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Abstract

As robots are becoming a more integral part in our daily lives, it is important to ensure they work in
a safe and efficient manner. A large part of perceiving the environment is done through robot vision.
Research in computer vision andmachine learning lead to great improvements in the past decades and
robots are able to outperform humans on certain tasks. However, these tasks are often in closed set
condition. This makes translation to a real world application challenging, as this is in open set condi-
tion. The open set condition implies that incomplete knowledge of the world is available at training
time. It is important for a robot, or agent, to be aware of this limitation. In vision tasks this is defined
as open world recognition and allows an agent to detect and incrementally learn unknown objects.

The key contributions of this report are an autonomous data collection protocol for synthetic data
creation, the open world algorithm Learning to Accept Image Classes (L2AIC) and an on-the-job recog-
nition approach that combines open world recognition with autonomous data collection. L2AIC is a
deep meta-learning model that classifies objects by comparing it to its memory in an n-way k-shot
manner. New classes can be incrementally added to the memory without needing to retrain the model.
The autonomous data collection protocol consists of two steps. First, a 3Dmodel is reconstructed from
an unknown object with an RGB-D camera. Secondly, from this 3Dmodel a synthetic dataset is created
that is added to the memory of L2AIC.

Results show that the on-the-job recognition approach is successful in learning to recognize a single
unknown object using the L2AICmodel with small-fc architecture an ResNet152 encoder. The encoder
is loaded with pretrained weights on the ImageNet dataset. No additional fine-tuning is required, this
has an adverse effect on the performance. Using the autonomous data collection protocol two datasets
were created, varying the distance from the camera to the object. It was found that the synthetic dataset
containing close-up images achieves the best performance. The performance of L2AIC with this close-
up synthetic dataset is similar to using a dataset of actual images of the object. This means that for a
single object it currently is not efficient to create a synthetic dataset. Amore extensive study is required
to compare performance of both datasets when increasing the number of encountered objects. Finally,
the on-the-job approach shows it is capable of recognizing other instances of the same object class,
using only the dataset of a single instance. This shows the on-the-job recognition approach is able to
generalize well. Future work could be focused on improving this generalization with, for example, the
help of Generative Adversarial Networks (GANs).
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Nomenclature

Abbreviations

Abbreviation Definition

L2AIC Learning to Accept Image Classes
L2AC Learning to Accept Classes
GAN Generative Adversarial Network
KB Knowledge base
AN AlexNet
EN EfficientNet
RN50 ResNet50
RN152 ResNet152
FC7 Feature layer used for feature extraction
ICP Iterative Closest Point
ToF Time-of-flight
WI Wilderness Impact

Symbols

Symbol Definition

CK The set of classes known to the classifier at training time
CN The set of classes known to the classifier, but not used in training
CU The set of unknown classes
CM The set of classes in the memory of L2AIC/L2AC
RO Open space risk
RE Empirical risk
n Number of classed used for comparison by L2AIC/L2AC
k Number of samples per class used for comparison by L2AIC/L2AC
h Classification threshold of L2AIC/L2AC
xi Feature vector i
rk Similarity score predicted by the matching layer
fsim Similarity function
x̄c Average feature vector of class c
rc Position of the virtual camera with respect to the object
ro Position of the object
qo Orientation of the object
ϵK Known classification error
ϵU Unknown classification error
ϵOW Open world error
Dphotos,memory Dataset with images of teapot during reconstruction process
Dphotos,test A test dataset with photos of a teapot
Dsyn Synthetic dataset with images of a teapot
Dsyn,close Synthetic dataset with close-up images of a teapot
DTiny,test The test dataset of TinyImageNet containing only the teapot class
DTiny,memory The train dataset of TinyImageNet containing only the teapot class
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1
Introduction

Robots are becoming a more integral part of our daily lives. Autonomous vacuum cleaners or lawn
mowers are already deployed for simple household tasks, while more complex robotic systems are be-
ing rapidly developed. Current self driving vehicles are already capable of handlingmany difficult tasks
in traffic. At the same time humanoid robots, such as Atlas [8] and Talos [49], are getting more agile
and human-like. For these robots, autonomy is a critical requirement in order to perform tasks in a
safe and efficient manner. To achieve this autonomy, the robot, or agent, uses sensors to perceive the
world. Analogue to humans, a crucial part of this perception is done through vision. Research in com-
puter vision has seen somemajor breakthroughs the last decades, leading to computers outperforming
humans on certain vision tasks. However, as pointed out by [66] and [4], computer vision research has
been focusing too much on outperforming the latest benchmark score instead of practical implementa-
tion. This practical implementation is what distinguishes robot vision from computer vision [63]. As
an active agent deployed in an environment, a robot has to make decisions and execute actions based
on its visual input. In robot vision, perception is only one component of a larger and more complex
problem, where safety and efficiency are important factors to take into account.

(a) (b)

Figure 1.1: (a) Closed set condition: Feature representation of a classifier in closed set condition. The classifier has created
decision boundaries based on the training samples. (b) Open set condition: Zooming out, it can be seen that the original closed
space is only a fraction of the total feature space. However, the closed set classifier has labeled the entirety of this open space,

introducing possible misclassifications in open space. [9]

In computer vision, the research has been focused mainly on closed set condition. All test classes
are known at training time [60]. However, robot vision has to deal with an open set environment, that
could potentially contain unknown objects. In this more realistic scenario, the agent has to assume
it has incomplete knowledge at training time. This is visualized in Figure 1.1a. A closed set classifier
assumes performance in closed set condition. When zooming out, it shows the original closed space is
only a fraction of total feature space. Labeling data far form the training samples increases the proba-
bility of misclassifying objects unknown to the agent. In open set recognition the agent has the ability
to reject a sample and label it as unknown. But acknowledging the unknown is not enough.

1



2

Preferably, the agent should be able to learn from new experiences. This is considered open world
recognition. Besides detecting an unknown object, the agent should learn to recognize this novel ob-
ject in the future [6]. Several studies have been performed to develop open world recognition models
that are capable of successfully learning newly encountered object classes [9], [6], [5].

However, these methods, on their own, are not suitable to be performed autonomously. In [39]
is pointed out that current open world models overlook the problem of acquiring data of newly en-
countered classes. On-the-job learning is introduced, which combines open world recognition with
autonomous data collection. In [40] an on-the-job recognition approach is proposed that uses web
scraping to gather training data of unknown objects to train an open world recognition algorithm. Un-
known objects are reverse-image searched on the internet and the results are used as training data for
the unknown object. They show their algorithm is able to successfully recognize new classes from im-
ages from the web.

Figure 1.2: On-the-job object recognition. An object is presented to the open world recognition algorithm L2AIC. The L2AIC
model gives the correct label to this object if it is of a known class. In the case the object is unknown, the autonomous data
collection protocol is initiated. A 3D reconstruction is made using an RGB-D camera and Voxblox++. With the acquired 3D

model a synthetic dataset is created. This dataset is added to the memory of the L2AIC model, increasing the knowledge of the
model.

In this report an on-the-job object recognition approach is introduced that combines open world
recognition with an autonomous data collection protocol to gather new data. An overview of the ap-
proach is given in Figure 1.2. Open world recognition is done with L2AIC, a deep meta-learning clas-
sifier. The autonomous data collection is done in two steps. First, an unknown object, identified by
L2AIC, is scanned with an RGB-D camera and reconstructed in 3D with Voxblox++ [23]. In the second
step, a synthetic dataset is created from this 3Dmodel with the robotic simulation programWebots [44].
The synthetic dataset is used by L2AIC to learn to recognize the unknown object. Previous work on syn-
thetic datasets showed that using 3DCADmodels could achieve similar performance as when using real
datasets [26]. This report is the first study to combine the use of 3D scannedmodels and synthetic data.

The key contributions of this report are the following:

• An on-the-job learning approach for open world recognition
• A fully automated protocol to synthetic datasets, the first using 3D scanned models.
• L2AIC, an open world recognition model derived from an open world text classifier.

In the remainder of this report the protocol is further elaborated. In Chapter 2 an overview of the
theory is given. In Chapter 3 the open world recognition algorithm L2AIC is introduced. In Chapter 4
the autonomous data collection protocol is explained. Chapter 5 gives an overview of the experiments
done in the report. In Chapter 6 the results are listed and these are discussed in Chapter 7.



2
Background

As introduced in the previous chapter, the on-the-job recognition protocol consists of an open world
image classifier and an autonomous data collection protocol. The open world image classifier L2AIC,
elaborated in Chapter 3 is adapted from the text classifier L2AC [67]. The autonomous data collection
protocol is doneby creating synthetic images from3Dreconstructed objects. In this chapter an overview
is given of the existing theory and relatedwork. First, in Section 2.1, openworld recognition is explained.
Then, in Section 2.3, the openworldmeta-classifier L2AC is introduced. Section 2.4 and Section 2.5will
explain more about 3D reconstruction and synthetic data, essential for the autonomous data collection
protocol of Chapter 4. The chapter concludes with a brief summary in Section 2.6.

2.1. Open world recognition
In this section the concept of openworld is explained in depth. As stated in Chapter 1 the focus of object
recognition studies has beenmainly on closed set conditions. The past decade the performance of object
recognition models have improved significantly, but they assume a closed set condition. Currently the
best closed set models are able to achieve a top-1 error of 18.68 % on the ILSVRC ImageNet challenge
[27]. A remarkable feat, given this dataset contains millions of images from 1000 classes. However,
during all these advancements the researchhas been focused on improvingperformance on these bench-
mark datasets. The model can recognize all thousand classes of ImageNet very accurately. But as soon
as it is shown a new class it will fail 100% of the time as it is designed for closed set conditions. Due to
the focus on beating the bench-mark record the original goal of of object recognition has been lost [66],
recognition in the real world.

The open set problem
Object recognition in the real world introduces the open set problem [60]. The open set problem in-
dicates that during training time a model has incomplete knowledge of the world. This knowledge
consists of a finite number of known classes, in a world that contains an infinite number of unknown
classes [15]. This is in contrast with the closed set condition, where all classes encountered during de-
ployment have been seen during training. A recognition model suitable for open set recognition has
the ability to reject classes and classify them as unknown.

3



2.1. Open world recognition 4

In [59] and later extended by [20], a speech of Donald Rumsfeld [57] is used to discern the different
types of known and unknown objects that an agent can encounter during deployment in an open world
setting. They are classified in four categories.

1. Known known classes: The known known classes are the set of classes that the agent has
learned during training. When the agent is presented with an object from this set of classes, it
should be able to classify it correctly. This is traditional closed-set multi-class recognition.

2. Knownunknownclasses: The knownunknown classes are part of the training data of a binary
classifier. These classes represent the set of negative samples the agent is shown during training.
It cannot discern between the different objects that are part of this set of classes, but is has learned
to classify them as negative.

3. Unknown known classes: The unknown known classes are the focus of zero-shot learning.
The agent is learns features of an specific object class in some domain and is able to translate this
to the visual domain, where the objects are encountered. The agent is aware of the existence of
these classes and able to classify them correctly, although it has never seen these before in the
visual domain.

4. Unknownunknownclasses: The remaining classes are part of theunknownunknown classes.
These are the set of classes that have not been seen during training and the agent is unaware of
their existence until themoment such a class will be encountered during deployment. In the open
set condition these classes have to be dealt with correctly.

Based on this categorization a more concrete definition of open set recognition can be formulated.
In open set recognition the agent has learned to classify the known known classes (CK). Objects of these
classes it should recognize. Every object not part of this set of classes belongs to the set of unknown
unknown classes (CU ). The agent is unaware of the existence of an object of this class, but should be
able to classify it as unknown.

Test sample 1

Figure 2.1: A visualization of open space risk in feature space. Classifier A is tightly bound around its training samples. This
reduces open space risk. This is, however, at the cost of a larger empirical risk. Test sample 1, also part of class A, falls outside
the classification boundary of class A. On the other hand, classifier B covers more feature space than its training samples. This
reduces the empirical risk, but increases the open space risk. Unknown samples, such as test sample 2, will be classified as class

B[9].

Open set risk
The main difficulty in open world classification is distinguishing the known classes from the unknown
classes. In [60] the open space risk is introduced. The open space risk (RO) defines the risk of misiden-
tifying an unknown class from CU as a class from CK. At the other end of the spectrum lies the empirical
risk (RE) [60], the risk that a class from CK is misclassified. An illustration is given in Figure 2.1. This
figure shows a feature representation trained to cluster samples from the same class together. These
classes have been learned during training from the available data. The cluster of class B extends far
from the training samples in the feature space. This increases open space risk, the risk of classifying
an unknown class as class B. Moving further away from the training samples increases the chance of
encountering a sample from another class. On the other hand, the open space risk for class A is much
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lower. The border of the cluster is tightly bound around the training samples. This, however, does
increase the empirical risk, the risk that a new sample from a class is located outside the bounds of the
cluster and thus will be misclassified. The goal of open set recognition is to optimize the open set risk
(Equation (2.1)), which combines open space risk and empirical risk [60], with regularization constant
λr and arbitrary classification function f .

argmin
f∈H

{RO(f) + λrRE(f)} (2.1)

Open world recognition
Open world recognition is an extension of open set recognition. Besides the ability to acknowledge
the unknown, an open world algorithm should be able to extend its own knowledge [6]. When pre-
sented with enough information or samples from a specific object class from CU , the agent should add
this single class incrementally to its known classes, increasing the number of classes in CK. Extending
knowledge is known as lifelong learning and is essential for open world recognition. It allows an agent
to learn from experience gathered during deployment.

On-the-job learning
The ability to learn from experiences during deployment is what sets apart open world recognition
from open set recognition. However, it overlooks an important problem, pointed out by [39]. Many
existing open world recognition studies assume that for each new task labeled data is available to learn
from. However, being able to learn during deployment is useless if no data is gathered of past experi-
ences. Ideally this data is gathered without losing autonomy of the agent. In [39] on-the-job learning
is introduced, which tries to overcome this data limitation of open world recognition. Besides reject-
ing unknown classes and incrementally learn new classes, an agent capable of on-the-job recognition
should also gather data autonomously during deployment.

Lifelong learning
The concept of lifelong learning in robotics is to be able to keep learning outside the training phase,
during deployment. In [10] two important requirements of lifelong learning are stated. First, an agent
should improve its performance on existing tasks during deployment. Secondly, the agent should be
able to detect new tasks during deployment. Translating this to the field of object recognition, such a
task is to classify an object class. The existing tasks are the classifications of the classes from the set
of CK. During deployment the agent should improve its classification on classes of CK based on new
encountered samples from this set of classes. Besides classifying known classes, it should also learn
to recognize new tasks, or new object classes. When these new classes are learned, they will be moved
from the set of CU to CK. These known tasks are stored in the knowledge base (KB). The knowledge base
enables the agent to remember past tasks [10]. Examples of the knowledge base in object recognition
are the parameters of a neural network or amemory containing image samples. When the existing tasks
of in the KB gets updated, this is called incremental learning. The addition of an extra task to the KB
hasmultiple names in the literature, scalable learning [6], [14], cumulative learning [18], [10] or class-
incremental learning [63], [54]. In the remainder of the report class-incremental learning will be used.

Catastrophic forgetting
An unavoidable consequence of lifelong learning is catastrophic forgetting [42]. Learning new tasks
will eventually degrade the performance on previously learned tasks and is also known as the plasticity-
stability dilemma [1]. Plasticity of a model denotes the tendency to update the weights of the model
during the training process. A very plastic model learns quickly, but is also quick to forget past tasks
when new ones are learned. At the opposite end is stability. Models with high stability are less likely
to update their weights. This results in a slower learning process, but also preventing fast performance
loss of past tasks.
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2.2. Deep learning
The most popular method for object recognition is deep learning [22]. The past decade, scientific ad-
vancements in the field of deep learning have significantly improved object recognition tasks. Deep
learningmodels are neural networks that are constructed ofmultiple layers, hence the name deep learn-
ing, in contrast with shallow neural networks that only contain one or two layers [22]. The study of deep
learning has been around for some time. Halfway the twentieth century the first concept of what we
know as neural networks was introduced by Rosenblatt, the perceptron [55], to study and model the
brain [43]. Soon it became clear that perceptron-based models were not only useful to mimic the hu-
man brain. These models could also be used to solve different problems, such as object recognition,
that were deemed to be too difficult for computers at that time. However it was not until around 2010
that deep learning really started to take off. Before this time, deep learning approaches were computa-
tionally too exhaustive, training time would be too long and there were no suitable datasets available
[2]. This changed because of the improving hardware such as GPUs and TPUs and network architec-
tures that were much more efficient for specific application instead of only fully connected networks.

Figure 2.2: Rosenblatt working on the perceptron, the first concept of a neural network, introduced in 1958 [37].

One of the reasons for the success of deep learning is the strategy that is used to solve problems. In
more conventional model-based approaches a model is created to simulate the world, a set of rules is
conducted. These rules are used to generate answers from input. However, in deep learning, the inputs
and answers are presented to the deep neural network and it will try to find the rules that correspond
to the relation between input and answers [12]. The goal is to find rules that are generalizable enough
such that the model is also applicable to unseen input of the same format.

Creating this set of rules, or model, is done by training. The training procedure aims to find the set
of parameters that gives the best performance on a given task. In object recognition this performance
is often indicated by the accuracy of a recognition model to correctly classify images. Finding these
parameters is done based on an iterative optimization-based approach. An objective function or loss
function is formulated and with the help of the backpropagation algorithm [56] the gradient of each pa-
rameter with respect to the loss function is calculated. With a gradient-based optimization algorithm
the set of parameter that give the best performance is found. Optimization in neural networks slightly
differs from classical optimization [22]. First of all, the performance metric of object recognition, for
example accuracy, is only optimized indirectly. Accuracy it is not continuously differentiable, a require-
ment for backpropagation [50]. A surrogate loss function has to be used [50], which is continuously
differentiable and changes even with small changes in the parameters. Popular functions in object
recognition are cross-entropy and binary cross-entropy [12]. Secondly, it is not the performance on the
training data that is optimized, but the performance of the model on test data. Furthermore, because
of the large number of trainable parameters, finding the true global minimum is a difficult non-convex
optimization problem as there are numerous local minima. Fortunately, most neural networks do not
require to reach this global minimum as long as the loss value of the local minimum has decreased
enough, which is often the case [22].
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Figure 2.3: The model architecture of AlexNet [34]. AlexNet requires an input image size of 224× 224, which is passed
through five convolutional layers. Then its passed through two fully connected layers and finally to a soft-max classification

with 1000 classes. The penultimate layer, FC7, is used for feature extraction[2].

Deep learning models in object recognition
In this report several deep learning models are used for feature extraction. The first model, AlexNet
(AN) [34], was introduced in 2012 and is named after the author Alex Krizhevsky. This model was
designed for the 2012 ILSVRC ImageNet challenge [58], and was the winner of that year [2]. It is the
first deep network that used multiple CNNs. The AlexNet architecture consists of five convolutional
layers and three fully connected layers, as displayed in Figure 2.3. The penultimate fully connected
layer (FC7) is used for feature extraction. Although feature extraction was a known technique at that
time, the introduction of AlexNet made it more mainstream, which is why the penultimate layer of a
CNN, the layer used for feature extraction, are often called FC7 layers [2]. Furthermore, a lot of de-
sign choices in AlexNet became standard after publication of the study [2] and is what led to choice of
AlexNet as an encoder.
The second and third recognition models are ResNet-50 (RN50) and ResNet-152 (RN152) [24], devel-
oped for the ImageNet challenge of 2015, and are the first deep residual networks. Where AlexNet
consisted of 8 layers, ResNet-50 and ResNet-152 consist of 50 and 152 layers respectively. The design
of residual networks proved to be very efficient for creating deeper neural networks. Training time of
networks increases with depth, resulting in very slow convergence for deep networks [24]. This was
reduced in [24] by introducing shortcut connections. A shortcut connection connects a layer i with an-
other layer, that is not directly its consecutive layer. This idea behind this is that not all features require
the same depth for correct representation. The shortcut connections allows the model to learn the re-
quired depth for each feature and improves convergence [24]. In this study ResNet-50 and ResNet-152
are chosen because of their depth. While ResNet-152 has even more layers than ResNet-50 this is at
the expense of model size and efficiency.
The final model used as encoder is EfficientNet (EN) [64]. Where the residual networks were designed
to increase depth of the network, EfficientNet is developed to increase depth, width and image resolu-
tion. The authors of [64] show there exists a relationship between image resolution, width and depth
and finding the right balance results in better performance of the network. This relation is used to cre-
ate a new set of models, EfficientNets. The first baseline model, EfficientNet-b0, is used in this project,
because it is more efficient than the ResNet architectures, contains less parameters, while achieving
similar performance.

Meta-learning
Despite the success of deep learning, traditional deep learning models are not perfectly suited for open
world recognition tasks [53]. Training deep networks takes a lot of time and a lot of samples. This is
not always available in an open world setting, where new tasks should be learned during deployment.
Another disadvantage is that a deep learning model requires retraining for each incrementally learned
class. Meta-learning tries to overcome these problems. Meta-learning, also considered learning to
learn, creates a machine learning model capable of performing similar but different tasks without re-
training. An example ofmeta-learning in object recognition is few-shot learning [53]. Few-shotmodels
are capable of accurate object recognition with training on only a few examples. Thesemodels are often
referred to as n-way k-shot models. A classification is made from n classes based on k samples from
each class.
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2.3. Learning to accept classes (L2AC)
In [67] a novel method for open world text classification is introduced, Learning To Accept Classes
(L2AC). This method is a meta-learning approach based on deep learning and works with a memory
containing samples of known classes. Thememory is used to classify known classes and reject unknown
classes. If enough samples exist, such an unknown class can be added to the memory without the need
to retrain the model. This allows for efficient use during deployment as no down-time is needed for
class-incremental learning.

Model framework
In Figure 2.4 the framework of the L2AC algorithm is shown [67]. The algorithm works according to
a top-k top-n principle, similar to few-shot learning. The model predicts a probability of similarity
between an input sample and a class, based on k images from this class. This is done for n classes,
resulting innprobabilities. The input samplewill be assigned to the classwith the highest probability. If
all n outputs of themeta classifier are below the classification boundary, h, the input sample is classified
as unknown.

Figure 2.4: The L2AC framework. Assume the seen class set CK has 5 classes and their samples are indicated by 5 different
colors. L2AC has two components: a ranker and a meta-classifier. Given a (green) testing example from a seen class, the ranker
first retrieves the top-k most similar samples from each seen class. Then the meta-classifier takes both the test sample and the
top-k most similar samples for a seen class to produce a probability score for that class. The meta-classifier is applied 5 times
(indicated by 5 rounded rectangles) over these 5 seen classes and yields 5 probability scores, where the 3rd (green) class attends

the maximum score as the final class (green) prediction. However, if the test example (grey) is from an unseen class (as
indicated by the dashed box), none of those probability scores from the seen classes will predict positive, leading to

rejection.[67]

First the input sample is passed through an feature extractor, or encoder. The encoder uses the
NLTK as a tokenizer, a GloVe embedding and a BiLSTM to translate input text to feature vectors. Then,
a ranker will compare the input feature vector xi with the feature vectors of known classes from the
memory. This is done with cosine similarity. First the top n similar classes are found by calculating
the similarity between the input vector and the mean feature representation of each class. From each
of the top n classes the top k feature vectors most similar to the input sample are passed through the
meta-classifier.

The meta-classifier consists of the matching and the aggregation layer. First the matching layer will
calculate a similarity score between the input and each of the top k feature vectors xa1:k

. This is done
using the similarity function fsim (Equation (2.2)), where ⊕ denotes the concatenation operation. The
similarity function is passed on through a neural net that gives k similarity scores r1:k.

fsim = |xi − xai
| ⊕ |xi + xai

| (2.2)
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The similarity scores are passed on to the aggregation layer, that aggregates all scores and gives a
final probability score that represents how likely the input sample belongs to the class. This aggrega-
tion layer functions as a one-vs-all binary classification [60]. A final probability is predicted for the n
classes. The final classification of the sample is done by selecting the highest probability score of one
of the n classes. If all classes have a score lower than h, the input samples is classified unknown. The
aggregation layer contains an LSTM. This is a common meta-learning method to automate the opti-
mization process [3]. In Figure 2.5 the full neural network design of L2AC is shown.

Figure 2.5: The architecture of the neural network of L2AC. The input sample xt and the samples from the memory xai are
passed through the matching layer, with Lx the lenght of the feature vectors. Using the similarity function fsim, the matching

layer outputs k similarity scores r1:k. These are aggregated by the aggregation layer to predict the final output.[67]

The combination of the meta-classifier and the memory makes l2AC an effective open world classi-
fier. Similar to few-shot learning themodel can classify input based on just a few samples and generalize
well enough to correctly classify new classes as well. Furthermore, the memory of L2AC is interchange-
able, meaning that new classes can be added anytime, without the need to retrain the whole model.

2.4. 3D reconstruction
What distinguishes on-the-job recognition from openworld recognition is the ability to add new classes
to the knowledge base during deployment. In order to perform well on the classification of these new
classes. This often requires a lot of data from this specific class. In this section is described how an agent
can acquire this data by reconstructing a 3D model of the novel object. Research on 3D reconstruction
has been gaining attention since the introduction of Iterative Closest Point (ICP), in 1992 by [7]. ICP
is an optimization method to reconstruct a 3D model from multiple partial observations. However, it
required a lot of computational power for that time making it a slow process. Furthermore, the RGB-D
data provided by the RGB-D cameras was not of high quality. It was not until the introduction of the
Microsoft Kinect [45] that the research on 3D reconstruction made big steps. Together with improved
computational power, this lead to real-time high-quality reconstruction methods, starting with Kinect-
Fusion [46] in 2011. In Section 2.4.1 different techniques are presented for an agent to autonomously
capture 3D data. In Section 2.4.2 Voxblox++ is introduced, a method to reconstruct objects from 3D
data.

2.4.1. Acquisition systems
As stated in Section 2.4 open world recognition requires the ability to add new classes to the knowledge
base. The gathering of this data should be done by the agent during deployment, andpreferably requires
no human supervision. Since the introduction of Microsoft Kinect [45], RGB-D cameras have become
more compact, light-weight and affordable. These cameras have become a standard sensor in the field
of robotics. The latest iteration of RGB-D cameras often use time-of-flight (ToF) to accurately measure
depth [16]. Time-of-Flight is based on the time it takes for a light pulse to reach an object, reflects and
gets captured by a sensor. By using the property of light, traveling at a constant speed, the distance
between the object and the camera can be calculated. This is illustrated in Figure 2.6. In combination
with a regular RGB camera this technique can acquire high quality RGB-D images.
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Figure 2.6: The time-of-flight principle. A light source, often a laser, emits a pulsed light. This light pulse travels a certain
distance before it hits an object and reflects back. This reflection is captured by a camera. The distance traveled by the light
pulse can be inferred by the time it takes between the emitting of light and the moment it is captured by the camera [16].

Equippedwith anRGB-D camera the agent should be able tomake a full reconstruction of the object.
This is often done using a roboticmanipulator with the camera attached to the end-point, known as eye-
in-hand [32] and is shown in Figure 2.7. The eye-in-hand techniquemimics a human using a camera in
hand. Attaching this robotic manipulator on a mobile base will give a large range of motion, enabling
the agent to capture the object from multiple angles. This does, however, increase the complexity of
motion planning for the agent. This complex problem is outside of the scope of this report.

Figure 2.7: A robotic arm with a RGB-D camera attached to the end effector [32]. The robotic arm moves around the object
presented on the plateau.

2.4.2. Voxblox++
When the agent has captured enough RGB-D data from all angles of the object, this data needs to
be combined to retrieve a complete 3D model. This is done with 3D reconstruction methods such as
Voxblox++[23] [19] [47] [48]. This method is able to automatically segment objects from ground sur-
faces for each individual frame and create separate meshes for each object in an online fashion. The
pipeline is visualized in Figure 2.8. Voxblox++ requires a pose of the RGB-D camera for each RGB-D
frame. An advantage of Voxblox++ is that it does not require predefined selection of objects that can
be reconstructed [19], taking into consideration the open-set condition of the real world.
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Figure 2.8: A visualization of the pipeline of Voxblox++. The depth and color frame are both individually segmented using
geometric and semantic segmentation respectively. Both results are combined for a more accurate segmentation of the frame.

The segmented frame is integrated in the Global Segmentation Map[23].

Segmentation
Each RGB-D frame t that Voxblox++ retrieves from the camera gets segmented. First, geometric depth
segmentation is performed on the depth image [19]. From the depth image the normal vectors of the
surface are calculated and used to determine the local convexity of each pixel. This is combined with
a depth discontinuity filter that detects large edges. Together, this combination segments the closed
forms and contours from the depth image. The geometric depth segmentation is object independent,
allowing for segmentation of unseen objects. The geometric segmentation will form a set of 2D geomet-
ric segments,Rt, located in the pixel space, specific to that frame. Secondly, a semantic instance-aware
segmentation is performed [23] on the RGB image. This is done using the object detectionmodel Mask
R-CNN [25], also performed in pixel space. The semantic segments, or masks, are stored in the set
of semantic masks Mt of the specific frame. The overlap ratio between geometric segment ri and the
semantic mask Mk is calculated according to Equation (2.3). The geometric segment is assigned the
semantic label ok of the mask with the highest overlap ratio pi. If this highest overlap ratio does not
exceed the rejection threshold τp, the semantic class will be rejected and no semantic label exists for
this object.

pi,k =
|ri ∩Mk|

|ri|
(2.3)

pi = max
k

pi,k

k̂i = argmax
k

pi,k
(2.4)

The 2D set of segments R, can be mapped to the set of 3D segments St by utilizing the depth in-
formation of the RGB-D image. Each segment si is assigned a unique geometric label lj ∈ L and, if
available, a semantic object label ok ∈ O These labeled segments are then placed in the Global Segmen-
tation Map (GSM).

Truncated signed distance function
The GSM is based on Voxblox from [48], a real-time volumetric TSDF surface representation frame-
work. The Truncated signed distance function (TSDF), introduced by [13], is a method to efficiently
capture surfaces. This data can then be converted to a 3D mesh using ray-casting. The idea of TSDF is
to split a volume up in three dimensional pixels, called voxels. Each voxel contains distance value D,
the distance from the voxel to the closest surface and has voxel size v. Voxels inside a closed volume
contain a negative value, while outside voxels have a positive value, as illustrated in Figure 2.9. A zero
crossing between two voxels denotes a surface. Voxels that are a distance further than the truncation
distance δ from a surface will be set to either 1 or -1 depending on their position with respect to the
surface. This allows for much more efficient volumetric computation. The TSDF is an implicit method
to store surface information [31], which is efficient and low in memory.
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Figure 2.9: A visualization of the truncated signed distance function TSDF. A surface is represented by a voxel grid. The value
of each voxel indicates the distance to the nearest surface. For computational efficiency distance value are truncated after the

truncation distance δ. This figure uses δ = 1. [11]

d(x,p, s) = ∥p− x∥ sign((p− x) • (p− s))

Di+1(x,p, s) =
Wi(x)Di(x) + w(x,p)d(x,p, s)

Wi(x) + w(x,p)
Wi+1(x,p) = min (Wi(x) + w(x,p),Wmax)

w(x,p) =


1
z2 −ϵ < d
1
z2

1
δ−ϵ (d+ δ) −δ < d < −ϵ

0 d < −δ

(2.5)

The integration of each new segment in the TSDF is done using raycasting [13]. A ray is cast from
the sensor origin s to the position of a point p from the new captured depth frame. Each voxel along
this ray gets updated according to the set of Equations (2.5) [48]. Consider a voxel with position x,
distance value D and weight value W . This voxel gets updated with a point with position p. First the
distance d of this voxel with respect to the nearest surface along this ray is calculated. The distance of
this particular measurement is given a weight w according to Equation (2.5). The weight is determined
by the truncation distance δ, intermediate truncation distance ϵ and the depthmeasurement z from the
camera frame to the point. If the distance between the voxel and surface is larger than the truncation
distance, the weight of the voxel will be set to zero. The point will not be used to update the voxel.
Specific to Voxblox++ [19] the TSDF is extended with a label map. Besides the distance and weight,
voxels also contain a geometric and semantic label. As stated in Section 2.4.2 the incoming frame is
segmented and each point is assigned a geometric label li ∈ L and if present, a semantic label ok ∈ O.
The labels of the points that are present inside a voxel are inherited by the voxel. Instead of saving a
single label per voxel, a label count is saved. This count is updated by each new point located in the
voxel. The final assigned label of the voxel is the label with the largest count. This ensures more robust
updating between frames [19].
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2.5. Synthetic datasets
Performance of image recognition models is heavily correlated to the number of training samples avail-
able [62]. Many open world algorithms, such as [30] or [6], assume there is enough data available of
new classes to apply class-incremental learning. The problem of gathering data during deployment is
often not tackled in studies of open world recognition [39], but is crucial for an autonomous agent ca-
pable of on-the-job recognition. However, during deployment, the amount of data of a new object class
is often limited to a single object instance in a single environment. Creating a dataset from this single
instance is an interesting challenge due to domain shift [29].

Figure 2.10: Style augmentation [29]: Existing images are altered by changing the general style of the image.

Data augmentation
A simple, yet effective way to increase available training samples from scarce images is data augmen-
tation [22]. By randomly cropping, rotating or flipping images before passing them to a classification
model during training increases the number of unique samples and can be greatly improve robustness
of image recognition models. However, these simple techniques do only increase the number of train-
ing samples and do not account for domain shift [29]. A dataset of single object instance will still
be heavily biased towards this object and the environment the object is encountered. More advanced
augmentation methods exist that alter the contents of the image, such as Random Shadows and High-
lights (RHS) [41]. This method generates artificial shadows and highlights that can make recognition
models more robust against light perturbations. Another method, Style Augmentation [29], only pre-
serves the shape of the original object but randomizes texture, color and contrast (Figure 2.10). Data
augmentation methods however, only alter an existing image, making it difficult in simulating differ-
ent environments. In the study of [4] is shown that background, object rotation and viewpoints are
heavily influencing the bias of datasets. They introduce ObjectNet, a dataset that contains objects in
non-standard surroundings and orientations. They show that state-of-art recognition models trained
on standard datasets, such as ImageNet [58], had a severe performance drop when applied to their
ObjectNet dataset (see Figure 2.11). This leads to the conclusion that to achieve robust models, back-
ground surroundings and viewpoints should be strongly varied in order to reduce bias



2.5. Synthetic datasets 14

Figure 2.11: Performance of state-of-the-art object detectors trained on ImageNet. Their performance on all objects of
ImageNet is shown in green. Performance on ImageNet, only selecting classes that overlap with ObjectNet, are shown in blue
and performance on ObjectNet is shown in red. A drop of 40-45% can be seen between samples of ImageNet and ObjectNet.
Solid lines denote the top-1 performance (correct in 1 guess) and dashed lines the top-5 performance (correct in 5 guesses).[4]

Domain randomization
ObjectNet uses the idea of domain randomization to cover a large part of all possible object configura-
tions and backgrounds. However, acquiring these images is a very costly and time-consuming process.
Synthetic data is a way to create a large amount of data efficiently. Furthermore, it is not restricted
by requirement of the physical objects being present in non-standard environments. The usage of syn-
thetic data unfortunately introduces another problem, the synthetic to real domain gap [51]. Training
a model on synthetic data does not guarantee the model will perform as well on real data. This is found
in the studies of [17] and [21]. Synthetic data is created by pasting 2D object images on a background
(Figure 2.12). The results show that using only synthetic data will reduce performance due to the do-
main gap. A combination of synthetic and real data did increase lead to an increase of performance.

Figure 2.12: Four synthetic image created by the method of [17]. Objects are randomly placed on backgrounds.
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However, in [26] is shown that using proper domain randomization techniques can create datasets
that achieve similar performance compared towhenusing real data. In this study the images are created
using 3D CADmodels. The use of the 3Dmodels allows for images of objects from different views, with-
out the time consuming process that is inherent to placing real objects. Furthermore, environments and
light conditions are easily interchangeable. Furthermore, the paper of [26] delivers some interesting
conclusions. First, as already mentioned, their ordered way of creating a randomized dataset is signif-
icantly more effective than a pure random strategy. During training they gradually reduce the scale of
the objects. The training starts with larger versions of the objects. As the training continues, it gets
more difficult as smaller objects have to be detected. Secondly, Pure synthetic backgrounds deliver a
better performance than a mix of synthetic and real backgrounds. Finally, the use of backgrounds with
a lot of clutter improves the performance.

2.6. Summary
In this chapter a brief overview is given of the background necessary for the remainder of the report.
First, in Section 2.1, open world recognition is introduced. It is discovered that for true autonomy
open world recognition is not sufficient and on-the-job learning is required. Then, in Section 2.2, four
deep learning models are discussed that will be used in Chapter 3. Section 2.3 gives a summary of
L2AC, which forms the base for the open world recognition model introduced in Chapter 3. Section 2.4
introduced Voxblox++, the 3D reconstruction method that is used in Chapter 4. Finally, in Section 2.5
was explored how to overcome the domain gap between synthetic data and real data.



3
Learning to Accept Image Classes

(L2AIC)

In this chapter Learning to Accept Image Classes (L2AIC) is introduced. This open world recognition
algorithm is derived from L2AC [67] (Section 2.3), an open world classifier based on text. Similar to
L2AC, L2AIC consists of five building blocks. The encoder, the ranker, the memory, the matching layer
and the aggregation layer (Figure 3.1). When an input sample is presented to the model, it will be
translated to a feature vector by the encoder. The ranker will find the k most similar feature vectors
for the n most similar classes from the memory. This is passed through the meta-classifier, that will
determine if an input sample belongs to a class or not. The L2AIC has been changed compared to L2AC
in order to make it compatible with image classification. First, in Section 3.1, the change in encoder is
described. In Section 3.2 is explained how the ranker will rank thememory to input samples. Finally, in
Section 3.3 themeta-classifier, consisting of thematching layer and the aggregation layer, is elaborated.
Here several changes have been made to enhance performance on image classification.

Figure 3.1: The pipeline of the open world classifier L2AIC. Features are extracted from an image sample with the encoder.
Using the ranker k samples for n classes are selected from the memory for in depth comparison. The meta-classifier either

classifies the image sample as one of the n classes or as a unknown class. [67]
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3.1. Encoder
The encoder in the original L2AC algorithm (Section 2.3) consists of a Bidirectional LSTMwith a GloVe
embedding [67]. The goal of this deep learning encoder, designed for text classification, is to create a
feature representation that captures relevant features from the text using representation learning. Sim-
ilarly, L2AIC requires an encoder that is able to capture relevant features from an image and translate
this to a feature vector or feature representation. The ideal feature extractor is able to extract all relevant
features of an image. This would require a lot of training. A common approach for feature extraction
from images is to use existing image recognition models pretrained on ImageNet [58]. The ImageNet
dataset consists of 1000 classes with millions of images. The feature representations learned by the
pretrained models are often very well suited to use in other image classification tasks [2]. The early lay-
ers of the model capture very well generalizable features that are inherent to any image. These features
pass through later layers that construct features more specific to the object of the classification task. A
deeper network generally leads to better performance and better feature representation.
In this project the feature representations of four object recognition models are selected, introduced in
Section 2.2. The models have been pretrained on ImageNet and the final layers are fine-tuned on the
dataset used in the project. In table 3.1 each encoder and its properties are listed. Feature vector length
varies between encoders, resulting in different input layers of the meta-classifier. For each encoder
the FC7 layer, the penultimate layer for feature extraction is displayed as well a the earliest layer that
is trained in the fine-tuning process. After extraction all feature vectors are normalized, to improve
generalization [22].

Table 3.1: Encoders and their properties.

Encoder Feature size Layer depth Parameters Fine-tune layers
AlexNet 4096 8 60M Conv 5 and up
ResNet50 2048 50 26M Residual block 14 and up
ResNet152 2048 152 60M Residual block 14 and up
EfficientNet 1280 18 5.3M Block 6 and up

3.2. Ranking memory
When L2AIC receives an input image it is passed through the encoder translated into a feature vector
xt. For each class the input vector is compared to k samples from this class. Finding these k feature
vectors for n classes is done using the ranker and the memory (Figure 3.2). The memory M contains
samples from a set of classes, c ∈ CM, as well as the average feature vector from each class x̄c. The
ranker works as a simple preselection process to reduce computations needed. Preselection is done
using cosine similarity fcos(a, b) (Equation (3.1)). First the cosine similarity between the input and
average class vectors is calculated fcos(xt, x̄

c), c ∈ CM. The n most similar classes are selected for
further classification. For each of these n classes the cosine similarity between the input sample and
each sample of the class is calculated. The k most similar samples xa1:k

are selected and passed on to
the meta-classifier.

fcos (a, b) =
a · b

|a|2 |b|2
(3.1)

3.3. Meta-classifier
The meta-classifier works according to an n-way k-shot principle. Each input sample is compared to
n classes, with k images per class, selected by the ranker. The goal of this meta-classifier is to predict
if the input sample belongs to one of these n classes. The output is a binary classification for each
of the n classes. A positive classification denotes that an input sample belongs to a class, a negative
classification means the input is not part of the class.
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Matching layer
The k feature vectors xa1:k

, together with the input feature vector xt are passed through the matching
layer. The matching layer, a neural network, consists of a similarity function and fully connected lay-
ers. The similarity function fsim (Equation 2.2) uses the concatenation operation ⊕ to transform both
vectors to similarity space. From this similarity space the matching layer generates a similarity score
for each of the k feature vectors, r1:k. The aggregation layer gathers these scores and assigns a final
classification label to the class.

Similarity function
To give more insight in the similarity function of Equation (2.2), the output is visualized in Figure 3.2.
The ResNet152 encoder has been used to extract features from an image. Only the first 100 entries of
this feature vector are taken instead of the full length for visualization purposes. The goal of fsim is to
translate two vectors to a similarity space where an easier distinction can be made between similar vec-
tors and dissimilar vectors. The similarity function consists of two parts, both with special properties.
The first half of the equation, |xt − xai

|, calculates the index-wise distance of the two vectors. In the
case of two identical vectors, xt = xai

, this results in zero, as can be seen in the figure. This, however,
does not make a distinction between important features (high values) and less important features (low
values). The second part, xt + xai , points out which features are most important to both vectors. If the
output of a feature of indexm is low at the first half of the concatenation and a high at the second half,
this indicates the feature of vectors xi and xai

are similar and for both vectors this feature is important.
Figure 3.2 shows that two identical vectors give a clear distinguishable output. However seeing the
difference between two vectors of the same class, xt, xai ∈ Cj , or two vectors from a different class,
xt ∈ Cj ;xai /∈ Cj , is more difficult for the human eye. In the matching layer fully connected layers are
used for accurate prediction.

Figure 3.2: The output of the similarity function fsim of Equation 2.2, on two feature vectors. The left side of the dashed line
shows the subtraction of both vectors. The right side shows the sum of both vectors. After concatenation this is the output of
the similarity function. The upper figure shows the output of two identical vectors, xt = xai . The middle figure shows the
output of two vectors from the same object class, xt, xai ∈ Cj . The bottom figure shows the output for two vectors from

different object classes, xt ∈ Cj ;xai /∈ Cj . ResNet152 is used as encoder and only the first 100 values of the feature vector are
used instead of the full length for visualization purposes.
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General changes
Although the meta-classifier is designed to learn to recognize similarities between feature vectors, a
direct transfer to image-based feature vectors results in a significant drop in performance. A possible
explanation is the difference in signal to noise ratio between images and text samples [12]. Commonly,
a piece of text contains mostly words that are relevant to the meaning of the text. This is different for
an image, consisting of many individual pixels and not every pixel is relevant for classification of the
object. Background pixels, for example, can be seen as noise as they have, in most cases, no relation
with the actual object. The meta-classifier of L2AIC has undergone some adjustments from L2AC for
compatibility with images. First, an extra dropout layer (p = 0.5) is added to the input. This dropout
increase the generalization ability of the meta-classifier by adding more randomness in the incoming
feature vectors [61]. By using dropout as the first layer it acts as a way of data augmentation. Each iter-
ation the input vectors passed on to the model in a slightly different form. The second adjustment is to
replace the ReLU activation functionwith a LeakyReLU activation function. This is to prevent the prob-
lem of dying neurons, sometimes occurring with ReLU functions [2]. The third addition is the use of
weight initialization. This can improve convergence time and performance [22]. Initialization is done
according to best practices of [50], with Xavier normalization for fully connected layers and orthogonal
initialization for the LSTM. The fourth addition is changing the size of the second fully connected layer
in the matching layer from 512 to the feature size of the input vectors, increasing the capacity of the
model based on the input vector size. The final adjustment is extending the hidden size of LSTM from 1
to k, the number of samples compared per class. This is also done to increase the capacity of the model
[22]. The full architectural design is shown in Figure 3.3.

Figure 3.3: The architecture of the neural network of L2AIC. The input sample xt and the samples from the memory xai are
passed through the matching layer, with Lx the length of the feature vector. Using the similarity function fsim, the matching
layer outputs k similarity scores r1:k. These are aggregated by the aggregation layer to predict the final output. In Section 3.3

the design changes with respect to L2AC are explained.

Meta-classifier architecture
Besides the basic adjustments mentioned previously, several versions of the meta-classifier have been
created and are listed in below. These variations have been created to study the influence of design
choices in the matching and aggregation layer. All variations contain the same base-changes as L2AIC-
default, the version described in previous in previous paragraph. In appendix A the exact architectures
of each model can be found.

• L2AIC-default: This version is a copy of the L2AC algorithm, but with the adjustments men-
tioned in Section 3.3.

• L2AIC-cosine: The matching layer has been replaced with the cosine similarity function (Equa-
tion (3.1)). This effectively removes the whole matching layer and the aggregation layer will pre-
dict a final score based on output values of the ranker. This variation puts the influence of the
matching layer to the test.

• L2AIC-no-lstm: The LSTM in the aggregation layer is replaced with multiple fully connected
layers. Besides aggregation the LSTM also functions as optimizer for the matching layer (Section
2.3). This variation tests the influence of the LSTM on performance of the L2AIC model.

• L2AIC-abssub: The similarity function (Equation (2.2)) has been reduced to only the first part
of the concatenation, the absolute subtraction of both vectors. As shown in Figure 3.2, this part
shows if two vectors are close together in similarity space.
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• L2AIC-concat: The similarity function is removed with the idea that the meta-classifier learns
a similarity function on its own. Both feature vectors are concatenated and passed through the
fully connected layers.

• L2AIC-extended-similarity: A copy of L2AIC-concat, where the similarity function is removed,
but now the matching layer has been extended with multiple fully connected layers. This give the
matching layer more capacity for finding a similarity function.

• L2AIC-smaller-fc: Both feature vectors are reduced in size by a fully connected layer before
being passed on to the similarity function. This fully connected layer might help in the selection
of most relevant features before being translated to similarity space.

3.4. Summary
In this chapter L2AIC is introduced. This open world recognition model is adapted from L2AC, which
is text-based. To adapt to an image-based classifier, object recognition models are used for feature
extraction. Four encoders have been selected for further testing. AlexNet, ResNet50, ResNet152 and
EfficientNet. Besides the encoder, the meta-classifier has undergone some changes as well to adapt
to the open world recognition task. Finally, several different architectures designs for L2AIC are in-
troduced, containing unique changes. The performance of these designs, as well as the encoders, are
evaluated in Chapter 6.



4
Autonomous data collection

This chapter will introduce the autonomous data collection process to create a synthetic dataset for a
novel object. The requirement for this protocol is that can be done autonomously by a robotic agent,
without the help of human supervision. The protocol can be split into twomain steps. First, a 3Dmodel
of the novel object is created. This is done with an RGB-D camera and the reconstruction algorithm
Voxblox++ and will be explained in Section 4.1. For the second step, a protocol is described to create a
synthetic dataset from this 3D model, elaborated in Section 4.2.

4.1. 3D reconstruction
In section 2.4.1 the eye-in-hand capturing technique was introduced. This is an efficient way for an
agent to capture images from multiple angles. Using a robot for data-capturing is beyond the scope
this project and the eye-in-hand is instead done by a human. Following the findings of the authors
of KinectFusion [46] the object will be circled multiple times while recording, as shown in Figure 4.1.
Using multiple loops will improve loop closure and reduce inconsistencies in the reconstructed object.
The RGB-D camera used during reconstruction is the L515 lidar from the Intel Realsense series [28].
This lidar has a high depth accuracy and has a built-in IMU that can be used for pose estimation. For
pose estimation the SLAM algorithm RTAB-Map [35] is used. RTAB-Map combines the IMU data, the
RGB image and depth image for a robust pose estimation at each time frame.

Figure 4.1: The reconstruction of a scene with the KinectFusion reconstruction algorithm [46]. The trajectory of the camera is
shown by the red line and the axis of each camera frame. The red cube denotes the starting frame and the gray cube the final
frame. left: A reconstruction based on a partial loop, some of the surfaces remain incomplete. middle: Reconstruction from
one completed loop around the scene. The start and end frame are identical, but the red and gray cube have a slight mismatch.

This is due to loop closure problems, resulting in some error in reconstruction in the cup. right: A reconstruction using
multiple loops. The start and end frame have perfect overlap, reducing the loop closure artifacts.

21
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4.1.1. Voxblox++
The Voxblox++ reconstruction algorithm, introduced in section 2.4.2, takes as input the RGB-D image
and the pose estimation of the camera. At each time step t these inputs are processed. First, the depth
image is segmented with the geometric depth segmentation. This results in the set of geometric seg-
ments St. At the same time, the RGB image is segmented with Mask R-CNN [25]. The Mask R-CNN
model has been loaded with 80 classes of theMicrosoft COCO dataset [38]. With the segmentedmasks
the geometric segments are refined and merged according to Equations (2.3) and (2.4). Using the pose
estimation corresponding to the image frames the segments are placed into the global segmentation
map (GSM). In the GSM they are assigned a unique geometric label lk and, if available, a semantic label
ok. After scanning individual objects can be retrieved from the GSM and saved as a 3D model.

4.2. Synthetic data generation

Figure 4.2: An example of the robotic simulator
Webots [44], with the TiaGo robot of PAL Robotics [49]

deployed in a factory environment.

To create realistic images of the 3D reconstructed
model, Webots [44] is used. This is a robotic simu-
lator capable of generating realistic environments for
robotics, both in the physical sense and visual sense.
For the application of this project a realistic visual rep-
resentation is important. The objectmodel is placed in
an environment and,by using a virtual camera, images
are captured of the object in various orientations and
environments. This is further elaborated in the next
section. In Section 4.2.2 several domain randomiza-
tion techniques are listed to overcome the synthetic to
real domain gap inherent in synthetic images.

4.2.1. Camera placement
When capturing images with a virtual camera (Figure
4.3a) in Webots, it is has to be ensured the object is
within the view frustum of the camera. The position
of the camera with respect to the object is parameterized in spherical coordinates (ρc, θc, ϕc). These
spherical coordinates are transformed toCartesian coordinates giving the cameras positionwith respect
to the object rc = x êo,x + y êo,y + z êo,z. To orient the cameras viewpoint towards the object, the unit
z-axis of the camera êc,z, is rotated towards the camera position vector, noted as R1, shown in Figure
4.3c. To ensure the camera is positioned upright in the coordinate frame of the environment the camera
is rotated along the z-axis according to Equation (4.1), where êY is the y-axis of the coordinate frame of
the environment and x̂c is the x unit vector of the camera in the coordinate frame of the environment.

θ = acos
(

(rc × êY ) · x̂c
∥(rc × êY )∥ ∥x̂c∥

)
(4.1)

To prevent images being captured where the object is completely obstructed, for example, due to
a wall, the segmentation module of the Webots camera is used. Besides an RGB image the camera
also captures a segmentation mask. If the object is not present in the mask this indicates the object is
obstructed and a new position is used.

A limitation of 3D scanning in combination with the eye-in-handmethod is the bottom of the object
cannot be scanned. To prevent the missing bottom of an object from being visible a final check is done.
The angle between the normal vector of the bottom surface and the view direction of the camera is
computed using the inner product. An angle below π

2 indicates the bottom is visible and the object is
placed somewhere else.
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(a) (b) (c)

Figure 4.3: a: The virtual camera of Webots. Frames are captured with the red side of the cylinder. b: An object with the
PRBAppereancemodule applied to generate texture. c: The camera is automatically pointed towards the object. This is done

using the protocol of Section 4.2.1.

4.2.2. Domain randomization
As introduced in [65] ,[26] and [29] domain randomization significantly improves the recognition per-
formance when trained on synthetic data and can reduce the effects of reality gap. In the Webots en-
vironment several conditions are varied. First, the position ro and the orientation qo of the object are
varied, where the orientation is given by roll, pitch and yaw values (αo, βo, γo). To acquire a realistic
image the physics engine of Webots is used to let the object fall from the random position until it hits
a surface. This prevents the creation of dataset with floating objects only. The physics engine assumes
a spherical bounding box with radius of 0.1m. When this bounding box hits a surface the camera will
be place. The camera is placed relative to the object using polar coordinates (ρc, θc, ϕc). As explained
in the previous section this will create images from different viewpoints of the object. Furthermore,
the texture of the object is varied, similar to [65] and [29]. Webots is capable of mimicking material
textures such as metal, wood or textile using the PRBAppearancemodule, displayed in Figure 4.3b. To
increase generalization of the object different colors and patterns are used for the object. These pat-
terns are obtained from the internet using Google image search. The object, with random texture, is
both placed in indoor and outdoor environments of Webots, using different lighting conditions. The
complete procedure is listed in Algorithm 1.

Algorithm 1: Randomized synthetic data algorithm
Data: World, Object, Camera, N.
Result: N object images
begin

World → loadWorld()
for n ∈ N do

World → setBackground()
World → setLighting()
Object → setRandomPosition()
Object → setRandomOrientation()
Object → setRandomTexture()
Camera → setV iewtoObject()
if Camera → containsObjectSegmentation() then

if Camera → objectBottomNotV isible() then
Camera → captureImage()



4.3. Summary 24

4.3. Summary
In this chapter an overview is given of the autonomous data collection process. First, an object is
scanned with the L515 lidar. For optimal loop closure the object is encircled multiple times. Using a
robot for this process is out of the scope of this report. A human actor is used instead. With Voxblox++
the data gathered with the lidar is combined in a 3D reconstruction of the environment, the GSM. From
the GSM a segmented 3D model of the object is extracted. The 3D model is placed in various environ-
ments of the Webots robotics simulator. The position, orientation and texture are varied while a sim-
ulated camera saves images of the object. This process autonomously creates a dataset containing a
randomized images of the object.



5
Experimental setup

This chapter will elaborate on the experimental setup used for testing the L2AIC and autonomous data
gathering protocol described in Chapters 3 and 4. First, the image datasets that are used for evaluation
of the openworld performance of L2AIC are introduced. This performance is evaluated based on several
metrics, listed in Section 5.2. In Section 5.3 an overviewof the experiments conducted onL2AIC is given.
Chapter 3 introduced several designs of L2AIC and these experiment will test their performance in
different settings. Section 5.4 describes the steps necessary to autonomously create a synthetic dataset
from an object. Finally, the open world algorithm and the dataset creation are combined to design an
on-the-job learning task in the last section.

5.1. Datasets
Image recognition is an extensive studied field of computer vision and many datasets have been de-
signed for evaluation of recognition models. This report is focused on open world recognition and a
suitable dataset should consist of more than a few classes because different classes are used in the train,
validation and test set. This requirement excludes popular datasets such as MNIST and CIFAR-10.

Figure 5.1: Example images of the CIFAR-100 dataset. Each image has a size of 32× 32 pixels.

CIFAR-100
The first dataset used in this report is CIFAR-100 [33] and contains images from 100 different classes.
The dataset is named after the Canadian Institute for Advance Research (CIFAR). These images are
gathered from the internet using search engines such as Google and Flicker. Duplicates, drawings and
cartoons have been removed and an additional check is done to verify the labels. Each class has 500
training images, or samples, and 100 samples for testing Resulting in a total of 60.000 images divided
over 100 classes. The images have a size of 32 × 32 pixels with RGB color information. A few exam-
ples are shown in Figure 5.1. The 100 labels can be grouped in 20 superclasses with 5 subclasses per
superclass. For example, the superclass reptile, with subclasses crocodile, dinosaur, lizard, turtle and
snake [33]. The idea is that subclasses of a single superclass are more difficult to distinguish, making
the dataset more challenging.

25
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TinyImageNet
The TinyImageNet dataset [36] is a subset of the larger ImageNet dataset. It has been created for the
Tiny ImageNet VisualRecognition Challenge and is considered to be simpler version of the ImageNet
challenge. Instead of 1000 classes, TinyImageNet contains 200 classes. Each class has 500 training
images, 50 validation images and 50 test images. The images are downsampled to a size of 64× 64 pix-
els with RGB color information, shown in Figure 5.2. Downsampling the images will cause information
loss, which increases classification difficulty [52].

Figure 5.2: Example images of TinyImageNet. Each image has a size of 64× 64 pixels.

5.2. Evaluation metrics
To evaluate the performance of L2AIC in an open world setting several evaluation metrics are chosen.
Because an open world setting is evaluated the traditional evaluation metric accuracy is not sufficient.
In a true open world the number of object classes can be considered infinite. Since the number of
known classesK is finite, the number of unknown classesU is also infinite [15]. Thismakes open world
recognition a very imbalanced classification task. In this project the F-1 score, theWilderness Impact
(WI), and unknown and known recognition errors (ϵU and ϵU ) are used to evaluate the performance of
L2AIC.

Figure 5.3: The confusion matrix presents true values and the predictions of a classifier. It gives a better understanding on
how the classifier performs [50].

F1-score
The F1-score is the harmonic mean of the precision and recall of a model and is given by Equation
5.1 [22]. Give the confusion matrix in Figure 5.3, the precision can be defined as the ratio between the
number of true positives and the number of all predicted positives (TP + FP). The recall is defined as the
ratio between the number of true positives and the number of actual positives (TP + FN). Individually
these metrics can cause bias. For example, a high recall can be achieved when all classes are classified
positive, but at the cost of a large number of false positives. F1-score combines both measures to get a
more reliable evaluation metric, particularly for imbalanced datasets.

F1 = 2 · precision · recall
precision+ recall

(5.1)
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Similar to the study of [67] the weighted F1-score (Equation (5.2)) is used for model evaluation.
Weighted F1-score takes into account the number of samples for each class, compensating for a very
large size of the unseen class set.

F1weighted =
∑
c∈C

Nc∑
c∈C Nc

· F1c (5.2)

Wilderness Impact
In [15] the concept of Wilderness is introduced. The Wilderness Ratio of a dataset is defined as the
ratio between known (NK) and unknown (NU ) samples, as shown in Equation (5.3). A dataset under
closed condition has a Wilderness Ratio of zero. Adding samples of unknown objects will increase the
Wilderness and make classification more difficult. TheWilderness Impact, (Equation (5.4)), describes
the change in precision between an open and closed world setting. Where FPo is the number of un-
known samples incorrectly classified as known, FPc the known samples misclassified as another class
and TPc as the correct classified samples. When the number of unknown samples increases the proba-
bility of classifying these unknown samples as a known class increases and the Wilderness impact will
increase. A good classification model has little increase in WI as the Wilderness Ratio grows.

WildernessRatio =
NU

NK
(5.3)

WI =
Precision in closed set

Precision in open set
− 1

=
TPc

TPc + FPc
/

TPc

TPc + FPc + FPo
− 1

=
FPo

TPc + FPc

(5.4)

Classification errors
In [6] the openworld error ϵOW is introduced. This error combines themulti-class classification error in
closed set, ϵK , with prediction error on unknown samples ϵU . As explained in Section 2.1 the two main
challenges of open world recognition are rejecting unknowns and classifying known objects. Although
the open world error gives an overall indication of the performance on these challenges it does cannot
give performance of the individual challenges. In this report has been chosen to use both ϵK and ϵU .
Recall that open set risk, Section 2.1, consists of two component, the open space risk and empirical risk.
The metrics ϵK and ϵU can give an indication of performance with respect to the empirical risk or open
space risk respectively.

ϵOW = ϵK + ϵU =
1

NK

NK∑
i=1

[ŷi ̸= yi] +
1

NU

NU∑
j=NK+1

[ŷi ̸= unkown] (5.5)
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5.3. L2AIC
The training procedure of the L2AIC algorithm is a bit more complex than regular object recognition
models and consists of several steps. First, in Section 5.3, the data is split in encoder data D⌉ and data
for themeta-classifier of L2AICDm. Then, the pretrained encoder is fine-tuned on the samples fromD⌉

(Section 5.3). Finally, in Sections 5.3 and 5.3 the training procedure of the meta-classifier is described.
Results can be found in Section 6.1.

Data split
Before training can start the dataset is split into data for fine-tuning the encoderDe and data for used by
the L2ACmeta-classifierDm. The classes of the encoder and classes of the meta-classifier are mutually
exclusive, Cfn ∩ CM = ∅. The encoder data is split in a train set De

trn and a validation set De
val.

The meta-classifier data is divided in three parts, a train, validation and test set. During each training
phase, the class set is distributed over a memory CM and a set of input samples S. The memory can
consist of two sets of classes. The first set, CK, is the set of known classes that has been used for training.
The second set, CN , is the set of new classes that are added to thememory after training. The latter class
set, the option to incrementally learn new classes, is what makes the L2AIC an open world algorithm.
The set of input samples contains besides CK and CN a set of unknown classes CU . In the original
paper [67] the algorithm is solely evaluated on the performance on CN . This is to prove that the meta-
classifier is able to generalize over all features instead of class-specific features from the training set and
is suitable for open world recognition. Although this is an important property of the meta-classifier, in
this project also the performance on CK is evaluated. The motivation of this approach is that it is not
desirable to start deployment with an entire new memory. Using the same memory for each training
phase is more intuitive. In Table 5.1 an overview of the classes for each training phase is given.

Table 5.1: Classes in the memory of L2AIC during training, validation and testing, for the different datasets

Dataset Phase CK CU

CIFAR-100
Train
Validation
Test

50
50
50

40
10
20

TinyImageNet
Train
Validation
Test

80
80
80

80
20
100

Encoder fine-tuning
In the first training step the encoder is fine-tuned using the training data of De

train. The fine-tuning of
the encoder is done on a model pretrained on ImageNet for 50 epochs, with a batch size of 100. An
SGD optimizer with a learning rate of 0.001 is used and this is only applied to the final few layers of the
model. All image samples are upscaled to 224 × 224 pixels. As this fine-tuning is a regular multi-class
classification task the cross-entropy function is used as a loss function. The validation dataDe

val is used
to track generalization performance of the encoder. The best model is selected using early stopping
based on the F1-score of the validation set. After finishing the fine-tuning the encoder is used to create
the feature vectors required for the memory and input samples for each training phase. The training
images have been rescaled to 224 × 224 pixels and each feature vector is normalized between 0 and 1.
The results of this experiment are listed in Section 6.1.
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Meta-classifier training
After having created the required memory and input samples for all training phases and finetuning of
the encoder, the meta-classifier is trained. The meta-classifier will be trained for 400 epochs with a
batch size of 256. The optimization algorithm is Adam and a learning rate of 0.0001 is used. Early
stopping on the F1-score is used to retrieve the best model. As this is a binary classification task, the
binary cross-entropy loss function is used. During training each input sample is compared against n
negative classes and 1 positive class. The n negative classes are found using the ranker, as explained in
section 5.3. This leads to a very unbalanced training set and is countered by setting the positive weight
(p) in the binary cross entropy loss equal to n. During testing the input sample will be compared to the
top n similar samples.

Training procedure variations
Besides the default training method, introduced in the previous paragraph, four variations in the train-
ing procedure are introduced. Twovariations are regarding the training procedure of themeta-classifier
and the other two are variations in the ranking procedure. The first variation, two-stage training, will
train themeta-classifier in two steps. The first N epochs only the parameters of thematching layers are
trained. Then after N epochs, the best parameter configuration is selected, based on early stopping. In
the second step the whole meta-classifier is trained, including both matching layer and the aggregation
layer again for N epochs. The idea of this two stage training is that the matching layer is better trained
to separate positive classes from negative classes as the loss function is directly applied to its output.
The second variation, freeze-ml, also requires training in two steps. But after the matching layer has
been trained and the best model is selected the parameters of the matching layer are frozen, meaning
they are not longer used in the optimization process. In the second step, now only the aggregation layer
is trained.

To improve generalization of the meta-classifier two variations of the ranker are introduced. These
variations change the ranker during the training phase. Given input sample xi with class label ci, the
the meta-classifier is presented with n classes c1:n, where cj ∈ c1:n ̸= ci, once with class cj , with cj = ci
for each input sample. A class cj , with cj ̸= ci is denoted as a negative class and cj = ci is considered
a positive class. In ranker-default, the ranker retrieves the k most similar samples for the n negative
classes and the single positive class. The ranker-reverse version changes the ranking of the positive
class. Instead of finding the kmost similar samples, the k least similar samples are considered. The idea
behind this variation is that the meta-classifier is more challenged to find similarities between feature
vectors and will generalize better. The second version, ranker-extend, is to counter the class imbalance
in the training dataset. For each positive class n negative classes are present. In this version the ranker
will also create n positive class entries by using the n × k similar samples from the positive class. The
first entry consists of the k most similar samples, the next entry consists of the next k similar samples
etc. Besides countering class-imbalance this version will also improve generalization by presenting
more difficult positive classes. The results of these variations can be found in Section 5.3.



5.4. Self-supervised data gathering 30

5.4. Self-supervised data gathering
The objects used for reconstruction are listed in Figure 5.4. These objects are a combination of common
household items and unique objects. As stated in Section 4.1 the L515 camera is held in hand andmoved
several times around the object to reduce loop closure problems. The camera has an RGB resolution of
960 × 540 and depth resolution is 640 × 480. The reason for this discrepancy is the hardware limits of
the camera, where depth and RGB resolution are not the same [28]. Fortunately, this is solved within
the software of the camera. The aligned depth and RGB images, together with the pose estimation of
the camera are recorded for reconstruction with Voxblox++.

Figure 5.4: The objects selected for reconstruction are a mix between common household items and unique objects.

Voxblox++ has been originally designed for reconstructing large maps containing several objects.
In this project the focus is on single objects. To be able to capture enough detail of the scanned object
the voxel size v has been decreased from 2 cm, in the original paper [23], to 1mm. This more detailed
voxel grid comes at the cost of more memory requirements, but because of the smaller scene captured
this is not significant. To avoid capturing too many background objects, and increase the reconstruc-
tion speed, the depth image is clipped between 0.1 and 0.5 meter. The truncation distance δ is set to 5
times the voxel size. Each voxel is updated according to the set of Equations (2.5). The final output of
Voxblox++ will be a GSM containing a segment of an object and a ground surface, where the ground
surface can be discarded as it is not of interest. Reconstructed models are visually evaluated. Impor-
tant are the quality of the loop closure and if the object has been correctly segmented from the ground
surface.

From the reconstructed objects a synthetic dataset is createdwithWebots using the domain random-
ization protocol of Algorithm 1. Table 5.2 theminimum andmaximum values for the camera placement
(ρc, θc, ϕc) and object orientation (αo, βo, γo). Where camera placement is done according to spherical
coordinates and object orientation with roll, pitch and yaw. Several combinations of the domain ran-
domization protocol of Algorithm 1 are used to create the dataset to study the influence of individual
components. The results of this dataset are shown in Section 6.2.

Table 5.2: Minimum and maximum values for the object and camera placement and orientation forDsyn.

Parameter Min value Max value
ρc 0.4 m 1.0 m
θc − 1

4π
1
4π

ϕc − 1
4π

1
4π

αo −π π
βo − 1

4π
1
4π

γo − 1
4π

1
4π
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5.5. On-the-job recognition
The on-the-job recognition task combines the openworld algorithmL2AIC and the self-supervised data
gathering. This is done in three steps. First, the L2AIC performs classification on a test set with classes
CM and CU . Themodel has to correctly classify classes from CM and reject the unknowns CU . Secondly,
from the set of unknown classes CU , object class co is picked for reconstruction. A synthetic dataset is
made from this object class using the self-supervised data gathering method from Section 5.4. Finally,
this dataset is added to the memory, now containing K + 1 classes. The object class co should now
be known to the model. The performance of L2AIC is evaluated again, and it should no longer reject
images from this class.

At the first step, L2AIC will be trained on TinyImageNet. CM will contain 70 classes with images
from TinyImageNet. During evaluation the model is tested on images from these 70 classes plus an
additional set of unknown classes CU containing 31 different classes. 30 of these unknown classes con-
tain images from TinyImageNet. The thirty-first class, co, contains images taken from an object with
a camera. The L2AIC algorithm should reject all 31 classes of CU and correctly classify all classes from
CM. In the second step, the object from co is used to create a synthetic dataset. Using the procedure
from Section 5.4 two different datasets are created. The first dataset, Dsyn will vary the object distance
from 0.4 m to 1.0 m. The second set, Dsyn,close, will create a dataset where the object is closer to the
camera, varying from 0.2 m to 0.7 m. In the final step, this new dataset is added to the memory of
L2AIC. The algorithm now has 71 classes stored in memory, the original 70 classes extended with class
co. The performance of the updated L2AIC is evaluated on the same test set as in step one, but now
capable of classifying co.

Besides the two synthetic dataset, two additional datasets of co are created for addition to the mem-
ory. The first set,DTiny,memory is the training set of TinyImageNet for this specific class co. The second
set,Dphotos,memory is a set of photos taken with a camera of the object during the 3D reconstruction pro-
cess. This is to compare performance between different image domains and the influence of the domain
gap. Three domains are used in this report. The synthetic domain, with datasets Dsyn and Dsyn,close.
The real domain, with datasets Dphotos,memory and Dphoto,test. The last domain is the TinyImageNet
domain, containing the dataset of TinyImageNet. The results of the on-the-job recognition task are
discussed in Section 6.3. Examples of Dphotos,memory , Dphotos,test and DTiny,memory can be found in
Appendix B.



6
Results

In this chapter the results from the experiments introduced in the previous chapter are evaluated. First,
in Section 6.1, the open world classifier L2AIC is tested under varying conditions and variations. Sec-
ondly, in Section 6.2 the results of the autonomous data generation is presented. Thirdly, L2AIC is
tested in the on-the-job recognition task. Using a synthetic dataset of a 3D model of a novel object,
the performance of the classifier is evaluated on this new object. The chapter concludes with a small
summary of the results.

6.1. L2AIC
In this section the best performing model of the L2AIC classifier is evaluated. This evaluation is done
by assessing the open world capabilities of the classifier based on the metrics of Section 5.2. By varying
the number of known and unknown classes, the rejection and classification capabilities are tested. Each
experiment shows the average of 10 runs with random initialization. First, a comparison of different
encoders is done, as well as the influence of additional fine-tuning. Secondly, using the best performing
encoder, different model architectures of the meta-classifier are compared. Third, the influence of the
ranking hyperparameters n and k are evaluated. Then, in Section 5.3 different variations of the training
procedure are evaluated. Next, the best performing L2AIC model is compared to the original model of
the authors of [67] in Section 6.1. This section concludes with a brief summary of the findings in Section
6.1

Encoders
In Figure 6.1 an overview is given of the performance of L2AICwith different encoders. Theweighted F1-
score is calculated while varying the number of known classes in memory and the number of unknown
classes presented to the algorithm. The figure shows L2AIC using the ResNet50, ResNet152, AlexNet
and EfficientNet encoders. The fn label denotes fine-tuning on 50 separate classes of the TinyImageNet
dataset.

32
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(a) ResNet50 (b) ResNet152

(c) AlexNet (d) EfficientNet

Figure 6.1: In this graph the weighted F1-score is plotted as a function of the number of known classes present in memory and
the number of unknown classes presented to the algorithm. Each subplot shows the performance of L2AIC with a different
encoder. A pretrained encoder with weights of ImageNet is used. The fn label denotes the encoder has been additionally

fine-tuned on 50 classes from the TinyImageNet dataset.

Figure 6.1 shows that fine-tuning significantly reduces the F1-score for all encoders. This decrease
in performance can be explained by overfitting of the encoder on Cfn, the set of classes used for fine-
tuning. Because Cfn /∈ CM, fine-tuning might cause the encoder to extract features only important
to Cfn. This compromises the advantage of an encoder pretrained on ImageNet, which functions as
a general feature extractor. Furthermore, AlexNet performs significantly worse than the other three
encoders. This is not surprising, given that AlexNet was one of the first deep learning classifiers. Al-
though some design choices from AlexNet have become standard in deep neural networks [2], much
improvements have been made on model design since the introduction of AlexNet in 2012.

In Figure 6.2 the known and unknown prediction error for different encoders are given. Similar to
Figure 6.1 this shows that fine-tuning decreases performance. Furthermore, in general AlexNet per-
forms worse than the other encoders. EfficientNet and ResNet152, pretrained only, perform the best.
ResNet152, pretrained, has the lowest ϵK , and thus the best classification performance. However, pre-
trained EfficientNet is better suited for rejecting unknown classes, given by the lowest ϵU . This is in
line with the theory of open set risk of Section 2.1. A trade-off exists between the empirical risk and
open space risk.
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Figure 6.2: (a) The known classification error (ϵK ) of L2AIC using different encoders. The algorithm has 80 known classes
stored in memory. Used encoders are loaded with pretrained weight on ImageNet and some have undergone additional

fine-tuning on a subset of classes of TinyImageNet. Note that a lower error is means better performance. (b) The unknown
classification error (ϵU ) of L2AIC using different encoders All encoders have been pretrained on ImageNet. The label (fn)
denotes if the encoder has been fine-tuned on a subset of classes of the TinyImageNet dataset. The model has 80 classes in

memory and the number of unknown classes is varied.

As stated in the previous paragraph, using an encoder pretrained on ImageNet allows the model to
extract general features. However, this might cause a bias towards the performance on TinyImageNet
as this is a subset of ImageNet. To evaluate this bias the performance of L2AIC on both CIFAR-100 and
TinyImageNet is compared, shown in Figure 6.3. For this comparison a pretrained ResNet152 encoder
is used, without additional fine-tuning. For both datasets the L2AIC algorithm has been trained on 40
classes. Figure 6.3 shows ϵU and ϵK and the Wilderness Impact for varying numbers of known and
unknown classes. From Figure 6.3a and 6.3b it becomes clear that ϵK on CIFAR-100 is lower, but the
L2AIC algorithm is less capable of rejecting unknown classes as the ϵU is higher compared to TinyIm-
ageNet. Figure 6.3c shows that by presenting more unknown classes, the Wilderness Impact on the
CIFAR-100 dataset increases faster compared to TinyImageNet, a result of the higher ϵU . Unknown
samples will have a larger negative impact on classification of CIFAR-100.

From these results can be concluded that fine-tuning has an adverse effect on the performance, for
further experiments, only pretrained encoders are considered. Furthermore, overall performance of
AlexNet is significantly worse and AlexNet will not be considered in further experiments.

(a) (b) (c)

Figure 6.3: A surface plot of performance of the L2AIC algorithm on the datasets CIFAR-100 and TinyImageNet. (a) The
known prediction error ϵK . (b) The unknown prediction error ϵU . (c) The Wilderness Impact.
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Table 6.1: The F1-score, unknown classification error and the known classification error for L2AIC using different
meta-classifier architectures and encoders. The L2AIC has 40 classes stored in memory and is tested on an additional 40

unknown classes. The performance is given for both CK and CN . The encoders are loaded with pretrained weights only. The
five best performing models have been printed in bold font.

Meta-classifier architecture Encoder Weighted F1 ϵU ϵK

CK CN CK CN CK CN

L2AIC-default
RN50
RN152
EN

0.684
0.470
0.737

0.584
0.653
0.617

0.348
0.828
0.107

0.541
0.403
0.348

0.304
0.18
0.399

0.299
0.299
0.420

L2AIC-cosine
RN50
RN152
EN

0.677
0.746
0.680

0.557
0.597
0.511

0.403
0.239
0.440

0.599
0.563
0.701

0.278
0.285
0.245

0.291
0.245
0.254

L2AIC-no-lstm
RN50
RN152
EN

0.687
0.505
0.740

0.569
0.664
0.639

0.352
0.778
0.068

0.580
0.401
0.203

0.296
0.188
0.426

0.281
0.282
0.487

L2AIC-extended-similarity
RN50
RN152
EN

0.610
0.557
0.625

0.049
0.035
0.322

0.503
0.666
0.537

0.984
1.000
0.845

0.297
0.235
0.231

0.907
0.903
0.470

L2AIC-smaller-fc
RN50
RN152
EN

0.718
0.706
0.769

0.484
0.588
0.549

0.238
0.349
0.233

0.691
0.537
0.614

0.332
0.261
0.243

0.331
0.293
0.291

L2AIC-abssub
RN50
RN152
EN

0.468
0.295
0.490

0.351
0.285
0.339

0.751
0.991
0.748

0.840
0.924
0.836

0.289
0.249
0.255

0.403
0.395
0.450

L2AIC-concat
RN50
RN152
EN

0.505
0.454
0.576

0.307
0.368
0.364

0.732
0.837
0.631

0.856
0.812
0.825

0.227
0.194
0.222

0.484
0.422
0.399

Meta-classifier architecture
In Table 6.1 the Weighted F1-score, ϵU and ϵK are listed for the different meta-classifier architectures
introduced in Section 3.3. For each architecture the encoders ResNet50, ResNet152 and EfficientNet
have been loaded with pretrained weights only. Both the results for CK and CN have been listed. Per-
formance on samples from CK is better than for CN , which is to be expected. The model has never seen
these different classes before during training. This decrease is, for some specific models, not that large.
This suggests the meta-classifier is able to learn to correctly recognize similarities between features
and able to generalize this knowledge to new feature vectors as well. In Appendix C a more extensive
overview of the individual architecture is listed.

What stands out is that the architectures containing changes in the similarity function from the
matching layer, L2AIC-extended-similarity, L2AIC-abssub andL2AIC-concat performsignificantlyworse
than the other models. With the exception of L2AIC-cosine, which performs slightly better. This de-
crease of performance is due to a combination of overfitting of the model on the training data and early
stopping. Early stopping ensures the model leading to the highest performance on the validation is
eventually saved as the final model after training. Due to overfitting the validation performance will
decrease immediately after a few epochs and will save the model without trained weights.
A particular case is the L2AIC-cosine model. The L2ACI-cosine with a ResNet152 encoder has a rela-
tively good performance. Replacing the matching layer with a cosine similarity function removes the
trainable parameters of thematching layer. This effectivelymeans thematching layer is left out and the
aggregation layer predicts a classification based on direct input of the cosine similarity of the ranker.
However, this input, a single cosine similarity value, does not contain enough distinguishable informa-
tion for the aggregation layer to learn from. As a result, learning the correct weights for the network of
L2AIC-cosine is not possible.
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Based on Table 6.1 the five best performing models (printed in bold font) have been selected. The
output distribution of these models on input samples is displayed in Figure 6.4. The colors denote
the distribution of input samples of known and unknown classes. The memory of L2AIC contains 40
classes from CN , they have not been seen during training. The input images contain an additional 40
unknown classes. Output scores below the classification boundary h = 0.5 get classified as unknown.
Not all outputs are distributed fully along the range of 0 and 1. This is due to early stopping. The loss
function, binary cross-entropy, ideally forces the known and unknown distribution apart by updating
the parameters after each epoch. However, this takes several iterations and if the training is stopped
before this point the output range is smaller.

Figure 6.4: The normalized distribution of the output score of different L2AIC models. The memory contains 40 classes and
the model is tested on an additional 40 classes. The different class memory is used. Each input sample is assigned a final

output score. A score below the classification threshold h = 0.5 is classified as unknown. The colors denote the ground truth
class of the input samples.
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As stated in previously, the L2AIC-cosine was not able to learn to distinguish between known and
unknown classes. This is also visible in Figure 6.4 where the output distributions of known and un-
known classes are almost identical and no proper distinction between known an unknown can bemade.
The seemingly good performance can be explained by the aggregation layer. The training the aggrega-
tion layer of this model effectively moves the output distribution to a position where the classification
boundary will optimally classify the output distribution, without being able to distinguish known and
unknown classes.

The other four models are capable of separating the known and unknown score distribution. Again
a trade-off exists between rejection and classification performance. The L2AIC-default and L2AIC-no-
lstm models are biased towards the rejection of classes. A large part of the known distribution is at the
wrong side of h, resulting in more known classes to be wrongfully identified as unknown. The L2AIC-
smaller-fc model is biased towards classifying known classes. The known output distribution of this
model is almost complete at the correct (right) side of the classification boundary, while unknown out-
put scores are more spread out. This is in line with the theory of open set risk, the trade-off between
open space risk and empirical risk. Based on Table 6.1 and Figure 6.4 the model with the best classi-
fication performance is L2AIC-smaller-fc with ResNet152. The L2AIC-no-lstm with EfficientNet gives
the best rejection performance. These are use for the remainder of the report.

Ranker hyperparameters
The L2AIC model according to the n-way k-shot principle. An input sample is compared to k different
images from n classes of the memory. As elaborated in Section 3.2 these n classes and k images are
retrieved by the ranker using cosine similarity between feature vectors. This section will review the
choice of these hyperparameters. From the original study of L2AC [67], the reference values are n = 9
and k = 5. The hyperparameters define how many samples and classes the ranker passes on to the
meta-classifier.
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Figure 6.5: a The weighted F1-score as a function of k. The L2AIC model has 80 classes in memory and the number of
unknown classes is varied. b The weighted F1-score as a function of n. The L2AIC model has 80 classes in memory and the

number of unknown classes is varied.

Figure 6.5 shows the weighted F1-score for as function of k and n respectively, while varying the
number of unknown classes. The L2AIC-smaller-fc model with pretrained ResNet152 encoder is used.
Selecting the optimal hyperparameters comes down to a trade-off between rejection and classification.
A small value for k, the number of samples for each class, will lead to a poor classification performance.
When selecting k = 1, the matching layer of the meta-classifier generates only one similarity score,
based on a single image per class. This makes the aggregation layer redundant as it has nothing to
aggregate and is prone to error. This single image might be an outlier resulting in an incorrect classifi-
cation. At the other end, when k becomes larger, the rejection performance will decrease. Figure 6.5a
shows that k = 10 balances this trade-off leading to an optimal performance.



6.1. L2AIC 38

Along the same line can be argued that n = 9 is the optimal value for the number of classes selected
by the ranker. The ranker uses the average feature vector of a class to find its similarity to an input
sample. When n = 1 the ranker might pass on the wrong class to the meta-classifier, making it impos-
sible for the meta-classifier to give a correct prediction. Increasing n will increase the chance that the
correct class is passed on to the meta-classifier, increasing the classification performance. However,
addingmore classes to the meta-classifier will increase the ϵU as the possibility an unknown object gets
classified as a known class grows.

Combining above results leads to the conclusion that the hyperparameter set of k = 10 and n = 9
leads to the best performance of L2AIC.

Table 6.2: The performance of different ranking and training variations on the TinyImageNet dataset. The models have 80
known classes in memory and are tested on an additional 80 unknown classes. The classes stored in memory are the same as
used for training the model, CK. For all variations a pretrained ResNet152 encoder has been used in combination with the

L2AIC-smaller-fc model architecture.

Setting Weighted F1 ϵU ϵK

Default training 0.706 0.349 0.261
Reverse ranking 0.312 0.126 1.000
Extended ranking 0.596 0.589 0.250
Two step training 0.661 0.461 0.254

Freeze matching layer 0.627 0.531 0.253

Training procedure
In Table 6.2 the performance of L2AIC using training procedures is listed as well as the default settings.
The L2AIC-smaller-fc model is used in combination with a pretrained ResNet152. The model has 80
classes stored in memory and these classes are the same classes used for training. An additional 80
unknown classes are used for testing the performance. The performance is measured by the weighted
F1-score, the unknown classification error and the known classification error. The use of the reverse
ranking method during training has a strong negative effect on the performance. With this method the
ranker selects the least similar samples from the positive class of each input sample, while it selects the
most similar samples from the negative classes. This effectively learns the classifier to label the least
similar classes as a known class, which is the opposite of how a good classifier should perform. The
model is not able to correctly classify any known classes, given by a ϵK of 1.00.
The three remaining newmethods, extended ranking, two-step training and freezing thematching layer
show better results. However, when compared to the default training method, there is no overall im-
provement. Although the other methods have a slightly lower ϵK , this comes at the cost of an increased
ϵU and lower F1-score. For further experiments only the default training procedure is considered.
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Table 6.3: A comparison of performance of L2AC and L2AIC on the CIFAR-100 dataset. The model has 15 classes stored in
memory and is presented with an additional 10 unknown classes.

Model Encoder Weighted F1 ϵU ϵK

CK CN CK CN CK CN

L2AC EN 0.799 0.642 0.295 0.576 0.144 0.201
L2AC RN152 0.795 0.668 0.318 0.432 0.135 0.268

L2AIC-no-lstm EN 0.805 0.681 0.066 0.204 0.281 0.379
L2AIC-smaller-fc RN152 0.818 0.654 0.283 0.527 0.118 0.221

L2AC comparison
Based on the results of previous paragraphs two versions of L2AIC have been selected on their best
overall performance. The firs model is the L2AIC-no-lstm model with a pretrained EfficientNet en-
coder. The hyperparameters are set at k = 10 and n = 5. No variation in training procedure is used.
The second model is the L2AIC-smaller-fc with a pretrained ResNet152 encoder. Again, the hyperpa-
rameters are set at k = 10 and n = 5 and no variation in the training procedure is used. The first model
is more biased towards rejecting unknowns, while the second model is more biased towards correctly
classifying known objects. A comparison is made with the original L2AC model from [67], with two
different pretrained encoders, EfficientNet and ResNet152. The hyperparameters are kept at their orig-
inal values k = 5, n = 9. Table 6.3 and 6.4 list the performance on the CIFAR-100 and TinyImageNet
dataset respectively. Using CIFAR-100 15 classes are stored in memory and 10 unknown classes are
used. For TinyImageNet 40 classes are in memory with an additional 40 unknown classes.

The results show a difference in performance using CK and CN . In the case ofM = CK , the smaller-
fc has the best overall performance for both datasets. However, this is not the case forM = CN . Now,
the no-lstm models is more favorable in terms of overall performance. This is mainly because of the
good rejection performance of unknown classes and comes at the cost of a higher known classification
error.

Table 6.4: A comparison of performance of L2AC and L2AIC on the TinyImageNet dataset. The model has 40 classes stored
in memory and is presented with an additional 40 unknown classes.

Model Encoder Weighted F1 ϵU ϵK

CK CN CK CN CK CN

L2AC EN 0.691 0.622 0.41 0.481 0.233 0.286
L2AC RN152 0.696 0.583 0.378 0.555 0.251 0.288

L2AIC-no-lstm EN 0.727 0.642 0.057 0.12 0.458 0.545
L2AIC-smaller-fc RN152 0.767 0.625 0.232 0.469 0.247 0.293

Section summary
In this section the performance of L2AIC has been evaluated. It was found that additional fine-tuning
on the encoder has an adverse effect on the performance. The optimal set of hyperparameters are
k = 10 and n = 9. Changing the training procedure has a negative on the overall performance. The
best performing models were found to be L2AIC-no-lstm with pretrained EfficientNet encoder and
L2AIC-smaller-fcwith pretrainedResNet152 encoder. Thesemodels are compared to the original L2AC
algorithm and show an increase in performance.
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6.2. Autonomous data gathering
In 5.4 six objects have been introduced for autonomous data gathering. From these six objects, two ob-
jects,were dropped because VoxBlox++ was unable to reconstruct these. Another three were dropped,
despite a good reconstruction. VoxBlox++ was unable to separate the ground surface from the object.
From only one object, the teapot, 3D reconstruction was successful. A synthetic dataset has been made
from this object.

3D reconstruction
In Figure 6.6 four reconstructed objects of the original six objects of Figure 5.4 are shown. Two objects
have been dropped because reconstruction failed. The first case, the aluminum teapot, failed because
of the reflection of the surface. The ToF camera is unable to capture these reflective surfaces. The other
object, the coffee cup failed because of form symmetry. Simple, symmetric forms are difficult to recon-
struct as reconstruction algorithms are unable to provide accurate loop closure.

(a) (b) (c) (d)

Figure 6.6: 3D models of the four objects used in for reconstruction. (a) The teapot is successfully segmented from the
ground surface. (b), (c) (d) The objects are reconstructed but separation from the ground surface has failed.

From the four objects from Figure 6.6, three objects still include the ground surface. These surface
artifacts make the models unfit for the creation of synthetic datasets. More details of correct and in-
correct segmentation can be found in Figures 6.7 and 6.8. Figure 6.7 shows the GSM of the teapot and
the statue. Colors denote a different segment. The ground surface of the teapot has been marked as
a different segment, while the statue and its ground surface are one segment. Figure 6.8 shows the
semantic segmentation of the teapot and statue using Mask-RCNN during the reconstruction process.
Although the predicted labels are wrong, the masks correctly covers the objects in the Figure 6.8a and
6.8b. However, Image 6.8c shows that during the reconstruction process the statue also gets masked
together with the ground surface. As stated in Section 2.4.2 the final label of the segments is based on
the final label count. If an object is masked more often together with its ground surface this will lead
to incorrect results.

(a) (b)

Figure 6.7: The global segmentation map of the teapot and the statue after the reconstruction process. Different segments are
marked by different colors. The segmentation of the teapot from the ground surface has been successful. The statue and its

ground surface are considered one segment.
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(a) (b) (c)

Figure 6.8: The semantic segmentation of Voxblox++ using Mask R-CNN during the reconstruction process. Although the
semantic labels are incorrect, the created masks segment the objects correctly. (a) The teapot, labeled as vase is correctly

masked. (b) A statue of a person, labeled correctly. (c) The same statue incorrectly labeled as a sink, the mask is also incorrect
and merges the table surface and the object.

Synthetic data generation
With the 3D model of the teapot (Figure 6.6a), two synthetic dataset have been created, Dsyn and
Dsyn,close. The first dataset contains images of the teapot from a large range of camera distance, while
the second set is more focused on the object. Some examples are shown in figure 6.9. Both datasets
consists of 450 randomly generated images. The environment and lighting conditions were varied as
well as the texture, position and orientation of the object. All images are saved with a resolution of
224× 224.

(a) (b)

Figure 6.9: (a) Csyn, the synthetic dataset created with webots, camera distance varies from 0.4 to 1.0m. (a) Csyn,close, the
synthetic dataset with more close-up shots. The camera distance varies from 0.2 to 0.7m.
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6.3. On-the-job recognition
Based on the results of 6.1 two different versions of L2AIC have been selected for the on-the-job recog-
nition task. The L2AIC-no-lstm with a pretrained EfficientNet encoder and the L2IAC-smaller-fc with
pretrained ResNet152. Hyperparameters are set to k = 10 and n = 9. The models are trained on Tiny-
ImageNet and have a memory containing 70 classes. The test set consists of the 70 memory classes
extended with 30 unknown classes. An additional class is added to the test set, cteapot. Two different
datasets are used for this new class. The first set, Dphotos,test are images from the teapot instance from
Section 6.2. The teapot is placed in various environments and lighting conditions. The second test set
for cteapot consists of test set of the teapot class of TinyImagenet, DTiny,test. Their evaluation perfor-
mance is listed in Tables 6.6 and 6.7 respectively. Both the performance on the specific new class cteapot
and all classes call are evaluated. Example images of Dphotos,test, DTiny,test and Dphotos,memory can be
found in Appendix B.

L2AIC-no-lstm
In Section 6.1 was found that the L2AIC-no-lstm with EfficientNet encoder was biased towards reject-
ing test samples. In Table 6.5 the ϵK of this model on Dphotos,test are listed. The rejection bias causes
the model to misclassify almost all samples from cteapot, resulting in a very high ϵK , much larger than
the average error of all classes.

The two datasets from the synthetic domain have no almost no correct classifications onDphotos,test.
This could be explained by the domain gap. The test dataset of Dphotos,test is of the real domain. The
L2AIC-no-lstm appears to be unable to match the test data with the memory of these domains. Using
the dataset in the TinyImageNet domain, DTiny,memory gives better results. Because training of L2AIC
is also done in the TinyImageNet domain the model is slightly better in overcoming the domain gap.
The same holds for using a memory of the real domain, Dphotos,memory . Now both the memory and the
input of class cteapot are in the same domain, resulting in slightly better results. However, the error
is still much larger than the average error for all classes and L2AIC appears to be unable to match the
input to the memory of these domains. Full results of L2AIC-no-lstm model are listed in Appendix E.

Table 6.5: The ϵK performance of L2AIC-no-lstm with EfficientNet encoder onDphotos,test. L2AIC has 70 classes saved in
memory and the test set consists consists of an additional 30 unknown classes. The class cteapot is added to the memory as

different datasets, listed underMemory addition. Performance is both evaluated on the single teapot class as well as all test
classes.

Memory addition Classes ϵK

CK CN

None cteapot - -
call 0.437 0.5

DTiny,memory cteapot 0.79 0.98
call 0.443 0.507

Dphotos,memory cteapot 0.86 0.92
call 0.445 0.507

Dsyn cteapot 0.99 1.0
call 0.445 0.507

Dsyn,close cteapot 1.0 1.0
call 0.445 0.507
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L2AIC-smaller-fc
In Table 6.6 the results of the L2AIC-smaller-fc with ResNet152 encoder are listed. The model is tested
onDphotos,test. In the case of no additional memory, cteapot ∈ CU , the model is able to reject the images
of the teapot, ϵU is low. It performs better than the average of all unknown samples. This is the first
step in the on-the-job recognition task: Rejecting unknown samples. After the second step, generating
a new dataset for unknown classes, these datasets can be added to L2AIC. In the third step the perfor-
mance on the new object is evaluated nowwith extendedmemory of L2AIC. The table shows that for all
four different datasets the model is able to correctly classify the newly memorized object class cteapot.
Based on the weighted F1-score and ϵK the datasets Dphotos,memory and Dsyn,close perform best on the
new object class. This can be explained by the fact that both datasets are very similar to Dphotos,test.
They contain the same teapot instance and are close-up images of the object, making it easier to classify.

Looking at ϵU , the addition of DTiny,memory to the memory will increase the error on all unknown
classes. This increase is larger compared to the other three datasets. A possible explanation for this is
that DTiny,memory contains multiple instances of a teapot with different forms and colors. This might
cause some test samples to be misclassified as a teapot. The other datasets contains images from one
instance, the reconstructed teapot. Another possible explanation is that because the test set of the un-
known classes are also of the TinyImageNet domain they get misclassified more easily.

Table 6.6: The performance of L2AIC-smaller-fc with ResNet152 encoder onDphotos,test. L2AIC has 70 classes saved in
memory and the test set consists consists of an additional 30 unknown classes. The class cteapot is added to the memory as

different datasets, listed underMemory addition. Performance is both evaluated on the single teapot class as well as all test
classes.

Memory addition Classes Weighted F1 ϵU ϵK

CK CN CK CN CK CN

None cteapot - - 0.22 0.35 - -
call 0.699 0.632 0.378 0.458 0.261 0.331

DTiny,memory cteapot 0.942 0.87 - - 0.11 0.23
call 0.69 0.625 0.396 0.482 0.259 0.331

Dphotos,memory cteapot 0.99 0.974 - - 0.02 0.05
call 0.699 0.634 0.381 0.463 0.257 0.327

Dsyn cteapot 0.942 0.844 - - 0.11 0.27
call 0.7 0.633 0.379 0.461 0.259 0.331

Dsyn,close cteapot 0.995 0.958 - - 0.01 0.08
call 0.7 0.634 0.38 0.461 0.257 0.328

InTable 6.7 the performance of L2AIC-smaller-fc onDTiny,test is listed. The addition ofDTiny,memory

to thememory is essentially repeating the experiments of Section 6.1. Only images of the TinyImageNet
domain are used. An important difference between DTiny,test and Dphotos,test is that the latter test set
only contains one instance of a teapot. The first test set contains multiple instances making the recog-
nition task more difficult. This is shown in Table 6.7 as the datasets consisting of only one instance of a
teapot, Dphotos,memory , Dsyn and Dsyn,close have a much larger classification error on cteapot. However,
despite knowing only one instance of a teapot, they are able to classify a substantial part of the test set.
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Table 6.7: The performance of L2AIC-smaller-fc with ResNet152 encoder onDTiny,test. L2AIC has 70 classes saved in
memory and the test set consists consists of an additional 30 unknown classes. The class cteapot is added to the memory as

different datasets, listed underMemory addition. Performance is both evaluated on the single teapot class as well as all test
classes.

Memory addition Classes Weighted F1 ϵU ϵK

CK CN CK CN CK CN

None cteapot - - 0.18 0.18 - -
call 0.699 0.633 0.378 0.452 0.261 0.331

DTiny,memory cteapot 0.942 0.99 - - 0.11 0.02
call 0.69 0.627 0.396 0.482 0.259 0.328

Dphotos,memory cteapot 0.561 0.507 - - 0.61 0.66
call 0.695 0.627 0.381 0.463 0.266 0.336

Dsyn cteapot 0.361 0.246 - - 0.78 0.86
call 0.695 0.625 0.379 0.461 0.268 0.339

Dsyn,close cteapot 0.561 0.45 - - 0.61 0.71
call 0.696 0.627 0.38 0.461 0.266 0.337

6.4. Summary
This chapter has covered the results of the experiments of this report. First, an extensive study has been
done on L2AIC regarding design choices, hyperparameters and training procedure. Two designs stand
out based on their overall performance, the L2AIC-no-lstm with pretrained EfficientNet encoder and
the l2AIC-smaller-fc with pretrained ResNet152 encoder. The first model has better unknown rejection
while the latter model is better at classifying known classes. This is in line with the theory of open set
risk. A trade-off exists between the open space risk and the empirical risk. Secondly, the results of the
autonomous data generation method have been reviewed. Six objects were initially selected for data
generation, but for only one object, the teapot, a synthetic dataset was successfully created. Finally, the
on-the-job recognition task has been conducted using the synthetic dataset of the teapot and the two
best performing versions of L2AIC. L2AIC-no-lstm was unable to perform the on-the-job recognition
task. However, L2AIC-smaller-fcmodel was able perform the task and learned to recognize a previously
unknown object by adding a synthetic dataset to the memory.



7
Discussion

This chapter discusses the results from Chapter 6. First, the L2AIC is covered, followed by the au-
tonomous data collection process. Then the on-the-job recognition task is reviewed and some sugges-
tions for future work is given. The chapter concludes with a small summary of the findings.

Learning to Accept Image Classes
Following the results of Section 6.1 two designs of the L2AIC algorithm have the best overall perfor-
mance. Comparison to the L2AC algorithm shows that a small improvement on the overall performance
is achieved. The first model, L2AIC-no-lstm with pretrained EfficientNet encoder, has a bias towards
rejecting unknown classes. The second model, L2AIC-smaller-fc with pretrained ResNet152 encoder,
has a bias towards correct classification of classes. Open world performance of the classifier has shown
to be a trade-off between two key characteristics of open world learning, the ability to reject unknown
classes and the ability to recognize the classes that are known. An algorithm more eager to reject un-
knowns will also reject the more difficult samples from known object classes. On the other hand, an
algorithm that is more eager to classify its known classes also easily classifies a similar but unknown
object as known. This is in line with the theory of open set risk of Section 2.1.
The choice of encoder is also very important for the performance of L2AIC. It is found that encoders
loaded with pretrained weights on ImageNet perform better than using a pretrained encoder that has
undergone fine-tuning on the used dataset. This fine-tuning is done on a separate set of classes and
might cause the encoder to overfit on this particular set of classes and their features.
Because TinyImageNet is a subset of ImageNet, the pretrained encoder is biased towards this dataset.
A performance comparison with CIFAR-100 shows that L2AIC is better at rejecting unknowns from the
TinyImageNet dataset, but performs better at classifying known classes at the CIFAR-100 dataset. This
shows that the L2AIC is at least partially able to counter this bias.
The optimal set of hyperparameters for the ranker have been found to be k = 10 and n = 9. Lower
hyperparameters would favor better unknown rejection but at the cost of higher known classification
error. In a similar fashion, increasing the hyperparameters improves classification of known classes
but at the cost of a higher unknown classification error.
Changing training procedures of the L2AIC algorithmdid not improve results. Variations in the ranking
procedure and training in multiple steps gave a small decrease of known classification error. However,
this comes at the cost of worse class rejection decreasing the overall open world performance of the
algorithm.

Autonomous data collection
During the process of autonomous data collection it became clear that 3D reconstruction is still a dif-
ficult problem to solve. Only one out of six object was successfully reconstructed and separated from
the ground surface. With the reconstructed object a synthetic dataset is created. This is done in au-
tonomous fashion using the robotics simulator Webots. Randomized images are created from the ob-
ject in different environments and lighting conditions with varying textures, positions and orientations.
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To my knowledge, this is the first synthetic dataset that uses 3D models of real objects in a 3D environ-
ment. By creating an autonomous process the labour-expensive and time-consuming process of dataset
creation can be simplified.
The autonomous data collection process has some limitations. Foremost, the process has not been fully
automated in this report. Because the use of robotics was outside of the scope of this project the 3D
camera has been handled by a human actor instead of a robot. Furthermore, Webots cannot import the
original texture of the 3Dmodel. Object casting shadows is not possible for 3Dmodels that contain too
many vertices, which is often the case with 3D scanned objects.

On-the-job recognition
The on-the-job recognition task, learning to recognize a teapot, has been performed with the L2AIC-
no-lstm model with pretrained EfficientNet and L2AIC-smaller-fc model with ResNet152. The l2AIC-
no-lstm failed the task. It was unable to correctly recognize samples from the teapot due to its bias
towards class rejection. Almost all teapot images were misclassified as unknown. This could also have
been made worse due to the domain gap between the real and synthetic domain.
The L2AIC-smaller-fc did succeed at the on-the-job recognition task. Adding synthetic data of the
teapot to its memory enabled the model to correctly classify test images of the teapot. Almost all test
images were classified correctly. This might be an indication that the model takes more into account
than just the object features. Because the model is a meta-classifier it uses comparison of features to
decide similarity between an image and object classes. The almost perfect classification might be an
indication the meta-classifier compares domain specific features as well.
Two synthetic datasets have been created, varying the camera distance to the object. Results show that
the synthetic dataset consisting of more close-up images of the object achieves better performance. Be-
sides being easier to classify, the fact that the test set also consists of close-up images of the objectmight
play a role in this.
Beside synthetic datasets the performance of L2AIC has also been evaluated with a dataset consisting
of images from the reconstruction process. Performance has shown to be almost identical to synthetic
datasets. This suggests that only 2D images of a camera are enough for successful classification, making
the extensive reconstruction process redundant. However, as mentioned earlier, the synthetic dataset
does not contain the original texture of the object. This proves that using a synthetic dataset of a sin-
gle object can enable recognition of the different colored objects of the same class. This hypothesis is
strengthened by classifying image samples from the teapot class of TinyImageNet. This set of images
containmany instances of teapots with different shapes and colors. The L2AIC-smaller-fc can correctly
classify a part of these images using with the help of a memory containing just a single instance of the
object. Again, the 2D teapot images and synthetic dataset show similar results, but the synthetic dataset
has still a lot of room for improvement, leaving the possibility for better performance in the future.

Future research
This report contains some interesting findings, but also some limitations. A list of proposals for fu-
ture research is given that could lead to better understanding and results with regards to open world
recognition, autonomous data collection and on-the-job recognition.

• To decrease the effect of the domain gap between the synthetic and real domain the L2AICmodel
could be trained with a memory consisting of only synthetic images, while giving real images as
input. This way the model can adapt the synthetic domain to the real domain.

• To test the true openworld capability of L2AIC it is proposed to train on the full ImageNet dataset.
This would allow for testing on a much larger set of classes and is a more close simulation of real
world classification task.

• The robotics simulatorWebots had limitation such as casting shadows or loading original texture.
These are software specific limitations and could be overcome by using different software.

• A synthetic dataset could also be created using a combination of 3D models and Generative Ad-
versarial Networks (GANs). This could improve the domain randomization of the dataset.

• The autonomous data collection process was only partially autonomous as the camera was still
handled by a human actor. Future work could completely automate the process using a robot.

• This report only focused on open world recognition. Expanding open world learning to object
detection, open world detection, is one of the next steps to be taken.
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Summary
Based on their performance the L2AIC-no-lstm with EfficientNet encoder and L2AIC-smaller-fc with
ResNet152 proved to have the best overall open world performance. They still have their limitations as
they are either biased towards unknown class rejection or known class classification. This is in line with
the theory of open space risk. Results show that they outperform the original open-wold classifier L2AC.
The autonomous data collection was successful for one of the six selected objects. Two datasets have
been created with varying distance of the camera from the object. To my knowledge, this is the first
study of creating synthetic datasets consisting of 3D reconstructed objects in 3D environments. The
ability of automating the process can replace the traditional labour-expensive and time-consuming
dataset creation process. From the two best performing L2AIC models, only L2AIC-smaller-fc suc-
ceeded in the on-the-job recognition task. The model has been tested by using two synthetic datasets
with varying camera distances stored in memory. Results show that close-up images of the object give
better performance. Beside the synthetic dataset a dataset of a 2D camera is during testing. A memory
with these camera images gave a similar performance as with the synthetic set. Beside a single instance
test set, the model is also tested on the multi-instance test set of TinyImageNet. Results show that a
memory, consisting of only one instance from a class, is sufficient to correctly classify a substantial part
of the multi-instance test set.



References

[1] Wickliffe C. Abraham and Anthony Robins. “Memory retention – the synaptic stability versus
plasticity dilemma”. In: Trends in Neurosciences 28.2 (Feb. 2005), pp. 73–78. ISSN: 01662236.
DOI: 10.1016/j.tins.2004.12.003. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0166223604003704 (visited on 10/04/2021).

[2] Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Cham: Springer Inter-
national Publishing, 2018. ISBN: 978-3-319-94462-3 978-3-319-94463-0. DOI: 10.1007/978-3-
319-94463-0. URL: http://link.springer.com/10.1007/978-3-319-94463-0 (visited on
08/05/2021).

[3] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”. In:
arXiv:1606.04474 [cs] (Nov. 30, 2016). arXiv: 1606.04474. URL: http://arxiv.org/abs/
1606.04474 (visited on 10/04/2021).

[4] Andrei Barbu et al. “ObjectNet: A large-scale bias-controlled dataset for pushing the limits of
object recognition models”. In: (2019), p. 11.

[5] Abhijit Bendale and Terrance Boult. “Towards Open Set Deep Networks”. In: arXiv:1511.06233
[cs] (Nov. 19, 2015). arXiv: 1511.06233. URL: http://arxiv.org/abs/1511.06233 (visited on
03/26/2021).

[6] Abhijit Bendale and Terrance Boult. “Towards OpenWorld Recognition”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2015 IEEEConference on Computer
Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, June 2015, pp. 1893–1902.
ISBN: 978-1-4673-6964-0. DOI: 10.1109/CVPR.2015.7298799. URL: http://ieeexplore.ieee.
org/document/7298799/ (visited on 01/05/2021).

[7] P.J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992), pp. 239–256. ISSN: 0162-8828,
2160-9292. DOI: 10.1109/34.121791. URL: http://ieeexplore.ieee.org/document/121791/
(visited on 10/27/2020).

[8] Boston Dynamics. Atlas. Boston Dynamics. 2021. URL: https://www.bostondynamics.com/
atlas (visited on 09/04/2021).

[9] T. E. Boult et al. “Learning and the Unknown: Surveying Steps toward OpenWorld Recognition”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019), pp. 9801–
9807. ISSN: 2374-3468, 2159-5399. DOI: 10.1609/aaai.v33i01.33019801. URL: https://aaai.
org/ojs/index.php/AAAI/article/view/5054 (visited on 03/30/2021).

[10] Zhiyuan Chen and Bing Liu. “Lifelong Machine Learning, Second Edition”. In: Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 12.3 (Aug. 14, 2018), pp. 1–207. ISSN:
1939-4608, 1939-4616. DOI: 10.2200/S00832ED1V01Y201802AIM037. URL: https://www.mor
ganclaypool.com/doi/10.2200/S00832ED1V01Y201802AIM037 (visited on 08/16/2021).

[11] Ta-YingCheng.UnderstandingReal Time3DReconstructionandKinectFusion.Medium.Mar. 7,
2020. URL: https : / / itnext . io / understanding - real - time - 3d - reconstruction - and -
kinectfusion-33d61d1cd402 (visited on 12/27/2020).

[12] Francois Chollet. Deep learning with Python. OCLC: ocn982650571. Shelter Island, New York:
Manning Publications Co, 2018. 361 pp. ISBN: 978-1-61729-443-3.

[13] Brian Curless and Marc Levoy. “A volumetric method for building complex models from range
images”. In: Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’96. the 23rd annual conference.NotKnown:ACMPress, 1996, pp. 303–
312. ISBN: 978-0-89791-746-9. DOI: 10.1145/237170.237269. URL: http://portal.acm.org/
citation.cfm?doid=237170.237269 (visited on 10/29/2020).

48

https://doi.org/10.1016/j.tins.2004.12.003
https://linkinghub.elsevier.com/retrieve/pii/S0166223604003704
https://linkinghub.elsevier.com/retrieve/pii/S0166223604003704
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
http://link.springer.com/10.1007/978-3-319-94463-0
https://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1606.04474
http://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
https://doi.org/10.1109/CVPR.2015.7298799
http://ieeexplore.ieee.org/document/7298799/
http://ieeexplore.ieee.org/document/7298799/
https://doi.org/10.1109/34.121791
http://ieeexplore.ieee.org/document/121791/
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas
https://doi.org/10.1609/aaai.v33i01.33019801
https://aaai.org/ojs/index.php/AAAI/article/view/5054
https://aaai.org/ojs/index.php/AAAI/article/view/5054
https://doi.org/10.2200/S00832ED1V01Y201802AIM037
https://www.morganclaypool.com/doi/10.2200/S00832ED1V01Y201802AIM037
https://www.morganclaypool.com/doi/10.2200/S00832ED1V01Y201802AIM037
https://itnext.io/understanding-real-time-3d-reconstruction-and-kinectfusion-33d61d1cd402
https://itnext.io/understanding-real-time-3d-reconstruction-and-kinectfusion-33d61d1cd402
https://doi.org/10.1145/237170.237269
http://portal.acm.org/citation.cfm?doid=237170.237269
http://portal.acm.org/citation.cfm?doid=237170.237269


References 49

[14] Rocco De Rosa, Thomas Mensink, and Barbara Caputo. “Online Open World Recognition”. In:
arXiv:1604.02275 [cs, stat] (Apr. 8, 2016). version: 1. arXiv: 1604.02275. URL: http://arxiv.
org/abs/1604.02275 (visited on 04/06/2021).

[15] Akshay Raj Dhamija et al. “The Overlooked Elephant of Object Detection: Open Set”. In: 2020
IEEEWinter Conference on Applications of Computer Vision (WACV). 2020 IEEEWinter Con-
ference on Applications of Computer Vision (WACV). Snowmass Village, CO, USA: IEEE, Mar.
2020, pp. 1010–1019. ISBN: 978-1-72816-553-0. DOI: 10.1109/WACV45572.2020.9093355. URL:
https://ieeexplore.ieee.org/document/9093355/ (visited on 05/11/2021).

[16] Marc-Antoine Drouin and Lama Seoud. “Consumer-Grade RGB-D Cameras”. In: 3D Imaging,
Analysis and Applications. Ed. by Yonghuai Liu et al. Cham: Springer International Publishing,
2020, pp. 215–264. ISBN: 978-3-030-44070-1. DOI: 10.1007/978- 3- 030- 44070- 1_5. URL:
https://doi.org/10.1007/978-3-030-44070-1_5 (visited on 03/19/2021).

[17] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. “Cut, Paste and Learn: Surprisingly Easy
Synthesis for Instance Detection”. In: arXiv:1708.01642 [cs] (Aug. 4, 2017). arXiv: 1708.01642.
URL: http://arxiv.org/abs/1708.01642 (visited on 10/15/2020).

[18] Geli Fei, Shuai Wang, and Bing Liu. “Learning Cumulatively to Become More Knowledgeable”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16: The 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. San Francisco California USA: ACM, Aug. 13, 2016, pp. 1565–1574.
ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939835. URL: https://dl.acm.org/doi/10.
1145/2939672.2939835 (visited on 08/17/2021).

[19] Fadri Furrer et al. “Incremental Object Database: Building 3DModels fromMultiple Partial Ob-
servations”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Madrid: IEEE, Oct. 2018, pp. 6835–6842. ISBN: 978-1-5386-8094-0. DOI: 10.1109/IROS.2018.
8594391. URL: https://ieeexplore.ieee.org/document/8594391/ (visited on 02/23/2021).

[20] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. “Recent Advances in Open Set Recogni-
tion: A Survey”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020),
pp. 1–1. ISSN: 0162-8828, 2160-9292, 1939-3539. DOI: 10.1109/TPAMI.2020.2981604. arXiv:
1811.08581. URL: http://arxiv.org/abs/1811.08581 (visited on 03/26/2021).

[21] Georgios Georgakis et al. “Synthesizing Training Data for Object Detection in Indoor Scenes”. In:
(2017), p. 9.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep learning. Adaptive computation and
machine learning. Cambridge, Massachusetts: The MIT Press, 2016. 775 pp. ISBN: 978-0-262-
03561-3.

[23] Margarita Grinvald et al. “Volumetric Instance-Aware Semantic Mapping and 3D Object Discov-
ery”. In: IEEE Robotics and Automation Letters 4.3 (July 2019), pp. 3037–3044. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/LRA.2019.2923960. arXiv: 1903.00268. URL: http://arxiv.
org/abs/1903.00268 (visited on 02/23/2021).

[24] KaimingHe et al. “DeepResidual Learning for ImageRecognition”. In: 2016 IEEEConference on
Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision
and PatternRecognition (CVPR). ISSN: 1063-6919. June 2016, pp. 770–778. DOI: 10.1109/CVPR.
2016.90.

[25] Kaiming He et al. “Mask R-CNN”. In: (2017).
[26] StefanHinterstoisser et al. “AnAnnotation Saved is anAnnotationEarned:Using Fully Synthetic

Training for Object Detection”. In: (2019), p. 10.
[27] Jie Hu et al. “Squeeze-and-Excitation Networks”. In: arXiv:1709.01507 [cs] (May 16, 2019).

arXiv: 1709.01507. URL: http://arxiv.org/abs/1709.01507 (visited on 09/09/2021).
[28] Intel. LiDAR – Intel® RealSense™ Technology. Intel® RealSense™ Depth and Tracking Cam-

eras. 2021. URL: https://www.intelrealsense.com/lidar/ (visited on 03/25/2021).
[29] Philip T Jackson et al. “Style Augmentation: Data Augmentation via Style Randomization”. In:

(2018), p. 10.

https://arxiv.org/abs/1604.02275
http://arxiv.org/abs/1604.02275
http://arxiv.org/abs/1604.02275
https://doi.org/10.1109/WACV45572.2020.9093355
https://ieeexplore.ieee.org/document/9093355/
https://doi.org/10.1007/978-3-030-44070-1_5
https://doi.org/10.1007/978-3-030-44070-1_5
https://arxiv.org/abs/1708.01642
http://arxiv.org/abs/1708.01642
https://doi.org/10.1145/2939672.2939835
https://dl.acm.org/doi/10.1145/2939672.2939835
https://dl.acm.org/doi/10.1145/2939672.2939835
https://doi.org/10.1109/IROS.2018.8594391
https://doi.org/10.1109/IROS.2018.8594391
https://ieeexplore.ieee.org/document/8594391/
https://doi.org/10.1109/TPAMI.2020.2981604
https://arxiv.org/abs/1811.08581
http://arxiv.org/abs/1811.08581
https://doi.org/10.1109/LRA.2019.2923960
https://arxiv.org/abs/1903.00268
http://arxiv.org/abs/1903.00268
http://arxiv.org/abs/1903.00268
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
https://www.intelrealsense.com/lidar/


References 50

[30] K. J. Joseph et al. “Towards Open World Object Detection”. In: arXiv:2103.02603 [cs] (May 9,
2021). arXiv: 2103.02603. URL: http://arxiv.org/abs/2103.02603 (visited on 05/11/2021).

[31] Alireza Khatemian and Hamid Arabnia. “Survey on 3D Surface Reconstruction”. In: (2016).

[32] Simon Kriegel. “Autonomous 3D Modeling of Unknown Objects for Active Scene Exploration”.
In: (2015), p. 175.

[33] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: (2009), p. 60.

[34] AlexKrizhevsky, Ilya Sutskever, andGeoffrey EHinton. “ImageNet ClassificationwithDeepCon-
volutional Neural Networks”. In: Advances in Neural Information Processing Systems. Vol. 25.
Curran Associates, Inc., 2012. URL: https://papers.nips.cc/paper/2012/hash/c399862d3b9
d6b76c8436e924a68c45b-Abstract.html (visited on 08/13/2021).

[35] Mathieu Labbé and François Michaud. “RTAB-Map as an open-source lidar and visual simulta-
neous localization andmapping library for large-scale and long-term online operation”. In: Jour-
nal of Field Robotics 36.2 (Mar. 2019), pp. 416–446. ISSN: 15564959. DOI: 10.1002/rob.21831.
URL: http://doi.wiley.com/10.1002/rob.21831 (visited on 11/02/2020).

[36] Ya Le and Xuan Yang. “Tiny ImageNet Visual Recognition Challenge”. In: (2015), p. 6.

[37] Melanie Lefkowitz. Professor’s perceptron paved the way for AI – 60 years too soon. Cornell
Chronicle. 2019. URL: https://news.cornell.edu/stories/2019/09/professors-perceptro
n-paved-way-ai-60-years-too-soon (visited on 10/06/2021).

[38] Tsung-Yi Lin et al. “Microsoft COCO: CommonObjects in Context”. In:Computer Vision –ECCV
2014. Ed. by David Fleet et al. Vol. 8693. Series Title: Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2014, pp. 740–755. ISBN: 978-3-319-10601-4978-3-319-10602-
1. DOI: 10.1007/978-3-319-10602-1_48. URL: http://link.springer.com/10.1007/978-3-
319-10602-1_48 (visited on 08/24/2021).

[39] Bing Liu. “Learning on the Job: Online Lifelong and Continual Learning”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 34.9 (Apr. 3, 2020), pp. 13544–13549. ISSN: 2374-
3468, 2159-5399. DOI: 10.1609/aaai.v34i09.7079. URL: https://aaai.org/ojs/index.php/
AAAI/article/view/7079 (visited on 05/11/2021).

[40] M. Mancini et al. “Knowledge is Never Enough: Towards Web Aided Deep Open World Recog-
nition”. In: 2019 International Conference on Robotics and Automation (ICRA). 2019 Interna-
tional Conference on Robotics and Automation (ICRA). ISSN: 2577-087X. May 2019, pp. 9537–
9543. DOI: 10.1109/ICRA.2019.8793803.

[41] Osama Mazhar and Jens Kober. “Random Shadows and Highlights: A new data augmentation
method for extreme lighting conditions”. In: arXiv:2101.05361 [cs] (Jan. 18, 2021). arXiv: 2101.
05361. URL: http://arxiv.org/abs/2101.05361 (visited on 08/19/2021).

[42] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem”. In: Psychology of Learning and Motivation. Vol. 24. Else-
vier, 1989, pp. 109–165. ISBN: 978-0-12-543324-2. DOI: 10.1016/S0079- 7421(08)60536- 8.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0079742108605368 (visited on
04/08/2021).

[43] Warren S Mcculloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent in Nervous
Activity”. In: (1943), p. 17.

[44] Olivier Michel. “Webots™: Professional Mobile Robot Simulation”. In: International Journal of
Advanced Robotic Systems 1.1 (Mar. 1, 2004). Publisher: SAGE Publications, p. 5. ISSN: 1729-
8814. DOI: 10.5772/5618. URL: https://doi.org/10.5772/5618 (visited on 08/31/2021).

[45] Microsoft. Kinect - Windows app development. 2010. URL: https://developer.microsoft.
com/en-us/windows/kinect/ (visited on 03/25/2021).

[46] Richard ANewcombe et al. “KinectFusion: Real-TimeDense SurfaceMapping and Tracking”. In:
(2011), p. 10.

[47] Helen Oleynikova et al. “Voxblox: Building 3D Signed Distance Fields for Planning”. In: (2016).
Artwork Size: 8 p. Medium: application/pdf Publisher: ETH Zurich, 8 p. DOI: 10.3929/ETHZ-A-
010820353. URL: http://hdl.handle.net/20.500.11850/128028 (visited on 03/10/2021).

https://arxiv.org/abs/2103.02603
http://arxiv.org/abs/2103.02603
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1002/rob.21831
http://doi.wiley.com/10.1002/rob.21831
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://doi.org/10.1007/978-3-319-10602-1_48
http://link.springer.com/10.1007/978-3-319-10602-1_48
http://link.springer.com/10.1007/978-3-319-10602-1_48
https://doi.org/10.1609/aaai.v34i09.7079
https://aaai.org/ojs/index.php/AAAI/article/view/7079
https://aaai.org/ojs/index.php/AAAI/article/view/7079
https://doi.org/10.1109/ICRA.2019.8793803
https://arxiv.org/abs/2101.05361
https://arxiv.org/abs/2101.05361
http://arxiv.org/abs/2101.05361
https://doi.org/10.1016/S0079-7421(08)60536-8
https://linkinghub.elsevier.com/retrieve/pii/S0079742108605368
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://developer.microsoft.com/en-us/windows/kinect/
https://developer.microsoft.com/en-us/windows/kinect/
https://doi.org/10.3929/ETHZ-A-010820353
https://doi.org/10.3929/ETHZ-A-010820353
http://hdl.handle.net/20.500.11850/128028


References 51

[48] HelenOleynikova et al. “Voxblox: Incremental 3DEuclidean SignedDistance Fields for on-board
MAV planning”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2017 IEEE/RSJ International Conference on IntelligentRobots andSystems (IROS).
Vancouver, BC: IEEE, Sept. 2017, pp. 1366–1373. ISBN: 978-1-5386-2682-5. DOI: 10 . 1109 /
IROS.2017.8202315. URL: http://ieeexplore.ieee.org/document/8202315/ (visited on
02/23/2021).

[49] PAL Robotics. PAL Robotics : Leading company in service robotics. PAL Robotics. 2021. URL:
https://pal-robotics.com/ (visited on 08/31/2021).

[50] JoshPatterson andAdamGibson.Deep learning:Apractitioner’s approach. First edition.OCLC:
ocn902657832. Sebastopol, CA: O’Reilly, 2017. 507 pp. ISBN: 978-1-4919-1425-0.

[51] Xingchao Peng et al. “Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adapta-
tion”. In: arXiv:1806.09755 [cs] (June 25, 2018). arXiv: 1806.09755. URL: http://arxiv.org/
abs/1806.09755 (visited on 12/15/2020).

[52] Hadi Pouransari and Saman Ghili. “Tiny ImageNet Visual Recognition Challenge”. In: (2015),
p. 9.

[53] SudharsanRavichandiran.Hands-onmeta learningwith Python:meta learning using one-shot
learning, MAML, Reptile, and Meta-SGD with TensorFlow. OCLC: 1107492001. Birmingham,
UK: Packt Publishing, 2018. ISBN: 978-1-78953-702-4. URL: http://proquestcombo.safaribo
oksonline.com/9781789534207 (visited on 09/09/2021).

[54] Sylvestre-Alvise Rebuffi et al. “iCaRL: Incremental Classifier and Representation Learning”. In:
arXiv:1611.07725 [cs, stat] (Apr. 14, 2017). arXiv: 1611.07725. URL: http://arxiv.org/abs/
1611.07725 (visited on 04/06/2021).

[55] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and organization
in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408. ISSN: 1939-1471, 0033-295X.
DOI: 10.1037/h0042519. URL: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519
(visited on 08/09/2021).

[56] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations
by back-propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–536. ISSN: 0028-0836,
1476-4687. DOI: 10 . 1038 / 323533a0. URL: http : / / www . nature . com / articles / 323533a0
(visited on 08/10/2021).

[57] Donald Rumsfeld. Known and Unknown: A Memoir. 1st edition. Sentinel, Feb. 8, 2011. 883 pp.

[58] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision 115.3 (Dec. 1, 2015), pp. 211–252. ISSN: 1573-1405. DOI: 10.1007/
s11263- 015- 0816- y. URL: https://doi.org/10.1007/s11263- 015- 0816- y (visited on
08/23/2021).

[59] W. J. Scheirer, L. P. Jain, and T. E. Boult. “Probability Models for Open Set Recognition”. In:
IEEETransactions on PatternAnalysis andMachine Intelligence 36.11 (Nov. 2014). Conference
Name: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 2317–2324. ISSN:
1939-3539. DOI: 10.1109/TPAMI.2014.2321392.

[60] Walter J Scheirer, Archana Sapkota, and Terrance E Boult. “Towards Open Set Recognition”.
In: IEEE TRANSACTIONS ON PATTERN ANALYSIS ANDMACHINE INTELLIGENCE (2012),
p. 17.

[61] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
In: (2014), p. 30.

[62] ChenSun et al. “RevisitingUnreasonableEffectiveness ofData inDeepLearningEra”. In:arXiv:1707.02968
[cs] (Aug. 3, 2017). arXiv: 1707.02968. URL: http://arxiv.org/abs/1707.02968 (visited on
08/19/2021).

[63] NikoSünderhauf et al. “TheLimits andPotentials ofDeepLearning forRobotics”. In:arXiv:1804.06557
[cs] (Apr. 18, 2018). arXiv: 1804.06557. URL: http://arxiv.org/abs/1804.06557 (visited on
01/05/2021).

https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2017.8202315
http://ieeexplore.ieee.org/document/8202315/
https://pal-robotics.com/
https://arxiv.org/abs/1806.09755
http://arxiv.org/abs/1806.09755
http://arxiv.org/abs/1806.09755
http://proquestcombo.safaribooksonline.com/9781789534207
http://proquestcombo.safaribooksonline.com/9781789534207
https://arxiv.org/abs/1611.07725
http://arxiv.org/abs/1611.07725
http://arxiv.org/abs/1611.07725
https://doi.org/10.1037/h0042519
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0042519
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TPAMI.2014.2321392
https://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
https://arxiv.org/abs/1804.06557
http://arxiv.org/abs/1804.06557


References 52

[64] Mingxing Tan andQuoc V. Le. “EfficientNet: RethinkingModel Scaling for Convolutional Neural
Networks”. In: arXiv:1905.11946 [cs, stat] (Sept. 11, 2020). arXiv: 1905.11946. URL: http://
arxiv.org/abs/1905.11946 (visited on 08/13/2021).

[65] Josh Tobin et al. “Domain Randomization for Transferring Deep Neural Networks from Simu-
lation to the Real World”. In: arXiv:1703.06907 [cs] (Mar. 20, 2017). arXiv: 1703.06907. URL:
http://arxiv.org/abs/1703.06907 (visited on 11/09/2020).

[66] Antonio Torralba and Alexei A. Efros. “Unbiased look at dataset bias”. In: CVPR 2011. 2011 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA:
IEEE, June 2011, pp. 1521–1528. ISBN: 978-1-4577-0394-2. DOI: 10.1109/CVPR.2011.5995347.
URL: http://ieeexplore.ieee.org/document/5995347/ (visited on 01/05/2021).

[67] HuXuet al. “Open-worldLearning andApplication toProduct Classification”. In:arXiv:1809.06004
[cs] (Mar. 1, 2019). DOI: 10.1145/3308558.3313644. arXiv: 1809.06004. URL: http://arxiv.
org/abs/1809.06004 (visited on 04/12/2021).

https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.1109/CVPR.2011.5995347
http://ieeexplore.ieee.org/document/5995347/
https://doi.org/10.1145/3308558.3313644
https://arxiv.org/abs/1809.06004
http://arxiv.org/abs/1809.06004
http://arxiv.org/abs/1809.06004


A
L2AIC architectures

Figure A.1: L2AIC-cosine: The matching layer has been replaced with the cosine similarity function (Equation 3.1). This
effectively removes the whole matching layer and the aggregation layer will predict a final score based on output values of the

ranker. This variation puts the influence of the matching layer to the test.

Figure A.2: L2AIC-no-lstm: The LSTM in the aggregation layer is replaced with multiple fully connected layers. Besides
aggregation the LSTM also functions as optimizer for the matching layer (Section 2.3). This variation tests the influence of the

LSTM on performance of the L2AIC model.

Figure A.3: L2AIC-smaller-fc: Both feature vectors are reduced in size by a fully connected layer before being passed on to
the similarity function. This fully connected layer might help in the selection of most relevant features before being translated

to similarity space.

]
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Figure A.4: L2AIC-abssub: The similarity function (Equation 2.2) has been reduced to only the first part of the
concatenation, the absolute subtraction of both vectors fsim = |xt − xai |.

Figure A.5: L2AIC-concat: The similarity function is removed with the idea that the meta-classifier learns a similarity
function on its own . Both feature vectors are concatenated and passed through the fully connected layers fsim = xt ⊕ xai .

Figure A.6: L2AIC-extended-similarity:A copy of L2AIC-concat, where the similarity function is removed
(fsim = xt ⊕ xai ), but now the matching layer has been extended with multiple fully connected layers. This give the matching

layer more capacity for finding a similarity function.



B
Extra datasets

Figure B.1: Dphotos,memory : The dataset created from snapshots during the reconstruction process. This dataset is used as
memory for the L2AIC algorithm.

Figure B.2: Dphotos,test: The dataset created for testing the performance of the L2AIC algorithm.
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Figure B.3: DTiny,test: The teapot class of the TinyImageNet dataset. This dataset is used for testing the performance of the
L2AIC algorithm.
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C
Meta-classifier extra results

C.1. Weighted F1-score for architectures

(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.1: Weighted F1-score for L2AIC with EfficientNet per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.2: Weighted F1-score for L2AIC with ResNet50 per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.3: Weighted F1-score for L2AIC with ResNet152 per architecture
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C.2. known error score per architecture

(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.4: Known error for L2AIC with EfficientNet per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.5: Known error for L2AIC with ResNet50 per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.6: Known error for L2AIC with ResNet152 per architecture



C.3. Unknown error per architecture 64

C.3. Unknown error per architecture

(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.7: Unknown error for L2AIC with EfficientNet per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.8: Unknown error for L2AIC with ResNet50 per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.9: Unknown error for L2AIC with ResNet152 per architecture
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C.4. Wilderness impact per architecture

(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.10: Wilderness impact for L2AIC with EfficientNet per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.11: Wilderness impact for L2AIC with ResNet50 per architecture
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(a) L2AIC-default (b) L2AIC-cosine (c) L2AIC-no-lstm

(d) L2AIC-extended-similarity (e) L2AIC-smaller-fc

(f) L2AIC-abssub (g) L2AIC-concat

Figure C.12: Wilderness impact for L2AIC with ResNet152 per architecture



D
Webots environment

(a) (b) (c)

(d) (e) (f)

Figure D.1: (a) (b) (c) Three different inside environments in an apartment setting. (d) An environment only containing a
variable background and lighting conditions. (e) (f) Two outside environment in a city and a park.

70



E
On-the-job recognition extra results

Table E.1: The performance of L2AIC-no-lstm with EfficientNet encoder onDphotos,test. L2AIC has 70 classes saved in
memory and the test set consists consists of an additional 30 unknown classes. The class cteapot is added to the memory as

different datasets, listed underMemory addition. Performance is both evaluated on the single teapot class as well as all test
classes.

Memory addition Classes Weighted F1 ϵU ϵK

CK CN CK CN CK CN

None cteapot - - 0.0 0.0 - -
call 0.755 0.583 0.132 0.184 0.437 0.5

DTiny,memory cteapot 0.347 0.039 - - 0.79 0.98
call 0.748 0.571 0.138 0.203 0.443 0.507

Dphotos,memory cteapot 0.246 0.148 - - 0.86 0.92
call 0.749 0.574 0.133 0.19 0.443 0.506

Dsyn cteapot 0.02 0.0 - - 0.99 1.0
call 0.748 0.572 0.133 0.19 0.445 0.507

Dsyn,close cteapot 0.0 0.0 - - 1.0 1.0
call 0.748 0.572 0.133 0.19 0.445 0.507

Table E.2: The performance of L2AIC-no-lstm with EfficientNet encoder onDTiny,test. L2AIC has 70 classes saved in
memory and the test set consists consists of an additional 30 unknown classes. The class cteapot is added to the memory as

different datasets, listed underMemory addition. Performance is both evaluated on the single teapot class as well as all test
classes.

Memory addition Classes Weighted F1 ϵU ϵK

CK CN CK CN CK CN

None cteapot - - 0.01 0.07 - -
call 0.755 0.583 0.132 0.186 0.437 0.5

DTiny,memory cteapot 0.758 0.958 - - 0.39 0.08
call 0.75 0.58 0.138 0.203 0.437 0.495

Dphotos,memory cteapot 0.058 0.0 - - 0.97 1.0
call 0.748 0.572 0.133 0.19 0.445 0.507

Dsyn cteapot 0.0 0.0 - - 1.0 1.0
call 0.748 0.572 0.133 0.19 0.445 0.507

Dsyn,close cteapot 0.0 0.02 - - 1.0 0.99
call 0.748 0.573 0.133 0.19 0.445 0.507
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