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Energetically-consistent multiscale analysis of fracture in 
composites materials 

Sergio Turteltaub *, Rub�en Su�arez-Mill�an 
Delft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS, Delft, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Multiscale fracture 
Composite materials 
Cohesive relation 
Hill-Mandel condition 
Intersecting cracks 

A B S T R A C T   

Two distinct length scale transition methodologies are developed to establish effective traction-separation re-
lations for fracture in composite materials within a hierarchical multiscale framework. The two methodologies, 
one kinetics-based and the other kinematics-based, specify effective fracture properties that satisfy a surface- 
based Hill-Mandel consistency condition. Correspondingly, the total amount of energy dissipated is the same 
whether a crack is described in detail with micro quantities or in terms of an effective macroscopic crack. Though 
both methods guarantee consistency in terms of energy rates across length scales, they provide in general distinct 
effective traction-separation relations. Several representative samples of fiber reinforced composites are analyzed 
numerically, including the formation and propagation of cracks at mid-ply locations as well as (idealized) ply 
interfaces. Through post-processing of the microscale results, it is shown that the kinematics-based averaging 
method provides a macroscopic traction that is prone to rapid fluctuations while the kinetics-based averaging 
method shows a more smooth response but with openings that can deviate from the surface average of the 
microscale openings. The two methods are also compared with a previously-proposed scale transition method-
ology, which is a hybrid method that only satisfies the Hill-Mandel condition approximately. The suitability of 
the three methods is discussed in light of the results obtained from the simulations.   

1. Introduction 

With an ever increasing demand for more efficient lightweight 
composite materials in the transportation, infrastructure and energy 
conversion sectors, new types of composite materials are continuously 
being designed and tested. However, adopting a new type of composites 
is often hindered by development costs associated to expensive material 
and structural tests. Designers and certification authorities require a 
high degree of confidence on the performance of new materials, in 
particular their actual capacity to safely carry loads, hence a robust 
fracture theory is a critical aspect of material development. In this 
context, advanced simulation methods provide a powerful approach to 
reduce experimental testing costs and shorten design cycle times (i.e., a 
virtual testing environment (Cox and Yang, 2006; Lopes et al., 2016)). 
To achieve this goal at the level of coupon testing (material perfor-
mance), a reliable model is required in order to predict the overall 
(effective) fracture properties of new and existing composite materials 
based on the elementary properties of its constituents. Multiscale sim-
ulations enable modeling and analysis of fracture processes at the 

microscale, thus delivering fundamental information about crack pro-
cesses that purely phenomenological models cannot capture. In partic-
ular, the mechanical behavior of a composite depends on the properties 
of its constituents (e.g., fibers, matrix and fiber-matrix interfaces) as well 
as its geometrical arrangements (e.g., fiber volume fraction, ply orien-
tation, stacking sequences). By implementing microscale failure 
modeling at the level of individual constituents, multiscale simulations 
capture fundamental fracture processes at the microscopic level 
(Camanho et al., 2013; Melro et al., 2013; Talreja, 2014). This is crucial 
for composite materials in which fracture entails highly complex 
nonlinear processes developing at the micro level. Furthermore, thor-
ough understanding of fracture processes is essential to realize the full 
potential of advanced materials in structural applications. For instance, 
micro-structural modeling enables researchers and engineers to virtually 
tailor composite materials, paving the road for microstructural modifi-
cation and optimization (Okereke et al., 2014). In addition, multiscale 
simulations allow the incorporation of microscale features that are 
responsible for statistical variations in terms of failure loads, thus 
providing a direct link between microscale defects and the 
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quantification of uncertainty in the fracture behavior of composites 
(Vajari, 2015; Maragoni et al., 2016; Turteltaub and de Jong, 2019). A 
successful implementation of this framework naturally leads to more 
accurate simulations and more efficient lightweight designs with the 
associated benefits in terms of reducing the overall resources required 
for a given application. 

One important issue in the context of multiscale simulations is the 
notion of scale transition relations, in particular for the so-called hier-
archical methods. In a hierarchical approach, the small and large scales 
are separated, meaning that the kinematical and kinetic fields may be 
defined separately per scale. Since a classical continuum theory has no 
intrinsic length scale, the balance principles apply separately in each 
scale and, consequently, for each set of field quantities. There are some 
well-established techniques to relate two continuum-based theories, but 
in general a scale transition relation is meant to preserve some notion of 
consistency across scales. Several open issues have been identified 
regarding scale transitions from macroscopic to microscopic in terms of 
material response (van der Meer, 2016; Chevalier et al., 2019) as well as 
from microscopic to macroscopic in terms of convergence Gitman et al. 
(2007); Phu Nguyen et al. (2010); Bosco et al. (2014); Svenning et al. 
(2016); Goldmann et al. (2018). To guarantee consistency between 
quantities that are meant to represent the same physical phenomenon 
across length scales, one has to verify (or otherwise enforce) that the 
same values are obtained whether one works with effective macroscopic 
fields or detailed microscopic fields. In particular, the Hill-Mandel 
condition (in rate form) stipulates that the rate of dissipation of en-
ergy should be the same whether one homogenizes the microscale 
dissipation or computes it directly from the homogenized fields. 

The present work focuses on consistency of fracture from the 
microscale to the macroscale. Satisfaction of a surface-based Hill-Man-
del scale transition for fracture in general cannot be guaranteed a priori 
with a classical multiscale approach in which the effective properties are 
defined as volume or surface averages of the microscopic quantities. 
Some of the aforementioned references have dealt with the issue of 
homogenization of fracture behavior. One possible remedy to this situ-
ation was also proposed in Turteltaub et al. (2018), where the effective 
cohesive traction on a crack was defined as a linear combination of 
surface and volume-based stress quantities, with an additional param-
eter to approximately satisfy the scale transition condition. In the pre-
sent work, two alternative scale transition approaches are considered, 
namely a kinematics-based approach that relies on an alternative defi-
nition of the traction on a cracked surface and a kinetics-based approach 
that is based on an alternative definition of the effective crack-opening 
rate. In contrast with the method proposed in Turteltaub et al. (2018), 
these two alternative scale transition methods exactly satisfy the 
Hill-Mandel condition for fracture, albeit each method provides a 
distinct effective macroscopic response (i.e., a distinct effective 
traction-separation relation). Correspondingly, the objectives of the 
present work are as follows: (i) to propose and develop two scale tran-
sition methods for effective fracture properties, (ii) to compare quanti-
tatively and qualitatively the effective macroscopic responses of these 
methods as well as a previously-proposed method, (iii) to introduce a 
methodology to homogenize intersecting cracks, a situation that has 
hitherto been avoided in previous studies and (iv) to show that this 
methodology can be used to identify a representative surface element for 
fracture. With regards to the case of intersecting cracks, it is worth 
mentioning that this situation is relevant for anisotropic composites 
under multiaxial loading whereby distinct fracture mechanisms 
generate intersecting cracks, such as delaminations and transverse ply 
cracking at ply interfaces in fiber reinforced composites. 

The work is organized as follows: the microscale problem is formu-
lated in Sec. 2 and the corresponding requirements for a length scale 
transition towards a macroscale problem are presented in Sec. 3. The 
kinetics-based and kinematics-based effective quantities for the macro-
scale formulation are defined in Sec. 4. A verification of the satisfaction 
of the scale transition requirements under various loading cases is shown 

in Sec. 5 together with a comparative analysis of the predictions of each 
scale transition methodology, including a previously-proposed meth-
odology. This section also contains a demonstration that the method-
ology can deal with the case of intersecting cracks. Subsequently, the 
new scale-transition approaches are applied to a multiscale convergence 
analysis in Sec. 6, where it is shown through examples that the kinetics- 
based methodology outperforms the kinematics-based approach in 
terms of establishing effective properties for hierarchical multiscale 
analysis. Finally, some concluding remarks are given in Sec. 7, including 
the limits of the proposed methodology. 

2. Microstructural formulation 

The smallest length scale of analysis is taken as an aggregate of 
distinct phases such as fibers embedded in a matrix as shown in Fig. 1. In 
view of the computational effort required to carry out a large number of 
multiscale simulations, a plane-strain two-dimensional approach is 
chosen. This choice provides a computationally-tractable environment 
to develop and study energetically-consistent averaging methods and 
can be also applied to the three-dimensional case, albeit at a larger 
computational cost. For Carbon Fiber Reinforced Polymers (CFRP), a 
typical two-dimensional Microscopic Volume Element (MVE) is chosen 
to represent a cross-section with a stacking of uni-directional plies ar-
ranged in perpendicular directions. The methodology presented here, 
however, is not limited to CFRP and may be applied to any composite 
material. 

A typical microstructural domain Ω with boundary ∂Ω is illustrated 
in Fig. 2. Each individual edge of the domain is denoted by Ωi, with 
outward normal vector ni; i 2 ½1;4� and the global orthonormal basis 
used is given by e1 and e2. The collection of all cracked surfaces is 
denoted by Γ and it typically consists of one or more main cracks ΓI, I ¼
1;2;…, that may intersect and/or have bifurcated branches. The crack 
normal is denoted as m with m ¼ mþ pointing to the þ side and m� ¼ �
mþ pointing towards the � side. Fig. 2 also displays the periodicity of the 
cracks, which continue over the edges of the domain due to the appli-
cation of periodic boundary conditions. While other boundary condi-
tions can be applied Geers et al. (2017); Peri�c et al. (2011), in this 
derivation periodic boundary conditions (PBCs) are chosen for 
simplicity. 

The fracture process in the MVE is formulated as a quasi-static 
boundary value problem with equilibrium satisfied at each time t in 
the (uncracked) bulk material ΩnΓ and traction continuity imposed 
across the crack surface Γ, i.e., 

div σðx; tÞ ¼ 0 x 2 ΩnΓ (1)  

tþðxþ; tÞ¼ � t� ðx� ; tÞ x 2 Γ (2)  

with σ being the stress tensor, t the traction vector, div the divergence 
operator and x a point in the reference configuration. As mentioned 
above, periodic boundary conditions are enforced in the MVE surface ∂Ω 
for displacements u and anti-periodic conditions for the tractions t, 
namely 

uðxþ l1e1; tÞ � uðx; tÞ ¼ l1εðtÞe1
tðxþ l1e1; tÞ ¼ � tðx; tÞ x 2 ∂Ω3nΓ (3a)  

uðxþ l2e2; tÞ � uðx; tÞ ¼ l2εðtÞe2
tðxþ l2e2; tÞ ¼ � tðx; tÞ x 2 ∂Ω4nΓ (3b)  

u�ðx� þ l1e1; tÞ � u�ðx�; tÞ ¼ l1εðtÞe1
t�ðx� þ l1e1; tÞ ¼ � t�ðx�; tÞ x 2 ∂Ω3 \ Γ (3c)  

u�ðx� þ l2e2; tÞ � u�ðx�; tÞ ¼ l2εðtÞe2
t�ðx� þ l2e2; tÞ ¼ � t�ðx�; tÞ x 2 ∂Ω4 \ Γ (3d)  

with ε being a given macroscopic strain tensor that drives the defor-
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mation. The quasi-static problem is complemented with initial condi-
tions in a (typically) uncracked material. It is noted that the crack Γ is 
not known a priori but is in fact an outcome of the simulation. Further, 
when the crack crosses the MVE boundary, the conditions (3c) and (3d) 
are enforced. This actually reflects the periodicity of the crack discon-
tinuities. Indeed, denoting the crack opening as EuF with 

EuF¼u� � uþ x 2 Γ (4)  

and combining this with (3c) and (3d), yields the following periodic 
conditions 

Euðx; tÞF ¼ Euðxþ l1e1; tÞF x 2 ∂Ω3 \ Γ
Euðx; tÞF ¼ Euðxþ l2e2; tÞF x 2 ∂Ω4 \ Γ : (5) 

For simplicity, the current formulation is developed for small strains 
whereby the relevant stretch part (micro-scale strain field) at points 
away from the crack is given by 

ε¼ 1
2
�
ruþruT� x 2 ΩnΓ (6)  

where r denotes the gradient operator and T the transpose. 
The constitutive behavior of the composite constituents is assumed 

to be governed by linear elastic relations up to fracture, i.e., 

σ¼Cε x 2 ΩnΓ (7)  

with C being the fourth-order elastic stiffness tensor of the corre-
sponding phase (e.g., fiber or matrix). Moreover, the fracture behavior 
in the MVE is modeled with a micro-scale traction-separation relation 
(cohesive relation) expressed as 

t¼ f cohðEuF; κ;mÞ x 2 Γ (8)  

where the traction t on the crack surface Γ typically degrades from the 
initiation value (fracture strength) to zero for a fully-opened crack. This 
is typically described by a cohesive relation f coh that depends on the 
crack surface opening EuF, damage variable(s) κ and the normal vector 
m ¼ mþ to account for an opening mode and/or anisotropic fracture. 
Distinct traction-separation relations are used for the phases in the MVE 
(matrix and fibers) as well as interfaces (e.g., separate relations for 
sizings in fiber/matrix interfaces representing distinct bonding chemis-
tries). It is worth pointing out that the current modeling approach is 
limited to brittle fracture since no other inelastic behavior is incorpo-
rated in the distinct phases of a composite. The goal of the multiscale 
analysis is to link the individual tractions separation relations, assumed 
to be known, to the overall (macroscopic) fracture properties. 

3. Length scale transition relation 

3.1. Overview of requirements 

Since classical continuum mechanics has no intrinsic length scale, all 

Fig. 1. Optical micrographs of a typical cross-section of a CFRP laminate (a and b) Tarpani et al. (2006) and idealization c (Image a licensed under CC BY-NC 4.0 and 
image b magnified from original image a). 

Fig. 2. Microstructural volume element (MVE), denoted as Ω, with main intersecting cracks (Γ1 and Γ2) and secondary cracks (branches, isolated segments). Each 
crack surface has a positive and a negative side, indicated by superscripts þ and � , and associated quantities, namely an outward normal m, displacement u and 
traction t (not shown for clarity). 
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aspects of the theory should formally be the same at all length scales, 
except for possible differences in constitutive models. In particular, the 
same balance principles should be satisfied at all length scales, albeit 
with the corresponding micro or macro quantities and constitutive 
models. Thus, in a hierarchical multiscale framework, it is critical to 
consistently connect two distinct continuum descriptions at two distinct 
length scales in a way in which there are no contradictions or in-
consistencies in the balance principles. Using a cohesive zone approach 
at both the small and large scales, the length scale transition for power 
requires that the rate of work dissipated across scales should be equiv-
alent. This requirement is the Hill-Mandel condition applied to the 
fracture process. Thus, the energy dissipated inside a representative 
volume element (RVE) and ascribed to the cracking process should 
coincide with the energy dissipated obtained from a macroscopic con-
tinuum point on an equivalent macroscopic crack at the same physical 
location as the microscale volume element. An important aspect in this 
procedure is a suitable separation of the bulk material surrounding the 
crack and the crack itself, with the purpose of identifying a represen-
tative surface element (RSE) inside the microscopic volume element. 

Two alternative approaches to satisfy the scale transition require-
ment on a representative surface element are presented in the sequel, 
one that is kinematics-based and the other that is kinetics-based. Each 
approach is energetically-consistent, but provides a distinct traction- 
separation relation. 

3.2. Strain, stress and power relations 

Consider a microscopic volume element Ω with boundary ∂Ω and 
denote as Γ the collection of all cracked surfaces as illustrated in Fig. 2. 
The externally applied (macroscopic) strain ε acting on the volume 
element is defined as 

ε : ¼
1
jΩj

Z

∂Ω

½u� n�sym ds ; (9)  

where jΩj denotes the volume of the region Ω, the subscript “sym” in-
dicates the symmetric part of the quantity within square brackets and �
denotes the tensor product. Observe that the applied strain ε is 
computed based only on the displacements u on the external boundary 
∂Ω. Assuming periodic boundary conditions on the boundary ∂Ω, the 
macroscopic strain ε applied to the volume element can be decomposed 
as follows: 

ε¼ εb þ εf ; (10)  

where the volume averaged strain εb is computed as 

εb : ¼ 〈ε〉Ω¼
1
jΩj

Z

Ω

ε dv ; (11)  

and the fracture strain εf is defined as 

εf : ¼
1
jΩj

Z

Γ

½EuF�m�sym ds ; (12)  

where m is a unit vector normal to the crack surface (see Fig. 2 for 
notation). 

The externally applied (macroscopic) stress tensor σ acting on the 
microscopic volume element is defined as 

σ : ¼
1
jΩj

Z

∂Ω

t� x ds (13)  

with t representing the traction acting on the external boundary of the 
MVE and x being a position vector in the reference state corresponding 
to a microscale material point. Similar to the definition of the applied 
strain, the applied stress tensor only depends on the traction applied on 

the external surface ∂Ω. Upon application of the balance of linear mo-
mentum for a quasi-static process without body forces and taking into 
account that the traction on the crack surface is continuous (continuous 
across the crack surface), it can be shown that the externally applied 
macroscopic stress σ coincides with the volume averaged stress tensor 
〈σ〉Ω, i.e., 

σ¼ 〈σ〉Ω ; (14)  

where the volume averaged stress tensor is defined as 

〈σ〉Ω : ¼
1
jΩj

Z

Ω

σ dv : (15) 

The externally applied power density P (per unit volume) done on 
the MVE is defined as 

P : ¼
1
jΩj

Z

∂Ω

t⋅ _u ds ; (16)  

where _u is the time derivative of the displacement vector (velocity). For 
a quasi-static process with periodic boundary conditions and without 
body forces, using the equation of equilibrium and the divergence the-
orem, it can be shown that the external power per unit volume can be 
expressed as 

P¼Pb þ Pf ; (17)  

where the stress power per unit volume Pb (also referred to as the bulk 
stress power density) is given as 

Pb¼ 〈P〉Ω¼
1
jΩj

Z

Ω

σ ⋅ _ε dv (18)  

and the fracture power per unit volume Pf is defined as 

Pf : ¼
1
jΩj

Z

Γ

t⋅E _uF ds : (19) 

For plane strain or plane stress formulations, the power densities are 
expressed per unit area and unit depth. 

3.3. Hill-Mandel condition 

At a macroscopic level, the stress power density PM at a continuum 
point is, by definition, given as 

PM : ¼ σM⋅ _εM
; (20)  

where σM is the macroscopic stress tensor and _εM is the macroscopic 
strain rate. As discussed in Sec. 3.1, the Hill-Mandel consistency con-
dition across length scales indicates that for a microscopic volume 
element to actually represent a macroscopic continuum point, then the 
total microscopic rate of work on the volume element must be equal to 
the local rate of work at the macroscale. In accordance with the theory of 
multiscale analysis, the macroscopic fields at a continuum point are 
related to the applied quantities on the boundary ∂Ω of the corre-
sponding microscopic volume element by definition as 

_εM
: ¼ _ε ; σM : ¼ σ : (21) 

The consistency condition for the whole MVE (“total” Hill-Mandel 
condition) is therefore that one has to verify that 

PM ¼P : (22) 

As indicated in Turteltaub et al. (2018), the Hill-Mandel condition 
for the whole MVE as given in (22), can be satisfied a priori by imposing 
periodic boundary conditions on the boundary of the domain. Conse-
quently, this condition is automatically satisfied, even in the presence of 
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cracks and regardless of whether the MVE is representative or not. 
However, in situations where a localized crack appears in the MVE, the 
traditional approach to multiscale analysis based on successive MVEs of 
increasing volume generally fails to converge to a RVE. This is often due 
to the fact that the ratio between the crack surface and the MVE volume 
is not constant as the MVE volume is increased. This problem may be 
partially solved if the MVE is varied in volume only by increasing its 
dimension along the crack in order to keep the surface to volume ratio 
constant, but this approach requires an a priori knowledge of the crack 
orientation hence it is typically limited to the analysis of fracture along a 
pre-determined path such as a weak interface between two distinct 
materials. In order to analyze a more general case in which the crack 
orientation is not known a priori, the scale transition for the cracking 
process requires identifying and separating the deformation mecha-
nisms occurring in the bulk from the process localized on the micro-
scopic cracked surfaces, which is then ascribed to fracture. This 
approach results in two separate scale transition conditions, namely one 
for the bulk and one for the crack. This segregation of scale transitions is 
used to extract information corresponding to the cracking process from 
the microscale. Since the fracture scale transition is mainly performed 
averaging along cracked surfaces, it converges to a representative sur-
face element (RSE) and it does not depend on the ratio between the crack 
surface and the MVE volume. 

A key aspect in the scale transition for the fracture process is the 
format in which the effective traction-separation relation is formulated. 
In particular, since traction-separation relations are used in the present 
work at both length scales, the macroscopic (or effective) description of 
fracture is also expressed in terms of a macroscopic cohesive traction tf 
acting on an equivalent macrocrack surface and a macroscopic crack- 
opening vector EuF

f . The macroscale description of an (equivalent) 
crack can therefore also be expressed in the same format as the micro-
scale relations (8), i.e., 

tf ¼ f f
coh

�
EuF

f
; κf ;mf� (23)  

where κf represents a vector of (internal) damage or history variables 
and mf is a unit vector normal to the macroscopic crack. 

The macroscopic crack is associated to an infinitesimal area (or 
segment per unit depth in plane formulations) that is perpendicular to 
the normal vector. Denote as 

�
�Γf�� the length of a straight macroscopic 

crack infinitesimal segment Γf for plane formulations that is meant to be 
the continuum equivalent representation of microcracks in a Repre-
sentative Surface Element. Multiplying the fracture power per unit 
volume Pf given in (19) by the MVE volume jΩj, and using the termi-
nology introduced above for an effective macroscopic crack, the Hill- 
Mandel condition for fracture can be expressed as 

�
�Γf
�
�tf ⋅ E _uF

f
¼ jΩjPf ¼

Z

Γ

t⋅E _uFds : (24) 

As discussed in Turteltaub et al. (2018); Turteltaub and de Jong 
(2019), the macroscopic cohesive traction (vector) tf and the macro-
scopic crack-opening rate vector E _uF

f are not necessarily obtained 
directly from the volume-averaged stress tensor 〈σ〉Ω and the fracture 
strain rate tensor _εf . Some alternative definitions for the effective 
quantities are given in the next section. 

4. Effective quantities 

In order to satisfy the surface-based Hill-Mandel scale transition 
condition for fracture as given in (24), two distinct approaches are 
proposed in this section, namely a kinematics-based method where the 
crack opening rate is obtained from an average and the traction is 
adjusted in accordance with the scale transition and a kinetics-based 
methods where the traction is obtained from an average and the crack 

opening rate is adjusted from the scale transition. In addition, a version 
of a previously-proposed method (as discussed in Turteltaub et al. 
(2018)) is also included in this section in order to compare the pre-
dictions from the two new methods with the existing one. 

4.1. Effective crack length and crack-based quantities 

For subsequent use in the methods presented in this section, the 
effective crack-length and the crack-averaged traction and projected 
opening rate are defined in this section. The effective (macroscopic) 
length of a periodic crack 

�
�Γf �� is computed using the geometrical inter-

pretation proposed in Turteltaub et al. (2018)), which for completeness 
is summarized here. The approach is to identify the orientation and 
number of periodic crossings of a periodic crack with normal unit vector 
mf in a two-dimensional l1 � l2 MVE domain aligned with normal unit 
vectors n1 and n2, as illustrated in Fig. 2. The orientation of the effective 
crack is determined from the unit vector normal mf which is defined here 
as the crack-averaged normal vector, i.e., 

mf : ¼ 〈m〉Γ : (25) 

The effective crack length is defined as 

�
�Γf
�
� : ¼

( �
�Γf

min

�
� if r � rmax

�
�Γf

max

�
� if r < rmax

(26)  

where the lengths 
�
�
�Γf

min

�
�
� and 

�
�
�Γf

max

�
�
� are determined as 

�
�Γf

min

�
� : ¼min

�
l1

jn2⋅mf j
;

l2

jn1⋅mf j

�
�
�Γf

max

�
� : ¼max

�
l1

jn2⋅mf j
;

l2

jn1⋅mf j

�

(27)  

and the nominal number of periodic crossings, expressed as a real 
number, is defined as 

r : ¼

�
�Γf

max

�
�

�
�Γf

min

�
�
:

In (26), the quantity rmax is a cut-off value for handling near vertical 
or near horizontal periodic cracks for which the effective length could 
potentially predict an artificially large value instead of l1 or l2. Similarly, 
in case of complex crack patterns with a large number of branches, it is 
convenient to compare the predicted effective crack length with an 
alternative approach based on the length of a vector connecting directly 
the entry and exit points of a periodic crack. The magnitude of that 
vector can be interpreted as the effective length of the main crack 
without the crack branches and hence equal to a straight segment 
crossing the computational sample. This value can be used as an alter-
native definition of the effective crack length; in principle the definition 
of the effective crack length is somewhat arbitrary since, as shown 
below, what is relevant is only the product between the effective length 
and the effective crack opening rate that is in turn consistently defined 
based on the chosen effective crack length. 

The crack-averaged traction tfΓ is computed as 

tf
Γ : ¼ 〈t〉Γ¼

1
jΓj

Z

Γ

t ds ; (28)  

while the nominal traction tfΩ associated with the volume-averaged 
stress tensor is defined as 

tf
Ω : ¼ 〈σ〉Ωmf : (29) 

Similarly, define the nominal crack opening rate E _uF
f
Γ associated with 

the fracture strain tensor as 
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E _uF
f
Γ : ¼

jΩj
jΓf j

_εfmf ¼
1
jΓf j

Z

Γ

E _uF
�
m ⋅ mf�ds¼

jΓj
jΓf j

〈E _uF
�
m ⋅ mf�〉Γ ; (30)  

where the expression (12) was used to obtain the final expression of the 
nominal opening rate. 

Observe that local crack opening rates E _uF on crack segments that are 
perpendicular to the average crack normal vector mf have no net 
contribution to the value of E _uF

f
Γ, which can also be interpreted and 

referred to as a projected crack-averaged opening rate. With the afore-
mentioned definitions, the distinct scale transition approaches are 
introduced next. 

4.2. Kinematics-based averaging method 

In the kinematics-based averaging method, the effective crack 
opening rate E _uF

f is chosen as the projected crack-averaged opening rate 
E _uF

f
Γ given in (30) while the effective cohesive traction tf is computed 

from the Hill-Mandel condition (24), i.e., 

E _uF
f
¼ E _uF

f
Γ (31)  

and 

tf ¼ tf;HM
Γ :¼ βtf

Γ with β :¼
jΓj〈t⋅E _uF〉Γ

jΓf jtf
Γ⋅E _uF

f
Γ

: (32) 

Observe that the scalar β is a function of time during the cracking 
process such that Hill-Mandel condition (24) is automatically satisfied 
for the pair fE _uF

f
Γ; t

f;HM
Γ g. 

4.3. Kinetics-based averaging method 

In the kinetics-based averaging method, the effective cohesive trac-
tion tf is chosen as the crack-averaged traction tfΓ given in (28) while the 
effective crack opening rate E _uF

f is computed from the Hill-Mandel 
condition (24), i.e., 

tf ¼ tf
Γ (33)  

and 

E _uF
f
¼ E _uF

f;HM
Γ :¼ βE _uF

f
Γ with β :¼

jΓj〈t⋅E _uF〉Γ

jΓf jtf
Γ⋅E _uF

f
Γ

: (34) 

As in the previous method, it is noted that the Hill-Mandel condition 
(24) is automatically satisfied for the pair fE _uF

f;HM
Γ ; tfΓg. 

4.4. Hybrid method: kinematics-based with approximate Hill-Mandel 
condition method 

For comparison purposes, a modified version of a previously- 
proposed scale transition method is included in this section. The 
method is essentially similar to the one presented in Turteltaub et al. 
(2018); Turteltaub and de Jong (2019) with the exception that the 
effective crack-opening rate used is the projected crack opening rate 
E _uF

f
Γ (instead of the unprojected rate). This modification facilitates a 

direct comparison with the aforementioned methods that also use the 
projected crack opening rate. For convenience, this method will be 
referred to as the “hybrid method” or as the “approximate Hill-Mandel 
method” in the sense that it combines features of the kinetics and 
kinematics-based methods while enforcing the Hill-Mandel condition 
only approximately. Indeed, similar to the kinematics-based approach 
presented above, the effective crack opening rate is chosen as 

E _uF
f
¼ E _uF

f
Γ : (35) 

However, in this scale transition approach, the effective traction is 
not directly obtained from the Hill-Mandel condition (24) but, instead, it 
is written in terms of linear combination of the volume and the surface- 
based tractions, namely as 

tf ¼ tf
α : ¼ αtf

Γ þ ð1 � αÞtf
Ω (36)  

where the quantity α can be computed such that the pair fE _uF
f
Γ; tfαg

approximately satisfies the Hill-Mandel condition (24). One way to 
achieve this is to substitute (36) and (35) in (24) and integrate 
throughout the cracking process from the initial state at t ¼ 0 (typically 
uncracked) until the fully-cracked state at t ¼ T. This procedure yields 
the following (constant) value of the scalar α: 

α¼

R T
0

�
jjΓjj
jjΓf jj

〈t⋅E _uF〉Γ � tf
Γ⋅E _uF

f

Γ

�

dt
R T

0

� �
tf
Γ � tf

Ω

�
⋅E _uF

f

Γ

�
dt

:

In some of the simulations carried out in this work, the crack and 
volume-averaged tractions were similar throughout the cracking process 
(i.e., tfΓ � tfΩ for all 0 � t � T), in which case the value of α can become 
prone to numerical inaccuracies. However, even in that case the proper 
traction can be recovered from (36), namely tfα � tfΓ � tfΩ, as long as a 
bounded value of α is obtained, which in practice can be a fixed cut-off 
value (e.g., α ¼ 0 or α ¼ 1). 

5. Verification of scale transition relations and comparative 
analysis 

In order to verify that the proposed methods and their numerical 
implementation actually satisfy the scale transition relation, a series of 
basic simulations are conducted using microscopic volume elements 
representing typical composite materials. Simultaneously, the predicted 
macroscopic traction-separation relations from the distinct methods are 
compared under different loading cases. 

5.1. Implementation: microstructural samples, material properties and 
loading cases 

The microstructure chosen for verification consists of plies of a 
unidirectional fiber-reinforced composite in a generic ½0=90�n stacking 
sequence of n plies with fibers oriented at angles 0� and 90� corre-
sponding, respectively, to the e3 and e1 directions as indicated in Fig. 2. 
Due to computational limitations, artificially thin plies are assumed, 
which only accommodates a few fibers in the thickness direction (� 4 for 
the simulations considered here). This arrangement is not representative 
of composites currently used in practice (in which the plies are signifi-
cantly more thick) but is adopted in the present work in order to keep the 
overall computational cost within a manageable range based on 
currently available hardware. Despite this limitation, the benefit of this 
microscopic volume element is that it is able to capture some of the main 
physical features of fracture in actual composites (i.e., matrix cracking, 
fiber cracking, fiber debonding, fiber pull-out and ply delamination). 

The results reported in this section pertain to microstructural volume 
elements representing 75 μm� 75 μm cross-sections with ½0� and ½90�
plies. Within each ply, fibers are randomly distributed in each distinct 
realization, while keeping the fiber volume fraction (approximately) 
fixed. Samples of other sizes and realizations are analyzed in subsequent 
sections; in the present section only one typical sample is shown for 
illustration purposes. The elastic and fracture properties of the com-
posite system used in the simulations are summarized in Tables 1 and 2, 
respectively. These properties are representative of a commonly used 
combination in aerospace applications (IM7 carbon fibers and 8552 
epoxy matrix), although the method is general and is not limited to this 
material choice or type of composite. The elastic and some of the frac-
ture properties may be readily obtained from the manufacturer’s 
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published data. However, it is important to emphasize that some frac-
ture data are not (publicly) available. Most of the values indicated in 
Table 2 are estimates and are used in the present study only for 
computational purposes but should not be used for design purposes. 
Experimental testing is required to establish accurate fracture data for 
the constituents (fibers, matrix and fiber-matrix interface), but this falls 
outside of the scope of the present work. 

Several representative loading cases are considered to verify and 
compare the proposed methodologies. The loading cases are defined in 
terms of the macroscopic strain tensor ε that drives the deformation 
inside the MVE. In particular, three loading cases are analyzed as shown 
in Table 3, namely (i) laterally-constrained axial extension in the ½90�
fiber direction, (ii) a mixed loading case (equibiaxial extension com-
bined with pure shear) and (iii) equibiaxial extension. The Cartesian 
components of the macroscopic strain tensor are referred to the tensor 
bases constructed from the underlying vector basis fe1; e2g, with the 1- 
direction aligned with the ½90� fibers in a ½0=90�n stacking sequence as 
illustrated in Fig. 2 (as indicated above, the ½0� direction is chosen as the 
global out-of-plane direction e3 ¼ e1 � e2). The magnitude of the strain 
tensor, which depends on the parameter λ > 0, is chosen such that it is 
large enough to produce complete fracture of the specimen. 

The microstructural volume elements are generated and meshed 
using the open source package Gmsh (Geuzaine and Remacle, 2009). 
The meshes contain 3-noded, linear, plane strain elements for the bulk 
deformation and 4-noded two-dimensional cohesive elements, 
embedded on each edge of the bulk elements, to simulate the fracture 
process that may initiate at any location where the local fracture crite-
rion of the cohesive element is satisfied. The cohesive stiffness is chosen 
relatively high to minimize the effect of the artificial compliance that 
appears from embedding the cohesive elements. The quasi-static prob-
lems as described in (1)-(3) are solved using the FEA software Abaqus 
with implicit time integration (Abaqus Standard version 6.14). Pre-
liminary mesh refinement analyses were conducted to find mesh sizes 

that provide converged solutions to within a given tolerance, resulting in 
a characteristic mesh size of 1 μm for most simulations. A numerical 
viscosity parameter in the cohesive elements is also usually required to 
find converged solutions. Ideally, this parameter should be as low as 
possible since it does not represent physical dissipation, but it is typi-
cally necessary to regularize the problem. The solutions are monitored in 
terms of the contribution of the viscous term to the overall energy 
dissipation. Numerically-converged solutions that contain a large 
amount of (numerical) viscous dissipation are not considered as 
converged from the point of view of multiscale analysis. In some cases 
this only affects parts of the solution (e.g., towards the end of the frac-
ture process when a large number of cohesive elements are simulta-
neously active). The converged solutions are post-processed with several 
python-based scripts to detect cracks groups, identify their connectivity 
and compute the effective traction-separation quantities according to 
the distinct scale transition approaches. 

5.2. Laterally-constrained uniaxial extension in the fiber direction 

The first loading case corresponds to extending the specimen in one 
of the fiber directions while preventing contraction in the perpendicular 
direction (i.e., laterally-constrained uniaxial extension as indicated in 
Table 3). The corresponding cracking process and final crack pattern is 
shown in Fig. 3. Although the details of the crack pattern vary from 
sample to sample, similar samples show typically a main periodic crack 
(indicated by a thick line in Fig. 3) that runs through the matrix and the 
matrix-fiber interfaces on the ½0� layer. Eventually the fibers in the ½90�
layer break indicating the complete failure of the sample. Throughout 
the fracture process, crack bifurcation occurs at multiple sites as well as 
the formation of isolated crack segments that, after an initial growth, get 
arrested as the stress decreases due to the formation of a main crack. It is 
nevertheless important to consider all branches in a multiscale analysis 
since these isolated crack segments may have a non-negligible contri-
bution to the overall energy dissipation. 

In order verify the averaging methods indicated in the previous 
section, the detailed data of the simulation is post-processed in three 
different ways, namely using the kinematics-based method, the kinetics- 
based method and the kinematics-based method with approximate 
satisfaction of the Hill-Mandel condition (i.e., the hybrid method). To 
this end, a crack detection algorithm was developed to collect all failed 
cohesive elements and group them in larger sets (crack segments), which 
then in turn are collected into connected cracks or isolated segments. 
Subsequently, the distinct averaging methods are applied to the same set 
of elements. Distinct power terms for one illustrative simulation are 
shown in Fig. 4. The results shown in the figure include both surface- 
based and volume-based quantities, which are all normalized with 
respect to the MVE volume jΩj (area per unit depth in plane strain 
simulations). 

The applied nominal strain rate _ε is constant, which results in a 
linearly increasing externally-applied power density P as the corre-
sponding externally applied macroscopic stress σ increases linearly with 
time until the onset of cracking (see Fig. 4). During this initial stage, the 
energy is stored elastically in the bulk (term Pb in the figure). Due to the 
simulation technique used (embedded cohesive elements), part of the 
elastic energy is also stored in the cohesive elements with the cohesive 
stiffness acting as an elastic spring. This numerical elastic strain energy 
associated to the compliance of the cohesive elements, denoted as Pf

comp 

in Fig. 4, is non-negligible because of the large number of cohesive el-
ements. Consequently, the numerical approximation of the elastic power 
corresponds to the sum of Pb and Pf

comp. It is worth pointing out here that, 
although the elastic behavior of the computational domain is strongly 
affected by the large number of embedded cohesive elements (i.e., no 
elastic convergence for the bulk material), the fracture behavior can 
converge upon mesh refinement as the fracture process localizes in a 
convergent crack pattern. 

Table 1 
Elastic properties for a carbon fiber-epoxy matrix composite in terms of Young 
modulus E, Poisson’s ratio ν and shear modulus μ for transversely-isotropic fibers 
with the index t indicating the local fiber direction while p refers to the local in- 
plane directions perpendicular to the fiber direction; the redundant parameters 
νpt ¼ ðEp =EtÞνtp and μp ¼ Ep=ð2ð1þνpÞÞ are omitted. The epoxy matrix is taken 
as isotropic.  

Fibers Matrix 

Et  275 [GPa] E 3.5 [GPa] 
Ep  20 [GPa]    
νtp  0.2 – ν 0.35 – 
νp  0.333 –    
μt  27.5 [GPa]     

Table 2 
Fracture properties for the basic composite constituents as used in the simula-
tions. See text for additional information and disclaimer.  

Fracture strength and energy Fibers Matrix Interface Units 

tult  5000 80 85 MPa 
Gf  7500 200 200 J/m2  

Table 3 
Components of the applied macroscopic strain tensors ε expressed in terms of a 
loading strain parameter λ > 0. Components are referred to the tensor basis 
derived from the vector basis fe1; e2g shown in Fig. 2.  

Laterally-constrained 
uniaxial extension 

Mixed deformation: Equibiaxial 
stretch and pure shear 

Equibiaxial 
stretch 

�
λ 0
0 0

� �
λ λ
λ λ

� �
λ 0
0 λ

�
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As the cohesive elements reach their cohesive strength, microcracks 
nucleate in the matrix and in the matrix-fiber interfaces. From that 
instant, the external power reaches a plateau indicating that the average 
stress remains approximately constant in time. However, during that 
time interval there is a redistribution of the loads inside the specimen. 
The cracked surfaces start to dissipate more energy (at an increased rate 
Pf ), which is indicated by the solid line labeled as Pf

c, with the sub-index 
c used to emphasize that it only includes the cohesive elements that are 
actually cracked (hence excluding the compliant cohesive elements that 
only deform elastically). During this stage, the net elastic power (bulk 
plus cohesive compliance) decreases until it reaches zero, indicating that 
the sample has reached its maximum stored elastic strain energy. Sub-
sequently, the stored elastic strain energy is transferred from the bulk 
(and from compliant cohesive elements that are not cracked) towards 
the adjacent cracked surfaces. During the main cracking stage (which 
occurs while the specimen is still being pulled at a constant rate), the 
transfer of energy occurs from both the externally-applied power and the 
adjacent (elastic) material towards the crack. This transfer of energy 
corresponds to negative values of Pb and Pf

comp, which results in a sig-
nificant increase in the dissipation rate Pf

c in the crack. Eventually all 
power and dissipation rates decrease to zero as the main crack is formed. 
Further deformation of the sample only results in a translation of the 

cracked parts which become disconnected. The graphs in Fig. 4 also 
indicate the points where the viscous regularization becomes noticeable 
(corresponding to 5% and 10% of the dissipated energy). As can be 
observed in the figure, the contribution of viscous dissipation is partic-
ularly active in the last stage of the cracking process. This indicates that 
caution has to be exerted interpreting the tail of the response curve as it 
may contain purely numerical dissipation, albeit a relatively small 
percentage. 

The verification of the scale transition relations is shown in Fig. 4 in 
terms of the effective rate of dissipation computed using the kinematics- 
based method (term Pf

u indicated with plus symbols) and the kinematics- 
based method (term Pf

t indicated with solid circles). As may be observed, 
both methods yield the same values as the fracture power Pf

c, i.e., by 
construction 

�
�Γf ��tf;HM

Γ ⋅E _uF
f
Γ ¼

�
�Γf��tfΓ ⋅E _uF

f;HM
Γ ¼ jΓj〈t ⋅E _uF〉Γ. For clarity, the 

third method considered (i.e., the hybrid method that approximately 
satisfies the Hill-Mandel condition) is not shown in the graph but the 
resulting data points follow approximately the response given by Pf

c, i.e., 
�
�Γf��tfα ⋅E _uF

f
Γ� jΓj〈t ⋅E _uF〉Γ. This method has been previously verified in 

Turteltaub et al. (2018). 
Through a time-integration scheme of the crack opening rate, 

effective traction-separation relations can be established for each scale 

Fig. 3. Typical crack pattern for laterally-constrained uniaxial extension in the fiber direction of a 75 μm� 75 μm volume element. The main vertical crack branch is 
indicated in bold whereas the thin lines represent crack branches or isolated crack segments. 

Fig. 4. Power density curves for laterally-constrained uniaxial extension in the fiber direction of a 75 μm� 75 μm volume element.  
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transition method as shown in Fig. 5 for two distinct values of the 
viscous regularization, namely 10� 3 (top figure) and 10� 5 (bottom 
figure). The curves correspond to the normal component of the effective 
cohesive traction as a function of the effective crack opening. The 
viscous parameter is introduced in the microscale traction-separation 
relations used in each cohesive element to provide numerical regulari-
zation; it acts as a Kelvin-like viscosity that penalizes large values of the 
crack opening rate, effectively limiting the rate of opening. 

Two obvious but important observations may be immediately drawn: 
(i) each scale transition method provides a distinct traction-separation 
relation even though all three curves are obtained from the same raw 
data and (ii) viscous regularization influences the shape of the effective 
traction-separation relation, particularly for the kinematics-based 
method. The shape of the effective traction-separation relation ob-
tained from the kinetics-based method is the least affected in terms of 
the viscous regularization. 

In terms of specific features, the kinematics-based method globally 

preserves geometric information about the onset of matrix cracking at 
the early stage, which is characterized by a small plateau at a relatively 
low stress, corresponding to the strength of the matrix material. In 
contrast, the kinetics-based method eliminates this feature in the 
effective curve, with the contribution of the matrix cracking being 
ignored in favor of a stiff initial response dominated by the uncracked 
fibers. The hybrid method, which approximately enforces the Hill- 
Mandel condition, provides an average response between the 
kinematics-based and kinetics-based methods. Indeed, observing the 
initial response, the hybrid predicts the same fracture strength as the 
kinetics-based method but reached at the same effective crack opening 
as the one computed from the kinematics-based method. Correspond-
ingly, in the hybrid method, the contribution of the early matrix 
cracking is reflected in a less stiff initial response. A qualitative inter-
pretation of the differences between the distinct averaging schemes is 
provided in the sequel after analyzing two more loading cases. 

5.3. Mixed equibiaxial and pure shear deformation 

The second loading case involves the simultaneous application of 
equibiaxial extension together with a pure shear deformation aligned 
with the fiber directions as indicated in Table 3 (i.e., with the principal 
shear strain directions oriented �45� with respect to the ½90�-fiber di-
rection. This strain is equivalent to a laterally-constrained extension of 
magnitude 2λ in the direction þ45� (measured clockwise from the 
½90�-fiber direction). A typical crack pattern is shown in Fig. 6, which 
shows a periodic crack that involves several types of failure, namely 
matrix cracking, fiber cracking and fiber pull-out. The main crack 
branch is indicated in bold whereas the thin lines represent crack 
branches or isolated crack segments. The local orientation is indicated 
with the local normal vector. A typical feature, also encountered in 
similarly-oriented and loaded samples, is that the fiber cracking 
occurred in the fiber direction and not in the (average) principal strain 
direction. Matrix cracking occurred mostly in a plane perpendicular to 
the principal strain direction while a significant fiber pull-out (or fiber 
separation) is observed for the [90]-oriented fibers. After postprocessing 
it was found that the effective normal vector mf is oriented in the 
extension direction, as may be verified through visual inspection in 
Fig. 6, where the fiber cracking and fiber pullout portions compensate 
each other to obtain the same effective crack orientation as the crack 
portion through the matrix. Some samples showed a less significant 
amount of fiber pull-out, but this was accompanied by fiber cracks with 
local normal oriented at 0� (i.e., [90]-direction) and matrix cracking 
between fibers at þ45� such that the effective normal also remained at þ

Fig. 6. Typical crack pattern for mixed equibiaxial and pure shear deformation of a 75 μm� 75 μm volume element. The (single) periodic crack involves several 
types of failure, namely matrix cracking, fiber cracking and fiber pull-out. The main crack branch is indicated in bold whereas the thin lines represent crack branches 
or isolated crack segments. The orientation is indicated with the local normal vector. 

Fig. 5. Effective traction-separation relations for laterally-constrained uniaxial 
extension in the fiber direction using the kinetics-based, kinematics-based and 
approximate (hybrid) scale transition methods. Results shown in the top figure 
were obtained with a viscous regularization parameter of 10� 3 and in the 
bottom figure with 10� 5. 
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45�. 
As in the previous example, one can verify that the scale transition 

methodologies consistently preserve the dissipation of energy across 
length scales. Indeed, as shown in Fig. 7, the total energy Pf

c dissipated in 
the crack coincides with the effective energy dissipated according to the 
kinematics-based method (Pf

u indicated with plus symbols) and the 
kinematics-based method (term Pf

t indicated with solid circles). 
For this loading case, the matrix cracks undergo a large opening 

before the fibers fail. The bulk (and the compliant cohesive elements) 
initially store elastic strain energy, which is then transferred and dissi-
pated in the main crack as shown in Fig. 7. This process is similar to the 
one observe in the previous loading case (uniaxial extension). However, 
the differences in the effective traction-separation relations are more 

significant, as can be observed in Fig. 8. 
Although the traction-separation relations effectively dissipate the 

same amount of energy (although only approximately for the hybrid 
method), the main features of the effective relation are significantly 
different. This is directly related to the definitions of the effective 
properties since all three relations are obtained from the same raw data 
(microscale data). As in the previous example, the kinematics-based 
method preserves the kinematics of the onset and propagation of the 
initial matrix cracking, with a relatively large effective crack opening 
and, in order to compensate for the amount of initial amount of dissi-
pation, it predicts a relatively low effective cohesive traction. In 
contrast, the kinetics-based method predicts a stiff response initially, 
thus emphasizing the large force transmitted through the (yet un-
cracked) fibers and consequently ignoring the large matrix crack open-
ing. Subsequently, the onset and evolution of the fiber cracking is also 
predicted in two rather distinct ways. The kinematics-based method has 
on average a small increment in its effective opening rate during fiber 
cracking, hence it compensates by predicting a relatively large cohesive 
traction. The kinematics-based model slowly decreases the cohesive 
traction by increasing the effective crack opening, eventually predicting 
a relatively large final crack opening. The hybrid method, which pre-
serves the kinematics-based approach but only approximately enforces 
the Hill-Mandel condition, provides an intermediate response, with a 
predicted fracture strength comparable to the one obtained from the 
kinetics-based method and a final crack opening similar to the one 
predicted by the kinematics based method. Similarly, the initial 
response is a combination of the two other methods in terms of cohesive 

Fig. 7. Power density curves for mixed equibiaxial and pure shear deformation of a 75 μm� 75 μm volume element.  

Fig. 8. Effective traction-separation relations for mixed equibiaxial and pure 
shear deformation using the kinetics-based, kinematics-based and hybrid 
(approximate Hill-Mandel) scale transition methods. 

Fig. 9. Typical crack pattern for equibiaxial defor-
mation of a 75 μm� 75 μm volume element. The 
crack running horizontally is dominated by the sepa-
ration of the matrix between plies (delamination) 
whereas the vertical crack passes through the matrix 
and matrix-fiber interfaces but is mostly characterized 
by the fact that it breaks the fibers (fiber cracking). In 
this case a segment that appears to be common to both 
cracks was assigned by the identification algorithm to 
the vertical crack based on the average orientation of 
that segment.   
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stiffness as shown in Fig. 8. 

5.4. Equibiaxial deformation: intersecting cracks 

The third and last loading case is equibiaxial extension as indicated 
in Table 3. This case has a new feature compared to the previous loading 
examples, namely that two intersecting periodic cracks appear in the 
microscopic volume element as shown in Fig. 9. 

A python-base script was developed to identify multiple cracks and 
segregate them according to their average orientation. The result of the 
post-processing operation is the identification of a crack running hori-
zontally, which is dominated by the separation of the matrix between 
the [0] and [90] plies (delamination) and a vertical crack that passes 
through the matrix and matrix-fiber interfaces but is mostly character-
ized by the fact that it breaks the fibers (fiber cracking). A small segment 
that appears to be common to both cracks is assigned by the identifi-
cation algorithm to the vertical crack based on the average orientation of 
that segment, although for some other simulations it was assigned to the 
horizontal crack. 

Based on this detection and segregation algorithm, the scale transi-
tion methods can be applied separately to each crack, resulting in two 
distinct traction-separation relations as shown in Fig. 10. The traction- 
separation relation on the left figure corresponds to the delamination 
crack, which is characterized by a relatively small effective strength and 
a relatively small dissipation of energy. This can be traced back to the 
fracture properties of the matrix material that are lower than of the fi-
bers. In contrast, the traction-separation shown on the right figure, 
corresponding to fiber cracking as the dominant failure mechanism, has 
a relatively large effective fracture strength and fracture energy. 

The individual features of the traction-separation relations are 
similar to the ones observed in the previous two loading cases, namely 
an overprediction of the fracture strength using the kinematics-based 
model and an overprediction of the ultimate crack opening from the 
kinetics-based model. It is also worth pointing out that the hybrid 
method that approximates the Hill-Mandel condition under-predicts the 
energy dissipated for fiber cracking as may be observed in terms of the 
areas under the curves in Fig. 10 (right), which are a visual measure of 
the energy dissipated during cracking since the tangential components 
(not shown) have only a small contribution. This example illustrates that 
it is feasible to extract information about intersecting cracks due to the 
capacity of the identification algorithm to identify separate cracks. 
Further, it also illustrates a typical feature of anisotropic fracture me-
chanics for composite materials, namely that the cohesive relations are 
dependent upon material orientation, hence a given cohesive relation 
must be specified only on the corresponding plane of fracture (e.g., 
delamination or fiber cracking). 

5.5. Interpretation of the distinct scale transition methodologies 

As illustrated in the previous examples, the choice of the effective 
quantities in a traction-separation relation leads to energetically- 
equivalent relations (same fracture energy) but otherwise have 
distinct features (such as the maximum cohesive traction or the critical 
crack opening, which may be used as measures for the effective fracture 
strength). Consequently, it is relevant to provide a simple interpretation 
for the differences between the kinematics-based method and the 
kinetics-based method. The hybrid method (approximate Hill-Mandel) 
is not treated explicitly in this section since it is a combination of the 
kinematics the kinetics-based methods. 

As mentioned before, the surface-based Hill-Mandel condition for 
hierarchical multiscale analysis of localized mechanical response cannot 
be satisfied a priori using the methodologies commonly-used for a 
volume-based approach (e.g., uniform stress or strain on the MVE 
boundary or periodic boundary conditions). However, both conjugated 
pairs f½½ _u��fΓ; t

f;HM
Γ g (kinematics-based) and f½½ _u��f;HM

Γ ; tfΓg (kinetics-based) 
satisfy the Hill-Mandel condition by construction. The kinematics-based 
method preserves the kinematics of the microstructural element (i.e., the 
effective crack opening rate is directly a surface average of the corre-
sponding microscopic quantity), but in order to enforce consistency in 
terms of power, the corresponding effective cohesive traction needs to 
adapt and hence deviate from the surface average. This framework may 
be seen as similar to the Voigt-Taylor constant deformation assumption 
used in micromechanics (in time rate form), but keeping in mind two 
important distinctions: in the present framework the balance of linear 
momentum is satisfied (as opposed to the Voigt-Taylor assumption in 
which it is not) and in the present method the Hill-Mandel scale tran-
sition is enforced a posteriori (as opposed to the Voigt-Taylor method in 
which it is satisfied a priori). Similarly, the kinetics-based method pre-
serves the cohesive tractions (the effective traction is directly a surface 
average) and enforces the Hill-Mandel condition at the expense of the 
effective crack opening. In line with the previous comment, it can be 
mentioned that this framework is somewhat analogous to the Reuss- 
Sachs constant stress assumption but with the distinction that the 
kinetics-based method satisfies the kinematic conditions for cracking 
(which the Reuss-Sachs method does not) and the Hill-Mandel scale 
transition is satisfied only a posteriori (which is satisfied a priori in the 
Reuss-Sachs method). 

A schematic illustration of the differences between the two averaging 
methods is shown in Fig. 11 for a composite material in which the matrix 
material fails first while the fibers fail later, a situation analogous to the 
examples presented above. 

As indicated in the figure, the matrix cracking stage is characterized 
by an increase in the crack opening in the matrix while the fibers in-
crease their share of the load bearing distribution. Consequently, the 
kinematics-based method determines a higher effective crack opening 

Fig. 10. Effective traction-separation relations for equibiaxial extension using the kinetics-based, kinematics-based and hybrid (approximate Hill-Mandel) scale 
transition methods: left: delamination crack 1, right: fiber crack 2. 
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and computes a lower cohesive traction compared to the kinetics-based 
method. Subsequently, as the load increases and reaches its peak, the 
second stage in the fracture process involves fiber breaking. During this 
second stage, the situation is reversed, i.e., the kinematics-based method 
determines a lower effective crack opening and computes a higher 
cohesive traction compared to the kinetics-based method. This is due to 
the fact that both methods need to compensate with one adjustable 
quantity (either traction of opening rate) the significant increase in 
dissipation rate as the fibers break. Indeed, the kinematics-based 
method, which fully respects the geometric opening, adapts the cohe-
sive traction by increasing it significantly during fiber breaking, above 
the value predicted by equilibrium. Conversely, for the kinetics-based 
method, in which the effective traction decreases during fiber 
breaking, the adjusted crack opening rate becomes higher than the 
geometrically accurate one to compensate for the increased dissipation. 
In closing this section, it is worth pointing out that the hybrid method 
(approximate Hill-Mandel) typically preserves most of the relevant 
microscale information from the crack opening and cohesive tractions at 
the expense of the dissipated energy. 

Although each method has some desirable properties, it is shown in 
the next section that the kinematics-based method should be avoided in 
general for multiscale analysis. 

6. Multiscale convergence analysis and comparison between 
scale transition methods 

In a hierarchical multiscale analysis, an important step is to verify 
the convergence towards a representative volume element (RVE) as the 
microscale volume elements are increased in size. For fracture, this 
procedure actually requires identifying a representative surface element 
(RSE) where the phenomenon is localized, which is embedded in a 
sufficiently large microscopic volume element. As shown in Fig. 12, two 
types of volume elements are considered in this section, namely ½0� and 
½0=90�n layouts. For the convergence analysis, square domains of 
increasing size are considered (25, 50, 75 and 100 μm). The material 
properties used are the same as in the previous section as given in Ta-
bles 1 and 2. 

For each size, several realizations were tested with random distri-
butions of the fibers in the ½0� direction while the fibers in the ½90� were 
kept fixed. Mesh refinement was conducted for each size, with energy 
convergence being achieved typically with a mesh of about 1 μm or 2 μm 
without the need for large viscous regularization. However, due to the 
modeling technique adopted in the present analysis (i.e., embedded 
cohesive elements) further mesh refinement generated solutions that 
had a large amount of artificial viscous dissipation in order to obtain 
numerically converged solutions. This was monitored in terms of the 
percentage of viscous dissipation compared to the total dissipation. 
Consequently, there is a lower limit in terms of mesh size below which 
divergence of actual fracture dissipation occurs. In that case, the viscous 
dissipation would need to be excluded from the total dissipation in order 
to preserve the physically-based fracture quantities. This, however, falls 
beyond the scope of the present work, hence only results that did not 
contain a large amount of viscous dissipation were used in the post- 
processing. 

6.1. Fracture on ½0� samples 

The first type of samples studied are transversely isotropic arrange-
ments subjected to laterally-constrained uniaxial loading. For each 
characteristic size of the microscopic volume element, a mesh refine-
ment analysis (not shown here for conciseness) indicated that a mesh 
with characteristic element size of 1 μm provided a sufficiently 
converged solution, both in terms of the energy as well as the 

Fig. 12. Microscopic volume elements for ½0� and ½0=90�n layouts with domain 
sizes of 25, 50, 75 and 100 μm. 
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corresponding traction-separation relation obtained from both methods. 
In addition, for each characteristic size of the microscopic volume 
element, three distinct realizations were analyzed. This simulation 
setup, although limited due to the overall computational cost, allows to 
study variations both across realizations and across volume element 
sizes. The results are shown in Fig. 13 in terms of the energy dissipated 
due to cracking (top figure), the effective traction-separation relation 
obtained from the kinematics-based method (middle figure) and the 
traction-separation relation obtained from the kinetics-based method 
(bottom figure). As may be observed, there is a relatively fast multiscale 
convergence in terms of the energy dissipated, with the 50� 50 μm 
samples already providing sufficiently converged results. The accumu-
lated dissipation at the end of the fracture process, which corresponds to 
the composites’ fracture energy for transverse ply cracks, is about 210 J/ 
m2, which is slightly above the fracture energy of the matrix and the 
matrix-fiber interface (see Table 2 recalling that 1 J/m2 ¼ 10� 3 MPa 
mm). The fact that the effective value (per unit macroscopic length and 
depth) is slightly above the microscale value (per unit microscopic 
length and depth) also reflects the fact that the path of the crack is 
typically not a straight line at the microscopic level. 

Similarly, the effective traction-separation relations obtained from 
both methods converge relatively fast, with the average response of 
three 50� 50 μm samples being within the (discrete) standard deviation 
of the three 75� 75 μm samples. The predicted effective fracture 
strength, as represented by the maximum value reached in the traction- 
separation relation, shows some fluctuations for the kinematics-based 
model (middle figure), but does converge relatively fast across sample 
sizes for the kinetics-based method. As shown in the bottom figure, the 
converged fracture strength is close to 85 MPa, which indicates that the 
crack is dominated by the separation between fibers and matrix (see 
Table 2). Both methods predict similar values for the ultimate effective 
crack-opening of about 5 μm. 

As may be observed in Fig. 13 (middle), the traction-separation 
relation from the kinematics-based method is prone to numerical inac-
curacies with sudden jumps in the cohesive traction that can be traced 
back to inaccurate instantaneous values of the crack-opening rates. 
While it is of course possible to apply a smoothing technique, the results 

are shown in their unfiltered form to highlight the limitations of 
applying the kinematics-based approach directly. In contrast, the 
traction-separation response predicted from the kinetics-based approach 
is relatively smooth, which reflects that instantaneous inaccuracies in 
the calculated value of ½½ _u�� have a less noticeable effect on ½½u�� since the 
total crack opening is obtained by integration in time. Although both 
methods appear to be viable in terms of predicting effective properties, it 
is shown in the next example that the kinematics-based may not be a 
reliable approach, at least not in its current form. 

6.2. Fracture on ½0=90�n samples 

The second type of samples analyzed are cross-sections of ½0=90�n 
layouts subjected to laterally-constrained axial extension in the direc-
tion of the [90] fibers. The results of the simulations for samples of 
various sizes are shown in Fig. 14 in terms of energy dissipated (top 
figure), effective traction-separation relations using the kinematics- 
based method (middle figure) and effective traction-separation re-
lations using the kinetics-based method (bottom figure). 

In this case, converge of the microscopic volume element within a 
given tolerance is achieved for the samples of 75� 75 μm in the sense of 
the effective fracture energy. Indeed, the predicted energy dissipated for 
the 75� 75 μm and the 100� 100 μm were both close to about 2400 J/ 
m2 at the end of the fracture process (i.e., composite fracture energy). 
However, since energy density is a global measure for the volume 
element, its convergence across MVEs of distinct sizes does not imply 
convergence of a traction-separation relation, which is a more stringent 
requirement as it contains more detailed information. From Fig. 14, it 
can be seen that post-processing the data in distinct ways has an 
important effect: whereas the kinematics-based method shows no 
convergence, the same data shows a convergent traction-separation 
relation using the kinetics-based method. In fact, the kinetics-based 
method had no convergent traction-separation relation even at the 
level of mesh refinement (not shown here for conciseness). However, 
using the same data, the kinetics-based method revealed a convergent 
traction-separation relation upon mesh refinement up to a lower limit 
when viscous regularization prevented global convergence. 

Fig. 13. RSE convergence plot for constrained uniaxial extension on ½0� samples 
with domain sizes 50, 75 and 100 μm. 

Fig. 14. RSE convergence plot for constrained uniaxial extension on ½0=90�n 
samples with domain sizes 25, 50, 75 and 100 μm. 
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As indicated above, the data deteriorated upon further mesh 
refinement due to viscous effects, providing non-convergent results also 
when using energy as a measure. That problem, however, is related to 
the modeling technique (i.e., embedded cohesive elements) and not to 
the scale transition methods. The conclusions drawn from the simula-
tions pertain to cases without a significant viscous regularization. In this 
case, from the kinetics-based method, the simulations predict a com-
posite fracture strength of about 1330 MPa in the [90]-direction, which 
shows the significant influence of the fibers properties (see also Table 2). 
In contrast, the kinematics-based method does not yield any conclusive 
value for the fracture strength. 

7. Concluding remarks 

In the present work, two distinct length scale transition methods are 
developed and implemented for the post-processing of microscale data 
into macroscale quantities, in particular in the form of an effective 
traction-separation relation for a composite material. The two method-
ologies, termed the kinematics-based and kinetics-based approach, 
satisfy the necessary conditions to account for energy dissipation from 
the micro to the macroscale. Results from the two methods are compared 
to a previously-proposed scale transition method, termed the hybrid 
method. Furthermore, the two methodologies are used to analyze the 
detailed microscale data across volume elements of increasing size in a 
study to establish numerically the existence of a representative surface 
element. The following conclusions may be drawn based on the nu-
merical experiments with samples of fiber-reinforced composites:  

� The preferred approaches to establish effective quantities rely on 
averaging the tractions across the cracked surface (kinetics-based 
method) or a combination of this with a volume-averaged stress in 
the neighborhood of the crack surface (hybrid method).  
� The kinematics-based method that establish the effective crack 

opening as an average of the crack opening along the cracked surface 
should in general be avoided as it fails to provide conclusive 
(convergent) results. However, the average of the crack opening 
along the cracked surface may be used as effective crack opening in 
the hybrid method (i.e., by relaxing the condition of the scale tran-
sition requirement and only enforcing it approximately). 
� The choice of the effective quantities in a multiscale fracture me-

chanics problem is critical since the same microscale data was shown 
to converge for the kinematics-based method and diverge for the 
kinematics-based method, despite that both methods satisfy the same 
Hill-Mandel scale transition condition.  
� For intersecting cracks, it is possible to extract separate effective 

traction-separation relations that may be associated with a different 
fracture mechanism in a composite material that is anisotropic from 
the fracture point of view. 

In addition to the aforementioned conclusions, it is worth indicating 
that the use of viscous regularization needs to be carefully monitored to 
distinguish between physically-relevant quantities and purely numerical 
artifacts in the simulations. In principle, regularization of the original 
formulation must be kept to the minimum to avoid non-physical results, 
but large enough to avoid singularities as non-convergent results cannot 
in general be relied upon. Another possible source of inaccuracies is 
related to the boundary conditions used (in the present case periodic 
boundary conditions). This topic falls outside of the scope of the present 
work, but it is worth mentioning that, since in general the predictions 
are influenced by the type of boundary conditions chosen, an exhaustive 
analysis is still required across different types of conditions. It is also 
relevant to mention that the present analysis does not include failure by 
compression, which typically involves mechanisms such as fiber buck-
ling, fiber kinking and/or shear sliding. In those cases, an additional 
contact algorithm is required to avoid overlapping of (failed) cohesive 
elements, which is however outside of the scope of the current 

simulations. Despite the aforementioned list of open challenges, the 
present work demonstrates that choosing the right scale transition 
method is critical for the proper interpretation of the microscale data. 

In terms of implementation in a multiscale computational environ-
ment of the scale transition averaging methods developed here, there are 
two general approaches that may be used: (1) an interactive hierarchical 
multiscale framework with simultaneous macro and micro-level calcu-
lations (often referred to as an “FE-squared” framework) and (2) a 
single-scale macroscopic framework together with a pre-computed 
response (sometimes referred to as an “offline” approach), in which a 
macroscopic model has been calibrated through suitably-chosen 
microscale simulations. In both approaches the averaging methods 
developed here may be used. In the first case it is typically used in an 
incremental or rate-form, possibly embedded in an iterative macro-
scopic algorithm for implicit time-integration schemes. In the second 
case, it may be applied as indicated in the present work, with the goal of 
calibrating a macroscopic model (see, e.g., the approach van Hoorn 
(2016) for the case of a macroscopic cohesive relation which also in-
cludes characteristics of the microstructure). 

It is also worth mentioning that, depending on the multiscale 
framework used, care has to exerted to guarantee consistency between 
the macroscopic quantities used as input and the effective quantities 
obtained through postprocessing of the microscopic simulations. In 
particular, an iterative method would be required in an FE-squared 
framework to guarantee that an increment in the macroscopic crack 
opening displacement used as input for a microscale calculation actually 
matches the effective crack opening obtained from the kinetics-based 
method. This issue, however, falls outside the scope of the current work. 
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