

Delft University of Technology

Software architecture-based self-adaptation in robotics

Alberts, Elvin; Gerostathopoulos, Ilias; Malavolta, Ivano; Hernández Corbato, Carlos; Lago, Patricia

DOI
10.1016/j.jss.2024.112258
Publication date
2025
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Alberts, E., Gerostathopoulos, I., Malavolta, I., Hernández Corbato, C., & Lago, P. (2025). Software
architecture-based self-adaptation in robotics. Journal of Systems and Software, 219, Article 112258.
https://doi.org/10.1016/j.jss.2024.112258

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2024.112258
https://doi.org/10.1016/j.jss.2024.112258

The Journal of Systems and Software 219 (2025) 112258

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Software architecture-based self-adaptation in robotics✩

Elvin Alberts a,b,∗, Ilias Gerostathopoulos a, Ivano Malavolta a, Carlos Hernández Corbato b,
Patricia Lago a

a Vrije Universiteit Amsterdam, The Netherlands
b Delft University of Technology, The Netherlands

A R T I C L E I N F O

Keywords:
Software architecture
Self-adaptation
Robotics
Systematic mapping study

A B S T R A C T

Context: Robotics software architecture-based self-adaptive systems (RSASSs) are robotics systems made
robust to runtime uncertainty by adapting their software architectures. The research landscape of RSASS
approaches is multidisciplinary and fragmented, with many aspects still unexplored or ineffectively shared
among communities involved.
Objective: We aim at identifying, classifying, and analyzing the state of the art of existing approaches for
RSASSs from the following perspectives: (i) the key characteristics of approaches and (ii) the evaluation
strategies applied by researchers.
Method: We apply the systematic mapping research method. We selected 37 primary studies via automatic,
manual, and snowballing-based search and selection procedures. We rigorously defined and applied a classifi-
cation framework composed of 32 parameters and synthesize the obtained data to produce a comprehensive
overview of the state of the art.
Results: This work contributes (i) a rigorously defined classification framework for studies on RSASSs, (ii) a
systematic map of the research efforts on RSASSs, (iii) a discussion of emerging findings and implications for
future research, and (iv) a publicly available replication package.
Conclusion: This study provides a solid evidence-based overview of the state of the art in RSASS approaches.
Its results can benefit RSASS researchers at different levels of seniority and involvement in RSASS research.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
1. Introduction

Globally there is a consistent increase in the use and prevalence
of robotics (International Federation of Robotics, 2022). As the ap-
plications of robotics increase, the breadth of requirements imposed
on those systems, both functional and non-functional, tend to increase
too. Additionally, the conditions within which robotics missions take
place are dynamic and subject to sudden and unexpected changes. To
the extent that these increased requirements can be met through soft-
ware, self-adaptation is a promising solution to handling uncertainty at
runtime (de Lemos et al., 2013; Weyns, 2020). Self-adaptive systems
are defined as ‘‘computing systems that can adapt autonomously to
achieve their goals based on high-level objectives’’ (Weyns, 2020).
Self-adaptation solutions provide flexibility for both dealing with un-
certainties during operation and evolving a system to incorporate new

✩ Editor: Alexander Chatzigeorgiou.
∗ Corresponding author at: Vrije Universiteit Amsterdam, The Netherlands.
E-mail addresses: e.g.alberts@vu.nl (E. Alberts), i.g.gerostathopoulos@vu.nl (I. Gerostathopoulos), i.malavolta@vu.nl (I. Malavolta), c.h.corbato@tudelft.nl

(C. Hernández Corbato), p.lago@vu.nl (P. Lago).

requirements. It is then of interest to study the application of self-
adaptation solutions to the robotics domain. This is evidenced by recent
research into the area of self-adaptation in robotics (Edrisi et al., 2023;
Silva et al., 2023; Behery et al., 2023; Li et al., 2023)

In this study we focus on robotics software architecture-based self-
adaptive systems (RSASSs). Architecture-based self-adaptation, where an
architectural model of a system is used for representing and reasoning
about adaptation decisions at runtime, is an established and effective
approach in engineering self-adaptive systems (Oreizy et al., 1998;
Garlan et al., 2004; Geihs et al., 2009; Weyns et al., 2012). Focusing
on the architectural level is suitable since, first, software architectures
are always present, either through explicit modeling or implicitly con-
sidered in the development of any software system, including robotics.
Second, software architecture offers the right level of abstraction for
reasoning about the system’s properties since it offers a holistic yet
https://doi.org/10.1016/j.jss.2024.112258
Received 15 April 2024; Received in revised form 5 October 2024; Accepted 11 Oc
vailable online 18 October 2024
164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access ar
tober 2024

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:e.g.alberts@vu.nl
mailto:i.g.gerostathopoulos@vu.nl
mailto:i.malavolta@vu.nl
mailto:c.h.corbato@tudelft.nl
mailto:p.lago@vu.nl
https://doi.org/10.1016/j.jss.2024.112258
https://doi.org/10.1016/j.jss.2024.112258
http://creativecommons.org/licenses/by/4.0/

E. Alberts et al.

a
p
g
a
p
b

o
p
s

s
‘
r

p

p

c
r
s
b

r

P

a

t
q

i
w

r
w
r
I
s
s
T

a

f
c
p
r

The Journal of Systems & Software 219 (2025) 112258
accessible view of the system through its components and their in-
teractions (Weyns, 2020). Third, self-adaptation solutions formed at
n architecture level offer the possibility of abstracting away from a
articular application or mission and can be potentially reused within a
iven domain (in this case the robotics software domain). For example,
 software architecture-based self-adaptive robot when in an unsafe
osition can adapt to lower the maximum velocity parameter used
y its autonomous navigation component, or replace that component

in favor of a teleoperation component allowing a human to steer the
robot into safety. Unfortunately, as of yet, the extent and characteristics
f research into RSASSs is fragmented and scattered across multiple
ublication venues in different fields, mainly robotics, self-adaptive
ystems, software engineering and software architecture.

As a representative example of an RSASS, the authors of
Gerostathopoulos et al. (2019) provide an approach where robots
switch their operation based on a mode-state machine. This model
acts at an architectural level since it prescribes both behavioral and
tructural runtime changes such as ‘‘move to charging station’’ or
‘use less power-hungry detection method’’ in system components in
esponse to uncertain events such as ‘‘battery low’’ and ‘‘too many

obstacles detected’’.
The goal of this study is to provide a comprehensive overview

of research on RSASSs and characterize the approaches to RSASSs.
We achieve this goal by applying the systematic mapping research
method targeting studies which endow robots with architecture-based
self-adaptive capabilities. Specifically, we first systematically collect
45 443 studies and through title-based keyword filtering process, we
narrow down our search to 3087 potentially relevant studies. From
these 3087 studies, a well-defined set of selection criteria is applied,
leading to an initial set of 17 primary studies. We use these 17 primary
studies in a snowballing procedure, resulting in the identification of 21
additional primary studies, leading to a final set of 37 primary studies.
For these 37 studies, we characterize them through a rigorously defined
classification framework containing 32 distinct parameters. Overall, in
this study we collected a total of 1184 data points (not accounting for
otential multiple values per parameter). This process is presented in

full detail in Section 2. Afterwards we perform vertical and horizontal
synthesis of the extracted data (Sections 3–8) and present the main im-
lications resulting from such a synthesis (Section 9). Additionally, the

threats to the validity of our study and their mitigation are presented
in Section 10. We compare against related secondary studies to ours in
Section 11 and finally conclude by reiterating the main results of the
study in Section 12.

Overall, the main contributions of this study are: (i) a systematic
map of the research efforts on RSASSs, (ii) a rigorously-defined classifi-
cation framework for categorizing RSASS approaches, (iii) a discussion
about the main implications of the map for RSASS researchers, (iv) a
publicly available replication package for independent verification and
replication of this study.

The target audience of this study includes researchers active in
the RSASS community. Specifically, (i) young researchers entering the
RSASS community can use our results as a starting point for getting a
omprehensive and objective overview of the RSASS research area, (ii)
esearchers already active in the RSASS community can use our clas-
ification framework for positioning their own work within the RSASS
ody of knowledge and precisely assess the novelty of their (present

and future) studies, (iii) the RSASS community can also use the research
gaps we identified in this study as an evidence-based plan for working
on meaningful and relevant research directions in the coming years.

2. Study design

As mentioned in Section 1, this research follows the systematic map-
ping research method (Petersen et al., 2015). We opted for conducting
a systematic mapping study over other research methods since our
goal is to provide a comprehensive overview of research on RSASSs
2
and characterize the approaches to RSASSs. Specifically, systematic
literature reviews tend to be narrower in scope and are meant to
synthesize evidence (e.g., by comparing how different approaches fare
against each other), whereas systematic mapping studies are meant
to characterize/structure a certain research area (RSASSs in our case)
(Petersen et al., 2008, 2015). Also, we have not opted for a classic
‘‘survey paper’’, as defined by Garousi and Mäntylä (2016) since with
this research we aim for a study that is empirical, i.e., it is systematic,
igorous, independently verifiable, and replicable. We also have opted

not to conduct a multivocal literature review (Garousi et al., 2019)
since it generally has a wider scope and includes a wider set of units of
analysis (e.g., blog posts, tools documentation, scientific studies, white
papers) as compared to mapping studies, which focus exclusively on
the scientific literature.

Our study is designed according to the widely-used guidelines by
Kitchenham and Charters (2007). The guidelines define a systematic
study of the literature as being composed of three main macro-phases:
planning, conducting, and reporting. Fig. 1 presents the design of
our study, where Phase 1 corresponds to the planning macro-phase,
hases 2–4 correspond to the conducting macro-phase, and Phase 5

corresponds to the reporting macro-phase. Throughout all phases, we
follow well-established guidelines for conducting systematic studies of
the literature in general (Kitchenham and Charters, 2007; Kitchenham
nd Brereton, 2013; Wohlin et al., 2012) and systematic mapping

studies in particular (Petersen et al., 2015).
In phase 1 (Planning) we produced a research protocol describing

he context and the needs motivating the study, its goal and research
uestions, and a plan for carrying out all the activities of this study.

We summarize the main points of the context and needs of this study
n Section 1 (and also in the description of related work in Section 11),
hereas the goal and the research questions of the study are defined

in Section 2.1. While planning for this study, we assessed its quality
according to the checklist proposed by Petersen et al. (2015). The
checklist prescribes all the main actions to carry out in an ideal system-
atic mapping study and defines a scoring system based on the ratio of
the number of actions performed in a given study and the total number
of actions within the checklist. Our study achieves a score of 50%;
this score is excellent since it is higher than all systematic studies in
the literature in 2015 (when the checklist was produced), which had
a median score of 33% and an absolute maximum value of 48%. To
mitigate potential threats to validity, the research protocol was defined
a priori, before conducting the study, and it was reviewed by the last
author of this work, who has extensive experience in empirical research
(including secondary studies) in the role of an evaluator. The evaluator
was not involved in the definition of the protocol and was asked to
provide open feedback about it, particularly on possible unidentified
threats to validity and potential issues in the overall design of the study.
All concerns raised during the evaluation have been addressed before
proceeding to the next phase.

The Conducting macro-phase is about the actual execution of the
esearch protocol. Specifically, phase 2 (Search and selection) deals
ith the identification of (as many as possible) studies that are rep-

esentative of architecture-based self-adaptation in robotic systems.
n this phase, we perform ed a combination of (i) a keyword-based
earch across the proceedings of relevant publication venues, (ii) a two-
tep manual selection process, and (iii) snowballing (Wohlin, 2014).
he snowballing procedure allows us to expand the set of potentially

relevant studies by considering each previously selected primary study
nd considering those articles either citing or cited by it (Wohlin,

2014). Section 2.2 describes in detail the search and selection phase.
The goal of phase 3 (Data extraction) is to collect relevant in-

ormation about each approach described in each primary study. We
ollaboratively (i) defined the classification framework, i.e., the set of
arameters to be used for comparing primary studies based on our
esearch questions (Kitchenham and Charters, 2007), (ii) analyzed the

full text of each primary study, and (iii) populated a data extraction

E. Alberts et al. The Journal of Systems & Software 219 (2025) 112258
Fig. 1. Overview of the study design.
form with the collected data according to the classification framework.
Section 2.3 describes in detail the data extraction phase.

The aim of phase 4 (Data synthesis) is to elicit the answers to
the research questions of this study. We analyzed the populated data
extraction form in accordance with the research questions. This activity
involves both quantitative and qualitative analyses and it has been
carried out by all the authors. Section 2.4 describes in detail the data
synthesis phase.

Finally, in phase 5 (Reporting) we produced a final report con-
taining a thorough description of the methodological aspects of the
study, the main results emerging from the data synthesis phase, and a
thorough discussion of their implications. The final report is evaluated
by external reviewers and forms the basis of this article. For the sake of
independent verification and replication of this study, we have made
a complete replication package (Replication, 2024) publicly available
containing (i) the research protocol we followed, (ii) the raw data we
collected and produced across each individual step of the study (across
the search and selection, data extraction, and synthesis phases), and
(iii) the source code of the scripts we developed for the search, data
analysis, and visualization steps.

2.1. Goal and research questions

We formulate the goal of this study according to the Goal-Question-
Metric (GQM) framework defined by Caldiera and Rombach (1994).
Specifically, the goal of this study is to:

• Purpose: identify, classify, and analyze
• Issue: the characteristics and evaluation strategies of
• Object : existing approaches for architecture-based self-adaptation

in robotics software
• Viewpoint : from a researcher’s point of view

The issue of our goal definition is multifaceted and focuses on
two main aspects of existing approaches for architecture-based self-
adaptation in robotics software: (1) characteristics, decomposed into
the sub-aspects of (i) characteristics of the self-adaptive system as a
whole, (ii) the feedback loop which manages it, and (iii) the robotic
system it adapts, and (2) strategies applied by researchers for evaluat-
ing them. We define two main research questions for this study, one
for each main aspect.

RQ1 — What are the key characteristics of approaches for
architecture-based self-adaptation in robotics software? We use
3
the term characteristics to refer to the parameters in the classification
framework. Key characteristics serve a role similar to themes in the
sense of thematic synthesis (Cruzes and Dyba, 2011) in being patterns
we observe in the data extracted from the primary studies. Particularly,
we are trying to determine the distribution of extracted values across
primary studies, as with this knowledge we can draw conclusions about
the state of the art. For example, if many primary studies are found
to use the same type of adaptation mechanism it may indicate it is
effective at tackling problems in this domain.

The main outcome of RQ1 as a whole is a map that classifies existing
approaches based on the parameters we devise ourselves as well as
those adapted from the modeling dimensions for self-adaptive software
systems proposed by Andersson et al. (2009). Within the research
sub-questions of RQ1 we make a distinction between the managing
system and managed system which are the two of the three main
conceptual parts of every self-adaptive system (Weyns, 2019) (the third
being the environment), through the research sub-questions RQ1.2 and
RQ1.3 respectively. In RQ1.1 those characteristics which describe the
system as a whole are covered and the relationship between the two
sub-systems.

RQ1.1 — What are the key characteristics of the entire self-
adaptive system in approaches for architecture-based
self-adaptation in robotics software? In this research sub-question,
we consider the adaptation goal of the system i.e., the reason it adapts,
the quality attributes that are targeted by the system (e.g., reliability,
safety, energy efficiency) and the extent to which the managing system
and managed system are independent of one another. We provide each
of these parameters ourselves. The possible values for the adaptation
goal are an open set we fill using the primary studies. For the qual-
ity attributes (QAs) we draw from the fixed set of QAs defined by
ISO25010:2023 (ISO/IEC, 2023), and we describe the independence of
the managing system from the managed system through a fixed set of
our own making. Definitions for each of these possible values can be
found in Table 4.

RQ1.2 — What are the key characteristics of the managing sys-
tems of architecture-based self-adaptation approaches in robotics
software? The main outcome of this research sub-question is a map
classifying approaches based on their characteristics with respect to
two aspects. The first aspect is the mechanism — ‘‘what is the reaction
of the system towards change’’ from the modeling dimensions of
Andersson et al. (2009) This ‘reaction towards change’ is the primary
goal of the managing system as it adapts the robot in response to
changes that affect it. The second aspect is the well-established MAPE-
K reference model (Brun et al., 2009; Kephart and Chess, 2003) — a

E. Alberts et al.

s
o
t
t
e

W
p
w
a

a

i

g
a
w
a

b
w

t
t
p
o

t

c
b
o
d
t
c
w
r
q

b

i
s
e
f

n

s
a
s
d
o
s
o
t

i

i

The Journal of Systems & Software 219 (2025) 112258
feedback loop that represents the internal working of the managing
ystem. The ‘mechanism’ modeling dimension offers 6 parameters: type,
rganization, scope, duration, timeliness, and trigger. We also append
he consideration of an extra parameter ‘method’ which considers
he algorithm or logic backing the managing system. Definitions of
ach of these parameters are provided in the classification framework

(Table 3). As for MAPE-K, its feedback loop consists of four main
phases: Monitor, Analyze, Plan, Execute and a shared Knowledge.

e collect information about how each approach operates in every
hase and the particular format used to represent the managed system
ithin the Knowledge. This format is predetermined to be of an
rchitectural variety by virtue of our selection criteria (in particular

E1 in Section 2.2.3). Such information allows us to shed light on
spects related to how the managed system is being monitored, how

the monitored information is being analyzed by the managing system,
how the managing system plans for necessary adaptations, how the
managing system enacts/executes the necessary adaptations, and how it
nternally represents important information about the managed system.

RQ1.3 — What are the key characteristics of the managed sys-
tems of architecture-based self-adaptation approaches in robotics
software? As RQ1.3 concerns the managed systems, and in this study
these are all robotics systems, it in essence provides the key character-
istics of the robotic platforms involved in the given approaches. The
results we obtain when answering this research sub-question can sup-
port researchers in making informed decisions and mitigating risk when
selecting the software and hardware platforms to use in the context of
future research efforts into RSASSs. The main outcome of this research
question is a map of the types of software platforms and robots tar-
eted by researchers when realizing architecture-based self-adaptation
pproaches for robotic systems and their characterization. Specifically,
e elicit three aspects. Firstly, the details about the missions the robots
re tasked with. Secondly, the modeling dimensions of change, i.e., ‘‘the

cause for adaptation’’ and effect, i.e., ‘‘the impact of adaptation upon
the system’’ (Andersson et al., 2009). Thirdly, the software platform
acking the robotic system (e.g., ROS2 — a component-based library
hich has become the de facto standard for robotic software Macenski

et al., 2022) with a special emphasis on the software components that
enable self-adaptation for the robotic system, and the models of robots
(its hardware) (e.g., Turtlebot 3,1 Clearpath Boxer2). For the first aspect
we gather what kind of mission the robot is tasked with, as well as how
his evolves at runtime. For the second aspect we consider the source,
ype, anticipation, and frequency of ‘change’, as well as the criticality,
redictability, overhead, and resilience of ‘effect’. Definitions for each
f these parameters are provided in Table 3. Lastly, for the third aspect

we consider two parameters – the software platform, and the type of
robot model – as an open set which we fill with the data extracted from
he primary studies.

RQ2 — What are the evaluation strategies of approaches for
architecture-based self-adaptation in robotics software? Evaluat-
ing self-adaptive software systems is known to be a difficult prob-
lem (Gerostathopoulos et al., 2021), primarily due to the intrinsic
haracteristics of self-adaptive systems, such as the presence of feed-
ack loops to realize adaptation, the uncertainties to be taken care
f while designing evaluative experiments, and the often non-trivial
istinction between managed and managing systems when running
hese experiments. The main outcome of this research question is a
omprehensive map of the various strategies put in place by researchers
hen evaluating an approach for architecture-based self-adaptation for

obotics software. The first aspect that we consider in this research
uestion is whether studies are reporting on the deployment of real

robotic systems in the field or whether the robotic system is simulated.
Another aspect that we consider is the realism of the robotic system.

1 https://www.robotis.us/turtlebot-3.
2 https://clearpathrobotics.com/boxer.
4
Finally, we also consider how the evaluation is carried out in terms of
which aspects/properties of the approach are evaluated and whether a
baseline is considered.

By answering the two research questions above we provide a de-
tailed and up-to-date overview of the state of the art on architecture-
ased self-adaptation for robotics software. Such overview can be used

by researchers as a solid foundation for (i) classifying existing research
efforts, (ii) positioning their own approaches with respect to the state
of the art, and (iii) identifying current research gaps to be targeted
n future research. The identified research questions drive the whole
tudy, with a special influence on (i) the search and selection, (ii) data
xtraction, (iii) synthesis, and (iv) reporting and discussion of the main
indings.

2.2. Search and selection

The goal of this phase is to identify a representative set of studies
presenting approaches for architecture-based self-adaptation in robotics
software (Kitchenham and Brereton, 2013). In accordance with commu-
ity guidelines (Kitchenham and Charters, 2007; Wohlin et al., 2012;

Petersen et al., 2015), in the remainder of this article we will refer to
the selected studies as primary studies.

As shown in Fig. 1, our search and selection phase is composed of
five internal stages. For the sake of replicability and for having full
control on the overall process, the stages are carried out sequentially
and independently from each other; the only inputs for each stage
are the outputs produced by the previous one. In this subsection we
present each stage of our search and selection process. We do so in
chronological order, starting with the collection of potentially relevant
studies, the process of filtering through these, selecting the primary
studies, and finally snowballing the initially-selected set.

2.2.1. Proceedings collection
As reported in Section 2.1, the object of this study is the body of

cientific literature presenting approaches for architecture-based self-
daptation in robotics software. Essentially, we are interested in those
cientific studies whose scope falls within the intersection of three
istinct research areas: (i) software engineering with a specific focus
n its architecture, (ii) self-adaptive systems, and (iii) robotics. In this
tage, we aimed to identify publication venues that are specific to each
f those research areas and collect all scientific studies belonging to
hose publication venues.

According to well-accepted guidelines on systematic mapping stud-
es (Petersen et al., 2015), the key to having a successful search process

when applying snowballing (which we describe in Section 2.2.5) is to
have a starting set of heterogeneous and high-quality primary stud-
es. Accordingly, we constructed a list of top publication venues in

software architecture, self-adaptive systems, and robotics. Only studies
published at these venues are considered in the next stage of this
study. Table 1 presents the selected publication venues. We decided
to consider those venues based on our extensive experience in each of
the three research communities.

As publications database, we chose the DBLP computer science bib-
liography.3 More specifically, we make use of the publicly available
snapshot of the whole DBLP database dated June 6th 2024. Using this
snapshot contributes to the reproducibility of this study, as opposed
to the usage of other academic search engines, such as Google Scholar,
whose search algorithms tend to be more opaque and less deterministic.
Also, previous experience tells us that DBLP is a reliable publication
database for studies at the intersection between the software engi-
neering and robotics research domains (Albonico et al., 2023). We
collected all studies included in all publication venues in Table 1
within the 2011 June 2024 time frame (inclusive). The time frame is

3 https://dblp.uni-trier.de/.

https://www.robotis.us/turtlebot-3
https://clearpathrobotics.com/boxer
https://dblp.uni-trier.de/

E. Alberts et al.

(

s

t
p
t
t
o
p
t
s
t
t

t

The Journal of Systems & Software 219 (2025) 112258
Table 1
Publication venues targeted in the proceedings collection stage.

Acronym Name Type #Studies

Software architecture and software engineering

ICSA International Conference on Software Architecture Conf. 512
ECSA European Conference on Software Architecture Conf. 718
WICSA Working IEEE/IFIP Conference on Software Architecture Conf. 221
CBSE International Symposium on Component-Based Software Engineering Conf. 104
QOSA International Conference on Quality of Software Architectures Conf. 89
JSA Journal of Systems Architecture Journal 1402
JSS Journal of Systems and Software Journal 2582
TSE Transactions on Software Engineering Journal 1407
SoSym Software and Systems Modeling Journal 950

Self-adaptive systems

SEAMS International Conference on Software Engineering for Adaptive and Self-Managing Systemsb Conf. 290
SASO International Conference on Self-Adaptive and Self-Organizing Systems Conf. 582
ACSOS International Conference on Autonomic Computing and Self-Organizing Systems Conf. 276
ICAC International Conference on Autonomic Computing Conf. 314
TAAS ACM Transactions on Autonomous and Adaptive Systems Journal 249

Robotics

ICRA International Conference on Robotics and Automation Conf. 11764
IROS International Conference on Intelligent Robots and Systems Conf. 11817
RSS Robotics Science and Systems Conf. 891
IRC IEEE International Conference on Robotic Computing Conf. 535
T-RO IEEE Transactions on Robotics Journal 1907
RAL IEEE Robotics and Automation Letters Journal 7099
IJRR International Journal of Robotics Research Journal 1045
SCIROB Science Robotics Journal 654
JOSER Journal of Software Engineering for Roboticsa Journal 35

a The JOSER journal has been sourced externally since it is not indexed in DBLP.
b Prior to 2021, SEAMS was indexed in DBLP under conf/icse rather than conf/seams.
m
p
s
a
T

chosen as (i) 2011 corresponds with the first edition of the SEAMS
conference, i.e., the primary conference on self-adaptive systems and
ii) we executed the search query in June 2024. The choice of using the

SEAMS conference as lower bound of our time frame can be justified
by the fact that a study’s existence in the research area of self-adaptive
ystems is considered key in identifying potentially relevant studies

for this research and ergo it is reflected in the decision of considering
studies published from 2011 on. This stage leads to the identification
of 45 443 potentially relevant studies.

2.2.2. Keyword-based search
Due to the magnitude of potentially relevant studies, particularly for

he ICRA and IROS conferences which accounted for about 2000 studies
er year, it was necessary to introduce a keyword filter on the titles of
he studies. For the filtering, we defined a set of search terms for each of
he three research areas considered in this study based on the expertise
f the authors in each research area. Specifically, to determine if a
otentially relevant study is related to software architecture we used
he term architect*, for self-adaptive systems we used the term
elf-* OR adapt* OR reconfigur*, and for robotics we used the

erm robot*. Then, we applied those search terms in groupings within
he venues of each research area, as follows:

• Search string used in software architecture venues: (self-* OR
adapt* OR reconfigur*) OR robot*.

• Search string used in software engineering venues4: (self-* OR
adapt* OR reconfigur*) OR robot* OR architect*.

• Search string used in self-adaptive venues: architect* OR
robot*.

• Search string used in robotics venues: architect* OR (self-
* OR adapt* OR reconfigur*).

In short, for each venue within a specific research area, we crafted
he search query by applying a logical OR between the terms that do

4 Specifically, JSS, TSE, and SoSym.
5
not belong to that area and then we apply it to the titles of studies
published within the venue. For example, for a self-adaptive study to
make it through the filter, its title should include either the keyword
‘‘architect*’’ or ‘‘robot*’’. It should be noted that we trialed stricter
search strings, e.g., using logical AND operators, but this resulted in
little (magnitude of 1) to no studies satisfying the search string. This
stage led to a total of 3087 potentially relevant studies, of which 231
come from software architecture venues, 107 come from self-adaptive
systems venues, and 2314 come from robotic venues.

2.2.3. Preliminary studies selection
The goal of this stage and the next one is to filter the 3087 po-

tentially relevant studies emerging from the keyword-based search
for obtaining only those studies that are relevant for answering our
research questions.

The two selection stages involved four researchers and required a
anual assessment of the studies being analyzed. In order to avoid
ossible biases due to different interpretations of software architecture,
elf-adaptive system, and robotic system, all authors of this study
greed on common definitions to be used during the selection phase.
he definitions are reported below:

• Software architecture: we use the definition presented by Bass
et al. (2003), where a software architecture is defined as ‘‘the
set of structures needed to reason about the system. These struc-
tures comprise software elements, relations among them, and
properties of both’’.

• Self-adaptive system: we use the definition presented by Weyns
(2020), where a self-adaptive system is defined as ‘‘one which
handles changes and uncertainties autonomously and has two
distinct sub-systems, a managed system responsible for domain
concerns, and a managing system responsible for adaptation con-
cerns’’.

• Robotic system: we determine whether a software system can
be considered robotic using the ‘Springer Handbook of Robotics’
by Siciliano and Khatib (2016). Within the handbook robots
are defined as ‘‘operating in the three-dimensional world as a

E. Alberts et al.

t

s

p

b
v
s
s
–

t

r
s
c

s
s
–

1

b
w
f

s

r
s
a
r
t
t

s

a

The Journal of Systems & Software 219 (2025) 112258
machine endowed with the capacity to interpret and to reason
about a task and about its execution, by intelligently relating
perception to action’’.

The definitions serve not only to ensure that the four researchers
have a common understanding of the topic being studied, but also
to provide transparency for potential replications of this research.
Moreover, the three definitions, together with the goal and research
questions presented in Section 2.1, guide the definition of the inclusion
and exclusion criteria to be applied when considering each poten-
ially relevant study. As recommended in guidelines for systematic

studies (Kitchenham and Charters, 2007; Petersen et al., 2015), the
selection criteria are defined a priori. In this study we used the following
election criteria:

Inclusion Criteria:
I1: Studies focusing on robotic systems, as defined above.
I2: Studies that involve software architecture, as defined above.
I3: Studies focusing on self-adaptive systems, as defined above.
I4: Peer-reviewed scientific publications (journal papers, workshop

apers, book chapters, conference papers).
I5: Studies published between 2011 and 2024 (inclusive).

Exclusion Criteria:
E1: Studies on self-adaptation in which the managed system is not

changed based on an architectural model/representation of it.
E2: Studies written in languages different than English.
E3: Studies not available as full-text documents.
E4: Secondary/tertiary literature studies.
E5: Studies in the form of theses or project reports.
Clearly, due to our use of a list of selected venues and DBLP, criteria

I4, E2 and E5 are only pertinent for the snowballing stage detailed
in Section 2.2.5. A potentially relevant study is added to the set of
primary studies if it satisfies all inclusion criteria and none of the
exclusion criteria. As suggested by Wohlin et al. (2012), in order to
e reasonably confident about our selection procedure, we piloted it
ia a preliminary study selection step. In this step we focused on a
ubset of the 3087 potentially relevant studies; we selected a random
ample of 120 potentially relevant studies – 40 for each research area
 and then the four researchers involved in this stage proceeded with

the application of the selection criteria, as follows. The first researcher
assesses all 120 studies, while the other three researchers assess a dis-
joint random sample of 40 studies each. Then the inter-rater agreement
is calculated between the first and the other three researchers using
Cohen’s kappa coefficient. We repeated this pilot process until we had
achieved a Cohen’s kappa score of >0.81 between the first researcher
and each of the other authors respectively as this signifies near-perfect
agreement (McHugh, 2012). We reached near-perfect agreement after
wo iterations over 240 potentially relevant studies.

When assessing a potentially relevant study, we applied the adaptive
eading technique (Petersen et al., 2008). Adaptive reading consists in
tarting from the title of a potentially relevant study and discard it if it
learly does not fall within the scope of this study; if the researcher

is still in doubt, then they analyze the abstract, introduction, and
conclusion sections (if present); finally, the study is further assessed
by considering its full text, and a final decision about its inclusion is
taken. This procedure allowed us to be reasonably objective about the
selection and to do it within a reasonable amount of time, as reading
the full text of clearly excluded studies is not necessary.

2.2.4. Final studies selection
Once we were reasonably sure about the alignment and objectivity

of the four researchers involved in the selection phase, we proceeded to
electing the primary studies from all the remaining potentially relevant
tudies. This stage was carried out with the same distribution of labor
 a 3:1:1:1 split – and resulted in a final set of 14 primary studies.

Table 2 presents all selected primary studies, within the table their
6
provenance is indicated as stemming from either the selected venues,
or snowballing (which is covered in Section 2.2.5).

Note: Fig. 1 shows 38 primary studies, while Table 2 has 37, this is
due to overlapping data with P17 and is elaborated upon in 2.3.

2.2.5. Snowballing
To mitigate the potential bias coming from the manual selection of

the publication venues done in stage one (i.e., proceedings collection),
we also perform a snowballing process (Wohlin, 2014). Snowballing al-
lows us to expand the set of primary studies by considering each of the
3 primary studies and selecting those papers that are either cited by

it (backward snowballing) or citing it (forward snowballing) (Wohlin,
2014). In this research, we carry out a 1-step snowballing procedure,
oth backward and forward. To perform the backwards snowballing
e simply extracted the references from each primary study. For the

orward snowballing we used Google Scholar5 which has a ‘cited by’
feature, as we saw this being more complete than the forward citations
linked by individual publishers.

The selected 13 primary studies are used as starting set for the
nowballing. As shown in Table 2, such a set of 13 primary studies

is a good candidate to be used as starting set for snowballing since, by
following the advice of Petersen et al. (2015), (i) the studies belong
to complementary publication venues, which tend to be targeted by
different academic communities, (ii) the studies are relevant for our
esearch questions by design, (iii) the number of studies is not too
mall, and (iv) the studies cover multiple authors, years of publication,
nd publishers. Particularly, the number of studies to satisfy (iii) is
elative to the specificity of a study’s focus. Given our study combines
hree disciplines, we consider a quantity with an order of magnitude 2
o be sufficient for our quite specific focus.

The snowballing activity led to 724 additional potentially relevant
studies in total, to which we applied the same selection criteria used in
the previous stages. This final stage led to the inclusion of 21 additional
studies that met our selection criteria, giving our total of 37 primary
tudies.

2.3. Data extraction

In this phase, we analyzed the full text of the selected primary
studies and collect relevant information for answering our research
questions in the subsequent data synthesis phase.

In order to have a rigorous and replicable data extraction process
nd to facilitate elicitation of the main findings during data synthesis, a

structured classification framework has been designed. The classifica-
tion framework is composed of five main facets: the first facet is about
demographics of the primary studies (i.e., title, authors, publication
venue, year of publication) and the other four facets correspond to the
two research questions of this study. As suggested by Wohlin et al.
(2012), the initial classification framework has been defined a priori
and iteratively refined. Within each facet of the classification frame-
work, we define a set of parameters, each of them considering a specific
aspect of an architecture-based self-adaptation approach for robotics.
Each parameter of the classification framework can have either a finite
or an open set of possible values. When considering a parameter with
a finite set of possible values (e.g., the mission definition parameter,
which can have only two values: static and dynamic), we directly
assign one or more of the possible values to each primary study. When
considering parameters with an open set of possible values (e.g., the
types of robots), we (i) collect notes about each primary study, enriched
with fragments of text from the study itself and (ii) conduct iterative
open coding sessions to categorize the primary studies according to
emerging high-level categories. Upon the emergence of new possible
values for a parameter, the classification framework is refined; in such

5 https://scholar.google.com/.

https://scholar.google.com/

E. Alberts et al.

d
c

f
e
s
f

t

The Journal of Systems & Software 219 (2025) 112258
Table 2
Primary studies of this research.

ID Authors, title, and venue Year

Provenance: Selected venues

P1 F. Dietrich et al., Dynamic distribution of robot control components under hard realtime constraints — Modeling, experimental
results and practical considerations, JSA (Dietrich et al., 2013)

2013

P2 D. de Leng and F. Heintz, Towards adaptive semantic subscriptions for stream reasoning in the robot operating system, IROS (de
Leng and Heintz, 2017)

2017

P3 Y. Cui et al., ReFrESH: A self-adaptation framework to support fault tolerance in field mobile robots, IROS (Cui et al., 2014) 2014
P4 J. C’amara et al., Software architecture and task plan co-adaptation for mobile service robots, SEAMS (Cámara et al., 2020) 2020
P5 D. Doose et al., MAUVE Runtime: A Component-Based Middleware to Reconfigure Software Architectures in Real-Time, IRC (Doose

et al., 2017)
2017

P6 S. Niemczyk and K. Geihs, Adaptive Run-Time Models for Groups of Autonomous Robots, SEAMS (Niemczyk and Geihs, 2015) 2015
P7 S. Zaman et al., An integrated model-based diagnosis and repair architecture for ROS-based robot systems, ICRA (Zaman et al., 2013) 2013
P8 D. Kent et al., Localization Uncertainty-driven Adaptive Framework for Controlling Ground Vehicle Robots, IROS (Kent et al., 2020) 2020
P9 L. Gherardi and N. Hochgeschwender, RRA: Models and tools for robotics run-time adaptation, IROS (Gherardi and

Hochgeschwender, 2015)
2015

P10 C. Wang et al., How to secure autonomous mobile robots? An approach with fuzzing, detection and mitigation, JSA (Wang et al.,
2021)

2021

P11 Y. Cui et al., Real-time software module design framework for building self-adaptive robotic systems, IROS (Cui et al., 2015a) 2015
P12 C. Eymuller et al., RealCaPP: Real-Time Capable Plug & Produce Service Architecture for Distributed Robot Control, IRC (Eymuller

et al., 2023)
2023

P13 C. Heinzemann et al., Towards modeling reconfiguration in hierarchical component architectures, CBSE (Heinzemann et al., 2012) 2012
P14 D. Cooray et al., Proactive Self-Adaptation for Improving the Reliability of Mission-Critical, Embedded, and Mobile Software, TSE

(Cooray et al., 2013)
2013

P15 D. Brugali, Runtime reconfiguration of robot control systems: a ROS-based case study, IRC (Brugali, 2020) 2020
P16 S. Pradhan et al., Achieving resilience in distributed software systems via self-reconfiguration, JSS (Pradhan et al., 2016) 2016

Provenance: Snowballing

P17 I. Gerostathopoulos et al., Tuning self-adaptation in cyber–physical systems through architectural homeostasis, JSS (Gerostathopoulos
et al., 2019)

2019

P18 Y. Cui et al., A mechanism for real-time decision making and system maintenance for resource constrained robotic systems through
ReFrESH, Autonomous Robots (Cui et al., 2015b)

2015

P19 D. Bozhinoski et al., A Modeling Tool for Reconfigurable Skills in ROS, RoSE (Bozhinoski et al., 2021) 2021
P20 S. Niemczyk et al., ICE: self-configuration of information processing in heterogeneous agent teams, SAC (Niemczyk et al., 2017) 2017
P21 Y. Zou and J. Bai, Effective Crash Recovery of Robot Software Programs in ROS, ICRA (Zou and Bai, 2021) 2021
P22 S. Zaman et al., Fault Detection Using Sensors Data Trends for Autonomous Robotic Mapping, ICEET (Zaman et al., 2019) 2019
P23 S. Loigge et al., A Model-Based Fault Detection, Diagnosis and Repair for Autonomous Robotics systems, OAGM&ARW Joint

Workshop (Loigge et al., 2017)
2017

P24 D. Brugali et al., Model-Based Development of QoS-Aware Reconfigurable Autonomous Robotic Systems, IRC (Brugali et al., 2018) 2018
P25 N. Hochgeschwender et al., Graph-based software knowledge: Storage and semantic querying of domain models for run-time

adaptation, SIMPAR (Hochgeschwender et al., 2016)
2016

P26 D. Bozhinoski and J. Wijkhuizen, Context-based navigation for ground mobile robot in semi-structured indoor environment, IRC
(Bozhinoski and Wijkhuizen, 2021)

2021

P27 Sanchez et al., Context-Based Adaptation of In-Hand Slip Detection for Service Robots, IFAC (Sanchez et al., 2016) 2016
P28 Esfahani et al., Taming uncertainty in self-adaptive software, ESEC/FSE (Esfahani et al., 2011) 2011
P29 D. de Leng and F. Heintz, DyKnow: A dynamically reconfigurable stream reasoning framework as an extension to the robot

operating system, SIMPAR (de Leng and Heintz, 2016)
2016

P30 Y. Cui et al., A self-adaptation framework for resource constrained miniature search and rescue robots, SSRR (Cui et al., 2012) 2012
P31 Jamshidi et al., Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots, SEAMS (Jamshidi

et al., 2019)
2019

P32 Y. Park et al., A task-based and resource-aware approach to dynamically generate optimal software architecture for intelligent
service robots, Software: Practice and Experience (Park et al., 2012)

2012

P33 A. Lotz et al., Managing Run-Time Variability in Robotics Software by Modeling Functional and Non-functional Behavior, EMMSAD
(Lotz et al., 2013)

2013

P34 G. Silva et al., SUAVE: An Exemplar for Self-Adaptive Underwater Vehicles, SEAMS (Silva et al., 2023) 2023
P35 A. Valdezate et al., RuVa: A Runtime Software Variability Algorithm, IEEE Access (Valdezate et al., 2022) 2022
P36 D. Brugali, Modeling variability in self-adapting robotic systems, RAS (Brugali, 2023) 2023
P37 A. Hristozov et al., Resilient Architecture Framework for Robotic Systems, ICAI (Hristozov et al., 2022) 2022
f
w
p

i
s
e
t
o
a

cases, the previously extracted data for the updated parameter is up-
ated in accordance with the new set of possible values. The resulting
lassification framework is shown in Table 3, including all parameters

and their descriptions, possible values, and targeted research questions.
The classification framework is the basis of the data extraction

orm, i.e., a spreadsheet we use to store the data extracted from
ach primary study. In such a spreadsheet, rows represent primary
tudies and columns represent the parameters of the classification
ramework.

Four researchers were involved in the data extraction phase, as
follows. We assigned two researchers to each parameter of the clas-
sification framework; researchers are assigned to parameters based on
heir expertise and different researchers can be assigned to different
 o

7
parameters. Then, for each parameter, the two researchers indepen-
dently analyzed the primary studies (half of the primary studies each),
ollowed by a reconciliation of the obtained results and a final check
ith the involvement of a third researcher. This process ends when all
rimary studies are analyzed.

During the analysis, we identified one study (P17) which explic-
tly states it is published as a direct extension of another primary
tudy (Gerostathopoulos et al., 2016). We decide to defer to the most
xtended version to prevent a bias through over-representation of
heir identical data. Further, we have identified that several groupings
f papers belong to one approach but cover it from distinct angles
nd/or iterations, and do not explicitly indicate being extensions of
ne another. The groups are as follows: (P2, P29), (P3, P11, P18,

E. Alberts et al. The Journal of Systems & Software 219 (2025) 112258
Table 3
The classification framework of this study (parameters about demographics omitted for readability).

Parameter Type Possible values Description

Key characteristics of the self-adaptive system as a whole (RQ1.1)

Adaptation goal Open Recover from errors/faults, Optimize resource
usage, ...

The objective(s) of the self-adaptation logic.

Quality attributes Fixed Reliability, Safety, Performance Efficiency, . . . The system/software quality attributes targeted by
the robotic system, adapted from ISO/IEC (2023).

Managing system
independence

Fixed Detachable, Inseparable, Requires Representation The extent to which the managing system is
independent of the managed system (Weyns,
2019).

Key characteristics of the managing system (RQ1.2)

Mechanism — Method Open Constraint solving/Model checking, Ontological
reasoning, . . .

What kind of specific algorithm/logic is being used
to reason about adaptations.

Mechanism — Type Fixed Structural, Parametric Whether adaptation is related to the parameters of
the system components or the structure of the
system, adapted from Andersson et al. (2009).

Mechanism —
Organization

Fixed Centralized, Decentralized Whether the adaptation is done by a single
component or distributed among several
components, adapted from Andersson et al. (2009).

Mechanism — Scope Fixed Local, Global Where in the system is the adaptation localized,
ad. from Andersson et al. (2009).

Mechanism — Duration Fixed Short, Medium, Long How long the adaptation lasts, adapted from
Andersson et al. (2009).

Mechanism — Timeliness Fixed Best effort, Dependent, Guaranteed Whether the time period for performing
self-adaptation can be guaranteed, adapted from
Andersson et al. (2009).

Mechanism — Trigger Fixed Event-triggered, Time-triggered Whether the change that triggers adaptation is
associated with an event or a time slot, adapted
from Andersson et al. (2009).

MAPE-K — Monitoring Fixed Environment, Managed System, Mission How is the managed system being monitored by
the managing system.

MAPE-K — Analysis Open Comparison to threshold(s), Analyzing/Aggregating
data, ...

How the monitored information is being analyzed
by the managing system. Adapted from Weyns
et al. (2023)

MAPE-K — Planning Open Determining the optimal choice, Relying on
design-time rules, ...

How the managing system plans for the
adaptations.

MAPE-K — Execution Open Component re-deployment, Reparameterization of
Component(s), ...

How the managing system enacts/executes
adaptations.

MAPE-K — Knowledge Open Knowledge Representation, Component Model, ... How the managing system represents the managed
system it adapts.

Key characteristics of the managed system (RQ1.3)

Mission Open Navigation, Industrial manipulation,
Search-and-rescue, . . .

The type of robotic mission supported by the
approach.

Mission — Evolution Fixed Static, Dynamic Whether the mission as defined at the start of the
operation changes during the operation or not,
adapted from Andersson et al. (2009).

Change — Source Fixed Internal, External The location of the source of the change, adapted
from Andersson et al. (2009).

Change — Type Fixed Functional, Non-functional, Technological The nature of change, adapted from Andersson
et al. (2009).

Change — Anticipation Fixed Foreseen, Foreseeable, Unforeseen Whether the change can be predicted, adapted
from Andersson et al. (2009).

Change — Frequency Fixed Rare, Infrequent, Frequent, Random Contingent on foreseen change, how often a
particular change occurs, adapted from Andersson
et al. (2009).

Effect — Criticality Fixed Harmless, Mission-critical, Safety-critical Impact upon the system in case the self-adaptation
fails, adapted from Andersson et al. (2009).

Effect — Predictability Fixed Deterministic, Non-deterministic Whether the consequences of the adaptation can be
predicted, adapted from Andersson et al. (2009).

Effect — Overhead Fixed Significant, Insignificant, Failure, Dependent The impact of system adaptation upon the quality
of services of the system, adapted from Andersson
et al. (2009).

Effect — Resilience Fixed Resilient, Irresilient, Vulnerable, Dependent The persistence of service delivery that can
justifiably be trusted, when facing changes,
adapted from Andersson et al. (2009).

(continued on next page)
8

E. Alberts et al.

r

p
e

t

f

p
p

a
u
a
t

o
t

t

The Journal of Systems & Software 219 (2025) 112258
Table 3 (continued).
Software platform Open ROS1, ROS2, . . . The software framework, middleware, platform

used to implement the approach, specifically the
components that enable self-adaptation for the
robotic system.

Type of robots Open Turtlebot 3, Pioneer3-DX, . . . The used type of robot/model of robot.

Evaluation strategies (RQ2)

System deployment Fixed Simulated, Real, Combined Whether the evaluation is performed in simulation,
by deploying real robots, or a combination thereof.

System realism Fixed Real, Synthetic Whether the evaluation sees the robots in a
realistic context (i.e., on the field) or in a reduced
context (i.e., in the lab).

Evaluation metric Open Quality, Mission Performance, Overhead, ... Which aspects are evaluated.

Evaluation depth Fixed No evaluation, Showcase, Experiment How the evaluation is carried out.

Replication package Fixed Present, Absent Whether the authors provide a means to reproduce
their evaluation.
f
t
t
t
q
a
t
a

e

n
f
s
s
v
c

P30), (P4, P31), (P6, P20), (P7, P22, P23), and (P15, P24, P36). While
the studies within these groups undoubtedly have some data that is
overlapping, we decide to consider them separately for the sake of the
data that is not. The list of groupings provided can serve as an aid
to any future researcher needing to draw further conclusions from our
eport in removing bias. This leads us to a final set of 37 primary studies

considered in our data synthesis phase. Overall, the data extraction
hase led to the definition of 32 parameters and a total of 1184
xtracted data points.

2.4. Data synthesis

The goal of this phase is to elicit relevant findings and implications
for researchers, which are then used to substantiate the answers to
he research questions of this study. By following the best practices

accumulated while working on previous secondary studies (David et al.,
2023; Albonico et al., 2023; Di Francesco et al., 2019; Franzago et al.,
2018), our data synthesis phase is structured into two main stages: (i)
vertical synthesis (see Section 2.4.1) and (ii) horizontal synthesis (see
Section 2.4.2). Sections 4 through 8 present the main results emerging
rom our vertical and horizontal syntheses.

2.4.1. Vertical synthesis
In the vertical synthesis stage, we went through each individual

arameter of the classification framework described in Section 2.3 and
erformed a parameter-specific content analysis session (Franzosi, 2010).

The content analysis session is meant to obtain a quantitative assess-
ment of the extracted data (e.g., the frequency in which the various
quality attributes such as performance, energy efficiency, safety, and
reliability are considered across all primary studies) (Franzosi, 2010).
To do so, depending on the specific parameter to be analyzed, we
pply descriptive statistics and create bar plots and tables for a better
nderstanding of the extracted data and its underlying patterns. Then,
fter the content analysis sessions were completed for all parame-
ers of the classification framework, we applied the narrative synthesis

method (Popay et al., 2006). Narrative synthesis refers to the method
f synthesizing research in the context of systematic reviews where a
extual narrative summary is adopted to explain the characteristics of

the primary studies (Popay et al., 2006); in this specific phase of our
study, we applied the narrative synthesis on each individual parameter
of the classification framework. Two researchers performed a first
iteration of narrative synthesis on all parameters, and then two other
researchers carried out a second iteration for expanding and refining
he obtained findings.
9
2.4.2. Horizontal synthesis
In the horizontal synthesis stage, we analyzed the extracted data to

explore possible relations across the values of pairs of different param-
eters of the classification framework. The first step of the horizontal
synthesis consisted of the (automatic) creation of a contingency table
or all possible pairs of parameters of the classification framework;
his step led to a total of 39 contingency tables. Two researchers
hen collaboratively created a set of pairs of parameters whose rela-
ionship is deemed potentially relevant to be investigated (e.g., which
uality attributes are considered when applying a local/distributed self-
daptation mechanism). Then, we iteratively analyzed the contingency
able of each of the 39 potentially relevant pairs and produce notes
bout the main emerging results.6 We filter out all the results which

are either not supported by a sufficient number of data points or not re-
vealing any evident pattern. This filtering step was performed manually
and collaboratively by two researchers in a pair-by-pair fashion, until
a full agreement about the inclusion of each pair is reached. Finally,
we also performed narrative synthesis during this stage; this time the
merging findings are based on the contingency tables resulting from

the previous steps.

3. Demographics

This research considers 37 primary studies in total. The distribution
of our primary studies over the years is depicted in Fig. 2. The lack of
any noticeable upward or downward trend indicates there is consistent
interest in the field of RSASS research. Of the 21 primary studies found
through snowballing, only 6 were published at venues considered in
the initial search query. This indicates two things: (i) snowballing was
effective in finding studies at venues outside of our list of selected
venues in Table 1, and (ii) the title keyword-based search likely did
ot exclude many studies from the selected venues. The first is clear
rom the remaining 15 studies which are from non-selected venues. The
econd is indicated by the fact that the snowballed papers were not
ubject to keyword-based search. were many studies from the selected
enues to appear during snowballing it may indicate that the keywords
hosen were too strict and excluded relevant papers from those venues.

It is interesting to consider which type of venue contributes most to
RSASS research from the demographics. There is a 2:9:5 ratio between
self-adaptive systems, robotics, and software engineering/architecture
venues respectively among the primary studies with the selected venues
as their provenance. Meanwhile, there were about 21 times as many
potentially-relevant robotics studies relative to self-adaptive systems
and about 3 as many relative to software architecture. Therefore,

6 All contingency tables, the pairs of potentially relevant parameters, and
our collected notes are available in the replication package (Replication, 2024)
of this study for independent verification.

E. Alberts et al.

f
t
w

m

t
o
a

t

t

b
c
c
a

a

I

t

e
e
t
f
t
m
o

a
t
f

The Journal of Systems & Software 219 (2025) 112258
Fig. 2. Occurrence of primary studies by publication year.

robotics venues contribute fewer RSASS studies despite the larger
population. One possible explanation is the larger breadth of robotics
research compared to the more specialized venues and therefore nar-
rower research areas of self-adaptive systems and software architecture.
However, as we have only selected primary studies which are interdisci-
plinary between all three disciplines, we cannot derive any conclusions
as to the prevalence of software architecture or self-adaptive systems
research in isolation in robotics venues. This would be a study on its
own to determine how much of a focus there is on software at robotics
venues, which would be interesting to determine the prevalence of
RSASS relative to that. For example, it would answer questions such
as what the most common research related to software engineering
within robotics venues is. It would also allow one to characterize the
prevalence of research into RSASS by determining how common it is
among general software engineering research at robotics venues.

4. Key characteristics of the entire self-adaptive system (RQ1.1)

This section covers the results of applying the of the classification
ramework described in Table 3 and its associated definitions (Table 4)
o each primary study. Particularly, we focus on those parameters
hich characterize the entirety of a self-adaptive system. These are

those aspects of the system which only emerge by virtue of the co-
existence of a managed system (in our case the robotic system) and

anaging system (the approaches presented in primary studies). In
other words, we provide an answer to RQ1.1.

Note: For all of the subsections (4.X) within this Section (4), and
he three to follow (5, 6, 7) the data we report is either on singular
ccurrences in each of the primary study, or multiple occurrences
cross the primary studies. For example, Section 4.3 about Managing

System Independence has singular occurrences as each study only has
one managing system which has some degree of independence. How-
ever, Section 4.2 on quality attributes reports on occurrences across
the studies, as each primary study may see its system target multiple
quality attributes. We indicate the case of multiple occurrences across
studies with an asterisk (∗) to avoid the need to mention this fact about
he results every single time.

4.1. Adaptation goal*

Fig. 3(a) depicts the different reasons for architectural self-
adaptation we determine from the studies. The most common adap-
tation goal is that of recovering from errors/faults with 16 occurrences.
For example, the approach proposed in P23 is designed to detect and
repair faulty components by analyzing trends in the data these produce.

The second most common adaptation goal is dealing with environmental s

10
changes with 13 occurrences. For example, the robot in P35 adds a new
mapping component as the space around it widens and the number of
environmental features to serve as references are reduced. A further 8
imes the adaptation goal is to optimize resource usage. P26 serves as

the system adapts by utilizing different marker detection algorithms
ased on available memory seeking to conserve memory usage. Less
ommon goals are optimizing system performance (towards a mission),
hanging functional behavior of the robot (6 occurrences each), as well
s keep meeting quality requirements at runtime with 5 occurrences. An

example of changing functional behavior is P17 where the functional
behavior of the robot is adapted as it decides between searching for
tiles to clean, cleaning said tiles, or going to charge itself. The other two
categories help distinguish between primary studies where adaptation
aims to improve attributes related to the performance of the mission
versus primary studies where adaptation aims to keep those attributes
at acceptable levels (but not always improve them). An example of the
latter is P31, where the system switches between alternative implemen-
tations of tasks to keep fulfilling the quality requirements of the mission
at hand (e.g., safety). Lastly, 1 study – P10 – has the unique goal of
recovering from attacks; in the sense of cybersecurity.

4.2. Quality attributes*

As depicted in Fig. 3(b), we consider which quality attributes (QAs)
re targeted by the self-adaptive systems. We identify these QAs in line

with the definitions of the ISO25010:2023 standard (ISO/IEC, 2023).
n addition to the main categories of QAs shown in the figure, we

extract data according to the subcategories of each QA, as described
in the ISO25010. It should be noted that when there are different
subcategories of a QA (e.g., functional completeness vs. functional
correctness which both fall under functional suitability), we count the
parent QA twice for that study.

The most common QA targeted is performance efficiency (33) consist-
ing of the subcategories of resource utilization (18), time behavior (13),
and capacity (2). Interestingly, in 7 primary studies the authors targeted
energy as the resource to be optimized. Specifically, energy efficiency is
argeted in studies P4, P9, P18, P19, P28, P31, and P33. P25 serves as

an example of resource utilization where the considered type of resource
is memory and memory usage is considered as a constraint while
adapting. P1 serves as an example of time behavior in that its use case
focuses on meeting real-time constraints of its components. Lastly, P6
and P20 deal with the performance capacity, as they deal with ensuring
the throughput of information between components.

The second most common QA is reliability (18) with its subcat-
gories recoverability (12), and fault tolerance (6). P7 is a clear-cut
xample of recoverability, as when the system suffers faults it repairs
hem with adaptations that stop and start the faulty components. For
ault tolerance P3 serves as an example. The authors have the system
arget fault tolerance by introducing a self-adaptation mechanism which
itigates faults through reconfiguration of the system e.g., swapping

ne image processor for another.
The third most common QA is safety (12), of which we primarily

find the subcategory operational constraint (10) and 1 instance of a fail
safe. P37 mentions it targets safety, however it provides insufficient
detail to determine a subcategory. The operational constraint in these
primary studies is limiting the speed of the robot, with the aim of
preventing collision. P10 implements a fail safe, as when the robot is
under attack (in a cybersecurity sense) it both slows down as well as
changes its navigation algorithm to use pre-defined safe data.

The fourth most common QA is functional suitability (9) which has
two subcategories in functional appropriateness (7), functional correctness
(1) and functional completeness (1). P8 is an example of functional
ppropriateness as its self-adaption revolves around course correction
o make sure it successfully navigates. P27 is the only example of
unctional correctness, where a robot manipulator has to ensure that the
lip detector it is using is accurately detecting slipping of the object in

E. Alberts et al.

r

p
a
r
b
m
b
s
o
s

The Journal of Systems & Software 219 (2025) 112258
Fig. 3. RQ1.1 — Self-adaptive system characteristics: Adaptation goals and quality attributes.
m
a
t
o
i
m
a
w

w

b

a

its grasp. Lastly, P12 is the only example of functional completeness as
the system adds new components at runtime to ensure it can make use
of new tools to assemble different products.

Finally, P10 targets security, with resistance as its subcategory. In
P10 the self-adaptation mechanism allows the robot to resist cybersecu-
ity attacks, these attacks interfere with the robot’s sensors, increasing

the risk of unsafe behavior.

4.3. Managing system independence

The third characteristic we consider of each self-adaptive system is
the degree of separation between the managing and managed system.
This characteristic classifies the degree to which the managing system
is independent from the given robotic system — and by extension its
potential for re-use. Although one’s assumption may be that these two
systems are always separated, the separation between managing and
managed systems is a conceptual one. We did not select the studies on
the basis of their separated implementation as this would not have
been straightforward to determine during the search and selection
phase of this study. During the data extraction phase, we manually
assessed the design of the self-adaptation approach present in each of
the primary studies and consider to what extent the two (sub-) systems
are independent.

The vast majority of studies (24) have managing systems that are
artially independent in that they require a representation of the man-
ged system to operate. Within Section 5.2 we elucidate the kinds of
epresentations used in the primary studies. For example, P18 (and
y extension P4, P17 and P30) requires the components of a given
anaged system to be represented as their own extension of the port-

ased object formalism. Another example can be found in P24 and the
imilar work P36 which model the managed system with an extension
f UML MARTE and then uses this representation for its managing
ystem.

We have identified 9 approaches which have managing systems that
are readily detachable from the managed system. For example, P21 deals
with restarting ROS components after they crashed. The managing
system they propose includes mechanisms to recreate the state of the
component prior to its crash, such as replaying communications to the
component. Their proposed managing system is general to any ROS
component and does not include assumptions as to the conditions of the
managing system with which they choose to evaluate their approach.
Another example is P2, which sees the communication of information

between components in a system adapted. Once again, by design the

11
managing system is general to the communication between any two
ROS components which communicate.

Finally, only 4 of the 37 studies have what we consider inseparable
anaging and managed systems. For example, P10 uses self-adaptation

s a mitigation strategy for cybersecurity breaches. In their approach,
hey design an adaptation logic that is entirely presumptive of the type
f breach/attack faced by the managed system. This particular breach
s also designed by the authors in the same study and therefore the
anaging system they propose has a dependency on this. Another ex-

mple is in P13 where the managing system is fundamentally embedded
ithin each component to be managed through reconfiguration.

Key insights from RQ1.1:
(1) Robotics software architecture-based self-adaptation is pri-
marily done to recover from errors, optimize resource usage, and
deal with changes in the environment.
(2) The main quality attributes targeted by robotics software
architecture-based self-adaptation approaches are performance
efficiency, reliability, safety, and functional suitability with a
single study targeting security.
(3) The managing systems of architecture-based self-adaptive
systems in robotics are mostly flexible, in that they only require
a representation of the robotics system, or are completely detach-
able from said system, allowing for their application to different
robotics systems.

5. Key characteristics of the managing system (RQ1.2)

This section reports on our application of the classification frame-
work much in the same way as the previous. In this section specifically

e report the characteristic which describe the managing system. This
is a part of a self-adaptive system which is responsible for managing
the adaptation concerns of the robotic system, traditionally realized
through a feedback loop. We first report the mechanism responsible
for adaptations in each primary study according to the dimensions
y Andersson et al. (2009). Mechanism is defined by Andersson et al.

(2009) as ‘‘what is the reaction of the system towards change’’. We
report on the extraction of different details about that reaction and how
it is facilitated. We consider this reaction to be the sole responsibility
of the managing system, We report among other on details such as the
lgorithm backing its management, how the reaction is triggered and

at what granularity is affects the robotic system in managing it. After
the mechanism, we consider each phase of the feedback loop which

E. Alberts et al.

d

r
c
p
i
s

s

a

t
t
o
i
a
o
e
o
p

e

o

m
t
b
h
a

o

d

t
r

(
t
t
t
a
a
w
d
s
d
c
a
T
c
o

e
f

The Journal of Systems & Software 219 (2025) 112258
the reaction consists of, monitoring the robot, analyzing the monitored
ata to determine a need for adaptation, planning potentially necessary

adaptations, and executing those.

5.1. Adaptation mechanism

In this subsection we report on various aspects of the adaptation
mechanism used in each primary study. First, the method used by
the mechanism is considered, which is our own addition to the clas-
sification framework and considers the adaptation logic backing each
mechanism. We then use the modeling dimensions by Andersson et al.
(2009) to report on the type, organization, scope, duration, timeliness,
and triggers of each mechanism.

Method of mechanism. Fig. 4(a) shows the different mechanisms we
identified regarding the manner in which RSASSs make self-adaptation-
elated decisions at runtime. We note that although this information
ould be partially derived from the synthesis of the analysis and plan
hases of MAPE-K, we decided to extract this as a separate dimension;
n this way, we obtain a more comprehensive and fine-grained under-
tanding of the different solutions authors devised to perform runtime

decision making. The majority of primary studies either use a constraint
olving/model checking tool (e.g., MiniZinc,7 PRISM,8 clingo9) (12) or

a search procedure (9). For example, the authors of P7 use answer
set programming, which has a declared set of constraints, whereas in
P1 and P2 a graph search and tree search are performed respectively
instead. Additionally, we identify 7 instances where a design-time rules
re used , these can come in the form of if/else statements or for

example the guards on transition in a state machine. For example in
P33 there are transition in a task tree guarded by rules. There are also
5 cases of ontological reasoning and 3 uses of AI Planners. In P10 and P21
application-specific logic is used. These are algorithms which are unique
o the domain self-adaptation is being applied to, such as in P10 where
he algorithm uses measures to counteract cyber attacks. In another 2
f the primary studies (P13 and P37) a graph transformation mechanism
s used. Here the software architecture and potential configuration
lternatives are all represented as graphs, the mechanism the consists
f operations performed on these representations e.g., finding the differ-
nce between two graphs. Finally, a single primary study uses numerical
ptimization: in P34, a linear programming solver is employed to solve a
ossibilistic linear programming problem for runtime decision making.

Type of mechanism*. The adaptation mechanisms are classified to be
ither parametric or structural, in accordance with the modeling di-

mensions by Andersson et al. (2009). More granularity as to how
these structural or parametric mechanisms are executed is provided
in Section 5.2 For example, P2 switches the ‘modes’ of individual
components, a parameter, and also allows for the change of components
by changing which dynamic groups they belong to. Overall, from the
studies it results that structural adaptations are more common (32) than
parametric (21). Of the primary studies, 16 make use of both mecha-
nisms, while 16 only use a structuralmechanism, and 5 only a parametric
mechanism. For example, P18 exclusively has a structural adaptation
mechanism, as it replaces faulty components in one robot with new
ones by receiving the new software component over a network from
ther robots. An example of an exclusively parametric adaptation mech-

anism can be found in P8, where the look-ahead distance and velocity
of the robot are adjusted at runtime.

7 https://www.minizinc.org/.
8 https://www.prismmodelchecker.org/.
9 https://potassco.org/clingo/.
 (

12
Organization of mechanism. The vast majority (34) of primary studies
have a centralized organization of the managing system. Of the 3
remaining decentralized mechanisms, P6 and P20 cover the ICE (Infor-

ation processing self-Configuration and Exchange) approach, which
argets a managed system of a heterogeneous team of robots. Therefore,
y virtue of the system being multi-agent, and those agents being
eterogeneous, the adaptation mechanism is distributed among the
gents. However, this is not causative, as P3 sees a heterogeneous team

of robots with a centralized adaptation manager. P25 is an example
f a decentralized managing system featuring a single agent. Instead,

there are distinct distributed managing systems for different facets of
the robot to adapt; namely, both the grasp controllers and slip detectors
in use by a robot hand are adapted separately, yet within the confines
of one self-adaptive system and mission. Further it is clear from the
esign that there is no interaction between the managing systems of

both adaptations (in their case the controller selector and detection
selector).

Scope of mechanism*. For the scope of the adaptation mechanism we
consider to what extent adaptations affect the managed system. Ac-
cording to our classification framework, the scope of the adaptation
mechanism can be either local or global. We identify 32 instances of
local adaptation mechanisms within the primary studies and only 11
instances of global adaptation mechanisms. Local and global adaptation
mechanisms are also applied in combination in 8 of the primary studies.
For example, in P31, a configuration can adjust the overall power
consumption of the robotic system (global), as well as the speed of each
individual motor (local). Another example is P37, where replacing a
failing component can affect the system’s entire architecture, or only
hat singular component depending on the nature of the error and the
ole of the replaced component.

Duration of mechanism. The vast majority of studies have either short
26) or very short (4) adaptations. Studies classified as short are those
hat make clear no significant time overhead is induced by the adapta-
ion taking place. Studies which have very short are exceedingly so, to
he point that it is a design driver and clear benefit of their proposed
pproach. For example, P23 has as a part of their motivation that the
daptation is a very quick reaction in contrast to other approaches
hich use planning via a model-based approach. We are not able to
etermine the duration of adaptations from P27, P32, P33 as in these
tudies it is not clearly indicated by the authors. Only P21 sees a medium
uration for its adaptation, as it deals with the crash recovery of ROS
omponents. The approach of P21 seeks to reinstate the crashed node
s closely as possible to approximate the situation prior to its crash.
o accomplish this, it is necessary to ‘replay’ the experience of the
omponent prior to its crashing, which can take a significant length
f time as also elucidated in their evaluation.

Timeliness of mechanism. We consider for each primary study whether
the mechanism and the adaptations enacted by it are best-effort, depen-
dent, or guaranteed in their timeliness. For almost every primary study
where this could be determined (31 out of 32), the timeliness is best-
effort. This indicates that none of these studies made explicitly clear
that their adaptation mechanism had a guaranteed time period, neither
one which was guaranteed depending on the particular adaptation
effected. The singular exception is P13. In P13 the authors encode
each adaptation with specific time limits, a ‘duration to success’ and
‘to failure’, which can be used to determine and thereby guarantee the
maximum time an adaptation takes.

Trigger of mechanism. For what triggers the adaptation mechanism of
the managing system, the possibilities were either event-triggered, or
time-triggered. For 36 primary studies, we find that the adaptation is
vent-triggered. These events are found to include among others, the
ailure of components (e.g., P21, P22, P34), progress in the mission

of the robot (e.g., P32, P33), and changes in resource availability
P1). These results can be explained by the fact that most adaptation

https://www.minizinc.org/
https://www.prismmodelchecker.org/
https://potassco.org/clingo/

E. Alberts et al.

e
P
i

s

b

t

The Journal of Systems & Software 219 (2025) 112258
Fig. 4. RQ1.2 — Characteristics of managing system: Adaptation mechanism approaches and monitored aspects.
p

o
u
a
o

C
S
b
r
s
r
n
(
p
L
a

strategies aim at recovering from errors or faults (Fig. 3(a)), i.e., from
xternal or internal events of the system. The only remaining study,
28, did not explicitly make clear what acts as a trigger for adaptation
n their scenario.

5.2. MAPE-K loop

In this subsection we describe the vertical synthesis of the data
extracted from each primary study regarding the four phases of the
MAPE-K self-adaptation loop (Kephart and Chess, 2003) and their
shared knowledge.

MAPE-K: Monitor*. In MAPE-K, the managing system broadly ‘moni-
tors’ to obtain information on which to base its adaptation decisions.
We classify the sources of this information among the primary studies
as one of the: environment, managed system or mission, taking inspiration
from the three categories of context by Turner (1998). Each of these
ources potentially change at runtime and therefore monitoring is

necessary to ascertain their state at a given time. As shown in Fig. 4(b),
the most prevalent monitored entity is the managed system (28 occur-
rences), followed by monitoring the environment (13 occurrences) and
monitoring the mission (5 occurrences). As an example, the approach
of P1 monitors only the managed system, specifically it monitors for
changes in the status on a component level, as well as the current
runtime architecture of the system (in their case, the deployment of
different parts of the system). P30 also monitors the managed system,
ut rather how it is performing a functional task; when the robot is

assigned the task and it is incapable of performing it, this change in
the managed system triggers an adaptation. In P27, the physical state
of the managed system is monitored. Particularly, the managing system
seeks to determine whether the object grasped by the robot is slipping
or not. The same study also monitors the mission, as it is dynamic in its
mission it needs to determine which task it is currently performing to
then decide what about the managed system to adapt.

MAPE-K: Analyze*. With the analysis of MAPE-K we seek to answer
he following question about the system in each study: how is it decided

whether to adapt? The possible answers to this question are adopted by
those used in the study by Weyns et al. on self-adaptation in industry,
where they also attempt to classify this facet (Weyns et al., 2023).
The results of this classification are depicted in Fig. 5(a). While there
is even spread among each analysis method, the most common is
logical inference with 8 instances. The idea here is that some logic-
based representation such as an ontology (P6, P20, P32, P34) is used to
 c

13
infer whether adaptation is necessary. However, logical inference by our
consideration can also include other logic-based representations such
as in P4 where they use Alloy (Jackson, 2011). The idea is that these
managing systems monitor information (as described in the previous
subsection) and then use this information along with a query to a
model to determine whether an adaptation will take place. In 7 of the
rimary studies the analysis is based on system state anomaly detection.

The studies use the information monitored continually and explicitly
compare these to an expected model of the system. For example, in
P10 the latency of sensor values is continuously compared, if these are
fabricated by a cybersecurity attack over the internet then there will
be a discrepancy between the usual latency and that of the fabricated
values. Further, there are 6 instances of thresholds being used to decide
whether to adapt. This entails the comparison of monitored values to
pre-defined values. For example, in P9 they have rules about which
room the robot is in, its current battery level being higher than a certain
percentage, its current velocity being a certain level among others.
There are also 6 instances of using data analysis/aggregation tech-
niques to determine whether to adapt. For example, in P22 the trend in
data from two redundant sources is compared, when these deviate from
ne another an adaptation is triggered to remedy the faulty source. P14
ses both comparison to thresholds and analyzing/aggregating data. The
uthors employ discrete time Markov chains to analyze the reliability
f the current software architecture of the system, and compare the

resulting reliability to a specified threshold to determine whether a
more reliable architecture is warranted. In the approaches of 2 of the
primary studies the analysis is task/user-driven. As an example, in P33
there are two distinct hierarchical layers of deliberation in the system
specified through domain-specific languages: the SmartTCL (Smart Task

oordination Language) and VML (Variability Modeling Language).
martTCL determines if the current task requires an adaptation to
e accomplished. Should an adaptation be necessary, the VML layer
econciles these changes with the QoS requirements placed on the
ystem. Ultimately, it is a user who at some point (either at design- or
un-time) determines the tasks the robot performs. Therefore, we make
o distinction in our classification whether tasks are actively requested
e.g., by voice command or keyboard input) or pre-programmed as a
art of a mission for approaches belonging to task/user-driven class.
astly, in 1 study (P8), analysis is done in tandem with planning in
n atomic inseparable fashion. Therefore, we describe it further when
onsidering the planning mechanisms.

E. Alberts et al.

l
t
f

t

The Journal of Systems & Software 219 (2025) 112258
Fig. 5. RQ1.2 — Characteristics of managing system: Analysis methods and planning policies.
Fig. 6. RQ1.2 — Characteristics of managing system: Enacted changes and knowledge representation.
p
s

MAPE-K: Plan*. For the planning phase of MAPE-K we answer the fol-
owing question for each approach: how is it decided which adaptation
o enact? Our classification framework offers three possible categories
or this aspect of self-adaptation: relying on design-time rules/models, de-
termining an optimal choice, and using AI Planning Languages (Fig. 5(b)).
Particularly, P7 and P22 make use of the Planning Domain Definition
Language (PDDL) (Haslum et al., 2019) to choose their adaptations.
Of the other two categories, there are 16 instances across the studies
of planning through determining an optimal choice and 15 instances of
relying on design-time rules/models. We can also provide another layer
of detail when it comes to those studies using optimization. There
are 4 studies which use a model checker optimize; for example, in
P4 and P31 the authors use the PRISM model checker, a probabilistic
model checker, which selects adaptations as actions that have a high
probability of leading to high reward states. There are also studies
doing optimization through search algorithms, such as in P7 and P22
where they use graph search, or P18 which does a combinatorial search,
among others. For the studies which rely on design-time rules/models
we can exemplify P17 which has rules in the forms of guards on
ransitions (adaptations) between the states in a state machine rep-

resenting the modes of the system. Additionally, P16 formulates the
adaptation problem as a Satisfiability Modulo Theories (SMT) problem
at design time which is then solved to determine new architectural
configurations.
14
MAPE-K: Execute*. Fig. 6(a) presents the results on how adaptation
approaches enact changes. By far, the two most common executions
are component addition and/or removal with 20 instances and component
reparameterization with 17 instances. An example of addition and/or
removal can be found in P27 as the component responsible for slip
detection of an object in the robot’s hand is removed and replaced by
another. As for reparameterization in P28 adaptation actions determine
parameters such as speed, video quality of its camera and which
communication band it uses. There are also 10 instances of changing
the relationships between components. By this, we mean that while the
components individually remain static, their connection to other com-
onents changes dynamically through adaptation. For example, in P29,
treams of information between components are re-arranged to handle

changes in the managed system as different camera feeds are available.
Which specific component receives the camera feed used for tracking
an object changes then depends on the state of the robots. Lastly, there
are 4 examples of component redeployment, where adaptation changes
which components are running on which machine. Specifically in P1
processing tasks for the robots are distributed across different hosts
to ensure requirements of being real-time and load balancing are met.
In P12 instead assembly skills are transferred as components running
on one robot to start running on another during operation. As a final
example, in P14 the authors consider predefined deployment patterns
(all components on one process, two components with two separate
processes etc.) which they switch between at runtime.

E. Alberts et al.

a
a

o

s

s
t

n

d
o
p
c
t
h
a
A
t
t
t
t

The Journal of Systems & Software 219 (2025) 112258
MAPE-K: Knowledge. Lastly for MAPE-K we classify the knowledge,
which we consider to be the representation of the managed system’s
architecture used to be able to modify it through adaptation. Within the
primary studies we have found a fundamental distinction can be made
between approaches which derive their architectural model by virtue
of implementation (e.g., ROS), and those which create an architectural
model as a layer on top of an implementation. Even more interestingly,
these two classes of approaches are not mutually exclusive, meaning
that approaches which are already privy to an architectural model by
virtue of implementation may still choose to create another layer of
abstraction (e.g., ROS plus a semantic layer). It holds for all of the
cases where no extra layer of abstraction was used, that we consider
them to be using a component model which is the case for 15 (and
thereby the majority) of the studies (Fig. 6(b)). Examples of component
models encountered include: ROS (P7), Extended Port-Based Objects
(P3), and DEECo (P17). Fewer primary studies (7) use what we consider
a variability model. These are constructs such as feature models (P9,
P35) or extensions of UML (P24, P36) which formalize the changeable
spects of a system. Then, 6 studies use knowledge representation (such
s ontologies); these ontologies contain specific rules and representa-

tions of the architecture, such as in P26 where ontological instances
represent groups of components (to adapt between) as a layer on top
of ROS’ component model. The approaches of 3 of the primary studies
use a grammar or domain-specific language to represent the managed
system. For example, some approaches create a DSL in XText (P19, P33)
which describes functionalities of the robot which are then translated
into implications on the component level when it comes to adapting
the system. Another 3 primary studies use architecture description
languages (ADLs). These ADLs are a means to conceptually model a
system’s software architecture to then reason over it. For example,
in P14 the authors extend xADL to represent reliability properties at
the component level, to be used for further analyses regarding the
overall reliability of a system’s current architectural configuration.
Lastly, 2 systems (P5, P10) use a behavior model, such as a state
machine to represent the managed system. We also classify 1 study as
being in an ‘Other’ category, as it is unique in their representations.
Specifically, P31 trains a machine learning model during design time
on the configuration space of their robot to reduce it and determine the
effect of varying configurations on quality attributes.

Key insights from RQ1.2:
(1) Managing Systems of RSASS primarily have adaptation mech-
anisms with a basis in constraint solving, model checking, and
search procedures.
(2) Managing Systems of RSASS primarily make use of both para-
metric and structural adaptations. They accomplish the former
by re-parameterizing at the component-level and the latter by
removing and adding components.
(3) The adaptation mechanisms of RSASS are primarily central-
ized, applying to individual components, and are enacted with a
short duration. They are mostly triggered by events, and do not
provide guarantees of their efficacy.
(4) When adapting, RSASS approaches tend towards monitoring
the robotic system itself rather than the environment or its tasks.
They primarily analyze the monitored information through logi-
cal inference or comparison to an expected state of the system. A
decision on which adaptation to enact is made as the solution to
an optimization problem, or by relying on models of adaptation
decisions specified at design-time.

6. Key characteristics of the managed system (RQ1.3)

This section reports on the key characteristics of the managed
system i.e., the robotic system which is being adapted by the managing
system. This entails the characteristics of both the mission the robot
15
performs, and the robot itself (hardware and software). In descending
rder of granularity, we first characterize the missions assigned to

each system (6.1), determining the aim and whether it evolves over
time. Then, we characterize the change i.e., the reason for adaptation
(6.2), and the effect of adaptation (6.3) in accordance with the di-
mensions by Andersson et al. (2009). Lastly, and most specifically,
we consider the actual robots used (6.4). We specifically consider the
oftware platform used to implement the approaches and the specific

hardware/model of robot used.

6.1. Robotic missions

In this subsection we consider the mission assigned to each managed
ystem i.e., each robot. We first consider the aim of said mission, and
hen whether the mission exhibits dynamicity in its tasks.

Aim of mission. The most common, and most broad mission we find is
avigation with 18 studies. More complex missions consider navigation

as a task or a side-concern to their main mission. Therefore, when
it comes to missions, we only consider what the authors state as the
primary task/mission of the robot. These 18 studies do so, for example,
P4 has a robot patrolling and therefore navigating corridors, the same is
true for P31; P26 is also concerned with navigation where corridors are
of uncertain breadth. The second most common is emergency response
with 7 studies. This includes missions such as search and rescue op-
erations (P3, P7 P28, P30) and coordinating a team of robots during a
disaster to deliver supplies to victims (P6, P20). A further 3 approaches
cover a mission of acting as a service robot e.g., butlering as in P33.
Additionally, 2 approaches P2 and P18 are applied to a mission where
a robot needs to keep track of the location of an object i.e., object
tracking. Lastly, P1 and P12 both have a mission of the robot being
used for industrial assembly, while P27 is the only study to consider the
mobile manipulation of objects. For 4 of the studies, no specific mission
was prescribed, with the study only describing the approach generally.
Overall, beside the common navigation mission, there seems to be
significant variety in the kinds of missions self-adaptation is applied
to.

Evolution of mission. We have adjusted the modeling dimension related
to goals from Andersson et al. (2009) to consider the evolution of
the mission specifically over time. By our definition, a mission is
ynamic if it sees the robot engage in changing tasks over the course
f it, whether the timing of those changes is known or not. Of the 37
rimary studies, 22 are found to have entirely static missions, thereby
onsisting of one primary task in isolation. For example, in P28 only
he ‘‘maneuvering’’ task of the robot is considered. Several studies (6)
ave dynamic missions, and a further 9 do not provide enough detail
bout performing their mission to be able to determine the evolution.
s an example, in P27 there is a dynamic mission as the robot first has

o manipulate objects, before then carrying them to another location
o place them. P2 sees two robots work together, with their respective
asks such as tracking and detecting an object changing dependent on
he uncertainties present and therefore also dynamic.

6.2. Change - The cause for adaptation.

In this subsection we consider the various dimensions describing the
change which leads to adaptation in the primary studies. In particular,
the source of this change, its type, whether it is anticipated, and its
frequency.

Source of change. The change in the managed system leading to a
need for adaptation is classified as originating either from a(n) inter-
nal (emerging from within managed system), external (emerging from

E. Alberts et al.

i
f

s

n
o
a

m
f
t

t
w
T
m

t
d

The Journal of Systems & Software 219 (2025) 112258
Fig. 7. RQ1.3 — Characteristics of managed system: Source and type of change.
o
f
f
w

c
n
p
o
d
o

p

l

outside), or mixed (both) source. The majority of studies consider ex-
clusively internal change (18) as the impetus for adaptation (Fig. 7(a)).
This stems clearly from the overall trend of adaptations driven by faults
n the system. Further, 9 studies adapt due to exclusively external
actors. These stem from environmental changes such as illumination

as seen in P24 and P25. Lastly, 8 studies see both internal and external
ources of change. As one would expect, these include combinations

of the examples given for exclusive sources. They are systems with
sufficient complexity to handle both sources with one approach such
as P31 which deals with the robot’s internal battery level but also the
external uncertainty posed by the terrain it navigates.

Type of change*. The possible types of change considered are functional
(change affecting what the system should do), non-functional (change
affecting how the system operates), or technological (relating strictly
only to the technology supporting operation e.g., operating system and
ot the software written for self-adaptation). The most frequent type
f change is non-functional (24 occurrences), whereas 22 are functional,
nd 7 are technological (Fig. 7(b)). There are 4 studies (P3, P11, P18

P30) which deal with all three types of change. However, these studies
all belong to the same approach: ReFrESH. The reason is primarily that
ReFrESH supports component failures which can also be due to hard-
ware failures, such as a sensor failing, this falls under what we consider
a technological change. Besides that, they consider the non-functional
requirements being violated such as performance constraints, as well
as the tasks the robots need to complete (functional) as changes. There
are 2 studies P5 and P10 which are exclusively technological in their
change. For P5 this stems from the changes happening in a piece of

iddleware supporting robotics operations. With P10 the change stems
rom cyber attacks, these attacks directly affect the operation of both
he software and hardware (the sensors). P32 is an example of a purely
functional change, as all of its changes stem from the task given to the
robot changing ergo the functionality it has to perform changes.

Anticipation of change. We consider whether the change leading to
adaptation to either be foreseeable, unforeseen, or completely foreseen.
As can be seen in Fig. 8(a), 23 of the studies have foreseeable adapta-
ion. This classification comes about when authors do not make clear
hether their approach accounts for unforeseen or foreseen changes.
herefore, by virtue of the existence of a sound approach, the change
ust be foreseeable. Due to this, a smaller subset of approaches is those

7 approaches which handle unforeseen change. These are approaches
robust to a potential change whose occurrence details are unknown.
For example, P2 and similar approaches in P19 and P23 maintain a set
of logical rules about the system. Independent of any specific change,
hese rules are asserted and when in violation remedied through the
esigned adaptations which solve the systems erroneous state. Lastly,
16
in P21, P14, and P32 the change is foreseen. In P21 this is in the form
of anticipating the crash of a given ROS component. In P14 proac-
tive adaptations are performed in response to a predicted insufficient
reliability of the current architecture, meaning the change is always
anticipated. In P32, the changes are triggered by a change in the task
of the robot, which with a planned mission is always foreseen.

Frequency of change. In the cases where change is not unforeseen, (26
f the primary studies) we consider the frequency of the foreseeable or
oreseen change, if specified. Most 20 studies do not clearly indicate a
requency of change. From the studies which do indicate a frequency,
e depict in Fig. 8(b) that there are 9 studies with frequent change.

For example, in P8 the change has to do with localization uncertainty;
a robot relies on its current position frequently while navigating, in-
creasing the frequency of potential changes playing a role. There are
another 6 studies with infrequent change. For example, in P32, the
hange is driven by a user requesting a task of the robot, leading to a
eed to adapt the robot to allow performing said task. As these tasks are
erformed sequentially and take some time, this happens infrequently
verall. In P10 and P21 there is a rare frequency of change. The former
eals with cyber attacks and the latter with components crashing, both
f which are rare occurrences yet with severe consequences.

6.3. Effects of adaptations

In this subsection we consider the effect adaptation has on the man-
aged system of each primary study based on the modeling dimensions
by Andersson et al. (2009). Particularly, we describe the criticality,
redictability, overhead and resilience of the effect.

Criticality of effect. A majority of 24 primary studies see an adaptation
as mission-critical. In other words, not adapting the system may jeopar-
dize the mission assigned to the robot in some way. For the remaining
13 primary studies, 10 of them consider a lack of adaptation more
severe, with it being safety-critical, while the other 3 did not provide
sufficient data to determine the criticality. P28 can serve as an example
of a safety-critical adaptation. In the study, adaptation ensures that the
ocalization of the robot is accurate, therefore if this accuracy is not

maintained through adaptation the robot may collide while navigating,
jeopardizing its safety and that of others. It is notable that in none of the
primary studies the criticality of adaptation was considered harmless.

Predictability of effect*. Here we extract whether adaptations are de-
terministic or non-deterministic in their effect on the managed system.
Most adaptations among the studies have non-deterministic effects (22).
For this data point, we adopted a stance of trying to prove the con-
trary. In other words, studies are presumed non-deterministic unless
they provide clear evidence to the contrary. There are fewer studies

E. Alberts et al.

d
i
d
n

a
p
b
t
w
o
c

The Journal of Systems & Software 219 (2025) 112258
Fig. 8. RQ1.3 — Characteristics of managed system: Anticipation and frequency of change.
e

P
m

Fig. 9. RQ1.3 — Characteristics of managed system: Overhead of adaptation effect.

which provide evidence of deterministic effects (10). Study P10 has both
eterministic and non-deterministic adaptation effects. For example,
n the study they adapt by lowering the speed of the robot, which is
eterministic. However, they also adapt to block attackers on the same
etwork on the robot, which due to the uncertainty surrounding the

nature of the attackers, cannot always block every attacker. Therefore,
the adaptation is non-deterministic in its effect of securing the robot.

Overhead of effect. We consider the overhead of adaptations to be
either dependent on external factors, significant, insignificant, or inducing
failure. As depicted in Fig. 9, we find that the majority of the studies
have dependent overhead 17. For example, in P4 and P31, there is
 phase of planning in determining configurations for the robot; de-
ending on the current context and the configuration space this can
e an insignificant amount of time and resources or be so complex
hat it leads to failure of the system. Further, there are 8 studies
ith insignificant overhead. For example, in P26 there is insignificant
verhead, as the adaptation is always performed from a fixed set of
onfigurations which are predefined and chosen by an ontological rea-

soner. Lastly, another 4 studies have significant overhead. For example,
in P7 the authors state that in one of the scenarios it takes 30 s to enact
the adaptation of powering on the system from a ‘faulty’ state of all
components being off. The remaining studies did not provide sufficient
information to extract the overhead of their effects. Despite being a
possible classification, none of the studies are found to induce failure

through their overhead.

17
Resilience of effect. Unfortunately, we are unable to report on this
parameter. Contrary to our assumption when designing the study, it
proved difficult to extract this parameter from the primary studies
due to the following reason. Typically each primary study describes a
mechanism which is resilient to an exemplified set of changes. During
data extraction, it became apparent that the primary studies do not
provide evidence of their resilience beyond this set of changes. This
lack of evidence made it impossible for us to report on the resilience
of the mechanisms in a holistic way. There were also some exceptions
to this finding, in particular P16 and P37 make clear that achieving
resilience is the aim of their respective approaches. The details of which
can be found in both our extracted data (Replication, 2024) and their
xemplification throughout the rest of the results.

6.4. Robotic system

In this subsection we cover two specific details regarding the robotic
systems which serve as managed systems across the primary studies.
articularly, the software platform supporting the system, and the
odel of robot being used for its physical realization.

Software platform. For every study the software platform used for
implementing their approaches was extracted. In the case of 9 of
the studies this was not clearly and/or explicitly indicated. For the
remaining 26 we took note of any multiple occurrences, i.e., the use
of the same platform across approaches. The only consistent reuse seen
was that of ROS, the Robotic Operating System. At the time of writing,
there are two distinct versions of ROS, namely ROS 1 and ROS 2. While
ROS 2 is the intended successor of ROS 1, both still see consistent usage
and development support. The first official release of ROS 2 was in
2017, while ROS 1 predates the period that we consider for including
primary studies. As we can be seen in 3, 16 of the primary studies
were published after 2017. This means that only those 16 could feasibly
make use of ROS 2. We find that only 2 studies, P19 and P34, use ROS 2
specifically. A further 16 make use of ROS 1, of those, 11 are from after
2017 and could have feasibly made use of ROS 2. The remaining 10
studies make use of what we categorize as ‘Other’ software platforms.
These include both completely ad hoc implementations as well as usage
of possibly more widely-used platforms which simply were not also
used by any of the other primary studies. Careful consideration is taken
here not to overstate the usage of software platforms which are clearly
being used by the same authors for the same related approaches across
different publications within our primary studies.

Types of robots. There is no discernible trend in the types and or models
of robots used across the primary studies. Most of the studies (18) name
a specific model in their work, while the remaining 12 are generic in

E. Alberts et al.

o

r

i
t
o

s
t
p

d
c
i

i
F
s

t
o
r
s
i

(
w
i
t

c
w
T
t
a
p
r
m
c
v
a
t
i

f

e

The Journal of Systems & Software 219 (2025) 112258
describing the robot. The most common specific models are iterations
f the Turtlebot model of robot, with 5 instances, which is a set of

affordable small mobile terrestrial robots. For example P21, specifically
makes use of a simulated Turtlebot3 Waffle and a real Turtlebot2
platform and P35 also makes use of a Turtlebot2. Another set of
studies P2 and P29 use the NAO robot, which is a humanoid robot.
The remaining studies P11 and P18 make use of a HexManipulator
robot, which is custom built by the authors and is an example of
a Stewart platform (Dasgupta and Mruthyunjaya, 2000). From these
esults we can surmise that there is no consistency in the robot models

used in architectural self-adaptation. Therefore, no conclusions can
be drawn about particular robots lending themselves more easily to
self-adaptation than others.

Key insights from RQ1.3:
(1) The main mission to which self-adaptation is applied is nav-
igation; additionally the missions tend to be static as the tasks
they involve do not evolve at runtime.
(2) The change in the managed system that is cause for adapta-
tions is primarily non-functional and emerges internally. These
changes are foreseeable and vary in their frequency.
(3) The effects of adaptation on the managed systems of RSASS
are primarily non-deterministic and the overhead of these adap-
tations largely depend on each specific adaptation scenario.
(4) ROS is the most-frequently used software platform in the
primary studies.

7. Evaluation strategies (RQ2)

In this section we cover the results pertaining to RQ2 ‘‘What are the
evaluation strategies of approaches for architecture-based self-adaptation
n robotics software?’’. Specifically, in accordance with the classifica-
ion framework presented in Table 3. We first characterize the nature
f the systems usage, determining whether systems are deployed in the

real world, simulation, or some combination of both, and whether the
context of that deployment is realistic or synthetic. Then, we charac-
terize the evaluations performed in each primary study, determining
by what metric they quantify the performance of their approach and
hould there be an evaluation if it is a simply a showcase or compares
o a baseline. Lastly, we also report whether or not the primary studies
rovide a replication package for their evaluations.

System deployment. We classify whether the system being evaluated is
eployed in a simulated environment, in the real world, or using both in
ombination. We find that a majority of the studies (17) deploy robots
n real life (Fig. 10(a)). A further 12 studies only consider robots in a

simulated environment, or do not state whether the robot is deployed
in the real world. For example, in P26 the robot is simulated in the
well-known Gazebo simulator, which is also leveraged to provide input
nto their adaptation logic by way of obstacle density in the room.
or the remaining 8 studies it was either ambiguous or there was no
pecific robot, but rather the concept of one meaning there was nothing

to specifically simulate nor deploy in the real world. This also entails
that there are no studies which made clear they use a combination of
simulation and real-life deployments. Although likely every real-world
deployment of a robot has in some part been simulated in its develop-
ment, we mean here that its deployment during a mission would be in
the real world while also making use of some simulation, e.g., a physics
simulator to predict the effect of actions in the real world. The fact that
so many of the studies are done with a real-life deployment is a positive
indication when it comes to the strength of evaluations, given especially
the uncertainties which self-adaptive systems deal with are amplified

Brooks, 1992).
due to the reality gap between simulation and real-life (

18
System realism. With system realism we identify whether the opera-
tional context of each primary study is either realistic or synthetic. By
realistic context we refer to robots deployed in the field whereas by
synthetic we refer to lab deployments. With this parameter, we aim to
indirectly indicate the technology readiness level of the systems as well
as the extent to which researchers substantiate/evidence their claims.
As seen in Fig. 10(b), the studies are divided almost evenly between the
wo with a slight edge (20) given to realistic contexts versus synthetic
nes (16). For example, P1 is realistic as it revolves around an industrial
obotics setup with complex and detailed architecture and a varied
et of tasks to perform around automated assembly. In contrast, P31
s an example of a synthetic system as it features a simple mobile

robotics scenario with the task of navigating through a room containing
obstacles.

Evaluation metrics*. The evaluation metrics of each approach indicate
what the authors of each study measure in their evaluations (i.e.,
what is on the y-axis). During the data extraction phase, we identified
the following types of evaluation metrics: quality of service, mission
performance, overhead (introduced) by the approach, domain-specific per-
formance measures pertinent to that system, and resource consumption
Fig. 11(a)). The most common metric by far is mission performance
ith 16 occurrences. For example, in P3 the authors measure the error

n pixels of an object tracking algorithm which is disturbed by uncer-
ainties during the mission which their self-adaptation approach then

corrects. Further, there are 9 instances of considering the overhead intro-
duced by the approach. For example, in P20 the authors measure the
omputation time in milliseconds of the system in different scenarios
hile using their approach and how overhead scales with complexity.
here are 6 instances of considering the quality of the operation by
he robot. For example, the approach in P28 is evaluated on the utility
chieved by the system defined as a function combining five user
references related to the qualities the system should uphold such as
esponsiveness. Another 5 instances use a domain-specific performance
easure in their evaluation. For example, in P21 the approach for re-

overing crashed ROS components is evaluated partially with a binary
alue representing whether or not specific components recovered from
 crash. This is a measure only applicable to P21, or other studies in
hat domain which specifically deal in crashing (ROS) components yet
t is non-specific to the mission of the robot that houses the components.

Lastly, 2 studies consider the resources consumed by the system, e.g.,
power as in P9. This is used as an evaluation metric as the intention is
or the adaptation to manage the consumption of a resource over time.

Evaluation depth. We follow the study by Gerostathopoulos et al. on the
valuation of self-adaptive systems (Gerostathopoulos et al., 2021) in

considering the evaluation method used in each study. They themselves
cite Wohlin et al. (2012), which distinguishes between showcases and
experiments. The key difference is that a showcase concerns a sin-
gle experiment configuration, while an experiment has a quantitative
comparison between the results of multiple experiment configurations.
In our study, the majority of studies (20) have a full-fledged experi-
ment (Fig. 11(b)). For example, in P4 the authors use three different
experiment configurations in a comparison: one where there are nei-
ther uncertainties nor adaptations, another with uncertainties but no
adaptations, and lastly with both uncertainties and adaptations. About
a fourth as many studies have only a showcase (6) rather than a full
experiment. For example, in P22 the authors design one experiment
configuration where they introduce an obstacle to a robot while it
is mapping a room to cause an error and showcase their adaptation
handling the error. The remaining studies have no evaluation (11) at
all. This entails that roughly half of the primary studies do not fully
evaluate their approaches, indicating a prevalent lack of soundness in
their evaluation.

Replication package. We follow the methodology of the work (Cervera,
2018) on reproducibility of robotics research. In the work, each primary

E. Alberts et al.

b
t
l
d
i
N
i
l

The Journal of Systems & Software 219 (2025) 112258
Fig. 10. RQ2 — Evaluation strategies: Deployment and realism of system.
Fig. 11. RQ2 — Evaluation strategies: Evaluation metrics and depth.

v
t
b
w

t

o
r
b
p

m

study is searched for links to open-source repository hosting websites
itbucket, github, gitlab, sourceforge, and add zenodo to this. We find that
he majority (26) of the primary studies fail to provide any kind of
ink to resources backing their proposed approach. The remaining 11
o provide one. This represents roughly one third of the studies, which
s much higher when compared to the result of 4% found by Cervera.
otable is that Cervera’s study only considered one venue ICRA which

s also among our selected venues. The 10 studies which do provide a
ink do not indicate a clear bias towards any type of venue or specific

venue.

Key insights from RQ2:
(1) RSASS are primarily deployed in real life and not only simu-
lated, dealing with either realistic or synthetic applications.
(2) RSASS are primarily evaluated through the performance of
their particular missions, and so through full-fledged empirical
experiments without providing a replication package to further
strengthen their results.

8. Cross-cutting results (horizontal synthesis)

In this section we elaborate on the main results of our horizontal
synthesis (see Section 2.4.2). Specifically, we built a set of 39 pairs of
parameters whose co-occurrences would lead to potentially-relevant re-
sults, then we built their corresponding contingency tables, and finally
we collaboratively analyzed the contingency tables and synthesized the
results we deemed relevant to be shared in this study. At the end of

this procedure, we came up with 10 relevant pairs. We elaborate on

19
each of those pairs in the remainder of this section; the other pairs
have been discarded either because we could not observe any relevant
pattern in their contingency tables or because the observed patterns
were providing only marginal insights with respect to those of the
ertical synthesis of the individual parameters. It is important to note
hat the suggestions and implications of our horizontal synthesis are
ased on our interpretation of the co-occurrences of pairs of parameters
e observed in the extracted data; at the time of writing we do not have

any objective evidence about whether the observed co-occurrences
are causally linked or statistically confirmed, so we invite the reader
o interpret our elaborations on those co-occurrences more as reflec-

tion points, rather than as objective evidence about specific aspects
f architecture-based self-adaptation in robotics. For the interested
eader, all contingency tables and an explanation of the rationale for
uilding each of the 39 pairs are included in our study’s replication
ackage (Replication, 2024).

Mission by source of change. In line with our vertical synthesis, the
ajority of co-occurrences concern systems carrying out navigation

missions (18 occurrences in total). Within those systems, we observe
a certain balance among those reacting to external sources of change
(12 co-occurrences) and internal sources of change (11 co-occurrences).
A similar trend can be observed when considering other types of
missions, such as those involving service robots, object tracking, mobile
manipulation, and industrial assembly. An interesting exception to such
balance concerns emergency response systems; among them, all but
one of the studied approaches react exclusively to internal sources of
change (6 co-occurrences). For example, the system studied in P30
involves the usage of heterogeneous miniature robots carrying out

E. Alberts et al.

a

c
o

i
r

o
a
t
o
c
t
a
c
p
c
r
a
r
t
c
t
t
v

a
L
i
a
c
i
L
e
s
n

u
r
o
m

p

b
t
h
2
m
a
h

t
a
i
a
n
W
d
a
a
a

The Journal of Systems & Software 219 (2025) 112258
search-and-rescue missions in an urban environment; however, despite
the potential for managing external sources of changes (e.g., a change in
the physical environment), the proposed adaptation approach focuses
primarily on internal sources of change, namely, self-diagnosis, inte-
grating reusable hardware modules, and migrating software modules
at runtime. One would expect uncertainties external to the robot, such
as unstable terrain, changing temperatures, or visual obfuscation to be
 more prevalent concern. To that end, it is fair to mention that the
internal change in P3 (an example of emergency response) has to do
with introducing a new component for ‘dehazing’ the camera feed. The
reason this is not an external change is that the hazy conditions are
a constant while the change is the inability of the robot to dehaze
the camera feed by itself which suddenly becomes pertinent when
it needs to do so. The singular exception is in P14 which has both
internal and external sources of change. Although like the other co-
occurrences it is still mainly concerned with internal errors, it also
onsiders external contextual conditions when predicting the reliability
f its own components.

Scope of mechanism by quality attribute. The co-occurrences of the scope
of adaptation mechanism and the targeted QAs mainly follow the same
trends identified in our vertical synthesis (the most common values
of each parameter most commonly co-occur). There is an exception
though: within our dataset, global adaptation is mostly done for keep-
ng the performance of the system (9 occurrences) acceptable and for
eliability and safety (to a lesser extent, 4 occurrences each).

Mechanism method by system realism. If we look at the data in isolation
f the system realness, there is a somewhat even split between real
nd synthetic missions performed by the systems (20 to 16) among
he primary studies. However, this split is not maintained for every
ne of the adaptation mechanisms found among the approaches. If we
onsider each mechanism in descending order of their prevalence from
he vertical synthesis, we see that search procedure mechanism is twice
s prevalent (6 to 3) with real missions. What we consider real missions
arry a relatively higher complexity to their synthetic counterparts and
rovide more evidence for their claims. It is plausible then that a more
omplex mission carries with it a search space complex enough to
equire search procedures to explore rather than being solvable with
d-hoc solutions. Constraint solving is evenly split among the mission
ealness, indicating that, in the analyzed primary studies, being able
o devise constraints does not seem to be influenced by the mission’s
omplexity. It appears further that ontological reasoning is only applied
o real missions with 5 co-occurrences. For the remaining mechanisms,
here seems to be no deviation from the trends made clear in the
ertical analyses of these two data points.

Overhead of effects by managing system independence. As one might
expect from the vertical synthesis, the highest co-occurrence of 9
involves requires representation for the independence and dependent for
the overhead. Both of these are most common in the vertical synthesis
of the respective parameters. Similarly, for the second highest co-
occurrence of 6 between detachable for the independence dependent for
the overhead and both these values are quite common in the vertical
synthesis. Contrary to our hypothesis that detached managing systems
lead to higher overhead, we find that P1 and P21 are detachable and
also insignificant in their overhead. Both have in common that the
roles of their adaptations are secondary to the primary functionality
of the system. In P1 the adaptation deals with the deployment of
components, while in P21 it restarts components and recreates their
previous state after they fail. In both cases the nature of the components
themselves or their purposes holds no bearing. This entails that they are
detachable as they are non-specific to the service of the system, as well
as that their overhead of applying them is insignificant since efficient
methods are used to deal with component re-deployment or re-starting.
Even though they have a secondary nature, the implications of not
doing application (better captured by our other parameter ‘criticality
of effect’) still eventually affects service, as not managing resources
through redeployment in P1 or not effectively reinstating components

in P21 would clearly lead to a degradation in service. h

20
Source of change by MAPE-K monitor. The vast majority of monitored
spects are the managed system as determined in the vertical synthesis.
ess drastically, the source of change is more commonly (26 to 17)
nternal rather than external. There are 22 co-occurrences of internal
nd managed system and a comparable 14 with external sources of
hange. The former is to be expected, as an internal change is one which
s derived from within the system, in this case the managed system.
ooking closer at the data, it is then of interest which systems are
xclusively monitoring the managed system yet also have an external
ource of change, something which thus far seems to be illogical. We do
ot consider the other instances as both pieces of data have multiplicity

since multiple sources and multiple aspects can be monitored in a
singular approach and we do not record the matching between these
two directly. In other words, we do not have the data to directly link
one source to one monitoring mechanism, but we can recreate it by
considering studies where only one of each, source and monitored
aspect, are recorded. There are two studies P1 and P10 which have
exclusively external sources of change, yet they monitor the managed
system itself. Both of these assume that the external change has some
direct implications for the internal change of the system. In P1 the
implication of the change is on resource availability, and in P10 this is
due to security breaches affecting the operation of the robot. Crucially,
the original source is still external, there is a knock-on change in
the managed system which is monitored for, likely as this is more
practical. It is logical that the system would only concern itself with
those external changes which actually end up affecting the managed
system, and not be distracted by other changes. For the remaining
data, as is expected, a majority of external sources of changes monitor
the environment. There are 7 co-occurrences of internal sources and
environment being monitored, but none of these exclusively co-occur
as was the case for P1 and P10. Lastly, the mission is mostly monitored
when there is an internal source of change (4 occurrences) rather than
an external source (2 occurrences).

Evaluation metric by system deployment. It seems that for all the eval-
ations which have some metric specific to their domain, these are
eal-life systems. It is likely that as these approaches are more matured
r applied, and therefore develop metrics which hold more significant
eaning for their particular application. For example, P3 considers an

industrial robot with domain-specific evaluation metrics in terms of
time/scheduling analysis of the system. This is a specialized subset of
overhead, which becomes pertinent to the real system under study.
In a simulated deployment, the timing could instead be orchestrated
erfectly if the authors desire this to be the case. The occurrences of

performance of a mission are not specific to any kind of deployment,
eing spread almost equally among the two categories. This confirms
hat, despite their deployment conditions, every robot still tends to
ave a mission. Resource consumption only co-occurs, although only
 times in total, with a real deployment. Although it is plausible to
easure in both deployment types, measuring resource consumption

ccurately on a simulated deployment can bring extra challenges as real
ardware to measure is not being engaged.

Predictability of effects by managing system independence. We cross-
checked the predictability of adaptation effects and the independence
of the managing system in order to understand if it is feasible, according
o the state of the art, to have deterministic self-adaptation at the
rchitectural level even when the managing system is completely
ndependent from the robotic system. We believe this to be the case,
s a more separated managing system has less assumptions about the
ature of its managed system to rely on to provide predictable effects.
e identify 5 primary studies — P1, P6, P17, P19, and P21 with
etachable managing systems yet deterministic adaptation effects. As
 representative example, in the approach presented in P1, runtime
daptation maps tasks to computational components according to an
lgorithm that (i) is agnostic to the logic of the tasks themselves,
ence detachable, and (ii) respects real-time requirements of tasks,

E. Alberts et al.

c
(
t
c
o
o
e
p
o
p
a
i
i
i
r
t
p
t
i
w

i
t
m
T
t
c
d
p
t

R
t
c

b
i
t
d

t

The Journal of Systems & Software 219 (2025) 112258
making the effects of adaptation deterministic hence predictable. This
suggests it is plausible to have a detachable managing system with
predictability, as long as the adaptation happens at a level equally
removed from the specifics of the system as the managing system
is itself. In other words, it is more ‘meta’/second-order. This is also
supported by the other four studies, such as in P6 which deals with
only the relationships between components not the specifics of them,
and P21 which deals with ROS components crashing, which can happen
to any component.

Quality attributes by quality attributes. The two QAs which most
ommonly co-occur are reliability and performance efficiency
13 co-occurrences). This is somewhat unsurprising as they are also the
wo most common QAs derived from the vertical synthesis. We cannot
oncretely state from the data whether these two are part of a trade-off
r targeted together, but it seems likely that the two are congruent
r independent. For example, in P2 only reliability and performance
fficiency are targeted. In that approach reliability is prioritized over
erformance efficiency but the two QAs are not directly part of a trade-
ff. The second most common co-occurrence is between safety and
erformance efficiency (6). These are more likely to be traded off,
s a common way of being more efficient in moving more quickly,
s typically less safe as the consequence and likelihood of collision
ncreases. P26 is an example of a study which targets both and it
ndeed has a trade-off between the two for its mission of a mobile
obot navigating a narrow corridor. For the functional suitability QA
here is no meaningful co-occurrence with others. It occurs 5 times with
erformance efficiency 4 times with reliability, 2 times with safety and 1
ime with security. This follows the general trend of the data established
n the vertical synthesis. As there is only 1 instance of security overall,
e do not consider its co-occurrences.

System deployment by MAPE-K knowledge. The correlation deviates
slightly from the results of the vertical synthesis of the individual
parameters. While there is almost an even split between simulated and
real deployments (12 to 17), a large majority (11 to 3) of systems
using a component model as their representation are deployed in a
real environment. component models such as DeeCo in P17 tend to
be a form of knowledge which is a side-effect of implementation.
Therefore, the authors chose not to devise an extra layer of abstraction
over the implementation of the system to be used for adaptation of
the architecture. This was a choice, as we also observe that some
approaches using ROS, which itself provides a form of component
model, still use an extra layer of abstraction, as was done for example
with OWL ontologies in P26. For the remaining knowledge types, there
are only sparse instances of them being used with real deployment.
This, despite the fact that there are 7 instances of variability models,
6 instances of knowledge representation and 3 grammar/DSLs (although
1 one of the latter has no data for the system deployment). For the
remaining data there is an even split between being deployed in real
life or in a simulation.

MAPE-K analyze by MAPE-K plan. As one may expect from the vertical
synthesis, the most common analyze method logical inference has the
most co-occurrences with the most common planning method determin-
ng the optimal choice. However, this trend does not hold for determining
he optimal choice when it comes to the second most common analyze
ethod system state anomaly detection, which only has 1 co-occurrence.
his entails that when an anomaly is the reason for adaptation authors
end not to rely on optimization to determine which adaptation to then
hoose. Rather it seems that when system state anomaly detection is
one for analysis, relying on design time rules/models (4) and using AI
lanning languages (2) are more common co-occurrences. It is notable
hat analyzing/aggregating data always co-occurs with using AI planning
languages meaning that at least for the two approaches with this plan-
ning method analyzing/aggregating data is a prerequisite, the same holds
for the analysis method system state anomaly detection. The remaining
analysis methods do not deviate from the trends established in the
vertical synthesis of both the planning and analysis methods.
21
9. Discussion

Based on the results as reported in Sections 3–8, we discuss their
implication in terms of potential research gaps for RSASSs. We structure
this discussion in accordance with the demographics of the primary
studies and the two research questions. We offer one takeaway for
Section 3, two for RQ1 (as it has three sub-questions) and one for

Q2. The takeaways are based directly on the results discussed in
he previous sections, either directly considering parameters from the
lassification framework (Tables 3 and 4) or the overall content of

the 37 primary studies resulting from our selection process. For each
takeaway we also offer concrete one or more concrete action points.

9.1. Demographics takeaways

Research in self-adaptive robotics is fragmented. From the onset, as this
mapping study covers interdisciplinary research, we decided to search
for the primary studies at venues that are specifically about robotics
alongside those which one would expect to cover architecture-based
self-adaptation, i.e., venues for either software architecture or self-
adaptive systems. This is based on the hypothesis that research in
self-adaptive robotics at disparate venues would not necessarily be
connected to one another by way of citations or publications by the
same authors at both kinds of venues. Despite a higher percentage
of selection happening at non-robotics venues, half of the primary
studies prior to snowballing are still published at robotics venues. This
confirms our hypothesis in that two broad communities are involved:
(i) Roboticists applying self-adaptation as a solution to a problem they
face in robotics, and (ii) Self-adaptive system researchers using robots
as a case study/application for their approach. We can evidence this
further, as we have managed to identify groupings of research around
one specific approach as mentioned in Section 2.3. We can take as an
example the ReFrESH approach (P3, P11, P18, P30): despite its four
publications evidently being about architecture-based self-adaptation,
none of these four publications are published in software architecture
or self-adaptation venues. In terms of venues, there are only few recent
efforts to combine two out of the three disciplines we focused on,
for example the RSA workshop (Robotics Software Architecture) at
ICRA10 and the RoSE (Robotics Software Engineering) workshop at
ICSE.11 However, there is no venue that either focuses on architecture-
based self-adaptation in robotics or more generally on self-adaptation in
robotics. Having a dedicated venue would accelerate research progress
y having dedicated reviewers that can bridge the gaps between the
nvolved disciplines (something difficult to ensure in venues dedicated
o only one of the three disciplines) and providing a forum for dedicated
iscussions on e.g., the gaps identified in this study and related ones.

We suggest the following action point:

Research on RSASSs needs to be centralized. There need to be
efforts on the parts of researchers to publish at venues outside
of the discipline from which they originate. This will lead to
increased awareness of research efforts between communities.

9.2. RQ1 takeaways

9.2.1. Lack of Homogeneity within RSASSs
Our study had the overarching goal of characterizing the approaches

o RSASSs. The aspiration was that certain patterns would emerge
with respect to the design, development, and operation of RSASSs.
However, our results indicate that there seems to be no definitive
set of such patterns. In principle, we have found around 27 distinct

10 International Conference on Robotics and Automation.
11 International Conference on Software Engineering.

E. Alberts et al.

i
i
o
p
R
p
t
t
i
o

S
s
m
f
i
d
c
w
t
r
i

o
r
u
I
e
l
a

c
i
w
s
r
t
t
t

f
t
f
p
t
d
c
a
f
p
i
t
a
p
a
a

a

Q

w
s
o
i
t
t
e

e
l
i
v

The Journal of Systems & Software 219 (2025) 112258
approaches (considering the groupings as mentioned in Section 2.3) to
ntroduce architecture-based self-adaptation (in our 37 primary studies)
n robotic systems. Few of those approaches share the same techniques
r technologies to accomplish this. For example, in terms of software
latform (6.4) the only common thread is the use of the quite general
OS communication middleware by a third of the primary studies. This
oints towards there being little reuse and potentially redundant work
aking place, as distinct groups of researchers are creating solutions
o similar problems, although with each iteration small biases being
ntroduced for the use case at hand. This stems from a broader trend
f these approaches being quite mission-specific. It seems that the

prevalent motivation for RSASS is improving the performance of a
specific mission that is hampered by uncertainty. This is also evi-
denced by the results in Sections 7 and 6.3, where mission-centric
data dominates other options. The RSASSs represented in our primary
studies are colored by the missions the authors consider and the related
uncertainties addressed by self-adaptation.

Uncertainty can however theoretically play a role in any mission.
pecifically, it seems infeasible for practitioners to account for every
ingle eventuality prior to deployment. It is likely then that there are
any robotics missions which suffer from uncertainties which are inef-

iciently addressed through maintenance and evolution of the system —
.e., by taking it out of operation, investigating the encountered issues
ue to uncertainty, and making the system robust to it. What these
ases would require is a set of patterns or a reference architecture which
ould allow for efficient introduction of self-adaptive capabilities to

heir systems. After all, the added benefit of handling uncertainty at
untime rather than design time needs to outweigh the cost of its
ntroduction to the system to be appealing (Gerostathopoulos et al.,

2022; Van Der Donckt et al., 2018). From our primary studies, we
bserve a distinct lack of any such patterns, meaning this constitutes a
esearch gap. An honorable mention is the SHAGE framework, which is
sed in P32, but unfortunately not in any of the other primary studies.
t seems that while the primary studies do all conform – implicitly or
xplicitly – to the reference architecture of MAPE-K, there is no deeper
evel which acknowledges the inherent challenges common to robotics
pplications.

Based on the above, we suggest the following action point:

Equal focus should be placed on consolidation as is to novel
contributions in the field of RSASSs. Beside our own high-level
overview, studies are required which identify design patterns,
reference architectures, and guidelines for the development of
non-trivial, feature-rich self-adaptive robotics systems.

9.2.2. Granularity of adaptation mechanisms
Within architecture-based self-adaptive systems, adaptation loops

an be specified at different granularity levels (system, subsystem,
ndividual component) (Weyns et al., 2013). In RSASSs, this concerns
hether adaptations should be applied at a system-level, a task-level, or

ome combination of both. Practically, the latter proves necessary yet
equires careful consideration between the adaptations between con-
esting tasks. For example, we cannot have the ‘performance efficient’
ask A drain all the battery resources to be used by the ‘energy efficient’
ask B. As it stands, we can state based on our findings in Section 6.1

that for the majority of the primary studies adaptation is done within
the frame of reference of a singular task. It holds in principle then that a
singular task of a robotic system can constitute an entire self-adaptive
system in itself. Orthogonally, the adaptation carried out within one
task may itself have a local or global scope (as seen in Section 5.1).
Despite its indirect relation to our current point, we can surmise that
adaptations with a global scope would be necessary to handle systems
which have contested resources between two tasks. Among the primary
studies, adapting with a global scope is relatively rare (only 11 primary
studies out of 37). Therefore, despite not directly extracting data as to
 o

22
the granularity at which adaptation mechanisms act (task vs. system-
level) we can say that it is unlikely that the approaches of our primary
studies coordinate tasks with contested resources.

More substantively, we identify the set of studies P4, P9, P17, P32,
and P33 which have the distinct consideration of the granularity of
adaptation mechanisms of a robotics system as a primary concern of
their approach. For example, in P4 the self-adaptation is performed
as part of a two-step process. Firstly, adaptations of the system’s
architecture to meet imposed requirements as is traditional in self-
adaptation is done. Secondarily, within the constraints of those adapted
architectures, adaptations of the behavioral/functional (e.g., moving
rom point A to B of the robot) aspects of the robot’s task that reflect
he circumstances of the architectural adaptations available from the
irst stage. For example, the state of the software architecture can
revent certain functional behaviors e.g., changing the path driven by
he robot depending on the sensors it has available, as navigating a
ark corridor without a light is unsafe. Ultimately, despite the distinct
onsideration of task, the approach of P4 still operates within what is
 singular task: navigation through a space. It remains to be seen how
easible this approach is when it comes to multiple tasks having to be
erformed by the robots, potentially even simultaneously. For example,
f a parallel task is to pick up and deliver objects throughout the space,
his will influence which paths can be taken, and ultimately even the
rchitectural adaptations, potentially leading to a deadlock between the
riorities of both stages of adaptation. For example, the architecture
dapted into may make it so no paths which lead to the deliver location
re available.

P9, P32, and P33 are all broadly examples of adapting the software
architecture of a robotic system on the basis of the task it is currently
ssigned. For example, in P32 a robot may be asked to bring a user

a glass of water, which then sees the software architecture modified
to facilitate this task. The robot then needs to have the software
component for the camera feed active to identify the glass of water.

uality attributes only play a role then when it comes to alternatives
between architectures which accomplish said task. This is an almost
complete reversal of hierarchy relative to P4 where the task execution is

hat was modified to suit architectural availability. What remains to be
een from these is which angle of approach works best for which kinds
f RSASSs. Perhaps a third, higher level more comprehensive approach
s plausible, which trades off the prioritization of architectural adap-
ations and task execution. Further, none of these prominently address
he peaceful co-existence of multiple self-adaptive tasks of a system,
ither in parallel or sequentially.

To conclude, a self-adaptive robot would have to perform a mul-
titude of distinct tasks during a realistic mission. Making only some
of those tasks self-adaptive in isolation runs the risk of having un-
xpected system-level interactions between the individual adaptation
oops. While this is recognized by five primary studies, we believe there
s still ample space for approaches that consolidate the local and global
iews in a systematic and comprehensive way.

We offer the following action point:

Studies should recognize the ramifications of the integration
of self-adaptation into robotics systems. As of yet the focus is
too often laid on the initial endowment of self-adaptive capabili-
ties. Few studies assume a self-adaptive robotic system, and then
consider further complexities such as resolving conflicts between
multiple types of adaptation and their interaction.

9.3. RQ2 takeaways

Violation of open science principles. Despite characterizing many RSASS
approaches, in this study we are still not able to easily reproduce these
approaches. There is a striking lack in the primary studies of availability
f source code, replication packages, and low-level implementation

E. Alberts et al.

e
W
c
f
r

v
p
i
c
s
h
v
t
t

c
t

r

c
r
s
w
T
f
v
s
s

r
t
i
i
s
i
t
v
d

o
d
f
e
c
r
t

The Journal of Systems & Software 219 (2025) 112258
details. This is most evident in our data parameter which shows that
one quarter of the approaches do not indicate any clear software
platform, and another quarter uses mostly proprietary technology. A
lack of replication packages of course can bring doubts about the
soundness of results published, as they cannot be readily confirmed by
a third party. For prospective authors trying to align themselves with
the state of the art this is a disappointing result. Ideally, in future work
we as the authors and other researchers would like to take inspiration
from and directly extend the approaches we characterize. By not taking
the effort to provide source code or replication details, the authors of
those primary studies are slowing down progress in this field.

The action points for RQ2 are thus as follows:

Studies should be made reproducible by standardizing the
execution environments. Utilization of efforts such as ROS dev
containersa should become the norm. Containerizing a system
eliminates dependency issues and makes it robust against be-
coming outdated due to updates to both libraries and operating
systems. Further, it allows the deployment across operating sys-
tems, removing the barrier to the entry of Ubuntu-like operating
systems often seen in robotics software.

a https://github.com/devrt/ros-devcontainer-vscode.

Efforts towards providing comprehensive and working repli-
cation packages should be valued and recognized at the
relevant research venues. For example, the badge system of
ACMa can be incorporated to indicate studies are reproducible.
While this may be potentially time-consuming for the author they
can incentivized e.g., by increasing a papers position when in
contention for existing awards such as ‘best paper’.

a https://www.acm.org/publications/policies/artifact-review-and-
badging-current.

Replication packages should provide complete instructions
on how to replicate experiments and how to extend the work.
To aid in the latter, open-source frameworks such as ROS should
be utilized, when possible.

10. Threats to validity

We follow the classification of validity threats as defined by Wohlin
t al. (2012) to discuss to threats to validity of our mapping study.
e cover, in order, the internal validity (the extent to which causal

onclusion can be made), the external validity (generalizability of
indings), construct validity (use of correct measure and scope) and
eliability (reproducibility of the results).

10.1. Internal validity

Internal validity refers to the extent to which a causal conclu-
sion can be made based on the study. A potential threat to internal
alidity for this study stems from its interdisciplinary nature. It is
lausible that due to their own biases, studies published by researchers
n particular research communities (and their venues) influence the
onclusions drawn by our study. For example, approaches published in
elf-adaptation venues may focus more on software aspects than on the
ardware and low-level control aspects than in robotics venues and vice
ersa. We mitigate this threat by virtue of our study design, particularly
he proceedings collection as outlined in Section 2.2.1. We made sure
o select a representative number of both journals and conferences from
23
each of the three disciplines. This selection process also poses a threat,
as it was not done systematically but by relying on the knowledge and
experience of the authors. This is mitigated as we ensured that each
onference had a rank of B or more in the CORE ranking system should
hey be cataloged there. This is indicative of their quality independent

of the potential biases of the authors. Finally, the representation of
different perspectives on RSASS is further bolstered by the lenient
search strings used, for example a potentially-relevant study in robotics
needed only to mention either architecture or adaptation in their title.
This was a conscious trade-off as this leniency inflated the number
of potentially-relevant studies to select from heavily, especially from
obotics venues.

10.2. External validity

External validity refers to the extent to which the findings can
be generalized. In our study, we aim to generalize results for the
research that lies in the intersection of three research domains: robotics,
self-adaptive systems, and software architecture. We strive for an as
representative as possible set of papers from this intersection. The pro-
ceedings collection, as also discussed in the previous subsection, may
onstrain the studies found. It is possible for example that potentially
elevant studies are published at more niche venues than those cho-
en, especially ones which may be interdisciplinary. To mitigate this,
e performed a round of snowballing on the studies initial selected.
his removed the constraint of the original list of proceedings used
or our automated search to now include those from any venue. By
irtue of our inclusion criteria, we still ensure these are peer-reviewed
tudies. This was an effective mitigation strategy since ultimately more
elected studies emerged from snowballing than the selected venues.

Simultaneously, this demonstrates the value of the studies selected from
the selected venues as they themselves cited and were cited by the
snowballed studies. What remains as a threat then is that we did not do
exhaustive snowballing, meaning even more studies may be out there
that could have been selected.

10.3. Construct validity

Construct validity refers to the extent to which we obtained the
ight measure and whether we defined the right scope in relation to
he topic of our study. A potential threat to construct validity comes
n the interpretation of the potentially-relevant studies due to our
nclusion criteria. Specifically, criterion I2 has this risk, as it states the
tudy must ‘‘involve software architecture’’. The extent to which an
ndividual study does so is not always clear-cut. This is exacerbated by
he influence of how authors choose to present their work to particular
enues, with the potential existing for authors at robotics venues to
ownplay the software architecture aspects of their approaches. To

mitigate this, we had four of the authors involved in the selection
of the studies at all stages. A pilot process was followed as detailed
in Section 2.2.3 to establish the inter-rater agreement between each
author was significant. Further, for all the primary studies selected
afterwards the selection was reviewed by the other authors to ensure
every inclusion and exclusion criterion was applied correctly. This was
effective to such an extent that studies were also removed from the set
f primary studies during data extraction phases, as this is when more
etailed cross-reviewing of the selection was done. The classification
ramework also poses threats to the validity of the data extracted and by
xtension the study as a whole. Particularly, parameters with an open
lassification type require interpretation from the authors to turn the
aw data extracted into the final set of labels determined. To mitigate
he bias introduced during this interpretation, for every parameter we

assigned a secondary person (from the authors) to review the labels
assigned. Additionally, the original authors responsible were required
to provide an elucidation for each data point. These can also be found
in the raw data of our replication package.

https://github.com/devrt/ros-devcontainer-vscode
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

E. Alberts et al.

r

c
i
c

t
t
s
c
t
a

i
r
e
w
c
I
a
m
b
r
a
s
a
a
q
h

r
t
i
w
o
t
c

t
A
a

i

F
s
t
h
s
t
s

t
t
t

The Journal of Systems & Software 219 (2025) 112258
10.4. Reliability

Reliability refers to the extent to which we can ensure that our
esults are the same if our study would be conducted again. A threat

is related to the biases imposed by the researchers involved in the
study. We mitigated this threat by using a protocol that was reviewed
by an external expert. We also make all the data available for other
researchers in a replication package (Replication, 2024) including a
opy of the database used to perform the automated search resulting
n the potentially-relevant studies as well the inclusion and exclusion
riteria and how they were applied to each of these.

11. Related work

In this section we consider work related to our own study. Par-
icularly, we consider recent examples of secondary studies which
ouch upon (partial) combinations of the three disciplines of robotics,
oftware architecture and self-adaptation. While our novelty lies in the
ombination of all three of these disciplines, we believe it proves useful
o compare and contrast against other studies which combine pairings
mong these three e.g., software architectures and robotics.

Bozhinoski et al. (2019) perform a systematic mapping study specif-
cally about the quality attribute of safety when it comes to mobile
obots. Specifically, they identify 58 studies which propose software
ngineering approaches to ensure safety in mobile robotics systems. As
e do in our study with self-adaptation approaches, the authors try to

haracterize the approaches which manage the safety of the system.
n their study, the authors also consider the ‘‘potential for industrial
doption’’ of the studies, something which we have not, due to differing
otivation for our study. We do however touch upon the theme slightly

y extracting and analyzing the depth of evaluation and the system
ealness in its deployment and mission. Relevantly, in their study the
uthors report on a research gap regarding a lack of approaches to
upport adaptive behavior. In our study we explore that gap further,
s we find that there are only 8 instances targeting safety as a quality
ttribute in our primary studies. That figure is in stark contrast to
uality attributes such as performance efficiency and reliability which
ave 29 and 15 instances respectively.

Albonico et al. (2023) perform a systematic mapping study on
software engineering research in systems using ROS, seeking to char-
acterize the research and ascertain its potential for industrial adoption.
Their study is related to ours in that it focuses on software engineering
of robotics systems, yet their study is broader in some respects and
narrower in others. Their study is broader in that it at a surface level
considers all the topics of research in the interdisciplinary field of
software engineering and robotics. In our study we add a third field of
self-adaptation and focus specifically on the intersection of the three.
Their study is narrower in that it exclusively considers ROS-based
systems. While many of our approaches use ROS (15 of them), we
have not selected our studies on the basis of it and therefore consider
research done on a variety of software platforms. To conclude, topic-
wise our study is a subset of theirs with a particular emphasis on
architecture-based self-adaptation research. Moreover, Albonico et al.
identify ‘‘enabling self-adaptation’’ as one of the recurring challenges
in the studies they identified. One of their examples of this challenge
is the same study labeled P31 in our work.

Peldszus et al. (2023) perform a systematic literature review of how
obotics systems re-configure their software, and of the frameworks
hey utilize to enable this. To do so they first reviewed literature to
dentify 98 studies and used these to identify 48 software artifacts
hich involve reconfiguration. They report primarily on characteristics
f the reconfiguration process itself. The study is quite related to ours in
hat it particularly focuses on the Execution phase of MAPE-K which we
over in Section 5.2. The results of the study by Peldszus et al. elucidate

a means to an end of adaptation, the very last step in the process
according to MAPE-K. There is some similarity in that they also extract
24
the ‘‘reconfiguration logic’’ which is a superset of our adaptation logic.
Additionally, the aspects of reconfigurations such as the ‘‘reasons’’,
‘‘time’’, ‘‘granularity’’ ‘‘lifespan’’ etc. are reminiscent of the modeling
dimension by Andersson et al. (2009) we make use of, particularly
those describing the mechanism of adaptation. A crucial distinction
is that while the studies and artifacts they consider reconfigure them-
selves, they are not necessarily self-adaptive systems. Particularly, these
systems do not necessarily fulfill the internal principle (Weyns, 2020)
which requires the existence of a distinct entity responsible for adapta-
ion concerns beside the robotic system which covers domain concerns.
dditionally, they do not only consider systems which reconfigure on
n architectural basis as we do.

Ahmad and Babar (2016) perform a systematic mapping study with
the aim of taxonomizing the research done on robotic software architec-
tures. Their study is similar in that it is also a cross-disciplinary look
at software architecture and robotics, the distinction being our third
added dimension of self-adaptation. The implication of the similarity
is that there should be overlap between the results they obtained,
particularly those of ours relating strictly to software architecture, such
as in Sections 6.4, 5.2, among others. In their study, Ahmad and Babar
identify four ‘‘architectural frameworks to support robotic software’’.
These in principle can facilitate the architecture-based adaptation of
robotics software, by providing an architectural representation to adapt
through for example swapping out components. For example, they iden-
tify PRISM-MW which is used in P14 and P28, SHAGE which is used
in P32, and ORCA which is mentioned in P1 as something the authors
try to improve on. Particularly, SHAGE is relevant to self-adaptation
and is only found by the authors to be mentioned in three studies; it
is testament to the extent of our own study that we also identified it.
The remainder of their study covers exclusively software architectural
aspects of the studies e.g., notation, architectural evaluation. While our
study instead has a focus on self-adaptation aspects.

The systematic literature review by Muccini et al. (2016) is quite
similar to ours in that they identify different approaches to architecture-
based self-adaptation to identify its state of the art as we do. The type
of self-adaptive systems they specifically targeted, i.e., ‘‘cyber–physical’’
systems, is different from ours, although we also consider some types
of robotics systems to be cyber–physical. This entails that the study is
essentially a parallel one to ours. It is notable though that the study
was completed in 2016 which is prior to about half our primary studies
being published. They report that 2 of the 42 studies they identify are
n the robotics domain. Unfortunately, looking closer at their data we

can confirm that we did not select either of these in our own study.
urther, many of the data points they extract from the studies are
imilar to ours. For example, the authors also extract quality attributes
argeted by the approaches, details of the adaptation mechanisms, and
ow the systems are evaluated. Ultimately, the disparity in the type of
elf-adaptive system has the implication that results reported in these
wo studies (ours and that by Muccini et al.) describe quite different
ets of systems.

In 2012 Weyns and Ahmad (2013) performed a systematic litera-
ture review of architecture-based self-adaptation. Clearly, their topic
is broader than ours in that they do not focus on any particular
application domain of self-adaptive systems. Relevant to our study is
hat 7 of the studies they identify are in the robotics domain, although
here is at most two years of overlap between studies considered due
o the inclusion criteria. We select studies as of 2011, while the study

by Weyns and Ahmad selects up until the end of 2012. However,
the fact that 7 studies in robotics were selected by the study despite
this indicates our lower bound of time may have been somewhat too
conservative. Despite our best efforts, we are unable to identify these
7 studies. Otherwise, we could potentially compare them to our own
set of primary studies. It appears that in the data provided alongside
the paper as well as in its text the authors fail to report on the titles
or any other demographic details of the studies that would allow us to
identify them. Among their results it is interesting is that they similarly

E. Alberts et al.

t
s
d

v

i
t
i
t
m
c
o
i
o
q
q
c
o
c
L
n
g

s
w
M
s

d

t
m
w
s

m

m
a
a
a
t

c
e

o
t
s

w
a

t
a

The Journal of Systems & Software 219 (2025) 112258
report that performance efficiency and reliability are among the most
argeted quality attributes as we do, indicating that architecture-based
elf-adaptation in robotics is reflective of the broader field in that
imension.

Swanborn and Malavolta (2020) perform a systematic literature re-
iew particularly considering the quality attribute of energy efficiency

and the impact of robotics systems on the consumption of energy. This
s of particular relevance to mobile robots which need their operation
o be sustained by a battery with finite capacity. For the 15 papers they
dentified, the authors consider how energy is measured, the applica-
ion domain of the robots, and which parts of the systems consume the
ost energy. There are similarities to our own study in that we also

onsider the quality attributes of robotics systems, but from the purview
f using these to motivate adaptation decisions. The primary difference
s that the study by Swanborn and Malavolta is restrictive in scope than
urs as they only focus on energy efficiency while we consider any
uality attribute. For example, where they identify different metrics to
uantify energy consumption such as frames per second per watt, we
onsider more generally what metrics are used to evaluate the system in
ur study. The metrics they identify would then fall under the resource
onsumption category of evaluation strategy as extracted in this study.
astly, it is clear that their study neither considers software architecture
or self-adaptation as a discerning factor, looking only orthogonally at
eneral robotics software system which measure their energy efficiency.

All in all, it is evident that while numerous studies consider the
intersection of subsets of the three disciplines covered by our study, no
tudy comprehensively addresses the intersection of all three. Related
ork which is broader in scope, such as that by Weyns and Ahmad, and
uccini et al. exist, while there are also studies which are more narrow

uch as that by Swanborn and Malavolta (2020). It is also notable that
the related work covers a large timespan indicating that there is an
enduring research interest in the disciplines at hand.

12. Conclusions and future work

In this section we give a concluding summary of our study and
escribe the future work we foresee following this research.

12.1. Conclusions

In our systematic mapping study, we have sought to identify, clas-
sify, and analyze the characteristics, feedback loops employed by,
robotics platforms supported by, and evaluation strategies present in
the literature on robotics software architecture-based self-adaptive sys-
tems (RSASSs). To do so we have systematically gathered and selected
from a pool of 3087 potentially relevant studies to come to a set
of 37 primary studies. These primary studies describe a variety of
approaches to RSASSs. To determine their characteristics, we have
used a comprehensive classification framework and extracted data from
each primary study. The framework describes the primary studies from
he perspectives of the self-adaptive system as a whole (RQ1.1), its
anaging system (RQ1.2), and managed system (RQ1.3). Additionally,
e have considered the evaluation strategies used within these primary

tudies (RQ2) by the authors to validate their contributions.
For RQ1.1, we find that the goal of RSASSs when considered in their

entirety is primarily to recover from errors and faults, while targeting
quality attributes such as performance efficiency, reliability, safety, and
functional suitability. We also conclude that the managing systems are

ostly separable from the robotic systems they manage.
For RQ1.2, we find that managing systems of RSASSs primarily

ake use of mechanisms based on constraint solving, model checking,
nd search procedures. In doing so, both parametric and structural
daptations are enacted. The feedback loops employed by these man-
ging systems tend to monitor their managed system much more often
han the environment it interacts with or the tasks it has to per-
form. This information is then analyzed to determine the need to

25
adapt through techniques such as logical inference and anomaly de-
tection through comparison. When such a need arises, the feedback
loop chooses an adaptation through optimization, or decision-making
models such as rules defined prior to runtime.

For RQ1.3, we find that managed robotic systems of RSASSs can be
haracterized as primarily having missions related to navigation and
mergency response. The missions assigned to these robots tend not to

evolve at runtime. The changes in these robotic systems that lead to
adaptation are primarily non-functional ones emerging from internal
sources such as faults/errors. The models of robots which perform these
missions vary widely, without any predominant model emerging.

For RQ2 we find that evaluations are performed primarily in real-
world conditions, involving either synthetic or real missions. As a
means of quantifying the performance of the system, we find that how
well the mission is performed is most prevalent, followed by measures
f overhead and quality of service. The evaluations display depth, in
hat a significant majority use empirical experiments with at least two
ystem configurations to evaluate the proposed approaches. When it

comes to being able to reproduce the evaluations for further validation,
we find that only few primary studies provide the means to do so.

Based on the results obtained in answering each research question,
we have determined a number of takeaways with concrete action
points. Among these we identify a need for research into RSASS to
become more centralized in terms of community. We find there should
be a focus on consolidating the state of RSASSs (as we have partially
done in this study) alongside the primarily novel contributions which
exist now. We also find that the maturity in solving the complexities
of RSASSs is lacking. We hence call upon researchers to consider
the deeper implications of an RSASSs operating in realistic scenarios.
Lastly, we call upon researchers to strive to make their RSASS sys-
tems reusable and their results reproducible by others. This not only
strengthens the validity of their achieved results, but also provides
other researchers with foundations upon which to build their own
contributions. This can go hand in hand with addressing more complex
issues which arise in the sophisticated use of RSASSs. For example,
the balancing of mission and quality of service concerns, and the
self-adaptation of robotic systems at differing levels of granularity.

12.2. Future work

Based on our results and discussion, we consider three avenues for
future research. We consider how in what ways future studies can better
consolidate the state of the art, broaden our consideration of the state
of the art, and include more than just academic sources.

12.2.1. Consolidation
As was hinted upon in the action point of Section 9.2.1, potential

future work lies into consolidating the state of the art of RSASSs at the
design and implementation level. For example, a reference architecture
can be devised based on our set of primary studies and others which
recognizes the unique challenges of RSASSs compared to other types
of self-adaptive systems. The creation of such a reference can provide

hat we have found to be a missing foundation upon which to develop
nd then research RSASSs. One potential way of doing so would be

to look deeper into the set of primary studies covered in this study.
By using the existing source code made available in few of them, and
establishing lines of contact with the authors of others, one can start
to extract design-time tactics/patterns of these types of systems as a
whole. This would be similar to previous efforts such as the study
by Malavolta et al. (2020). These kinds of design tacits/patterns can
hen be analyzed e.g., to determine the quality of service they provide,
nd then organized in a catalogue of reusable best practices. In an ideal

scenario, future developers of RSASSs are then equipped with a useful
toolkit which helps them tackle recurrent problems and avoid common
pitfalls in the implementation and operation of RSASSs.

E. Alberts et al.

b

The Journal of Systems & Software 219 (2025) 112258
Table 4
The classification framework with each possible value defined.

Parameter Possible values Definition

Adaptation goal Change functional behavior The actions of the system which relate to performing its function as specified by its mission are to
be modified.

Deal with environmental changes Undesirable impacts of changes originating outside of the system are to be mitigated.
Keep meeting quality requirements at
runtime

A set of requirements imposed on the system by the user which relate to quality attributes of the
system are to be satisfied continually.

Optimize resource usage The resources available to the system are to be allocated according to a defined sense of
optimality.

Optimize system performance The efficiency by which the system performs its assigned mission is to be optimized.
Recover from attacks The system is to be robust towards undesirable changes originating through the malicious actions

of external actors.
Recover from errors/faults The impact of an undesirable change originating within the system is to be mitigated.

Quality attributes Functional Suitability ‘‘capability of a product to provide functions that meet stated and implied needs of intended users
when it is used under specified conditions’’ (ISO/IEC, 2023)

Performance Efficiency ‘‘capability of a product to perform its functions within specified time and throughput parameters
and be efficient in the use of resources under specified conditions’’ (ISO/IEC, 2023)

Reliability ‘‘capability of a product to perform specified functions under specified conditions for a specified
period of time without interruptions and failures’’ (ISO/IEC, 2023)

Safety ‘‘capability of a product under defined conditions to avoid a state in which human life, health,
property, or the environment is endangered’’ (ISO/IEC, 2023)

Security ‘‘capability of a product to protect information and data so that persons or other products have
the degree of data access appropriate to their types and levels of authorization, and to defend
against attack patterns by malicious actors’’ (ISO/IEC, 2023)

Managing system
independence

Detachable The managing system can theoretically be used or is shown to be used with another managed
system.

Inseparable The managing system is intertwined with the managed system to an extent that the boundary
between the two is difficult to delineate.

Requires Representation The managing system operates using an explicit representation of the managed system which can
theoretically be recreated for another managed system.

Mechanism — Method AI Planner Runtime decision-making is based on an AI planner (e.g., PDDL).
Constraint Solving/Model Checking Runtime decision-making is based on constraint solving (e.g., SAT) or model checking (e.g.,

PRISM).
Application-specific Algorithm Runtime decision-making is based on adhoc logic specific to the application.
Numerical Optimization Runtime decision-making is based on solving a numerical optimization problem (see

https://neos-guide.org/guide/types/).
Ontological Reasoning Runtime decision-making involves ontological modeling and reasoning (e.g., OWL, SWRL).
Search Procedure Runtime decision-making is based on an ad-hoc or generic search algorithm (e.g., genetic

algorithm).
Design-time Rules Runtime decision-making is based on rules/actions (e.g. Event-Condition-Action rules, state

transitions) provided at design time.
Graph Transformation Runtime decision-making is based on transforming or switching between graph structures

representing the managed system.

Mechanism — Type Parametric Adaptation is related to the parameters of system components.
Structural Adaptation is related to the structuring of system components.

Mechanism — Organization Centralized Adaptation is done by a single component.
Decentralized Adaptation is distributed amongst multiple components.

Mechanism — Scope Global Adaptation affects the entirety of the system.
Local Adaptation is localized to one part of the system.

Mechanism — Duration Short The system is adapting for seconds to hours.
Medium The system is adapting for hours to months.
Long The system is adapting for months to years.

Mechanism — Timeliness Best effort It cannot be guaranteed that a planned adaptation is executed.
Dependent Whether a planned adaptation has guaranteed execution is not predictable and is influenced by

external factors.
Guaranteed Every planned adaptation is guaranteed to be executed.

Mechanism — Trigger Event-triggered The change that triggers adaptation is associated with an event.
Time-triggered The change that triggers adaptation is associated with a time slot.

MAPE-K — Monitoring Environment The managing system monitors the real world environment in which the robotic system exists.
Managed System The managing system monitors the state (hardware or software) of the robotic system.
Mission The managing system monitors the state (e.g. progress, changes in, or transition between tasks) of

the mission assigned to the robotic system.

(continued on next page)
f
S

12.2.2. Broadening the scope of study
In this study we have specifically targeted architecture-based self-

adaptation in robotics. However, through the selection process we are
aware that there are several examples of non-architectural adaptation
eing employed in robotics. These stem both from the robotics domain
 o

26
e.g., adaptive control, and software engineering e.g., self-organization.
Particularly, we believe an umbrella term for self-organization in the
orm of task-based adaptation can be promising expansion of this study.
elf-organizing systems, instead of relying on a runtime representation
f the software architecture, reconsider their task planning at runtime.

https://neos-guide.org/guide/types/

E. Alberts et al.

t

The Journal of Systems & Software 219 (2025) 112258
Table 4 (continued).
MAPE-K — Analysis Analyzing/Aggregating Data The decision to adapt is made on the basis of a monitored data analysis and or aggregation such

as through the use of statistical methods.
Comparison To Threshold(s) The decision to adapt is made on the basis comparing monitored values to (possibly pre-defined)

dynamic or static thresholds.
Done During Plan The decision to adapt is inseparably made alongside the decision of which adaptation to enact

within the planning phase of MAPE-K.
Logical Inference The decision to adapt is made on the basis of a reasoning over a formalized logic.
System State Anomaly Detection The decision to adapt is made on the basis of detecting an anomalous potentially detrimental state

of the system.
Task/User-Driven The decision to adapt is made on the basis of a directive a by human user, or is the determined

by the task plan of the system corresponding to its mission.

MAPE-K — Planning Determining The Optimal Choice The adaptation to enact is determined through continually determining which adaptation within a
set of options is optimal as defined by the designer.

Relying On Design-Time Rules/Models The adaptation to enact is determined by relying on a model of the system or a set of rules which
describe it, which is defined prior to deployment.

Using AI Planning Languages The adaptation to enact is determined by the output of solving a planning problem specified in an
artificial intelligence planning language such as PDDL.

MAPE-K — Execution Addition and/or Removal of Components Adaptation(s) either make it so that an existing active component is now in a state in which it no
longer affects or can be affect by other components (unload, delete, remove) or introduce a
component which held that status prior to now be able to affect and be affected by other
components.

Change in Relationship(s) Between
Components

Adaptation(s) make it so that a defined relationship between two or more components (parent and
child, publish subscribe) is augmented by for example reversing hierarchy or flow or information,
or introducing/removing components from the relationship.

Component Redeployment Adaptation(s) change which machine (hardware-wise) executes the process supporting a
component without affecting its relationships with other components.

Reparameterization of Components Adaptation(s) change the values assigned to the parameters provided by a component.

MAPE-K — Knowledge Component Model An abstract representation removed from the code-level implementation which represents the
system as a component-based system

Knowledge Representation Knowledge representation as it exists within artificial intelligence, is used to describe the software
architecture of the system

Variability Model A representation of the variability points within the software architecture (e.g. which components
fulfill the same role)

Grammar/DSL A syntax is defined for a language/grammar which describes the software architecture of the
system.

Behavior Model A representation of adaptations as the possible actions (behavior) of components of the systems is
used to manipulate its architecture e.g. a state machine

Architecture Description Language A computer language with the express purpose of describing, representing, and communicating a
software architecture.

Mission Approach Only No mission is considered, only an approach for potentially performing missions is reported on.
Emergency Response The robotic system is tasked with aiding efforts in responding to an emergency situation with an

uncertain environment such as one resulting from a disaster.
Industrial Assembly The robotic system is tasked with the creation of products in an industrial capacity.
Mobile Manipulation The robotic system involves the combination of manipulating objects (e.g., with a robotic arm)

and navigating through a space.
Navigation The robotic system is tasked with moving itself from one point in a space to another.
Object Tracking The robotic system is tasked with continually determining the location of an object as it

potentially moves throughout a space
Service The robotic system performs tasks which tend to involve the potential for interaction with humans

while rendering a service.

Mission — Evolution Dynamic The mission assigned to the robotic system may change during operation.
Static The mission assigned to the robotic system does not change during operation.

Change — Source External The cause for adaptation originates outside of the system e.g. the environment around it.
Internal The cause for adaptation originates from within the system.

Change — Type Functional The cause for adaptation is related to the functionality the system provides.
Non-functional The cause for adaptation is related to quality concerns regarding the operation of the system.
Technological The cause for adaptation is related to the software and hardware which supports delivery of

service.

Change — Anticipation Foreseeable The cause for adaptation is planned for prior.
Foreseen The cause for adaptation is already taken care of.
Unforeseen The cause for adaptation is not planned for.

Change — Frequency Rare The cause for adaptation emerges regularly yet rarely.
Infrequent The cause for adaptation emerges regularly yet infrequently.
Frequent The cause for adaptation emerges regularly with some frequency.
Random The cause for adaptation emerges stochastically i.e. irregularly

Effect — Criticality Harmless Should self-adaptation fail this has no significant drawbacks.
Mission-critical Should self-adaptation fail it jeopardizes completion of the mission assigned.
Safety-critical Should self-adaptation fail it jeopardizes the safety either of the robotic system itself or its

surroundings.

(continued on next page)
For example, if due to a robot being stuck it can no longer perform a
ask of navigating, it can choose to move to perform a different task
27
which does not require moving — like manipulation. To capture self-
organization, one can then consider cases where upon the task being

E. Alberts et al.

f

The Journal of Systems & Software 219 (2025) 112258
Table 4 (continued).
Effect — Predictability Deterministic The consequence of an adaptation is predictable.

Non-deterministic The consequence of an adaptation possibly unpredictable i.e., no guarantees are provided.

Effect — Overhead Significant The system’s performance is effectively significantly by performing self-adaptation.
Insignificant The system’s performance is effectively insignificantly by performing self-adaptation.
Failure The system fails to deliver service upon performing self-adaptation.
Dependent The impact on the system of an adaptation is not predictable, and is influenced by external factors.

Effect — Resilience Resilient The system is resilient to some kinds of changes faced.
Irresilient The system is not resilient to some kinds of changes faced.
Vulnerable The system is vulnerable to all changes faced.
Dependent The resilience of the system to a particular change is not predictable, and is influenced by

external factors.

Software platform ROS1/2 The Robot Operating System, see https://www.ros.org/

Type of robots Turtlebot https://www.turtlebot.com/
NAO https://www.aldebaran.com/en/nao
HexManipulator Ad-hoc, see primary studies P11 and P18 for the details.

System deployment Combined The robotic system as evaluated is considered both in simulated capacity and in the real world,
integrated or not.

Real The robotic system as evaluated is only considered in the real world (within the study).
Simulated The robotic system as evaluated is only considered in simulated capacity and not in the real world.

System realism Real The evaluation scenario stems from a clear real-world application and the evaluation is performed
in a context which is true to that scenario.

Synthetic The evaluation is simplified by introducing synthetic elements such as a lab environment, which
simplifies the context in which it performs.

Evaluation metric Quality The quality of service provided by the system is quantified independent of its mission is used to
evaluate the approach.

Mission Performance A metric which indicates progress towards or quality in completion of the mission is used to
evaluate the approach.

Overhead (Introduced) The overhead introduced by the approach proposed in the study is measured to evaluate it.
Domain-Specific Performance A metric specific and pertinent to the domain the mission assigned belongs to is used to evaluate

the approach.
Resource Consumption The consumption of a (potentially finite) resource by the system over time is used to evaluate the

approach.

Evaluation depth No Evaluation No evaluation section or any other form of evaluative reporting regarding the proposed approach
is provided in the study.

Showcase The evaluation of the proposed approach is performed with a singular experiment configuration
(e.g., independent variables).

Experiment The evaluation of the proposed approach is performed with a quantitative comparison between at
least two experiment configurations.

Replication package Absent No reference or link to replication material is provided which pertains to the proposed approach
in the primary study.

Present The primary study provides a reference or link to some for of replication (source code, data)
material regarding the proposed approach.
t
C
t

impossible, the task is reassigned to a different robot/agent which is
not stuck. The consideration of these different cases for self-adaptation
not only cover what is an unexplored angle relative to this study, but
can also complement the results of this study by allowing a comparison
and contrast between the characteristics extracted.

12.2.3. Going beyond academia
Considering the prevalence of robotics in industry, it seems an

especially promising future research direction to consider how self-
adaptation is used for these robots. Such research could take a similar
orm as the one conducted by Weyns et al. (2023) which comprised

of a survey regarding the use of self-adaptation with industry pro-
fessionals. Collecting empirical evidence via case studies, surveys and
interview studies is instrumental in understanding the real problems
and solutions of the state of the practice, and can act as a solid basis
for impactful research contributions. It is undoubtedly so that robotics
in industry face uncertainties, and that companies remedy these to
prolong operation. However, there is no natural incentive for those
companies to share this technology openly. It would be interesting for
example to use the classification framework of this study and apply
it to a set of systems used in industry which are also using self-
adaptation. On a more general note, this kind of exchange of knowledge
strengthens the efforts of both parties, as academics become privy to the
requirements of realistic applications, and practitioners can incorporate
novel contributions from research.
28
CRediT authorship contribution statement

Elvin Alberts: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, Con-
ceptualization. Ilias Gerostathopoulos: Writing – review & editing,
Validation, Supervision, Methodology, Investigation, Data curation,
Conceptualization. Ivano Malavolta: Writing – review & editing, Su-
pervision, Methodology, Conceptualization. Carlos Hernández Cor-
bato: Writing – review & editing, Supervision, Investigation, Funding
acquisition, Data curation, Conceptualization. Patricia Lago: Writing
– review & editing, Supervision, Methodology, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
arlos Hernandez Corbato reports a relationship with Ahold Delhaze
hat includes: funding grants. co-author served on editorial board of

Journal of Systems and Software - Patricia Lago If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix. Classification framework definitions

See Table 4.

https://www.ros.org/
https://www.turtlebot.com/
https://www.aldebaran.com/en/nao

E. Alberts et al. The Journal of Systems & Software 219 (2025) 112258
Data availability

We provide a link to a replication package in the paper.

References

Ahmad, Aakash, Babar, Muhammad Ali, 2016. Software architectures for robotic
systems: A systematic mapping study. J. Syst. Softw. 122, 16–39.

Albonico, Michel, Dordevic, Milica, Hamer, Engel, Malavolta, Ivano, 2023. Software
engineering research on the robot operating system: A systematic mapping study.
J. Syst. Softw. 197, 111574.

Andersson, Jesper, De Lemos, Rogerio, Malek, Sam, Weyns, Danny, 2009. Modeling
dimensions of self-adaptive software systems. Softw. Eng. Self-Adapt. Syst. 27–47.

Bass, Len, Clements, Paul, Kazman, Rick, 2003. Software Architecture in Practice.
Addison-Wesley Professional.

Behery, Mohamed, Trinh, Minh, Brecher, Christian, Lakemeyer, Gerhard, 2023. Self-
optimizing agents using mixed initiative behavior trees. In: 2023 IEEE/ACM 18th
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS, IEEE, pp. 97–103.

Bozhinoski, Darko, Aguado, Esther, Oviedo, Mario Garzon, Hernandez, Carlos, Sanz, Ri-
cardo, Wąsowski, Andrzej, 2021. A modeling tool for reconfigurable skills in ROS.
In: 2021 IEEE/ACM 3rd International Workshop on Robotics Software Engineering.
RoSE, pp. 25–28.

Bozhinoski, Darko, Di Ruscio, Davide, Malavolta, Ivano, Pelliccione, Patrizio,
Crnkovic, Ivica, 2019. Safety for mobile robotic systems: A systematic mapping
study from a software engineering perspective. J. Syst. Softw. 151, 150–179.

Bozhinoski, Darko, Wijkhuizen, Jasper, 2021. Context-based navigation for ground mo-
bile robot in semi-structured indoor environment. In: 2021 Fifth IEEE International
Conference on Robotic Computing. IRC, pp. 82–86.

Brooks, Rodney A., 1992. Artificial life and real robots. In: Proceedings of the First
European Conference on Artificial Life. pp. 3–10.

Brugali, Davide, 2020. Runtime reconfiguration of robot control systems: a ROS-based
case study. In: 2020 Fourth IEEE International Conference on Robotic Computing.
IRC, pp. 256–262.

Brugali, Davide, 2023. Modeling variability in self-adapting robotic systems. Robot.
Auton. Syst. 167, 104470.

Brugali, Davide, Capilla, Rafael, Mirandola, Raffaela, Trubiani, Catia, 2018. Model-
based development of qos-aware reconfigurable autonomous robotic systems. In:
2018 Second IEEE International Conference on Robotic Computing. IRC, pp.
129–136.

Brun, Yuriy, Di Marzo Serugendo, Giovanna, Gacek, Cristina, Giese, Holger, Kienle, Hol-
ger, Litoiu, Marin, Müller, Hausi, Pezzè, Mauro, Shaw, Mary, 2009. Engineering
self-adaptive systems through feedback loops. Softw. Eng. Self-Adapt. Syst. 48–70.

Caldiera, Victor R. Basili1 Gianluigi, Rombach, H. Dieter, 1994. The goal question
metric approach. Ency. Softw. Eng. 528–532.

Cámara, Javier, Schmerl, Bradley, Garlan, David, 2020. Software architecture and task
plan co-adaptation for mobile service robots. In: Proceedings of the IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS ’20, Association for Computing Machinery, New York, NY, USA,
pp. 125–136.

Cervera, Enric, 2018. Try to start it! the challenge of reusing code in robotics research.
IEEE Robot. Autom. Lett. 4 (1), 49–56.

Cooray, Deshan, Kouroshfar, Ehsan, Malek, Sam, Roshandel, Roshanak, 2013. Proactive
self-adaptation for improving the reliability of mission-critical, embedded, and
mobile software. IEEE Trans. Softw. Eng. 39 (12), 1714–1735.

Cruzes, Daniela S., Dyba, Tore, 2011. Recommended steps for thematic synthesis in
software engineering. In: 2011 International Symposium on Empirical Software
Engineering and Measurement. pp. 275–284.

Cui, Yanzhe, Lane, Joshua T., Voyles, Richard M., 2015a. Real-time software module
design framework for building self-adaptive robotic systems. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, pp. 2597–2602.

Cui, Yanzhe, Voyles, Richard M., He, Miao, Jiang, Guangying, Mahoor, Mohammad H.,
2012. A self-adaptation framework for resource constrained miniature search and
rescue robots. In: 2012 IEEE International Symposium on Safety, Security, and
Rescue Robotics. SSRR, pp. 1–6.

Cui, Yanzhe, Voyles, Richard M, Lane, Josh T, Krishnamoorthy, Akshay, Mahoor, Mo-
hammad H, 2015b. A mechanism for real-time decision making and system
maintenance for resource constrained robotic systems through ReFrESH. Auton.
Robots 39, 487–502.

Cui, Yanzhe, Voyles, Richard M., Lane, Joshua T., Mahoor, Mohammad H., 2014.
ReFrESH: A self-adaptation framework to support fault tolerance in field mobile
robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. pp. 1576–1582.

Dasgupta, Bhaskar, Mruthyunjaya, TS1739334, 2000. The Stewart platform manipula-
tor: a review. Mech. Mach. Theory 35 (1), 15–40.

David, Istvan, Latifaj, Malvina, Pietron, Jakob, Zhang, Weixing, Ciccozzi, Federico,
Malavolta, Ivano, Raschke, Alexander, Steghofer, Jan-Philipp, Hebig, Regina,
2023. Blended modeling in commercial and open-source model-driven software
engineering tools: A systematic study. Softw. Syst. Model. 22 (1), 415–447.
29
de Lemos, Rogério, Giese, Holger, Müller, Hausi A., Shaw, Mary, Andersson, Jes-
per, Litoiu, Marin, Schmerl, Bradley, Tamura, Gabriel, Villegas, Norha M.,
Vogel, Thomas, Weyns, Danny, Baresi, Luciano, Becker, Basil, Bencomo, Nelly,
Brun, Yuriy, Cukic, Bojan, Desmarais, Ron, Dustdar, Schahram, Engels, Gregor,
Geihs, Kurt, Göschka, Karl M., Gorla, Alessandra, Grassi, Vincenzo, Inver-
ardi, Paola, Karsai, Gabor, Kramer, Jeff, Lopes, Antónia, Magee, Jeff, Malek, Sam,
Mankovskii, Serge, Mirandola, Raffaela, Mylopoulos, John, Nierstrasz, Oscar,
Pezzè, Mauro, Prehofer, Christian, Schäfer, Wilhelm, Schlichting, Rick, Smith, Den-
nis B., Sousa, João Pedro, Tahvildari, Ladan, Wong, Kenny, Wuttke, Jochen, 2013.
Software engineering for self-adaptive systems: A second research roadmap. In:
de Lemos, Rogério, Giese, Holger, Müller, Hausi A., Shaw, Mary (Eds.), Software
Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle,
Germany, October 24-29, 2010 Revised Selected and Invited Papers. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 1–32.

de Leng, Daniel, Heintz, Fredrik, 2016. Dyknow: A dynamically reconfigurable stream
reasoning framework as an extension to the robot operating system. In: 2016
IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots. SIMPAR, pp. 55–60.

de Leng, Daniel, Heintz, Fredrik, 2017. Towards adaptive semantic subscriptions for
stream reasoning in the robot operating system. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IROS, pp. 5445–5452.

Di Francesco, Paolo, Lago, Patricia, Malavolta, Ivano, 2019. Architecting with
microservices: A systematic mapping study. J. Syst. Softw. 150, 77–97.

Dietrich, Franz, Maaß, Jochen, Hagner, Matthias, Steiner, Jens, Goltz, Ursula, Raatz, An-
nika, 2013. Dynamic distribution of robot control components under hard realtime
constraints – Modeling, experimental results and practical considerations. J. Syst.
Archit. 59 (10, Part C), 1047–1066, URL https://www.sciencedirect.com/science/
article/pii/S1383762113000027. Embedded Systems Software Architecture.

Doose, David, Grand, Christophe, Lesire, Charles, 2017. MAUVE runtime: A component-
based middleware to reconfigure software architectures in real-time. In: 2017 First
IEEE International Conference on Robotic Computing. IRC, pp. 208–211.

Edrisi, Farid, Perez-Palacin, Diego, Caporuscio, Mauro, Giussani, Samuele, 2023.
Adaptive controllers and digital twin for self-adaptive robotic manipulators. In:
2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS, IEEE, pp. 56–67.

Esfahani, Naeem, Kouroshfar, Ehsan, Malek, Sam, 2011. Taming uncertainty in self-
adaptive software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering. In: ESEC/FSE
’11, Association for Computing Machinery, New York, NY, USA, pp. 234–244.

Eymuller, Christian, Hanke, Julian, Poeppel, Alexander, Wanninger, Constantin,
Reif, Wolfgang, 2023. RealCaPP: Real-time capable plug & produce service architec-
ture for distributed robot control. In: 2023 Seventh IEEE International Conference
on Robotic Computing. IRC, pp. 352–355.

Franzago, Mirco, Di Ruscio, Davide, Malavolta, Ivano, Muccini, Henry, 2018. Collabora-
tive model-driven software engineering: a classification framework and a research
map. IEEE Trans. Softw. Eng. 14 (12), 1146–1175.

Franzosi, Roberto, 2010. Quantitative Narrative Analysis. Sage, Number 162.
Garlan, David, Cheng, S-W, Huang, A-C, Schmerl, Bradley, Steenkiste, Peter, 2004.

Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer
37 (10), 46–54.

Garousi, Vahid, Felderer, Michael, Mäntylä, Mika V., 2019. Guidelines for includ-
ing grey literature and conducting multivocal literature reviews in software
engineering. Inf. Softw. Technol. 106, 101–121.

Garousi, Vahid, Mäntylä, Mika V., 2016. A systematic literature review of literature
reviews in software testing. Inf. Softw. Technol. 80, 195–216.

Geihs, Kurt, Reichle, Roland, Wagner, Michael, Khan, Mohammad Ullah, 2009. Model-
ing of context-aware self-adaptive applications in ubiquitous and service-oriented
environments. Softw. Eng. Self-Adapt. Syst. 146–163.

Gerostathopoulos, Ilias, Raibulet, Claudia, Alberts, Elvin, 2022. Assessing self-adaptation
strategies using cost-benefit analysis. In: 2022 IEEE 19th International Conference
on Software Architecture Companion. ICSA-C, IEEE, pp. 92–95.

Gerostathopoulos, Ilias, Skoda, Dominik, Plasil, Frantisek, Bures, Tomas,
Knauss, Alessia, 2016. Architectural homeostasis in self-adaptive software-intensive
cyber-physical systems. In: Tekinerdogan, Bedir, Zdun, Uwe, Babar, Ali (Eds.),
Software Architecture. Springer International Publishing, Cham, pp. 113–128.

Gerostathopoulos, Ilias, Skoda, Dominik, Plasil, Frantisek, Bures, Tomas,
Knauss, Alessia, 2019. Tuning self-adaptation in cyber-physical systems
through architectural homeostasis. J. Syst. Softw. 148, 37–55, URL
https://www.sciencedirect.com/science/article/pii/S016412121830236X.

Gerostathopoulos, Ilias, Vogel, Thomas, Weyns, Danny, Lago, Patricia, 2021. How do we
evaluate self-adaptive software systems?: A ten-year perspective of SEAMS. In: 2021
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS, IEEE, pp. 59–70.

Gherardi, Luca, Hochgeschwender, Nico, 2015. RRA: Models and tools for robotics run-
time adaptation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IROS, pp. 1777–1784.

Haslum, Patrik, Lipovetzky, Nir, Magazzeni, Daniele, Muise, Christian, Brach-
man, Ronald, Rossi, Francesca, Stone, Peter, 2019. An Introduction to the Planning
Domain Definition Language. Vol. 13, Springer.

http://refhub.elsevier.com/S0164-1212(24)00302-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb1
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb2
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb3
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb4
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb5
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb6
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb7
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb8
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb9
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb10
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb11
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb11
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb11
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb12
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb13
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb14
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb15
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb16
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb17
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb18
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb19
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb20
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb21
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb22
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb23
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb24
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb25
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb26
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb27
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb28
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb28
https://www.sciencedirect.com/science/article/pii/S1383762113000027
https://www.sciencedirect.com/science/article/pii/S1383762113000027
https://www.sciencedirect.com/science/article/pii/S1383762113000027
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb30
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb31
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb32
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb33
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb34
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb35
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb36
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb37
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb38
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb39
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb40
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb40
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb40
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb40
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb40
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb41
https://www.sciencedirect.com/science/article/pii/S016412121830236X
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb43
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb44
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb44
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb44
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb44
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb44
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb45
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb45
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb45
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb45
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb45

E. Alberts et al. The Journal of Systems & Software 219 (2025) 112258
Heinzemann, Christian, Priesterjahn, Claudia, Becker, Steffen, 2012. Towards modeling
reconfiguration in hierarchical component architectures. In: Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Software Engineering. CBSE ’12,
Association for Computing Machinery, New York, NY, USA, pp. 23–28.

Hochgeschwender, Nico, Schneider, Sven, Voos, Holger, Bruyninckx, Herman, Kraet-
zschmar, Gerhard K., 2016. Graph-based software knowledge: Storage and semantic
querying of domain models for run-time adaptation. In: 2016 IEEE International
Conference on Simulation, Modeling, and Programming for Autonomous Robots.
SIMPAR, pp. 83–90.

Hristozov, Anton D, Matson, Eric T, Gallagher, John C, Rogers, Marcus, Dietz, Eric,
2022. Resilient architecture framework for robotic systems. In: 2022 International
Conference Automatics and Informatics. ICAI, IEEE, pp. 18–23.

International Federation of Robotics, 2022. World robotics report 2022.
ISO/IEC, 2023. Systems and Software Engineering — Systems and Software Qual-

ity Requirements and Evaluation (Square) — Product Quality Model. Standard,
International Organization for Standardization, Geneva, CH, ISO 25010:2023(en).

Jackson, Daniel, 2011. Software Abstractions, Revised Edition: Logic, Language, and
Analysis. MIT Press.

Jamshidi, Pooyan, Cámara, Javier, Schmerl, Bradley, Käestner, Christian, Garlan, David,
2019. Machine learning meets quantitative planning: Enabling self-adaptation in
autonomous robots. In: 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS, pp. 39–50.

Kent, Daniel, McKinley, Philip K., Radha, Hayder, 2020. Localization uncertainty-driven
adaptive framework for controlling ground vehicle robots. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, pp. 7079–7086.

Kephart, Jeffrey O., Chess, David M., 2003. The vision of autonomic computing.
Computer 36 (1), 41–50.

Kitchenham, Barbara, Brereton, Pearl, 2013. A systematic review of systematic review
process research in software engineering. Inf. Softw. Technol. 55 (12), 2049–2075.

Kitchenham, Barbara Ann, Charters, Stuart, 2007. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, URL https://www.elsevier.com/__
data/promis_misc/525444systematicreviewsguide.pdf.

Li, Jialong, Yamauchi, Takuto, Li, Nianyu, Chen, Zhengyin, Zhang, Mingyue, Hi-
rano, Takanori, Tei, Kenji, 2023. Demonstration of a real-world self-adaptive
robot path-finding using discrete controller synthesis. In: 2023 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems Companion.
ACSOS-C, pp. 27–28.

Loigge, Stefan, Mühlbacher, Clemens, Steinbauer, Gerald, Gspandl, Stephan,
Reip, Michael, 2017. A model-based fault detection, diagnosis and repair for
autonomous robotics systems. In: OAGM/AAPR ARW 2017: Joint Workshop on
‘‘Vision, Automation & Robotics’’.

Lotz, Alex, Inglés-Romero, Juan F., Vicente-Chicote, Cristina, Schlegel, Christian, 2013.
Managing run-time variability in robotics software by modeling functional and
non-functional behavior. In: Nurcan, Selmin, Proper, Henderik A., Soffer, Pnina,
Krogstie, John, Schmidt, Rainer, Halpin, Terry, Bider, Ilia (Eds.), Enterprise,
Business-Process and Information Systems Modeling. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 441–455.

Macenski, Steven, Foote, Tully, Gerkey, Brian, Lalancette, Chris, Woodall, William,
2022. Robot operating system 2: Design, architecture, and uses in the wild. Science
Robotics 7 (66), eabm6074.

Malavolta, Ivano, Lewis, Grace, Schmerl, Bradley, Lago, Patricia, Garlan, David, 2020.
How do you architect your robots? State of the practice and guidelines for ROS-
based systems. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice. pp. 31–40.

McHugh, Mary L., 2012. Interrater reliability: the kappa statistic. Biochem. Med. 22
(3), 276–282.

Muccini, Henry, Sharaf, Mohammad, Weyns, Danny, 2016. Self-adaptation for cyber-
physical systems: a systematic literature review. In: Proceedings of the 11th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. pp. 75–81.

Niemczyk, Stefan, Geihs, Kurt, 2015. Adaptive run-time models for groups of au-
tonomous robots. In: 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. pp. 127–133.

Niemczyk, Stefan, Opfer, Stephan, Fredivianus, Nugroho, Geihs, Kurt, 2017. ICE:
Self-configuration of information processing in heterogeneous agent teams. In:
Proceedings of the Symposium on Applied Computing. SAC ’17, Association for
Computing Machinery, New York, NY, USA, pp. 417–423.

Oreizy, Peyman, Medvidovic, Nenad, Taylor, Richard N., 1998. Architecture-based
runtime software evolution. In: Proceedings of the 20th International Conference
on Software Engineering. IEEE, pp. 177–186.

Park, Yu-Sik, Koo, Hyung-Min, Ko, In-Young, 2012. A task-based and resource-aware
approach to dynamically generate optimal software architecture for intelligent
service robots. Softw. - Pract. Exp. 42 (5), 519–541.

Peldszus, Sven, Brugali, Davide, Strüber, Daniel, Pelliccione, Patrizio, Berger, Thorsten,
2023. Software reconfiguration in robotics. arXiv preprint arXiv:2310.01039.

Petersen, Kai, Feldt, Robert, Mujtaba, Shahid, Mattsson, Michael, 2008. Systematic
mapping studies in software engineering. In: 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE) 12. pp. 1–10.
30
Petersen, Kai, Vakkalanka, Sairam, Kuzniarz, Ludwik, 2015. Guidelines for conducting
systematic mapping studies in software engineering: An update. Inf. Softw. Technol.
64, 1–18.

Popay, Jennie, Roberts, Helen, Sowden, Amanda, Petticrew, Mark, Arai, Lisa,
Rodgers, Mark, Britten, Nicky, Roen, Katrina, Duffy, Steven, et al., 2006. Guidance
on the conduct of narrative synthesis in systematic reviews. In: A Product from the
ESRC Methods Programme Version. Vol. 1, p. b92.

Pradhan, Subhav, Dubey, Abhishek, Levendovszky, Tihamer, Kumar, Pranav Srinivas,
Emfinger, William A, Balasubramanian, Daniel, Otte, William, Karsai, Gabor, 2016.
Achieving resilience in distributed software systems via self-reconfiguration. J. Syst.
Softw. 122, 344–363.

Replication package of this study. 2024. Online. https://doi.org/10.5281/zenodo.
13886651.

Sanchez, Jose, Schneider, Sven, Hochgeschwender, Nico, Kraetzschmar, Gerhard K.,
Plöger, Paul G., 2016. Context-based adaptation of in-hand slip detection for service
robots. IFAC-PapersOnLine 49 (15), 266–271, URL https://www.sciencedirect.
com/science/article/pii/S2405896316310461, 9th IFAC Symposium on Intelligent
Autonomous Vehicles IAV 2016.

Siciliano, Bruno, Khatib, Oussama, 2016. Robotics and the handbook. In: Springer
Handbook of Robotics. Springer, pp. 1–6.

Silva, Gustavo Rezende, Päßler, Juliane, Zwanepol, Jeroen, Alberts, Elvin, Tarifa, S.
Lizeth Tapia, Gerostathopoulos, Ilias, Johnsen, Einar Broch, Corbato, Carlos Hernán-
dez, 2023. SUAVE: An exemplar for self-adaptive underwater vehicles. In:
2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS, pp. 181–187.

Swanborn, Stan, Malavolta, Ivano, 2020. Energy efficiency in robotics software: a
systematic literature review. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering Workshops. pp. 144–151.

Turner, Roy M., 1998. Context-mediated behavior for intelligent agents. Int. J.
Hum.-Comput. Stud. 48 (3), 307–330.

Valdezate, Alejandro, Capilla, Rafael, Crespo, Jonathan, Barber, Ramón, 2022. Ruva: A
runtime software variability algorithm. IEEE Access 10, 52525–52536.

Van Der Donckt, M Jeroen, Weyns, Danny, Iftikhar, M Usman, Singh, Ritesh Kumar,
2018. Cost-benefit analysis at runtime for self-adaptive systems applied to an
internet of things application.. In: ENASE. pp. 478–490.

Wang, Chundong, Tok, Yee Ching, Poolat, Rohini, Chattopadhyay, Sudipta, Elara, Mo-
han Rajesh, 2021. How to secure autonomous mobile robots? An approach with
fuzzing, detection and mitigation. J. Syst. Archit. 112, 101838, URL https://www.
sciencedirect.com/science/article/pii/S1383762120301302.

Weyns, Danny, 2019. Software engineering of self-adaptive systems. Handb. Softw. Eng.
399–443.

Weyns, Danny, 2020. An Introduction to Self-Adaptive Systems: a Contemporary
Software Engineering Perspective. John Wiley & Sons.

Weyns, Danny, Ahmad, Tanvir, 2013. Claims and evidence for architecture-based self-
adaptation: A systematic literature review. In: European Conference on Software
Architecture. Springer, pp. 249–265.

Weyns, Danny, Gerostathopoulos, Ilias, Abbas, Nadeem, Andersson, Jesper, Biffl, Stefan,
Brada, Premek, Bures, Tomas, Di Salle, Amleto, Galster, Matthias, Lago, Patricia,
et al., 2023. Self-adaptation in industry: A survey. ACM Trans. Auton. Adapt. Syst.
18 (2), 1–44.

Weyns, Danny, Malek, Sam, Andersson, Jesper, 2012. FORMS: Unifying reference model
for formal specification of distributed self-adaptive systems. ACM Trans. Auton.
Adapt. Syst. 7 (1).

Weyns, Danny, Schmerl, Bradley, Grassi, Vincenzo, Malek, Sam, Mirandola, Raf-
faela, Prehofer, Christian, Wuttke, Jochen, Andersson, Jesper, Giese, Holger,
Göschka, Karl M., 2013. On patterns for decentralized control in self-adaptive
systems. In: de Lemos, Rogério, Giese, Holger, Müller, Hausi A., Shaw, Mary (Eds.),
Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers. In:
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 76–107.

Wohlin, Claes, 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. pp. 1–10.

Wohlin, Claes, Runeson, Per, Höst, Martin, Ohlsson, Magnus C, Regnell, Björn, Wess-
lén, Anders, 2012. Experimentation in Software Engineering. Springer Science &
Business Media.

Zaman, Safdar, Ahmad, Farhan, Qasim Khan, Mohammad, Ali Shah, Shabir,
Jabeen, Asma, Aftab, Nouman, 2019. Fault detection using sensors data trends for
autonomous robotic mapping. In: 2019 International Conference on Engineering
and Emerging Technologies. ICEET, pp. 1–6.

Zaman, Safdar, Steinbauer, Gerald, Maurer, Johannes, Lepej, Peter, Uran, Suzana, 2013.
An integrated model-based diagnosis and repair architecture for ROS-based robot
systems. In: 2013 IEEE International Conference on Robotics and Automation. pp.
482–489.

Zou, Yong-Hao, Bai, Jia-Ju, 2021. Effective crash recovery of robot software programs
in ROS. In: 2021 IEEE International Conference on Robotics and Automation. ICRA,
pp. 9498–9504.

http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb46
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb47
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb48
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb48
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb48
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb48
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb48
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb49
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb50
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb50
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb50
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb50
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb50
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb51
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb51
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb51
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb52
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb53
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb53
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb53
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb53
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb53
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb54
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb54
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb54
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb55
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb55
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb55
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb57
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb58
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb59
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb60
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb60
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb60
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb60
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb60
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb61
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb62
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb62
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb62
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb63
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb64
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb64
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb64
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb64
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb64
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb65
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb66
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb66
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb66
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb66
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb66
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb67
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb67
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb67
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb67
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb67
http://arxiv.org/abs/2310.01039
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb69
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb69
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb69
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb69
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb69
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb70
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb71
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb72
https://doi.org/10.5281/zenodo.13886651
https://doi.org/10.5281/zenodo.13886651
https://doi.org/10.5281/zenodo.13886651
https://www.sciencedirect.com/science/article/pii/S2405896316310461
https://www.sciencedirect.com/science/article/pii/S2405896316310461
https://www.sciencedirect.com/science/article/pii/S2405896316310461
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb75
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb75
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb75
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb76
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb77
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb77
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb77
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb77
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb77
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb78
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb78
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb78
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb79
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb79
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb79
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb80
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb80
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb80
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb80
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb80
https://www.sciencedirect.com/science/article/pii/S1383762120301302
https://www.sciencedirect.com/science/article/pii/S1383762120301302
https://www.sciencedirect.com/science/article/pii/S1383762120301302
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb82
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb83
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb84
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb85
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb86
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb86
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb86
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb86
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb86
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb87
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb88
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb88
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb88
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb88
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb88
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb89
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb89
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb89
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb89
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb89
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb90
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb91
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb92
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb92
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb92
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb92
http://refhub.elsevier.com/S0164-1212(24)00302-9/sb92

E. Alberts et al.

r
a
R
S
a
i

d
S
a

i
i

C
k
a
h
P

S
f
a
a
2
E
P

The Journal of Systems & Software 219 (2025) 112258
Elvin Alberts is a Ph.D. Candidate affiliated with both the Software and Sustainability
esearch group of the Computer Science department at the Vrije Universiteit Amsterdam
s well as the Knowledge-based Autonomous Systems Laboratory of the Cognitive
obotics department at the Technical University of Delft. He received a M.Sc. in
oftware Engineering at the University of Amsterdam and a B.Sc. in Computer Science
t the Vrije Universiteit Amsterdam. His research focuses on the development and
ntegration of self-adaptive capabilities for robotics software.

Ilias Gerostathopoulos is an Assistant Professor of computer science with Vrije
Universiteit Amsterdam, The Netherlands. His research interests include software
engineering, software architecture, and self-adaptive systems. He received the Ph.D.
egree in computer science in 2015 from the Department of Distributed and Dependable
ystems, Faculty of Mathematics and Physics, Charles University, Prague. He was also
s a Postdoctoral Researcher with the Department of Informatics, Technical University

of Munich.

Ivano Malavolta is an Associate professor in the Software and Sustainability research
group and Director of the Network Institute at the Vrije Universiteit Amsterdam
(The Netherlands). His research focuses on (empirical) software engineering, with
a special emphasis on green software, software architecture, robotics software. He
authored more than 150 scientific articles in international journals and peer-reviewed
international conference proceedings. He is a program committee member and reviewer
of international conferences and journals in the software engineering field. He received
31
a Ph.D. in computer science from the University of L’Aquila in 2012. He is a member
of ACM, IEEE, VERSEN, and Amsterdam Data Science.

Carlos Hernández Corbato is Associate Professor at the Cognitive Robotics Department
n the Faculty Mechanical Engineering of TU Delft, The Netherlands. He participates
n the EU projects CoreSense, METATOOL, and REMARO, has served as scientific

coordinator in other EU projects, and won with Team Delft the Amazon Robotics
hallenge 2016. His research interests include software architectures for robotics,
nowledge representation and reasoning, model-based systems engineering, and self-
daptive systems, and teaches about these topics in the M.Sc. Robotics Program. Carlos
olds M.Sc. degrees in engineering (2006) and automation and robotics (2008), and a
h.D (2013) from Universidad Politecnica de Madrid.

Patricia Lago is full professor in software engineering at Vrije Universiteit Amsterdam,
where she founded the Software and Sustainability research group in the Computer
cience Department, and the DiSC — Digital Sustainability Center. Her research
ocuses primarily on software architecture design and decision making, software quality
ssessment, and software sustainability. She is the recipient of an Honorary Doctorate
t NTNU, Norway, for her contribution to the field of software sustainability, and of the
023 IEEE-CS-TCSE New Directions Award. She has a Ph.D. in Control and Computer
ngineering (Politecnico di Torino) and a Master in Computer Science (University of
isa).

	Software architecture-based self-adaptation in robotics
	Introduction
	Study Design
	Goal and Research Questions
	Search and Selection
	Proceedings Collection
	Keyword-based Search
	Preliminary Studies Selection
	Final Studies Selection
	Snowballing

	Data Extraction
	Data Synthesis
	Vertical Synthesis
	Horizontal Synthesis

	Demographics
	Key characteristics of the entire self-adaptive system (RQ1.1)
	Adaptation Goal*
	Quality Attributes*
	Managing System Independence

	Key Characteristics of the Managing System (RQ1.2)
	Adaptation Mechanism
	MAPE-K Loop

	Key Characteristics of the Managed System (RQ1.3)
	Robotic Missions
	Change - The Cause for Adaptation.
	Effects of Adaptations
	Robotic System

	Evaluation strategies (RQ2)
	Cross-cutting Results (Horizontal Synthesis)
	Discussion
	Demographics Takeaways
	RQ1 Takeaways
	Lack of Homogeneity within RSASSs
	Granularity of Adaptation Mechanisms

	RQ2 Takeaways

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Related Work
	Conclusions and Future work
	Conclusions
	Future Work
	Consolidation
	Broadening the scope of study
	Going Beyond Academia

	CRediT authorship contribution statement
	Declaration of competing interest
	Classification Framework Definitions
	Appendix. Classification Framework Definitions
	Data availability
	Appendix . Data availability
	References

