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Abstract

The objective of this project is to train a model
that transforms a tree with its foliage into only its
branch structure. This is achieved by employing
machine-learning techniques, specifically Genera-
tive Adverserial Networks (GANs). By utilizing
the proposed method, a predictive model is built
that automatically minimizes its own error func-
tion through a comparison of a set of input and
ground-truth tree images, which are tree images
with and without leaves, respectively. The adop-
tion of GANs has shown promising results, both
visually and metrically.

Figure 1: Transforming trees from leaves to branches.

1 Introduction

The intricate morphology of trees plays an important role
in ecological studies, environmental monitoring, and land-
scape analysis [12], urban planning and forestry manage-
ment [3], and biodiversity assessment. Traditional methods
of branch identification and mapping often rely on labor-
intensive field surveys, making them time-consuming and
resource-intensive. Recent advancements in the domain of
Convolutional Neural Networks (CNNs) have presented op-
portunities for automating the analysis of tree structures
which is the basis of this paper, namely the algorithm laid out
in the Pix2Pix paper [6] in which they investigate conditional
adversarial networks as a general-purpose solution to image-
to-image translation problems. These networks not only learn
the mapping from input image to output image, but also learn
a loss function to train this mapping.

The specific point of focus in our research is correctly iden-
tifying branches by separating them from the foliage. This is
going be to done on a 2-D level.

This paper addresses the research question of efficiently
predicting branching structures from foliage. It successfully
outlines a custom specialized version of the Pix2Pix algo-
rithm for accurately separating tree branches from foliage,
representing a crucial step in further analyzing tree skeletons.

2 Related Work

In the exploration of image-to-image translation algorithms
for the primary research objective, which involves the sep-
aration of leaves from foliage, several established methods
employing machine learning techniques were considered.
The Pix2Pix paper [6] emerged as a prominent solution
when paired training data is accessible. Employing a condi-
tional Generative Adversarial Network (cGAN), Pix2Pix ex-
cels in crafting lifelike images for intricate tasks like isolat-
ing leaves from trees. The utilization of adversarial training

further amplifies visual realism by instructing the generator
to yield results virtually indistinguishable from authentic im-
ages in the target domain. This aligns seamlessly with our ob-
jective of transforming trees from one domain (with leaves)
to another (without), making this algorithm a fitting choice
for our case.

Focused on unsupervised image-to-image translation, Liu
et al [8] emphasizes learning a joint distribution of images
in different domains. It introduces a shared-latent space as-
sumption and employs Coupled GANs for the translation
framework. Comparisons with other methods showcase high-
quality results in challenging tasks such as street scene, ani-
mal, and face image translation.

Zhu et al [14] addresses the scenarios where aligned im-
age pairs are unavailable for training, this approach aims to
learn a mapping from a source domain (X) to a target domain
(Y) without paired examples. It introduces mappings G: X
— Y and F: Y — X, coupled with a cycle consistency loss
to ensure F(G(X)) is X and vice versa. The method demon-
strates superior performance in tasks without paired training
data, emphasizing its adaptability across various domains.

3 Preliminaries

Unlike traditional approaches requiring hand-engineered loss
functions, cGANs automatically learn a loss function, mak-
ing them adaptable to a broad spectrum of problems with-
out the need for specialized formulations. The Pix2Pix re-
search demonstrates the success of cGANs in synthesiz-
ing photos from label maps, reconstructing objects from
edge maps, and colorizing images [13]. Furthermore, the
Pix2Pix paper addresses the commonality in image process-
ing tasks—predicting pixels from pixels—and seeks to estab-
lish a unified framework for various image translation chal-
lenges.

The generator of the Pix2Pix conditional Generative Ad-
versarial Network (cGAN) takes the form of a modified U-
Net, comprising an encoder (downsampler) and decoder (up-
sampler). The encoder consists of blocks involving Convo-
lution, Batch normalization, and Leaky ReL.U, while the de-
coder incorporates Transposed convolution, Batch normaliza-
tion, Dropout (applied to the first three blocks), and ReLU.
Skip connections between the encoder and decoder, akin to a
U-Net architecture, are present.

The generator loss (Gen-Loss) is the sum of the adversar-
ial loss (Gan-Loss) and the L1 loss (L1-Loss) scaled by a hy-
perparameter (LAMBDA). The L1 loss measures the absolute
difference between the generated and target images, while the
Gan-Loss represents the success of the adversarial training
process. The LAMBDA value is a constant multiplier set by
the Pix2Pix authors, typically at 100.

A discriminator is defined to receive two inputs: the input
image and the target image. The target image is classified
as real, while the input image, which is the generated image
(output of the generator), is classified as fake.

4 Method

We build our approach on the Pix2Pix framework [1] to
extract the branching and trunk structure from the foliage.



Given that the Pix2Pix algorithm is a versatile and general
domain-independent method, we achieved reasonable results
by applying it to our dataset with minimal adjustments. To
tailor the Pix2Pix algorithm to our specific case, we decided
to run experiments by replacing the original loss function as
explained below.

The Loss Function

The Pix2Pix algorithm [6] originally uses the BinaryCrossEn-
tropy method to calculate the loss between the input and the
output. However, in order to optimize the results further,
we considered experimenting with different loss functions
namely: BinaryCrossEntropy, BinaryFocalCrossEntroy and
MeanAbsoluteError, which were selected to see how the re-
sults would change.

Binary Cross Entropy (BCE) [9] is a common loss func-
tion used in binary classification tasks. It is often employed
as the pixel-wise loss to measure the difference between the
generated image and the ground truth image.

The Binary Cross Entropy loss for a single pixel is given
by:

N
BCE(y, ¢ Zt log(yi) + (1 — t;) log(1 — ys)]

where

N is the number of elements in the input tensors, which is
in our case 256 x 256, resulting in 65,536.

y is the predicted probability of the pixel belonging to the
positive class (foreground).

t is the true label (ground truth) of the pixel (O for the neg-
ative class/background, 1 for the positive class/foreground).

Binary Focal Cross Entropy (BFCE) [7] is an exten-
sion of Binary Cross Entropy designed to address the is-
sue of class imbalance in binary classification tasks. BFCE
can be employed as a pixel-wise loss to further improve the
model’s handling of difficult-to-classify examples, such as
ours specifically since there can be a lot of noise and over-
lap concerning the edges of the branches and the leaves for
each tree.

The Binary Focal Cross Entropy loss is given by:

BFCE(p,y) = —a-(1-p)7-log(p) — (1 —a) - p” -log(1 —p)

where

p is the predicted probability of the pixel belonging to the
positive class (foreground).

y is the true label (ground truth) of the pixel (O for the neg-
ative class/background, 1 for the positive class/foreground).

« is the balancing parameter, controlling the balance be-
tween positive and negative classes.

v is the focusing parameter, determining the amount of fo-
cus on hard-to-classify examples.

Mean Absolute Error (MAE) is a regression loss com-
monly used to measure the average absolute difference be-
tween predicted and true values. MAE can be used to assess
the pixel-wise difference between the generated image and
the ground truth image.

The Mean Absolute Error loss for a single pixel is given

by:
N
MAE(y, t) Z — t]
where

y; is the predicted value for the ¢-th pixel.

t; is the true (target) value for the ¢-th pixel.

N is the total number of pixels, which is in our case 256 x
256, resulting in 65,536.

MAE is a suitable choice for regression tasks, where the
goal is to generate images with pixel values that are close to
the ground truth.

We developed a function for generating weighted maps,
taking an image as input and converting it into a TensorFlow
tensor. The function utilizes thresholding to create a binary
mask, designating pixels above the threshold as 255 (white)
and others as 0 (black). The weighted map is then formed by
combining this binary mask with foreground and background
weights. In our application, this weighted map is generated
for each image produced by the generator during the training
process. It is then utilized in the Adversarial Network, when
BinaryFocalCrossEntropy (BFCE) is employed.

The model was trained for each one of the mentioned loss
functions separately, with 20k steps for each model. The
training model was performed on the same test set, consist-
ing of 10 Maple trees, 5 Acacia trees and 5 Birch trees. The
results of this experiment will follow in the next section.

Similarity Measurement

To specifically be able to see the similarity between predicted
images and its ground truth, we adopted 3 different ways of
finding the similarity between two images such as Hausdorff
(HD) [5], Structural Similarity Index (SSIM) [11] and Mean
Squared Error (MSE).

Hausdorff (HD) [5] the Hausdorff distance is a measure
used to assess the similarity or dissimilarity between two sets,
often applied to binary images, each image is represented as
a set of points, for each point in one set (image), it finds the
closest point in the other set and measures the distance be-
tween these pairs of points. It identifies the maximum dis-
tance among all point pairs. The final Hausdorff distance is
the larger of the two maximum distances. It quantifies the
dissimilarity between the two images, considering both di-
rections.

Similarity Index (SSIM) [11] the Structural Similarity In-
dex (SSIM) is a metric used to quantify the similarity be-
tween two images. It takes into account three components:
luminance, contrast, and structure. SSIM evaluates how well
the luminance (brightness) of corresponding pixels in the two
images align. The metric assesses the similarity of contrast,
measuring how the local patterns of intensity variations in the
images resemble each other. SSIM also looks at the struc-
tural information in the images, examining how edges and
other high-frequency details are preserved. The SSIM index
ranges from -1 to 1. A value of 1 indicates perfect similarity,
while lower values indicate increasing dissimilarity.

Mean Squared Error (MSE) is a metric commonly used
to measure the difference between two images. MSE calcu-



lates the squared difference between the pixel values of cor-
responding pixels in the two images. The squared differences
are then summed up for all pixels. The total sum is divided by
the total number of pixels to obtain the mean squared differ-
ence. A lower MSE value indicates a smaller average differ-
ence between the images, suggesting greater similarity. Con-
versely, a higher MSE implies a larger average difference and,
therefore, greater dissimilarity.

5 Experimental Setup and Results

Datasets

We employed Treelt [2] software to generate all the images
of the trees.

We created a large dataset containing 400 images of trees,
with and without leaves. This dataset includes 200 images of
trees with leaves and 200 images of trees without leaves, all
sized 256%256 pixels. The images with leaves serve as input,
while those without leaves act as ground truth. Additionally,
our dataset includes validation data with 50 mixed trees (25
with leaves and 25 without leaves) representing all three tree
species. We have a separate test set containing 40 trees (20
with leaves and 20 without leaves), representing all three tree
species, which will be used after training to evaluate the suc-
cess of our trained model. It’s important to note that these
test sets are not used during training and exclusively serve to
assess the model’s performance.

The dataset includes three types of trees to demonstrate the
flexibility of our approach across different species of trees.
Those are: 200 Maple trees (100 with leaves and 100 with-
out leaves), 100 Acacia trees (50 with leaves and 50 without
leaves) and 100 Birch trees (50 with leaves and 50 without
leaves). Each image with leaves corresponds to a specific tree
without leaves, forming pairs where the input image (with
leaves) matches the ground truth image (without leaves) for
the same tree. These trees in the images varied from each
other by the number of leaves, camera angle, and number of
branches. Notably, all the data used for this study is derived
from our internally generated dataset, and no external data
sources were used.

Setup

We employed Google Colab to utilize the Pix2Pix GAN [6].
The CPU is Intel(R) Xeon(R) CPU @ 2.20GHz, with 2 cores.
The System memory is 12.7 GB. The GPU is Tesla T4 with
16GB of GDDR6 memory and 2,560 CUDA cores. This al-
lowed for successful training with Pix2Pix [1] after minor ad-
justments.

Here is the link to our GitHub repository [10] to access our
generated data (trees with and without leaves).

Results

As we start experimenting, we found out that SSIM was not
to be able to correctly assess the similarity of the predicted
image and ground truth, while MSE and HD were found to
be the best options. The reason for this conclusion was that
SSIM always produced a high similarity index (more than
0.9, indicating high similarity) even if the images were not

visually similar. However, MSE and HD were quite accept-
able as they provided more accurate results. Another reason
for this conclusion was that MSE and HD were the only met-
rics that noticed the difference when comparing the predicted
image of an input with a completely different tree image.
Therefore, we adopted MSE and HD to check the similarity
between the images as evaluation metrics.

Table 1 and Figure 2 illustrate the results of the same pre-
dicted image with different ground truths, emphasizing the
significant differences between HD and MSE. Meanwhile,
SSIM consistently indicates high similarity, evident in both
numerical values and visual representation in the figure.

Table 1: Comparing predicted image with different ground truth and
it’s own ground truth.

Predicted image with different ground truth
MSE | SSIM HD Tree
5.825 | 0.92 | 4143.363 | Acacia-Maple
Predicted image with its own ground truth
MSE | SSIM HD Tree
1.304 | 0.96 | 600.772 | Acacia-Acacia

Figure 2: Comparing similarities visually.

Table 2 displays how well the predicted images match the
actual ones using different loss functions. The model under-
went 20K steps of training for each loss, all using the same
training datasets. Post-training, we evaluated the model on
the same sample test for result comparison.

Table 3 illustrates the comparison between ground truth
and predicted images using BFCE with a weighted map. The
inclusion of a weighted map improves results by assigning
a higher weight to the foreground. This experiment utilized
the same training data as the previous one, and after training,
the model was tested on the same sample set for meaningful
comparison.

As evident from Table 2, it can be concluded that Binary
and Focal Cross Entropy yield comparable results. However,



Table 2: Results from different loss on the same sample test consist
of Maple, Birch, and Acacia.

BinaryCrossEntropy
MSE HD Tree
2.188 882.393 Acacia
2.720 788.440 Birch
3.206 | 773.173311 | Maple

BinaryFocalCrossEntropy
1.405 794.134 Acacia
1.677 769.324 Birch
1.786 774.437 Maple

MeanAbsoluteError
1.814 818.385 Acacia
2.225 782.424 Birch
2478 742.211 Maple

Table 3: Results from adding weighted map to BFCE of Maple,
Birch and Acacia.

BinaryFocalCrossEntropy
0.844 | 730.499 | Acacia
1.486 | 731.255 | Birch

1.230 | 746.859 | Maple

when the weighted map is applied to Binary Focal Cross En-
tropy, as seen in Table 3, even better results are achieved.

Figure 3 showcases three different tree species used in Ta-
ble 2 and Table 3 for our experiments on the same test set.
This enables us to evaluate the results across different loss
functions and make comparisons. Specifically, Figure 3 il-
lustrates the performance of the trained model using Binary
Focal Cross Entropy (BFCE) with a weighted map.

Figure 4 displays the results obtained after 20,000 training
loops/steps, showcasing the trained model’s performance on
the test set. The figure represents from left to right the number
of loops, the input image, its ground truth, and the predicted
image based on the trained model. As shown in the figure, the
model improves its predictions as it undergoes more training.
Initially, the predictions may appear noisy, but with increased
training, the quality of predictions improves.

Figure 5 displays the results of 20,000 training loops/steps,
using BinaryCrossEntropy loss on the test sets. The figure
represents from left to right the number of loops, the input
image, its ground truth, and the predicted image based on the
trained model.

Figure 6 displays the results of 20,000 training loops/steps,
using BinaryFocalCrossEntropy loss on the test sets. The fig-
ure represents from left to right the number of loops, the input
image, its ground truth, and the predicted image based on the
trained model.

Figure 3: Results of 20k steps of training BFCE with weighted map

6 Discussion

Limitations and Future Work

Following our initial analysis, the branches are better pre-
pared for our colleagues to start their analysis, focusing on
branches and using a grammar and geometric analysis. For
example, ’Inverse Procedural Modeling of Branching Struc-
tures by Inferring L-Systems’ [4] is a method that extracts the
grammar of a tree from its branches, which are the most pow-
erful and correct ways to create automatic digital content in
computer graphics.

As part of future work, improvements can be made to ex-
tend the analysis to 3D, as our current focus is on 2D. Addi-
tionally, exploring other loss functions can help evaluate how
we can enhance the performance of both the generator and
discriminator for improved results.

Conclusion

Quite expectedly, the domain-independent Pix2Pix algorithm
proved to be a promising method for predicting branching
patterns from foliage. However, for increased versatility,
it is essential to expand the dataset, including a broader
range of tree species. Notably, our use of Binary Focal
Cross Entropy demonstrated improved efficiency in predict-
ing branches from foliage in this study.

Ethical Considerations

Since our data consists of generated tree images, there are no
ethical concerns within our case study. However, it’s impor-
tant to note that the algorithm can generate fake images re-
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Figure 4: 20k steps of training with the original BCE loss function
and its performance on test sets

Figure 6: Results of 20k steps of training with BFCE as loss function



sembling real ones, raising ethical considerations depending
on the user’s intent and application.

A Appendix
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