated strategies in the portfolio, which
are outperformed in all cases by some other strategy in the
portfolio, needlessly complicating the selection problem.

(4) The portfolio might not be robust. There can be negotiation
settings for which all the negotiation strategies fail to achieve
decent performance, causing “weak spots” in our portfolio.

4.1 Portfolio creation
We aim to expand upon the work of Renting et al. [21], by not
only automatically configuring a single negotiation strategy, but by
building a portfolio of complementary strategies to better exploit
differences between negotiation settings. The portfolio of strategies
𝜽 we create is thus a portfolio of configurations for our DA(\). In
our method we will therefore enforce that every strategy must add
value to the portfolio:

∀\ ∈ 𝜽 , ∃𝑠 ∈ 𝑆, ∀\ ′ ∈ (𝜽 \ \) : 𝑟 (\, 𝑠) > 𝑟 (\ ′, 𝑠) (5)
The portfolio can be viewed as a set of strategies that each spe-

cialise on a region within the bargaining setting space. Similarities
in this space are found by mapping the space to the feature space.
One could obtain such a portfolio by automatically configuring
strategies on sets of negotiation settings that are separated in fea-
ture space by dividing the feature space either manually or using
clustering techniques. However, both methods rely on human in-
put without clear insight into the effects. The quality of the sets is
disputable, as they are created based on similarities in the given fea-
ture space without regard for the performance gains thus achieved.
Therefore, instead we chose to automate the portfolio creation
method by using Hydra [31], removing the requirement of human
input in feature space separation.

4.2 Hydra
Hydra automatically generates a portfolio given only a parame-
terised strategy (Section 3.2) and a set of negotiation settings with

features (Section 3.4) while using an algorithm configurator and an
algorithm selector (Section 5). We provide a pseudo-code descrip-
tion of Hydra in Algorithm 3, modified for this work.

Algorithm 3 Hydra [31]
Input Θ Configuration space

𝑆 Training set of negotiation settings
𝑟 Performance metric

Variables \𝑘 Configuration
𝜽 Portfolio of configurations
𝑟𝑘 Modified performance metric

Output 𝜽 Portfolio of configurations
𝐴𝑆 Algorithm selector

1: 𝜽 ← ∅; 𝑟𝑘 ← 𝑟

2: for 𝑘 = 1; 𝑘 = 𝑘 + 1 do
3: \𝑘 ← 𝑆𝑀𝐴𝐶 (Θ, 𝑆, 𝑟𝑘) ⊲ Algorithm 1
4: 𝑇𝑒𝑠𝑡𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑆, \𝑘)
5: 𝜽 ← 𝜽 ∪ {\𝑘 }
6: 𝐴𝑆 ← 𝐹𝑖𝑡𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟 (𝜽 , 𝑆)
7: 𝑟𝑘 ← 𝐺𝑒𝑡𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐 (𝑟, 𝐴𝑆)
8: if \𝑘 is not contributing to 𝜽 on 𝑆 then
9: End for loop
10: return 𝐴𝑆, 𝜽

The main idea of Hydra is to perform multiple configurator runs
on an identical set of training settings, while only modifying the
performance metric. Due to the modifications to the metric, the con-
figurator produces different strategies. In Algorithm 3, the modified
performancemetric is computed by “GetModifiedPerformanceMetric”
and formally defined as:

𝑟𝑘 (\, 𝑠) = max{𝑟 (\, 𝑠), 𝑟 (𝐴𝑆 (𝜽 , 𝑠), 𝑠)}. (6)
The modified performance is the better of the performance of the

strategy that is assessed and the performance of the strategy that
is selected by the algorithm selector. By optimising the increase of
performance as compared to the current portfolio, the configurator
aims to find a configuration that adds the most value to the portfolio.
In the first configurator run, the default performance metric is
used. The resulting configuration \1 is therefore a locally optimal
configuration over the full set of training settings, also known as
the single best strategy in the portfolio.

5 STRATEGY SELECTION
The next step in our approach is strategy selection. We now have a
portfolio of strategies𝜽 , but still need to decidewhich of these strate-
gies best fits our current problem and opponent. We therefore desire
a mapping from the feature space 𝑋 to a one-hot distribution over
the possible strategies. This is an algorithm selection problem [22]
and is illustrated in Figure 1, modified for our work. Essentially, it
is a classification problem, for which we can train a classifier on
examples generated from our training set. Subsequently, we hope
the learned function will generalise to new bargaining problems
and unknown opponents in the test set, allowing us to select the
most suitable strategy from our portfolio.

Ilany and Gal [11] also considered this algorithm selection prob-
lem and analysed the performance of multiple classifiers that map

Main Track AAMAS 2022, May 9–13, 2022, Online

1104

Feature

Extraction

Bargaining Setting

Space

Selection
Mapping

Feature
Space

Performance

Mapping

Strategy Portfolio

Performance

Performance

Space

Figure 1: Algorithm selection schematics [22]

feature vectors to algorithms. The process of selecting a classifier
and configuring the accompanying parameters can again be seen
as an algorithm configuration problem. In line with the rest of this
paper, we chose to automate the configuration of an algorithm
selector by using AutoFolio [16], leveraging the power of a broad
range of algorithm selection methods and removing human bias.

5.1 AutoFolio
The algorithm selection system AutoFolio is used to construct the
algorithm selector. It has a range of regression and classification
methods to choose from and uses SMAC to determine both the
selection method to use and the settings of its hyperparameters.
The data AutoFolio requires as input is the performance 𝑟 (\, 𝑠)
of every strategy (\ ∈ 𝜽) on every setting (𝑠 ∈ 𝑆) in the training
set and a set of features. Its goal is to select the best-performing
strategy for every negotiation setting.

5.2 Cross validation.
AutoFolio uses 10-fold cross validation during optimisation to avoid
overfitting, by dividing the bargaining settings in the training set
in 10 subsets and leaving one subset out for performance testing.
However, due to the nature of a bargaining setting being a com-
bination of an opponent and a bargaining problem, this leads to
overfitting of the algorithm selector. The training set of bargaining
settings is the Cartesian product of the training set of opponents
and problems 𝑆 = 𝑂 × 𝑆 , so both components are included multiple
times in the training set.

To address this issue, we modified AutoFolio to split the cross
validation folds based on the set of opponents and problems that
build the bargaining settings. The set of opponents and the set of
problems are each split into 4 subsets, such that we obtain a total of
4·4 = 16 folds.When selecting a fold (|𝑆𝑓𝑜𝑙𝑑 | = 1

16 ·|𝑆 |), wemust elim-
inate the part of the remaining training set (|𝑆𝑒𝑙𝑖𝑚 | = 6

16 · |𝑆 |) that
overlaps with the fold based on opponents and problems and use the
remaining setting (|𝑆𝑓 𝑖𝑡 | = 9

16 · |𝑆 |) to fit the algorithm selector. This
cross validation approach reduces the workable size of the training
set, but it does prevent training on test opponents/problems.

5.3 Performance baselines
The oracle selector (Equation 3) always makes the perfect choice for
every negotiation setting and is an upper bound on the performance
of a selector using the given portfolio. It is obtained by simply trying
every strategy on every setting and selecting the best strategy. The

single best strategy is the strategy in the portfolio that obtains
the highest performance on the full set of negotiation settings
(Equation 4). We refer to this strategy as \1, as it is the first strategy
in the portfolio produced by Hydra. The performance of the single
best strategy is considered to be the baseline.

6 EMPIRICAL EVALUATION
We will first describe the method that was used to obtain the results
of this work before we show the results.

6.1 Method
The first configurator run with the default performance metric re-
sults in the single best strategy \1 on the training set of negotiation
settings. We iterated through Hydra until 𝑘 = 4. At that point, the
Hydra loop was terminated, as the last strategy that was added
did not contribute to the portfolio based on the training set, which
will be shown in Section 6. This also allows us to analyse the per-
formance of portfolios of sizes 1, 2 and 3, due to the incremental
approach of Hydra. The configurations thus obtained were tested
10 times on every negotiation setting in the training set, to cap-
ture performance variation due to randomness in the negotiation
strategies. Finally, the portfolio and the performance data was used
along with the setting features to configure an algorithm selector
using AutoFolio.

6.1.1 Input. An overview of the opponents that are used in this
work can be found in Table 4. The test set of opponents 𝑂𝑡𝑒𝑠𝑡 con-
sists of the bug-free ANAC 2017 agents. More recent ANAC agents
are not compatible with this work, due to different challenges, such
as partially defined preferences and a change of benchmarking plat-
form since 2020. In line with the competition, we allow ourselves
access to the agents of previous ANAC editions (before 2017) that
we use as a training set 𝑆 for the Hydra procedure (Algorithm 3).
Two additional agents are added to the test set in order to compare
our work to the work of Ilany and Gal [11], which adopted a similar
portfolio selection method. 36 agents from the ANAC are used, split
up in 20 training agents and 16 test agents.

The set of problems is provided in Table 5. A total of 42 problems
is used of which both sides can be played by our agent resulting in
84 playable problems. The set of bargaining problems is selected
based on diversity using the features as described in Section 3.4
and their discount factor and reservation utility are removed. The
set is split up into 56 training problems and 28 test problems.

The training set is of size |𝑆 | = |𝑂 | · |𝑃 | = 20× 56 = 1120 and the
test set is of size |𝑆𝑡𝑒𝑠𝑡 | = |𝑂𝑡𝑒𝑠𝑡 | · |𝑃𝑡𝑒𝑠𝑡 | = 16 × 28 = 448.

The bargaining problem features were calculated in advance, as
described in Section 3.4. The opponent features can only be gathered
by performing negotiations against the opponents. We gathered
these features in advance for the first configurator run, by negoti-
ating 10 times on every setting with a manually set strategy. After
the first configurator run, opponent features are extracted based on
negotiations with strategies that are already in the portfolio. Note
that during training, we use the actual opponent’s utility function
(𝑢𝑜) to calculate the features in Section 3.4 to reduce estimation
noise.

Main Track AAMAS 2022, May 9–13, 2022, Online

1105

Training set Test set

Agent ANAC Agent ANAC

ParsCat 2016 SimpleAgent 2017
YXAgent 2016 Rubick 2017
Terra 2016 PonPokoAgent 2017
MyAgent 2016 ParsCat2 2017
GrandmaAgent 2016 ShahAgent 2017
Farma 2016 Mosa 2017
Caduceus 2016 Mamenchis 2017
Atlas3201 2016 MadAgent 2017
AgentHP2_main 2016 Imitator 2017
RandomDance 2015 GeneKing 2017
PokerFace 2015 Farma17 2017
PhoenixParty 2015 CaduceusDC16 2017
ParsAgent 2015 AgentKN 2017
kawaii 2015 AgentF 2017
Atlas3 2015 MetaAgent2013 2013
AgentX 2015 MetaAgent 2012
AgentH 2015
AgentBuyogMain 2015
Gangster 2014
DoNA 2014

Table 4: Overview of opponent set used in this work. The last
column indicates in which year the opponent participated
in ANAC.

6.1.2 Hardware & budget. We followed Renting et al. [21] in terms
of computational budget, in order to be able to compare results.
Each run of SMAC was given a 1200-hour budget, divided over 300
parallel runs. Every run was performed on a single Intel® Xeon®
CPU core with 2 threads and 12 GB of RAM. Running AutoFolio
for our problem is not computationally expensive, so we chose to
not run it in parallel for convenience. We used a single dual-core
processor on the same computing cluster, assigned it 4 GB of RAM,
and provided it with a budget of 0.5 hours.

Output. The final algorithm selector was saved as a binary file at
the final step of Hydra, along with the parameter settings of every
strategy configuration (Table 6). We use both when faced with a
new negotiation setting for which we want to select a configuration.

6.2 Results
We now present the results using a test set of bargaining settings
𝑆𝑡𝑒𝑠𝑡 . More specifically, we investigated two aspects:

(1) the quality of the portfolio;
(2) the performance of the algorithm selector.

6.2.1 Quality of the portfolio. We assessed the quality of the port-
folio by measuring the performance (Equation 1) of every configu-
ration in the portfolio on the training and testing sets of negotiation
settings. The results can be found in Table 7. We included ratios that
indicate how often a strategy is part of the set of best strategies per
setting (“Sum” in Table 7). As a final quality check, the performance
of the oracle selector (Equation 3) is evaluated for varying sizes of
the portfolio. We present the results in Table 8.

Table 7 shows the results per strategy in the portfolio in the
form of individual performance over a set of settings 𝑅(\, 𝑆). It

Train/Test Preference Profile 1 Preference Profile 2

train ItexvsCypress_Cypress.xml ItexvsCypress_Itex.xml
train laptop_buyer_utility.xml laptop_seller_utility.xml
train Grocery_domain_mary.xml Grocery_domain_sam.xml
train Amsterdam_party1.xml Amsterdam_party2.xml
train camera_buyer_utility.xml camera_seller_utility.xml
train energy_consumer.xml energy_distributor.xml
train EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml
train Barter-A-prof1.xml Barter-A-prof2.xml
train FlightBooking-A-prof1.xml FlightBooking-A-prof2.xml
train HouseKeeping-A-prof1.xml HouseKeeping-A-prof2.xml
train MusicCollection-A-prof1.xml MusicCollection-A-prof2.xml
train Outfit-A-prof1.xml Outfit-A-prof2.xml
train RentalHouse-A-prof1.xml RentalHouse-A-prof2.xml
train Supermarket-A-prof1.xml Supermarket-A-prof2.xml
train Animal_util1.xml Animal_util2.xml
train DogChoosing_util1.xml DogChoosing_util2.xml
train Icecream_util1.xml Icecream_util2.xml
train Lunch_util1.xml Lunch_util2.xml
train Ultimatum_util1.xml Ultimatum_util2.xml
train DefensiveCharms_util1.xml DefensiveCharms_util2.xml
train SmartEnergyGrid_util1.xml SmartEnergyGrid_util2.xml
train DomainAce_util1.xml DomainAce_util2.xml
train Smart_Grid_util1.xml Smart_Grid_util2.xml
train DomainTwF_util1.xml DomainTwF_util2.xml
train ElectricVehicle_profile1.xml ElectricVehicle_profile2.xml
train PEnergy_util1.xml PEnergy_util2.xml
train JapanTrip_util1.xml JapanTrip_util2.xml
train NewDomain_util1.xml NewDomain_util2.xml
test England.xml Zimbabwe.xml
test travel_chox.xml travel_fanny.xml
test IS_BT_Acquisition_BT_prof.xml IS_BT_Acquisition_IS_prof.xml
test AirportSiteSelection-A-prof1.xml AirportSiteSelection-A-prof2.xml
test Barbecue-A-prof1.xml Barbecue-A-prof2.xml
test EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml
test FiftyFifty-A-prof1.xml FiftyFifty-A-prof2.xml
test Coffee_util1.xml Coffee_util2.xml
test Kitchen-husband.xml Kitchen-wife.xml
test Wholesaler-prof1.xml Wholesaler-prof2.xml
test triangularFight_util1.xml triangularFight_util2.xml
test SmartGridDomain_util1.xml SmartGridDomain_util2.xml
test WindFarm_util1.xml WindFarm_util2.xml
test KDomain_util1.xml KDomain_util2.xml

Table 5: Overview of bargaining problem set used in this
work.

is evident that \1 is the single best strategy over the full training
set 𝑆 . Furthermore, as every strategy is at least once the single
best on individual settings (single best ratio > 0), we can conclude
that every strategy contributes to the portfolio, thus satisfying our
requirement from Section 3.5.

Finally, Table 8 shows us that, at every iteration of Hydra, the
oracle performance of the portfolio increases on both 𝑆 and 𝑆𝑡𝑒𝑠𝑡 .
The improvement decreases on 𝑆 as the number of iterations in-
creases, indicating that Hydra fills the largest “weaknesses” in the
portfolio first.

6.2.2 Performance of the algorithm selector. Table 8 shows that
there is potential in the portfolio to improve utility of DA(\) by
0.840−0.742

0.742 ·100% ≈ 13.0% on the test set, if we use the oracle selector
rather than \1. We now replace the oracle selector with the actual
selector and test its performance in two ways.

Performance against known opponents. We test the absolute per-
formance of the algorithm selector by assuming perfect knowledge
of opponent features of the opponents in the test set of negotiation

Main Track AAMAS 2022, May 9–13, 2022, Online

1106

Table 6: Final configurations in the portfolio. These are the final parameter settings that make up the different bargaining
strategies in the portfolio.

Accepting Bidding Searching

\ 𝛼 𝛽 𝑡𝑎𝑐𝑐 𝛾 𝑛𝑓 𝑖𝑡 𝛿 𝑒 𝑁𝑝𝑜𝑝 𝑁𝑡𝑜𝑢𝑟 𝐸 𝑅𝑐 𝑅𝑚 𝑅𝑒

\1 1.038 0.03201 0.942 𝐴𝑉𝐺𝑊 3 0.927 0.00199 262 6 4 0.290 0.140 0.085
\2 1.001 0.00166 0.935 𝐴𝑉𝐺𝑊 3 0.998 0.06232 94 2 5 0.168 0.002 0.108
\3 1.007 0.01970 0.912 𝐴𝑉𝐺𝑊 4 0.917 0.01093 305 10 1 0.107 0.063 0.184
\4 1.056 0.00003 0.900 𝑀𝐴𝑋𝑊 5 0.997 0.02090 139 10 4 0.463 0.176 0.101

Table 7: Individual configuration performance on 𝑆 and 𝑆𝑡𝑒𝑠𝑡 .
The left two columns show the average utility of every in-
dividual strategy in the portfolio on the training and test
set of negotiation settings. The next four columns show the
fraction of the amount settings in the test set for which a
single strategy belongs to a set of best-performing strategies.

𝑅 (\, ·) Best performing on 𝑆𝑡𝑒𝑠𝑡 by ratio

\ 𝑆 𝑆𝑡𝑒𝑠𝑡 Single best In top 2 In top 3 In top 4 Sum

\1 0.815 0.742 0.281 0.100 0.016 0.123 0.520
\2 0.788 0.734 0.167 0.022 0.020 0.123 0.333
\3 0.789 0.754 0.154 0.065 0.031 0.123 0.373
\4 0.773 0.721 0.118 0.058 0.033 0.123 0.333

Table 8: Algorithm selector performance compared to oracle
performance. The left two columns show the upper limit
in average utility for various sizes of the portfolio on the
training and test set of negotiation settings. The right two
columns show the average utility obtained by applying the
trained algorithm selector on every setting in both sets.

𝑅(𝑂𝑅(𝜽 , 𝑠), ·) 𝑅(𝐴𝑆 (𝜽 , 𝑠), ·)
𝜽 𝑆 𝑆𝑡𝑒𝑠𝑡 𝑆 𝑆𝑡𝑒𝑠𝑡

{\1} 0.815 0.742 0.815 0.742
{\1, \2} 0.870 0.824 0.865 0.785
{\1, \2, \3} 0.875 0.832 0.869 0.776
{\1, \2, \3, \4} 0.879 0.840 0.868 0.784

setting 𝑆𝑡𝑒𝑠𝑡 . The opponent features are gathered by running 10
negotiation sessions with configuration \1 on the test set.

We trained and tested multiple algorithm selectors on different
portfolio sizes by extending the portfolio, starting with the single
best strategy \1. We report the performance in Table 8. For the
oracle selector, the performance of DA(\) increases with the size
of the portfolio. However, the performance increase plateaus on
𝑆𝑡𝑒𝑠𝑡 after adding the fourth strategy to the portfolio. Based on the
results on the training set, we conclude that the fourth strategy in
the portfolio is redundant and needlessly complicates the strategy
selection procedure; we therefore omitted it in the final evaluation
step reported in the following.

Performance with unknown opponents. Opponent features, in
contrast to the problem features, must be learned from previous

No Yes

Seen opponent
before?

Strategy:

Strategy:

New negotiation setting

Yes

No Samples of opponent
features > 2?

Yes

No

?Log opponent
features

Figure 2: Realistic strategy selection of DA(𝐴𝑆 (𝜽 , 𝑠))

encounters. Up to this point, we assumed the opponents to always
be known in advance, which is not realistic. We now simulate a
realistic negotiation tournament where this problem occurs. The
agents in 𝑆𝑡𝑒𝑠𝑡 can also learn from their opponents, but we cannot
guarantee fair learning chances due to parallelisation. To address
this issue, we negotiate once against all of them and then clean up
and restart our agent, giving every opponent a head start, favouring
a handicap over any advantage for our agent.

The question arises of what strategy to select at first encoun-
ters with opponents when no opponent features are available. If
strategy selection is not possible, we select the single best strat-
egy \1. Opponent features are influenced by the strategy that is
selected by DA(\), so we simplify the feature extraction process
and only gather features when strategy \1 is selected. This aligns
with the decision to select \1 at first opponent encounters. The
coefficient of variation of an opponent feature (Section 3.4) needs
at least two samples to be meaningful, so we set a second condition
to select strategy \1 for the first two encounters with an opponent
to “sample” the opponent. We illustrate this behaviour in Figure 2.

To obtain the results, we iterate randomly through the test set-
tings 𝑆𝑡𝑒𝑠𝑡 and use DA(𝐴𝑆 (𝜽 , 𝑠)) with 𝜽 = {\1, \2, \3} to negotiate,
following the procedure as described in Figure 2. Additionally, we
let every opponent in the test set negotiate with every other oppo-
nent in the test set on every test problem and combine the results
with the results of the DA(\). This procedure is repeated 10 times
to reduce the influence of variance for a total of 38 080 negotiations.
The results averaged per agent show that we are capable of winning

Main Track AAMAS 2022, May 9–13, 2022, Online

1107

Table 9: ANAC tournament results using DA(𝐴𝑆 (𝜽 , 𝑠)) where
all scores are averaged over all bargaining settings. The goal
of ANAC is to obtain the highest utility. We show the top 5
agents and all the outliers for every performance measure.
Here, social welfare is the summation of utility and opponent
utility, Pareto distance is the smallest distance to a Pareto
efficient bargaining outcome, Nash distance is the distance to
the Nash bargaining solution of the problem, and agreement
ratio represents the fraction of settings that resulted in an
agreement. (bold = best, underline = worst)

Agent Utility Opponent
utility

Social
welfare

Pareto
distance

Nash
distance

Imitator 0.446 0.901 1.347 0.091 0.428
GeneKing 0.612 0.783 1.396 0.065 0.378
Mamenchis 0.636 0.863 1.498 0.016 0.272
ParsCat2 0.642 0.773 1.414 0.090 0.273
MadAgent 0.669 0.536 1.204 0.232 0.383
Farma17 0.676 0.690 1.366 0.115 0.311
CaduceusDC16 0.688 0.599 1.287 0.181 0.327
AgentKN 0.690 0.757 1.447 0.065 0.252
SimpleAgent 0.699 0.531 1.230 0.204 0.398
Mosa 0.702 0.781 1.483 0.026 0.271
Rubick 0.716 0.715 1.431 0.070 0.282
PonPokoAgent 0.730 0.589 1.320 0.158 0.307
AgentF 0.738 0.679 1.417 0.076 0.301
ShahAgent 0.741 0.554 1.296 0.172 0.342

MetaAgent2013 0.746 0.659 1.405 0.092 0.284
MetaAgent 0.752 0.634 1.386 0.106 0.296

DA(𝐴𝑆 (𝜽 , 𝑠)) 0.788 0.627 1.414 0.074 0.314

Utility
Oppone

nt utilit
y
Social w

elfare
Pareto d

istanceNash distance
0

0.5

1

1.5

0.
74

2

0.
56

0

1.
30

2

0.
14

8 0.
38

50.
78

8

0.
62

7

1.
41

4

0.
07

4 0.
31

4

DA(\1)
DA(𝐴𝑆 (𝜽 , 𝑠))

Figure 3: Comparison of two DA(\) strategies in an ANAC
tournament setting. Here, DA(\1) is comparable to the agent
configured by Renting et al. [21] and DA(𝐴𝑆 (𝜽 , 𝑠)) represents
this work. See Table 9 for an explanation of the measures.

an ANAC-like bilateral tournament with our DA(\) using the strat-
egy selector, see Table 9. We beat the runner-up agent (MetaAgent)
by 0.788−0.752

0.752 · 100% ≈ 5.6% (significant at 𝛼 = 0.05 according to a
one-tailed t-test p-value of 𝑝 = 0.0022).

Finally, we compare the performances including error bars of
DA(\) with \1 and with a portfolio of strategies in a realistic ANAC
tournament setup, see Figure 3. Notice that our utility improved
with 0.788−0.742

0.742 · 100% ≈ 6.2% by using a portfolio instead of a
single fixed strategy and that the portfolio approach also improves
all other performance measures.

7 CONCLUSIONS AND FUTUREWORK
In previous work [21], automatic algorithm configuration was used
to obtain a single best strategy. Here, we have introduced a method
to configure and use a portfolio of strategies for negotiation agents,
adding a combination of Hydra, AutoFolio, and a procedure to
learn opponent behaviour. Our approach is fully automated and
represents a significant step beyond the use of single best strategies
in automated negotiation. In principle, it can be applied to any
negotiation agent with a flexible, parameterised strategy.

We created a portfolio of 4 strategies 𝜽 and tested the perfor-
mance of every strategy on a broad set of negotiation settings. In
Table 7, we showed that every configured strategy contributes to
the portfolio by specialising on separate sets of negotiation settings.
By adding algorithm selection to the Dynamic Agent to exploit
differences between settings in a realistic tournament, we increased
the performance of Dynamic Agent by 6.2% compared to the single
best strategy and won the tournament by a margin of 5.6%. We
note that the single best strategy is comparable to the agent config-
ured by Renting et al. [21], indicating that a portfolio-based agent
provides another significant boost to negotiation pay-off.

Limitations lie in the required mutual agreement on the norms
of how to conduct a negotiation. In this work, a predefined protocol
is used that is supported by all used agents. Agents that do not
support this protocol cannot participate in the negotiation. Another
important limitation is that this method has no safeguards to detect
whether the strategy portfolio is still performing well and that we
are not being exploited. Finally, due to the train-then-test principle
of our method, we still rely on a training set that is reasonably
representative of the actual application. Ethical concerns arise in the
design of bargaining agents for use in real-life applications. Persons
that have more resources to design quality bargaining agents can
gain even more resources in the process, leading to more inequality.
There are risks of exploitation, unfair play, and deception, due to a
lack of explainability and a high level of complexity for laypersons.

In future work, we intend to study the influence of the strategies
employed by the Dynamic Agent on the opponent characteristics
that we learn during negotiation to improve opponent learning.
Secondly, strategy selection could be improved for first encoun-
ters with opponents, where currently the single best strategy is
selected without regard of the setting characteristics. We intend
to investigate strategy selection for bargaining settings through
neural networks to relax the reliance on manually designed setting
features. Finally, it would be interesting to explore the use of re-
inforcement learning for training negotiation strategies instead of
the algorithm configuration approach that we leveraged here.

ACKNOWLEDGMENTS
The authors would like to thank Thomas Moerland for his help in
proof-reading this paper. This research was (partly) funded by the
Hybrid Intelligence Center, a 10-year programme funded the Dutch
Ministry of Education, Culture and Science through the Netherlands
Organisation for Scientific Research, grant number 024.004.022 and
by EU H2020 ICT48 project“Humane AI Net” under contract #
952026. This research was also partially supported by TAILOR,
a project funded by EU Horizon 2020 research and innovation
programme under GA No 952215.

Main Track AAMAS 2022, May 9–13, 2022, Online

1108

https://hybrid-intelligence-centre.nl

REFERENCES
[1] Reyhan Aydoğan, David Festen, Koen V. Hindriks, and Catholijn M. Jonker.

2017. Alternating Offers Protocols for Multilateral Negotiation. In Modern
Approaches to Agent-based Complex Automated Negotiation, Katsuhide Fujita,
Quan Bai, Takayuki Ito, Minjie Zhang, Fenghui Ren, Reyhan Aydoğan, and
Rafik Hadfi (Eds.). Springer International Publishing, Cham, 153–167. https:
//doi.org/10.1007/978-3-319-51563-2_10

[2] T Baarslag. 2014. What to bid and when to stop. Ph.D. Dissertation. Delft Uni-
versity of Technology. https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-
baadabc04bca

[3] Tim Baarslag, Reyhan Aydoğan, Koen V. Hindriks, Katsuhide Fujita, Takayuki Ito,
and Catholijn M. Jonker. 2015. The Automated Negotiating Agents Competition,
2010–2015. AI Magazine 36, 4 (2015), 2010–2014. https://doi.org/10.1609/aimag.
v36i4.2609

[4] Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen Hindriks, Takayuki Ito,
Nicholas R. Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and
Colin R. Williams. 2013. Evaluating practical negotiating agents: Results and
analysis of the 2011 international competition. Artificial Intelligence 198 (2013),
73–103. https://doi.org/10.1016/j.artint.2012.09.004

[5] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. 2011. Towards a quantitative
concession-based classification method of negotiation strategies. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7047 LNAI (2011), 143–158. https://doi.org/10.
1007/978-3-642-25044-6_13

[6] Jasper Bakker, Aron Hammond, Daan Bloembergen, and Tim Baarslag. 2019.
RLBOA: A Modular Reinforcement Learning Framework for Autonomous Ne-
gotiating Agents. In Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS ’19). International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland, SC, 260–268.
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf

[7] Garett Dworman, Steven O. Kimbrough, and James D. Laing. 1996. Bargaining
by artificial agents in two coalition games: a study in genetic programming
for electronic commerce. In Proceedings of the 1st annual conference on genetic
programming. MIT Press, Cambridge, MA, USA, 54–62. https://dl.acm.org/doi/
abs/10.5555/1595536.1595544

[8] Torsten Eymann. 2001. Co-Evolution of Bargaining Strategies in a Decentral-
ized Multi-Agent System. In symposium on negotiation methods for autonomous
cooperative systems. 126–134.

[9] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-
Based Optimization for General Algorithm Configuration. In Learning and Intel-
ligent Optimization (Lecture Notes in Computer Science), Carlos A. Coello Coello
(Ed.). Springer, Berlin, Heidelberg, 507–523. https://doi.org/10.1007/978-3-642-
25566-3_40

[10] Litan Ilany and Ya’akov Gal. 2014. The Simple-Meta Agent. In Novel insights
in agent-based complex automated negotiation, Ivan Marsa-Maestre, Miguel A.
Lopez-Carmona, Takayuki Ito, Minjie Zhang, Quan Bai, and Katsuhide Fujita
(Eds.). Vol. 535. Springer, 197–200. https://doi.org/10.1007/978-4-431-54758-7

[11] Litan Ilany and Ya’akov Gal. 2016. Algorithm selection in bilateral negotiation.
Autonomous Agents and Multi-Agent Systems 30, 4 (2016), 697–723. https://doi.
org/10.1007/s10458-015-9302-8

[12] M Tawfik Jelassi and Abbas Foroughi. 1989. Negotiation support systems: An
overview of design issues and existing software. Decision Support Systems 5, 2
(1989), 167–181.

[13] Ryohei Kawata and Katsuhide Fujita. 2019. Meta-Strategy for Multi-Time Nego-
tiation: A Multi-Armed Bandit Approach. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’19). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 2048–2050.

[14] Mark Klein and Stephen C. Y. Lu. 1989. Conflict resolution in cooperative design.
Artificial Intelligence in Engineering 4, 4 (Oct. 1989), 168–180. https://doi.org/10.

1016/0954-1810(89)90013-7
[15] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and

Catholijn M. Jonker. 2014. Genius: An integrated environment for support-
ing the design of generic automated negotiators. Computational Intelligence 30, 1
(2014), 48–70. https://doi.org/10.1111/j.1467-8640.2012.00463.x

[16] Marius Lindauer, Frank Hutter, Holger H. Hoos, and Torsten Schaub. 2017.
AutoFolio: An automatically configured algorithm selector. IJCAI Interna-
tional Joint Conference on Artificial Intelligence 53 (2017), 5025–5029. https:
//doi.org/10.1613/jair.4726

[17] Ivan Marsa-Maestre, Mark Klein, Catholijn M. Jonker, and Reyhan Aydoǧan. 2014.
From problems to protocols: Towards a negotiation handbook. Decision Support
Systems 60, 1 (2014), 39–54. https://doi.org/10.1016/j.dss.2013.05.019

[18] Noyda Matos, Carles Sierra, and Nick R. Jennings. 1998. Determining successful
negotiation strategies: An evolutionary approach. Proceedings - International
Conference on Multi Agent Systems, ICMAS 1998 (1998), 182–189. https://doi.org/
10.1109/ICMAS.1998.699048

[19] Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. (1 ed.).
Vol. 1. MIT press. https://doi.org/10.2307/2554642

[20] Howard Raiffa. 1985. The art and science of negotiation. Harvard University Press.
384 pages.

[21] Bram M. Renting, Holger H. Hoos, and Catholijn M. Jonker. 2020. Automated
Configuration of Negotiation Strategies. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems. International Foun-
dation for Autonomous Agents and Multiagent Systems, Auckland, 1116–1124.
http://arxiv.org/abs/2004.00094

[22] John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15,
C (1976), 65–118. https://doi.org/10.1016/S0065-2458(08)60520-3

[23] W.N. Robinson. 1990. Negotiation behavior during requirement specification.
[1990] Proceedings. 12th International Conference on Software Engineering (1990),
268–276. https://doi.org/10.1109/ICSE.1990.63633

[24] J. S. Rosenschein. 1986. Rational interaction: cooperation among intelligent agents.
Ph.D. Dissertation. Stanford University, Stanford, CA, USA. http://www.osti.
gov/energycitations/product.biblio.jsp?osti_id=5310977

[25] Ariel Rubinstein. 1982. Perfect Equilibrium in a Bargaining Model. Econometrica
50, 1 (1982), 97. https://doi.org/10.2307/1912531

[26] Ayan Sengupta, Yasser Mohammad, and Shinji Nakadai. 2021. An Autonomous
Negotiating Agent Framework with Reinforcement Learning based Strategies
and Adaptive Strategy Switching Mechanism. In Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (Richland,
SC, 2021-05-03) (AAMAS ’21). International Foundation for Autonomous Agents
and Multiagent Systems, 1163–1172. https://www.ifaamas.org/Proceedings/
aamas2021/pdfs/p1163.pdf

[27] Reid G. Smith. 1980. The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver. IEEE Trans. Comput. C-29, 12 (1980),
1104–1113. https://doi.org/10.1109/TC.1980.1675516

[28] Kate A. Smith-Miles. 2009. Cross-disciplinary perspectives on meta-learning for
algorithm selection. Comput. Surveys 41, 1 (2009), 1–25. https://doi.org/10.1145/
1456650.1456656

[29] Katia Sycara. 1988. Resolving Goal Conflicts via Negotiation. The Seventh National
Conference on Artificial Intelligence (1988), 245–249. http://www.aaai.org/Papers/
AAAI/1988/AAAI88-044.pdf

[30] K Sycara-Cyranski. 1985. Arguments Of Persuasion In Labour Mediation. Pro-
ceedings of the International Joint Conference on Artificial Intelligence 1 (1985),
294–296.

[31] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. 2010. Hydra: Automatically
Configuring Algorithms for Portfolio-Based Selection. In Twenty-Fourth AAAI
Conference on Artificial Intelligence (2010-07-03). https://www.aaai.org/ocs/index.
php/AAAI/AAAI10/paper/view/1929

[32] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2008. SATzilla: Portfolio-based
Algorithm Selection for SAT. Journal of Artificial Intelligence Research 32 (July
2008), 565–606. https://doi.org/10.1613/jair.2490

Main Track AAMAS 2022, May 9–13, 2022, Online

1109

https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
https://doi.org/10.1609/aimag.v36i4.2609
https://doi.org/10.1609/aimag.v36i4.2609
https://doi.org/10.1016/j.artint.2012.09.004
https://doi.org/10.1007/978-3-642-25044-6_13
https://doi.org/10.1007/978-3-642-25044-6_13
https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p260.pdf
https://dl.acm.org/doi/abs/10.5555/1595536.1595544
https://dl.acm.org/doi/abs/10.5555/1595536.1595544
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-4-431-54758-7
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1111/j.1467-8640.2012.00463.x
https://doi.org/10.1613/jair.4726
https://doi.org/10.1613/jair.4726
https://doi.org/10.1016/j.dss.2013.05.019
https://doi.org/10.1109/ICMAS.1998.699048
https://doi.org/10.1109/ICMAS.1998.699048
https://doi.org/10.2307/2554642
http://arxiv.org/abs/2004.00094
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1109/ICSE.1990.63633
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5310977
https://doi.org/10.2307/1912531
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1163.pdf
https://doi.org/10.1109/TC.1980.1675516
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/1456650.1456656
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
http://www.aaai.org/Papers/AAAI/1988/AAAI88-044.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
https://doi.org/10.1613/jair.2490

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Bargaining problem
	3.2 Dynamic agent
	3.3 Automated Configuration
	3.4 Bargaining setting features
	3.5 Problem definition

	4 Portfolio creation
	4.1 Portfolio creation
	4.2 Hydra

	5 Strategy selection
	5.1 AutoFolio
	5.2 Cross validation.
	5.3 Performance baselines

	6 Empirical evaluation
	6.1 Method
	6.2 Results

	7 Conclusions and future work
	Acknowledgments
	References

