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Pulsed EM Field, Close-Range Signal Transfer in
Layered Con gurations—A Time-Domain Analysis

Ioan E. Lager, Senior Member, IEEE, Vincent Voogt, and Bert Jan Kooij

Abstract—The pulsed electromagnetic (EM)- eld propagation
in con gurations that are of relevance for the radiation from
integrated antennas is examined. The investigated con gura-
tions consist of layered structures with material parameters that
are typical for integrated circuits fabricated in complementary
metal–oxide semiconductor technology, and are excited via small,
conducting, current-carrying loops. Space-time expressions of the
EM- eld quantities are derived by using the modi ed Cagniard
method. After validating it by means of comparisons with ana-
lytical results, the devised framework is used for examining the
radiated eld in the proximity of a chip. This study is instrumental
for the analysis and design of close-range digital signal transfer.

Index Terms—Electromagnetic radiation, time-domain analysis.

I. INTRODUCTION

T HE EXPLOSIVE digital data exchange in nomadic appli-
cations is the driving force behind ever faster wireless data

transfer, with rates of 10 Gb/s (or higher) being deemed possible
[1]. Offering such performance, while conforming to the inter-
national spectrum regulations, pushes the capacity of the radio
channel to its physical limits.
Due to its intrinsically localized, low-power operation,

the close-range, interchip, digital signal transfer constitutes a
class of wireless applications that optimally make use of the
radio channel’s physical capacity, while precluding collision
with spectrum regulations. These applications are most oppor-
tunely implemented by means of the pulsed electromagnetic
(EM)- eld signal transfer. This approach is, moreover, requi-
site to situations requiring a combination of communication,
localization, and imaging [2].
The feasibility of the (close-range) pulsed EM eld, wireless

transfer was demonstrated in [3] for a basic, yet illustrative, in-
terchip digital communication setup. Amore realistic con gura-
tion, accounting for the typical (layered) structure in integrated
circuits (ICs), was preliminarily examined in [4]. The relevant
space-time Green’s functions were obtained via the modi ed
Cagniard method (the “Cagniard-DeHoop method”) [5]–[7], a
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mathematical instrument with increasingly wider use in ultraw-
ideband (UWB) antenna studies [8], [9].
This paper presents for the rst time a detailed, time-do-

main (TD) analysis of the EM eld radiated by an integrated
loop antenna, as habitually realized in (Bi)complementary
metal–oxide semiconductor (CMOS) technology. The frame-
work bares some similarity with approaches in the widely
investigated class of frequency-domain formulations for the
analysis of layered structures [10]–[23]. However, by em-
ploying a causality preserving formulation, the avenue chosen
in this paper offers de nite conceptual advantages for the study
of digital wireless transfer that involves pulsed, as opposed
to time-harmonic, signals. The proposed methodology is,
moreover, highly versatile, being suitable for studying various
(model) layered con gurations. Nonetheless, for maintaining
the focus on the close-range wireless transfer, its formulation is
tailored in this paper to the analysis of the free-space EM- eld
propagation in the near- eld region, with aspects such as the
far- eld, free space radiation (as required by electromagnetic
compatibility studies), or the in-slab, guided propagation (as
required by crosstalk estimation) being left deliberately outside
the scope of the analysis.
In the following sections, a realistic model con guration is
rst devised. Expressions of the space-time, EM- eld quanti-
ties in the free space outside the integrated circuit (IC) are sub-
sequently derived, with technical details being elaborately ex-
plained in the Appendices. The obtained formulation is rst val-
idated against analytic results concerning the eld radiated by
a small, conducting, current-carrying loop in free space, and
is subsequently employed for examining the EM radiation of
a CMOS integrated-loop antenna. Conclusions round off the
account.

II. MODEL CONFIGURATION

The model con guration employed in this study mimicks a
CMOS integrated (loop) antenna fabricated via the process de-
scribed in [24]. The relevant antenna is sandwiched between a
very low conductivity layer and an insulating passivation
layer with matched permittivity. This compound is deposited on
top of a conductive Si substrate. In a rst approximation,
can be taken as an insulator; this allows coalescing the oxide
and passivation layers into one slab, with the antenna being im-
mersed parallel to the slab’s faces. Furthermore, the losses in
the substrate are suf ciently high to completely damp out any
re ection from interfaces underneath it.
Based on this, the con guration in Fig. 1 (baring simil-

itude with the one in [25]) is devised. With reference to a
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Fig. 1. Model con guration concerning the pulsed EM eld radiated by a trans-
mitting wire loop in a three media layered structure.

TABLE I
ELECTROMAGNETIC PROPERTIES OF THE MEDIA IN

THE MODEL CONFIGURATION

right-handed, orthogonal Cartesian frame with coordinates
, the model consists of a conductive substrate

; an insulating (dielectric)
slab , ; and free
space . The values of the
electric permittivity , magnetic permeability , and conduc-
tivity are given in Table I, and the material parameters for Si
and the compound /passivation slab are chosen based on
[26]. The wave speeds in , , 2, 3, are . A
transmitting wire loop, of vanishing wire diameter and vectorial
area , is located in . Without loss of generality,
its reference center is taken at , .
The loop is electrically small with respect to the pulse’s spatial
extent , with being the (conventional) pulsewidth, and
is fed at its Kirchhoff port by a pulsed electric current ,
with denoting the time coordinate. This analysis is con ned to
determining EM- eld quantities in . The observation point
is then taken at , with and,
correspondingly, the relative position vector is .
Hereafter, , , 2, 3, denotes partial differentiation

with respect to , and denotes partial differentiation with
respect to .

III. SPACE-TIME EXPRESSIONS OF THE EM-FIELD
QUANTITIES IN FREE SPACE

The expressions of the EM- eld quantities, that is, the electric
and magnetic eld strengths, are now derived.

Only the steps that are essential for understanding the formu-
lation will be presented, with details concerning the discussed
framework being available in [27].

Fig. 2. Explicative for the waves in the model con guration in Fig. 1.

A. Field Quantities

Since the transmit loop antenna is electrically small, it is as-
similated to a vertical magnetic dipole located at its reference
center. In line with [28], [29, Sec. 2.2.2], the TE-polarized EM
eld radiated by the magnetic dipole is expressed inside each
subdomain of continuity , 1, 2, 3, as

(1)

(2)

with the potential function satisfying the dissipative
wave equation1

for (3)

With reference to Fig. 2, three types of waves are distin-
guished: 1) incident waves, denoted by the superscript “i,” that
is, the ones propagating away from the source and not inter-
acting with any of the interfaces; 2) re ected waves, denoted
by the superscript “r,” that is, the ones re ected at interfaces;
3) transmitted waves, denoted by the superscript “t,” that is, the
ones transmitted through interfaces. The relevant superscripts
are complemented for the re ected and transmitted waves by
the corresponding interface identi er. Note that since and
are semi-in nite half-spaces, no re ected waves exist in them.
With these notations, the potential function is given by

for
for
for .

(4)

The incident potential functions (with support in ) are [4]

(5)

where is the magnetic moment. The
other potential functions in (4) follow from by accounting
for the relevant re ection and transmission coef cients.
1For brevity, the explicit statement of the and dependence is henceforth

dropped.
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B. Boundary Conditions

For guaranteeing the standard interface boundary conditions
applying to and , the following interface boundary condi-
tions are enforced at and [28]:

(6)

(7)

(8)

(9)

C. Spectral Domain Representations

Equations (1)–(9) are now subjected to a Laplace transform
with respect to the time coordinate , followed by an -scaled
Fourier transform with respect to the space coordinates
and . The Laplace transform of an arbitrary, causal function

is given by2

for (10)

where the choice for , is requisite, via Lerch’s
theorem [30], [31, Sec. II.6] for ensuring the uniqueness of the
inverse transformation. The scaled Fourier transform is given
by

(11)

with , . Note that the
aforementioned choice for is again bene cial, allowing to se-
lect conveniently , , . The inverse
scaled Fourier transform then follows as:

(12)

By applying the spectral domain transformations in (10) and
(11), (3) results in

(13)

with the propagation coef cient being

(14)
2Since all physical quantities dealt with in this paper have bounded values,

the condition suf ces for ensuring the absolute convergence of the
Laplace integral.

As stated in Section II, the analysis is restricted to observa-
tion points in . Consequently, solving (13) and applying the
spectral domain transformed relations (5)–(9) yields

(15)

where is a counter for the double re ections at the interfaces
and , is the Laplace transform of , is the

transmission coef cient at

(16)

with

(17)

being the re ection coef cient at .

(18)

is the re ection coef cient at and

(19)
(20)
(21)

From (15), it can be readily inferred that is obtained as
an in nite superposition of two types of “generalized rays” [9],
namely “rays” that originate from incident waves propagating
upward and downward (in the and directions, respec-
tively), and their multiple re ections at the interfaces. Note that
there is one “ray” originating from the upward incident wave
that does not undergo any re ection.
Substitution of (15) into the spectral domain counterparts of

(1) and (2) yields the spectral domain eld quantities

(22)
(23)
(24)
(25)
(26)
(27)
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By applying the inverse Fourier transform (12) to (22)–(27), the
relevant components are expressed generically as

for

(28)
where the combination of superscripts and indices
1, 2, 3 refers to the relevant EM- eld quantity components and

represents the corresponding Green’s functions3

(29)

with being the ray functions (s/m)

(30)

(31)

for 1, 2, 3 and .

D. Time-Domain EM-Field Quantities

The Cagniard–DeHoop method [5]–[7] is now applied for the
inverse transformation to the time domain. To this end, a change
of variables , with ,

(32)
(33)

is rst applied in (29), following from via polar
mapping. The substitution of (32) and (33) in (14) yields

with for
(34)

where

for (35)

Note that does not depend on . Furthermore, (27) does
also not depend on ; this is consistent with the required ro-
tational symmetry of . By now using the change of variables

in (29), it is found that

(36)

that contains one single integral along the imaginary axis.
The next step in the Cagniard–DeHoop method is deforming

the integration path for the -integral to a suitably chosen con-
tour, the goal being to derive an expression from which the in-
3From (24), it is evident that 0. This condition will be hereafter

implicitly accounted for.

verse Laplace transform can be inferred by inspection. This pro-
cedure requires the ray functions to be independent of . How-
ever, from (18), (30), and (31) it is clear that does depend
on due to the nonzero conductivity in .
For handling the -dependence, is rewritten as

for

(37)
where

(38)

is the instantaneous response of the re ection coef cient (an
-independent quantity) and

for

(39)
with denoting the Bromwich path and

. The variable in (37) can be interpreted as a time relax-
ation due to the losses in . By using the procedure described
in Appendix B, is expressed as

(40)

with being introduced in (58), that transforms (36) into

(41)

where

(42)

with or for or , respectively, and is
the Dirac delta distribution. Note that is an independent
quantity.
To recognize a Laplace transform in (41), the following

parametrization is introduced:

with (43)

that deforms the integration path for the -integral into the
“Cagniard-DeHoop” contour , with
being its intersection with the real axis (see Appendix A for
details). Equation (43) induces a mapping
with as its inverse. Furthermore, let

with and (44)
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The real parameter is the time coordinate consisting of two
distinct real constituents, that is, that corresponds to the stan-
dard application of the Cagniard–DeHoop method—the loss-
less time parameter, and the time relaxation that was intro-
duced in (37). Accordingly, is assimilated to
the ray’s arrival time at the observation point. Note that (43)
implies that . With these prerequisites, the proce-
dure discussed in Appendix C yields

(45)

At this point, the Green’s functions can be transformed back
to the time domain by inspection as

(46)

with denoting the Heaviside step function. Finally, the
space-time expressions of the EM- eld quantities are obtained
by accounting for the inverse Laplace transform in (28) as

(47)

Once the expressions of the free-space-radiated EM- eld
quantities were established, the received equivalent Thévenin
circuit generator voltage can be derived by using the method-
ology developed in [32].

IV. ILLUSTRATIVE NUMERICAL EXPERIMENTS

The formulation derived at Section III was implemented in a
Matlab code.
After discussing some basic software implementation

choices, the code will be rst validated by using the analytic
expressions of the EM eld radiated by a small, conducting,
current-carrying loop in free space (see [33, Sec. 26.9 and
26.10] and [34]) and then employed for examining the model
con guration in Fig. 1. This section is concluded by stressing
the computational and conceptual advantages yielded by the
EM- eld analysis framework advocated in this paper.

A. Implementation Aspects

1) Spatial Sampling: In view of the con guration’s rotational
symmetry, the EM- eld quantities are evaluated at

, with . This case is representative for arbitrary
observation points.

2) Excitation: The exciting electric current is taken
as the time derivative of the unipolar, power-exponential (PE)
pulse [35]

for (48)

where is the rst peak magnitude in , is the pulse
zero-crossing time (corresponding to the pulse rise time of the
PE pulse), is the initial rise power of the PE pulse (which is
related to the high-frequency asymptotic falloff in its Bode plot),
and is the normalization constant

(49)

In all experiments, is taken to be an integer and larger than
4. This prevents any jump discontinuity at the pulse’s onset in
the time derivatives intervening in the eld expressions. The
(conventional) pulsewidth follows from equating:

(50)

that results into

(51)

where denotes the Euler gamma function. The chosen
feeding pulse carries no net electric charge. The time Laplace
transform of (48) is

(52)
The numerical experiments are carried out for a transmitting
loop with (for circular loops, this amounts
to a diameter of 0.2 mm, a dimension that is consistent with the
devices studied in [36]). The pulse is taken to have the parame-
ters 5 and 0.1 ns, the latter yielding via (51) a pulse
spatial extent 9 mm that concurs with the radiator being
electrically small.
3) Computation of the EM-Field Quantities: With reference

to (44), (46), and (47), the following elements are essential for
the computation of the EM- eld quantities:
• determining , the relevant points follow from solving
a quadratic equation;

• evaluating an integral over , the integration limits are ob-
tained via the mapping ;

• evaluating an integral over , the lower integration limits
are obtained via the mapping ;

• determining the arrival times ;
• evaluating a convolution integral.
The integrals over use either an adaptive integration scheme

(thequadlMatlab function) or the trapezoidal rule (thetrapz
Matlab function). Note that coordinate stretching is employed
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for circumventing the singularity of the integrand in (47). All
equations, including the ones needed for constructing the map-
pings, are solved numerically.
The convolution integrals are implemented using the

trapezoidal rule. For minimizing the computational effort,
is oversampled by means of the interp Matlab

function (using the interpolation scheme in [37, Sec. 8.1]).
By denoting as the relevant time integration step,
this strategy allowed sampling at intervals up to

without signi cant loss of accuracy in the integrals’
evaluation when compared with sampling. More imple-
mentation details can be found in [27, Ch. 7].

B. EM Field Radiated by a Small, Conducting,
Current-Carrying Loop in Free Space

The rst experiment concerns a comparison of the results
evaluated by means of the present method for
, with the corresponding values following from the analytic

expressions for the EM eld radiated by a small, conducting,
current-carrying loop in free space. The “direct ray,” that is,
the one corresponding to and , is accounted for,
exclusively, this being equivalent to removing the re ections
from the lower half-space. In the plots, the eld quantities are
normalized with respect to and

, with the superscript “av” desig-
nating “analytical values.” Furthermore, the normalized arrival
time retarded, time coordinate , with
is employed.
The results corresponding to are shown

in Fig. 3. From the plots, it is evident that the discussed method
accurately replicates the analytic results. An extremely reduced
deviation manifests itself at late times as a result of numerical
error accumulation in the evaluation of the convolution inte-
grals. The same excellent agreement with the analytical results
is obtained at any location, as shown in [4].

C. EM Field Radiated by an Integrated Antenna in a Layered
Con guration

The second experiment concerns the evaluation of the
EM- eld quantities in the considered layered con guration at

, that is, close to grazing angles, and at
, that is, close to broadside. (see Figs. 4).

The eld quantities are computed by taking the rays up to
4 (10 rays). The normalization in the plots is similar with that
employed in Section IV-B, with denoting, in this case, the
direct ray’s arrival time.
Comparing Figs. 3 and 4 illustrates the modi cations re-

sulting from the addition of the dielectric layer, the changes
being mainly visible in the magnetic behavior. The radiated
pulse is still clearly recognizable, which is bene cial for signal
transfer applications. The signatures in Fig. 4 show
a lower in uence of the rays re ected from the conductive
half-space. They are also evidence of the magnetic eld’s ip-
ping that is characteristic for the near- and intermediate- eld
regions [34].

Fig. 3. Comparison between the results determined with the present formu-
lation and the corresponding analytical results at .
The arrival time is, in this case, . The eld quantities are normal-
ized with respect to the analytical values. (a) Normalized , (b) normalized
, and (c) normalized .

It is noted that the total computation time amounted in this
case to 55 min on an IntelCoreDuo CPU at 3-GHz computer,
with 79% of the time being used for calculating the integrals
over and , 19.5% for determining , and 1.5% for all
other tasks. Measures for reducing the computation times are
currently explored.



2648 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 62, NO. 5, MAY 2014

Fig. 4. EM- eld quantities at (mm) and
(mm), evaluated with eight generalized rays. (a) ;
(b) ; (c) .
denotes the arrival time retarded and time coordinate, with being the direct
ray’s arrival time. The shape of the exciting pulse is provided for comparison.

The presented examples attest the method’s ability to provide
accurate results with a very high (in fact, arbitrary) time resolu-
tion, irrespective of the sampling point’s location and devoid of
any correlation with spatial parameters, such would be the case
with purely numerical techniques. This feature is instrumental
for carrying out system performance prediction, especially in

the case of pulse shapes with very fast rising and fall off times
as the ones employed in this paper.
More numerical examples, not included here for brevity, are

available in [27].

D. Computational and Conceptual Advantages of the
Proposed Formulation
The results discussed in Sections IV-B and C provide the

grounds for comparing the presented method with established,
purely computational techniques. Evidently, this method does
not offer the same exibility as general-purpose software pack-
ages. Its applicability is restricted to the class of con gurations
that can be mapped on the one in Fig. 1. However, this limita-
tion is balanced by some categoric advantages:
• it offers arbitrary spatial and temporal resolution;
• it allows determining the EM- eld quantities at speci c
locations without the need to examine complete domains;

• it does not suffer from numerical artifacts, most notably
from spurious re ections from boundaries and the effect
of incongruent electric and magnetic interfaces;

• it offers valuable insight into the modeled phenomena.
The fact that the method allows determining the radiated

EM- eld quantities at arbitrary locations and with excellent
temporal resolution is pivotal for performance prediction and
accurate electromagnetic interference or signal integrity es-
timation in digital signal-transfer systems. Furthermore, this
feature represents a cogent argument for using these results as
benchmarks for EM computational packages.

V. CONCLUSION
Pulsed EM- eld propagation was examined in con gurations

that are of relevance for complementary metal–oxide semicon-
ductor integrated antennas. By using the modi ed Cagniard
method, space-time expressions of the EM- eld quantities
in layered structures with realistic material parameters were
obtained. The obtained results were shown to be in excellent
agreement with ones following from analytical expressions that
are available for free-space propagation. Once the method’s
accuracy was established, it was employed for analyzing a
con guration that is illustrative for the close-range, pulsed EM
eld, (digital) signal transfer. This formulation has the ability
to provide highly accurate results with practically arbitrary
temporal resolution, recommending it as an expedient analysis
and design instrument.

APPENDIX

A. Cagniard-DeHoop Contour Features
For being able to infer the Laplace transform by inspection,

an opportune parametrization was introduced in Section III-D
via (43). This de nes the so-called “Cagniard-deHoop” contour

(see Fig. 5). Its intersection with the real
axis (denoted by “D” in the gure) follows from the expression:

for (53)

for . Note that and , as given in (34), are also
real in this case. Solving (53) gives that, when lled
in (43), induces a mapping . By observing that in the
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Fig. 5. Cagniard–DeHoop contour .

con guration under investigation , (34) implies,
upon taking , that . By now invoking
Snell’s refraction law at (see Fig. 1) it follows that [27]:

(54)

with denoting the refraction angle in and
the incidence angle in . It is clear that

, corresponding to (grazing angles). Nonetheless,
(34) yields in this case that, in turn, renders (53) singular.
This situation is excluded in this paper by always accounting for
a nonvanishing vertical shift from of the observation points
(a choice that is justi ed by the fact that a receiving antenna
cannot be located at that interface).
The conditions in (34) require a branch cut in the -plane

along .
The aforementioned discussion allows concluding that
never intersects that branch cut.

B. Handling the -Dependence of

The Cagniard–DeHoop method is standardly applied to
lossless, layered con gurations. Nonetheless, the nonzero
conductivity in results in an -dependence of [see
(18), (30) and (31)] that needs to be removed before invoking
the Cagniard–DeHoop formalism. The strategy adopted to
this end is reminiscent of that in [38], with the conceptual
extension of carefully investigating its applicability conditions.
For clarity, all manipulations in this Appendix are performed in
a complex -plane, with and being identi ed in the relevant
expressions in the main text, as applicable.
To begin with, is rewritten as

for

(55)
in which

(56)

is the instantaneous response of the re ection coef cient (a -in-
dependent quantity) and

(57)
with Br denoting the Bromwich path and

. Note that is constructed such that it satis es
Jordan’s lemma in the complex -plane. To evaluate the integral
in (57), the integral path is closed with a semicircle to the left
of Br, the corresponding integral vanishing in view of Jordan’s
lemma. Subsequently, (18) is rewritten as

(58)
with , that induces a branch cut interconnecting
the branch points and . By means of Cauchy’s
theorem, the integral along Br is then equal to the integral along
a closed contour enclosing that branch cut. This contour integral
is evaluated by a change of variable according to

(59)

that, in turn, implies that

(60)

(61)

Using these expressions transforms (57) as

(62)

with the contribution of to the integral vanishing since

(63)

The expression in (62) lends itself to a straightforward numer-
ical quadrature (e.g., by using standard Matlab functions) and is
used in the main text.
It must be noted that changing the integration path in (41)

from the imaginary -axis to has repercussions on the
location of the branch point . As long as 0,
(14), (32), (33), and (35) ensure that and that, in
turn, implies that , with . However, for ,
is, in general, complex. Nonetheless, it can be easily shown

that

(64)
Since , it is clear that is always nonzero
and, thus, and are nite. Consequently, even
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when 0, its value is nite, and in (55) can be
taken large enough for ensuring the absolute convergence of
the integral that, in turn, ensures the existence of the relevant
Laplace transform.

C. Transformation of the Integrals in the Green’s Function

By examining the ray function (41) it can be established that
are and are , with de-

noting the Landau order symbol [33, p. 1019]. Consequently,
does not satisfy the conditions required by Jordan’s

lemma. For handling the integral along the imaginary -axis
in that equation, use is then made of the arti ce

, with being an arbitrary parameter, that, for
, allows rewriting (41) as

(65)

This transformation may result in introducing a singularity at
0 [see (44)]. However, apart from the fact that is de ned

such that it never equals zero, it can be shown that the contri-
bution of the residue corresponding to this singularity vanishes
(the relevant residue is a polynomial of degree one in that is
then subject to a second-order derivative).
With the new integrand conforming to the conditions required

by Jordan’s lemma, the relevant integrals on the arcs of radius
connecting and in Fig. 5 vanish. Con-

sequently, by invoking Cauchy’s theorem, the integral along the
imaginary -axis can be replaced by an integral along the
path. Furthermore, a change of variables
with the Jacobians

(66)
(67)

[see (43) and (44)], and using Schwarz’s re ection principle and
changing the order of integration transforms (65) into

(68)

Since all existence conditions of the intervening integrals
have now been established, can commute with the
integral. Straightforward algebra then yields

(69)

and this expression is used in the main text.
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