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. Wetenschap en technologie, of in andere woorden theorie en praktijk, zijn

als goede vrienden: ze zijn duidelijk verschillend, desondanks onafscheidelijk,
samen tot meer in staat dan elk afzonderlijk.

. De exacte wetenschapper die geinteresseerd is in de praktijk constateert vaker

verschillen dan overeenkomsten tussen theorie en praktijk; ter bevordering
van de technische wetenschap zou hij zich desondanks meer moeten con-
centreren op de overeenkomsten tussen theorie en praktijk en minder op de
verschillen.

. Een goede wiskundige kan een echt probleem oplossen; een echte wiskundige

kan alleen een goed probleem oplossen.

. Eenieder die ontevreden is met een geimproviseerde, ad hoc oplossing voor

een technisch probleem dient zich te realiseren dat een goed gefundeerde op-
lossing meestal slechts mogelijk is dankzij ontwikkeling, onderhoud en juiste
toepassing van gereedschappen.

. Als Nederlandse vertaling van ‘system performance’ wordt wel gesproken van

‘de prestaties van het systeem’. Dit is echter principieel fout: er is sprake
van ‘het prestatieniveau van het systeem’.

. Ieder regelaarontwerp bestaat uit een zo goed mogelijke afweging van con-

flicterende eisen. In een ‘standard plant’ structuur worden de eisen bepaald
door de keuze van relevante signalen en hun relatie met het te regelen sys-
teem en wordt de afweging bepaald door de keuze van weegfuncties; het
toegepaste optimaliseringsalgorithme bepaalt vervolgens nog slechts de aard
en kwaliteit van de afweging.

. Modelvorming omwille van regelaarontwerp bestaat niet alleen uit de mo-

delvorming van het te regelen systeem, maar ook uit de modelvorming van
externe invloeden hierop en de modelvorming van het gewenste gedrag. In
een ‘standard plant’ structuur [1] zijn deze drie modellen te herkennen als
respectievelijk de ‘plant’, de ingangswegingen en de uitgangswegingen [2].
Het verdient aanbeveling om hier in het regeltechnisch onderwijs zeer gericht
aandacht aan te besteden.

[1] S.P.Boyd, C.H.Barratt. Linear controller design, limits of performance.
Prentice Hall Information and System Sciences Series, Englewood Cliffs,
NJ, 1990.

[2] dit proefschrift.
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Bij gebruik van de term ‘robuustheid’ met betrekking tot een regeling dient te
worden aangegeven: 1. om welke eigenschap het gaat, 2. hoe robuustheid kan
worden gekwantificeerd met betrekking tot deze eigenschap en 3. om welke
invloeden het gaat. Aangezien deze drie punten alle een verscheidenheid aan
mogelijkheden toelaten, die bovendien vaak conflicterend zijn, is het duidelijk
dat de term ‘robuuste regeling’ zondermeer nietszeggend is.

Kunstmatige intelligentie bestaat niet en zal op afzienbare termijn niet
bestaan. Onderzoek op deze gebieden is echter zeker niet zinloos maar men
zou dienen te spreken van ‘de modellering van intelligentie’. Of kunstmatige
intelligentie ooit zal kunnen bestaan is onzeker, maar het mag niet verwacht
worden dat zij het resultaat kan zijn van de op dit moment bestaande lijnen
van onderzoek.

o J.Kelly, Artificial intelligence, a modern myth. Ellis Horwood Series in
Artificial Intelligence, New York, 1993.

De kans op verkoudheid is groter in een auto met (ingeschakelde) aircondi-
tioning dan in een (geopende) cabriolet: dit ervaringsfeit zou voor ontwer-
pers van airconditioning voor inbouw in auto’s aanleiding moeten zijn hun
ontwerpen opnieuw te evalueren.

Er zijn velen die wetenschap en geloof kunnen combineren: dit getuigt van
de enorme creativiteit en flexibiliteit van de mens, daar hij in staat blijkt
te zijn te zoeken naar waarheden en feiten, terwijl hij sommige daarvan

systematisch verwerpt.

Een vermeende ‘achterstand’ van Belgié op Nederland wordt gelogenstraft

door het feit dat men daar al eeuwenlang ‘bier brouwt zoals bier bedoeld is’.

De automobilist als sponsor van vele overheidsactiviteiten die niets met ver-
betering van de automobiliteit te maken hebben, is de enige sponsor die niet
alleen toestaat dat er met hem gesolt wordt door degenen die hij sponsort
maar tevens moet aanzien hoe door hem betaalde ‘opvoedende televisiespot-
jes’ zijn intelligentie beledigen.

Technici gaan prat op het feit dat er sprake is van een enorme toegevoegde
waarde wanneer geintegreerde schakelingen, ofwel ‘chips’, worden gewon-
nen uit zand; bescheidenheid past als men bedenkt dat een simpel stuk lin-
nen, opgedroogde olie en een verscheidenheid aan pigmenten vele tientallen

miljoenen guldens kan opleveren.
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Preface

The research project that resulted in this thesis started in 1987, and was based
on my interest in robust control theory. Developments in this area were very
fast: milestones are the paper of Zames (1981), which is generally recognised as
the starting point of Hy, control theory, the ONR/Honeywell workshop given by
Doyle, Chu, Francis, Khargonekar, and Stein (1984), elaborating on the possibil-
ities of Hy, Ho, and y, and the paper by Glover and Doyle in (1988), providing
‘numerically friendly’ state-space formula for the calculation of H., optimal con-
trollers. I was personally very much inspired by the course given by prof. Curtain
and prof. Kaashoek for the Dutch graduate school of systems and control in 1988,
based on ‘a course in Ho, control theory’ by Francis (1987), and by the ‘u short
course on theory and applications of robust multivariable control’ given in Delft
by Doyle, Packard, Balas and Glover (1990). The latter resulted in a good relation
with John Doyle, Andy Packard and Gary Balas, which resulted in several helpful
communications, especially at the CDC in 1991 and the ACC in 1993. It also re-
sulted in finding in Samir Bennani a congenial spirit in promoting robust control
in a reluctant world. I thank him for many interesting discussions, whether or not
over a glass of fine malt whiskey.

Another main interest of mine was based on my M.Sc. work performed at Philips
Research Laboratories in Eindhoven, where I learned many important practical in-
sights in control design, and was introduced to the possibilities of state-of-the-art
digital hardware for implementing complex controllers on relatively fast mechan-
ical systems. The combination of these two interests can be seen as the basis for
this thesis. The first four chapters are aimed at the combination of the general ser-
vomechanism problem with robust control theory. The design of servomechanisms
is considered, with robustness properties in the sense of robust asymptotic track-
ing, robust stability and performance, and robustness guarantees for structured
uncertainties. The fifth chapter considers the design of a robust servomechanism
based on an actual three-degrees-of-freedom hydraulic positioning system.
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Summary

The output regulation and tracking problem, also known as the servomechanism
problem, is a standard subject in both classical and modern control theory. For
instance with the help of state-space methods, it is possible to construct a descrip-
tion of a set of signals that is ‘persistent’: i.e. not decaying to zero when time goes
to infinity. Using linear time-invariant models, such a set may consist of polyno-
mial and sinusoidal functions of time. Then, the control problem is to construct a
controller for a given system such that one or more system outputs asymptotically
‘track’ the specified persistent signals, that may therefore be interpreted as ‘refer-
ence signals’. It is known that such a controller has certain structural properties:
the controller must contain a dynamical model, a ‘servocompensator’, such that
the combination of controller and system contains an ‘internal model’ of the set
of reference signals.

However, the control objective thus specified is not sufficient to obtain a realistic
controller: the asymptotic tracking property must be combined with other objec-
tives, like speed of response, disturbance attenuation and robustness properties.
Usually, this can be done by application of a given control design method on a
system model, extended with a servo compensator that is later incorporated in-
to the controller. This approach works well with the ‘linear quadratic optimal’
control methods that were mostly considered during the modern control period
(1960-1980). Unfortunately, difficulties arise when it is attempted to apply ‘ro-
bust’ control methods, as under development since 1980. It appears that the
extension of the system to be controlled with a servo compensator is in violation
with certain standard assumptions that are made to facilitate the application of
these methods.

In this thesis, an approach is suggested to solve these difficulties in a general sense:
given any linear time-invariant model of a set of persistent signals for which the
output regulation and tracking problem is solvable, the given approach allows any
existing robust control method to be used to find an appropriate controller. To




Summary xiii

determine solvability of this output regulation and tracking problem, a new neces-
sary and sufficient condition is suggested and related to earlier results. From this
condition, the construction of an appropriate servo compensator is set up that
appears to be of minimal order for the given set of persistent signals. The correct
formulation of a standard control configuration is considered such that physical in-
terpretation of disturbance inputs, weight functions, and control objective outputs
is possible, under the guarantee that the tracking objective is obtained. Robust
control methods, like Hy and H., optimization, and x analysis and synthesis, can
then be applied to obtain the desired closed-loop transfer from disturbances to
objective functions.

Two important extensions of the presented approach are considered. First, the
construction of a non-minimal servo compensator to obtain ‘robust asymptotic
tracking’ is given. It is shown that in many cases the result can be seen as a special
case of the given approach; furthermore, some possible disadvantages with respect
to control objectives other than asymptotic tracking are discussed. Secondly, the
two-degree-of-freedom problem formulation is given as an extension of the standard
control configuration. This allows the simultaneous construction of feedforward
and feedback controllers with guaranteed asymptotic tracking properties, by means
of robust control methods.

A multivariable experimental control problem is considered, with much attention
to the determination of an appropriate control configuration and the selection of
the necessary weight functions. It provides a simple illustration of the integration
of the asymptotic tracking property within a typical robust control problem. Sev-
eral controllers are designed by means of H., optimization; they are experimental-
ly evaluated within a digital signal processor based implementation environment.
Robustness properties with respect to stability, performance and asymptotic track-
ing are guaranteed by means of parametric uncertainty modelling and structured
singular value analysis.
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Chapter 1

Introduction

The main issue of this thesis is the design of controllers for servo systems, with
an emphasis on mechanical servo systems. In control theory, this type of problem
is known as the output regulation and tracking problem or the servomechanism
problem. Many results are known in this area, both in classical control theory and
in modern control theory. However, when looking at the latest developments in
the area of robust control theory, the servomechanism problem appears to have
certain properties that are hard to deal with. We will look at a solution of this
from a practical point of view; application of many results from robust control
theory on the servomechanism problem will be made possible.

The next section will place the servomechanism problem within linear control
theory. After that, the general problem formulation for this thesis will be given,
followed by an overview of contents.

1.1 The servomechanism problem in linear con-

trol theory

1.1.1 Developments in linear control theory

When considering control problems in practice, there are usually many objectives
that are pursued. Basic for the scientific approach to control problems is the
possibility to put those objectives in mathematical terminology, such that tools
can be developed to define, analyze and solve them. Fortunately, this is possible
for some of the more important requirements, like stability and performance.

However, there are several other objectives for which this is much harder: for



2 Introduction

instance, it is very difficult to define a sensible trade-off between instrumenta-
tion costs and performance. Furthermore, as control design usually has to deal
with trade-offs between several objectives, it is essential that the translation of
objectives to mathematical representations is such that these representations are
comparable with each other. In many cases it appears that this implies that
mathematical representations of control objectives are inaccurate and incomplete.

In spite of this, the availability of mathematical tools to describe and analyze the
system to be controlled and to synthesize an appropriate controller is so importan-
t, that it usually outweighs these disadvantages. This is one of the main reasons
for the success of so-called ‘classical’ linear control theory that was mainly devel-
oped in the period 1930-1960: although in reality there are no linear systems, the
ease with which it is possible to design controllers for single-input single-output
systems still makes it a useful approach. There are many good textbooks that
include the subject of classical control as well as more modern approaches: for
instance Maciejowski (1989) and Boyd and Barratt (1991). Some references from
the actual classical control period are James et al. (1947) and Truxal (1955).

Although application of classical control methods often produces acceptable re-
sults, the fact that control objectives are being tightened by constantly growing
demands from society (safety, reliability, performance, economics, environment,
etc.) is a major motivation for control engineers to use, and for system theoreti-
cians to develop, more sophisticated mathematical tools. From a practical point
of view, the time-domain, state-space methods for control of linear multivariable
systems, whose development started around 1960 and which became known as
‘modern’ control methods, were often unsuccessful due to robustness problems.
The developed theory depends importantly on the accuracy of the linear mod-
el of the system to be controlled. It does not provide sufficient possibilities to
ensure acceptable behaviour of the closed-loop system when uncertainties, non-
linearities, time-dependence or other unmodelled behaviour is present. A selection
from the enormous amount of literature available on modern control theory is
Kalman (1960), Rosenbrock (1970), Wonham (1979), Luenberger (1966), Mac-
Farlane and Karcanias (1976), Kwakernaak and Sivan (1972) and Anderson and
Moore (1989).

In spite of the difficulties with modern control, it did form the basis of new devel-
opments starting around 1980 and leading to what is now usually referred to as
‘robust’ control. With the help of the singular values concept it became possible to
analyze the developed state-space methods in the frequency domain, which showed
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their shortcomings in robustness in terms of classical control methods (Doyle and
Stein 1981, Freudenberg and Looze 1988). Furthermore, it became clear that
methods developed in operator theory can be used for controller synthesis, putting
bounds on, or even minimizing bounds of, measures like the co-norm of the closed
loop system, which can be used to determine the closed loop behaviour when un-
certainties are present (Zames 1981, Doyle et al. 1984, Safonov and Doyle 1984,
Safonov 1986, Francis 1987, Limebeer et al. 1988, Vidyasagar 1985). Later on,
the operator theoretic approach was largely substituted by an algebraic Riccati
equation approach, with the advantages of increased insight, decreased computa-
tional effort and decreased controller order (Glover and Doyle 1988, Khargonekar
et al. 1988, Doyle et al. 1989, Zhou et al. 1993).

During the last decade, a standard control design structure is being developed to
put these new insights into effect (Doyle et al. 1984, Boyd and Barratt 1991, Zhou
et al. 1993):

e the system to be controlled can be described by means of a linear time-

invariant model,

e the control objectives can be formulated using weights and signals retaining

their physical interpretation,

e the effects of unmodelled behaviour can be added, leading to the possibility to
precisely specify robustness demands as being one of the control objectives,

The development of both analysis and synthesis tools for this general framework
is ongoing (Bernstein and Haddad 1989, Packard et al. 1991, Boyd et al. 1993,
Vandenberghe and Boyd 1993, Packard et al. 1993, Gahinet and Apkarian 1993),
but already has reached a level that generalizes those classical control results that
allow controllers to be designed with an effective trade-off between performance

and robustness.

1.1.2 The asymptotic tracking objective

An important limitation of the robust control paradigm is being dealt with in this
thesis. It appears that the developed controller synthesis tools are not capable of
handling the servomechanism problem, which is to obtain ‘output regulation’ or
‘tracking’. The importance of this problem for control design was already apparent
in classical control. It first appeared when it was found to be necessary to ‘reset’
a controlled system when a permanent (or long term) change of operating point

or operating conditions was needed.
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This becomes clear when we consider figure 1.1, in which G denotes a stable plant
to be controlled and K is a proportional controller. The output signal y deter-
mines the physical quantity in G that has to be controlled in such a way, that the
error signal e between y and the reference signal r is kept small, the input signal
 is the signal that actuates the plant. Now consider a change in operating point,

T € K U e Y

Fig. 1.1: Block-diagram of a feedback control system.

in the form of a change of . The error signal will then be unequal to zero and
the controller starts to actuate the plant in order to bring y closer to r. However,
as e goes to zero, also v = Ke must go to zero and y will tend to drop back to
its former value. This implies that an equilibrium situation will result in which e
and u are unequal to zero. To obtain e = 0 in the new operating point it is there-
fore necessary to add a constant value u. to u, after which usually u is redefined:
u := u—u,.. It was soon found that this resetting procedure could be automated by
adding integral action to the controller: e 3 0 then causes a continuously growing

control input u until © = u. and e = 0.

The importance of this type of controller can be seen from its widespread use in in-
dustry: it is known as the PI-controller because of the combination of proportional
and integral action. Further research on the properties and possible extensions of
this controller has resulted in the introduction of several new concepts and some
terminology. During the classical control period this research was mainly focussed
on the concept of system type (James et al. 1947), which was put into a multivari-
able setting later on by several researchers (Sandell and Athans 1973, Hosoe and
Ito 1974, Wolfe and Meditch 1977, Sebakhy 1984, Hara 1985). In accordance with
the new insights developed in the modern control period the same problem was
considered in a more general setting, and referred to as the servomechanism prob-
lem (Davison 1972, Bhattacharyya and Pearson 1972, Davison and Goldenberg
1975).

Even more important than the resetting procedure described earlier, is the ability
of a controller with integral action to ‘follow’ or ‘track’ slowly varying reference
signals. Perhaps the most obvious application of such systems is in the military
(target tracking), but typical servomechanism problems can also be found in a
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large number of industries (aerospace, consumer electronics, automotive, nautical,
etc.). The main difficulty in designing servomechanisms for such applications is
the growing demand in speed of response. As stated before, the PI-controller is
basically designed to track slowly varying signals: in fact the objective e =0 is
only reached asymptotically. If the servomechanism has to track reference signals
relatively fast, the integral action has to be either ‘speeded up’ or, as we will
show later, better adjusted to the form of these reference signals by means of
an internal model. However, this implies that the controller has to introduce
dynamical behaviour into the closed-loop system, that could impair other control
design objectives like stability, noise attenuation and robustness. Therefore, there
is a need for a control design environment that allows a sensible trade-off between
the tracking objective and other design objectives, preferably the standard robust
control design structure as mentioned before.

1.2 Robust control and the tracking objective

1.2.1 Robustness and performance of servomechanisms

In the previous section, robust control was introduced as the most recent large
step in linear control theory, following the period of classical control (1930-1960)
and the period of modern control (1960-1980). However, the robustness concept
was already known in classical control. Gain and phase margins, defined on the
Nyquist plot of the open-loop transfer function, were (and are) accepted measures
of the robustness of the closed-loop system and are especially useful when uncer-
tainties in the linear model of the system to be controlled must be considered.
Furthermore, the need for robustness of controlled systems was also satisfied with
respect to the output regulation and tracking problem. It was discovered that the
asymptotic tracking property of a servomechanism is retained in spite of arbitrary
plant uncertainties, as long as the closed loop system remains stable. This implies
that a robust servomechanism can be designed by adding an appropriate internal
model and designing a robustly stabilizing controller for the resulting structure.

These insights have been developed in many of the references given in the previ-
ous section, both in terms of (multivariable) system type (e.g. Sandell and Athans
1973) and in terms of the servomechanism problem (e.g. Davison and Goldenberg
1975). Unfortunately however, these developments occurred in the modern con-
trol era, such that usually the design of the stabilizing controller was performed
using state-space methods. For this reason, no attention was given to robustness
of the stabilizing controller other than the aforementioned result on robustness of
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the asymptotic tracking property. Furthermore, as the performance of the ser-
vomechanism was mostly measured in terms of the asymptotic tracking property,
other performance measures, like disturbance attenuation and speed of response,
were largely neglected.

Although no general theoretical results are known in this area, it is clear that the
asymptotic tracking objective may very well be in conflict with the robust stabil-
ity objective and other performance objectives. This implies that in the design
of a servomechanism, a trade-off is necessary between the asymptotic tracking
property, other performance measures and robustness of the closed-loop system.
As robustness of the asymptotic tracking property is clearly different from robust
stability and performance of the closed-loop system, it is furthermore necessary
to consider a trade-off between both forms of robustness. This thesis will consider
the application of robust control methods for the specification of these trade-offs
and the design of appropriate controllers.

1.2.2 Problem formulation: asymptotic tracking within the
standard control design structure

The standard control design structure mentioned in the previous section is already
a powerful platform for obtaining trade-offs between several design objectives. We
will therefore develop a procedure to add the asymptotic tracking objective to
this standard structure, with an attempt to minimize any effect on the trade-offs
already present. This extension of the standard structure, or at least the use
of robust control methods for tracking problems, has already been mentioned by
several researchers (Xu and Mansour 1986, 1988, Wu and Mansour 1989, 1990,
Sugie and Hara 1989, Abedor et al. 1991, Khargonekar et al. 1990, Liu and
Mita 1991, Hosoe et al. 1992), but they were not able to find a structure in
which the servomechanism problem can be specified in its full extent, i.e. with
generality in the selection of reference signals and completeness in the possibility to
trade-off robustness and performance objectives, and/or can be solved by available
controller synthesis methods, i.e. methods for which stable numerical algorithms
are readily available.

The problem that will be addressed in this thesis can therefore be split into two
parts:

1. the setting up of a standard control design structure, in which trade-offs can
be defined and performed between:

e performance objectives, like disturbance attenuation and speed of re-
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sponse,

e robustness objectives, like robust stability and performance in the face
of plant uncertainties,

e the asymptotic tracking objective for a prespecified set of reference
signals,
e robustness of the asymptotic tracking objective in the face of plant

uncertainties,

2. the synthesis of controllers for this extended standard control design struc-
ture, using any method available for the standard control design structure
without the asymptotic tracking objective.

Based on this, we will focus on the following four questions.
1. What are the advantages of robust control methods;

e what is the system theoretical background of robust control,
e what are the properties of robust control,
e how does robust control compare with approaches from, ‘classical’ and
‘modern’ control.
2. What are the properties of the procedure presented in this thesis;
e why is there a need for a special treatment of the output regulation and
tracking problem when considering robust control methods,

e what is the procedure to incorporate the tracking objective into the
standard control design structure,

e what are the properties of the resulting servomechanism.

3. How does the presented procedure compare with approaches available in

literature;
e what approaches for solving the output regulation and tracking problem
using robust control methods are available in literature,
e in what respects is the procedure presented in this thesis an improve-

ment on available approaches.

4. What results can be obtained by applying the presented procedure to a
realistic control problem;
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e how can weight functions be set up to obtain a trade-off between various
design objectives,

e what are the properties of the designed controllers,

e are the results obtained from actual implementation of the designed
controllers in accordance with the expectations.

Some of these questions allow a clear and concise answer, others are too complex to
be dealt with in a short formulation or are too general to be completely answered
within the context of this thesis. For those, it is attempted to give directions in
which further research and practical experience may lead to further developments.

1.3 Overview of contents

This thesis aims at making recently developed tools available for practical use.
From this point of view, the complete line of thinking—if you like, philosophy—
leading to the main results will be given. Because of this, there will be a large
introductory part, discussing mostly known results and procedures, but in such a
way that a line of thinking is set up that leads to the results in later chapters.
Especially the concept of systems is of great importance in this respect and will
be the subject of the next chapter. Also the system and signal descriptions used
in this thesis will be introduced here. We will consider a number of results based
on the mathematical properties of these descriptions, that will provide the system
theoretical basis for robust control and the most important tools for obtaining
results later on.

Chapter 3 will introduce the general framework for linear controller design and
analysis: the standard control design structure, and will provide procedures for
designing mathematically optimal and sub-optimal controllers. Also the practical
importance of mathematical optimality will be discussed here, as well as robustness
issues and uncertainty descriptions.

The output regulation and tracking problem in combination with the design of
controllers within the general framework will be the subject of chapter 4. The
solution of this problem is the main result of this thesis and will appear to be
possible using the control design procedures introduced in chapter 3. Connections
with earlier results on the servomechanism problem will be discussed, as well as the
extension to the two-degree-of-freedom tracking problem, the selection of weight
functions and the combination with robust control.
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Chapter 5 will consider an extensive example, based on an experimental three-
degrees-of-freedom hydraulic positioning system. This example will show the
complete design procedure based on the developed philosophy and the output
regulation results. Implementation of designed controllers will be performed using
state-of-the-art digital hardware (based on a Digital Signal Processor) and will
show the practical applicability of the proposed procedure.

Finally, conclusions and recommendations for future research will be given in chap-
ter 6.



Chapter 2

System descriptions and

analysis tools

We will introduce the system concept from a very basic point of view, in order
to prevent the common mistake that physical systems can be identified with their
mathematical descriptions. This mistake usually appears when great effort is taken
to find a ‘best as possible’ description for a given system, leading to complex
models that are of high, or even infinite, order, highly non-linear, time-varying,
etc. In using this approach one often finds that the actual issues of interest are
quickly overlooked, and no mathematical tools are left to come to fundamental
analyses and predictions. For this reason it is attempted in this thesis to use
descriptions that are as simple as possible, but still demonstrate the phenomena

under consideration.

After a discussion on the system concept in the next section, we will define and
discuss several useful system descriptions in section 2.2. A more mathematically
sound basis will be set up in section 2.3, in which function spaces are introduced as
a means for signal and system classification. Section 2.4 will then define a fractional
representation of a linear system, which will be used for the definition of poles and
zeros of linear systems, leading to two more system descriptions, the definition
of pole-zero cancellation and the definition of controllability and observability.
Finally, section 2.5 will consider state-space methods for the calculation the 2-
norm and the oco-norm, defined in section 2.3.
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2.1 The system concept

2.1.1 Systems in scientific research

In most areas of scientific research the concept of systems has been introduced in
some way. Usually this is done by means of some kind of definition, with which
an attempt is made to give a clear, preferably short, characterization. Such a
characterization is often aimed at compatibility with the system concept of all
these areas, which then results in something extremely vague and useless.

The problem is twofold. First the general system concept can not be defined
in strictly mathematical terminology, which would be the only way to arrive at
a complete and irrefutable definition. Secondly, the system concept has evolved
in parallel in several scientific disciplines, causing—subtle—differences probably
mainly due to the fact that the system concept is a very human concept. The
second problem, of course, makes the system concept very subjective, but is at
the same time the reason for its success, even necessity, in scientific research. It
is the only way in which scientists are able to select their object of interest and
set it apart from the complete universe in which we live. Where the whole of the
universe is incomprehensible to man, the system concept allows him to focus on
just a part of it, straightforwardly defining the concept of environment at the same
time, as the complement of the system in the universe.

With this, the study of systems in general, using mathematical terms for their
description, can be seen as the basis of generalism as the contrary of specialism.
Although the specialistic approach to research seems to be most compatible with
human nature, it also has led to the breaking down of science into more and more
different disciplines and to increasing communication problems between them. An-
other logical consequence is the breaking down of the systems studied by these
different disciplines into smaller and smaller parts. In contrast however, society
and technology tend to pose questions to scientists of an increasingly general na-
ture. One of the more recent developments in this area is the introduction of the
term mechatronics which, obviously, emphasizes the need for a better integration
of state of the art developments in the fields of mechanics and electronics.

2.1.2 System descriptions

Rather than giving a definition of the system concept, that is bound to be incom-
plete or at least unsuitable for some areas of science, we will therefore define some
system descriptions that are useful within the context of this thesis. We will make

use of the possibility to describe systems by means of variables and the relations
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between them, which is most fundamentally researched by Willems (1986,1988),
who speaks of the behaviour of a system defined as a set of combinations of
variables that are compatible with that system.
The problem with this concept is again twofold. First we have that the choice of
the variables to be considered is up to the researcher; there is no guarantee that
a system description based on variables is sufficiently complete for his purposes.
Secondly, most systems of interest allow infinitely many of these combinations of
variables, such that there is a need for a considerable ‘data reduction’. Although
the first problem will always remain, both problems can be largely accommodated
by introducing the concept of behavioural equations; usually a set of mathematical
relations between the variables under consideration, which can be used to test if
certain combinations of variables may occur.
An example of such a set of relations is known as the state-space description or
SSD:

z(t) Az(t) + Bu(t) z(to) = zo
y(t) Cz(t) + Du(t)

The variables under consideration are given in the vectors z, v and y, clearly
allowing a classification of variables into three groups. The state vector x consists
of n internal variables and should be set up such that the model is sufficiently
complete for the researchers purposes. The input vector u consists of g variables
that can be considered independent from the behaviour of the system; they allow
the environment to interact with the system. The output vector y consists of p
variables that are of special interest to the researcher; they provide information
on the system towards the environment. The state-space matrices A, B,C and D

Il

(2.1)

are assumed to be constant and to have real entries, as a matter of notation we
have A € R®*™ the ‘system matrix’, B € R"*? the ‘input matrix’, C € RP*"
the ‘output matrix’ and D € RP*? the ‘feedthrough matrix’.

Since we are particularly interested in dynamical systems, time is an important
variable; it is accounted for by considering a set of first order differential equations,
such that all aforementioned variables become functions of time, or more properly:
signals. Relating the time dependent behaviour of physical quantities with signals
is of course quite natural, causing the state-space description to be a very effective
tool in studying systems. The introduction of an initial time ¢; and an initial
state z(to) = xo is also natural; we are interested in the behaviour of the system,
starting from a prespecified initial situation. In view of the previous remarks,
the initial state can also be seen as a further possibility to reduce the number of
combinations of variables or signals that are assumed to be allowable in the system
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behaviour. Finally, the assumption that the four state-space matrices 4, B, C and
D are constant implies that to can be chosen arbitrarily and allows us to set tg = 0,
this independence from the actual choice of initial time %y is referred to as the ‘time
invariance’ property.

The considerations given above should however warn for irresponsible use of the
state-space model, in making statements about an actual physical system. Another
important point to be made here is that despite the simplicity of appearance of
the state-space model, it is similar to any more complicated, non-linear, time
dependent, etc., mathematical description in that all of these are only descriptions
of an actual physical system, and therefore always incomplete and approximative.
In this thesis we are interested in the possibility of describing essential physical
phenomena in relation with control design problems; attempts to obtain more
accurate models by allowing more complex descriptions often tend to obscure such
phenomena, motivating the use of simple linear, time-invariant models like the

state-space model.

2.2 Linear time invariant models

In the previous section the state-space description, or SSD, was already introduced
as an example of a set of equations describing the behaviour of a system. The fact
that this model is linear and time-invariant is well known and the result of the
linearity of the equations and the constantness of the state-space matrices A4, B, C
and D. In this section several forms of linear time invariant models, or LTI-models
for short, will be considered. We will also review the concepts of eigenvalues and -
vectors and poles and zeros within the context of the system concept as introduced
above and emphasize equivalent forms in various LTI models. This section is
mainly based on Kailath (1980), Chen (1984), Maciejowski (1989) and Zhou et al.
(1993).

2.2.1 The LFT form of the state-space model

With the differential equation form already given in equation 2.1, a block-diagram
form of the state-space model can be given as in figure 2.1. From this figure it is
clear that the state-space matrices can be seen as constant amplification factors
and that the dynamical behaviour of the model is given by a feedback structure
over a set of integrators, i.e. a square matrix with integrators on the diagonal.

This separation of simple known data, the constant state-space matrices, from the

more complex part of the model, becomes even more clear if we consider the linear
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B / c ~<L—ﬂ

Fig. 2.1: Block-diagram form of the state-space model.

fractional transformation—or LFT—form of a state-space description. For this we
define LFTs as follows:

Definition 2.2.1
Suppose a matriz M with entries in R is partitioned as:

M= My, M, € R(P1+P2)x(a1+42) (2.2)

My Mo
and let A, € R1*P1 and A; € R®2XP2 e arbitrary. We will then define the upper
and lower LFTs as operators on A, and A, respectively:
Fu(M,A) := Moy + Mp1 (I — AuMy1) 1AMy (2.3)
Fi(M, D)) = My + Mia(I — AMaz) ™' AiMoy

Either LFT will be called well-defined if the concerning inverse exists:

det(I — A My1) #0, det(I — AMa2) #0 (2.4)
The matriz M is referred to as the coefficient matriz of the LF'T.
With this we can take:

M= 4 B € R(m+p)x(nta) (2.5)

C D
and set A, equal to the block of integrators. This then allows us to redraw
figure 2.1 as figure 2.2. Note that in comparison with figure 2.1 the direction from
inputs to outputs is reversed to be more compatible with the inherent matrix-
vector multiplication:
T A B T
= (2.6)
Y C D U
When convenient, this notation will be used instead of the more conventional

left-to-right notation.
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A B
Y C Db

Fig. 2.2: LFT form of the state-space model.

2.2.2 Frequency domain analysis

The introduction of the LFT form of a state-space model seems rather trivial
when we compare figures 2.1 and 2.2. However, it allows us to introduce an im-
portant system property if we consider the assumption that has to be made in
definition 2.2.1. To be able to check if the LFT is well-defined we need to do an
algebraic manipulation on a block of integrators, thus motivating the transforma-
tion of the problem into a domain in which this is possible. A well known approach
to do this is to perform a Laplace-transformation on the state-space description,
thus transferring the model from the time domain into the (complex) frequency
domain. If, for the time being, we assume that all time dependent signals de-
fined in equation 2.1 have a Laplace transform and that furthermore the initial
conditions zg are zero, we can set up a transformed SSD as:

sz(s) = Axz(s) + Bu(s)
y(s) = Cals) + Duls)

(2.7)

in which s € C denotes the Laplace operator.
With M given in equation 2.5, the LFT form of the transformed SSD then looks

like:
FuM,1I) = D+C(I-14)11B 28)
Fu(M,1I) = D+C(sI - A)'B '

Clearly, the second part of this equation can also be obtained directly from
equation 2.7 if we work out the relation between u(s) and y(s). This shows the
equivalence with another popular form of describing LTI systems: the transfer
function matrix description or TFMD:

y(s) = G(s)u(s) G(s):=D+C(sI - A)~'B (2.9)

A generalisation of this form to real rational function in s will be discussed later.
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2.2.3 The interconnectedness of LTI system descriptions

The condition we have to test to find out if the LFT-form of a state-space de-
scription is not well defined now becomes det(] — %I A) =0 or equivalently
det(sI — A) = 0. Note that this condition should hold for all s € C such that
it is easy to check that the LFT form of a state-space model is always well de-
fined (for s sufficiently large and the elements of A bounded, sI — A must become
nonsingular).

Although we have that det(s] — A) is unequal to zero if considered as a polynomi-
al with s € C, it is possible to find particular s; € C such that det(s;] — A) =0.
These values are clearly the eigenvalues of A: if Azy = Az for some eigenvector
z) we have (A — A)z) =0 and we can set s; = A.

At

Hence we know that in the time domain z(t) = ce™* - z» is compatible with the

behaviour of the system, with ¢ € R an arbitrary constant. Its Laplace transform

z(s) = <5;za must therefore be compatible with equation 2.7. This implies
s-5zy = A-;53a + Bu(s) =
8?_5)‘1,‘)\ = sc_)‘)\:u\ + BU(S) ==
A (2.10)
J—Zs_)\ zx = Bu(s) =
cTy =  Bu(s)

such that Bu(s) must be constant while u(t) was earlier said to be 0. A function
with this property can be described mathematically by means of a generalised
function; in practice we can think of u(t) as an impulse at ¢ = 0 that brings the
system in a certain initial state, after which u(t) = 0 and an unforced response
follows. From the Laplace transform of z given above it is furthermore clear
that X can be considered as a pole of x because lim,_ ) ;5525 = 00; usually A
is considered to be a pole of the system rather than of the signal because it is a

system property that makes the signal compatible with the system.

The reason for this analysis is however not so much the introduction or definition
of the concept of poles or the demonstration of the interconnectedness of all LTI
system descriptions. It is to stress how easily signals and the systems they are
compatible with can be confused, which calls for a more fundamental approach to

systems and signals as will be done in the next sections.
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2.3 Function spaces for systems and signals

As control objectives are usually stated in the form of desired properties of sys-
tems and signals, it is natural to introduce a mathematical classification of both
systems and signals by means of well-chosen mathematical properties. In this,
the term ‘well-chosen’ refers to the necessity of relating such properties to phys-
ical phenomena that are important for control design. On the other hand, these
properties should be such that mathematical machinery can be employed to find
relevant results. It appears that these demands can be complied with using func-
tion spaces.

For a fundamental and extensive introduction to the functional analysis back-
ground of this section, see Kreyszig (1978). The relation with system and control
theory can be found in (among others) Francis (1987), Boyd and Barratt (1991)
and Zhou et al. (1993).

2.3.1 Time domain function spaces

A function space is a set of functions having a common domain and range and
usually a number of common properties.

For instance, consider a signal z(t) defined for all time —oc < ¢t < oo and taking
values in C"; then z is a function (—oo,00) — C™. An often useful property
of such a function is the value of its square (Lebesgue) integral: [ |z(t)||*dt.
Here ||z|| denotes <z,z>/2 = (z*z)!/? | with z* denoting the complex conjugate
transpose of z, i.e. ||z|| denotes the norm usually defined on C*. In this way we
can restrict the class of signals to those with

/m l|lz(t)||2dt < oo (2.11)

- 00

and define a ‘measure of size’ for any such signal as:

lelln ={ | nw<t>u2dt}% (2.12)

—o0
Note that ||z]|2,» is @ norm on the function space thus defined, because it has the

properties:
L4 “m”2,n 2 07
e ||z|l2-=0 & z(t) =0, (ae.),

o llezllzn = le| - lizllzn, c€C,
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o llz +yllzn < llzlizin + lI¥llzn-

This function space will be denoted as Lj,(—o0,00) or in simplified form as
Lg(—00,00). It can be proven that Ly(—00,00) is complete (Kreyszig 1978) and
furthermore we have that equation 2.12 denotes an inner product: this implies
Lz(—00, 00) is a Hilbert space.

Another example of a function space emerges if instead of the square integral of
z(t) we consider the Root-Mean-Square (RMS) norm:

1
2

lzllrms = {Tli_{noo%/:x(t)*x(t)dt} (2.13)

This norm is a measure of the eventual average size of z and is especially useful
when we consider signals that do not comply with equation 2.11, such as stochastic
signals, for which the RMS-norm can also be defined as:

lzllmms = {E{a(t)"z(t)}}? (2.14)

with ‘E’ denoting ‘the expected value of’ (note: we assume ergodicity and station-

arity of stochastic signals).

Another important operation on stochastic signals is the determination of the

autocorrelation matrix:

T

Realr) = Jim = [ ale)att+7ydt = Bla(@)a(e+ 7)) (2.15)

The spectral density matrix can then be defined as:
Szx = F(Rzz) (2.16)

with F denoting the Fourier transform. Now all signals having properties:

1) z(t) bounded for all £,

2)  R..(7) exists and is bounded for all 7,

3)  Siu(w) exists,
constitute the function space of all signals with bounded power (BP). The RMS-
norm can then be seen as the average power of the signal « and can be related to
R_.(7) and S;.(w) as follows:

o0

lelfis = trace {Rur(@)} = trace{ - [ Sexlw) (217)

—o0
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2.3.2 Frequency domain function spaces

This last example shows that properties of signals in the time-domain (i.e. func-
tions of t) can also be stated in the frequency-domain (i.e. functions of the complex
variable s = A 4+ jw). A number of frequency-domain function spaces therefore
appear to be very useful for purposes of control analysis and design and will be
defined as follows:

o R[s] is the set of polynomials in the complex variable s € C with coefficients
in the field R of real numbers; if convenient, R[s] will be identified with
MP*4{R[s]}, denoting matrices taking values in CP*? and having entries in
Ris],

e R(s) is the field of fractions associated with R[s] and consists of real-rational
functions in s; here too, R(s) will be identified with MPX?{R(s)}, denoting
matrices taking values in C?*? and having entries in R(s),

o L is the set of functions z(jw) defined for all frequencies —oco < w < oo,
taking values in C™ and being square (Lebesgue) integrable:

o]z = [-1 / " x(jw)*x(jw)dw] e (2.18)

27 J_oo

as this function space is complete (Kreyszig 1978) and as equation 2.18
constitutes an inner product, Lo is a Hilbert space with ||z|2 denoting its

norm,

e H is the space of functions x(s) which are analytic in Re s > 0 (the com-
plex right half plane), take values in C" and satisfy the square-integrability
condition:

1/2

llzll2 := [sup%/m (€ + jw) z(€ + jw)dw| < oo (2.19)
£>0 4T J_oo

H; may be seen as a closed subspace of Ly via ‘boundary value identification’
(see Francis 1987, p.11),

o L., is the set of functions X (jw) defined for all frequencies —co < w < oo,
taking values in CP*? and for which the largest singular value
7(X) == {AMX*X)}'/? is essentially bounded (X denotes largest eigenval-
ue); although (X)) does not constitute an inner product, it can still be used
to define a norm: L, is a Banach space with norm

X |loo := esssgp&(X(jw)) (2.20)
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o H, is the set of functions X (s) which are analytic in Re s > 0, take values
in CP*4 and are also bounded in Re s > 0:

I X|loo := sup &(X(s)) <0 (2.21)
Re s>0

Ho may be seen as a closed subspace of Loo.
From these spaces a number of important subspaces can be derived:

e RL is the intersection of R(s) with Ly, it consists of n-dimensional vectors
each entry of which is real-rational, strictly proper and without poles on the

imaginary axis,

e RH, is the intersection of R(s) with Ha or of RL; with Hs, it consists of n-
dimensional vectors each entry of which is real-rational, strictly proper and
stable,

. }12l is the orthogonal complement of Hy in La,

e RHj is the orthogonal complement of RH; in RL; (strictly proper, no stable
poles),

e RL. is the intersection of R(s) with Lo, it consists of (p x ¢)-dimensional
matrices each entry of which is real-rational, proper and without poles on

the imaginary axis,

e RH_ is the intersection of R(s) with Ho, or of RLo, with Hy, it consists of
(p x q)-dimensional matrices each entry of which is real-rational, proper and
stable.

Note that the ‘2-norm’ notation ||z||s is the same for all ‘2-spaces’ and that simi-
larly || X|joo is used for all ‘co-spaces’. Furthermore note that dependency on the
dimension of the range space is deleted.

Finally, as a matter of notation, we introduce the function space Rgs:

e R, is the set of proper, real-rational functions: it consists of all transfer
functions that may arise from state-space models. Rq will be identified with
MP*2{R}, denoting p x ¢ matrices with entries in Rss.

Note that Ry, is a subspace of R(s) and that it includes RL..
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2.3.3 Relations between function spaces

An important connection between time-domain Hilbert spaces and frequency do-
main Hilbert spaces is provided by the Plancherel / Paley-Wiener theorem (Francis
1987):

Theorem 2.3.1
The Fourier transform is a Hilbert space isomorphism from La(—00,00) onto Ls.
It maps Lz[0,00) onto Hy and La(—o00,0] onto Hy .

Here Hilbert space tsomorphism means that the Fourier transform is a linear sur-
jection which is continuous, norm-preserving, injective and has a continuous in-
verse. This implies that the 2-norm of a signal in the time domain is equal to
the 2-norm of the Fourier transformed signal in the frequency domain, which mo-
tivates the notation ||z||2 for all previously defined Hilbert spaces. The spaces
Lia(—00,0] and L,[0, co) denote two complementary subspaces in Ly(—00,00), the
interval-argument denotes the part of the domain on which their elements are not
necessarily essentially equal to zero.

The importance of the 2-norm for control analysis and design is its physical in-
terpretation as the energy incorporated in a given signal in Lg(—00,00). The
aforementioned equivalence with the 2-norm in the frequency domain gives reason
to consider the co-norm, because it can be seen as the induced 2-norm according
to the following theorem (Francis 1987).

Theorem 2.3.2
Gwen G € Ly, then Gx € Ly, V x € Ly and:

G(2

Glleo = sup 2.22
[Gll = sup (222)
Given G € H,, then Gx € Hy, V z € Hy and:
1Gloo = sup 1GZl2 (2.23)
z€H, ”xHZ

With this theorem it becomes possible to see ‘2-spaces’ as spaces containing sig-
nals, and ‘co-spaces’ as spaces containing transfer function matrices describing the

relation between independent input signals « and output signals y:

y = Gu (2.24)
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2.3.4 System descriptions and function spaces

We now have the possibility to consider properties of a physical system by means of
finding an appropriate description using function spaces. The ‘classical’ procedure
of setting up a set of linear differential equations leading to a state-space model
will always lead to an equivalent transfer function matrix description in R(s) and
often in RL., (if there are no imaginary poles). Looking at properties of signals
can also be very important; signals can be seen as a possibility to ‘test’ the system,
and hence to find out its basic properties.

Theorem 2.3.2 is a clear example of this principle; applying an input signal in Hj
must always result in an output signal in Hs if the system is to be in Ho,. Signals
in RL; can be expressed as strictly proper real-rational functions in s such that
they can be interpreted as the impulse response of an LTI system, or the unforced
response to a set of initial conditions. If we consider a system in RH,, the unforced
response y(t) to any set of initial conditions must be exponentially decaying for
t — oo: therefore y(t) must be square integrable over the interval [0,00) and can
be set to zero for t < 0, i.e. y(t) € L3[0,00), and y(s) € RHa.

Another important relation between signals and systems can be found if we con-
sider the response of a scalar system g € RH; to a stochastic input signal v with
spectral density Sy, = 1 (i.e. u is a white stochastic process). In that case it can
be found that Sy, (w) = g(jw)*g(jw) (Papoulis 1984, Priestley 1981), such that:

: | Y B
lolfhs = 57 [ aw)"siw)dw = lal (225)
—o0

This implies that g can be considered as the frequency domain model of a signal
that may be represented in the time domain as the impulse response or white
noise response of a system with TFMD g, and that the RMS-norm of this signal
is equal to its 2-norm, both in frequency domain and in time domain.

These are just a few examples of manipulations with signals and systems within
the framework of function spaces that can be used for analysis and design. The
next sections will go into more detail on some other important tools related to
the use of function spaces, their interconnections and their relation with physical

properties.

2.4 System properties related to poles and zeros

In the previous section it already appeared to be possible to classify systems and
signals by restricting their descriptions to be in a certain function space. For
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instance, it appeared that all LTI state-space models have an associated transfer
function matrix description in R(s) and that RLs, consists of all LTI systems that
are proper and have no poles on the imaginary axis. More importantly, for both the
2-spaces and the oo-spaces a norm was defined to be able to relate elements within
a specific space with each other. However, these possibilities for classification are
in general not sufficient to adequately describe the behaviour of the system under
consideration and more specific statements are required.

To be able to do this, we will restrict ourselves to system and signal descriptions
with a frequency domain description in R(s). This implies that we assume that
properties of systems and signals we are interested in can be described sufficiently
accurate by means of linear, time-invariant and finite-dimensional models. The
advantage of this is that we can then make use of the concept of poles and zeros
to further specify system behaviour.

The next subsection will introduce polynomial coprime fractions of linear systems,
which will be one of the main tools for the derivation of the main result in chapter 4.
Based on such a factorization it is possible to give a formal definition of poles
and zeros, which will be done in subsection 2.4.2. After that we will consider
system descriptions with internal variables in subsection 2.4.3 and the concepts of
controllability, observability and pole-zero cancellation in subsection 2.4.4. Finally,
this will lead to the definition of invariant and decoupling zeros in subsection 2.4.5
As already indicated, the exposition given in this section is aimed at introducing
the tools and notations we need in later chapters. It is mainly based on Chen
(1984), in which a much more elaborate discussion on these subjects can be found.
Some other references are Kailath (1980), Maciejowski (1989), Callier and Desoer
(1991) and Zhou et al. (1993).

2.4.1 Polynomial coprime fractions of linear systems

Considering the scalar case we have, as stated in the previous section, that R(s)
is the field of fractions of elements of R[s], i.e. any element of R(s) can be written
as the fraction of two elements of R[s]. This notion can be generalized to matrices
with entries in R(s) by describing them as a coprime factorization or coprime

fraction over R[s]:

Definition 2.4.1  (right (left) coprime fractions)

Suppose G(s) € R(s).

An ordered pair (Dg, Ng) (or (Dg, Ng)) where D, Ng (Dg,Ng) € R[s] is a
right (left) coprime fraction—denoted as RCF or LCF—of G if:
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1. Dg(Dg) is square and nonsingular (as a matriz over R(s)),
2. G=NgDg' (=Dg'Ne),
3. Dg and Ng (D¢ and Ng) are right (left) coprime.

Here, right and left coprimeness can be specified by means of the right and left

Bezout equation:

Definition 2.4.2  (coprimeness)
Given Dg, N € R[s], then D¢ and Ng are said to be right coprime if there exist
polynomial matrices V1, V, € R[s] such that the right Bezout equation is satisfied:

D
ViDg+VaNg =i Vo] | S | =1 (2.26)
G

Given D¢, Ng € R[s], then D¢ and Ng are said to be left coprime if there exist
polynomial matrices Uy, Uy € R[s] such that the left Bezout equation is satisfied:

i N . . |u
DgU; + NgU; = [Dg Ng]| =1 (2.27)

2
Note that right coprimeness of (Dg,Ng) is equivalent to left invertibility of
[DLNL], ie. [Dg(p)Ne(p)'] has full column rank for all p € C, and that
left coprimeness of (D¢, Ng) is equivalent to right invertibility of [De Ngl, ie.
[De(p) Ng(p)] has full row rank for all p € C. Also note that coprime fractions
of matrices in R(s) are not unique: they are unique modulo multiplication by a
unimodular polynomial matrix, i.e. a nonsingular polynomial matrix with a poly-
nomial inverse. By means of multiplication by a unimodular matrix it is possible
to construct D¢ such that it is column-reduced or D¢ such that it is row-reduced:

Definition 2.4.3  (column/row-reduced polynomial matrices)
Suppose D € R[s] is square and nonsingular.

o D is called column-reduced if the degree of its determinant is equal to the

sum of the degrees of its columns.

e D is called row-reduced if the degree of its determinant is equal to the sum

of the degrees of its rows.

The reason for restricting coprime fractions in this sense is that reducedness en-

sures properness of D1,
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2.4.2 Definition of poles and zeros

Poles were already introduced in section 2.2, showing that for a given system the
eigenvalues of the system matrix of an SSD are equal to the poles of an equivalent
TEFMD. In this subsection we will give a definition of poles and zeros of a transfer
function matrix, which is based on polynomial coprime fractions. For this consider:

G(s) = Ng(S)Dg(s)_l = b(;(s)_lNg(S) (2.28)
then:

Definition 2.4.4  (poles of a transfer function matrix)

The poles of a transfer function matriz G(s) € R(s) are those values p € C such
that rank(Dg(p)) < rank(Dg(s)) and rank(De(p)) < rank(Dg(s)) or—because
Dg(s) and Dg(s) are square and nonsingular—such that det(Dg(p)) =0 and
det(Dg(p)) = 0).

An output direction of a pole p of G(s) is a constant vector z, € C\{0} such
that Dg(p)zp, =0 and z, = Ng(p)Z, for some wvector &, € C\{0} such that
DG(p).’pr =0.

The multiplicity of a pole p of G(s) in the direction x, is the largest integer ¢ € N
for which lim,_,, (s — p)~9Dg(s)z, is bounded.

Definition 2.4.5  (zeros of a transfer function matrix)

The zeros—or transmission zeros—of a transfer function matriz G(s) € R(s)
are those wvalues z€ C such that rank(Ng(2)) < rank(Ng(s)) and
rank(Ng(z)) < rank(Ng(s)).

An output direction of a zero z of G(s) is a constant vector z, € C\{0} such that
!, Ng(z) = 0 while ), Ng(s) is a non-zero polynomial vector

The multiplicity of a zero z of G(s) in the direction x, is the largest integer ¢ € N
for which lims_,, (s — 2)™%2  Ng(s) is bounded.

These definitions are mainly based on Callier and Desoer (1982) and MacFarlane
and Karcanias (1976). Note that rank(X(s)) with s the Laplace variable denotes
the rank of X over R(s), while for any given constant ¢ € C, rank(X(c)) denotes
the rank of X(c) over C.

2.4.3 System descriptions with internal variables

From the definition of poles and zeros it is immediately clear that they are com-
pletely determined by respectively Dg and Ng. For this reason it is useful to
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consider the polynomial fractions of a transfer function matrix as a separate sys-
tem description if we want to analyze system properties related with poles and
zeros. This system description is also known as the Matrix Fraction Description
(MFD) and is especially useful to introduce the concept of internal variables as

follows:

y(s) = G(s)u(s) = Na(s)Dg" (s)uls) (2:29)
Now define:

£(s) = Dg'(s)uls) (2.30)
such that:

Dg(s)é(s) = uls)
y(s) = Na(s)é(s)

A more general form of this equation is known as Rosenbrock’s polynomial matrix
description or PMD (Rosenbrock 1970):

(2.31)

{T<s>5<s> + Ulshu(s) = 0

(2.32)
16 v | e ]| | o
V(s) W(s) | | uls) y(s)
We will use the following notation for PMDs:
T(s) Uls)
B(s) := (2.33)
= v W(s)]

Comparison with equation 2.7 shows that the Laplace transformed state-space
model fits this description with & = z, T'(s) = sI — A, U(s) = =B, V(s) = C and
W (s) = D. Furthermore, we can calculate a TFMD from a PMD as follows:

G(s) = W(s) = V(s)T(s)"1U(s) (2.34)

In section 2.4.1 it was already noted that polynomial fractions of a transfer function
matrix are not unique. This obviously also implies that MFDs are not unique,
in the sense that there are infinitely many MFDs that all represent the same
TFMD. This non-uniqueness can be interpreted as freedom in the choice of the
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internal variables vector £. For any unimodular polynomial transformation matrix
© € R[s], we can define ¢ := ©¢ such that equation 2.30 becomes:

&(s) = ©(s)Dg" (s)u(s) (2.35)
and equation 2.31 can be written as:
Dg(5)07 (s)é(s) = u(s)
y(s) = No(5)07(s)é(s)

Note that ©~1 € R[s] and that the pair (Ng©®~!, Dg©®~1) is right coprime if, and
only if, the pair (Ng, Dg) is.

(2.36)

A similar type of non-uniqueness can be defined for PMDs. Again the main mecha-
nism is provided by freedom in the choice of ¢, although the more general structure
of the PMD complicates the transformation. We will only allow transformations
such that the transformed vector of internal variables é has the same dimension
as £ and that the order of det(T'(s)) is left constant. A transformation with these
properties and the property that the transformed PMD corresponds with the same
TEMD as the original one, is called a transformation of Strict System FEquivalence
or SSE (Rosenbrock 1970). All such transformations can be found from the fol-
lowing equation:

© 0| |TU T U ||6; 6,

=" " (2.37)

0, I, vV w vV w 0 I
in which the ©; are polynomial matrices, with ©; and ©3; unimodular. With n
defined as the dimension of ¢ (i.e. the dimension of T'), any SSE transformation
can be generated by the following elementary operations:

o the multiplication of any one of the first n rows of ¥ with a constant,

e the addition of a polynomial multiple of any one of the first n rows of & to

any other row,
e the interchanging of any two among the first n rows of X,

the application of any of the above operations on the (first n) columns of ¥.

2.4.4 Controllability, observability and cancellations

The problem with the system descriptions introduced in the previous subsection is
that there is no guarantee that values of s for which any of the polynomial matrices
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mentioned looses rank, will be a pole or zero of the corresponding transfer function
matrix. A loss of rank occurring in T' (equation 2.32) or (s] — A) (equation 2.7)
but not in Dg is of special importance, because in that case there is a singularity
in the system description that either cannot be influenced by the control signals
u (uncontrollable) or whose effect cannot be observed by means of measurement
signals y (unobservable) or both. In this case there may be four causes:

1. the system under consideration is ill-designed; a certain dynamical effect

cannot be controlled,
2. the system description is not set up accurately,
3. the dynamical effect is of no importance to the researcher’s goal,

4. the singularity does not represent a physical phenomenon but is the result

of mathematical manipulations.

The first two are straightforward and must be dealt with, the last two call for cau-
tion, but may be acceptable as long as a physical interpretation remains possible.

A possibility to characterize controllability and observability of PMDs is given by
the following definition:

Definition 2.4.6  (controllability and observability of PMDs)
Given a PMD of an LTI system as in equation 2.32. Then:

1. the PMD is controllable if and only if T(s) and U(s) are left coprime,
2. the PMD is observable if and only if T(s) and V(s) are right coprime.

Note that this immediately implies that an MFD as given in equation 2.29 is
always controllable, but only observable if Dg and Ng are right coprime; simi-
larly, a system description given as a left fraction is always observable, but only
controllable if Dg and Ng are left coprime.

When considering controllability and observability of SSDs, we may—as mentioned
before—take the Laplace transformed SSD as a special case of a PMD. Application
of definition 2.4.6 and equations 2.26 and 2.27 then results in the more commonly
used controllability and observability tests for state-space models (the Popov-
Belevitch-Hautus tests, see Hautus 1969).

Theorem 2.4.7  (controllability and observability of SSDs)
Given an SSD of an LTI system as in equation 2.7. Then:
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1. the SSD is controllable if and only if

rank [A\] — A : Bl=n VXeC,
2. the SSD is observable if and only if

M—-A
rank =n VieC.
C

An important cause for the occurrence of uncontrollable or unobservable system
descriptions is the possibility of cancellation of poles, when forming the product of
two transfer function matrices G1(s) and Ga(s). For this we will use the following
proposition (Chen 1984, Anderson and Gevers 1981):

Proposition 2.4.8  (cancellation of poles)
Given G1,Gy € R(s) and the coprime fractions G, =ﬁf1N1 = NlDl‘1 and
G2 = D2—1N2 = N2D2_1.'

1. there is no cancellation of any of the poles of Gy in forming the product
G1G2 if and only if any one of the following three pairs of matrices are left
coprime: Dy and N; DyD; and 1\72; D, and NlNz,

2. there is no cancellation of any of the poles of Gy in forming the product
G1Gy if and only if any one of the following three pairs of matrices are right
coprime: D, and Ny; DsD; and Ni; Dy and NiNs.

It should be noted that it is possible to distinguish two forms of cancella-
tion. First, we may have that either condition is violated because G| or G2
does not have full rank. Secondly, we may have that either condition is vi-
olated because rank(Ni(p)) < rank(Ni(s)) with p being any pole of Gy or
rank(Ny(p)) < rank(N,(s)) with p being any pole of G;. Clearly only in the
second case it is appropriate to talk about a pole-zero cancellation.

Although controllability and observability are usually desired properties of the
system description, it is useful to make a distinction between stable and unstable
poles, i.e. poles with a negative real part (A in the open complex left half plane
C™) and poles with a non-negative real part (A in the closed complex right half
plane C*). When a system description is uncontrollable or unobservable due to
merely stable poles, it is called stabilizable and detectable: these properties are

necessary and sufficient for the existence of a stabilizing controller.
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2.4.5 Invariant zeros

Poles that disappear when a system description with internal variables (SSD, MFD
or PMD) is transformed into a TFMD can be assumed to have been cancelled by
appropriate zeros, when forming the TFMD. Such zeros are referred to as decou-
pling zeros, for the obvious reason that they decouple the dynamical behaviour
represented by an unobservable or uncontrollable pole from the behaviour of the
TFMD. An uncontrollable pole will give rise to an input-decoupling zero and an
unobservable pole will result in an output-decoupling zero: note that it is possible
that a zero is both input- and output-decoupling.

The combination of these zeros with possible transmission zeros that do appear
in the TFMD, is also known as the set of invariant zeros, because neither of them
can be relocated in the complex plane by means of feedback control. The set
of invariant zeros can be found from a PMD by means of the following theorem
(Rosenbrock 1970, Callier and Desoer 1982):

Theorem 2.4.9  (invariant zeros)
The set of invariant zeros of a PMD is given by those values z; for which:

T(z) U@) | _ | T() Uls) (2.38)
V(z) W) V(s) W(s)

rank

Such a z; is a decoupling zero if and only if det T(z;) = 0.
Loss of row rank of [T(z;) U(z;)] implies that 2; is an input-decoupling zero; loss

T(Zi)

of column rank of implies that z; ts an output-decoupling zero.
1% 23

It is easy to find similar conditions for SSDs and MFDs by interpreting them as
special cases of a PMD. With this theorem, definition 2.4.2 and definition 2.4.6,
we have that a PMD is controllable if and only if it does not have any input-
decoupling zeros, and that a PMD is observable if and only if it does not have any
output-decoupling zeros. Removal of decoupling zeros from a PMD (or SSD) is
possible without affecting the corresponding TFMD: for this reason a controllable
and observable PMD (or SSD) is called minimal.

One of the consequences of theorem 2.4.9 is of particular importance for the de-
velopment in chapter 4 and will be considered here in some detail.
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For this take a PMD with the following structure:

TS US
T = = (2.39)
Vs Wi
Ts(zi) . . .
Hence, () looses column rank if z; is taken such that det(731(z;)) =0, i.e.
Vs(zi

all such z; are output decoupling zeros and the dynamical behaviour represented
by Ti; is unobservable.

Now consider SSE transformations with the corresponding partitioning:

O111 ©112(0 Ti: 0 (U, T T |Uy O311 O312 {O4
©121 ©122(0 0 To|Up | = | To Toz|Us O321 O322 | Oy | (2.40)
On On|I|[ 0 W|W WV | W 0o 0|1

We will restrict these transformations to those that leave 77; unchanged (Tu =
T4); we then have ©11; = ©311 = I. Next, take only the first column:

I Tn The I

©121 | T11= | Tnn Tio o (2.41)
B 321

O i vz

This implies that Tlg = 0 or O32; = 0; in both cases we can state that there must
exist polynomial matrices ©121,05; and O35, such that:

2} Ty, T I
i, = | 2222 . (2.42)

O i Va ©O321

Hence, a necessary condition for a PMD:

(2.43)

to be strictly system equivalent with the PMD X in equation 2.39 is given by
equation 2.42.
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2.5 State-space calculation of norms

In this section a concise review is given on the possibility to calculate both the
oco-norm and the 2-norm by means of state-space methods. For a more extensive
treatment see, for instance, Doyle et al. (1984), Francis (1987), Doyle et al. (1989),
Zhou et al. (1993)

2.5.1 The oco-norm

Calculation of ||G||o can be done by the procedure already mentioned in sec-
tion 2.3, which involves the calculation of a singular value decomposition over the
imaginary axis. Although we will see in later chapters that this procedure may
provide important information on robustness and performance of closed loop sys-
tems, it would be convenient to have a possibility to calculate the co-norm more
directly. For this we will first look at transfer function matrices that are strictly
proper and have a minimal state-space realization denoted as [A,B,C,0]. Now

define the Hamiltonian matriz:

A BF
H:= - , (2.44)
-C —A

We then have:

Theorem 2.5.1  (oo-norm calculation)
|Glloo < 1 ff H has no eigenvalues on the imaginary axis.

Without going into detail to prove this theorem (see references given above) it is
interesting to note that H is the system matrix of the state-space description of
(I-G~@G)~! with G~(s) := G'(—s). If |Glleo < 1 then I -G(jw)*G(jw) > 0, Vw,
and hence (I — G¥G)™! € RLy. If |G|l > 1 then 5(G(jw)) = 1 for some w,
ie. 1is an eigenvalue of G(jw)*G(jw), such that I — G(jw)*G(jw) is singular.
By calculating the eigenvalues of H we can thus determine if ||G||o is smaller or
larger than 1. By introducing a parameter v we can therefore set up an iterative
procedure to find the actual oo-norm: select -, determine if 171Gl < 1, if
so decrease v, if not increase . Extension of this procedure to proper, but not
strictly proper transfer matrices (D # 0) is readily possible, but complicates the
calculation of the Hamiltonian matrix (see Boyd et al. 1988, Doyle et al. 1989,
Bruinsma and Steinbuch 1990).
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2.5.2 The 2-norm

Calculation of the 2-norm by means of the integral relation of equation 2.18 is
clearly quite complex and also calls for an alternative, computationally less inten-
sive procedure. When we consider signals in RHj, it appears that this is possible
using a state-space description of a system that is able to generate the signal of
which we want to calculate the 2-norm. Note that we can consider a frequency
domain signal representation of a signal in RHs as a TFMD of a system with one
input and n outputs. By setting the single input signal to 1 in the frequency do-
main, i.e. a white noise signal or an impulsive signal with intensity 1 in the time
domain, we will get the desired signal at the output.

Given a state-space realization of a signal g(s) € RH; as [4, B, C,0], the time
domain impulse response can be found as g(t) = CeA*B, Vt > 0. With this we

can write the 2-norm of g as:

llgllz = {/oo g(t)*g(t)dt}% = {/ﬂm B’eAItC’CeAtht}% (2.45)

— 00
This equation can be generalized to the determination of the 2-norm of strictly
proper transfer function matrices, by taking the trace of the right hand side:

Gl = {trace (B'/ eA,‘C'CeAtdtB>} (2.46)
0

The integral in this equation determines the total amount of energy in the system
output, starting from a given initial state with no input. It therefore determines
how well the internal system behaviour can be observed from the outputs and is
called the observability Gramian. Using trace (PQ) = trace (@QP) we can find a
dual expression that determines the amount of energy that must be applied to the
system through the input signals to obtain a certain energy content of the system
state, and is called the controllability Gramian:
X, 1= [5° eAtC CeAtdt
, (2.47)
X. = f0°° eVtBB eAtdt
These Gramians can easily be calculated, as they are the unique solutions of the

Lyapunov equations:
AIXO + XOA + C/C = 0
(2.48)
AX. + XA +BB' =0

which can be calculated without much computational effort. The procedure for
calculating the 2-norm of a signal description in RHs or a strictly proper TFMD

in RH, is therefore as follows:
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e determine a (minimal, stable) state space realization (4, B, C,0] of the fre-
quency domain description G(s),

calculate either X, or X, from equation 2.48,

G|z = {trace (B'X,B)}? = {trace (CX.C")}?,

the 2-norm in the time domain is equal to the 2-norm in the frequency

domain by theorem 2.3.1.

Numerical implementation of the calculation of the oco-norm by means of the
Hamiltonian matrix, and of the 2-norm by means of Lyapunov equations is, for
instance, available in PC MatLab (Moler et al. 1987).



Chapter 3

Linear controller design and

analysis

3.1 Introduction

3.1.1 Classical control methods

Although examples of technical solutions involving control can already be found
in ancient China, it may be stated that a fundamental approach to control design
has only started this century. The main paradigm up to 1960 is the frequency
domain approach involving analysis using poles and zeros of transfer function
descriptions and graphical methods to obtain a quantification of the behaviour of
the system under consideration. Controller design is mainly feedback design and
aimed at obtaining an open-loop behaviour of the cascade connection of plant and
controller that guarantees desired closed-loop behaviour.

The main method of design is graphical, especially the Nyquist diagram or equiv-
alently the Nichols chart can be used to relate certain properties of the open-loop
behaviour to that of the closed loop. Stability of the closed-loop system can eas-
ily be checked by means of the Nyquist stability theorem. Performance can be
assessed by checking the cross-over frequency: the closed-loop bandwidth will be
close to the frequency at which the open-loop system has an amplification factor
of 1. Robustness against uncertainties in the system description can be checked
by means of phase and amplitude margins. The controller structure can usually
be kept very simple: PID control, sometimes extended with lead-lag and notch
filters.
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The relative simplicity and effectiveness of these tools are the main cause of their
widespread use in industry. In fact, the only practical reason for considering more
modern techniques instead of this ‘classical’ design procedure is in the inherent
difficulty with graphical design procedures, that multi-input multi-output systems
can only be handled in very simple cases.

3.1.2 The modern control era

This has been the main reason for developing ‘modern’ control theory in the period
from 1960 to 1980. In contrast with classical control theory, analysis and design is
based on time-domain descriptions, i.e. on making use of state-space models. This
implies that the approach is multivariable and allows single-input, single-output
systems to be seen as a special case.

For analysis purposes, the use of state-space descriptions leads to the introduc-
tion of the controllability and observability concepts and a deeper understanding
of poles and zeros. For design, the complete description of a system’s internal
behaviour allows the application of controllers that make use of it to force closed-
loop behaviour that can be pre-specified in a greater extent than what was possible
with classical control methods (for instance pole-placement and linear quadratic
gaussian optimal control (LQG)).

Using such controllers, however, appeared to be very unsatisfying when the state-
space model is not a completely accurate description of the system to be controlled.
As this is usually the case, modern control theory is not very often applied in
practice: only when accurate state-space descriptions are available, Kalman filters
and/or linear quadratic optimal controllers can be found.

3.1.3 Robust control developments

In the late seventies, researchers found the mechanisms behind the unsatisfactory
results of modern control theory and defined the need for robustness of multivari-
able controllers in a fashion similar to classical control. This lead to a renewed
interest in frequency-domain methods, but now transfer function matrices were
considered by means of state-space realizations.

For robustness and performance analysis of multivariable closed-loop systems the
singular values of the closed-loop transfer function matrix, evaluated along the
imaginary axis, can be used as a measure of magnitude leading to Bode-like plots.
For controller design, several results from operator theory allowed a different ap-

proach to finding ‘optimal’ controllers.
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More attention was directed at the inherent trade-offs in any controller design:
instead of attempting to find a single optimal controller, it appeared useful to
first determine classes of ‘allowable’ controllers. The concept of operator norms
can then be used to define selection criteria for choosing an appropriate controller
from this set: especially the co-norm can be used to bound the amplification
factor of certain prespecified transfer functions, thus allowing both robustness and
performance demands on the closed-loop system to be met.

Usually there is no analytical solution to find controllers that minimize the oco-
norm. An iterative procedure can be used to tighten one or more of the boundary
conditions until a solution can no longer be found (y-iteration). As an arbitrarily
close approximation of the optimal solution can be found with this procedure, the
resulting controller is sometimes referred to as ‘the H.,-optimal controller’.

3.1.4 Overview

The next section will define the standard control design structure already men-
tioned in chapter 1, which will be used as a general framework for the solution of
linear control problems. The main reason for the introduction of this framework
is that it provides an interface between practical control problems and theoretical
results.

The practical importance of setting up of the standard plant for a specific control
problem is that it involves not only the derivation of an accurate linear model of
the plant to be controlled, but also the determination of weight functions to model
disturbance behaviour, the specification of desired closed loop behaviour and the
description of the influence of uncertainties. Thus, the standard plant can be used
to determine many aspects of the actual control problem, after which theoretical
results derived for this general description can be used to synthesize a controller
that takes all these aspects into account.

One of these controller synthesis procedures is in fact the frequency domain ap-
proach of LQG control and will be discussed in section 3.3. It will appear that
this approach is equivalent to the problem of minimizing the 2-norm of the closed-
loop transfer function from disturbances to error signals, resulting in an important
connection between time-domain and frequency-domain design techniques.

Next the synthesis procedure for H., optimal controllers will be considered in
section 3.4: here the co-norm of the closed-loop transfer function from disturbances
to error signals will be minimized.

After this, the problem of designing robust controllers will be discussed in sec-
tion 3.5: it will be shown that a property of the standard plant approach is that
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robustness of a controlled system depends on the way the standard plant has been
set up rather than on the selection of the controller synthesis procedure.

This will result in the need for the incorporation of detailed uncertainty descrip-
tions, which will be the subject of section 3.6. Here the structured singular value
is introduced and its role in robustness analysis and robust controller synthesis
will be considered.

Finally, section 3.7 will consider state-space descriptions with uncertain entries in
the coefficient matrices. A procedure for the automated transformation of such a
model into the standard control design structure will be discussed, providing the
possibility to set up highly detailed uncertainty models.

This chapter is of an introductory nature, although some considerations are not
readily found in literature. Apart from section 3.7, which is based on Lambrechts
et al. (1993), it is mainly based on Doyle et al. (1984), Francis (1987), Doyle et
al. (1990), Boyd and Barratt (1991), Zhou et al. (1993).

3.2 The general framework

3.2.1 The standard control design structure

In classical and modern control, many useful control design frameworks are used.
An important property of all these frameworks is the central position of the
‘plant’, the model of the physical system to be controlled. This plant is always
seen as a given entity: it has to approximate the behaviour of the actual plant
as close as possible, especially in view of the interaction it may have with the
controller to be designed. Usually this implies that the plant only describes the
transfer from actuator inputs to measured outputs. Any other information, like
performance objectives, acting disturbances and robustness demands, is available
as ‘side-information’ or is assumed to be contained in the measured outputs.

As a consequence of this, specific design objectives are usually added to the prob-
lem as extra signals and models: for instance, measurement noise, models to de-
scribe the behaviour of disturbances, actuator and sensor models, etc. For the
design of a controller this often implies that separate compensators or filters are
employed to try to meet with all these separate design objectives. Hence, the
structure of the controller itself becomes complex and it is hard to find a con-

troller that simultaneously meets all specifications.

To deal with this, we need a situation in which the controller can be synthesized



The general framework 39

in one stroke, while optimizing all control objectives. For this to be possible, we
must have that the plant, together with all these objectives is specified in a single
structure for which a single controller can be found. Because the original plant
is usually a significant part of this new single structure, it is called the ‘standard
plant’. The standard plant is set up such that both its input signals and its output
signals can be divided into two groups (e.g. Boyd and Barratt 1991):

Definition 3.2.1  (standard plant input signals)
The inputs of the standard plant are divided into two vector signals:

e the control input vector, denoted u, consists of inputs to the standard
plant that can be manipulated by the controller; it is the signal vector created
by the controller,

e the disturbance vector, denoted w, consists of all other input signals to

the standard plant.

Definition 3.2.2  (standard plant output signals)
The outputs of the standard plant are divided into two vector signals:

¢ the measurement signal vector, denoted y, consists of output signals that
are accessible to the controller; it is the input signal vector to the controller,

o the control objectives vector, denoted z, consists of all other output sig-

nals of the standard plant; it usually contains (weighted versions of ) u and
Y.

A pictorial representation of the structure including a controller is given in fig-
ure 3.1. Here P denotes the standard plant and K denotes the controller. We

w z

—_—

u P Y

K

Fig. 3.1: Standard control design structure

will assume that P and K are proper real-rational transfer function matrices such
that they can be represented by means of a state-space realization: P, K € Rg,.
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Now consider a partitioning of P according to the partitioning of input signals and
output signals:

p= Py Prp € R§§1+P2)X(¢11+q2) (3-1)

Py Py

and note that we have dimension ¢; for w, g for u, p; for z and ps for y. According
to the definition of LFTs in section 2.2 (definition 2.2.1), P can be seen as the
coefficient matrix of a lower LFT, operating on K, with the only difference that

all matrices now have entries in Ry:
.7:1(P, K) = P11 + P12(I — KPzz)_lezl (3.2)

As a matter of notation, we will define the closed loop transfer matrix from w to

z as:
Tw: = Fi(P, K) (3.3)
A state-space realization of P with a partitioning according to equation 3.1 can
be given as:
z x
z | = w (3.4)
Y u

Note that this equation is given in the same form as equation 2.6, such that the
LFT form of the state-space model of P is easily set up; we could consider the
closed-loop system of figure 3.1 as a combination of an upper and a lower LFT.

3.2.2 Internal stability of the closed-loop system

When considering the combination of standard plant P and controller K given
in figure 3.1 as a lower LF'T, the first thing to check is whether this LFT is well-
defined. According to definition 2.2.1, we can do this by verifying: det(I—K Pa) #
0. However, in this case we have that both K and P are elements of R, such
that det(I — K Py) is a function of s. We will therefore define a more restrictive

property as follows:

Definition 3.2.3  (well-posedness)
The configuration in figure 3.1 is said to be well-posed if (I — K Py3)~1 is a proper,

real-rational transfer function, i.e. an element of Rss.
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Note that this condition can be checked by verifying whether:
det(I — K(joo)P(joo)) # 0.

Unfortunately, well-posedness of the closed-loop configuration of figure 3.1 is not
sufficient for internal stability. To check internal stability we introduce two auxil-
lary signals, which results in figure 3.2. Hence, internal stability may be defined

w z
——] ———

v u P ‘
K Y l V2

Fig. 3.2: Internal stability test configuration

as:

Definition 3.2.4  (internal stability)
The configuration in figure 3.2 is said to be internally stable if all nine transfer
Junction matrices from input signals w, vy and vy to output signals z, u and y are

stable and proper, i.e. are elements of RH,..

Now let us introduce a state-space description of the standard plant with a par-
titioning as in equation 3.4 and including the effect of auxiliary signals »; and

V2!

T = Az + Blw + Bzu + BQ’Ul
= Ciz + Dyyw + Diau (3.5)
Cox + Dyyw + Dogu + w9

w
|

@
1

A standard result for the partial system:

r = A B
T T + 2U (3.6)
y = Coz + Dou

is that there exists a proper controller K achieving internal stability if and only if
(A, Bs) is stabilizable and (A, Cs) is detectable. Note that the SSD in equation 3.6
is in general not minimal, i.e. there may be uncontrollable and/or unobservable
poles as long as they are stable. This implies that an internally stabilizing con-
troller for equation 3.6 must also be internally stabilizing for equation 3.5.
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3.3 Optimal controller synthesis: LQG and H;

In classical control the actual controller synthesis consists of tuning standard el-
ements, like PID-controllers, lead-lag filters and notch filters. Design parameters
are usually directly related to physical properties of the plant: ‘rules of thumb’
and graphical methods are used to adjust them. In modern control a first attempt
is made to find a mathematical basis for controller synthesis. Control design is
considered to be the search for a controller that is optimal in some sense. A basic
trade-off between several design objectives is required, to make sure that this opti-
mization is non-trivial. Furthermore, it is desirable that the optimization process
is sufficiently simple, to be able to solve realistic problems.

First we will consider some preliminary results on the properties of solutions to
the algebraic Riccati equation. After that, we will review the method known as
Linear Quadratic Gaussian control (LQG), which is the most established result
from modern control that meets the aforementioned demands. Finally, generaliza-
tion of this method will be discussed, resulting in the minimization of the 2-norm
of the closed-loop transfer function and therefore known as Hz-optimal control.

3.3.1 The algebraic Riccati equation

A central role in the application of the controller synthesis methods discussed in
this section: LQG and Hj, as well as in the following section: H, is played by
the algebraic Riccati equation, or ARE in short. Let A, @ and R be real valued
n x n matrices with Q and R symmetric, i.e. @' = Q and R’ = R; then an ARE
is the following matrix equation:

AX+XA+XRX+Q=0 (3.7)

Algorithms for finding solutions X to this equation are readily available. They are
usually based on the possibility to associate the ARE with the following 2n x 2n

Hamiltonian matrix:

A R
H= (3.8)
-Q —A
For an extensive discussion on the properties of such solutions see for instance
Zhou et al. (1993).
In this chapter we will only need to consider a stabilizing solution, i.e. a solution
X such that the eigenvalues of A+ RX are all in C~. For such a solution we have

the following theorem:
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Theorem 3.3.1
There ezists at most one stabilizing solution to the algebraic Riccati equation 3.7.

This implies that if we are able to find a stabilizing solution, it must be the unique
stabilizing solution.

The question whether there exists such a unique stabilizing solution may be an-
swered by examining the associated Hamiltonian matrix. Let X_(H) denote the
stable subspace of H; we then have:

Theorem 3.3.2
Given the ARE of equation 3.7 and its associated Hamiltonian matriz given in
equation 3.8, then there exists a unique stabilizing solution if:

e H has no eigenvalues on the imaginary axis,
0
o X_(H) and Im are complementary.
I
Furthermore, this solution is symmetric: X = X',
In some cases we can also make use of the following result:

Theorem 3.3.3
Given the ARE of equation 3.7, then there exists a unique stabilizing solution if
R <0,Q >0, (A, R) stabilizable and (A, Q) detectable. Furthermore, this solution

ts symmetric and positive semi-definite: X = X' > 0.

This result will be useful when considering the LQG and Hy controller synthesis
methods.

3.3.2 LQG controller synthesis

Although many researchers have given extensive descriptions of LQG methods
(Anderson and Moore 1971, 1989, Kwakernaak and Sivan 1972, etc.), we will
review the basic procedure to introduce some notation and stress the relation with

the robust control approach.

LQG problem definition

LQG is based on a state-space description of the plant with two auxiliary signals:

i(t) = Az(t) + Bu(t) + vi(t)

(3.9)
y(t) = Cz(t) + Dult) + wvft)
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The auxiliary signals v;(t) and vz(t) are assumed to be zero-mean Gaussian
stochastic processes which are uncorrelated in time (white noise) and have constant
spectral density matrices V; and V, respectively (see equations 2.15 and 2.16):
Vi = Flimyo oo E{na(t)v2(t +7)'}) > 0
Vo 1= F(limooo E{va(t)v2(t +7)'}) > 0

The restriction that V5 must be non-singular can be avoided, but there are two

(3.10)

reasons not to pursue this:

e calculations and formulse will become much more complicated without

adding any insight,

e the proposition that all measurement signals are subject to some measure-
ment noise is in agreement with practical experience.

Another assumption that will be made here, is that v; and v, are uncorrelated

with each other:
Jim E{vi(t)vy(t+7)} = 0 Vr (3.11)

This restriction can also be removed, resulting in slightly more complicated calcu-
lations (e.g. Kwakernaak and Sivan, 1972).
Finally we will set D = 0: this assumption will appear to be possible without loss

of generality.

Usually, the control objective that we want to optimize to obtain the desired

performance, is a linear combination of the state-vector z:
¢(t) = Ex(t) (3.12)

of which we want a minimal spectral density, when given the occurrence of distur-
bances vy and ve. Furthermore, to obtain a feasible solution, we want to make sure
that the spectral density of the control input vector u remains within acceptable
levels, when our controller (to be designed) is in place.

This implies the need for a trade-off: when no controller is used ¢ will be ‘large’,
but u will be 0. Making ¢ ‘smaller’ by means of a controller will result in a
‘growing’ u, which may become unacceptable. To determine an optimal trade-off
between these two effects we need a ‘cost-function’, that should be minimized to
obtain an optimal controller. The cost-function, usually considered for this, can

be given as:

1 T
J:= lim TE {/0 (¢ + U'Q2u)dt} (3.13)
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which, under the assumption that the resulting closed loop system is stable, such
that ¢ and v are stationary random processes, can be simplified to:

J = E{{'Q:¢ +u'Quu) (3.14)

The actual trade-off between allowable spectral density of ¢ and allowable spectral
density of v can be prescribed by means of Hermitian weight matrices Q; and Q,
(@1 = @1, Q2 = Q3). Usually these matrices are chosen to be diagonal, such
that a weight can be appended to each of the elements of vectors ¢ and » and
a simple physical interpretation of the effect of the weights remains possible. By
increasing the weight belonging to one specific element, the optimization procedure
will result in a decrease of that element’s spectral density, at the cost of an increase
in spectral density of other elements.
Note that the condition that all elements of vectors ¢ and u are to be minimized,
implies that all their spectral densities must be weighted in such a way, that an
increase in spectral density implies an increase in cost. For this to be the case, we
must have @; > 0 and Q2 > 0; usually it is stated that @1 > 0 is allowed, but
this simply implies that a linear combination of ¢ does not have an effect on the
cost function and that E can be reselected such that the dimension of ¢ and Q;
decreases and @Q; > 0 results. Solutions for the case Q5 > 0 can also be derived:
the reasons for avoiding this in this thesis are equivalent (dual) to the reasons for
avoiding non-singularity of V; given above. Not only will the calculations be more
difficult, it is also impracticable to not restrict the spectral density of any input:
this would imply that such an input was allowed to have unbounded spectral
density.

Solution of the LQG problem

The solution of the LQG problem is based on the separation principle: it can
be derived that the optimal LQG controller can be found in two steps. First, a
deterministic linear quadratic optimization problem is solved to obtain an optimal
state-feedback regulator. Next, an optimal state estimator is constructed, which
minimizes the expected estimation error: E{(z — £)'(z — £)}; such an estimator
is also known as a Kalman filter. Under the given assumptions: a linear model, a
quadratic cost function and Gaussian stochastic processes v; and vs, the optimal
LQG-controller is then given by the optimal state feedback regulator acting on the
optimal state estimate Z, rather than on the actual state z.

The internally stabilizing optimal state feedback regulator Kz can be found from:

Kr=Q;'B'Xg (3.15)
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in which Xpg is the stabilizing solution of the ARE:
A'Xp+ XpA - XgrBQ;'B'Xr+E'QtE=0 (3.16)

Note that Q; > 0 and Q, > 0 implies that the mild condition: (A, B, E'Q1E) is
stabilizable and detectable, is sufficient for the existence of such a stabilizing solu-
tion, and furthermore implies that Xp = X5 > 0 (theorem 3.3.3). The resulting
feedback structure is given in figure 3.3.

u

B f C

A

—Kg

Fig. 3.3: Optimal state feedback structure

The optimal state-estimator mainly consists of a replica of the linear system mod-
el, submitted to the same control inputs. Minimization of the expected error
E{(z — &)'(z — %)} is done by updating the estimated state Z, based on the error
between measurement signals y and estimated measurement signals 7. The con-
stant output injection matrix Kg determines the behaviour of the resulting filter
and can be chosen optimal in the sense of a trade-off between the effect of system
noise v; and measurement noise vz. The calculation of an internally stabilizing
Kz is dual to that of K and can be found from:

Kgp = XgC'Vy! (3.17)
in which Xg is the stabilizing solution of the ARE:
XgA + AXp — XpC'V, 'CXp+Vi =0 (3.18)

Similar to the optimal regulator case we now have V3 > 0 and V2 > 0: (4, V1, C)
stabilizable and detectable is sufficient for the existence of a stabilizing solution,
and Xg = X% > 0 (theorem 3.3.3). The resulting optimal state estimator is given
in figure 3.4.

The dynamical behaviour of the LQG-optimal controlled system can now be con-
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z
y
u—. B f C __y_.ég
A
Kg
Fig. 3.4: Optimal state estimator structure
structed:
plant : #(t) = Az(t) + Bu(t) + v (t)
y(t) = Cx(t) + )
controller : &(t) = Ai(t) - KgCi(t) + Bu(t) + Kgy(t)
u(t) = —Kri(t) (3.19)
¥
z(t) = Az(t) - BKpgi +  wui(t)

#(t) = KgCz(t) + (A— KgC — BKg)d + Kgua(t)
With e := z — £ another description of the resulting system is found:

I(t) _ A-— BKR BKR $(t) n ’Ul(t) (320)
e(t) 0 A-— KEC e(t) U](t) - KE’Uz(t)
From this it can be concluded that the eigenvalues of the LQG-optimal controlled
system are the union of those of the optimal state feedback regulator and the op-
timal state estimator. This implies that under the given assumptions the resulting
closed-loop system is internally stable.
The state-space description of the complete LQG-compensator can now be given
as:

i(t) = (A— KgC — BKR)i(t) + Kgy(t)

u(t) = —Kgri(t) 321

Figure 3.5 shows a block diagram of the resulting closed-loop system. Check
that any effect of a nonzero feedthrough matrix: D # 0, can be counteracted by
incorporating this D into the compensator. As D has no effect on « or z the
optimal LQG-cost achieved with D = 0 will still be obtained.
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Fig. 3.5: The complete LQG compensator structure
3.3.3 H; controller synthesis
LQG in the standard control design structure

In the previous subsection, the LQG-problem was considered in a way that is com-
patible with most of the literature on linear quadratic methods in optimal control
(e.g. Anderson and Moore 1971, 1989, Kwakernaak and Sivan 1972). To place
the LQG-problem into proper perspective with respect to robust control methods,
we will now restate it within the general framework discussed in section 3.2. This
implies that we need to define a control objectives vector z such that minimization
of z is equal to minimization of the cost function in equation 3.13. Furthermore,
we have to define a disturbance vector w in such a way that it reflects the effect
of system noise vector v; and measurement noise vector vo. Based on Boyd and
Barratt (1991), the standard plant, which is equivalent to the formulation of the
LQG-problem can thus be set up as in figure 3.6. A state-space description of this
standard plant with a partitioning as in equation 3.4 can then easily be found as:

A |V? 0 : B

¢ QiElo oo |]|”

Sl=] " o w (3.22)
0 0 0 :@Q;

7 I (N e U
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Fig. 3.6: The standard plant formulation of the LQG-problem
Note that with the definition of z as:
1
2E
2= | 7 (3.23)
Q3 u

the LQG cost as given in equation 3.14 is exactly the RMS-norm of z (equa-
tion 2.14). Next, we have that the square root of the spectral density matrices
Vi and V; are incorporated in the standard plant such that we can assume that
w is a white stochastic process with spectral density matrix W = I. With
equation 2.25 and the extension of the definition of the 2-norm to matrix func-
tions in equation 2.46, this implies that the RMS-norm of z is equal to the 2-norm
of the transfer function from w to z. We can therefore solve the LQG-problem by
finding a controller K that uses control inputs u and measurements y, such that
the 2-norm of the closed-loop ||Ty.||2 is minimal.

The H; problem definition

The importance of setting up the LQG-problem within the general framework is
that it is now possible to generalize it to a larger class of problems. This general
problem is usually referred to as the ‘Hs-problem’ and it is based on the standard

plant description:

w (3.24)
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(see for instance Doyle et al. 1989 and Zhou et al. 1993).
With this we have the following definition:

Definition 3.3.4  (the Hy-problem)

Given the standard plant of equation 3.24 and the standard control design structure
of figure 3.1, find a proper, real-rational controller K € RL,, that achieves
internal stability of the closed-loop system and minimizes the 2-norm of the transfer

function matriz Ty, from w to z.

Extension to the general case with Dj; # 0 is possible, but will not be elaborated
on in this thesis. However, note that Dj; # 0 implies that the open loop system
is not in RL,, which usually makes it impossible to find a controller such that T’,.
is in RH,.

The following assumptions are made to ensure solvability of the Hy problem:
Al (A, B,) is stabilizable and (A4, Cy) is detectable,

A2 Dis has full column rank and Ds; has full row rank,

A— jw] B2
A3 has full column rank for all w: the SSD of the open loop
&) D1

transfer from u to 2 may not have any transmission zeros or input-decoupling

zeros on the imaginary axis (see theorem 2.4.9),

A—jwl B
A4 has full row rank for all w: the SSD of the open loop
Co Do |

transfer from w to y may not have any transmission zeros or output-

decoupling zeros on the imaginary axis (again theorem 2.4.9).

The first assumption is necessary and sufficient for the existence of an internal-
ly stabilizing controller for the standard plant. The second assumption is on
the selection of appropriate weight functions, such that the possibility to mini-
mize ||T,||2 is ensured. This assumption is a generalization of the assumptions
Q3 >0 and V, > 0 that were made for the LQG-problem in the previous section.
The third and fourth assumption are introduced for technical reasons and will be

discussed later.

Solution of the H, problem

A complete derivation of the solution of the Hy problem under these assumptions

is rather involved and beyond the scope of this thesis: for this refer to for instance
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Doyle et al. (1989) and Zhou et al. (1993). As in the solution of the LQG-
problem, it appears that a separation structure is applicable, leading to the design
of a regulator and an estimator based on two algebraic Riccati equations:

XR(A — By(DiyD12) ' D12C1) + (A — Ba(D15D12) 1 D12Cy ) X
— XpBa(DlyD12) "  ByXp + CL(I — Dia(DjpD1s)="Dip)Cy = 0
(3.25)
(A = B1Dgy (D21 D)1 Co)Xg + Xp(A — B Doy (Do Dy )1 Cy)
~ XgC4(Dy1 DY) 1Co X g + By (I - D} (D91 DY) 1 De1)By =0

From the stabilizing solutions Xp and Xpg it is again possible to calculate the
constant state-feedback matrix Kg and output injection matrix K g:

Kg = (D13D12) " (B3 X R + Di,C1)

(3.26)
Kg := (XgCh+ B1 D) (D Dyy) ™t

It can be verified that under assumptions Al through A4 the conditions of
theorem 3.3.3 are met: there exist stabilizing, positive semi-definite solutions
Xr = Xp > 0and Xg = Xz > 0, resulting in an internally stabilizing con-
troller.

The resulting compensator structure is then completely analogous to that of
the LQG-problem in figure 3.5 and is given in figure 3.7. Note that with the
LQG standard plant in equation 3.22 we have that (Dj,D12)"! = @, and
(D21 Dyy)~! = V,. Furthermore, we have D;,C; = 0 and B;Dj = 0, such
that it is an easy exercise to substitute this in equations 3.25 and 3.26 to find
the results in equations 3.15, 3.16, 3.17 and 3.18. Also note, that a state-space
description of the Ha-compensator can be found, equivalent to that of the LQG-
compensator given in equation 3.21:

#(t) = (A— KgCy — BoKp + KpDypKr)i(t) + Kpy(t)

3.27
u(t) = —Kpi(t) (3:27)

We thus have the possibility to find the Hy optimal controller for the general plant
of equation 3.24 by solving the two AREs given in equation 3.25 and substituting
the result in equation 3.26. In the next section we will consider the control problem
that is, to this date, the most important for the design of robust linear controllers:
the H_.-problem.
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Fig. 3.7: The H; optimal compensator structure
3.4 H, controller synthesis

3.4.1 H_ problem definition

The Hoo-problem can be defined as follows:

Definition 3.4.1  (the H,.-problem)

Given the standard plant of equation 3.4 and the standard control configuration of
figure 3.1. Find a proper, real-rational controller K € Rss, that achieves inter-
nal stability of the closed-loop system and minimizes the co-norm of the transfer

function matriz T, from w to z.

Note that we have from section 2.3, theorem 2.3.2, that the co-norm is the induced
2-norm: the co-norm determines the maximum amplification of a signal in Hy by
a system in He, in the sense of the 2-norm. Hence, in comparison with the Hs-
problem in which we assume that the disturbance input w is white noise with
spectral density I such that we minimize the average 2-norm, we now aim to
minimize the 2-norm of the control objectives vector z under the influence of the
worst case disturbance input with unit 2-norm.

Because this is a very hard problem to solve in the general case, a slightly simpler

problem is also considered:
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Definition 3.4.2  (the sub-optimal H.,-problem)

Grven the standard plant of equation 3.4 and the standard control configuration of
figure 3.1. Furthermore, given a real positive scalar constant v > 0. Find a proper,
real-rational controller K € Ry, that achieves internal stability of the closed-loop

system and obtains ||Tw:llco < 7.

3.4.2 Solution of the H.,-problem

The solution of the sub-optimal H,,-problem appears to be very similar to the

solution of the Ho-problem in some respects:

e there is a separation structure, allowing the output feedback problem to be

split into a state-feedback problem and an estimator design problem,

e cach of these sub-problems leads to an algebraic Riccati equation, the so-
lution of which can be used to obtain a constant state-feedback matrix Kgr

and a constant estimator state-injection matrix Kg,

e a sub-optimal H, controller has a structure, similar to that of an optimal

H; controller as given in figure 3.7.
There are, however, some important discrepancies also:

e there are infinitely many sub-optimal Hy and H,, controllers, but, in general,
there are also infinitely many optimal H., controllers, whereas there is only

a single Hp-optimal controller,

e in general it is very hard to solve the optimal H,-problem directly, while,
as stated before, the sub-optimal H..-problem is similar to the Ha-problem
and therefore readily solvable; the optimum can be approximated by means

of an iterative procedure on +.

For all practical purposes it is sufficient to calculate a sub-optimal H.. con-
troller by means of this so-called y-iteration. The optimal Ho-norm is given
as: Y, := infg ||Twzlloe such that for any € > 0 there exists a sub-optimal Ho
controller for v = vy,+€. By means of this sub-optimal solution and ~y-iteration it
is possible to make e arbitrarily small: for this reason, the result of the v-iteration

procedure is usually considered to be the solution of the H..-problem.

We will now set up the calculation of the sub-optimal H_, controller and give a
parametrization of all sub-optimal H.. controllers that obtain ||T..||- < 7. The

assumptions that have to be made for solvability of this problem are the same
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as those for the Hy-problem and, as mentioned before, the solution of the sub-
optimal H..-problem is again based on two algebraic Riccati equations. However,
the complexity of these equations has grown in such a way that we first introduce
some more notation:

21, 0 ]
R = Di*Dl* - {’Y 091 0 y where Dl* = [Du D12]
- : (3.28)
- 270 D
R:=D.D,; - T , where D, := "
0 0 Dy,

Then, under the assumption that both R and R are non-singular, the two Riccati
equations for the design of a regulator and an estimator are given as:

Xgr(A—-BR™'D|,C1)+ (A- BR™1D|,C1)'Xg
— XgBR™'B'Xp + Ci(I - D1.R7'D{,)C1 =0
(3.29)
(A— BiD\ R"1C)Xg + Xp(A — B, D, R™1C)’
- XgC'R'CXg +B1(I - D,;R™'D)B; =0

As was done in the solution of the Hy-problem, we can now calculate the constant
state-feedback matrix Kg and output injection matrix Kg from the stabilizing

solutions X and Xg:

Kp:= R-Y(B'Xp+D,.C
R (B'Xr+ D) f) (3.30)
Kg = (XgC' + ByD.)R™

The connection with the solution of the Hp-problem becomes even more clear if

we consider the case Djy; =0 such that:

—~2T 0 . 4L 0
r=| o . R=|Tm (3.31)
0 DDy 0 Dy DY,y
Now let v — oo such that:
0 0 ~ 0 0
R1— and R™! —
0 (DipDi2)™! 0 (D2 Dy)™?

Substitution in equation 3.29 then results in equation 3.25 and substitution in
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equation 3.30 results in:

K 0 0
B = (B'XR + D1,C1)
KR2 0 (D’12D12)_1 (3 32)
. )
[Kg1 Kg2] = (XgC'+ B1D,y)

0 (Dy1Dyy)!

This implies that Kr and Kg in equation 3.26 are equal to Kgy and Kgy in
equation 3.32 and that the compensator structure is given by figure 3.7. It appears
that for v — oo the solution of the AREs in equation 3.29 converge to the Hj
optimal values; hence, the matrices Kr and Kg of the H,,-problem converge to
those of the Hy-problem.

For the Ho-problem the case Dj; # 0 is not trivial: now T, is allowed to be in
RH,, and may therefore have a feedthrough term. Unfortunately, this significantly
complicates the calculation of not only Xgr, Xg, Kr and Kg, but also of the
compensator structure. This can be alleviated by allowing two extra assumptions:

0
A5 Dlz = and Dgl = [O Ipz])

A6 Doy =0.

Assumption A5 appears to be possible without loss of generality and can be ob-
tained by scaling of « and y and unitary transformation of w and z (Glover and
Doyle 1988, Zhou et al. 1993). Assumption A6 can easily be removed later on.
The reason for introducing these assumptions is that they suggest a partitioning
of matrices Kr, Kg and D as follows:
Krii Kriz Kgo
K Ko, | D D 0
R — E11 1111 1112 (333)
K| D K5is | Duizn Duae I,
K/E‘Z 0 IP:: 0

With this, we can set up the following theorem (Glover and Doyle 1988):

Theorem 3.4.3  (solution of the sub-optimal H-problem)
Suppose v is given and the standard plant P satisfies assumptions A1 through A6.

(a) There exists an internally stabilizing controller K € Rss such that
1 Twzlloo <7 if and only if:
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(i) ¥ > max (5[Dun Du12},5[D11n D))
(ii) there ezists a stabilizing and positive semi-definite solution Xpg to the
requlator ARE;

(i4) there exists a stabilizing and positive semi-definite solution Xg to the
estimator ARE;

(iv) p(XrXE) < ¥, with p(X) denoting the spectral radius of X.

(b) Given that the conditions of part (a) are satisfied, then all internally stabi-
lizing controllers K € Ry satisfying ||Tw:zlleo <7 are given by:

K = Fi(K,,®) for arbitrary ® € RHo such that ||®]|o < v

where:
K, = , (3.34)
D1y := —Dy121 D}, (¥*I — D111 Diyqy) "  Diaz — Daize, (3.35)
Dis € R©2%%2 gnd Doy € RP2XP2 gre any matrices satisfying:
Dy,D),=1—-D 2] — Di111Dlyqy) 1D, 101,
124772 1121(7 1111 1111) 1121 (3.36)

Db Dgy = I — D}115(v*T = D1111D}111) " D1naa.
Furthermore:

By := Z(By + Kpi12) D12,

Cy := =Dy (Cy + Kr12),

By = —ZKga + BaD} Dy, (3.37)
Cy := Kro + D11 D3 Cs,

A=A+ BKg+ 31132—1102>

where:

Z:=(I -~ XgXg)™ " (3.38)
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An important discrepancy with the optimal Hy-problem is that existence of an
internally stabilizing sub-optimal H., controller for a given value of + is not guar-
anteed by the assumptions Al through A6. It should be checked whether there
exists a stabilizing solution to both ARES, for instance by means of theorem 3.3.2,
and it should be checked whether this solution is positive semi-definite. In spite
of this, the existence of a sub-optimal H,, controller can easily be established by
attempting to construct the stabilizing solutions Xg and Xg by means of numer-
ical methods. If this construction is successful, equation 3.30 and part (b) of the
theorem provide all sub-optimal H, controllers for the given value of v, if not, the
given value of «y is smaller than the optimal value and no controllers exist. This
entire procedure, often even including y-iteration, is readily available in software
packages like PC-MatLab (Moler et al. 1987, Balas et al. 1993) and MATRIXx
(Gupta 1991).

All H,,-sub-optimal controllers are parametrized by means of an LFT acting on
a single matrix-valued parameter ®, that is only restricted by the demand that it
is in RH,, and has oco-norm less than +. The compensator structure for any such
choice of ® can thus be given as a combined upper and lower LFT as given in fig-
ure 3.8. An obvious choice of & would be ¢ = 0, which simplifies the compensator
structure significantly and results in the so-called central controller. As indicated
earlier, we have that the H_,-sub-optimal controller for v — co approaches the
H-optimal controller: with & =0 and Dj;; = 0 the compensator structure of
figure 3.8 reverts to that of figure 3.7. For bounded 7 it has been shown by Glover
and Mustafa (1989), that the central controller can be seen as an appropriate
trade-off between the Hy and H., objectives, thus giving an extra motivation for
choosing ® = 0. Furthermore, it should be noted that & # 0 usually, but not
necessarily, implies an increase of the order of the compensator.

As mentioned before, assumption A6 (D22 = 0) can now be removed, which ap-
pears to be as simple as what was done ir. the LQG and Hj cases. Suppose K is a
controller for P with D, set to zero, then the effect of a nonzero Dss can be com-
pletely compensated by adding Dgs to this compensator according to figure 3.9.
Now u = Ky — KDssu such that w = ([ + KD3y) 'Ky and we can define the
resulting controller as K := (I + KDy) K.

This implies that only assumptions Al through A4 on the standard plant P are
left. Assumption Al is clearly basic for the existence of any stabilizing controller
and can not be removed. Assumption A2 (or A5 without loss of generality) can
be removed, which may lead to singular control problems and requires more com-
plex calculations (Stoorvogel and Trentelman 1990, Scherer 1992). Removal of
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>

Fig. 3.8: The H,, sub-optimal compensator structure

assumption A3 and A4 is also possible, again leading to significantly more complex
calculations (Scherer 1990, 1992). Chapter 4 will consider a different approach to
dealing with these assumptions. It will be shown that the procedure developed in
this section under the assumptions Al through A4 can be used to solve the output
regulation and tracking problem, although it will appear that this may lead to
violation of assumptions A3 and A4.

3.5 The robustness issue

3.5.1 Definition of the robust controller

Apart from the tuning approach of classical control, where the controller parame-
ters are set using the immediate response of the physical system to be controlled,
control design is always based on a mathematical model of the plant. This im-
plies that unexpected and sometimes even dangerous results can occur when a
controller, that works perfectly well on its design model, is implemented on the
actual plant. The reason for this is that, as already discussed in section 2.1, the
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Fig. 3.9: Adding the effect of Dy to the compensator structure

plant model will never be a perfect representation of the physical system. The
causes for discrepancies between physical system and model can be distinguished
as follows:

e parts of known linear behaviour, like high frequency dynamics, are not in-
cluded in the model to keep it manageable and/or to make a certain design
method applicable,

¢ some physical quantities in the system, like mass, stiffness, size, etc., are not
precisely known, or vary from case to case (e.g. when a controller is to be
designed for a mass product),

e some physical quantities in the system are changing with time,

e some physical quantities in the system are changing as a function of opera-

tional conditions or other external influences (non-linearity).

In practical situations, usually all of these possibilities occur in some form at the
same time and are generally described as plant uncertainties.

Basically there are two approaches to this problem. The first is to put a lot of
effort in the modelling process, to obtain a model that gives an ‘as good as possible’
representation of the physical plant. This then leads to a complex model, usually
non-linear, time-dependent, etc., for which it is hard to design a controller based
on predetermined control objectives. It usually involves an iterative procedure of
design, simulation and tuning, but in the end, the control engineer still needs to
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make a ‘leap of faith’ with regard to the performance of the final controller on the
actual plant.

The second approach is based on the practical experience that, especially using
classical control methods, it is possible to find controllers based on simple models,
that perform well on plants with significant uncertainties. It is to leave the concept
of ‘there is a model, albeit complex, that matches the physical plant’ and instead
look for a set of simple (i.e. LTI) models, which is assumed to contain a ‘good
enough’ description of the physical plant (at a certain time, in a certain operating
point etc.). The controller design should then be based on this set, rather than
on a single model, such that the performance of the controller is sufficient for all
members of the set. A controller with this property is called a robust controller:

Definition 3.5.1

Given a set of models, then a controller is said to be a robust controller, if it
achieves a number of prespecified design objectives when applied to any member of
this set.

However, also in the case of a robust controller the control engineer requires a
leap of faith. Most of robust control theory is based on sets of LTI models and
at least one of these models must be a ‘good enough’ description of the physical
plant. Furthermore, the effects of time-dependence and non-linearity are usually
considered to be perturbations of a nominal LTI model in the model set: they cause
changes from one member of the model set to another, and in general it must be
assumed that these changes do not upset the performance of the controller.

In spite of this, the possibility to explicitly define a set of models for which anal-
ysis and synthesis of controllers can be done to provide guaranteed closed-loop
stability and performance properties is a powerful concept. It allows the designer
to put emphasis on those areas of the control problem that are known to contain
uncertainties and to design a robust controller with better average performance
than a controller designed for the nominal plant.

3.5.2 The robustness objective in the general framework

Thusfar the standard control design structure defined in section 3.2 has only been

used to specify two control objectives:
e internal stability;

o disturbance attenuation.
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When taking into account that the disturbance attenuation objective is represented
by a wector of error signals (z), this already can be a sensible control problem, in
the sense that a trade-off can be defined between several objectives. A clear
example of this is the LQG problem, in which error minimization is traded-off
against actuator effort.
The extension of the standard control design structure to include also the robust-
ness objective, would now add a further trade-off to the control design problem. It
would then be possible to design a robust controller in the sense of definition 3.5.1,
which depends on a trade-off between disturbance attenuation objectives on the
one hand, and the ‘size’ of the set for which internal stability and a certain amount
of disturbance attenuation is obtained on the other.
A very simple example will now be used to show how the incorporation of the ro-
bustness objective into the general framework can be performed. For this consider
the first order system transfer function:

¢

Gls) = s+1

in which the gain parameter c is uncertain, but assumed to be in a known interval:
¢ € [e1,c2). We then have:

(3.39)

C= ¢+ 05, 6e-1,1]

(3.40)
Coi=8ta g, = aza 55
and G(s) can be written as:
Co 65,
G(s) = 3.41
G =it 541 (3.41)

Now this can be represented by means of an upper LFT as given in figure 3.10
(note the right-to-left notation).

0 1

Sg Co
s+1 s+1

Fig. 3.10: An uncertain transfer function in LFT form

The extension of this example to the general case thus suggests the extension of the
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Fig. 3.11: The standard control structure with uncertainties

standard control structure to that of figure 3.11. Here the ‘uncertainty matrix’ A
is an unknown matrix valued parameter in some bounded set A; we will assume

for some given real scalar constant v:
A :={A:Ae€RH.,|Alle <7} (3.42)

The interconnection of P with A is given by two new vector valued input and
output signals: w; and z;. The ‘original’ disturbance input vector w and objectives
vector z are renamed to ws and 2s.

This control structure clearly suggests a further partitioning of the standard plant

description as follows:

i A| BB : Bs x
z C1|D11:Dy2: D w
vl |G DDz D) (3.43)
%2 C2| D21:Da2 : Das w2
. . U
v | C3|D31: D3zt D3s |
Note that for a given uncertainty matrix A € A and a given controller K we
have:
T2y = Fu(F1(P, K),A) (3.44)

For robustness analysis purposes (K known) we will denote:
M = F(P K) (3.45)
as M is again the coefficient matrix of an LFT.

With this we have the following definition:
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Definition 3.5.2  (the robust control problem)

Given the standard plant of equation 3.43, the uncertainty matriz of equation 3.42
and the standard control design structure of figure 3.11. Find a proper, real-
rational controller K € Rgs, that achieves internal stability of the closed-loop
system and minimizes the 2-norm or the oco-norm of the transfer function matriz
Tw;z, from wa to z2, when perturbed by the ‘worst case’ A.

In this definition, the term ‘worst case A’ means: ‘that A € A for which the
norm of T,,., is maximal’ (i.e. in the closed-loop situation of equation 3.44).
For robust control problems, usually the minimization of the co-norm is considered:
the reason for this is the ‘small gain theorem’ discussed in the next subsection.

3.5.3 The small gain theorem

Before looking at the complete problem formulation of definition 3.5.2, we will
first consider the case that ws and z; are absent. In that case the performance
objectives drop out of the control problem and we are left with a ‘robust stabi-
lization problem’. Now suppose we have an internally stabilizing controller K for
the nominal plant (A = 0) and define M as in equation 3.45 (2; = Mw; with
M € RH,.). Figure 3.11 then reduces to figure 3.12.

A

M

Fig. 3.12: Feedback structure for the small gain theorem

For this situation we have the following theorem:

Theorem 3.5.3  (small gain theorem)
Given M € RHy, and A according to equation 3.42, then the closed-loop system
of figure 3.12 is internally stable for all A € A if and only if ||M}leo <L

For a complete proof see for instance Doyle et al. (1984) and Zhou et al. (1993).
It is based on the fact that A, M € RH,, such that instability can only occur
if det(/ — A(jw)M(jw)) =0 for some w € R and some A € A. Sufficiency
then immediately follows from ||[AM||c <1 VA € A. Necessity can be proven
by assuming ||M|l > ¥~! and constructing a A € A such that det( —
A(jw)M(jw)) = 0.
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The main importance of this theorem is that we now have an equivalence between
robust stability and performance in the sense of the co-norm. For analysis purposes
we can guarantee robust stability for A € A (equation 3.42) by checking if
the co-norm of the known closed-loop transfer function from wj to z; is smaller
than v~ 1 ||M|lco = ||Twizllc < ¥~*. Furthermore, we can use Ho, controller
synthesis to find a controller which achieves robustness for A € A. A sub-optimal
H,. controller can be used to gnarantee robust stability when - is precisely known.
Iteration on - can be used to maximize robustness margins in the sense that the
minimal co-norm of T, ., will determine the maximal bound on ||A||o, for which
robust stability is (still) obtained.

3.6 Analysis and design using the structured sin-

gular value

To motivate the introduction of the structured singular value we will first look
at the robust performance objective for the standard control configuration in fig-
ure 3.11. After that, the definition of the structured singular value will be given,
followed by its calculation using upper and lower bounds and a short discussion

on its use for analysis and design.

3.6.1 Robust performance

By means of the small gain theorem we have established a link between co-norm
minimization and robust stabilization. However, this is not sufficient to solve the
robust control problem as given in definition 3.5.2 and depicted in figure 3.11.
To achieve performance objectives we have to minimize the 2-norm or so-norm of
T, =, for the worst case A, while simultaneously considering the co-norm of Ty, 2,
to ensure robust stability.

A possible approach is to combine w; and wy to w and 21 and 23 to z, after which
an H., controller can be synthesised that minimizes ||Ty:||cc (i-e. [|M||oo)- By the
small gain theorem this is equivalent to the extended robust stabilization problem
given in figure 3.13.

Here the extended uncertainty matrix A, is defined as:

Aur A
Ag= |00 T8 (3.46)
Az Ap

in which we can set Ajp; = A,
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A,

w1 z21

wo M 29

Fig. 3.13: Extended robust stabilization problem

The problem with this approach is that we now allow the disturbance input vector
wy to be related with uncertainty output vector z; via As;, although there is no
physical interpretation for this relation. Similarly, the uncertainty input vector
w; not only depends on uncertainty output vector z;, but also on performance
objectives vector z9 via Ajo. The calculation of the Ho, controller that minimizes
[|M]|oo will therefore take uncertainties into account that do not occur in the
actual plant. Obviously the performance of the resulting controller, measured as
| T,z l|oo will only deteriorate because of this, as will the actual robust stability
margin {||Tw1zl”oo}—1'

On the other hand, if ||M||eo < v is obtained, we do have the guarantee that the
controller achieves robust stability, and that ||Ty,z|lcc < v for all A € RH,
with ||Alleo < 771, We can therefore consider this approach as a sub-optimal
solution to the robust control problem, similar to the solution of the sub-optimal
H.-problem (definition 3.4.2). However, in contrast with the Ho,-problem, we
may have that the resulting controller is arbitrarily far from optimality or, in
other words, the resulting controller may be arbitrarily conservative.

To remedy this situation it is clear that we need to set Ajz = Az =0 and try
to find a test determining the stability of the configuration in figure 3.13 when A,
has this special structure. In order to do this we can define the set A, as follows:

A, = {diag(A,Ap) : A, A, € RHoo, [|Alle €7, |Ap]|lce < v} (3.47)

A, is added to transform the performance objective into a stability objective and is
therefore known as the performance block. Note that the block-diagonal structure
of A, ensures that ||Aclleo < 7.

As with the small gain theorem, we can test stability by determining whether
or not det{/ — A (Jw)M(Jw)} = 0 for any A. € A.. However, it is clearly
impracticable to do this test directly and we would like to have a ‘measure of size’
for the known matrix M, that can be used to determine stability. Similar to how
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the co-norm is based on the largest singular value & and determines stability for
‘unstructured’ A, this new measure of size will be based on the structured singular
value u.

3.6.2 Definition of the structured singular value

Besides the robust performance problem considered in the previous subsection,
we will see later on that there are many other cases leading to a block-diagonal
structure of the uncertainty matrix A. For this reason, it is useful to first define a
more general set of uncertainty matrices, which will offer a general framework in

which many forms of structured plant uncertainty can be specified.

A, = {diag(d1lx,,. .., 0r 1k, A1,..., Af):

(3.48)
6:, Ai € RHoo, |6illoc <, [|Ailloo < 7}

Here &;I,,i = 1...r denote repeated scalar blocks and A;,i =1...f denote
full blocks with dimensions k,4; X k.;. The assumption that all A; are square
can be removed, but will not be considered to reduce complexity of notation. Note
that for A € A, to be compatible with the standard control design structure with
uncertainties given in figure 3.11, we must have Z::lf k; = q = p; with ¢
and p; the dimension of wy and z; respectively. Also note that, due to the block-
diagonal structure, we have ||All. <+ for all A € A,. Hence, we now have a
‘robust stabilization problem with structured uncertainties’, of which the robust
performance problem, discussed in the previous subsection, is a special case.

Sometimes it is convenient to assume that v is incorporated in the standard plant,
such that we can set v = 1. As all elements of A, are then within the unit ball,

we will use the notation:

BA, = {A €A, : Al < 1} (3.49)

A measure of size of M, similar to the largest singular value, that determines
robust stability when A has structure (A € A;) can now be defined as:

Definition 3.6.1  (the structured singular value)
Given the configuration of figure 3.12 with M € RH.
The structured singular value pp (M (jw)) 1s then defined as:

. 1
pa, (MQw)) = min(6(A(jw)) : A € A, det(I — A(jw)M(jw)) = 0)

(3.50)

unless no A € A, makes I - A(jw)M (jw) singular in which case pp (M(jw)) := 0.
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Note that y is a function of the uncertainty structure A,, the matrix M, and
frequency w.
Similar to the definition of the co-norm as the supremum over w of the largest

singular value of M we now define:
M, :=sup pa (M(jw)) (3.51)

However, since i does not satisfy the triangle inequality, ||M||, is not a norm (we
do have p(cM) = |¢|u(M) Ve € C). We use it to illustrate the similarity between
oo-norm and ‘u-norm’ with respect to the small gain theorem with structured

uncertainties:

Theorem 3.6.2  (small gain theorem with structured uncertainties)
Given M € RH, and A, according to equation 3.48, then the closed-loop system
of figure 3.12 is internally stable for all A € A, if and only of ||M|, <~ L.

The proof of this theorem follows immediately from the definition of x and the
proof of theorem 3.5.3.

Clearly, u is a generalization of the largest singular value; with A according to
equation 3.42 we have: uA (M(jw)) = 7(M(jw)). A can therefore be interpreted
as an extreme set within A,: the unstructured case. Another extreme set can be
defined as:

A; = {6]:6 € RHe, ||6]lc < 7} (3.52)

For this ‘highly structured’ set we have pa (M(jw)) = p(M(jw)) with p(M)
denoting the spectral radius of M. From definition 3.48 and equations 3.52 and
3.42 we then have:

A, CA; CA (3.53)
such that we can consider p and & as (conservative) lower and upper bounds on u:

p(M(jw)) < pp, (M(jw)) < 3(M(jw)) (3.54)

3.6.3 Calculation of the structured singular value

With equations 3.53 and 3.54 we can calculate a lower and an upper bound on u
by means of relatively simple eigenvalue calculations at all values of w that are of
interest. However, these bounds can be arbitrarily conservative, and therefore far

apart. It appears that the gap between lower and upper bound can be reduced
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significantly by making use of the known special structure of A;. For this, we will
define two subsets of CP1*9! (with p; = ¢1), that have a special relation with A,:

Up ={U€ANCP* .UV = T,,)
DAE = {diag(Dl,. . ,Dr,dllkr+17---,df1k,+f) : D€ CkiXk"‘, (3.55)
D,‘:D:>O, diER,di>0}

We then have (Doyle 1982):

Theorem 3.6.3
Foral U e UAS and all D € DAs

pA, (MU) = pp (UM) =pp (M) = pp (DMDTY) (3.56)

Proof:

From equation 3.55 we have U* € Up , UA € A,, AU € A,, a(UA) =

a(AU) = (A). Now we have: det(/ — MA) = det(I — MUU*A) = det(I —

U*UMA), which proves the first part of equation 3.56. For the last part, note

that D~AD = A, VA € A, and that det(I—MD~*AD) = det(I-DMD™A).
O

This theorem implies that p is independent of the special forms of unitary trans-
formation and scaling of transfer function matrix M as given in equation 3.56.
Substitution in equation 3.54 then results in:

p(UM) < pup (UM) = pp (M) = up (DMD™Y) < 5(DMD™Y) (3.57)
which suggests that a search over allowable U and D will result in tighter bounds
on u:

max p(UM) < M)< iof &(DMD™! 3.58
S AUM)Sup 00 S it o ) (3.58)

In fact, Doyle (1982) proved:

max p(UM) =pA (M) (3.59)
veU A, :
although this does not lead to a straightforward calculation of u: p(UM) can have
multiple local maxima.
The upper bound, on the other hand, appears to be a convex optimization problem
(Safonov and Doyle 1984, Tsing 1990), such that there is only one local minimum,
which is the global minimum. However, there are only a few cases in which this
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minimum of the upper bound is equal to y: it can be proven that equality occurs
when 2r + f < 3, i.e. the uncertainty structure A, consists of less than three full
blocks, less than two repeated blocks or less than the combination of 1 repeated
block and two full blocks (see Doyle et al 1990, Zhou et al. 1993).

Finally, note that the determination of x as a function of frequency w by means of
the upper bounds provided by equation 3.58, implies that matrices U and D also
become functions of w.

3.6.4 Application of the structured singular value

It has already been discussed that the design of a robust controller should take
both robust stability and robust performance into account. It was argued that
calculation of an H.-optimal controller would necessarily lead to conservative
results, due to the fact that the special uncertainty structure of this problem is not
considered. This is an important motivation for the definition of the structured
singular value: calculation of p makes it possible to come to non-conservative
statements.

Perhaps even more important is that the definition of yx, or rather the definition of
the uncertainty set A,, also allows structuring of the uncertainty matrix for oth-
er reasons. When setting up the standard plant, usually several subsystems and
weight functions are combined. In each of these subsystems, uncertainties may
occur for any of the reasons mentioned in section 3.5, leading to an uncertainty
matrix for every subsystem. Combining all subsystems into the standard plant
to set up the standard control design structure of figure 3.11, then automatically
implies that all separate uncertainty matrices are combined into A. Correct order-
ing of all uncertainty inputs and outputs immediately results in a block-diagonal
structure of A, possibly extended with a performance block A,.

This implies that careful modelling of the system to be controlled not only leads
to an accurate and detailed description in the form of the standard plant P, but
also to a highly structured uncertainty matrix A. Discarding this structure by
performing singular value analysis and H,, controller synthesis will therefore lead
to conservative results, which can be remedied by using p.

Although direct calculation of p is not possible, it appears in many practical cases
that the upper and lower bounds defined in the previous subsection are close
together. Furthermore, the upper bound of p(M) is usually much smaller than
o(M), such that also ||M|j, is much smaller than ||M||.. Hence, for analysis of

robust stability and performance (using a performance block) of a given controller,
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the calculation of bounds on g is much less conservative than the calculation of the
oo-norm. This is an important reason to allow the expense of considerably more
numerical calculation time to obtain y instead of &. Furthermore, development of
numerical methods is ongoing to reduce this calculation time, to improve numerical
stability and to further tighten the bounds, for instance in the case that there are
real repeated 6; (Young et al. 1991).

When considering the robust controller synthesis problem, the calculation of x can
be seen as part of an iterative procedure known as D-K iteration:

1. set up the standard plant P according to figure 3.11 and combine w; and
wo to w, as well as z; and 23 to z, i.e. extend the uncertainty matrix with a

performance block,
2. calculate an Hoo-(sub)optimal controller K minimizing |7 ||,

3. minimize 5(DT,,.D~!) over D € D A, pointwise across frequency; compare
sup,, {7(DTw.D™")} (the upper bound for ||Twz]lx) with its previous value
and stop if they are close (first time use ||Tuz[loo)s

4. determine an invertible transfer function matrix D; € RH,, such
that D;(jw) € Dp,, and such that D,(jw) ~ D(w) and define:

. D, 0 Dt o
P P
0 I 0 I

5. calculate an Hoo-(sub)optimal controller K, such that || F(P, K)||o is min-
imal and determine: Ty, = Fi(P, K ), i.e. the new controller K applied to
the original plant P,

6. goto step 3.

This procedure can be performed until no significant changes occur in ||T- ||, and
in D (see step 3). However, there is no guarantee that a global optimum will
be found: this joint optimization of D and K is not convex. Another important
disadvantage is that D is calculated as a complex-valued matrix at each frequency
point of interest: this implies that transfer function matrix D must be fitted
through these points, resulting in a trade-off between accuracy and order (which
also determines the order of K). Nevertheless, several design examples have shown
that an essential improvement of robustness and performance can be obtained
(Balas and Doyle 1989, Skogestad et al. 1988, Smith et al. 1987). The final
controller has an order equal to that of the plant including weight functions and
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D-scalings (i.e. D; and Dj1).

It should be noted that developments in this area are ongoing. New theoretical and
numerical results in convex optimization theory and Linear Matrix Inequalities or
LMIs may allow further generalization of the concept of structured singular values,
and may provide a more fundamental approach to robust control design problems
(Balakrishnan et al. 1992, Boyd et al. 1993, El Ghaoui et al. 1992, Kaminer et
al. 1993, Packard et al. 1991, 1992, Vandenberghe and Boyd 1993).

3.7 Parametric uncertainty modelling for struc-

tured singular value calculation

3.7.1 The real-repeated uncertainty structure

In the previous section the set of structured uncertainty matrices A; was intro-
duced to solve the robust performance problem and to enable detailed modelling
of uncertainties in the standard plant. Unfortunately, it is not always straightfor-
ward to transform a known uncertainty into the block-diagonal structure of A,.
Note that A in figure 3.11 is basically an unknown transfer function matrix and
that A, is a set of transfer matrix descriptions in the frequency domain. Howev-
er, uncertainties are often known in the time domain as uncertain parameters or
coefficients in differential equations. This leads to state-space descriptions with
coefficient matrices that are functions of the uncertain parameters (usually with a
physical meaning).

This section is based on Lambrechts et al. (1993) and will provide a procedure for
transforming such an uncertain state-space description into the standard control
structure. The resulting uncertainty matrix will have a real-repeated structure,
which still fits the general structure of Ag, but with f = 0 and with §; restricted
to R:

A,, = {diag(6:Lx,,...,6-Ix,) : 6 € R, [8:] < v} (3.60)

The development of numerical methods to calculate tight bounds on g when A
or one of the diagonal sub-blocks of A is real-repeated (Young et al. 1991),
motivates the effort of such detailed uncertainty modelling. However, it should
be noted that there is no controller synthesis procedure that makes full use of
real-repeated uncertainty matrices.

In the next subsection we will assume that a state-space description of a standard
plant according to figure 3.1 is given (i.e. equation 3.4), in which (some of) the
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entries of the coefficient matrices are real rational functions in a number of varying
parameters. From this description we will obtain a standard control structure with
uncertainties as given in figure 3.11, with A € A,.,.. This generalizes earlier results
in parametric uncertainty modelling as given by Morton and McAfoos (1985) and
Steinbuch et al. (1991, 1992).

3.7.2 Transforming the standard plant with uncertainties to
an LFT
Consider a vector § = (61, ...,6,.) € R" containing r bounded scalar parameters.

Let the model of the perturbed standard plant be given as a state-space description
in which the entries of the matrices depend on the parameter vector §:

T T
.| = w (3.61)
Yy U

Now define the (n + p) X (n + ¢) matrix S(6) as:

A(8) B(8)
C(8) D(9)

S(6) := (3.62)
and note that S(#) is the coefficient matrix of the LFT form of the state-space
description of the standard plant (see figure 2.2). Now we would like to extract
the dependency of S on 4 by constructing an LFT as follows:

S(e) = fu(M, A) == M22 -|— M21(I — AMll)_lAMlg (363)

A € A,, (equation 3.60) should be such that all variations in # are accounted for;
in fact each 6§; will be a normalized version of the corresponding 8;, such that A €
BA,,, the unit ball in A,.,.. Furthermore, the matrices Mo, Mo, M1, M12 must
be independent of variations in # and partitioned according to the partitioning of
S.

This then allows us to draw tlie LI'T form of the uncertain state-space description
as a combination of an LFT on an n-dimensional block of integrators (1I,) and
an LFT on A (see figure 3.14). If we consider only the non-trivial case that

8 #£0, i=1...r we can define ¢, :=1/6; and rewrite equation 3.63 as:
-1

11k, 0
S(e) :fu(MﬁA) :M22+M21 —“M11 Mlg (364)

0 ¢7‘Ikr
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Fig. 3.14: LFT form of an uncertain state-space description of a standard plant

This shows that the problem of finding an LFT form of the state-space model of an
uncertain standard plant can be seen as an ND-realization problem (Bose 1982).

Using a constructive algorithm we can now prove the following theorem:

Theorem 3.7.1
A transformation of o state-space model with parametric uncertainty to an LFT
exists if the entries of the state-space matrices are bounded and can be given as

real-rational functions in the parameters.

The algorithm proving this theorem is mainly based on the important property of
LFTs that linear interconnections of LE'Ts can always be written as one single LFT
on a single block-diagonal variable A. Therefore we can write the varying entries
in a state-space model as individual LFTs, after which they can be collected in a
single LFT.

However, minimality of the obtained LFT can not be guaranteed since it is not
straightforward to generalize the 1D concepts of controllability and observability
to ND-systems (Roesser 1975).

3.7.3 A procedure for the transformation

The algorithm consists of eight steps:

1. Scaling the varying parameters
Lower and upper bound vectors for the parameter vector # can be de-
termined, denoted respectively as @ and #: Now define 8, := (8 + 8)/2,
$o 1= (8 —8)/2, 6 = (61...6,), 6 € [—1,+1], such that 6; = 0,; + s,
for ¢ = 1---r. Substitution of this result in equation 3.61 then gives scaled

polynomial expressions for all varying numerators and denominators.
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. Individual varying terms as LFTs

The varying parts of a numerator or denominator consist of a number of
terms (monomials) that can be written as separate LFTs acting on the é;.

. Numerators of varying entries

Using the fact that two parallel LFTs form again an LFT, the sum of all
terms in each numerator can again be written as an LFT.

. Denominators of varying entries

To obtain an LFT of the inverse of a polynomial, set up an LFT for the
denominator as was done for the numerators in the previous step, subtract
1 and put the result in the feedback path (see figure 3.15). The obvious
fact that the entries of the nominal model must be bounded guarantees well
definedness of this feedback structure.

Fig. 3.15: An LFT in the feedback path

. Combining numerators and denominators of individual entries

Cascade connection of the LFTs of each numerator-denominator pair found
in the previous steps leads to a single LFT for each varying entry.

. Combining all varying entries

LFTs for the A, B, C and D matrices can be set up separately and can be
rewritten as one single LFT with A = diag(A4,Ap,Ac,Ap).

. Transformation to the real-repeated blockstructure

A can be rearranged into the real-valued repeated scalar block structure of
equation 3.60 by interchanging rows and columns of the LFT.

. Reducing the dimension of A

The resulting LFT can be set in state-space form in which the uncertainty
inputs can be appended to u and the uncertainty outputs can be appended



Parametric uncertainty modelling for structured singular value calculation 75

to y. Any uncontrollable and/or unobservable parts of this state-space mod-
el can be removed using a standard reduction technique, thus reducing the
dimensions of the ‘block of integrators’. The same procedure can be used to
reduce the size of any of the real-repeated blocks in A.

Rewrite the LFT by considering = as an uncertainty input and  as an un-
certainty output; this implies that the block of integrators is appended to A.
Next, separate the uncertainty block 61/ from A and consider its uncertainty
inputs as ‘pseudo-states’ and its uncertainty outputs as ‘pseudo-derivatives’
(in fact §; should be replaced by i as was done in equation 3.64). Removing
the parts that are uncontrollable and/or unobservable when considering all
other inputs and outputs will then reduce the size of §;I. This procedure
can be repeated for all other real-repeated uncertainty blocks.

We now have obtained an LFT description of the uncertain standard plant, which
is equivalent to the state-space description of equation 3.61. These steps have
been implemented within the environment of PC MatLab (Moler et al. 1987), such
that the entire procedure can be performed interactively (Terlouw and Lambrechts
1992). Tt should be noted that the obtained real-repeated uncertainty matrix may
be combined (block-diagonally) with any uncertainty matrix that was constructed
to model other uncertainties than those represented by 6.



Chapter 4

The output regulation and

tracking problem

4.1 Introduction

In the previous chapter we set up a general framework for linear controller design
in which several important design objectives and trade-offs can be specified. A
standard control design structure was introduced and several controller synthesis
procedures were considered. LQG or, more generally, H, synthesis appeared to be
useful when internal stability and a trade-off between several performance objec-
tives is needed. H, synthesis can be used as an alternative procedure to obtain
stability and performance, with more emphasis on performance in the frequency
domain. More importantly, it appeared that Ho, synthesis can be used to guar-
antee robustness of the closed loop system by means of the small gain theorem
(theorem 3.5.3). Finally the structured singular value was introduced, to prevent
extremely conservative results when robust performance and robustness against
structured uncertainties is to be considered.

Apart from these methods for analysis and synthesis of controllers for the standard
control design structure, several other developments are ongoing, that are also
based on this general framework. For instance, there is the mixed Hy-Hoo problem
of finding a controller that achieves performance by minimizing the 2-norm of
Tw,=,, while obtaining robustness by bounding the co-norm of T, ., (Bernstein
and Haddad 1988, 1989). Another example is the incorporation of gain-scheduling
by defining one or more uncertain parameters that act on the controller as well as
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on the standard plant (Packard et al. 1992, 1993).

This motivates our attempt to also include the formulation of the output regu-
lation and tracking problem into the general framework, such that all available
and developing tools for analysis and synthesis of controllers can be used to find
solutions. The general idea then is to set up a standard control design structure
that combines trade-offs between all relevant control objectives:

e internal stability;
e robust stability;
e performance in the sense of minimization of z;

robust performance in the sense of minimization of z;

performance in the sense of output regulation and tracking;

e robust performance in the sense of output regulation and tracking.

By making sure that the resulting standard control design structure complies with
assumptions Al through A4 (section 3.3), it is then possible to synthesize a con-
troller by solving an Hs or H,, problem.

The next section will review the results with respect to the output regulation and
tracking problem as available in literature, using the simple asymptotic tracking
problem considered in section 1.1. After that we will set up a modelling proce-
dure to find an appropriate model for the expected persistent reference signals.
Section 4.4 will then provide solvability conditions and a complete constructive
procedure for obtaining a solution. We will next consider some special cases of
this approach, leading to the robust output regulation and tracking solution in sec-
tion 4.5 and the two-degrees-of-freedom solution in section 4.6. Some discussion
on the selection of appropriate weights and the possibilities for defining trade-offs
between several control objectives in section 4.7 will conclude this chapter.

4.2 Analysis of the asymptotic tracking problem

The output regulation problem has been addressed by many authors during the
modern control era. Based on geometric control theory, the Internal Model Prin-
ciple was developed by Wonham and coworkers (Wonham 1979, Francis and Won-
ham 1975, Sebakhy and Wonham 1976). This resulted in necessary and sufficient
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conditions on the structural properties of a controller to solve the asymptotic track-
ing and disturbance rejection problem (see also Francis 1977, Schumacher 1983,
Gonzales and Antsaklis 1989, 1991). Simultaneously, an algebraic approach was
developed by Davison and coworkers (Davison 1972, Bhattacharyya and Pearson
1972, Davison and Goldenberg 1975), providing an easy to construct servo com-
pensator for a given set of persistent reference or disturbance signals. Later, we
will see that the presence of an internal model is a property of a dynamical system

description, while a servo compensator can be defined as follows:

Definition 4.2.1 servo compensator
A servo compensator is a dynamical model included in a controller for the purpose

of achieving asymptotic tracking.

Several authors, such as Bengtsson (1977), Cheng and Pearson (1978) and Francis
(1977), adopted a frequency domain approach to analyze and solve the problem.
From that, it appeared possible to find a parametrization of all controllers that
achieve the tracking objective (Francis and Vidyasagar 1983, Sugie and Vidyasagar
1989). However, it appeared to be not straightforward to use Ha or Ho, synthesis
methods to select a single (sub-)optimal controller from this set of controllers.

To make clear why the output regulation and tracking problem needs special treat-
ment, we will reconsider the simple classical feedback control problem discussed in
section 1.1. Restating this problem within the standard control design structure
results in figure 4.1, in which P and K are assumed to be LTI models. Clearly

i | e
w{ r !P }z

Fig. 4.1: The classical feedback control system in the general framework

the reference signal 7 can be viewed as disturbance input w. Similarly, the error
signal e together with the control input u act as performance objectives vector z
that should be minimized. Note that v must be added as a performance objective
to obtain a trade-off between error signal minimization and actuator effort, and
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that this is sufficient to satisfy assumption A2 in section 3.3.

To perform the minimization of z, we could either solve the Ha-problem or the
Ho-problem. Minimizing the 2-norm appears as the optimal solution when w may
be assumed to be white noise with spectral density 1 and z should be minimized
in the sense of its average spectral density. When considering the H.,-problem,
we want to minimize ||Ty;||cc With T, € RHy: as the co-norm is the induced
2-norm (theorem 2.3.2), this implies that we are looking for the disturbance w in
H, for which ||z|| is maximal and that we want to find a controller that minimizes
it.

The problem with both approaches is that there is no guarantee that the resulting
controller has certain tracking properties. This can be demonstrated by consider-
ing the simple case of a change in operating point, which implies that » has the
appearance of a step-function. A step function may be modelled in the frequency
domain as the impulse response of a system with TFMD R := % The error
response of the closed-loop system on this step-function may thus be modelled as
the impulse response of T;..R. In general, this impulse response will not asymp-
totically decay to zero, due to the unstable pole in R, which implies that there is a
static error in e. Obviously, this can only be remedied by assuring that the unsta-
ble pole in R is cancelled by an appropriate zero in T;..: any internally stabilizing
controller will then guarantee that T,.. R € RHj, such that e(t) — 0 for ¢ — oco.
To be able to use robust control theory for the design of those controllers it is
interesting to somehow extend the general control design structure to guarantee
that TR € RHy. We will discuss several possible approaches to this problem.

The first approach is depicted in figure 4.2 and simply tries to force the desired
behaviour onto T;.. by applying a real-rational weight function W € R(s) to the
error signals e: z; := We. By choosing W = R = % and solving the Hj- or He-
problem for the resulting standard plant P, we would get that WT,. € RH, and,
under the condition that R is scalar (or scalar times 7), also that T,.R € RH,.
Unfortunately however, we have from figure 4.2 that P is no longer detectable
from y. This implies that assumption Al (section 3.3) is violated, and that no Hy
or H,, controller can be found.

A practical solution to this problem is to conclude that asymptotic tracking is too
much to ask for and to allow a ‘small’ static deviation of e by selecting W = ﬁ
such that W(0) is large but bounded. Using H., synthesis then guarantees that
the static deviation of e when 7 is a unit step function is smaller than yW(0)~!
With 7 = [ Tus o

A more fundamental approach is presented by Liu and Mita (1991), who define a
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Fig. 4.2: The tracking objective as a weight on e

generalisation of the Hoo-problem to solutions that are not stabilizing, but allow
imaginary hidden modes (i.e. assumption Al is partially removed). The obvious
problem with this approach is the possibility of constructing unstable control sys-
tems unless weight functions are chosen with extreme care.

The second approach does not require an extra weight function and is therefore
directly based on the structure in figure 4.1. It considers the output regulation
objective as a boundary constraint on the closed-loop transfer function 7). at the
frequency point of interest. In this case the demand T;.R € RH, is clearly met if
and only if T,. € RHo, and T,..(0)=0. An H; or H. controller can be derived
using the operator theoretic approach to (sub-)optimal control (see Francis 1987)

in which the boundary constraint is incorporated. Existence of solutions can then
be established using frequency-domain interpolation theory (Hara and Sugie 1939,
Sugie and Hara 1989, Cevik and Schumacher 1993). However, the actual calcu-
lation of a controller is very hard and may lead to high order controllers. It is
based on selection of the (sub-)optimal controller from the parametrization of all
output regulating controllers, in which a servo compensator should be present, to
guarantee the presence of the appropriate internal model in the closed loop system
(Francis and Vidyasagar 1983, Sugie and Vidyasagar 1989).

The third approach directly starts with this parametrization and tries to find a
(sub-)optimal controller using the operator theoretic approach. In this approach,
the Hoo-problem is replaced by a model matching problem, in which transmission
zeros on the imaginary axis appear. These transmission zeros prevent solution
of this problem: the usual assumption that no such zeros occur is equivalent to
asumptions A3 and A4. A technique known as jw-azis shifting is then applied to
solve a slightly perturbed Heo-problem, after which the controller for the original
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problem is recovered by a reverse transformation (Xu and Mansour 1986, 1988,
Wu and Mansour 1989, 1990). As in the previous approach, this method leads
to involved calculations and, due to the use of the operator theoretic approach for
He controller design, to high order controllers (this may be remedied by using per-
turbation techniques in combination with state-space techniques). Furthermore,
there is no clarity on how to incorporate trade-offs with other control design ob-
jectives.

The fourth approach also presumes the necessity of an internal model. However,
in this approach the internal model is added to the standard plant, in order to
incorporate it later in the controller as a servo compensator. The resulting control
configuration is given in figure 4.3 and is similar to the use of a Pl-controller. S

Fig. 4.3: The application of the internal model principle

denotes the internal model: in our example S = %, and % is taken as the new
control input. After determination of a controller K it is easy to set up a con-
troller for the original problem: K := SK.

The fact that this controller achieves the tracking objective is purely due to the
presence of the internal model, which causes the appropriate zero in T (in our
case T,.(0) = 0). For this reason, the transfer function T,. is only specified at
one point (in the frequency domain}, such that other restrictions on the frequency
response of T, must be added by means of a separate stable weight function. The
relation between internal model and this separate weight function is not clear,
hence also the relation between internal model and other performance objectives
(specified by means of weight functions) is not straightforward.

An example of this approach can be found in Abedor et al. (1991, 1994), with the
only difference that the internal model is taken at the output of the plant rather
than at the input.
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The fifth approach is based on a problem formulation that combines that of the
first and fourth approach: we add a weight function W = %
S = -:— The advantage above the fourth method is that the weight function may
be used not only to specify the desire to achieve asymptotic tracking, but also to

define restrictions on the frequency response of T, to obtain a certain attenuation

and an internal model

of signals that are not compatible with the internal model.

The problem mentioned before, that this resulting system is no longer detectable
from y can be dealt with elegantly by using the Riccati inequality approach as can
be found in (Khargonekar et al. 1990, Scherer 1992). The disadvantage of this
Riccati inequality approach is again the more difficult calculation of a controller
(although much simpler than with the operator theoretic approach).

Another approach to solve the detectability problem is given by Hosoe et al.
(1992): they suggest to take the internal state of the unstable weight function as
extra measurement signals, such that detectability is (trivially) ensured. This can,
of course, only be done if the weight function becomes part of the final controller,
which is in accordance with the internal model principle. Note that this implies
that the internal model is taken at the output of the plant, rather than at the

input.

It should be noted here, that this classification into five approaches could be done
differently. All these approaches consider the same problem and have more simi-
larities than perhaps suggested. The reason for introducing them this way, is to
show that the approach suggested in this thesis can be seen as a separate approach,
and to be able to compare this approach with those available in literature.

The basic idea of the approach, that will be developed in all detail in the fol-
lowing sections, is as follows.  First set up a model of the expected persistent
signals, which will be called the Reference Signal Generator or RSG and denoted
as R. Next, instead of deriving weight functions, boundary constraints or internal
models from this RSG, we immediately incorporate it into the standard plant as
depicted in figure 4.4, with u, denoting an impulsive input. Setting up solvability
conditions will then automatically result in the necessity of an internal model in
the closed loop, the construction of an appropriate servo compensator, and the
need for a special treatment of the control objectives related with the actuator
effort.

As a preview of the results derived in the following sections, the standard control
configuration for our simple example is given by figure 4.5. A minimal realization
of the obtained standard plant will appear to be easily modified to comply with
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Fig. 4.5: Standard control configuration for the simple tracking problem

assumptions Al through A4, such that an Hs or H., optimal controller can be
synthesized. The combination of this controller with the appropriate servo com-
pensator can then be proven to obtain the tracking objective.

The first time this particular structure of the standard plant was suggested, was
in Lambrechts and Bosgra (1991). The most important features of this approach
are the following:

o the standard plant can easily be modified to comply with assumptions Al
through A4, such that the standard synthesis procedures mentioned in chap-

ter 3 can be used,

e the incorporation of an RSG implies the possibility to not only specify the
form of the reference signals, but also their direction: they do not have to

act on all error signals,
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o the RSG may be combined with a stable weight function to specify other
restrictions on the frequency response of T}.: the tracking objective may be
combined with other disturbance attenuation objectives,

e any other control objectives and stable weight functions can be added to
the standard plant without affecting the tracking property of the resulting

controller.

The importance of these features will become more clear in the following sections.
In section 6.3 we will summarize the differences between our approach and the

ones considered in literature.

4.3 Description of persistent signals

In this section we will review the procedure of setting up an appropriate LTI model
for the description of the reference signals that may be expected. This procedure
is mainly based on Johnson (1971), who uses it to model both persistent external
disturbances and reference signals. We will only discuss the effect of persistent ref-
erence signals, as it is well known that the effect of persistent external disturbances
is basically the same. The incorporation of these disturbances into the problem
formulation is therefore straightforward and does not have any consequences for
the procedure developed in this chapter.

We assume that for a given physical system we have an LTI model G, in which all
relevant output signals are known and have a physical meaning. We will denote
the vector of output signals as yg with dimension p: yg € RP. Furthermore, we
assume that control design specifications are available, such that we can set up
an inventory of allowable persistent reference signals for which we want to achieve
asymptotic tracking of ye. Such an inventory should consist of a finite number of
signals: 7;(t), i=1---v that each take the form: r;(t) = y:fi(t), i=1---v.
Here f;(t) is a scalar real-valued function of time and y; € R? is a normalized
constant vector determining the way in which f;(t) appears in r;(t).

This inventory of reference signals will form the basis for the construction of a set
of reference signals: R. We will assume that this set at least contains all linear

combinations of r;(t), ¢ = 1--- v as follows:
r(t) =Y ami(t) =Y ai-ufit), a€R (4.1)
=1 =1

with a; denoting a real amplitude-scaling factor that may be chosen arbitrarily.
Next, to be able to find an LTI description of R, we will assume that each of the
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functions f;(t), ¢=1---v may be found as a solution of a linear homogeneous

differential equation with given constant real coefficients a;; and given initial con-
ditions:

d d d

— )" filt alZ) R+ i(ni—1)7;

(G O + 0 (T o+

As a standard result (e.g. Chen 1984) we then have that we can set up a state-

filt) + i, =0 (4.2)

space description of this equation as:

ii(t) = Aiil‘i(t), l’i(O) = Z;0

(4.3)
filt) = cizi(t)
with initial conditions z;g given and:
0 1 0 0
0 0 1 0
A; =
(4.4)
0 0 0 1
—Qp; —Qnp,—1 —Up;—2 -+ —
e = [ 1 0 0 e 0]

The shape and size of the function f;(¢) is now determined by the order of the
SSD (n;), the coefficients «;;, = 1---n; and the initial conditions vector ;0.
Whereas n; and a;; can usually be fixed, it is in general not possible to precisely
determine the initial condition vector z;5. We will therefore include in the set
R all reference signals that may be the result of an initial condition that is an
arbitrary element of an n;-dimensional linear vector space: ;0 € R™, or one of
its subspaces. Hence, we will consider z;p to be the result of:

Tio = Biui (45)

in which the columns of B; form a basis for a subspace of R™ and u; is an arbitrary
vector of appropriate dimension.

To obtain an interpretation of B; and u;, we can Laplace transform equation 4.3
into the frequency-domain, using the fact that £(2(t)) = sC(z(t)) — 2(0) (see e.g.
Boyce and DiPrima 1965):

sa:i(s) = Aimi(s)+Biui
fils) = ciwi(s)

Hence, the arbitrary constant initial condition generating vector u; may be inter-

(4.6)

preted as an impulsive input, and B; acts as the appropriate input matrix. Because
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of this, only a choice of B; such that (A;, B;) is controllable makes sense. Although
it is possible to select B; = I,,, without changing the asymptotic tracking objec-
tive as such, it is sensible to reduce the dimension of u; as much as possible: later
we will see that u; acts as an external disturbance input such that other design
objectives may be affected.

With this, we are able to set up a state-space description of the basic reference

signals r;:

z;(t) = Ail‘i(t) + Biui(t) Il?i(()):()

(4.7
ri(t) = Cizi(t)
in which C; := a;y;¢; and w;(¢) is an impulsive input.
The complete reference signal r(¢) can then be found from equation 4.1 as:
z.(t) = Arx.(t) + B,u, z.(0) =0
® ®) + B @.(0) ws)
r(t) = Crx(t)
with:
(4, 0 ... 0] (B, 0 ... 0|
0 A 0 B,
AT = B,,, =
0 0 A,,J 0 0 B,
(4.9)

With this, we will consider R to be the set of all reference signals 7(t) that may be
generated by equations 4.8 and 4.9 with u, an arbitrary impulsive input. The LTI
system determined by (A,, B, C,) will therefore be referred to as the Reference
Signal Generator or RSG; if necessary, we can obtain a minimal realization of the
RSG by means of standard numerical methods. Its frequency-domain representa-
tion will be denoted as R(s); the transfer function matrix description from u, to
7.  We will have obtained asymptotic tracking for any reference signal r(¢) € R,
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if (ye(t) —7r(t)) —» 0 for t— oc.

To obtain a sensible problem formulation we will now restrict our choice of possi-
ble reference signals somewhat further. As mentioned before, we are interested in
persistent reference signals, i.e. signals that are not going to zero as time goes to
infinity. Although stable dynamics, represented by open left half plane eigenvalues
of A,, are allowable in the RSG, they will not present any problems in solving the
tracking problem and can be assumed to be absent. Open right half plane eigen-
values of A, are however not allowed: they would present an unrealistic situation
as the plant outputs should be able to track a signal that is unbounded in all its
derivatives. Only eigenvalues on the imaginary axis are therefore considered: this
implies that we want to be able to track reference signals that are combinations

of step-functions, polynomial functions and sinusoids.

4.4 The asymptotic tracking problem in the gen-

eral framework

In the next subsection we will set up the standard control configuration for the
tracking problem and give a formal problem formulation. After that we will con-
sider solvability and the possibility of applying robust control methods to find
optimal controllers.

4.4.1 Problem formulation

Our aim is to set up a control configuration that contains all aspects of the gen-
eral solution we want to obtain, but is still as simple as possible. This standard
control configuration must contain the reference signal generator discussed in the
previous section plus an extra output weight to make the problem solvable. How-
ever, we will not include a servo compensator on beforehand, but instead let the
necessity of such a servo compensator follow from the solvability conditions. The
resulting standard control design structure for the tracking problem is then given
in figure 4.6 (compare with figure 4.5). G € R, is the model of the physical
plant, R € Ry is the RSG, W € RH is a stable weight function and K € Rg
is the controller to be designed. The signal vector w, is a unit impulse in an ar-
bitrary direction in the input space of R, but it may just as well be interpreted
as an arbitrary white noise signal with unit intensity, as both signal forms have
the same representation in the frequency domain. Signal vectors z; and z, are

objective functions to be minimized, u is the control input and y is the measured
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P

4+ — == - 3

Fig. 4.6: Standard control configuration for the tracking problem

output. The auxiliary signal vectors v; and vy are added to be able to check
internal stability of the closed loop system in accordance with definition 3.2.4.

Hence, the standard plant for our problem formulation is defined as:

-R|G
P:=1 0 W (4.10)
-R| G

Note that the usual assumption that only error signals are measured implies that
the final controller K must be a so-called one-degree-of-freedom controller. The
extension to the more general two-degree-of-freedom problem will be discussed in

section 4.6.

The fact that u, should be considered as either an impulsive or a white noise in-
put would suggest the use of Hy optimal control to find a solution. However, the
following proposition will state a frequency-domain equivalent of the output reg-
ulation and tracking objective, which is basically a time-domain objective. With
that it will appear possible to also consider Ho, methods for finding a controller,
implying that u, could also be viewed as a function in Ha.

Proposition 4.4.1  (tracking equivalence)

Consider the tracking control configuration in figure 4.6, and let G,K,R € Rss
and W € RH,, be given, R an appropriate RSG with poles on the imaginary axis
and K some internally stabilizing controller for G.

Furthermore, let the error signal e(t) be defined as e(t) = yg(t) — r(t).

Then the following statements are equivalent.

1. Given any initial condition of the plant, the output yg(t) asymptotically
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tracks any reference signal r(t) that is an impulse response of R. In oth-

er words: lim;—, e(t) = 0.
2. The transfer function (I — G(s)K(s)) 1 R(s) is in RH,.

Proof:

We have from figure 4.6 that the transfer function from wu, to e is given by
(I - GK)™'R. Furthermore, (I — GK)~'R € R(s) because G,K,R € R, and
(I ~ GK)™'R is proper because R is proper and K is internally stabilizing.

Now suppose the first condition holds. lim;_,o e(t) = 0 then implies that none of
the poles of (I — GK)™! R can be unstable. So (I — GK)~! R must be real-rational,
proper and stable and therefore the second condition must hold.

Next, suppose the second condition holds. Then any error signal e that is
the result of any allowable reference signal + = Ru, can be found as the re-
sponse of (I — GK)~!R on impulsive input u, and a set of initial conditions. As
(I — GK)™1R is real-rational, proper and stable we have that any such response
must be exponentially decaying to zero: hence, the first condition must be satis-
fied. m|

This proposition thus allows us to achieve the desired tracking objective in the
time-domain, by ensuring that a specific transfer function matrix in the frequency-
domain is an element of RHo,. In the sequel we will therefore consider the problem

in the frequency-domain.

From section 3.2 and proposition 4.4.1 it can now be easily verified that the track-
ing objective would be achieved if one could find any internally stabilizing con-
troller K € Rg. When considering H, or H,, methods to obtain a controller, the
following two design goals would be pursued:

e internal stability of the closed loop system,

e minimization of the transfer from disturbance input w, to the error signals

z1 and the weighted control inputs zs.
However, there are two problems in finding and interpreting such a controller:

e even if the model of the physical system G is stabilizable and detectable, the
standard plant of figure 4.6 is in general not internally stabilizable; the RSG

is uncontrollable from the control inputs u,

e as internal stability of the closed-loop system is sufficient to obtain the track-
ing objective, it is not clear what the effect of minimization of the transfer
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from wu, to z is, especially when other control design objectives are added to

the plant.

The first problem can be dealt with by defining a form of stability that is slightly
less restrictive than internal stability: tracking stability.

Definition 4.4.2  (tracking stability)

Consider the tracking control configuration in figure 4.6, and let G, K, R € Rs;s
and W € RH be given, with R an appropriate RSG with poles on the imaginary
azis. Then a controller K is said to achieve tracking stability of the closed loop

system if:
o the three transfer function matrices from u,,v1 and vz to y are in RH,
o the two transfer function matrices from vy and vz to u are in RHq.

Note that, in comparison with the definition of internal stability, we now allow the
transfer function from wu, to u—and with that in general also zo—to be unstable.
In the next subsection we will derive a necessary and sufficient solvability condition
for the existence of controllers that achieve tracking stability. After that, we will
show that, under mild assumptions on the weight function W, we can use standard
optimization techniques to find an ‘optimal’ controller.

The second problem is to give a correct interpretation of the ‘optimality’ of the
resulting controller, especially when we extend the control configuration to more
general problems. This will appear to be a problem of carefully defining extra
disturbance inputs, control objective outputs and weight functions, and will be

the subject of section 4.7.

4.4.2 Solvability of the tracking stability problem

First we will consider a necessary and sufficient condition for the existence of a

controller that achieves tracking stability in the following theorem:

Theorem 4.4.3  solvability of the tracking stability problem

Consider the tracking control configuration in figure 4.6, and let G, R € Rys and
W € RH,, be given, with R an appropriate RSG with poles on the imaginary axis.
Furthermore, let G = N(;DC_;l and R = NRD};1 be right coprime fractions.
Then there exists a proper, real rational controller K that achieves tracking stability

if and only if there exist polynomial matrices Q, L € R[s] such that

NgQ+ LDg = Ng (4.11)
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Proof:

First we will prove necessity for which we only need to consider the closed loop
transfer function from u,. to y.

From figure 4.6 and equation 4.10 it is clear that the open loop transfer from u,
and u to y can be found as:

Up

y= [-R G (4.12)

u

We will prove that the condition of equation 4.11 is necessary for the existence of
a controller K that uses measurements y and control inputs % and that stabilizes
the closed loop transfer function from u, to y.

First take right coprime fractions of both R and G:

G =: NgDg'
e (4.13)
R =: NRDI_%I
We can then set up a PMD for [-R G| (index ‘ol’ stands for ‘open loop’):
Dp 0 [IO
Ya:=| 0 Dg |0 : (4.14)
Ng ~Ng|0 0

Note that the poles represented by Dg are uncontrollable from the control inputs
u and therefore invariant under feedback.

Now any controller K can be given as a polynomial fraction: K = N KD}_{1 such
that the system matrix for the closed loop system becomes:

Dr 0 0 (I
0 Dg —Nglo

D, = ¢ K (4.15)
Nr —=Ng Dy |0

Nrp =Ng¢ 0 |O

Obviously, the imaginary poles represented by the zeros of Dg are controllable
from u, and will result in an unstable closed-loop system, unless they turn out to
be unobservable in y. We may therefore state that, given any allowable controller,
all zeros of Dp must appear to be output decoupling zeros.

From subsection 2.4.5 we then have that ¥, must be strictly system equivalent
with X, defined in equation 2.39 with T, := Dpg. Hence, we have from equa-
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tion 2.42 that there must exist polynomial matrices Q1, @2, L1, Lz and L3 of ap-
propriate dimensions such that:

0 Dg -Ng I L
Nr —Ng Dg Q= Ly Dpg (4.16)
NR —NG 0 Qz L3

The last row of this equation is independent of the choice of controller: with
Q := Q; and L := L3 this immediately shows necessity of equation 4.11.

The proof of sufficiency starts with the assumption that condition 4.11 holds and
will result in the basis for the construction of all controllers later on.

So suppose we have some L,Q € R[s] such that NgQ+ LDgp = Ng. With
G = NGD(_;1 we then have GDgQ = Nr — LDgr and with Dg invertible this
results in:

GDgQDz'=R-1L (4.17)
Now define:
M := DgQDgz' =: D3} Ny (4.18)

with (DM,N M) a left coprime fraction and D;,l proper (this can be ensured by
making Dy row-reduced: see section 2.4).

Then the first important fact to prove is that there is no cancellation of any of the
poles of M (i.e. D;,_,l) in forming the product GM. According to proposition 2.4.8,
this can be verified by checking whether (DMDc;,NG) is right coprime, i.e. we

Dum(p)D
must check whether m(p)De (p) has full column rank for all p € C.
Ne(p)
Now consider:
GM = NeD3;'DcQDgR! = NeQDg' (4.19)

Due to right coprimeness of (Dg, Ng) and equation 4.11 we have right coprimeness
of (Dgr, N¢Q+LDg). Hence, with equation 2.26, there exist matrices Vi, Vo € R[s]
such that:

D D
Vi Va] R =] < [Vi+WL V] =1 (4.20)

NeQ+ LDr Ne@Q

This implies that (Dg, Ne@) is right coprime.
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Next, suppose that [(D(p)Dg(p)) Ng(p)']’ does not have full column rank for
all p € C: then, there must exist a p € C for which there exists a non-zero
complex-valued vector x, such that:

Du(p)De(p)

z, =0 4.21
Ng(p) 2y

Now, Ng(p)z, = 0 implies &, := Dg(p)z, # 0 (due to right coprimeness of
(D¢, Ng)), i.e. we have bM(p):i:p = 0. With M = D;}NM this implies that
Z, must be an output direction of pole p of M (definition 2.4.4). To comply
with equation 4.18, there must therefore exist some non-zero vector 5‘:,,, such that
i, = De(p)Q(p)Z, and D~R(p):~ip = 0. Hence, D¢ (p)Q(p)Z, = &p = De(p)z, and
with Z, # 0: z, = Q(p)Z,. Right coprimeness of (Dg, N¢Q) and Dg(p)Z, = 0
now imply that Ng(p)Q(p);:p # 0, ie. Ng(p)zp, # 0, which is in contradiction
with equation 4.21. Hence, there cannot be any cancellations of poles of M in
forming the product GM

Next, take any internally stabilizing controller, which we will denote as K, for the
product GD;,,I. From the definition of internal stability (definition 3.2.4) we then

must have:
51 = (I- KGDMl)-l
Sy == (I1-KG 1K,
2 = M) € RH,, (4.22)
Sy = (I - GDMIK) 1
Sy == (I - GDy}K)'GDy}

With this we will prove that for any such K the controller K := D;llf( achieves
tracking stability.
To do this we will construct all transfer functions mentioned in definition 4.4.2

that can be found from examination of figure 4.6:

u, — y: —R—GK(I -GK)'R = —(I-GK)™!
vy - y: G+GK(I-GK)"'G = (I-GK)''G
v —» y: I+GK(I-GK)' = ([I-GK)™! (4.23)
vy - u: I+K(I-GK)'G = (I-KG)*
vz = U K(I - GK)™!

First note that properness of these transfer functions is guaranteed by properness

of R, G and K. For stability we will consider each transfer function separately:
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Upr — Y
(I-GK)'R = (I-GDyK)"Y{GM+L}
= (I-GDyK)"Y{GD;/ Ny + L}
= S4Nuy+SsL
Hence (I - GK)™'R € RH,,.
M =Y
(I-GK)'G = (I-GDyK)™'G
= (I-GD;}K)'GD}y}Du
= 84Dy
Hence (I - GK)™!G € RH.
Up — Y
(I-GK)' = (I-GDyK)™?
= S
Hence (I — GK)™! € RHw.
v — U
(I-KG)' = (I-DjKG)™?
= D;}(I-KGDy) Dy
= D;}S1Dum

So all unstable poles are poles of ].3;11.

As we have established that none of these poles are cancelled in forming the product
GD;,II, we have: (I — KG) ! € RH, if G-(I-KG)™'= (I -GK)™'G € RH,
which is the transfer function matrix from v, to y already considered above.
Hence (I - KG)~! € RHu.

Vg — U
K(I-GK)™! = DyK(I-GDyK)!?
= D;MI-GDyK)'K
= Di}S

Again all unstable poles are poles of D;,Il:
K(I-GK)'eRH, if GK(I - GK)™! € RH,:
GK(I - GK)™* = GD3K(I-GDyK)™
= (I-GDy}K)"'GDy}K
= S,
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Hence K(I — GK)™! € RH.

This now establishes that the controller K = D;,Ilf( indeed achieves tracking sta-
bility, proving sufficiency of equation 4.11 a

From this proof it is clear that ﬁ;!l becomes an essential part of the tracking
stability controller and constitutes the appropriate servo compensator (see defini-
tion 4.2.1).

An earlier solvability condition which is equivalent to equation 4.11 is given by
Bengtsson (1977) in the sense that there exist polynomial matrices X,Y € R][s]
such that:

NeX +YDs=1 (4.24)
in which Dg is found from:
D3'Ns := DgDg! (4.25)

and the servo compensator is given by X Dgl. The derivation of this condition
is based on the a priori knowledge that an internal model must be present in
the product GK to solve the asymptotic tracking problem. For this purpose an
internal model is characterized as follows:

Definition 4.4.4  characterization of an internal model
Given transfer function matrices G and R. G contains an internal model of R if
Dg is a right divisor of D¢, i.e. ngl_zl € R[s].

Next, it is proven that the product of G with any appropriate servo compensator
must contain an internal model of R, and that indeed S := X ]jgl has this prop-
erty. An internally stabilizing controller K for this product G'S will then solve the
asymptotic tracking problem. Note that S becomes a part of the controller: the
product K := SK constitutes the actual controller for G.

The advantage of condition 4.11 is that it is directly given in terms of MFDs of
R and G: there is no need to define S or M a priori. The fact that D;,,l is an
appropriate servo compensator results from the fact that X = D;}K achieves
tracking stability. Note that the internal model principle must be satisfied: GD;,,1
must contain an internal model of R. Furthermore, note that the proof of theo-
rem 4.4.3 is relatively straightforward and fully self contained: only basic linear
system theoretic tools are used (PMDs, coprime MFDs, SSE transformation, loop
transformations and properties of poles and zeros).

Next, we can use the aforementioned characterization of an internal model to prove

the following corollary:
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Corollary 4.4.5 minimality of the servo compensator

Given any servo compensator S and coniroller K such that the tracking stability
problem considered in theorem 4.4.3 is solved by controller K := SK. Then the dy-
namic order of S must at least be equal to that of D;,Il as defined by equations 4.11
and 4.18.

Proof:

Suppose S is the TFMD of an arbitrary compensator and consider the tracking
control configuration of figure 4.6 with G substituted by the product GS. Next,
denote an LCF of GS as: Daéﬁcs. Then GS contains an internal model of R if
and only if DgsDz' € R[s|. This implies that the order of GS must at least be
equal to the order of R.

Now consider GM = NC;QD};1 as given by equation 4.19. With (Dg, NgQ) right
coprime this implies that the order of GM is equal to that of R. Furthermore,
as (f) mDg, Ng) is right coprime, we have that there are no cancellations of poles
of M in forming the product GM. Hence, M must be a servo compensator of
minimal order. Finally, as 15;,11 has an order equal to that of M, D;,l must be a
servo compensator of minimal order. O

Remark 4.4.6

We have not established uniqueness of the minimal servo compensator: there is no
guarantee that solutions Q and L to equation 4.11 are unique and, furthermore,
also Dy as part of a left coprime fraction is not unique (see section 2.4). Intuitively,
it is not expected that the resulting freedom in constructing Dz has an important
effect on the behaviour of the closed-loop system. However, this could be a subject

of further investigation.

4.4.3 H, and H,, optimal solutions of the tracking stability
problem

Given the standard control configuration for the tracking problem in figure 4.6,
we have from theorem 4.4.3 that whenever the tracking problem is solvable we
are able to find polynomial matrices @ and L satisfying condition 4.11. This then
allows us to construct a modified standard plant as follows:

1. take left coprime fractions G =: NgDg' and R =: NpDg',

2. define M := DgQDg',
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3. take left coprime fraction M =: D;}N M,

4. define the modified standard plant P as:

(4.26)

(compare with equation 4.10),
5. define a new vector of control inputs %.

We thus arrive at the control configuration given in figure 4.7, in which a new
vector of auxiliary signals vz is added to check internal stability.

21

|

Uy I r
|
1

(%] 22

U3

=21
&
<L
IS
Q
3
S

Fig. 4.7: Modified control configuration for the tracking problem

From the proof of sufficiency of theorem 4.4.3 we immediately have that any in-
ternally stabilizing controller K for the product GD,T/} will provide a controller
K = E;}R that achieves tracking stability for the original problem, i.e. in the
standard control configuration for the tracking problem given in figure 4.6. This
provides us with a large class of controllers that achieve tracking stability: we will
therefore restrict our search for an optimal controller to controllers that may be

constructed this way.

Hence, we will consider a controller that achieves tracking stability for the orig-
inal problem in figure 4.6 to be Hy or H., optimal if it is constructed from an
H; or Heo optimal controller for the modified control configuration of figure 4.7.
This implies that we are looking for an internally stabilizing controller K, that
minimizes either the 2-norm or the oco-norm of the closed-loop transfer function
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matrix from u, to z. However, if we want to be able to apply the standard robust
control methods discussed in chapter 3 to find such a controller, the assumptions
Al through A4 given in section 3.3 must be satisfied. We will therefore consider
some slight changes to both the original problem formulation and the associated
modified control configuration.

First, to satisfy assumption Al, we should have that any internally stabilizing
controller K for G D;{l is also internally stabilizing for the modified standard plant
P (see section 3.2). For this we have to check stability of the transfer functions
from all external signals to z; and zy, which is ensured by the property of tracking
stability, except for that from u, to z; (see definitions 3.2.4 and 4.4.2). This
transfer function can be found from figure 4.7 and using equation 4.17, 4.18 and
4.22 as:

~WD;K(I - GDyK)™'R =
~WDK(I - GD7}K)"{GD3} Ny + L} =

~WD;HI - KGD3}) " K{GDj/ Nu + L} - (4.27)
_WDH(I - KGD3) Ny — Nu+ (I - KGD)'KL} =
—WD3 S 1Ny — Ny + Sz L}

We can therefore ensure stabilizability of P by selecting W as follows:
W:=WDy, W eRHs (4.28)

This choice can be interpreted as the desire to minimize the actuator effort as
represented by @ rather than u. We must allow u to contain persistent signals
as represented by the zeros of Dy, to be able to compensate the corresponding
allowable reference signal generated by R. In view of this, this choice of W is not
a restriction, but a necessary structural property for solvability of the tracking

problem.

Remark 4.4.7

Assuming that W has been chosen according to equation 4.28, it can be verified
that all real rational controllers K achieving tracking stability with servo compen-
sator D;,Il and for which K := Dy K is proper, can be found by parametrizing
all internally stabilizing controllers K for P and taking K := ﬁl_ulff . We can
guarantee that the resulting controller K is proper, by making sure that Dy is
row-reduced (definition 2.4.3). If there is any K for which K is not proper, we
may approximate it by means of a proper K.
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Next, to satisfy assumptions A2 through A4, we must extend our problem formu-
lation with an extra disturbance input w; and with a proper and stable weight
function Wj. If this extension would only be motivated for the technical reason
of complying with assumptions A2 through A4, it would seem restrictive with re-
spect to the optimality of Hy or Hy, controllers. However, in practical situations
wy is an essential part of the problem formulation as it can be used to account
for measurement noise. Hence, in the sequel we will extend the standard control
configuration for the tracking problem given in figure 4.6 by including w; and W;
and we will consider the resulting structure given in figure 4.8 as the new, most
basic, standard control configuration for the tracking problem. As a matter of
notation, we will refer to this configuration as configuration I. Standard plant P

| 1

Up : r Py 2
) R '
| |
| i
w | : I
! | Wi |
| I

| W | Q
i |
U | e ¥ |
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b e o o e e f e 1
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Fig. 4.8: Standard control configuration for the tracking problem with measure-
ment noise: configuration I

can be given as:

~R 0 |G
P=|0 o|W (4.29)
-R W1 |G

This extension of the original problem formulation will, of course, also result in
an extension of the modified control configuration of figure 4.7. The resulting
structure is given in figure 4.9 and will be referred to as configuration II. Standard
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Fig. 4.9: Modified control configuration for the tracking problem with measure-

ment noise: configuration II

plant Py can be given as:

-R 0 |GDy}
Pi:=| 0o o| W (4.30)
-R W1 |GDy}

Note that in comparison with figure 4.7 we have made use of our choice of W:
W := WDy, to simplify this configuration: W; and W can now easily be chosen
such that the assumptions Al through A4 are satisfied.

Hence, configuration I may be considered as the minimal configuration for which
the combination of an asymptotic tracking problem and an Hy or He, optimal
control problem makes sense and can be solved by the standard robust control
methods discussed in chapter 3. Further extension of this configuration to in-
clude other known disturbance inputs and/or robustness objectives may readily
be performed: the example given in chapter 5 will illustrate this.

Remark 4.4.8

Although internal stabilizability of standard plant Pi1 has already been established
by means of the tracking stability property and the specific choice of W, it is now
possible to rewrite configuration II into a form such that this result is obtained

immediately. From equation 4.17 we have:
R=GDgQDz' +L=GM +L=GD3/ Ny + L (4.31)

Substitution into configuration IT results in figure 4.10 with standard plant Py
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Fig. 4.10: Configuration II after substitution of R with GM + L

defined as:

~-GM—~L 0 |GDy/}
PH = 0 0 W (432)
~GM — L W, |GD3}

Although L and N, are polynomial matrices, properness is ensured by properness
of R. Furthermore, L, Njs, Wi and W do not introduce unstable poles, so that
stabilizability of Py immediately follows.

Remark 4.4.9

As we have proven that any internally stabilizing controller for Gb;} will obtain
the asymptotic tracking objective, it is not necessary to consider u, as an external
disturbance input for the Hy or H,, problem: after we have constructed D;,l we
may premultiply R with any finite real constant, including zero, without affect-
ing the asymptotic tracking properties of the resulting controller. However, it is
suggested that the incorporation of R, possibly premultiplied with a non-zero real
constant as an extra parameter, may be very useful to specify the closed-loop be-
haviour with respect to reference signals that are close to the ones specified in the
RSG. For instance, if asymptotic tracking of step-signals is desired, it is possible to
specify a minimal attenuation of slowly varying sinusoid signals by considering the
oo-norm of the closed-loop transfer from «, to z;. An example of this approach is

given in chapter 5.
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The main result of this section may now be given by means of the following theo-

rem:

Theorem 4.4.10 H, or Ho, optimal solution of the tracking stability problem
Given configuration I in figure 4.8, with G, R € Rss and W € RH.,, and with R an
appropriate RSG with poles on the imaginary azis. Furthermore, let condition 4.11
be satisfied and let configuration II be set up as in figure 4.9 such that assumptions
A1 through A4 are satisfied.

Then:

e any internally stabilizing controller Ky for the modified standard plant Pr
will give rise to a controller K1 := D;}Ku for the original standard plant
Py that achieves tracking stability,

o there exists an Hy or Hoo optimal controller Ku for the modified standard
plant Py that minimizes ||Tw:ll2 o7 [[Twzlloo respectively; such a controller
will give rise to a controller K1 := f);,lKn for the original standard plant
Py that achieves tracking stability and results in a transfer function T,,, that

is equal to that obtained in configuration IL.

The proof of this theorem immediately results from the development given in this

section.

4.5 Extensions of the servo compensator

This section will explore two cases in which the applied servo compensator is
extended with respect to the minimal servo compensator derived in the previ-
ous section. The first one will appear to be of importance when considering the
implementation of a servo compensator. The second is the result of the robust
servomechanism problem as it is usually considered in literature; we will show

that the procedure given here can be seen as a generalization of this problem.

4.5.1 The extended tracking problem

For the solution of an Hy or Hoo control problem it is convenient to set up a state-
space model of the modified standard plant of figure 4.9. This makes it necessary
to find a state-space description of the servo compensator: D;,Il =:[A,B,C, D],
such that its outputs can easily be connected to the inputs of the state-space
model of the system to be controlled: G. Now we have that in the implementation

of the final controller the servo compensator, obviously, is incorporated in the
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controller and should be fitted in digital or analog hardware. This then implies
that after implementing the controller all signals within the servo compensator are
easily available. Especially when considering digital implementation, for instance
in a Digital Signal Processor, all states of the servo compensator, as well as the
calculated control inputs, are represented by internal memory locations of the
processor. Hence, we may assume that all servo compensator states are directly
accessible by the controller to be designed (for configuration II given in figure 4.9).
This accessibility can be expressed by replacing the servo compensator’s input
matrix Bys and feedthrough matrix Dy, as follows:

with n the dimension of Ay and ¢ the number of control inputs of G. This
procedure has two advantages:

1. a larger class of controllers is parametrized; also controllers for which Dy K
is non-proper are possible and it is conjectured that for this case indeed all

controllers can be found,

2. if we redefine W such that all input signals of the extended servo compensator
are weighted and available in 2, we have that the amplitude of all servo
compensator states and outputs can be checked and influenced separately.

However, the disadvantage is that the effect of all weight functions as given in
figure 4.9 is modified such that a new interpretation of these weight functions (not

only W) is necessary.

4.5.2 The robust tracking problem

Whereas the previous subsection discussed an extension of the servo compensator
without changing its order, it is clear that if we use this extended structure and
do add extra dynamics to it, the set of signals for which the tracking objective
is achieved can only increase, while still including the original set. A relevant
example of this appears when we consider the solution to the robust tracking

problem:

1. start with any reference signal generator R describing a set of persistent

signals,

2. take the smallest scalar polynomial ag € R[s] such that agrI,Dg' € Rs]
with p the number of outputs of G: note that ﬁlp contains an internal
model of R (see definition 4.4.4),
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3. take S := ;-1 as servo compensator with ¢ the number of control inputs of
G,

4. find an internally stabilizing controller K for the product GS, and take
K := SK as the final controller.

Clearly we now have that any directional information in the servo compensator is
discarded; any signal that can be obtained by taking any set of initial conditions
for the RSG and arbitrarily adding the resulting state trajectories, can now be
generated by the servo compensator in any direction of the input space of G. This
independence of directional information also accounts for the well known robust-
ness properties of this type of servo compensator; if the directional properties of G
change, due to some parameter variation or added dynamics, there is no influence
on the tracking objective as long as the closed loop system is stable. Furthermore,
because S contains an internal model of R, the internal model property cannot
be lost due to any changes in G. The original derivation of this result is due to
Davison and Goldenberg (1975), who introduced it as the solution to the ‘robust
servomechanism problem’; a complete derivation and discussion can, for instance,
be found in Desoer and Wang (1980).

In our approach to the tracking problem, it would be desirable that the afore-
mentioned robustness properties would result from the correct definition of the
RSG. Fortunately, this is possible by taking R := 3—1; » as RSG, rather than
directly taking S := #Iq as servo compensator. An RCF of R is then given by
Dg := agrl,, Ng:=1I,, and from equation 4.18 we have:

M := DgQag' = ag'DeQ (4.34)

Hence, we can take Dy = arly, Ny := D@, which results in the desired
servo compensator. To analyze whether this is allowable we have to check the
solvability condition of equation 4.11:

NeQ + Lag = I, (4.35)

From this we immediately get the well known solvability conditions for the robust
asymptotic tracking problem:

e G must have full row rank (as a real-rational matrix) (rank(Ng(s)) = p),

e G may not have any zeros corresponding to poles of the RSG
(rank(Ng(2:)) = p for all z; such that ar(z) = 0).

When considering the approach suggested in this thesis with respect to the known
solution to the robust servomechanism problem, a few remarks can now be made.
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Remark 4.5.1

From equation 4.34 we have that the servo compensator S := ifq can only be
minimal if agly and DgQ are left coprime. As agrl, and Q are right coprime due
to equation 4.35 (which is a Bezout equation: see equation 2.26), non-minimality
cannot occur as a result of a zero of Q. Hence, it can only occur when G already
contains one or more poles of S or when the number of control inputs is larger
than the number of error signals (g > p). In these cases, the surplus of poles can
be removed from the servo compensator by taking an LCF of aEIDgQ. However,
the resulting minimal servo compensator will obviously not be robust against un-
certainties that affect the location of the poles of G. Hence, we can consider S as
a non-minimal servo compensator, extended from a minimal servo compensator,

for the purpose of obtaining robustness.

Remark 4.5.2
When considering any given servo compensator S, we can parametrize all RSGs
that may be associated with S as:

R:=GSQ, +Q, (4.36)

with Q1,2 € R[s|] free parameters as long as R remains proper (see
equations 4.17 and 4.18). Note that with S =: Nngl a right coprime frac-
tion, (Ds, Q1) does not have to be coprime; in that case the considered servo

compensator is non-minimal.

Remark 4.5.3

Equation 4.36 shows that for an arbitrary servo compensator the expected persis-
tent reference signals are ‘filtered’ by G: as there is no physical ground to assume
this, our approach of first defining the RSG and then constructing an appropriate
servo compensator seems more natural. The free parameters Q; and Q,, that are
implicitly introduced by determining the servo compensator directly, can be seen
as extra weight functions in the standard plant description. The influence of this
issue on the final result remains largely unconsidered in literature, because it does
not affect the tracking objective as such. Within the standard plant setting of
figure 4.9 it is clear that they may very well affect the result with respect to the
other control objectives as reflected in z; and z; and the weight functions W and
Wi.

Remark 4.5.4
From the point of view of the tracking objective the robust servo compensator

seems very useful, but the introduction of extra unstable dynamics in the standard
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plant will usually have a negative effect on other control objectives. Furthermore,
if more information is known on the structural properties of for instance parameter
variations for which robust tracking is to be achieved, a ‘complete’ robust servo
compensator is usually not necessary (Grasselli and Longhi 1991).

Our approach enables us to ensure robustness of the asymptotic tracking prop-
erty as well as robust stability and performance in the face of such structured
uncertainties, by means of the robust control methods presented in chapter 3, i.e.
uncertainty modelling and structured singular value analysis and design. An ex-
ample of the application of these methods to obtain robustness in spite of the use
of a minimal order servo compensator can be found in section 5.4.

4.6 The two-degree-of-freedom tracking prob-

lem

In the previous sections the output regulation and tracking problem was consid-
ered to be purely a feedback problem. We assumed that all measurement signals
available to the controller are error signals, resulting from the difference between
reference signals and the actual plant outputs:

=y -7 (4.37)

This enabled us to make use of proposition 4.4.1 and definition 4.4.2 to state that
the tracking objective is obtained by any controller that achieves tracking stability.
In general, this specific choice of measurement signals may be very restrictive,
especially when we take into account that reference signals are usually generated by
the same device that calculates the control action. We may therefore assume that
these reference signals are directly available to the controller, and that feedforward
control could be used to improve the results.

The classical feedback control system as given in figure 1.1 would then be extended
to contain a feedforward controller, resulting in the configuration of figure 4.11.
As the controller to be designed now clearly consists of two separate blocks, this
configuration is usually referred to as the ‘two-degree-of-freedom’ control structure.
The advantages of feedforward control are widely recognized in literature and in

practice:

e as long as K, is internally stabilizing, the resulting control structure will
remain stable for any choice of K3 € RHy,
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K,

— K, G

Fig. 4.11: The classical feedback control system extended with feedforward con-
troller

o the reference signals are usually free of disturbances and clearly unaffected

by plant uncertainties, .

e the reference signals are usually not only known in form (the dynamical
behaviour of the RSG), but also in size (the initial conditions of the RSG).

These advantages allow the safe use of most of the available actuator power to
directly compensate the effects of the reference signals, after which the feedback
controller K uses the actual measurement signals: yg — 7, to account for distur-

bances and plant uncertainties.

As with the ‘one-degree-of-freedom’ problem considered in the previous sections,
it would now be desirable to be able to synthesize both controllers K; and K5 in a
single calculation. Preferrably, it would again be possible to establish a trade-off
between several design objectives, using the standard control design structure and
robust control methods. In this section a suggestion will be offered, that enables
us to do this and is based on the results from the previous sections.

For this consider the configuration in figure 4.12 with the standard plant Py, defined

as:
-R 0 0]|G
0 0 0w
Py = (4.38)
R 0 W,|lo0
-RW, 0|G

In comparison with figure 4.8 we now have that not only the error signals, but also
the reference signals are available as measurements. Similar to the interpretation
of w; as measurement noise, disturbance input w,; may be used to account for
discrepancies between the actual reference signals and the reference signals as
they are available to the controller. Obviously, these discrepancies are relatively
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Fig. 4.12: Two-degree-of-freedom control configuration

small, which may be reflected by choosing W accordingly: in practical situations
W, may be related to equipment noise or quantization noise.
As in the one-degree-of-freedom case, it is impossible to find an internally stabi-
lizing controller for the configuration of figure 4.12. For this reason we will again
consider a modified configuration for which internally stabilizing controllers can
be found that give rise to controllers that achieve tracking stability in the original
configuration. This configuration is given in figure 4.13 with the standard plant
Py defined as:

-R 0 0 |GDy

0 0 o W
P == ~ (4.39)

-R W; 0 |GD3f

-R 0 W,|GDy}
In comparison with figure 4.9 we have added a second model of the physical system:
(. This second model is driven by the actual control inputs and its output signals
are compared with the reference signals, just like the actual plant outputs. The
essential difference between the actual measurement signal y and the estimated

measurement signal § is twofold:

e w; and W, model measurement noise that occurs due to actual sensor noise;

wy and W, reflect noise inside the controller (equipment noise or quantization
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Fig. 4.13: Modified two-degree-of-freedom control configuration

noise) which is usually very small,

e the estimated measurement signal ¢ is not influenced by any parameter vari-

ations or other uncertainties occurring in the plant.

With the considerations given in subsection 4.4.3, it can be verified that Py, again
complies with all necessary assumptions for application of standard Hy or H
methods: an internally stabilizing controller Ky, can be designed that achieves
an optimal value for either ||Ty.||2 or ||Twz]|co. Obviously, once we have found an
appropriate controller Ky, we should not only incorporate the servocompensator,
but also the second model of the plant into the controller to obtain a controller
K1, for the original problem given in figure 4.12. With Kjy, partitioned into Ky

acting on y and Kiype acting on § we get:

U = D;;Kntly + D‘_:V!]KIHZ(G'U/ —7)

= Dyt Kuay — Dy Ko + Dy K12 G (4.40)

= (I - DE,IIKIItzG)_IDX/Il . [ Kin — Kine ]
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Hence, the controller Ki; for the original problem can be found as:

Ky = (I — D3} Km2G) ™ 'D3} - [ K — Kz | (4.41)

Although practical experience with this approach to the two-degree-of-freedom
problem is still lacking, it is possible to make some observations.

e In comparison with the one-degree-of-freedom modified standard plant Py,
the two-degree-of-freedom modified standard plant Py has its order in-
creased with the order of G and W;. As Hy and H,, methods result in
controllers of the order of the standard plant, Ki;; will have the order of
Py;. To construct Ky, we must add the second model of G and the servo-
compensator D;,Il to Kys: the order of Ky, is then given by the order of all
weight functions plus two times the order of the servocompensator plus three
times the order of G. As the order of G appears only once in K, we thus
have that the order of the two-degree-of-freedom controller Kt is increased
with respect to that of a comparable one-degree-of-freedom controller Ky by
two times the order of G plus the order of Ws.

e The feedforward part of controller K can be found by taking a minimal
state-space realization for K7, and determining the part that is uncontrol-
lable from y (i.e. it is only controllable from r). Denoting this part as Kj
and denoting the part of Ky, that is left after removing Ko as K, we can
set up a configuration similar to that of figure 4.11 as given in figure 4.14.
Intuitively it may be expected that the upper partition of K; is small, such

K,

K, G

s _ie

Fig. 4.14: Control configuration with feedback and feedforward parts

that we actually have feedback of the error signal.

e The standard plant Py, does not account for plant uncertainties or distur-
bances acting directly on the plant (note: neither does Pir; it is not necessary
for solving a standard Hz- or Hy-problem). This implies that there is no
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need for feedback of noisy measurement signals y, as estimated signals § are
more accurate (if Wy is small). The resulting controller K1; will therefore
only consist of a feedforward controller. Note that we are thus forced to
explicitly define robustness demands and system disturbances, if we want to
design a realistic controller.

e As the estimated measurement signal ¢ is hardly influenced by noise, high
gains may be expected in Kiye: with
u = Kna# = —(I — Dy} KmeG) 2Dy Kineo 7
it is clear that Ky approaches G~! as Ky becomes large. Considering
that Kyro must be an internally stabilizing controller for GE;,I we can use
similar arguments as in the sufficiency proof of theorem 4.4.3 to find that
Ko is proper and stable: K7pis is a proper and stable approximation of G~1.

4.7 General issues in weight function selection

In the previous sections it has become clear that the selection of weight functions is
a very important step in the practical application of any control design procedure
based on mathematical optimization. An ‘optimal’ controller based on inappro-
priately chosen weight functions is obviously not optimal for the actual control
design problem at hand. In fact, as there is no general procedure to choose weight
functions in some optimal sense, it may be argued that it is impossible to find an
optimal controller for any practical design problem.

An often heard complaint among control engineers with an interest in robust con-
trol methods is that there seems to be a lack of interest among control theoreticians
to address this difficult and important weight function selection problem. Howev-
er, it should be understood that the selection of weight functions is highly related
to the specific control problem at hand, such that it is very hard to set up general
guidelines.

The next subsection will give a general discussion on the use of weight functions
in the standard control design structure, after which some considerations with
respect to the tracking problem will be made.

4.7.1 Weight functions in the standard control design struc-

ture

When considering the selection of weight functions for application of robust con-
trol methods, there is one approach that is well established in literature, known as



112 The output regulation and tracking problem

loop-shaping. Some key references are: Doyle and Stein 1981, Doyle et al. 1984,
Freudenberg 1988, 1990, Safonov and Chiang 1988. Its primary idea is to bring
the control objectives into the form of a ‘mixed-sensitivity’ problem as given in fig-
ure 4.15. From this figure it is possible to define four closed-loop transfer function

w2 w1

Uy Y U YG Y

Fig. 4.15: The mixed sensitivity control configuration

matrices:

Sy = Typy = (I+GK)™!

)_
T, = Tuye = (I+GK)'GK
S; = Tupuy = (I+KG)™
T, := Ty, = (I+KG)'KG

(4.42)

S, and S; are called the output and input sensitivity matrix respectively, T, and
T;; are called the output and input complementary sensitivity matrix respectively.
The properties of the loop-shaping approach can be briefly summarized as follows:

e the sensitivity matrix determines closed loop-performance and should be

kept small,

e the complementary sensitivity matrix determines actuator effort and robust-
ness and should also be kept small,

e the fundamental trade-off between robustness and performance is character-

ized by:
So+T,=8:+Ti=1 (4.43)

e control objectives are determined by restrictions on the bode plots of the
singular values of S and T, either at the input or at the output: these

restrictions determine desired loop-shapes,

e transfer function fits for the upper bounds of the desired loop-shapes deter-
mine the inverse of the weight function on the appropriate output signal:



General issues in weight function selection 113

IWsS|loo < 1 and ||WrT |l < 1 guarantee that S and T are below their

respective restrictions,

o other than in the scalar case, there is an important difference between (com-
plementary) sensitivity at the input or at the output: for this reason only
well conditioned plants (7g ~ o) can be properly dealt with,

e whether Hy or H optimization is applied, controllers will always appear to
perform exact cancellation of the plant’s poles: this is extremely dangerous
with respect to robustness against plant uncertainties,

o to remedy this, the four blocks problem of minizing the 2-norm or co-norm of
S KS

SG T
of equation 4.43 is then lost.

may be considered: however, the nice trade-off interpretation

The obvious drawbacks of this approach have made most researchers decide to
abandon it, although there are examples in which good results are obtained.

Nevertheless, experience with the loop-shaping approach gives rise to several guide-
lines concerning weight function selection in the more general standard plant con-

trol design structure.

e Make sure that all standard plant inputs and outputs are scaled appropri-
ately:

— disturbance inputs: normalize their range to 1; if frequency-domain
information is available (e.g. spectral density), determine a transfer

function fit and use its inverse as a weight function,

— control inputs: normalize their range to 1; incorporate actuator dynam-
ics into the standard plant,

— objective functions: normalize their largest allowable deviation under
influence of disturbances and uncertainties to 1; usually this allowable
deviation is frequency dependent and gives rise to (the inverse of) an-
other weight function,

— measurement outputs: use relative (error) measurements rather than
absolute measurements and normalize their range to 1; incorporate sen-
sor dynamics into the standard plant.

¢ Bach weight function should be chosen such that it is ‘normalizing’ for the
appropriate closed-loop transfer function: determine the desired frequency-
domain shape of each closed-loop transfer function (from w; to z;) and use
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its inverse as a weight function on either the input or the output. In general,
conflicting demands are to be expected; it is up to the designer to find a
compromise.

e Usually it is not desirable to apply standard 7-iteration for the synthesis
of an H,, sub-optimal controller. Most control objectives, especially those
concerning robustness, give rise to a bound on a closed-loop transfer function,
and in most cases there is only one closed loop transfer function for which
actual minimization is required. v-iteration should then be replaced by the
adjustment of only the appropriate weight function.

Clearly these guidelines do not provide a complete procedure for finding correct
weight functions. As mentioned before, the structure of the standard plant should
be set up in accordance with the actual problem at hand, and is mainly the
responsibility of the control designer. The main difference with earlier ‘classical’
and ‘modern’ methods for control design is the necessity to not only set up an
appropriate model of the physical system to be controlled, but also to ‘model’
control objectives when setting up the standard plant. In this respect, it may be
very useful to associate the setting up of the standard plant with three separate

modelling concepts:

e the modelling of the physical system to be controlled, which is normally con-
sidered as being the only modelling concept (like in this thesis, the resulting
model is usually denoted as G),

e the modelling of the external influences on the physical system, such as dis-
turbances and uncertainties: this results in weight functions on the standard
plant’s disturbance input vector w (the RSG falls in this category),

e the modelling of the desired behaviour, which is clearly linked with the loop-
shaping approach: this results in weight functions on the standard plant’s

control objectives vector z.

Note that according to this classification, the use of loop-shaping for disturbance
attenuation is an indirect approach: this is the fundamental cause for the problems
with the loop-shaping approach as indicated earlier.

4.7.2 Weight functions for the tracking problem

When considering a tracking problem it is usually helpful to first consider several
control designs with u, or R set to zero. The guidelines offered in the previous
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subsection can then be used to analyze the other control objectives and to set
up correct scalings and weight functions. Although it should be clear that the
tracking objective may have an important effect on the influence of these weight
functions, it is usually possible to maintain their original interpretation and to
adjust them accordingly.

Next to these ‘original’ weight functions, the addition of the tracking objective
introduces several new elements to the standard plant: the RSG, the servo com-
pensator D3} and the redefinition of the actuator effort weight function. The
setting up of the RSG as discussed in section 4.3 is usually not very difficult.
However, the solution of equation 4.11 for Q@ and L would involve manipulation of
polynomial equations, which may be numerically unattractive. This implies that
it is not straightforward to find D;dl from equation 4.18. It is expected that in
many practical situations it is not necessary to explicitly solve equations 4.11 and
4.18; the problem considered in the next chapter is an example of this.

Once the servo compensator has been set up, it is useful to consider the extended
tracking problem as discussed in section 4.5: it provides more freedom in the
design of the controller without increasing its order or complexity. The actuator
effort weight function (W in figure 4.9) should be augmented accordingly and
then allows separate weights on servo compensator inputs, determining the trade-
off between internal variable saturation and speed of response, and original plant
inputs, determining the allowable actuator effort (in fact, this part of W can be
chosen equal to the original actuator effort weight function W in figure 4.6).

In the next chapter an example is considered, which demonstrates the applicability
of several of the control design methods discussed in chapter 3 in combination with
our approach to the output regulation and tracking problem as developed in this
chapter. The selection of appropriate weight functions will be discussed in some
detail and will illustrate the application of the considerations given in this section.



Chapter 5

Application to a
three-degrees-of-freedom
hydraulic positioning

system

In this chapter we will consider the application of several robust control methods
discussed in the previous chapters on an experimental set-up available at the labo-
ratory of the Systems and Control Group of the Mechanical Engineering and Ma-
rine Technology department of the Delft University of Technology. This set-up is
designed to be ‘well-suited’ for control design experiments: it is well instrumented
and non-linear behaviour, especially the effect of dry friction, is minimized, al-
though still present. On the other hand, it is designed to reflect control problems
that may actually occur in practice and are difficult to solve with classical control
theory: it is multivariable with three actuator inputs and six measurement signals
and there is a significant amount of interaction.

We will consider the tracking problem for this three-degrees-of-freedom positioning
system in the horizontal plane, or 3DOF system for short. The use of hydraulic
actuators implies that integral action appears in the plant model, such that track-
ing of constant reference signals is possible without adding a servo compensator.
Nevertheless, we will apply the procedure of chapter 4 to obtain a controller that
achieves the tracking objective with Hy or Ho, methods to illustrate some of the

advantages of the presented approach. As argued before, in any example designed
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to reflect an actual control problem, the tracking objective will only be one of
many objectives that are to be pursued. Furthermore, we will pay attention to
other important aspects, like modelling, weight function selection, implementation
and evaluation. The application of the approach developed in the previous chapter
can be found in subsection 5.3.2

A detailed description of the experimental set-up and the control implementation
environment will be given in section 5.1. After that, we will set up a non-linear
and linear model of the system in section 5.2. Section 5.3 will then consider the
standard plant approach to define control objectives and will experimentally eval-
uate several control designs. Finally, in section 5.4, we will consider the robustness
of the controlled system against an important form of parameter uncertainty and
use H,, controller synthesis to obtain a robust controller.

5.1 The experimental set-up and implementa-

tion environment

5.1.1 The three-degrees-of-freedom hydraulic positioning
system

A photograph of the mechanical part of the 3DOF system is given in figure 5.1.
This mechanical part is based on a very stable horizontal table made of steel. It
supports a steel block of dimensions 304 x 304 x 80 mm and weighing 48 kg. The
steel block is allowed to slide over the table by means of an active air-bearing;
it may therefore be assumed that there is no physical contact between table and
block, and that the block may move without friction. The resulting configuration
clearly has three degrees of freedom in the horizontal plane: two translations and
one rotation.

Our goal is to control the movement and positioning of the block with respect
to the table, for which we will use three hydraulic actuators, clearly visible in
figure 5.1 and attached to table and block by means of rotary joints according
to the schematic diagram of figure 5.2. This diagram shows the 3DOF system
in its nominal position, in which there is a simple relation between hydraulic
actuator lengths and block position: a change of block position in z-direction can
be obtained by a change in length of actuator 1, a change in y-direction results from
a simultaneous change in length of actuators 2 and 3, and a change in ¢-direction
can be obtained by simultaneous action of all three actuators.

The hydraulic system operates at a constant supply pressure p, of 70 bar. The
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Fig. 5.1: The three-degrees-of-freedom hydraulic positioning system

hydraulic actuators are of the asymmetrical type with an area ratio of 0.56. They
are provided with hydrostatic bearings to minimize friction. The actuator motion
is controlled by an electro-hydraulic servo valve, producing an output flow pro-
portional to the electrical input signal u;. This output flow is towards the first
actuator compartment, i.e. the compartment with the largest effective area. The
compartment with the smallest effective area is constantly connected with the sup-
ply pressure. For experimental purposes, the first compartment of each actuator
is connected with a variable ineffective volume v, of nominally 1.5 litres: due to
this, the hydraulic frequency of the set-up is artificially brought down from about
40 Hz to about 4 Hz (the hydraulic frequency is the eigenfrequency of the reso-
nant mode caused by the flexibility of a trapped volume of fluid under a piston,
and affected by piston area and supported mass, it is usually the first, i.e slowest,
resonant mode of a hydraulic system).
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Fig. 5.2: Schematic representation of the 3DOF system in its nominal position

Each hydraulic actuator is fitted with two sensors for control purposes. A low
friction linear potentiometer measures the displacement vy,; of the piston of each
actuator with respect to the nominal position: this enables us to derive the position
(z,y, ¢) of the moving block. Secondly, a piezoresistive pressure transducer is used
to measure the absolute pressure p; in the first compartment of each actuator.
Knowing that the pressure in the second compartment is equal to the supply
pressure and knowing the effective area ratio, this enables us to derive a good
estimate of the forces acting on the moving block.

All electrical signals to and from the set-up are conditioned for direct use by a
digital controller; signals are scaled within a range of —10 to +10 Volts and, if
necessary, filtered to prevent aliasing.

5.1.2 The control implementation environment

From the theory discussed in the previous chapters, it is clear that controllers
designed by means of robust control methods are usually quite complex; they are
multivariable and at least of the order of the standard plant. This implies that it
is virtually impossible to implement such a controller by means of analog devices
and that a digital implementation environment is necessary. Furthermore, as the
developed theory is based on continuous time considerations, it is necessary to
use high sampling rates and high quantization accuracy for a digital controller to
be a sufficient approximation of a continuous time controller. Fortunately, with
the recent development of high performance dedicated digital hardware like the
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Digital Signal Processor or DSP, it appears to be possible to accommodate these

demands.

Our intention to design and implement controllers using robust control methods
also makes it very desirable to have an implementation environment that allows
controllers calculated with PC MatLab (see Moler et al. 1987) or similar high level
matrix calculation tools to be implemented quickly and efficiently without having
to write low-level programming code. One of the few DSP-based commercially
available solutions for this is produced by dSPACE GmbH as the ‘DSP-CITpro
Control Implementation Tool’ (Hanselmann 1989). The hardware is supplied as
add-on cards for the IBM compatible PC and is built around a DSP of the Texas
Instruments TMS320 line.

The main processor board (dSPACE type nr. DS1001) that is used for the hy-
draulic positioning system contains a fixed-point 40MHz TMS320C25 DSP with
a 100 ns cycle time and a 16 x 16 bit hardware multiplier for single cycle multi-
plication and accumulation. Communication with this processor is possible from
the PC (acting as host system) via the 16-bit AT bus of the PC. Programs can
be downloaded to the DSP and during program execution 4K words of 16-bit true
dual-port RAM is available for monitoring key variables (simultaneous DSP- and
host-access). Further memory available to the DSP is 64K words of program mem-
ory and 59K words of data memory, both accessible with zero wait states and with

DSP- and host-access arbitration.

The interaction with the experimental set-up is performed by means of A/D and
D/A converters: two DS2001 boards containing 5 A/D converters each and one
DS2101 board with 5 D/A converters. Communication between processor board
and interface boards is performed via the PHS-bus (Peripheral High Speed bus),
a 32-bit synchronous I/O bus with 13.3 MB/s peak transfer speed. This allows
the digital controller to run completely independent of the PC. The DS2001 A/D
boards each contain 5 fully parallel 16-bit A/D converters with 5 us conversion
time, 14-bit linearity (typical) and sample and hold circuits (tracking and hold).
A/D conversions can be started separately or simultaneously and ADC ready may
be signalled via interrupt or flag. The DS2101 board contains 5 12-bit D/A con-
verters with 3 ps full scale settling time to 0.01%.

Equally essential to the usefulness of this control implementation environment
is the implementation software package IMPAC, consisting of the Implementa-
tion Expert module IMPEX combined with the high level programming language
DSPL. IMPEX is a menu-driven programming tool, independent of specific target
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hardware, allowing the setting up of any linear time-invariant controller. The con-
troller parameters should be available in state-space form and given in an ASCII-
file according to a prespecified format. Utilities to interface with PC MatLab are
available to automatically create this file, such that any control design algorithm
implemented in MatLab can be used to create a state-space controller and prepare
it for IMPEX.

In general, such a controller will be continuous time and in an arbitrary state-
space realization; IMPEX provides tools to convert this into a description suit-
able for implementation in the digital fixed-point TMS320C25 processor. First
the controller may be discretized either step-invariant, ramp-invariant or bilinear,
according to specific requirements. Next a transformation may be performed to
reduce the number of controller parameters, the number of calculations and—most
importantly—the coefficient sensitivity, for instance with respect to quantization
effects. Thirdly it is possible to perform automatic or user-specified scaling of
variables (input, output and state variables) to user-defined ranges; because the
standard-plant approach usually makes sure that inputs and outputs are correct-
ly scaled, this is especially important for (internal) state variables when using a
fixed-point processor. The final step is automatic code generation based on this
discretized, transformed and scaled state-space model, first setting up the high
level language code DSPL, followed by the compilation into TMS320C25 target
processor assembly source code. After that, assembling and downloading of ob-
ject code will complete the automated implementation procedure (see Hanselmann
1987).

Disadvantages of such a highly automated implementation procedure are, of
course, the restrictions on the usable hardware (dSPACE products) and on the
implementable controllers (linear time-invariant). However, it is possible to ex-
tend IMPEX with templates and drivers for user defined interface hardware or
even completely different TMS320C25-based processor boards. Furthermore, IM-
PEX provides very well documented ASCII-files of the automatically generated
DSPL-code and assembly source code. These files can be used as shell-files, that
allow a programmer to add non-linear relations, limitations, gain-scheduling, start
up sequences, etc. Clearly this implies a large programming effort of the user,
although in most cases it is sufficient to make changes to the DSPL-code, which
can be seen as a high-level programming language that was tailor-made for every
TMS320 processor. Only if time optimality is necessary, it may be useful to get
into programming assembly code: to give an impression, a 12th order, 9 inputs, 3
outputs state-space controller for the hydraulic positioning system was automati-
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cally implemented with a calculation time of about 75 us, giving a processor load
of only 7.5% at the more than sufficient sampling rate of 1kHz.

This then sums up the most essential parts of the implementation environment
used to obtain the results in the following sections. It is noted here that develop-
ments in the area of hardware and software are extremely fast and have already
surpassed the possibilities of this implementation environment in several respects.

o Developments in hardware may be illustrated by the introduction of the
TMS320C30 and TMS320C40 to replace the TMS320C25. Single-cycle fixed-
point calculation is replaced by single-cycle floating-point calculation, calcu-
lation speed is doubled, high-speed communication links are integrated to

allow multiple processor solutions, etc.

e The floating-point capabilities of the latest DSPs allow the use of high lev-
el programming languages like C: this allows the development of flexible
and user-friendly software environments for fully automated implementation
of complex non-linear controllers. An example of this is the collaboration
between dSPACE and The MathWorks to develop fully automated imple-
mentation of non-linear controllers defined in the block-oriented simulation
environment of MatLab/SimuLink (Moler et al. 1987).

An important consequence of these developments is a sharp decrease in costs of
high-speed calculation time: it may be expected that DSPs will allow increas-
ingly complex controllers to be used for relatively low cost applications, like for
instance consumer electronics. For most industrial installations, the development
of DSPs implies that bounds on the complexity of controllers are no longer related

to available calculation time.

5.2 Modelling the 3DOF system

As mentioned in section 2.1 the modelling process should provide us with a model,
that is an accurate description of the behaviour of the 3DOF system insofar as it is
of importance for our goals. In this case we want to be able to design a robust LTI
controller for the 3DOF system, which achieves a bandwidth that is higher than the
slowest open loop resonant modes of the setup (about 10 Hz, whereas the slowest
resonant mode is about 4 Hz: the hydraulic frequency). This implies that we need
to have an LTI model, describing the significant behaviour, plus an evaluation of
sources of uncertainty or inaccuracy with respect to this model. Furthermore, for
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control purposes it is necessary to precisely define the interface between physical
system and controller, i.e. the control input signals and the measurement signals,
plus other input and output signals that may be used, to accurately define the
scope of the system, or the system boundary. The behaviour of the system may
then be defined by making use of behavioural equations that give a description
of the relations between these input and output signals and internal variables to
be defined. These behavioural equations are usually a combination of algebraic
and differential equations, that are based on known physical relations: in our case
balance equations and Newton’s second law.

To simplify the derivation of these equations, it is a usual approach to subdivide the
complete system to be controlled into a number of subsystems, each with their own
boundary and their own set of input and output signals, which may contain those
of the entire system and its internal variables. However, it should be noted that
only control input signals and measurement output signals have a physical ground
to determine whether they are inputs or outputs, all other signals should better
be considered as interface signals, i.e. signals that determine a (sub-)system’s
boundary without being predetermined to be either input or output signals.
With this in mind it is always possible to label interface signals as either input
or output in such a way that their relation is causal and the resulting models
are proper. Note that there do not exist physical systems which have a non-
causal relation between (control) inputs and (measurement) outputs, although it
is sometimes possible to model them as such over a restricted frequency range.
The following subsection will discuss the construction of a non-linear model, which
was used for simulation to obtain a first evaluation of designed controllers, and to
obtain an impression of the inaccuracies that must be introduced when deriving
a linear model. The linearization of this non-linear model will be the subject of a
separate subsection, and will provide us with a linear model to be used for actual
controller design.

5.2.1 Construction of a non-linear model

It is easy to recognise that the 3DOF system consists of four main subsystems:
the three hydraulic actuators and the steel block sliding on the table. As the
three hydraulic actuators are similar, we will start by separately considering two
subsystems:

¢ a model of one of the three hydraulic actuators will be set up with the
electrical signal towards the servo valve, the shaft’s position and its velocity
as inputs and the generated force as output,



124 Application to a three-degrees-of-freedom hydraulic positioning system

¢ a model of the moving block will be set up with actuator forces as inputs
and the position and velocity of the block as outputs.

The selection of input and output signals is such, that no causality or properness
problems will occur. The non-linear models derived for these subsystems will then
be linked to obtain a non-linear model of the entire set-up.

Modelling a single hydraulic actuator

All three actuators are essentially the same and are mainly composed of two dis-
tinct parts (i.e. sub-subsystems): the electro-hydraulic servo valve, which converts
an applied current into a proportional flow, and the hydraulic cylinder, in which
this flow is converted into a proportional motion of the piston shaft.

The electro-hydraulic servo valve In figure 5.3 a schematic representation
of the Dowty series 4553 two-stage electro-hydraulic servo valve is given. This

Magnet Tubul

Nozzles

Inlet orifices

Flapper

Spool vaive

Return port / ] Service port 1
Service port 2 Pressure port

Fig. 5.3: The electro-hydraulic servo valve

servo valve consists of an electric torque motor and two stages of hydraulic power
amplification. The first stage (pilot stage) of the valve consists of a symmetric
flapper-nozzle system, fed by the constant supply pressure via two restrictions. As
an electrical signal is applied to the motor, a force is developed upon the flapper,
causing it to pivot and to move between the nozzles. This motion causes the orifice
between the flapper and one of the nozzle tips to open as the other closes, resulting
in a differential pressure between the nozzle chambers. The pressure difference,
acting upon the nozzle projected areas, results in a feedback force upon the flapper
to balance the motor force. The pressure differential also acts upon the second
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stage spool, resulting in a displacement and, hence, output flow proportional to the
electrical signal input. When applying this type of valve to symmetrical hydraulic
actuators there are two output flows; one to each side of the cylinder. Since in this
case we use it to control an asymmetrical actuator, only the output flow towards
the first compartment is needed (service port 1), as the second compartment is
constantly connected to the supply pressure.

According to the manufacturer, the bandwidth of the applied servo valve lies be-
tween 130 and 200 Hz, depending on signal amplitude, temperature and operating
pressure, which in any case is much more than that of the fastest controlled system
we will consider, which is about 10 Hz. For this reason we may neglect the dynam-
ical behaviour of the servo valve and make use of a steady state approximation.
The main spool displacement z is taken to be directly proportional to the control
current, which in turn is proportional to the voltage u, generated by the controller:
at all instants z, = c,u for some constant c¢,. The flow ¢ to the actuator’s first
compartment is then proportional to the product of u with the square root of the
pressure drop over the resulting orifice:

¢ = couy/l—L when u>0
(5.1)
o = couy/E when » <0

for some constant c,,. The pressure drop has been made dimensionless by dividing

it by ps.

The hydraulic cylinder A diagram of the driving part of the actuator is given
in figure 5.4. Its behaviour is governed by two balance equations: a balance of
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Fig. 5.4: The hydraulic cylinder

force and a balance of mass for compartment 1. Three types of forces acting on

the hydraulic actuator will be considered:
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1. the driving force Fy, caused by the oil pressure difference over the piston
and the active area at each side of the piston:

Fy:= Ap — 0.56 Ap, (5.2)
with A denoting the active area of compartment 1,
2. the frictional force F, caused by viscous friction proportional to the actuator
speed 3,:
Fy:=—f{a (5.3)
in which friction coefficient f will be determined from measurements,
3. the external force F,, acting on the moving block.
Note that we do not consider two effects that may also be of importance:

1. dynamical forces caused by the piston mass are neglected, as they are very
small in relation with the dynamical behaviour of the moving block,

2. dry friction forces are neglected, as the design of the set-up succeeded in

minimizing them.

These assumptions will be the cause of some of the differences between the be-
haviour of the non-linear model and that of the actual set-up.
We thus obtain the following equation for the force acting on the moving block:

F. = Ap —~ 0.56 Ap; — fUa (5.4)

The balance of mass equation will result from the following four effects:
1. the input flow from the servo valve towards compartment 1: ¢,
2. the change of the active volume of compartment 1: Ay,,

3. the compressibility of the total volume of compartment 1: £p, with » the sum
of ineffective and effective volume: v := v, + Ay,, and E the compressibility
coefficient or bulk modulus for the hydraulic fluid,

4. the leakage flow over the piston towards compartment 1: ¢;(p, — p), with
constant ¢; to be determined from measurements.

We thus obtain the following balance of mass equation:

. V.
¢ =AY~ EP+ calps —p)=0 (5.5)
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Modelling the moving block

Figure 5.5 shows a possible position of the moving block in relation to its nominal
position. It allows us to set up the kinematical relation between actuator displace-
ments yq;, ¢ = 1.--3, as measured by the linear potentiometers, and the position

of the moving block. We will make use of an inertial frame Xy, Y, and a moving

Xo

Fig. 5.5: Moving block kinematics

frame X;,Y7, which is rigidly attached to the moving block and has its origin at
the centre of gravity of the block. Hence, we can determine the locaticr: of any
point p on the moving block relative to the inertial frame: (x,,y,)o, as a function
of its coordinates in the X1,Y7 frame: (z,,yp)1, the position of the block’s centre
of gravity in the inertial frame: (z,y), and the angle ¢:

Tp x + cos¢p —sing Tp

Yp o Y sing cos¢ Yp .
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It is clear that we can take (z,y, ¢) as the set of generalized coordinates describing
the three degrees of freedom of the system.

Next, we will assume that the nominal length of all three actuators is the same
and is denoted as I; the side of the moving block is given as 2a. The coordinates
of the fixed points a;, ¢ =1---3 are then given as:

a1 =(-l—a, —a)y, ag=(-a, ~l—a), as=(a, =l —a) (5.7)
and the coordinates of joints b; and by can then be found as:

by = (-a, —a); = (x—acosg+asing, y—asing —acosd)yg (5.8)

by = (a, —a)1 = (z+acosp+asing, y+asing —acosed)o

Now we can interpret the inertial frame X, Y, as a two-dimensional linear vector
space and define the following actuator vectors:

ll = bl — ax
lz = bl — a2 (5.9)
l3 = b2 — as

With the two elements of a vector {; with respect to the inertial frame denoted as
z;, and ;, the actual length of each actuator as a function of coordinates (z, y, ¢)

can be determined as:

il = VUl = yJ2} +yf, i=1---3 (5.10)

Furthermore, the angles «;, i =1---3 as given in figure 5.5 are determined by:

a; = arctan &
-

ay = aurctanr;1 (5.11)
—x

a3 = arctan —=2
Yig

The actuator displacements, as measured by the linear potentiometers, y.., ¢ =
1.--3 can then be found as the difference between actual actuator lengths and
nominal actuator length:

Yai = |li| =1, i=1---3 (5.12)

To determine the dynamical behaviour of the moving block, we must add the
effect of external forces. We will assume that the only external forces are those
generated by the actuators (defined in equation 5.4). Furthermore, we assume that
the rotary joints at positions a;,b; are frictionless: the external forces act along
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the actuator vectors /;. Applying Newton’s second law on the three generalized
coordinates (z,y, ¢) and using actuator vector angles a;, we then find three second
order differential equations:

I = %(Fel cosay — Fepsinap — Fegsin as)
i = ﬁ(Fa sinay + Feg cosag + Fes cos ag) (5.13)
$ = Z(Fcos(ar — ¢+ I) - Faosin(ag — ¢+ I)t Fescos(az — ¢+ 7))

with J := £2Ma? and M the mass of the moving block.

Wit

Combining the subsystems

We can now set up equations 5.1, 5.4 and 5.5 for each of the three actuators and
combine them with equations 5.7 through 5.13 to find a set of equations describing
the entire non-linear behaviour of the 3DOF system.

The parameters used in this non-linear model were derived from manufacturer
specifications and measurements, and are given in table 5.1. The difference be-

D 70 - 10° X
- m3

¢, | 1.18-1077 | =
A |254.107% | m?
Ns

f 15-10% | N
foa | 45.107 | Re
vo | 1.5-1073 | m3
E 1.3-10° | &
cn | 26-10718 | =2
5

g3 | 1.3- 10~13 %
{ 0.49 m
a 0.152 m
M 48 kg

Table 5.1: parameters of the 3DOF system

tween actuator 1 and actuators 2 and 3 in friction coefficient f and leakage flow

coefficient ¢; are caused by wear of actuator 1, that was extensively used in earlier
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experiments: it illustrates the need for robust controllers, although the effect of
variations of f and ¢; on the dynamical behaviour of the set-up is relatively small.

5.2.2 Derivation of a linear model

To be able to use robust control methods to design controllers, we need a linear
time-invariant representation of the 3DOF system. We will obtain this by lin-
earization of the set of equations given in the previous subsection in the nominal
position of the moving block with zero velocities and nominal actuator pressures:
x,a’:,y,g),¢,¢3 = 0 and p; 23 = 0.56p,. Furthermore we will select appropriate
scalings for input, output and state variables, according to the guidelines of sec-
tion 4.7.

First we will introduce the new pressure variable py:

Pr 1= P_____O'g;;fjps (5.14)
Note that under allowable operating conditions p € [0,p,] such that p, €
[-1,0.786] and that in the nominal situation we have p, = 0. Equation 5.4
describing the external force generated by each of the three actuators may then

be written as:
Fei = 0.56Aps *Pni — f,‘ . Qm', i=1---3 (5.15)

To introduce a new flow variable ¢,,, we calculate the nominal flow from equa-

tion 5.5 as:

0o = —Ci(ps — p) = —0.44c1ps (5.16)

and use the rated flow of 5—1# or 8.33-107° '“Ta as specified by the manufacturer
to obtain:
P+ 0.44¢;ps
¥n =78 33.105
With the nominal flow (leakage flow) being less than 1 percent of the rated flow

(5.17)

we assume that under normal conditions we have ¢, € [—1,1].
As the nominal flow of equation 5.16 must be obtained by applying a nominal
control voltage u, to the electro-hydraulic servo valve, we have from equation 5.1:

wo _ —0.44cips

Up 1= =
coV0.56 ¢, V/0.56

With the control voltage ranging from -10 V to 10 V, we may thus introduce a

(5.18)

new control input variable as:
U — Ug
Uy 1= 5.19
0 (5.19)
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After linearization we then have ¢, = u,.
Next, we can linearize equation 5.5 and express it in the new variables p,, and u,:
8.33 - 10_5 cUp;g — A- yai - %056]73 ' }éni - 0.56011‘173 *Pni —

(5.20)

. N . =5 .
AE ]i,i“'pni-l-&%w E Ypy, i=1---3

Pni = —55gvopy * Yai — 0.56-v,ps
Actuator displacements y,; may be substituted by block coordinates (z, y, ¢) using

the following linearized relations:

Ya1 = T+ ag
Yaz = y—a¢ (5.21)
Yasz = y+a¢

Under the assumption that angles @; and ¢ remain small, we can also linearize
equation 5.13 and substitute equation 5.21:

i o= ~fri— 5o+ By
:lj — _(f21'\;f3)y+ a(f2]\;f3)q; + O-S%Pspn2 + O.S%EspnB (5 22)
(5 — _&J&i_ + a(fzJ—fa)y _ az(f1+Jf2+f3)¢')
+0.563Ap5pn1 _ 0.563Ap5 Dno + 0.563AES Dns3
A state vector ¢ and an input vector ug can then be defined as follows:
26 = (TYSLY P Pnt Pn2 Pn3)’ (5.23)

ug = (unl Un2 un3)’
such that the state equation for the entire 3DOF system can be derived from
equations 5.20 and 5.22:

g = Agxze + Beoug (5.24)
with: Ag =

000 1 0 0 0 0 0

000 0 1 0 0 0 0

000 0 0 1 0 0 0

af 0.56 Ap,

000 -4 0 —ah f.564ps 0 0

000 0 _(f2]t1fa) a(fz}\;f-fa) 0 0.5?\/1[4115 0.5?\}41)5

000 —ofi a(f2—f3) _a*(fi+fe+fs) 0.56aAp, _ 0.56aAp, 0.36aAp,
J T 7 J J J
AE aAE Ec

000 T 0.56v,ps 0 T 0.56vops _T‘,u 0 0

AF aAE Ec
000 0 T 0.56v4p. 0.56v0p5 0 -2 0
000 0 AE aAE 0 0 _Eca

T 0.56v,p: T 0.56v,ps v,
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and:
([ o 0 0o\
0 0 0
0 0 0
0 0 0
Bg = 0 0 0
0 0 0
0 BICE

The measurement outputs consist of actuator pressures p; and actuator displace-
ments yq;. For p; we already introduced the variable p,; ranging between -1 and
1 under normal operating conditions: therefore no scaling is necessary. For the
scaling of y,; we use half the stroke of the actuator: 75 mm. With equation 5.21

we thus get:
Yan1 = gois T+ o @
Yan2 = 0.375 y - 0.875 ¢ (525)
Yand = 0.375 v + 5o ¢

The output vector can then be defined as:

Ye = (pnl Pn2 Pn3 Yanl Yan2 yanS)’ (526)

such that the output equation results as:

y¢ = Ceze + Dgug (5.27)
with:
o o o0 0 0 0 1 0 o
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
CG = 1 a
0.075 0 0.075 0 0 0 0 0 0
1 a
0 st -2 0 0 0 0 0 0
1
0 0.075 0.875 0 0 0 0 0 0 )

and Dg = 0.
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To get an impression of the dynamical behaviour of the resulting model we may
look at the eigenvalues of Ag representing the poles of the open-loop system:

pe1 = 0

P2 = 0

Pas = 0

pPge = —16.2448 + 73.4859:

pgs = —16.2448 — 73.4859¢ (5.28)
pce = —1.8929 4+ 26.7620:

per = -—1.8929 — 26.7620:

pes = —9.4313 + 47.3593:

pgy = —9.4313 — 47.3593:¢

Note that the integral action of the three hydraulic actuators results in three poles
in zero. This can also be concluded from the bode plot of the open loop transfer
functions from actuator inputs to actuator displacements as given in figure 5.6;
also note the important effect of the slowest resonant mode (pge and pgr) on the
transfer function of the first actuator.

0 Bode plot of open loop transfer from actuator inputs to actuator displacements
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Fig. 5.6: Bode plot of the open loop transfer functions from actuator inputs to
actuator displacements: actuator 1 solid, actuators 2 and 3 dashed
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5.3 Controller design and implementation

In this section we will set up a standard plant description for the 3DOF system by
selecting appropriate signals and weight functions. We will then discuss the appli-
cation of He, suboptimal controller synthesis on this standard plant and consider
the resulting controllers. The procedure of chapter 4 will be applied to obtain a
controller that achieves tracking of constant reference signals. A tuning proce-
dure will be presented to improve performance in the sense of speed of response
by adjusting the available weight functions. The resulting reference tracking and
disturbance attenuating controller will be implemented and experimentally evalu-
ated.

5.3.1 A standard plant description for the 3DOF system

As we want to solve a tracking problem for the 3DOF system, the basic structure
of the standard plant description should be in accordance with configuration I
as given in section 4.4 (figure 4.8). Hence, we need to construct an appropriate
Reference Signal Generator and consider (weighted) tracking errors and actuator
inputs as control objectives. Furthermore, we will make sure that measurement
signals consist of tracking errors rather than absolute measurements: this would
otherwise lead to the more complex two-degree-of-freedom problem as discussed
in section 4.6.

In this case we want to obtain tracking of constant reference signals, i.e. asymptotic
tracking of step signals, which can be described in the frequency domain as r(s) =
£ . The parameters x and 7 determine the expected size of the reference signals:
7 determines the frequency at which the amplitude of r is equal to x. Based on
the physical boundaries of the set-up: 75 mm in z and y directions and 7 rad in
¢ direction, we will take «., %, = 0.075 for the  and y reference, and £y = g for
the ¢ reference. We will start with a conservative value for 7: 7 = %Q, which
implies a frequency of 0.001 Hz.

Above this frequency, we will not aim at minimizing the error signals, but for
safety reasons we will assume that they may occur; we will attempt to make
sure that they do not lead to excessive actuator effort. This requirement may be
incorporated in the description of the reference signals by adding the parameter

as a constant:

1
r(s) = L ik =k TSt (5.29)

TS TS

The RSG generating independent reference signals of this form for each of the
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three degrees of freedom may thus be given as:

Kg li—'ii 0 0
R:= 0 kyeTH g (5.30)
0 0 ke

To give an impression of the frequency-domain behaviour of the RSG, a Bode-
magnitude plot of the diagonal elements is given in figure 5.7.

RSG for x and y references (solid) and phi reference (dashed)
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Fig. 5.7: Bode-magnitude plot of RSG with 7 = 10%: 7 and y reference solid, ¢
reference dashed

Next, according to the structure of configuration I (figure 4.8), the position errors
obtained by subtracting r from [z y @]’ must be made available to the controller
as measurement signals. Using equation 5.25 we can find z, y and ¢ directly from

the actuator displacement measurements as:

T 1 % _% Yan1
y | =0075-f0 L 1 Yan2 (5.31)
d) 0 _2l—a 21_a Yan3

Hence, it is convenient to define an alternative output equation for the SSD of the
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3DOF system: G = [Ag, Bg,Cq, Dg] with:

I

~ I3 03 0
c 3 Y3 V3
03 03 I3

and D¢ = 0, thus defining an alternative measurement output vector:

Yo :=(Z Yy & Pni Pn2 Pn3)’ (5.32)

Note that we consider the part of the controller (to be designed) that implements
equation 5.31 to be a part of the physical system, such that we have the actual
position coordinates of the block available as measurements. Also note that in this
case there is no necessity to scale these ‘virtual’ measurements according to the

guidelines of section 4.7.

With this, we are able to set up the standard plant structure for the 3DOF track-
ing problem as given in figure 5.8, in which disturbance input signals w. and wy

w | |
c + W1 e P !
| |
| |
w. | |
£ 1 WlP |
| | z
I W, =
Up T
~ R |
! I 2
| Wu |
| |
| _ |
| e | m
(7 | Ui - N ® '@ !
f G Y& I Yo
| —X)— +
| {

Fig. 5.8: Standard plant structure for the 3DOF tracking problem

and weight functions Wi, and Wy, are introduced to reflect the effect of measure-
ment noise on the position error signals and the pressure signals. The apparent
partitioning of measurement signals into a part that is affected by r and a part
that is not, illustrates an important difference with configuration I. In general, the
use of absolute pressure measurements (yz) will result in a two-degree-of-freedom
problem as discussed in section 4.6. Hence, to prevent this we should define ref-
erence signals for the pressure measurements that are compatible with those for



Controller design and implementation 137

the position measurements. Fortunately, in this particular case, such compatible
reference signals for the pressure measurements are all zero at all times: in any
desired position of the moving block the normalized pressure measurement signal
should be zero. It is possible to incorporate these zero reference signals into the
standard plant of figure 5.8, resulting in a structure in accordance with configu-
ration I, but this would only make the problem more complex (three additional
‘disturbance’ inputs would be introduced). Hence, in the sequel we will consider
the standard plant of figure 5.8 as an alternative for configuration I.

Next we will consider the selection of appropriate values for weight functions Wi,

Wip, We and W,. For this, we will assume that the entire disturbance input vector

/
P

one. Furthermore, we will assume that the weight functions must be constructed

w = (w), w) w.) is normalized, such that its 2-norm, or RMS-norm, is equal to
such that the control objectives are achieved when the control objectives vector
also has a 2-norm of one. This has the advantage that any controller with which
the closed-loop transfer function from w to z has co-norm less than one, must
achieve the desired control objectives.

The measurement noise on the applied displacement sensors will be set to 0.1 mm,
resulting in errors of 0.1 mm in the x and y directions and about 0.001 rad in ¢

direction:

0.0001 0 0
Wie:=| 0 00001 0 (5.33)
0 0 0.001

Pressure measurement inaccuracies are expected to be about 1% of full range, we
select: Wy, :=0.01- Is.

Weight functions W, and W, should be set up to reflect the control objectives.
As the range of the control input vector has already been scaled to one we choose
W, := I3; selecting W, is however a bit more complicated. Obviously, we want
the position error to be small at low frequencies, but we also know that we must
allow the position error to be large at higher frequencies. This implies that we
need a frequency dependent weight function for the position error.

At high frequencies the system will not respond to any reference inputs: the
expected amplitude of the error will be equal to the expected amplitude of r.
We already stated that the expected amplitude of r at higher frequencies will be
limited to 75 mm in z and y directions and 7 rad in ¢ direction. Our choice
for W, will therefore be such that high frequency reference signals within these
boundaries result in a weighted error amplitude of one. At low frequencies we
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want to obtain a considerable reduction of the error: we will aim at better than
1% of the open-loop error (equivalent to -40 dB).

To realize this a first order weight function is taken for each error signal, such that
we get the following form for We:

1 s+100-27- oo 0O
W, == .2 — 2P 1 34
€ ¥ s+2x- 3 0 oo O (5.34)
0o o0 2

The parameters 3 and v may be used to further specify the effect of W,.:
determines the cross-over frequency of the weight function and < determines its
over-all amplification factor. Because of this, 7 is the obvious choice to act as the
parameter to be minimized in the Ho, controller synthesis procedure.

A Bode-magnitude plot of W, with a conservative choice for 3: 8 = 0.01, is given
in figure 5.9. The goal of obtaining 40 dB attenuation for reference signals with a

We with beta = 0.01; x and y errors solid, phi error dashed
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Fig. 5.9: Bode-magnitude plot of W, with 3 = 0.01 and v = 1; solid for z and y

errors, dashed for ¢ error

frequency below 0.01 Hz will be achieved if we are able to find an Hoo controller
for y < 1.

We are now able to set up the state-space description of the entire standard
plant P, based on that of G, R and W,. The SSD of G was already giv-
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en as {Ag,Bg,Cgs, D} and state-space realizations of R and W,, given as
{ARr, Br,Cr,Dr} and {A.,B.,Ce,D.} are easy to find. The state space ma-
trices of P are then given as:

[ 4z 0 0 ] 00 Bg 0
AP = —BCCR Ae BeC(jl BP =100 -—BeDR BeD(}l
0 0 Ag | 00 0 Bg
[ -D.Cr C. D.Cg, | 0 0 -D.Dp|D.Dg
0 0 0 0 0 0 W,
Cp - DP =
-Cr 0 Cg Wie 0 —-Dp | Dg
.0 0 Ca | 0 Wy, 0 Dg,

5.3.2 Construction of the modified standard plant for the
3DOF system

It may now be verified that the standard plant we obtained in the previous sub-
section is not suitable for application of standard H,, synthesis: in particular
assumptions Al and A3 are simultaneously violated due to the unstable dynam-
ics in R. Although an ad hoc approach for solving this problem is possible in
this relatively simple case, we will use it as an example for the application of the
procedure discussed in chapter 4.

First we will check the solvability of the problem with the help of theorem 4.4.3.
To do this we will not actually calculate the polynomial matrices Q and L that
solve equation 4.11, but merely show that these exist. For this, it is sufficient
to look at solvability of the problem when only position error measurements are
available, i.e. only the first three elements of ys (equation 5.32) are used. The
resulting plant model will be denoted as G5, having an SSD: [Ag, Bg, Cgq, Dayl.
Now consider an RCF of G given as: [Ng,,Dg,]. Clearly both matrices are
square (three inputs and three outputs). Furthermore it can easily be verified
that Nz, has full rank, and that G; does not have any transmission zeros. This
implies that Ns,(z) does not loose rank for any z € C (definition 2.4.5), such that
det(Ng, ) is nonzero and not a function of s. Hence, N5, must be unimodular and
have a polynomial inverse (Chen 1984).

Next, from equation 5.30 it is easy to verify that an RCF of R may be given as
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[Dg, Ng] with Dg := 75 - I3 and

kz(Ts+1) 0 0
Ng = 0 Ky(Ts +1) 0 (5.35)
0 0 kp(Ts +1)

We may therefore set L equal to zero and define Q := Ngll Ng, such that accord-
ing to theorem 4.4.3 there must exist a solution for the tracking problem, both
for él and G (the addition of extra measurement signals can never influence the

solvability).

The next step is to construct the necessary servocompensator D;/ as defined in
equation 4.18. Again we do not need to explicitly construct @ for this particular
case: G already contains the necessary internal model, which can be verified by
checking that Dgs(s) = 0 for s = 0. Hence, DG-QD;!l must be polynomial and
have full rank: there exists an LCF of M with Dy = I.

Finally, we can set up the required ‘modified control configuration for the track-
ing problem’ in accordance with figure 4.9 (configuration II). With Dy =I5 it
is easily verified that in this case configurations I and II are equal: a state-space
description of Py is equal to that of P as given in the previous subsection. The
determination of a minimal realization of Pj; can be performed numerically. The
resulting standard plant complies with assumptions Al through A4 and can there-
fore be dealt with using the standard H,,, procedure as implemented, for instance,
in PC MatLab (see Moler et al. 1987, Balas et al. 1993). This will be the subject
of the following subsection.

5.3.3 Application of H,, synthesis, implementation and tun-
ing
Before being able to apply the procedure for the calculation of sub-optimal Heo
controllers presented in section 3.4 to the previously defined standard plant, it
should be noted that there is a small but conceptually important difference between
the formulation of the sub-optimal H.-problem in definition 3.4.2 and the problem
that is considered here. First, we have ||Ty;|lcc < 1 rather than ||Ty.}jec < v: the
iteration will be performed on the parameter v that was already incorporated
into the standard plant by defining W, to be a function of . More importantly,
we take W, to be constant, which implies that only |1y, || is to be minimized
while maintaining a constant bound on ||Tyz, ||« i-6. we want to minimize the
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weighted positioning errors for a given constant level of actuator effort. The level
of performance, as specified in subsection 5.3.1, that we are trying to obtain by
this procedure, will be achieved if we find a controller such that both |7, |lec < 1
and v < 1.

The result of this will be a controller for which the closed-loop transfer function
T from references 7 to positioning errors e is determined by the combination of
R and W,. In accordance with the discussion given in section 4.7 and under the

assumption that ||Ty:||cc < 1, we can determine an upper bound for 5(7}.) as

follows:
5(Tre(w)) = 0_'(We—1(w)We(w)Tre(W)R(W)R_l(w))
= O(W, (@) Tur ()R () 536
< F(WHw)a (T, 2 (w)a (R™Hw))
< (W Hw))a(R~Hw)) YVweR

Note that this inequality can be set up for any submatrix or element of T,,,.

In the case of this example, we find v = 4.071 with a tolerance of .001, such that
the optimal value for + is given as: -y, € [4.070,4.071]. This implies that we are
not able to comply with the specifications that were incorporated in the standard
plant, for which we should be able to find v < 1. To verify this, we will consider
the upper bound for each of the three diagonal elements of T, as can be deter-
mined from inequality 5.36. In figure 5.10 the Bode-magnitude plot for each of
these three diagonal elements is given, together with the upper bound as desired
and the upper bound as actually obtained. It should be noted that tracking of
constant reference signals is apparently obtained, as the diagonal elements of T;..
have a transmission zero at w = 0: in fact 3(7..(0)) = 1.12- 10712, which is within
the numerical accuracy of being zero.

To get an impression of the time-domain behaviour of the closed-loop system, fig-
ure 5.11 shows the unit step responses of the moving block in its three coordinates.
Obviously, we have obtained an extremely low performance controller, which may
be expected from the conservative choices that were made for parameters 7 and 3.
However, for this reason it is suitable for a first implementation on the experimen-
tal set-up to test the proper operation of the equipment. Measured step responses
that were rescaled to match those of figure 5.11 are given in figure 5.12. It should
be mentioned that achievement of the tracking objective can only be verified on a

much larger time scale.
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Fig. 5.10: Bode-magnitude plot of diagonal elements of Tr. (dashed) and their
desired and obtained upper bound (solid): first controller
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Unit step responses: x solid, y dashed, phi dotted
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Fig. 5.11: Simulated step responses to unit steps on z (solid) y (dashed) and ¢
(dotted) references: first controller

Measured unit step responses: x solid, y dashed, phi dotted
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Fig. 5.12: Measured step responses to unit steps, on z (solid) y (dashed) and ¢
(dotted) references: first controller (rescaled: actual step sizes were 40
mm and 0.4 rad)
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The main purpose of the previous excercise is not to obtain a high performance
controller in one stroke, but to set up an environment that allows a tuning pro-
cedure for finding one. For this it is important that we have set up the standard
plant in such a way that selected weight functions and parameters allow a physi-
cal interpretation, or directly reflect important design objectives. Adjustment of
these weight functions and parameters can now be done in an iterative way, and
allow the designer to precisely specify the trade-off between the separate control
objectives. To summarize the effects of previously introduced weight functions
and parameters, we review them in order of appearance:

e 7 determines the frequency up to which tracking is pursued; decreasing 7
implies a higher frequency and puts more emphasis on the tracking objec-
tive at the cost of higher actuator effort and decreased measurement noise
reduction: the asymptotic tracking property is guaranteed by the presence
of integral action, but 7 determines the speed of response in the sense of how
fast the error diminishes to an acceptable level,

e x stands for the expected size of the high frequency part of the reference
signals; decreasing « implies that reference signals are not expected to have
a significant high frequency part, resulting in more emphasis on the low
frequency part, but demanding greater care in the generation of reference

signals,

o Wi, and Wy, reflect expected measurement noise levels: decreasing their size
results in a higher overall performance, but obviously also a higher sensitivity

to actual measurement noise,

e W, determines allowable actuator effort: a decrease allows higher perfor-
mance levels, but it should be chosen such that actuator effort stays with-
in the physical limits of the actuators and the set-up (power levels) under
expected operating conditions; furthermore, an increase is usually advanta-
geous for stability robustness of the closed-loop system,

e (3 sets the desired cross-over frequency for the closed-loop system: increasing
[ results in an increased bandwidth of the closed-loop system, at the cost
of an increase in actuator effort, measurement noise sensitivity and, in most

cases, stability robustness,

o ~v determines the overall amplification factor of T, ., : it is the most obvious
parameter for iteration in the H., synthesis procedure, as v < 1 implies that

all other objectives are satisfied.
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In view of these considerations, it was decided to reduce « for all three reference

signals to £, = ky = 0.004 and k4 = Z. This allows us to increase both 7
and 3 to obtain faster step responses: it appeared that 7 = % and B =1 are
possible without unacceptable increase of actuator effort. With Wi., Wip and W,
unchanged, a v of 1.606 was found with a tolerance of 0.001. Although v > 1,
which implies that the error signals are slightly larger than specified, the resulting
controller was found to be acceptable. The significant improvement in performance
obtained with this controller can clearly be observed in both frequency-domain and
time-domain: figure 5.13 shows the Bode-magnitude plot for the three diagonal
elements of T,. with their obtained upper bound (compare with figure 5.10) and

figure 5.14 gives the associated unit step responses (compare with figure 5.11).

Closed loop transfer from references to errors and bound
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Fig. 5.13: Bode-magnitude plot of diagonal elements of T,. (dashed) and their
obtained upper bound (solid): second controller

Implementation of this controller on the 3DOF system resulted in the measured
step responses given in figure 5.15: they were rescaled to match the unit step re-
sponses in figure 5.14. Obviously, the measured responses are significantly different
from those expected: there is more overshoot and less damping. This suggests that
there is a robustness problem with the obtained controller, which will be analyzed
and solved in the following section.



146 Application to a three-degrees-of-freedom hydraulic positioning system
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Fig. 5.14: Simulated step responses to unit steps on z (solid) y (dashed) and ¢
(dotted) references: second controller

5.4 Robustness analysis and design

In the previous section we found significant differences between the simulated be-
haviour of the controlled system and the actual behaviour, as measured on the
experimental set-up of the 3DOF system. Although some small differences may
be expected and should be accepted when using linear control theory for the de-
sign of a controller for a clearly non-linear set-up, we will show that the behaviour
of the controlled system can be improved significantly by means of robustness
analysis and design. The first step will be the modelling of the relevant uncer-
tainties and the setting up of the ‘standard control structure with uncertainties’
as defined in section 3.5 and given in figure 3.11. In doing so, it will appear
to be possible to define a highly structured uncertainty model by means of the
procedure in section 3.7. Next, we will analyse the robustness of the controller
developed in the previous section by means of the structured singular value, as
discussed in section 3.6. Finally, we will construct an H, sub-optimal controller
for the standard plant with uncertainties. In spite of a possibly large amount of
conservatism, this controller will appear to be robust with hardly any decrease

in nominal performance as compared to the controller developed in the previous
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Measured unit step responses: x solid, y dashed, phi dotted
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Fig. 5.15: Measured step responses to unit steps, on z (solid) y (dashed) and ¢
(dotted) references: second controller (rescaled: actual step sizes were
3 mm and 0.02 rad)

section.

5.4.1 Uncertainty modelling for the 3DOF system

When considering uncertainties that may be of importance for the actual behaviour
of the 3DOF system, all four separate causes mentioned in section 3.5 could be
investigated:

e neglected linear behaviour can be found in the use of a steady-state ap-
proximation for the servo valve and, for instance, the assumption that the
actuator rods are infinitely stiff,

o for several physical quantities, like hydraulic compressibility coefficient and
rated flow, manufacturer’s specifications were used, that are only accurate
up to a certain tolerance,

e examples of time varying parameters are viscous friction and leakage, which
can be seen from the differences between actuator 1 and actuators 2 and 3
(equation 5.1),

e main non-linearities are geometric non-linearity, dry friction and the effect
of the piston area ratio of 0.56 (it should be 0.5 for linearity).
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However, from experimental measurements it was found that the most important
effect on the dynamical behaviour of the 3DOF system consists of variations in the
frequencies of its resonant modes. These variations can be explained by variations
in the compressibility coefficient E and the neglected flexibility of the hydraulic
hoses that were used. As these quantities can not easily be changed, we will
consider a different variation with similar effects: a variation in ineffective volume.
The statement that this variation has similar effects can be verified from the state-
space matrices Ag and Bg given in section 5.2: v, appears in the same entries
as E. By considering variations in v, we may set up a robust control problem
for a well-defined parameter variation, which can also be performed on the actual
set-up without too much effort. '
For analysis purposes we will consider variations in v, of 0.5 litres, which is signifi-
cant with respect to the nominal v, of 1.5 litres. Furthermore we will assume that
variations in v, may occur independently for each actuator: v,; € [1.0,2.0], ¢ =
1...3. The effect of this on the dynamical behaviour of the open loop system is
illustrated in figure 5.16, in which the Bode-magnitude plot is given of the open
loop transfer functions from actuator inputs to actuator displacements in the nom-
inal case v,; = 1.5 litres, the ‘minimal’ case v,; = 1.0 litres and the ‘maximal’ case
Vo; = 2.0 litres.

It is now straightforward to set up the state-space matrices for the uncertainty
model of the 3DOF system, or rather the set of models, parametrized by the

vector 6 = [Uo1 Vo2 Vo3|', as:
G.(9) = [4c(0), B&(8), Ce, Dl (5.37)

Next, we can apply the parametric uncertainty modelling procedure given in sec-
tion 3.7 to find:

Gu(8) = Fu(M,A) = Moy + Moy (I — AMyy) ™' AMip (5.38)

It appears that we can take A = diag(61, 62, 83), with 6; € [—1,1] representing the
variation of v,;. Note that we thus find that A € A,, as defined in equation 3.60.
In comparison with G (), we have that M is a transfer function matrix with three
extra inputs and three extra outputs representing the effect of the uncertainties.
Substitution of M for G in figure 5.8 then provides us with the ‘standard control
structure with uncertainties’ given in figure 5.17 (compare with figure 3.11). With
the state-space realization of M, which follows directly from the procedure of
section 3.7, and with SSDs of the frequency dependent weight functions, it is
possible to construct a state-space model for the entire standard plant P, as was

done for P in section 5.3.
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Bode plot of open loop transfer from actuator inputs to actuator displacements with uncertainty
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Fig. 5.16: Bode-magnitude plot of the open loop transfer functions from actuator
inputs to actuator displacements with v,; = 1.0,1.5, 2.0 litres: actuator
1 solid, actuators 2 and 3 dashed

5.4.2 Robust stability analysis

To be able to check whether the controller from the previous section is robust
against the specified variations in v,, we will incorporate it into the standard plant
P, and we will only consider the three uncertainty inputs and outputs wa and
ZA (We, Wp, Uy, 21 and zy are discarded). The resulting interconnection structure
for robust stability analysis will be denoted as N.: note that in this case we have
Nis = Fi(M, K). Hence we have that N5 determines the closed loop stability of
the 3DOF system as a function of uncertainty matrix A, according to the feedback
configuration of figure 5.18. With the small gain theorem (theorem 3.5.3) and the
definition of the structured singular value (definition 3.50), we thus have that
robust stability of the closed loop system is guaranteed if || Nys||oo < 1, or if and
only if ||Nisll, < 1 (see equation 3.51).

Using the u-Tools toolbox for PC MatLab (see Moler et al. 1987, Balas et al.
1993), both 6(N,s) and an upper bound of (‘real’) pa(N,s) were calculated and
plotted over the relevant frequency range in figure 5.19. From this we can see that
neither bound is smaller than 1 (i.e. 0 dB), which implies that no robust stability
can be guaranteed for the 3DOF system with the second controller and variations in
¥, between 1.0 and 2.0 litres. Furthermore, it can be seen that the largest singnlar
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Fig. 5.17: The standard control structure with uncertainties for the 3DOF system

value is indeed an upper bound for u and is therefore conservative. The spiky
appearance of the u-plot is typical for problems with purely real perturbations;
this also causes the lower bound to be zero, or rather incalculable, at most points.
This implies that also the calculated upper bound for u may be conservative: to
show that this is not the case, figure 5.20 gives the simulated unit step responses of
the 3DOF system with all ineffective volumes set to 2.0 litres. Clearly this system
is indeed unstable, and we may conclude that the used controller does not achieve

robust stability with respect to variations in v, from 1.0 to 2.0 litres.

WA ZA

Fig. 5.18: Feedback structure for robustness analysis of the 3DOF system
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Fig. 5.19: Structured singular value plot (solid) and largest singular value plot
(dashed) for robust stability analysis of 3DOF system with second con-
troller

Simulated unit step responses: x solid, y dashed, phi dotted: vo =2.01
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Fig. 5.20: Simulated step responses to unit steps on z (solid) y (dashed) and ¢
(dotted) references: second controller with perturbed plant (v, = 2.0
litres)



152 Application to a three-degrees-of-freedom hydraulic positioning system

5.4.3 Robust controller design using H,, synthesis

To obtain a robust controller for the 3DOF system we could now apply the D-K
iteration procedure suggested in subsection 3.6.4 on the standard plant in fig-
ure 5.17. Instead however, we will use an approach that is often sufficient in
practical situations and that makes it unnecessary to construct transfer function
fits for D-scalings. In spite of the simplicity of the approach and the resulting
‘danger for conservatism’, it will appear to be possible to significantly improve
robustness in the case of the 3DOF system. However, it should be noted that no
guarantees are obtained with respect to robust stability: whether robust stability
is obtained must be verified afterwards using p-analysis.

The basic idea is that, with the definition of the uncertainty model for the 3DOF
system, we have introduced three extra input and output signals: wa and za
respectively, that could be used in a similar fashion as the external signals already
defined. To do this we add one extra weight function to the standard plant P,
of figure 5.17 to obtain P, as given in figure 5.21. For the new weight function

wa : Wa —28
| i
We :
I Wie |
Wp E 15,7 E
! lp |
Ur : R . W % -
; wp
!
! )
U i -®£ & : Y1
i X T g
| Pu ® |I o

Fig. 5.21: Standard plant for robust controller design for the 3DOF system

W we choose Wa = cal with ca some small real constant. Just like the weight
functions Wi, Wy, W, and W, together with the RSG R determine the trade-off
between several performance objectives, we can use this Wa to find a trade-off
between performance and robustness. It is noted once again that this trade-off
may be conservative in the sense that better performance could be obtained with
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equal robustness, or better robustness with equal performance.

With all other weight function equal to those selected in the previous subsection,
it appeared that a choice of ca = 1075 provides us with an acceptable result.
A v of 1.6595 was found with a tolerance of 0.001, which implies that only a
small deterioration of the nominal performance is necessary, when compared to
the previous controller with v = 1.606. This can clearly be observed from the
simulated unit step responses given in figure 5.22, that may be compared to those
of figure 5.14.

Unit step responses: x solid, y dashed, phi dotted
1.2 T

0.8 - S — .

X, y, phi

] B e -  ——— — —<_ .

0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5

time [s]

Fig. 5.22: Simulated step responses to unit steps on z (solid) y (dashed) and ¢
(dotted) references: third controller

To verify the improvement in robustness, figure 5.23 shows both &(N,s) and an
upper bound of ua(N.) as was done in the previous subsection in figure 5.19.
Clearly, we now have || N[, < 1 and we even have || Nis||co < 1. This is of course
without the effect of weight function Wa: ca is set to 1 such that Wa = I. Hence
we may conclude that this controller does achieve robust stability with respect to
the specified variations in v,. This makes it interesting to also consider to what
extent we have also obtained robust performance. This can be done according to
section 3.6, by setting up the extended robust stability problem as depicted in
figure 3.13 and calculating p for the resulting mixed real-complex problem with
a 9 x 6 performance block connecting outputs z; and z to inputs w., w, and
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SSV plot for third controller (solid) plus largest SV (dashed)
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Fig. 5.23: Structured singular value plot (solid) and largest singular value plot
(dashed) for robust stability analysis of 3DOF system with third con-

troller

u,. As we denoted the interconnection structure for robust stability analysis as
N,s, we will denote the structure for robust performance analysis as N, and
calculate u(N,,) over the appropriate frequency range: the result of this is given
in figure 5.24. Note that this plot evaluates y for the weighted standard plant, but
with ca set to 1: hence, u = 1 (0 dB) denotes the desired nominal performance.
It is therefore to be expected that u is larger than 1, as plant perturbations will
usually result in performance deterioration. The amount of this deterioration is
reflected by || Nep|l,., in this case 1.29 (2.18 dB): the maximal gain from disturbance
inputs to performance objectives is increased by 29% for a worst case parameter
perturbation which is 29% smaller than the specified maximum (i.e. 71% of 0.5
litres).

To illustrate this performance deterioration in the time domain, figure 5.25 gives
the simulated unit step responses when the controller is applied on the 3DOF
system with v, = 2.0 litres for all three actuators. When compared to the nominal
responses given in figure 5.22 and the result of the previous controller given in
figure 5.20, it is clear that we have obtained a controller which is not only robustly
stable but also retains good performance.

Implementation of this controller on the actual experimental set-up will show
whether this claim is correct and will allow us to verify the argument that the
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bad performance of the previous controller was due to lack of robustness against
variations in the resonant modes. As was done in figure 5.15, the measured step
responses were rescaled to unit step responses, to be able to compare them directly
with figure 5.22: the result is given in figure 5.26. When compared to the simu-
lated step responses for the nominal system (figure 5.22) there are still some clear
differences: most notably the amount of overshoot in y-direction. It appeared that
this was caused by an error in modelled viscous friction coeflicient for actuators
two and three, which was due to wear. In spite of this, we can still conclude that
the general closed loop behaviour of the 3DOF system is significantly improved,
by forcing robustness against variations in the frequencies of the resonant modes.

SSV plot for robust performance analysis of third controller
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Fig. 5.24: Structured singular value plot for robust performance analysis of 3DOF
system with third controller
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Simulated unit step responses: x solid, y dashed, phi dotted: vo=2.01
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Fig. 5.25: Simulated step responses to unit steps on (solid) y (dashed) and ¢
(dotted) references: third controller with perturbed plant (v, = 2.0

litres)
Measured unit step responses: x solid, y dashed, phi dotted
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Fig. 5.26: Measured step responses to unit steps, on (solid) y (dashed) and ¢
(dotted) references: third controller (rescaled: actual step sizes were 3

mm and 0.02 rad)



Chapter 6
Conclusions

This thesis provides a complete procedure for incorporating the output regulation
and tracking problem, also known as the servomechanism problem, into the gener-
al framework of the recently developed robust control paradigm. The motivation
for doing this is based on the important advantages of robust control methods
over both the ‘classical’ control approach and the ‘modern’ control approach and
will be briefly reviewed in section 6.1. The fact that the output regulation and
tracking problem constitutes important difficulties when attempting to apply ro-
bust control methods is recognized by many researchers; properties of approaches
and solutions developed in literature will be considered in comparison with the
procedure developed in this thesis in section 6.3, after a review of the properties
of the proposed procedure in section 6.2. The specific results of application on a
hydraulic positioning system with three degrees of freedom will be considered in
section 6.4. Finally, section 6.5 will give recommendations with respect to possible
extensions of the presented approach.

6.1 Advantages of robust control methods

The development of control theory should always be aimed at the solution of prob-
lems that may occur in practice. Whereas ‘classical’ control methods provide solu-
tions for a great many problems still encountered to date, the transfer to ‘modern’
control methods was marked by the growing need for a more general approach. In
many cases demands for higher performance necessitated a multivariable model-
based control theory, to be able to deal with the problem of interaction between
several important process variables. The time-domain framework and state-space
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methods of this period prompted great interest in the modelling of the system to
be controlled; especially when it appeared that the applied methods are very sen-
sitive to modelling errors. In spite of this it was found that in many relevant cases
it is not possible to find models that are sufficiently accurate: in general this is
caused by non-linearities, time-dependencies and neglected dynamical behaviour.
The result of this is that there are only a very few examples of successful long-term
application of the developed theory.

A better understanding of the causes for the failure of application of modern control
theory was developed when frequency-domain properties of resulting controllers
and closed-loop systems were considered. This led to the introduction of singular
values analysis and multivariable frequency-domain methods for controller synthe-
sis: Hy and Ho, methods. More importantly, it led to the introduction of a general
framework for control system design: the standard control design structure or stan-
dard plant framework. This framework provides a basis for the formulation of the
control problem such that the application of the newly developed methods can be
done by means of a standard procedure. On the other hand, it allows sufficient
flexibility in setting up the control problem, such that concepts from both classi-
cal and modern control theory can be included. The modelling of the system to
be controlled is usually done by means of multivariable state-space methods. The
setting up of performance specifications, like disturbance attenuation and actuator
effort minimization, and robustness specifications, based on either unstructured or
structured plant uncertainties, is usually done by means of frequency dependent

weight functions.

The advantage of this approach is that the actual controller synthesis may be per-
formed in a single well-defined numerical optimization by means of several available
methods: Hs and Ho, synthesis, mixed Hy /Ho, methods (under development) and
D-K iteration (under development). The inherent trade-off between the specified
design objectives is not primarily dependent on the selected synthesis method, but
on the selection of appropriate weight functions. Disturbance inputs are charac-
terized by (frequency-dependent) input weights and desired closed loop behaviour
is given by (frequency dependent) output weights. This may be seen as one of the
main advantages for practical application of controller synthesis methods based
on the standard control design structure: these weight functions usually allow a
simple physical interpretation and have sufficient flexibility to accommodate com-

monly stated demands.

The selection of controller synthesis method is of importance for the level at which
the underlying trade-off is performed: the applied method should as much as pos-
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sible be in accordance with the type of problem under consideration. Because of
this, Ho methods are appropriate when disturbances and objective functions are
of a statistical nature, whereas H,, methods consider absolute bounds on signals,
which is more appropriate for robustness objectives (via the small gain theorem)
and the suppression of undesirable dynamical behaviour. Being unable to achieve
the highest possible level of trade-off is generally indicated as conservatism of the
applied method: mixed Hy/H,, methods and D-K iteration are clear attempts to
reduce conservatism. This constitutes another important reason to define control
problems, including servomechanism problems, in terms of the standard control
design structure: new developments in the reduction of conservatism are immedi-
ately applicable.

6.2 Properties of the presented procedure

In view of the advantages of application of robust control methods within a stan-
dard plant framework, it is sensible to attempt to include the known solutions to
the linear servomechanism problem in this approach, such that output regulation
and tracking objectives can also be dealt with. This would allow the solution of
linear multivariable control problems in which design objectives are a mixture of
performance specifications like disturbance attenuation and actuator effort min-
imization, robustness specifications based on either unstructured or structured
plant uncertainties and asymptotic tracking objectives for polynomial or sinu-
soidal persistent reference signals. Unfortunately, it appears that it is not possible
to do this without violating an assumption that is necessary for the application
of standard robust control methods: the internal stabilizability of the standard
plant.

Usually this problem appears in the occurrence of invariant zeros on the imaginary
axis, which are not allowed when Hy or H., methods are to be applied. As this
problem seems to be of a technical nature, it is often considered to generalize
the used methods such that solutions may be found that allow imaginary hidden
modes in the closed-loop standard plant, as long as they are the result of weight
functions rather than actual plant dynamics. This implies that the difficulties
with the application of robust control methods on output regulation and tracking
problems are seen as a flaw in the applied synthesis procedures. The approach
considered in this thesis is different: difficulties with output regulation and tracking
problems are seen as the result of incorrect problem formulation, i.e. the incorrect
incorporation of the tracking problem into the standard control design structure.
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For this reason, this thesis provides a procedure for setting up a standard plant
that contains the output regulation and tracking objective in such a way that
standard controller synthesis methods can be applied. The procedure consists of
a number of steps that can be outlined as follows:

1. given a linear model of the system to be controlled, set up a linear model of
the expected persistent signals: a Reference Signal Generator (section 4.3),

2. construct the ‘standard control configuration for the tracking problem’ as

given in figure 4.8 (configuration I),

3. consider solvability by means of theorem 4.4.3 and construct the appropriate

servo compensator (D),

4. construct the ‘modified control configuration for the tracking problem’ as
given in figure 4.9 (configuration II),

5. define the input signals of the servo compensator as new control inputs:
consider these new inputs as a measure for the actuator effort (see equa-
tion 4.28),

6. add any other disturbance inputs, control objectives and weight functions.

The resulting standard plant should then comply with the necessary assumptions
for application of standard Hs and H,, methods.
The most important properties of this procedure may be summarized as follows:

e the tracking objective is defined by the RSG: the RSG may be any linear
time-invariant model with imaginary poles: any combination of sinusoids

and polynomials can be incorporated,

e the necessity of adding a servo compensator, based on the RSG, to the
controller results from the solvability condition for the tracking stability
problem (theorem 4.4.3),

¢ a ‘minimal’ servo compensator is constructed, as suitable dynamics of the
physical system may also be used to obtain the tracking objective: the 3SDOF
system is a clear example of this,

e if the RSG is constructed with the minimal order needed for the definition
of the occurring persistent signals, the servo compensator will also be of
minimal order: extension of the RSG to the ‘robust’ problem will prevent
the need to solve polynomial equation 4.11 and determine Dys from equa-
tion 4.18, both of which are numerically difficult,
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o the effect of weight functions for other control objectives than output reg-
ulation and tracking is affected by the RSG and necessary modifications to
the standard plant: tuning of weight functions may be required, but is not
complicated as their physical interpretation remains valid,

e by considering the extended tracking problem (section 4.5) it is possible to
separately influence all state variables of the servo compensator: this allows
a trade-off between amplitudes of these state variables and speed of response
with respect to the tracking objective,

e the ‘robust servomechanism’ solution will be found if the RSG does not have
any directional information (all reference signals may occur in all combina-
tions on any plant output), unless the plant has more inputs than outputs
or the plant already contains (one of the) poles of the RSG: in those cases
the servo compensator can be extended to obtain the robust servomechanism

solution,

s if structural information on plant perturbations is available (uncertainty
model), it is possible that robust asymptotic tracking is obtained in spite
of the use of a minimal servo compensator; this may be verified by means of
structured singular value analysis: the robust servomechanism solution may
therefore be considered as a conservative approach, as it provides robustness
for unstructured plant perturbations,

e a two-degree-of-freedom control configuration can be set up with the same
approach and terminology; it allows the design of a combined feedforward
and feedback controller by means of robust control methods; the feedforward
part is a proper and stable approximation of the inverse of the system to be
controlled,

e once the modified and extended control configuration has been set up cor-
rectly, the necessary assumptions for application of standard Hs, H, or
related synthesis methods are trivially complied with,

e in general the resulting controller has the order of the standard plant in-
cluding servo compensator and weight functions, plus the order of the servo
compensator that is explicitly added to it; the two-degree-of-freedom con-
troller has an order that is increased with two times the order of the physical
plant model (G) plus the order of weight function Wj.
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6.3 Comparison with available approaches

Several authors have recognised the possible advantages of application of robust
control methods on the output regulation and tracking problem. For this reason,
a number of approaches have been proposed to deal with the inherent difficulty
of incorporating the output regulation and tracking problem into the standard
control design structure, or at least of the application of Hz or H,, methods on
servomechanism problems. An extensive discussion on the properties of these
approaches is given in section 4.2. We conclude that in comparison with the
procedure developed in this thesis, these approaches all have one or more of the
following disadvantages:

o decreased generality in the control design structure: most approaches make
use of a framework that may be seen as a special case of the standard con-
trol structure, such as mixed-sensitivity methods and structures in which
external disturbances only consist of persistent reference signals; other ex-
ternal disturbances and/or the effects of plant uncertainty are usually not
considered,

e decreased generality in the considered output regulation and tracking prob-
lem: all approaches available in literature are restricted to the robust ser-
vomechanism problem and in many cases only the scalar (SISO) problem
and asymptotic tracking of step signals is considered; none of them consid-
ers the construction of a minimal servo compensator which is shown to be
more general than the robust servomechanism problem (section 4.5),

o decreased insight in the physical reality of the problem: all approaches avail-
able in literature consider symptomatic effects of the output regulation and
tracking problem, like unstable weight functions, the necessity of an inter-
nal model or the occurrence of unstable invariant zeros, while the problem
is in reality caused by the specific behaviour of certain external input sig-
nals, which is most naturally dealt with by incorporating the RSG into the
standard plant,

e insufficient experience with practical applications: if an example is consid-
ered, it is usually simplified and mostly of academic importance,

e increased calculational effort and insufficient numerical implementation in
comparison with standard Hy and H,, methods: some approaches make use
of operator theory to find results, leading to involved calculations and high
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order controllers, others are based on extensions of the standard algebraic
Riccati equation method or on Riccati inequalities, but also with an increase
in calculational effort and numerical problems.

With respect to the last item, it should be noted that the procedure developed
in this thesis also leads to an increase in calculational effort when compared to
standard H, and H,, methods: the incorporation of the RSG into the standard
plant leads to an increase in order and the determination of a minimal realiza-
tion requires an extra calculation (for which stable numerical methods are readily
available).

In light of these disadvantages, the further development of any of these approaches
for the single purpose of incorporating the output regulation and tracking problem
into the robust control paradigm should be reconsidered. However, it must be
noted that some of these approaches use this problem to illustrate the need for
extending existing (standard) controller synthesis methods. They show directions
in which theory may be developed to also include completely different problems
like the design of non-linear and/or time-varying controllers and the synthesis of
reduced order output feedback controllers. Especially methods based on Linear
Matrix Inequalities (LMIs) are promising in this area; the procedure presented in
this thesis is not in conflict with these developments.

6.4 Conclusions with respect to the 3DOF sys-

tem example

The 3DOF system example was treated as a robust control problem in which the
asymptotic tracking objective is merely one of several control objectives: actuator
effort minimization, disturbance attenuation, speed of response and robustness.
It is therefore not only of use to demonstrate the procedure proposed in this
thesis for the design of a multivariable servomechanism, but is also an example
of the application of robust control theory. Special attention was given to the
construction of the standard plant and the selection of weight functions. The
resulting servomechanism is quite simple, as the servo compensator appears to be
a unit matrix. It is notable that this formalizes the practical experience that the
integral action inherent in hydraulic actuators may be seen as an internal model for
achieving asymptotic tracking of step signals. In spite of the simplicity of the servo
compensator, the procedure was executed in such a way that extension to more
complex situations is straightforward, especially when considering the problem of
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robust asymptotic tracking.

Three controllers are considered. The first controller demonstrates an important
advantage of the robust control approach in general. The direct link between
weight functions and physical properties allows the designer to specify a very
conservative controller which can be safely implemented and used as a starting
point for an iterative tuning approach; this property is a further example of the
relation between robust control and ‘classical’ control. On the other hand, the used
controller synthesis method is fully model-based and multivariable and generalizes
methods from ‘modern’ control. Sensible construction of the standard plant thus
enables the combination of a number of ‘classical’ and ‘modern’ control concepts.
The second controller is the result of a trade-off between speed of response and
actuator effort, with the asymptotic tracking objective as an extra condition. It
appears that it is possible to obtain a significant improvement in speed of response
when considering the transfer from reference inputs to plant outputs. However,
actual implementation of the resulting controller shows unexpected and undesired
behaviour: there is more overshoot and less damping.

To deal with this problem a third controller is constructed, based on an analysis of
possible modelling errors and uncertainties. It was established that sensitivity to
variations in hydraulic frequency could very well explain the unwanted behaviour
of the closed-loop system with the second controller. For this reason an uncer-
tainty model was set up, based on three uncertain parameters reflecting changes
in hydraulic frequency of each of the three actuators. The resulting controller is
robust against the specified uncertainties without notable decrease in performance
and appeared to perform very well on the actual set-up.

6.5 Recommendations for future research

The solution of the output regulation and tracking problem as presented in this
thesis gives rise to several questions, which may lead to further developments in
the future. From both a theoretical and a practical point of view, we have consid-
ered the importance of adding tracking objectives to control design problems, in
the sense of their influence on other control design objectives. Especially for multi-
variable problems it should be considered that the addition of a servo compensator
to construct a servomechanism, implies the addition of unstable dynamics to the
control problem and therefore a reduction of obtainable robustness and perfor-
mance. This aspect of servomechanism design is usually disregarded in literature,
leading to the impression that a servo compensator of ‘maximal order’ to obtain
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‘robust asymptotic tracking’ is always the right way to proceed. Instead, there
should be a careful selection of ‘expected’ or ‘allowable’ persistent signals to be
represented by the RSG, such that the servo compensator order is minimal. Fur-
thermore, robustness of a controller with respect to the tracking objective and
other objectives is often possible without application of a servo compensator of
maximal order. Although the procedure presented in this thesis provides the the-
oretical possibility to do this, it should be noted that the construction of a servo
compensator of minimal order by means of theorem 4.4.3 involves the solution
of polynomial equations, which is numerically hard to do. It may be possible to
construct a minimal servo compensator with less numerical effort when starting
with alternative solvability conditions, such as those using state-space methods as
given by, for instance, Francis (1977) and Schumacher (1983).

Another, related, practical problem for which a more fundamental approach may
provide a solution, is unwanted high order of the final controller. Although the
development of Digital Signal Processors and related hardware provides an enor-
mous increase in real-time calculation power, it is often necessary to limit this
order: usually for economical reasons. Especially for the two-degree-of-freedom
problem, we may have that the final controller is too complex to implement. This
could be seen as an extra motivation for the development of reliable controller
order reduction methods or fixed order controller design for the standard control
configuration. Other than the necessity of retaining the servo compensator in the
controller, the addition of the output regulation and tracking objective does not
impair the application of such methods.

It has been argued that the application of robust control methods on the ser-
vomechanism problem provides a number of advantages over ‘classical’ and ‘mod-
ern’ approaches. However, it is desirable to further evaluate these advantages by
means of experience with more examples of practical application. We have, for
instance, that the two-degree-of-freedom solution is only given as a theoretical
concept: this approach should be compared with known examples of combined
feedforward and feedback control. Furthermore, when considering the 3DOF sys-
tem example, we did not compare the results that were obtained by means of
the proposed procedure with results that might have been obtained by means of
‘classical’ or ‘modern’ methods. The reason for this is that application of, for
instance, simple PID or LQG controllers on a practical set-up is not realistic: for
an objective evaluation of the potential improvements that may be obtained, the
proposed procedure should be applied on a system for which a realistic control
system is already ‘optimally tuned’, and in practical use.
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Samenvatting

Het uitgangsreguleer- en volgprobleem, ook bekend als het servoprobleem, is een
standaard onderwerp van zowel de klassieke als de moderne regeltheorie. Vooral
met behulp van toestandsmodellen is het mogelijk een beschrijving op te bouwen
van een verzameling van ‘persistente’ signalen, ofwel signalen die niet naar nul
gaan als de tijd naar oneindig gaat. Indien lineaire, tijd-invariante modellen ge-
bruikt worden, zou een dergelijke verzameling kunnen bestaan uit combinaties
van polynomen en sinusvormige functies. Het regelprobleem is dan een regelaar
te ontwerpen voor een gegeven systeem zodat één of meer systeemuitgangen de
gespecificeerde persistente signalen asymptotisch volgen: deze persistente signalen
kunnen dan dus gezien worden als ‘referentiesignalen’. Het is bekend dat een
dergelijke regelaar bepaalde structuureigenschappen heeft: de regelaar dient een
dynamisch model, een ‘servocompensator’, te bevatten, zodat de combinatie van
regelaar met te regelen systeem een ‘intern model’ bevat van de verzameling van
referentiesignalen.

De aldus gespecificeerde regeldoelstelling is echter niet voldoende om een realis-
tische regelaar te ontwerpen: het asymptotisch volggedrag moet gecombineerd
worden met andere regelaardoelstellingen, zoals responsiesnelheid, storingsonder-
drukking en robuustheid. Normaal gesproken kan dit worden gedaan door een
gegeven regelaarontwerpmethode toe te passen op een systeemmodel dat is uitge-
breid met een servocompensator, die vervolgens wordt toegevoegd aan de regelaar.
Dit blijkt goed te werken bij gebruik van ‘lineair kwadratisch optimale’ regelaar-
ontwerpmethoden, zoals die vooral worden toegepast in de moderne regeltechniek
gedurende de periode 1960-1980. Helaas ontstaan er echter problemen als wordt
getracht ‘robuuste’ regelaarontwerpmethoden toe te passen, zoals die in ontwikke-
ling zijn sinds 1980. Het blijkt dat de uitbreiding van het te regelen systeem
met een servocompensator in tegenspraak is met bepaalde standaardaannamen
die gedaan worden om toepassing van deze methoden mogelijk te maken.

In dit proefschrift wordt een procedure voorgesteld waarmee deze problemen
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opgelost kunnen worden in een zeer algemene zin: gegeven een willekeurig tijd-
invariant model van een verzameling van persistente signalen waarvoor een oplos-
sing van het asymptotisch volgprobleem bestaat, is het hiermee mogelijk iedere
bestaande robuuste regelaarontwerpmethode toe te passen om een geschikte rege-
laar te vinden. Om oplosbaarheid te bepalen, wordt een nieuwe noodzakelijke
en voldoende voorwaarde voorgesteld en gerelateerd aan eerdere resultaten. Uit-
gaande van deze oplosbaarheidsvoorwaarde wordt de constructie van een geschikte
servocompensator besproken, die tevens van minimale orde voor de gegeven verza-
meling van persistente signalen blijkt te zijn. De juiste formulering van een stan-
daard regelaarontwerpconfiguratie wordt gegeven, zodat een fysische interpretatie
van stoorsignalen, weegfuncties en beoordelingsgrootheden mogelijk is, terwijl de
volgeigenschap gegarandeerd blijft. Robuuste regelaarontwerpmethoden, zoals Hy
en H., optimalisering, kunnen dan worden toegepast om een gewenste gesloten-lus
overdracht van storingen naar beoordelingsgrootheden te verwezenlijken.

Twee belangrijke uitbreidingen van de voorgestelde procedure worden beschouwd.
Ten eerste wordt de constructie van een niet minimale servocompensator gegeven,
waarmee het mogelijk is ‘robuust asymptotisch volggedrag’ te realiseren. Er wordt
aangetoond dat het resultaat in veel gevallen kan worden beschouwd als een spe-
ciaal geval van de voorgestelde procedure; bovendien worden een paar mogelijke
nadelen met betrekking tot andere regelaardoelstellingen dan volggedrag bespro-
ken. Ten tweede wordt de twee-graden-van-vrijheid probleemformulering gegeven
als een uitbreiding van de standaard regelaarontwerpconfiguratie. Deze maakt het
mogelijk om tegelijkertijd zowel een voorwaartskoppelende als een terugkoppelende
regelaar met gegarandeerd volggedrag te ontwerpen met behulp van robuuste re-
gelaarontwerpmethoden.

Een multivariabel experimenteel voorbeeld wordt besproken met veel aandacht
voor de bepaling van een geschikte regelaarontwerpconfiguratie en de keuze van
de noodzakelijke weegfuncties. Dit levert een eenvoudig voorbeeld op van de in-
tegratie van het asymptotisch volgprobleem in een typisch robuust regelprobleem.
Verscheidene regelaars worden ontworpen met behulp van H,, optimalisering; deze
worden vervolgens experimenteel geévalueerd met behulp van een op een digitale
signaalprocessor gebaseerde implementatieomgeving. Robuustheidseigenschappen
met betrekking tot stabiliteit, prestatieniveau, en volggedrag worden gegarandeerd
met behulp van parametrische onzekerheidsmodellering en gestructureerde sin-

guliere waarden analyse.
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