

Delft University of Technology

Semi-automated Reasoning About Non-determinism in C Expressions

Frumin, Dan; Gondelman, Léon; Krebbers, Robbert

DOI
10.1007/978-3-030-17184-1_3
Publication date
2019
Document Version
Final published version
Published in
Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Proceedings

Citation (APA)
Frumin, D., Gondelman, L., & Krebbers, R. (2019). Semi-automated Reasoning About Non-determinism in
C Expressions. In L. Caires (Ed.), Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Proceedings (pp. 60-87). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11423 LNCS). Springer.
https://doi.org/10.1007/978-3-030-17184-1_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3

Semi-automated Reasoning About
Non-determinism in C Expressions

Dan Frumin1(B), Léon Gondelman1, and Robbert Krebbers2

1 Radboud University, Nijmegen, The Netherlands
{dfrumin,lgg}@cs.ru.nl

2 Delft University of Technology, Delft, The Netherlands
mail@robbertkrebbers.nl

Abstract. Research into C verification often ignores that the C standard
leaves the evaluation order of expressions unspecified, and assigns unde-
fined behavior to write-write or read-write conflicts in subexpressions—
so called “sequence point violations”. These aspects should be accounted
for in verification because C compilers exploit them.

We present a verification condition generator (vcgen) that enables one
to semi-automatically prove the absence of undefined behavior in a given
C program for any evaluation order. The key novelty of our approach is
a symbolic execution algorithm that computes a frame at the same time
as a postcondition. The frame is used to automatically determine how
resources should be distributed among subexpressions.

We prove correctness of our vcgen with respect to a new monadic def-
initional semantics of a subset of C. This semantics is modular and gives
a concise account of non-determinism in C.

We have implemented our vcgen as a tactic in the Coq interactive the-
orem prover, and have proved correctness of it using a separation logic
for the new monadic definitional semantics of a subset of C.

1 Introduction

The ISO C standard [22]—the official specification of the C language—leaves
many parts of the language semantics either unspecified (e.g., the order of evalu-
ation of expressions), or undefined (e.g., dereferencing a NULL pointer or integer
overflow). In case of undefined behavior a program may do literally anything,
e.g., it may crash, or it may produce an arbitrary result and side-effects. There-
fore, to establish the correctness of a C program, one needs to ensure that the
program has no undefined behavior for all possible choices of non-determinism
due to unspecified behavior.

In this paper we focus on the undefined and unspecified behaviors related to
C’s expression semantics, which have been ignored by most existing verification
tools, but are crucial for establishing the correctness of realistic C programs. The
C standard does not require subexpressions to be evaluated in a specific order
(e.g., from left to right), but rather allows them to be evaluated in any order.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 60–87, 2019.
https://doi.org/10.1007/978-3-030-17184-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_3

Semi-automated Reasoning About Non-determinism in C Expressions 61

Moreover, an expression has undefined behavior when there is a conflicting write-
write or read-write access to the same location between two sequence points [22,
6.5p2] (so called “sequence point violation”). Sequence points occur e.g., at the
end of a full expression (;), before and after each function call, and after the
first operand of a conditional expression (- ? - : -) has been evaluated [22,
Annex C]. Let us illustrate this by means of the following example:

int main() {
int x; int y = (x = 3) + (x = 4);
printf("%d�%d\n", x, y);

}

Due to the unspecified evaluation order, one would naively expect this program
to print either “3 7” or “4 7”, depending on which assignment to x was evalu-
ated first. But this program exhibits undefined behavior due to a sequence point
violation: there are two conflicting writes to the variable x. Indeed, when com-
piled with GCC (version 8.2.0), the program in fact prints “4 8”, which does
not correspond to the expected results of any of the evaluation orders.

One may expect that these programs can be easily ruled out statically using
some form of static analysis, but this is not the case. Contrary to the simple pro-
gram above, one can access the values of arbitrary pointers, making it impossible
to statically establish the absence of write-write or read-write conflicts. Besides,
one should not merely establish the absence of undefined behavior due to con-
flicting accesses to the same locations, but one should also establish that there
are no other forms of undefined behavior (e.g., that no NULL pointers are deref-
erenced) for any evaluation order.

To deal with this issue, Krebbers [29,30] developed a program logic based on
Concurrent Separation Logic (CSL) [46] for establishing the absence of undefined
behavior in C programs in the presence of non-determinism. To get an impression
of how his logic works, let us consider the rule for the addition operator:

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2. Ψ1 v1 ∗ Ψ2 v2 � Φ (v1 + v2)
{P1 ∗ P2} e1 + e2 {Φ}

This rule is much like the rule for parallel composition in CSL—the precondition
should be separated into two parts P1 and P2 describing the resources needed for
proving the Hoare triples of both operands. Crucially, since P1 and P2 describe
disjoint resources as expressed by the separating conjunction ∗, it is guaranteed
that e1 and e2 do not interfere with each other, and hence cannot cause sequence
point violations. The purpose of the rule’s last premise is to ensure that for all
possible return values v1 and v2, the postconditions Ψ1 and Ψ2 of both operands
can be combined into the postcondition Φ of the whole expression.

Krebbers’s logic [29,30] has some limitations that impact its usability:

– The rules are not algorithmic, and hence it is not clear how they could be
implemented as part of an automated or interactive tool.

– It is difficult to extend the logic with new features. Soundness was proven
with respect to a monolithic and ad-hoc model of separation logic.

62 D. Frumin et al.

In this paper we address both of these problems.
We present a new algorithm for symbolic execution in separation logic. Con-

trary to ordinary symbolic execution in separation logic [5], our symbolic execu-
tor takes an expression and a precondition as its input, and computes not only
the postcondition, but also simultaneously computes a frame that describes the
resources that have not been used to prove the postcondition. The frame is used
to infer the pre- and postconditions of adjacent subexpressions. For example, in
e1 + e2, we use the frame of e1 to symbolically execute e2.

In order to enable semi-automated reasoning about C programs, we integrate
our symbolic executor into a verification condition generator (vcgen). Our vcgen
does not merely turn programs into proof goals, but constructs the proof goals
only as long as it can discharge goals automatically using our symbolic executor.
When an attempt to use the symbolic executor fails, our vcgen will return a new
goal, from which the vcgen can be called back again after the user helped out.
This approach is useful when integrated into an interactive theorem prover.

We prove soundness of the symbolic executor and verification condition gener-
ator with respect to a refined version of the separation logic by Krebbers [29,30].
Our new logic has been developed on top of the Iris framework [24–26,33], and
thereby inherits all advanced features of Iris (like its expressive support for ghost
state and invariants), without having to model these explicitly. To make our new
logic better suited for proving the correctness of the symbolic executor and ver-
ification condition generator, our new logic comes with a weakest precondition
connective instead of Hoare triples as in Krebbers’s original logic.

To streamline the soundness proof of our new program logic, we give a new
monadic definitional translation of a subset of C relevant for non-determinism
and sequence points into an ML-style functional language with concurrency.
Contrary to the direct style operational semantics for a subset of C by Kreb-
bers [29,30], our approach leads to a semantics that is both easier to understand,
and easier to extend with additional language features.

We have mechanized our whole development in the Coq interactive theorem
prover. The symbolic executor and verification condition generator are defined
as computable functions in Coq, and have been integrated into tactics in the
Iris Proof Mode/MoSeL framework [32,34]. To obtain end-to-end correctness,
we mechanized the proofs of soundness of our symbolic executor and verification
condition generator with respect to our new separation logic and new monadic
definitional semantics for a subset of C. The Coq development is available at [18].

Contributions. We describe an approach to semi-automatically prove the
absence of undefined behavior in a given C program for any evaluation order.
While doing so, we make the following contributions:

– We define λMC: a small C-style language with a semantics by a monadic
translation into an ML-style functional language with concurrency (Sect. 2);

– We present a separation logic with weakest preconditions for λMC based on
the separation logic for non-determinism in C by Krebbers [29,30] (Sect. 3);

Semi-automated Reasoning About Non-determinism in C Expressions 63

– We prove soundness of our separation logic with weakest preconditions by
giving a modular model using the Iris framework [24–26,33] (Sect. 4);

– We present a new symbolic executor that not only computes the postcondition
of a C expression, but also a frame, used to determine how resources should
be distributed among subexpressions (Sect. 5);

– On top of our symbolic executor, we define a verification condition genera-
tor that enables semi-automated proofs using an interactive theorem prover
(Sect. 6);

– We demonstrate that our approach can be implemented and proved sound
using Coq for a superset of the λMC language considered in this paper
(Sect. 7).

2 λMC: A Monadic Definitional Semantics of C

In this section we describe a small C-style language called λMC, which features
non-determinism in expressions. We define its semantics by translation into a
ML-style functional language with concurrency called HeapLang.

We briefly describe the λMC source language (Sect. 2.1) and the HeapLang
target language (Sect. 2.2) of the translation. Then we describe the translation
scheme itself (Sect. 2.3). We explain in several steps how to exploit concurrency
and monadic programming to give a concise and clear definitional semantics.

2.1 The Source Language λMC

The syntax of our source language called λMC is as follows:

v ∈ val ::= z | f | l | NULL | (v1, v2) | () (z ∈ Z, l ∈ Loc)
e ∈ expr ::= v | x | (e1, e2) | e.1 | e.2 | e1 � e2 | (� ∈ {+,−, . . . })

x ← e1 ; e2 | if(e1){e2}{e3} | while(e1){e2} | e1(e2) |
alloc(e) | *e | e1 = e2 | free(e)

The values include integers, NULL pointers, concrete locations l, function pointers
f, structs with two fields (tuples), and the unit value () (for functions without
return value). There is a global list of function definitions, where each definition
is of the form f(x){e}. Most of the expression constructs resemble standard C
notation, with some exceptions. We do not differentiate between expressions and
statements to keep our language uniform. As such, if-then-else and sequencing
constructs are not duplicated for both expressions and statements. Moreover, we
do not differentiate between lvalues and rvalues [22, 6.3.2.1]. Hence, there is no
address operator &, and, similarly to ML, the load (*e) and assignment (e1 = e2)
operators take a reference as their first argument.

The sequenced bind operator x ← e1 ; e2 generalizes the normal sequencing
operator e1 ; e2 of C by binding the result of e1 to the variable x in e2. As such,

64 D. Frumin et al.

x ← e1 ; e2 can be thought of as the declaration of an immutable local variable
x. We omit mutable local variables for now, but these can be easily added as an
extension to our method, as shown in Sect. 7. We write e1 ; e2 for a sequenced
bind ← e1 ; e2 in which we do not care about the return value of e1.

To focus on the key topics of the paper—non-determinism and the sequence
point restriction—we take a minimalistic approach and omit most other features
of C. Notably, we omit non-local control (return, break, continue, and goto). Our
memory model is simplified; it only supports structs with two fields (tuples),
but no arrays, unions, or machine integers. In Sect. 7 we show that some of
these features (arrays, pointer arithmetic, and mutable local variables) can be
incorporated.

2.2 The Target Language HeapLang

The target language of our definitional semantics of λMC is an ML-style func-
tional language with concurrency primitives and a call-by-value semantics. This
language, called HeapLang, is included as part of the Iris Coq development [21].
The syntax is as follows:

v ∈ Val ::= z | true | false | rec f x = e | � | () | . . . (z ∈ Z, � ∈ Loc)
e ∈ Expr ::= v | x | e1 e2 | ref(e) | !HL e | e1 :=HL e2 | assert(e) |

e1 ||HL e2 | newmutex | acquire | release | . . .

The language contains some concurrency primitives that we will use to model
non-determinism in λMC. Those primitives are (||HL), newmutex, acquire, and
release. The first primitive is the parallel composition operator, which executes
expressions e1 and e2 in parallel, and returns a tuple of their results. The expres-
sion newmutex () creates a new mutex. If lk is a mutex that was created this way,
then acquire lk tries to acquire it and blocks until no other thread is using lk.
An acquired mutex can be released using release lk.

2.3 The Monadic Definitional Semantics of λMC

We now give the semantics of λMC by translation into HeapLang. The transla-
tion is carried out in several stages, each iteration implementing and illustrating
a specific aspect of C. First, we model non-determinism in expressions by con-
currency, parallelizing execution of subexpressions (step 1). After that, we add
checks for sequence point violations in the translation of the assignment and
dereferencing operations (step 2). Finally, we add function calls and demonstrate
how the translation can be simplified using a monadic notation (step 3).

Semi-automated Reasoning About Non-determinism in C Expressions 65

Step 1: Non-determinism via Parallel Composition. We model the
unspecified evaluation order in binary expressions like e1 + e2 and e1 = e2 by
executing the subexpressions in parallel using the (||HL) operator:

�e1 + e2� � let (v1, v2) = �e1� ||HL �e2� in v1 +HL v2

�e1 = e2� � let (v1, v2) = �e1� ||HL �e2� in

match v1 with

| None → assert(false) (* NULL pointer *)

| Some l → match !HL l with

| None → assert(false) (* Use after free *)

| Some → l :=HL Some v2; v2

Since our memory model is simple, the value interpretation is straightforward:

�z�val � z (if z ∈ Z) �NULL�val � None

�(v1, v2)�val � (�v1�val , �v2�val) �()�val � () �l�val � Some l

The only interesting case is the translation of locations. Since there is no con-
cept of a NULL pointer in HeapLang, we use the option type to distinguish NULL
pointers from concrete locations (l). The interpretation of assignments thus con-
tains a pattern match to check that no NULL pointers are dereferenced. A similar
check is performed in the interpretation of the load operation (*e). Moreover,
each location contains an option to distinguish freed from active locations.

Step 2: Sequence Points. So far we have not accounted for undefined behavior
due to sequence point violations. For instance, the program (x = 3)+ (x =
4) gets translated into a HeapLang expression that updates the value of the
location x non-deterministically to either 3 or 4, and returns 7. However, in
C, the behavior of this program is undefined, as it exhibits a sequence point
violation: there is a write conflict for the location x.

To give a semantics for sequence point violations, we follow the approach
by Norrish [44], Ellison and Rosu [17], and Krebbers [29,30]. We keep track of
a set of locations that have been written to since the last sequence point. We
refer to this set as the environment of our translation, and represent it using a
global variable env of the type mset Loc. Because our target language HeapLang
is concurrent, all updates to the environment env must be executed atomically,
i.e., inside a critical section, which we enforce by employing a global mutex lk.
The interpretation of assignments e1 = e2 now becomes:

66 D. Frumin et al.

ret e � λ . e

e1 || e2 � λ env lk. (e1 env lk) ||HL (e2 env lk)

x ← e1; e2 � λ env lk. let x = e1 env lk in e2 env lk

atomic env e � λ env lk. acquire lk; let a = e env in release lk; a

atomic e � λ env lk. acquire lk; let a = e env (newmutex ()) in release lk; a

run(e) � e (mset create ()) (newmutex ())

Fig. 1. The monadic combinators.

�e1 = e2� � let (v1, v2) = �e1� ||HL �e2� in

acquire lk;
match v1 with

| None → assert(false) (* NULL pointer *)

| Some l →
assert(¬mset member l env); (* Seq. point violation *)

match !HL l with

| None → assert(false) (* Use after free *)

| Some → mset add l env; l :=HL Some v2;

release lk; v2

Whenever we assign to (or read from) a location l, we check if the location l
is not already present in the environment env. If the location l is present, then
it was already written to since the last sequence point. Hence, accessing the
location constitutes undefined behavior (see the assert in the interpretation of
assignments above). In the interpretation of assignments, we furthermore insert
the location l into the environment env.

In order to make sure that one can access a variable again after a sequence
point, we define the sequenced bind operator x ← e1 ; e2 as follows:

�x ← e1 ; e2� � let x = �e1� in acquire lk; mset clear env; release lk; �e2�

After we finished executing the expression e1, we clear the environment env, so
that all locations are accessible in e2 again.

Step 3: Non-interleaved Function Calls. As the final step, we present
the correct translation scheme for function calls. Unlike the other expressions,
function calls are not interleaved during the execution of subexpressions [22,
6.5.2.2p10]. For instance, in the program f() + g() the possible orders of exe-
cution are: either all the instructions in f() followed by all the instructions in
g(), or all the instructions in g() followed by all the instructions in f().

Semi-automated Reasoning About Non-determinism in C Expressions 67

e1 + e2 � (v1, v2) e1 || e2 ; ret (v1 +HL v2)

e1 = e2 � (v1, v2) e1 || e2 ;

atomic env (λ env.

match v1 with

| None assert(false) (* NULL pointer *)

| Some l

assert(¬mset member l env); (* Seq. point violation *)

match !HL l with

| None assert(false) (* Use after free *)

| Some mset add l env; l :=HL Some v2; ret v2)

x e1 ; e2 � x e1 ; (atomic env mset clear); e2

e1(e2) � (f, a) e1 || e2 ; atomic (atomic env mset clear; f a)

f(x){e} � let rec f x = v e ; (atomic env mset clear); ret v

Fig. 2. Selected clauses from the monadic definitional semantics.

To model this, we execute each function call atomically. In the previous step
we used a global mutex for guarding the access to the environment. We could use
that mutex for function calls too. However, reusing a single mutex for entering
each critical section would not work because a body of a function may contain
invocations of other functions. To that extent, we use multiple mutexes to reflect
the hierarchical structure of function calls.

To handle multiple mutexes, each C expression is interpreted as a HeapLang
function that receives a mutex and returns its result. That is, each C expression
is modeled by a monadic expression in the reader monad M(A) � msetLoc →
mutex → A. For consistency’s sake, we now also use the monad to thread through
the reference to the environment (msetLoc), instead of using a global variable
env as we did in the previous step.

We use a small set of monadic combinators, shown in Fig. 1, to build the
translation in a more abstract way. The return and bind operators are standard
for the reader monad. The parallel operator runs two monadic expressions con-
currently, propagating the environment and the mutex. The atomic combinator
invokes a monadic expression with a fresh mutex. The atomic env combinator
atomically executes its body with the current environment as an argument. The
run function executes the monadic computation by instantiating it with a fresh
mutex and a new environment. Selected clauses for the translation are presented
in Fig. 2. The translation of the binary operations remains virtually unchanged,
except for the usage of monadic parallel composition instead of the standard one.
The translation for the assignment and the sequenced bind uses the atomic env
combinator for querying and updating the environment. We also have to adapt
our translation of values, by wrapping it in ret : �v� � ret �v�val .

68 D. Frumin et al.

A global function definition f(x){e} is translated as a top level let-binding. A
function call is then just an atomically executed function invocation in HeapLang,
modulo the fact that the function pointer and the arguments are computed in
parallel. In addition, sequence points occur at the beginning of each function call
and at the end of each function body [22, Annex C], and we reflect that in our
translation by clearing the environment at appropriate places.

Our semantics by translation can easily be extended to cover other features of
C, e.g., a more advanced memory model (see Sect. 7). However the fragment pre-
sented here already illustrates the challenges that non-determinism and sequence
point violations pose for verification. In the next section we describe a logic for
reasoning about the semantics by translation given in this section.

3 Separation Logic with Weakest Preconditions for λMC

In this section we present a separation logic with weakest precondition proposi-
tions for reasoning about λMC programs. The logic tackles the main features of
our semantics—non-determinism in expressions evaluation and sequence point
violations. We will discuss the high-level rules of the logic pertaining to C con-
nectives by going through a series of small examples.

The logic presented here is similar to the separation logic by Krebbers [29],
but it is given in a weakest precondition style, and moreover, it is constructed
synthetically on top of the separation logic framework Iris [24–26,33], whereas
the logic by Krebbers [29] is interpreted directly in a bespoke model.

The following grammar defines the formulas of the logic:

P,Q ∈ Prop ::= True | False | ∀x. P | ∃x. P | v1 = v2 | l q	−→ξ v | (q ∈ (0, 1])
P ∗ Q | P −∗ Q | wp e {Φ} | . . . (ξ ∈ {L,U})

Most of the connectives are commonplace in separation logic, with the exception
of the modified points-to connective, which we describe in this section.

As is common, Hoare triples {P } e {Φ} are syntactic sugar for P � wp e {Φ}.
The weakest precondition connective wp e {Φ} states that the program e is safe
(the program has defined behavior), and if e terminates to a value v, then v
satisfies the predicate Φ. We write wp e {v. Φ v} for wp e {λv. Φ v}.

Contrary to the paper by Krebbers [29], we use weakest preconditions instead
of Hoare triples throughout this paper. There are several reasons for doing so:

1. We do not have to manipulate the preconditions explicitly, e.g., by applying
the consequence rule to the precondition.

2. The soundness of our symbolic executor (Theorem 5.1) can be stated more
concisely using weakest precondition propositions.

3. It is more convenient to integrate weakest preconditions into the Iris Proof
Mode/MoSeL framework in Coq that we use for our implementation (Sect. 7).

A selection of rules is presented in Fig. 3. Each inference rule
P1 . . . Pn

Q
in

this paper should be read as the entailment P1 ∗ . . . ∗ Pn � Q. We now explain
and motivate the rules of our logic.

Semi-automated Reasoning About Non-determinism in C Expressions 69

wp-value
Φ v

wp v {Φ}

wp-wand
wp e {Φ} (∀v. Φ v −∗ Ψ v)

wp e {Ψ}

wp-seq
wp e1 {v. U(wp e2[v/x] {Φ})}

wp (x ← e1 ; e2) {Φ}
wp-bin-op
wp e1 {Ψ1} wp e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ(w1 � w2))

wp (e1 � e2) {Φ}
wp-load
wp e

{
l. ∃w q. l

q→� U w ∗ (l
q→� U w −∗ Φ w)

}

wp (*e) {Φ}

wp-alloc
wp e {v. ∀l. l U v −∗ Φ l}

wp alloc(e) {Φ}
wp-store

wp e1 {Ψ1} wp e2 {Ψ2}
(∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l U v ∗ (l �→L w −∗ Φ w))

wp (e1 = e2) {Φ}

wp-free
wp e {l. ∃v. l �→U v ∗ Φ ()}

wp free(e) {Φ}

mapsto-split
l

q1� ξ1 v ∗ l
q2� ξ2 v �	 l

q1+q2
ξ1∨ξ2 v

mapsto-values-agree
l

q1
ξ1 v1 l

q2
ξ2 v2

v1 = v2

U-unlock
l

q→−� L v

U(l
q→−� U v)

U-mono
P −∗ Q

UP −∗ UQ

U-intro
P

UP

U-sep
UP ∗ UQ

U(P ∗ Q)

Fig. 3. Selected rules for weakest preconditions.

Non-determinism. In the introduction (Sect. 1) we have already shown the
rule for addition from Krebbers’s logic [29], which was written using Hoare
triples. Using weakest preconditions, the corresponding rule (wp-bin-op) is:

wp e1 {Ψ1} wp e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ(w1 ��� w2))
wp (e1 � e2) {Φ}

This rule closely resembles the usual rule for parallel composition in ordinary
concurrent separation logic [46]. This should not be surprising, as we have given
a definitional semantics to binary operators using the parallel composition opera-
tor. It is important to note that the premises wp-bin-op are combined using the
separating conjunction ∗. This ensures that the weakest preconditions wp e1 {Ψ1}
and wp e2 {Ψ2} for the subexpressions e1 and e2 are verified with respect to
disjoint resources. As such they do not interfere with each other, and can be
evaluated in parallel without causing sequence point violations.

To see how one can use the rule wp-bin-op, let us verify P � wp (e1 +
e2) {Φ}. That is, we want to show that (e1 + e2) satisfies the postcondition
Φ assuming the precondition P . This goal can be proven by separating the

70 D. Frumin et al.

precondition P into disjoint parts P1 ∗ P2 ∗ R
� P . Then using wp-bin-op
the goal can be reduced to proving Pi � wp ei {Ψi} for i ∈ {0, 1}, and
R ∗ Ψ1 w1 ∗ Ψ2 w2 � Φ(w1 ��� w2) for any return values wi of the expressions
ei.

Fractional Permissions. Separation logic includes the points-to connective
l 	→ v, which asserts unique ownership of a location l with value v. This con-
nective is used to specify the behavior of stateful operations, which becomes
apparent in the following proposed rule for load:

wp e {l. ∃w. l 	→ w ∗ (l 	→ w −∗ Φ w)}
wp (*e) {Φ}

In order to verify *e we first make sure that e evaluates to a location l, and
then we need to provide the points-to connective l 	→ w for some value stored at
the location. This rule, together with wp-value, allows for verification of simple
programs like l 	→ v � wp (*l) {w. w = v ∗ l 	→ v}.

However, the rule above is too weak. Suppose that we wish to verify the
program *l+*l from the precondition l 	→ v. According to wp-bin-op, we have
to separate the proposition l 	→ v into two disjoint parts, each used to verify
the load operation. In order to enable sharing of points-to connectives we use
fractional permissions [7,8]. In separation logic with fractional permissions each
points-to connective is annotated with a fraction q ∈ (0, 1], and the resources
can be split in accordance with those fractions:

l
q1+q2	−−−−→ v
� l

q1	−→ v ∗ l q2	−→ v.

A connective l
1	−→ v provides a unique ownership of the location, and we refer

to it as a write permission. A points-to connective with q ≤ 1 provides shared
ownership of the location, referred to as a read permission. By convention, we
write l 	→ v to denote the write permission l

1	−→ v.
With fractional permissions at hand, we can relax the proposed load rule, by

allowing to dereference a location even if we only have a read permission:

wp e
{
l. ∃w q. l

q	−→ w ∗ (l
q	−→ w −∗ Φ w)

}

wp (*e) {Φ}
This corresponds to the intuition that multiple subexpressions can safely deref-
erence the same location, but not write to them.

Using the rule above we can verify l 	→ 1 � wp (*l + *l) {v. v = 2 ∗ l 	→ 1}
by splitting the assumption into l

0.5	−−→ 1 ∗ l 0.5	−−→ 1 and first applying wp-bin-op
with Ψ1 and Ψ2 being λv. (v = 1) ∗ l

0.5	−−→ 1. Then we apply wp-load on both
subgoals. After that, we can use mapsto-split to prove the remaining formula:

(v1 = 1) ∗ l 0.5	−−→ 1 ∗ (v2 = 1) ∗ l 0.5	−−→ 1 � (v1 + v2 = 2) ∗ l 	→ 1.

Semi-automated Reasoning About Non-determinism in C Expressions 71

The Assignment Operator. The second main operation that accesses the
heap is the assignment operator e1 = e2. The arguments on the both sides of the
assignment are evaluated in parallel, and a points-to connective is required to
perform an update to the heap. A naive version of the assignment rule can be
obtained by combining the binary operation rule and the load rule:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l 	→ v ∗ (l 	→ w −∗ Φ w))
wp (e1 = e2) {Φ}

The write permission l 	→ v can be obtained by combining the resources of both
sides of the assignment. This allows us to verify programs like l= *l + *l.

However, the rule above is unsound, because it fails to account for sequence
point violations. We could use the rule above to prove safety of undefined pro-
grams, e.g., the program l= (l= 3).

To account for sequence point violations we decorate the points-to connec-
tives l

q	−→ξ v with access levels ξ ∈ {L,U}. These have the following seman-
tics: we can read from and write to a location that is unlocked (U), and the
location becomes locked (L) once someone writes to it. Proposition l

q	−→U v

(resp. l
q	−→L v) asserts ownership of the unlocked (resp. locked) location l.

We refer to such propositions as lockable points-to connectives. Using lockable
points-to connectives we can formulate the correct assignment rule:

wp e1 {Ψ1} wp e2 {Ψ2} (∀l w. Ψ1 l ∗ Ψ2 w −∗ ∃v. l 	→ v ∗ (l 	→L w −∗ Φ w))
wp (e1 = e2) {Φ}

The set {L,U} has a lattice structure with L ≤ U , and the levels can be com-
bined with a join operation, see mapsto-split. By convention, l

q	−→ v denotes
l

q	−→U v.

The Unlocking Modality. As locations become locked after using the assign-
ment rule, we wish to unlock them in order to perform further heap operations.
For instance, in the expression l= 4 ; *l the location l becomes unlocked after
the sequence point “;” between the store and the dereferencing operations. To
reflect this in the logic, we use the rule wp-seq which features the unlocking
modality U (which is called the unlocking assertion in [29, Definition 5.6]):

wp e1 { .U(wp e2 {Φ})}
wp (e1 ; e2) {Φ}

Intuitively, UP states that P holds, after unlocking all locations. The rules of U
in Fig. 3 allow one to turn (P1 ∗ . . . ∗ Pm) ∗ (l1 	→L v1 ∗ . . . ∗ lm 	→L vm) � UQ
into (P1 ∗ . . .∗Pm)∗ (l1 	→U v1 ∗ . . .∗lm 	→U vm) � Q. This is done by applying
either U-unlock or U-intro to each premise; then collecting all premises into
one formula under U by U-sep; and finally, applying U-mono to the whole
sequent.

72 D. Frumin et al.

4 Soundness of Weakest Preconditions for λMC

In this section we prove adequacy of the separation logic with weakest precon-
ditions for λMC as presented in Sect. 3. We do this by giving a model using the
Iris framework that is structured in a similar way as the translation that we
gave in Sect. 2. This translation consisted of three layers: the target HeapLang
language, the monadic combinators, and the λMC operations themselves. In the
model, each corresponding layer abstracts from the details of the previous layer,
in such a way that we never have to break the abstraction of a layer. At the end,
putting all of this together, we get the following adequacy statement:

Theorem 4.1 (Adequacy of Weakest Preconditions). If wp e {Φ} is deriv-
able, then e has no undefined behavior for any evaluation order. In other words,
run(e) does not assert false.

The proof of the adequacy theorem closely follows the layered structure,
by combining the correctness of the monadic run combinator with adequacy of
HeapLang in Iris [25, Theorem 6]. The rest of this section is organized as:

1. Because our translation targets HeapLang, we start by recalling the separation
logic with weakest preconditions, for HeapLang part of Iris (Sect. 4.1).

2. On top of the logic for HeapLang, we define a notion of weakest preconditions
wpmon e {Φ} for expressions e built from our monadic combinators (Sect. 4.2).

3. Next, we define the lockable points-to connective �
q	−→ξ v using Iris’s machin-

ery for custom ghost state (Sect. 4.3).
4. Finally, we define weakest preconditions for λMC by combining the weakest

preconditions for monadic expressions with our translation scheme (Sect. 4.4).

4.1 Weakest Preconditions for HeapLang

We recall the most essential Iris connectives for reasoning about HeapLang pro-
grams: wpHL e {Φ} and � 	→HL v, which are the HeapLang weakest precondition
proposition and the HeapLang points-to connective, respectively. Other Iris con-
nectives are described in [6, Section 8.1] or [25,33]. An example rule is the store
rule for HeapLang, shown in Fig. 4. The rule requires a points-to connective
� 	→HL v, and the user receives the updated points-to connective � 	→HL w back
for proving Φ (). Note that the rule is formulated for a concrete location �
and a value w, instead of arbitrary expressions. This does not limit the expres-
sive power; since the evaluation order in HeapLang is deterministic1, arbitrary
expressions can be handled using the wphl-bind rule. Using this rule, one can
bind an expression e in an arbitrary evaluation context K. We can thus use the
wphl-bind rule twice to derive a more general store rule for HeapLang:

wpHL e2 {w.wpHL e1 {�. (∃v. � 	→HL v) ∗ (� 	→HL w −∗ Φ ())}}
wpHL (e1 :=HL e2) {Φ}

1 And right-to-left, although our monadic translation does not rely on that.

Semi-automated Reasoning About Non-determinism in C Expressions 73

(� HL v) ∗ (� HL v −∗ Φ v) 	 wpHL !HL � {Φ}
(� HL v) ∗ (� HL w −∗ Φ ()) 	 wpHL � :=HL w {Φ}

wpHL-bind
wpHL e {v.wpHL K[v] {Φ}}

wpHL K[e] {Φ}

R ∗ (∀γ lk. is mutex(γ, lk, R) −∗ Φ lk) 	 wpHL newmutex () {Φ}
is mutex(γ, lk, R) ∗ (R ∗ locked(γ) −∗ Φ ()) 	 wpHL acquire lk {Φ}

is mutex(γ, lk, R) ∗ R ∗ locked(γ) ∗ Φ () 	 wpHL release lk {Φ}
is mutex(γ, lk, R) ∗ is mutex(γ, lk, R) �	 is mutex(γ, lk, R) (ismutex-dupl)

Fig. 4. Selected wpHL rules.

To verify the monadic combinators and the translation of λMC operations in
the upcoming Sects. 4.2 and 4.4, we need the specifications for all the functions
that we use, including those on mutable sets and mutexes. The rules for mutable
sets are standard, and thus omitted. They involve the usual abstract predicate
is mset(s,X) stating that the reference s represents a set with contents X. The
rules for mutexes are presented in Fig. 4. When a new mutex is created, a user
gets access to a proposition is mutex(γ, lk, R), which states that the value lk is
a mutex containing the resources R. This proposition can be duplicated freely
(ismutex-dupl). A thread can acquire the mutex and receive the resources
contained in it. In addition, the thread receives a token locked(γ) meaning that
it has entered the critical section. When a thread leaves the critical section and
releases the mutex, it has to give up both the token and the resources R.

4.2 Weakest Preconditions for Monadic Expressions

As a next step, we define a weakest precondition proposition wpmon e {Φ} for a
monadic expression e. The definition is constructed in the ambient logic, and
it encapsulates the monadic operations in a separate layer. Due to that, we are
able to carry out proofs of high-level specifications without breaking the abstrac-
tion (Sect. 4.4). The specifications for selected monadic operations in terms of
wpmon are presented in Fig. 5. We define the weakest precondition for a monadic
expression e as follows:

wpmon e {Φ} � wpHL e

{
g. ∀γ env lk. is mutex(γ, lk, env inv(env)) −∗

wpHL (g env lk) {Φ}

}

The idea is that we first reduce e to a monadic value g. To perform this reduction
we have the outermost wpHL connective in the definition of wpmon. This monadic
value is then evaluated with an arbitrary environment and an arbitrary mutex.
Note that we universally quantify over any mutex lk to support nested lock-
ing in atomic . This definition is parameterized by an environment invariant
env inv(env), which describes the resources accessible in the critical sections. We
show how to define env inv in the next subsection.

74 D. Frumin et al.

wp-ret
wpHL e {Φ}

wpmon (ret e) {Φ}

wp-bind
wpmon e1 {v.wpmon e2[v/x] {Φ}}

wpmon (x e1; e2) {Φ}
wp-par
wpmon e1 {Ψ1} wpmon e2 {Ψ2} (∀w1w2. Ψ1 w1 ∗ Ψ2 w2 −∗ Φ (w1, w2))

wpmon (e1 || e2) {Φ}
wp-atomic-env
∀env. env inv(env) −∗ wpHL (v env) {w. env inv(env) ∗ Φ w}

wpmon (atomic env v) {Φ}

Fig. 5. Selected monadic wpmon rules.

Using this definition we derive the monadic rules in Fig. 5. In a monad, the
expression evaluation order is made explicit via the bind operation x ← e1; e2.
To that extent, contrary to HeapLang, we no longer have a rule like wphl-bind,
which allows to bind an expression in a general evaluation context. Instead, we
have the rule wp-bind, which reflects that the only evaluation context we have
is the monadic bind x ← [•]; e.

4.3 Modeling the Heap

The monadic rules in Fig. 5 are expressive enough to derive some of the λMC-
level rules, but we are still missing one crucial part: handling of the heap. In
order to do that, we need to define lockable points-to connectives l

q	−→ξ v in such
a way that they are linked to the HeapLang points-to connectives � 	→HL v.

The key idea is the following. The environment invariant env inv of monadic
weakest preconditions will track all HeapLang points-to connectives � 	→HL v that
have ever been allocated at the λMC level. Via Iris ghost state, we then connect
this knowledge to the lockable points-to connectives l

q	−→ξ v. We refer to the
construction that allows us to carry this out as the lockable heap. Note that the
description of lockable heap is fairly technical and requires an understanding of
the ghost state mechanism in Iris.

A lockable heap is a map σ : Loc fin−⇀ {L,U} × Val that keeps track of the
access levels and values associated with the locations. The connective full heap(σ)
asserts the ownership of all the locations present in the domain of σ. Specifically,
it asserts � 	→HL v for each {�←(ξ, v)} ∈ σ. The connective �

q	−→ξ v then states
that {�←(ξ, v)} is part of the global lockable heap, and it asserts this with the
fractional permission q. We treat the lockable heap as an opaque abstraction,
whose exact implementation via Iris ghost state is described in the Coq for-
malization [18]. The main interface for the locking heap are the rules in Fig. 6.
The rule heap-alloc states that we can turn a HeapLang points-to connec-
tive � 	→HL v into � 	−→ξ v by changing the lockable heap σ accordingly. The

Semi-automated Reasoning About Non-determinism in C Expressions 75

heap-alloc
� HL v full heap(σ)

|�� U v ∗ full heap(σ [� (U, v)])

heap-upd
� U v full heap(σ)

|�σ(�) = (U, v) ∗ � HL v ∗ (∀v′ ξ′. � HL v′ ≡−∗ � ξ′ v′ ∗ full heap(σ
[
� (ξ′, v′)

]
))

Fig. 6. Selected rules of the lockable heap construction.

rule heap-upd states that given � 	−→ξ v, we can temporarily get a HeapLang
points-to connective � 	→HL v out of the locking heap and update its value.

The environment invariant env inv(env) in the definition of wpmon ties the
contents of the lockable heap to the contents of the environment env:

env inv(env) � ∃σ X. is set(env,X) ∗ full heap(σ) ∗ (∀� ∈ X.∃v. σ(�) = (L, v))

The first conjunct states that X : ℘fin(Loc) is a set of locked locations, according
to the environment env. The second conjunct asserts ownership of the global
lockable heap σ. Finally, the last conjunct states that the contents of env agrees
with the lockable heap: every location that is in X is locked according to σ.

The Unlocking Modality. The unlocking modality is defined in the logic as:

UP � ∃S. (∗(l,v,q)∈Sl
q	−→L v) ∗ ((∗(l,v,q)∈Sl

q	−→U v) −∗ P)

Here S is a finite multiset of tuples containing locations, values, and fractions.
The update modality accumulates the locked locations, waiting for them to be
unlocked at a sequence point.

4.4 Deriving the λMC Rules

To model weakest preconditions for λMC (Fig. 3) we compose the construction
we have just defined with the translation of Sect. 2 wp e {Φ} � wpmon �e� {Φ′}.
Here, Φ′ is the obvious lifting of Φ from λMC values to HeapLang values. Using
the rules from Figs. 5 and 6 we derive the high-level λMC rules without unfolding
the definition of the monadic wpmon.

Example 4.2. Consider the rule wp-store for assignments e1 = e2. Using
wp-bind and wp-par, the soundness of wp-store can be reduced to verify-
ing the assignment with e1 being l, e2 being v′, under the assumption l 	→U v.
We use wp-atomic-env to turn our goal into a HeapLang weakest precondi-
tion proposition and to gain access an environment env, and to the proposition
env inv(env), from which we extract the lockable heap σ. We then use heap-upd

76 D. Frumin et al.

to get access to the underlying HeapLang location and obtain that l is not locked
according to σ. Due to the environment invariant, we obtain that l is not in env,
which allows us to prove the assert for sequence point violation in the interpre-
tation of the assignment. Finally, we perform the physical update of the location.

5 A Symbolic Executor for λMC

In order to turn our program logic into an automated procedure, it is important
to have rules for weakest preconditions that have an algorithmic form. However,
the rules for binary operators in our separation logic for λMC do not have such
a form. Take for example the rule wp-bin-op for binary operators e1 � e2. This
rule cannot be applied in an algorithmic manner. To use the rule one should
supply the postconditions for e1 and e2, and frame the resources from the context
into two disjoint parts. This is generally impossible to do automatically.

To address this problem, we first describe how the rules for binary operators
can be transformed into algorithmic rules by exploiting the notion of symbolic
execution [5] (Sect. 5.1). We then show how to implement these algorithmic rules
as part of an automated symbolic execution procedure (Sect. 5.2).

5.1 Rules for Symbolic Execution

We say that we can symbolically execute an expression e using a precondition P ,
if we can find a symbolic execution tuple (w, Q,R) consisting of a return value w,
a postcondition Q, and a frame R satisfying:

P � wp e {v. v = w ∗ Q} ∗ R

This specification is much like that of ordinary symbolic execution in separation
logic [5], but there is important difference. Apart from computing the postcon-
dition Q and the return value w, there is also the frame R, which describes the
resources that are not used for proving e. For instance, if the precondition P is
P ′ ∗l q	−→ w and e is a load operation *l, then we can symbolically execute e with

the postcondition Q being l
q/2	−−→ w, and the frame R being P ′ ∗l q/2	−−→ w. Clearly,

P ′ is not needed for proving the load, so it can be moved into the frame. More
interestingly, since loading the contents of l requires a read permission l

p	−→ w,
with p ∈ (0, 1], we can split the hypothesis l

q	−→ w into two halves and move one
into the frame. Below we will see why that matters.

If we can symbolically execute one of the operands of a binary expression
e1 � e2, say e1 in P , and find a symbolic execution tuple (w1, Q,R), then we
can use the following admissible rule:

R � wp e2 {w2. Q −∗ Φ (w1 ��� w2)}
P � wp (e1 � e2) {Φ}

This rule has a much more algorithmic flavor than the rule wp-bin-op. Applying
the above rule now boils down to finding such a tuple (w, Q,R), instead of having
to infer postconditions for both operands, as we need to do to apply wp-bin-op.

Semi-automated Reasoning About Non-determinism in C Expressions 77

For instance, given an expression (*l) � e2 and a precondition P ′ ∗ l
q	−→ v,

we can derive the following rule:

P ′ ∗ l q/2	−−→ v � wp e2

{
w2. l

q/2	−−→ v −∗ Φ (v ��� w2)
}

P ′ ∗ l q	−→ v � wp (*l � e2) {Φ}

This rule matches the intuition that only a fraction of the permission l
q	−→ v is

needed to prove a load *l, so that the remaining half of the permission can be
used to prove the correctness of e2 (which may contain other loads of l).

5.2 An Algorithm for Symbolic Execution

For an arbitrary expression e and a proposition P , it is unlikely that one can find
such a symbolic execution tuple (w, Q,R) automatically. However, for a certain
class of C expressions that appear in actual programs we can compute a choice
of such a tuple. To illustrate our approach, we will define such an algorithm for
a small subset expr of C expressions described by the following grammar:

ē ∈ expr ::= v | *ē | ē1 = ē2 | ē1 � ē2.

We keep this subset small to ease presentation. In Sect. 7 we explain how to
extend the algorithm to cover the sequenced bind operator x ← ē1 ; ē2.

Moreover, to implement symbolic execution, we cannot manipulate arbitrary
separation logic propositions. We thus restrict to symbolic heaps (m ∈ sheap),
which are defined as finite partial functions Loc

fin−⇀ ({L,U} × (0, 1] × val) rep-
resenting a collection of points-to propositions:

�m� � ∗
l∈dom(m)

m(l)=(ξ,q,v)

l
q	−→ξ v.

We use the following operations on symbolic heaps:

– m[l 	→ (ξ, q, v)] sets the entry m(l) to (ξ, q, v);
– m \ {l 	→ } removes the entry m(l) from m;
– m1 � m2 merges the symbolic heaps m1 and m2 in such a way that for each
l ∈ dom(m1) ∪ dom(m2), we have:

(m1 � m2)(l) =

⎧
⎨

⎩

mi(l) if l ∈ dom(mi) and l /∈ dom(mj)

(ξ ∨ ξ′, q + q′, v) if m1(l) = (ξ, q, v) and m2(l) = (ξ′, q′,).

With this representation of propositions, we define the symbolic execution
algorithm as a partial function forward : (sheap × expr) → (val× sheap× sheap),
which satisfies the specification stated in Sect. 5.1, i.e., for which the following
holds:

Theorem 5.1. Given an expression e and an symbolic heap m, if forward(m, e)
returns a tuple (w,mo

1,m1), then �m� � wp e {v. v = w ∗ �mo
1�} ∗ �m1�.

78 D. Frumin et al.

The definition of the algorithm is shown in Fig. 7. Given a tuple (m, e), a call
to forward(m, e) either returns a tuple (v,mo,m′) or fails, which either happens
when e �∈ expr or when one of intermediate steps of computation fails. In the
latter cases, we write forward(m, e) = ⊥.

The algorithm proceeds by case analysis on the expression e. In each case,
the expected output is described by the equation forward(m, e) = (v,mo,m′).
The results of the intermediate computations appear on separate lines under the
clause “where . . .”. If one of the corresponding equations does not hold, e.g.,
a recursive call fails, then the failure is propagated. Let us now explain the case
for the assignment operator.

If e is an assignment operator e1 = e2, we first evaluate e1 and then e2.
Fixing the order of symbolic execution from left to right does not compromise the
non-determinism underlying the C semantics of binary operators. Indeed, when
forward(m, e1) = (v1,mo

1,m1), we evaluate the expression e2, using the frame
m1, i.e., only the resources of m that remain after the execution of e1. When
forward(m, e1) = (l,mo

1,m1), with l ∈ Loc, and forward(m1, e2) = (v2,mo
2,m2),

the function delete full 2(l,m2,m
o
1 � mo

2) checks whether (m2 � mo
1 � mo

2)(l)

forward(m, v) � (v, ∅, m)

forward(m, e1 � e2) � (v1 � v2, m
o
1 � mo

2, m2)
where (v1, mo

1, m1) = forward(m, e1)

(v2, mo
2, m2) = forward(m1, e2)

forward(m, *e1) � (w, mo
2 � {l (U, q, w)}, m2)

where (l, mo
1, m1) = forward(m, e1) provided l ∈ Loc

(m2, m
o
2, q, w) = delete frac 2(l, m1, m

o
1)

forward(m, e1 = e2) � (v2, mo
3 � {l (L, 1, v2)}, m3)

where (l, mo
1, m1) = forward(m, e1) provided l ∈ Loc

(v2, mo
2, m2) = forward(m1, e2)

(m3, m
o
3) = delete full 2(l, m2, m

o
1 � mo

2)

forward(m, e) � ⊥ if e �∈ expr

Auxiliary functions:

delete frac 2(l, m1, m2) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(m1[l (U, q/2, v)], m2, q/2, v) if m1(l) = (U, q, v)

(m1, m2[l (U, q/2, v)], q/2, v) if m1(l) �= (U, ,),
m2(l) = (U, q, v)

⊥ otherwise

delete full 2(l, m1, m2) � (m1 \ {l }, m2 \ {l })
where (U, 1,) = (m1 � m2)(l)

Fig. 7. The definition of the symbolic executor.

Semi-automated Reasoning About Non-determinism in C Expressions 79

contains the write permission l 	−→U . If this holds, it removes the location l, so
that the write permission is now consumed. Finally, we merge {l 	→ (L, 1, v2)}
with the output heap mo

3, so that after assignment, the write permission l 	−→L v2
is given back in a locked state.

6 A Verification Condition Generator for λMC

To establish correctness of programs, we need to prove goals P � wp e {Φ}. To
prove such a goal, one has to repeatedly apply the rules for weakest preconditions,
intertwined with logical reasoning. In this section we will automate this process
for λMC by means of a verification condition generator (vcgen).

As a first attempt to define a vcgen, one could try to recurse over the expres-
sion e and apply the rules in Fig. 3 eagerly. This would turn the goal into a
separation logic proposition that subsequently should be solved. However, as we
pointed out in Sect. 5.1, the resulting separation logic proposition will be very
difficult to prove—either interactively or automatically—due to the existentially
quantified postconditions that appear because of uses of the rules for binary
operators (e.g., wp-bin-op). We then proposed alternative rules that avoid the
need for existential quantifiers. These rules look like:

R � wp e2 {v2. Q −∗ Φ (v1 ��� v2)}
P � wp (e1 � e2) {Φ}

To use this rule, the crux is to symbolically execute e1 with precondition P into
a symbolic execution triple (v1, Q,R), which we alluded could be automatically
computed by means of the symbolic executor if e1 ∈ expr (Sect. 5.2).

We can only use the symbolic executor if P is of the shape �m� for a symbolic
heap m. However, in actual program verification, the precondition P is hardly
ever of that shape. In addition to a series of points-to connectives (as described by
a symbolic heap), we may have arbitrary propositions of separation logic, such as
pure facts, abstract predicates, nested Hoare triples, Iris ghost state, etc. These
propositions may be needed to prove intermediate verification conditions, e.g.,
for function calls. As such, to effectively apply the above rule, we need to separate
our precondition P into two parts: a symbolic heap �m� and a remainder P ′.
Assuming forward(m, e1) = (v1,mo

1,m1), we may then use the following rule:

P ′ ∗ �m1� � wp e2 {v2. �mo
1� −∗ Φ (v1 ��� v2)}

P ′ ∗ �m� � wp (e1 � e2) {Φ}
It is important to notice that by applying this rule, the remainder P ′ remains
in our precondition as is, but the symbolic heap is changed from �m� into �m1�,
i.e., into the frame that we obtained by symbolically executing e1.

It should come as no surprise that we can automate this process, by applying
rules, such as the one we have given above, recursively, and threading through
symbolic heaps. Formally, we do this by defining the vcgen as a total function:
vcg : (sheap × expr × (sheap → val → Prop)) → Prop where Prop is the type of

80 D. Frumin et al.

propositions of our logic. The definition of vcg is given in Fig. 8. Before explaining
the details, let us state its correctness theorem:

Theorem 6.1. Given an expression e, a symbolic heap m, and a postcondition
Φ, the following statement holds:

P ′ � vcg(m, e, λm′ v. �m′� −∗ Φ v)

P ′ ∗ �m� � wp e {Φ}
This theorem reflects the general shape of the rules we previously described.

We start off with a goal P ′∗�m� � wp e {Φ}, and after using the vcgen, we should
prove that the generated goal follows from P ′. It is important to note that the
continuation in the vcgen is not only parameterized by the return value, but also
by a symbolic heap corresponding to the resources that remain. To get these
resources back, the vcgen is initiated with the continuation λm′ v. �m′� −∗ Φ v.

Most clauses of the definition of the vcgen (Fig. 8) follow the approach we
described so far. For unary expressions like load we generate a condition that
corresponds to the weakest precondition rule. For binary expressions, we sym-
bolically execute either operand, and proceed recursively in the other. There are
a number of important bells and whistles that we will discuss now.

Sequencing. In the case of sequenced binds x ← e1 ; e2, we recursively compute
the verification condition for e1 with the continuation:

λm′ v.U (vcg(unlock(m′), e2[v/x],K)) .

Due to a sequence point, all locations modified by e1 will be in the unlocked state
after it is finished executing. Therefore, in the recursive call to e2 we unlock all
locations in the symbolic heap (c.f. unlock(m′)), and we include a U modality
in the continuation. The U modality is crucial so that the resources that are not
given to the vcgen (the remainder P ′ in Theorem 6.1) can also be unlocked.

Handling Failure. In the case of binary operators e1 � e2, it could be that
the symbolic executor fails on both e1 and e2, because neither of the arguments
were of the right shape (i.e., not an element of expr), or the required resources
were not present in the symbolic heap. In this case the vcgen generates the goal
of the form �m� −∗ wp (e1 � e2) {Kret} where Kret � λw. ∃m′. �m′� ∗ K m′ w.
What appears here is that the current symbolic heap �m� is given back to the
user, which they can use to prove the weakest precondition of e1 � e2 by hand.
Through the postcondition ∃m′. �m′� ∗ K m′ w the user can resume the vcgen,
by choosing a new symbolic heap m′ and invoking the continuation K m′ w.

For assignments e1 = e2 we have a similar situation. Symbolic execution of
both e1 and e2 may fail, and then we generate a goal similar to the one for binary
operators. If the location l that we wish to assign to is not in the symbolic heap,
we use the continuation �m� −∗ ∃w. l 	−→U w ∗ (l 	−→L v −∗ Kret v). As before,
the user gets back the current symbolic heap �m�, and could resume the vcgen
through the postcondition Kret v by picking a new symbolic heap.

Semi-automated Reasoning About Non-determinism in C Expressions 81

vcg(m, v, K) � K m v

vcg(m, e1 � e2, K) �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vcg(m2, e2, λ m′ v2. K (m′ � mo) (v1 � v2)) if forward(m, e1) = (v1, mo, m2)

vcg(m1, e1, λ m′ v1. K (m′ � mo) (v1 � v2)) if forward(m, e1) = ⊥ and
forward(m, e2) = (v2, mo, m1)

m −∗ wp (e1 � e2) {Kret} otherwise

vcg(m, *e, K) � vcg(m, e, K′
)

with K′ � λ m l.

⎧⎨
⎩

K m w if l ∈ Loc and m(l) = (U, q, w)

m −∗ ∃w q. l
q

U w ∗ (l
q

U w −∗ Kret w) otherwise

vcg(m, e1 = e2, K) �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vcg(m2, e2, λ m′ v. K′ (m′ � mo)(l, v)) if forward(m, e1) = (l, mo, m2)

vcg(m1, e1, λ m′ l. K′ (m′ � mo)(l, v)) if forward(m, e1) = ⊥ and
forward(m, e2) = (v, mo, m1)

m −∗ wp (e1 = e2) {Kret} otherwise

with K′ � λ m (l, v).⎧⎨
⎩

K (m′ � {l (L, 1, v)}) v if l ∈ Loc and delete full(l, m) = m′

m −∗ ∃w. l U w ∗ (l L v −∗ Kret v) otherwise

vcg(m, x e1 ; e2, K) � vcg(m, e1, λ m′
v. U vcg(unlock(m′

), e2[v/x], K)
)
)

Auxiliary functions:

Kret : val Prop � λ w. (∃m′. m′ ∗ K m′
w) unlock(m) �

⊔
l∈dom(m)

m(l)=(,q,v)

{l (U, q, v)}

Fig. 8. Selected cases of the verification condition generator.

7 Discussion

Extensions of the Language. The memory model that we have presented
in this paper was purposely oversimplified. In Coq, the memory model for λMC
additionally supports mutable local variables, arrays, and pointer arithmetic.
Adding support for these features was relatively easy and required only local
changes to the definitional semantics and the separation logic.

For implementing mutable local variables, we tag each location with a
Boolean that keeps track of whether it is an allocated or a local variable. That
way, we can forbid deallocating local variables using the free(−) operator.

Our extended memory model is block/offset-based like CompCert’s memory
model [38]. Pointers are not simply represented as locations, but as pairs (�, i),
where � is a HeapLang reference to a memory block containing a list of values,

82 D. Frumin et al.

and i is an offset into that block. The points-to connectives of our separation
logic then correspondingly range over block/offset-based pointers.

Symbolic Execution of Sequence Points. We adapt our forward algorithm
to handle sequenced bind operators x ← e1 ; e2. The subtlety lies in supporting
nested sequenced binds. For example, in an expression (x ← e1 ; e2) + e3 the
postcondition of e1 can be used (along with the frame) for the symbolic execution
of e2, but it cannot be used for the symbolic execution of e3. In order to solve
this, our forward algorithm takes a stack of symbolic heaps as an input, and
returns a stack of symbolic heaps (of the same length) as a frame. All the cases
shown in Fig. 7 are easily adapted w.r.t. this modification, and the following
definition captures the case for the sequence point bind:

forward(�m, x ← e1 ; e2) � (v2,mo
2 � m′, �m2)

where (v1,mo
1, �m1) = forward(�m, e1)

(v2,mo
2,m

′ :: �m2) = forward(unlock(mo
1) :: �m1, e2[v1/x])

Shared Resource Invariants. As in Krebbers’s logic [29], the rules for binary
operators in Fig. 3 require the resources to be separated into disjoint parts for the
subexpressions. If both sides of a binary operator are function calls, then they
can only share read permissions despite that both function calls are executed
atomically. Following Krebbers, we address this limitation by adding a shared
resource invariant R to our weakest preconditions and add the following rules:

R1 wpR1∗R2
e {v. R1 −∗ Φ v}

wpR2
e {Φ}

f(x){e} defined
R −∗ U(wpTrue e [x/v] {w. R ∗ Φ w})

wpR f(v) {Φ}

To temporarily transfer resources into the invariant, one can use the first
rule. Because function calls are not interleaved, one can use the last rule to gain
access to the shared resource invariant for the duration of the function call.

Our handling of shared resource invariants generalizes the treatment by Kreb-
bers: using custom ghost state in Iris we can endow the resource invariant with a
protocol. This allows us to verify examples that were previously impossible [29]:

int f(int *p, int y) { return (*p = y); }
int main() { int x; f(&x, 3) + f(&x, 4); return x; }

Krebbers could only prove that main returns 0, 3 or 4, whereas we can prove
it returns 3 or 4 by combining resource invariants with Iris’s ghost state.

Implementation in Coq. In the Coq development [18] we have:

– Defined λMC with the extensions described above, as well as the monadic
combinators, as a shallow embedding on top of Iris’s HeapLang [21,25].

– Modeled the separation logic for λMC and the monadic combinators as a
shallow embedding on top of the Iris’s program logic for HeapLang.

Semi-automated Reasoning About Non-determinism in C Expressions 83

– Implemented the symbolic executor and vcgen as computable Coq functions,
and proved their soundness w.r.t. our separation logic.

– Turned the verification condition generator into a tactic that integrates into
the Iris Proof Mode/MoSeL framework [32,34].

This last point allowed us to leverage the existing machinery for separation
logic proofs in Coq. Firstly, we get basic building blocks for implementing the
vcgen tactic for free. Secondly, when the vcgen is unable to solve the goal, one
can use the Iris Proof Mode/MoSeL tactics to help out in a convenient manner.

To implement the symbolic executor and vcgen, we had to reify the terms
and values of λMC. To see why reification is needed, consider the data type for
symbolic heaps, which uses locations as keys. In proofs, those locations appear
as universally quantified variables. To compute using these, we need to reify
them into some symbolic representation. We have implemented the reification
mechanism using type classes, following Spitters and van der Weegen [47].

With all the mechanics in place, our vcgen is able to significantly aid us. Con-
sider the following program that copies the contents of one array into another:

int arraycopy(int *p, int *q, int n) {
int pend = p + n;
while (p < pend) { *(p++) = *(q++); }

}

We proved {p 	→ �x∗q 	→ �y∗(|�x|= |�y|= n)}arraycopy(p,q,n){p 	→ �y∗q 	→ �y} in
11 lines of Coq code. The vcgen can automatically process the program up until
the while loop. At that point, the user has to manually perform an induction on
the array, providing a suitable induction hypothesis. The vcgen is then able to
discharge the base case automatically. In the inductive case, it will automatically
process the program until the next iteration of the while loop, where the user
has to apply the induction hypothesis.

8 Related Work

C Semantics. There has been a considerable body of work on formal semantics
for the C language, including several large projects that aimed to formalize sub-
stantial subsets of C [17,20,30,37,41,44], and projects that focused on specific
aspects like its memory model [10,13,27,28,31,38,40,41], weak memory concur-
rency [4,36,43], non-local control flow [35], verified compilation [37,48], etc.

The focus of this paper—non-determinism in C expressions—has been treated
formally a number of times, notably by Norrish [44], Ellison and Rosu [17],
Krebbers [31], and Memarian et al. [41]. The first three have in common that they
model the sequence point restriction by keeping track of the locations that have
been written to. The treatment of sequence points in our definitional semantics
is closely inspired by the work of Ellison and Rosu [17], which resembles closely
what is in the C standard. Krebbers [31] used a more restrictive version of the
semantics by Ellison and Rosu—he assigned undefined behavior in some corner
cases to ease the soundness theorem of his logic. We directly proved soundness
of the logic w.r.t. the more faithful model by Ellison and Rosu.

84 D. Frumin et al.

Memarian et al. [41] give a semantics to C by elaboration into a language they
call Core. Unspecified evaluation order in Core is modeled using an unseq oper-
ation, which is similar to our ||HL operation. Compared to our translation, Core
is much closer to C (it has function calls, memory operations, etc. as primitives,
while we model them with monadic combinators), and supports concurrency.

Reasoning Tools and Program Logics for C. Apart from formalizing the
semantics of C, there have been many efforts to create reasoning tools for the C
language in one way or another. There are standalone tools, like VeriFast [23],
VCC [12], and the Jessie plugin of Frama-C [42], and there are tools built on top
of general purpose proof assistants like VST [1,10] in Coq, or AutoCorres [19] in
Isabelle/HOL. Although, admittedly, all of these tools cover larger subsets of C
than we do, as far as we know, they all ignore non-determinism in expressions.

There are a few exceptions. Norrish proved confluence for a certain class of
C expressions [45]. Such a confluence result may be used to justify proofs in a
tool that does not have an underlying non-deterministic semantics.

Another exception is the separation logic for non-determinism in C by Kreb-
bers [29]. Our work is inspired by his, but there are several notable differences:

– We have proved soundness with respect to a definitional semantics for a subset
of C. We believe that this approach is more modular, since the semantics can
be specified at a higher level of abstraction.

– We have built our logic on top of the Iris framework. This makes the devel-
opment more modular (since we can use all the features as well as the Coq
infrastructure of Iris) and more expressive (as shown in Sect. 7).

– There was no automation like our vcgen, so one had to subdivide resources
between subexpressions manually all the time. Also, there was not even tac-
tical support for carrying out proofs manually. Our logic is redesigned to get
such support from the Iris Proof Mode/MoSeL framework.

To handle missing features of C as part of our vcgen, we plan to explore
approaches by other verification projects in proof assistants. A notable example
of such a project is VST, which supports machine arithmetic [16] and data types
like structs and unions [10] as part of its tactics for symbolic execution.

Separation Logic and Symbolic Execution. In their seminal work, Berdine
et al. [5] demonstrate the application of symbolic execution to automated rea-
soning in separation logic. In their setting, frame inference is used to perform
symbolic execution of function calls. The frame has to be computed when the call
site has more resources than needed to invoke a function. In our setting we com-
pute frames for subexpressions, which, unlike functions, do not have predefined
specifications. Due to that, we have to perform frame inference simultaneously
with symbolic execution. The symbolic execution algorithm of Berdine et al. can
handle inductive predicates, and can be extended with shape analysis [15]. We
do not support such features, and leave them to future work.

Caper [14] is a tool for automated reasoning in concurrent separation logic,
and it also deals with non-determinism, although the nature of non-determinism in
Caper is different. Non-determinism in Caper arises due to branching on unknown

Semi-automated Reasoning About Non-determinism in C Expressions 85

conditionals and due to multiple possible ways to apply ghost state related rules
(rules pertaining to abstract regions and guards). The former cause is tackled by
considering sets of symbolic execution traces, and the latter is resolved by employ-
ing heuristics based on bi-abduction [9]. Applications of abductive reasoning to
our approach to symbolic execution are left for future work.

Recently, Bannister et al. [2,3] proposed a new separation logic connective for
performing forwards reasoning whilst avoiding frame inference. This approach,
however, is aimed at sequential deterministic programs, focusing on a notion of
partial correctness that allows for failed executions. Another approach to veri-
fication of sequential stateful programs is based on characteristic formulae [11].
A stateful program is transformed into a higher-order logic predicate, implicitly
encoding the frame rule. The resulting formula is then proved by a user in Coq.

When implementing a vcgen in a proof assistant (see e.g., [10,39]) it is com-
mon to let the vcgen return a new goal when it gets stuck, from which the
user can help out and call back the vcgen. The novelty of our work is that this
approach is applied to operations that are called in parallel.

Acknowledgments. We are grateful to Gregory Malecha and the anonymous review-
ers and for their comments and suggestions. This work was supported by the Nether-
lands Organisation for Scientific Research (NWO), project numbers STW.14319 (first
and second author) and 016.Veni.192.259 (third author).

References

1. Appel, A.W. (ed.): Program Logics for Certified Compilers. Cambridge University
Press, New York (2014)

2. Bannister, C., Höfner, P.: False failure: creating failure models for separation logic.
In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS, vol.
11194, pp. 263–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02149-8 16

3. Bannister, C., Höfner, P., Klein, G.: Backwards and forwards with separation
logic. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 68–87.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94821-8 5

4. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL, pp. 55–66 (2011)

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). https://doi.org/10.1007/11575467 5

6. Birkedal, L., Bizjak, A.: Lecture Notes on Iris: Higher-Order Concurrent Separation
Logic, August 2018. https://iris-project.org/tutorial-material.html

7. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270 (2005)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

10. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: a separa-
tion logic tool to verify correctness of C programs. JAR 61(1–4), 367–422 (2018)

https://doi.org/10.1007/978-3-030-02149-8_16
https://doi.org/10.1007/978-3-030-02149-8_16
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1007/11575467_5
https://iris-project.org/tutorial-material.html
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4

86 D. Frumin et al.

11. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. SIGPLAN Not. 46(9), 418–430 (2011)

12. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 2

13. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. ENTCS 254, 85–103 (2009)

14. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper -
automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 16

15. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

16. Dodds, J., Appel, A.W.: Mostly sound type system improves a foundational pro-
gram verifier. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
17–32. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 2

17. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
POPL, pp. 533–544 (2012)

18. Frumin, D., Gondelman, L., Krebbers, R.: Semi-automated reasoning about non-
determinism in C expressions: Coq development, February 2019. https://cs.ru.nl/
∼dfrumin/wpc/

19. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
formal verification of C code without the pain. In: PLDI, pp. 429–439 (2014)

20. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: PLDI,
pp. 336–345 (2015)

21. Iris: Iris Project, November 2018. https://iris-project.org/
22. ISO: ISO/IEC 9899–2011: Programming Languages - C. ISO Working Group 14

(2012)
23. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier.

In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 21

24. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
ICFP, pp. 256–269 (2016)

25. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018). https://doi.org/10.1017/S0956796818000151

26. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650 (2015)

27. Kang, J., Hur, C., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal C memory model supporting integer-pointer casts. In: POPL, pp. 326–335
(2015)

28. Krebbers, R.: Aliasing restrictions of C11 formalized in Coq. In: Gonthier, G.,
Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1 4

29. Krebbers, R.: An operational and axiomatic semantics for non-determinism and
sequence points in C. In: POPL, pp. 101–112 (2014)

30. Krebbers, R.: The C standard formalized in Coq. Ph.D. thesis, Radboud University
Nijmegen (2015)

31. Krebbers, R.: A formal C memory model for separation logic. JAR 57(4), 319–387
(2016)

https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-319-03545-1_2
https://cs.ru.nl/~dfrumin/wpc/
https://cs.ru.nl/~dfrumin/wpc/
https://iris-project.org/
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-319-03545-1_4

Semi-automated Reasoning About Non-determinism in C Expressions 87

32. Krebbers, R., et al.: MoSeL: a general, extensible modal framework for interactive
proofs in separation logic. PACMPL 2(ICFP), 77:1–77:30 (2018)

33. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.-H., Dreyer, D., Birkedal, L.: The
Essence of higher-order concurrent separation logic. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 696–723. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1 26

34. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL, pp. 205–217 (2017)

35. Krebbers, R., Wiedijk, F.: Separation logic for non-local control flow and block
scope variables. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 257–
272. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 17

36. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing Sequential Con-
sistency in C/C++11. In: PLDI, pp. 618–632 (2017)

37. Leroy, X.: Formal verification of a realistic compiler. CACM 52(7), 107–115 (2009)
38. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for

verifying program transformations. JAR 41(1), 1–31 (2008)
39. Malecha, G.: Extensible proof engineering in intensional type theory. Ph.D. thesis,

Harvard University (2014)
40. Memarian, K., et al.: Exploring C semantics and pointer provenance. PACMPL

3(POPL), 67:1–67:32 (2019)
41. Memarian, K., et al.: Into the depths of C: elaborating the De Facto Standards.

In: PLDI, pp. 1–15 (2016)
42. Moy, Y., Marché, C.: The Jessie Plugin for Deduction Verification in Frama-C,

Tutorial and Reference Manual (2011)
43. Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11

concurrency. In: OOPSLA, pp. 111–128 (2016)
44. Norrish, M.: C Formalised in HOL. Ph.D. thesis, University of Cambridge (1998)
45. Norrish, M.: Deterministic expressions in C. In: Swierstra, S.D. (ed.) ESOP 1999.

LNCS, vol. 1576, pp. 147–161. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49099-X 10

46. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1), 271–307 (2007). Festschrift for John C. Reynolds’s 70th birthday

47. Spitters, B., Van der Weegen, E.: Type classes for mathematics in type theory.
Math. Struct. Comput. Sci. 21(4), 795–825 (2011)

48. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional CompCert. In:
POPL, pp. 275–287 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/3-540-49099-X_10
https://doi.org/10.1007/3-540-49099-X_10
http://creativecommons.org/licenses/by/4.0/

	Semi-automated Reasoning About Non-determinism in C Expressions
	1 Introduction
	2 lMC: A Monadic Definitional Semantics of C
	2.1 The Source Language lMC
	2.2 The Target Language HeapLang
	2.3 The Monadic Definitional Semantics of lMC

	3 Separation Logic with Weakest Preconditions for lMC
	4 Soundness of Weakest Preconditions for lMC
	4.1 Weakest Preconditions for HeapLang
	4.2 Weakest Preconditions for Monadic Expressions
	4.3 Modeling the Heap
	4.4 Deriving the lMC Rules

	5 A Symbolic Executor for lMC
	5.1 Rules for Symbolic Execution
	5.2 An Algorithm for Symbolic Execution

	6 A Verification Condition Generator for lMC
	7 Discussion
	8 Related Work
	References

