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Abstract

Precipitation has high spatial and temporal uncertainty, which makes it challenging to predict. We
focus specifically on extreme amounts of precipitation. The Royal Dutch Meteorological Institute
(KNMI) uses a numerical model, approximating the solutions to partial differential equations,
to forecast precipitation and other metrics about the weather. These forecasts have systematic
errors, due to the model’s high sensitivity to input parameters. These errors can be corrected with
statistical methods, by looking at the relation between the predicted and actual precipitation.
We use a non-parametric regression set-up to estimate the conditional expectation of the weather
given the forecasts of the numerical weather prediction model of the KNMI. Specifically, we focus
on predicting the maximum precipitation in a three by three kilometers area in the Netherlands.
There are several existing methods for solving non-parametric regression problems; in this thesis
we will focus on k-nearest neighbors and random forests. A simulation study shows, however, that
both these methods are not capable of dealing with more complex regression problems, such as
forecasting extreme precipitation. Therefore, we are proposing a newly developed method, called
k-nearest forest neighbors, which is a generalization of the random forests approach. This new
method performs significantly better on the simulated data, compared to k-nearest neighbors and
random forests. When applying the methods on a precipitation data set obtained from the KNMI,
it also turns out that the method we developed has more predictive power than the numerical
weather model and the existing non-parametric regression approaches.
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List of used symbols and
abbreviations

symbol or abbreviation meaning
d number of covariates
D number of most predictive covariates of the precipitation data set
E expectation of a random variable
k parameter of k-nearest neighbors
K parameter of k-nearest forest neighbors
KNMI Royal Netherlands Meteorological Institute
m number of samples
M number of trees in a forest
MISE mean integrated squared error
MSE mean squared error
n sample size
NWP numerical weather prediction
R set of real numbers
RMSE root mean squared error
s parameter of random forests, same as min.node.size
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Chapter 1

Introduction

In order to contribute to the citizens’ safety, the Royal Netherlands Meteorological Institute
(Koninklijk Nederlands Meteorologisch Instituut, or KNMI), and other companies, issue warnings
whenever the weather will cause severe risks, i.e. in case of extreme weather events with high
probability. Examples of risky events could be flooding, damage to buildings and infrastructure, or
landslides, caused by heavy precipitation [1]. These warnings need to be issued in advance, to give
people the opportunity to prepare themselves for the dangerous weather. However, such extreme
precipitation events are hard to predict, due to the large spatial and temporal uncertainties
concerned with precipitation. It goes without saying that being able to make accurate predictions
regarding extreme weather, can be vital and life-saving.

The KNMI uses a numerical weather prediction (NWP) model, called HARMONIE. The model
is based on partial differential equations describing the flows in the atmosphere, and approximates
the solutions to these equations numerically. Systematic biases in the numerical forecasts arise and
can be attributed to two causes. Firstly, the forecasts rely heavily on an initial condition which
can not be measured exactly; and secondly, the numerical model is in itself an approximation to
the real world and therefore creating systematic errors in the modeling process. Especially for
extreme precipitation events, this forms a huge problem in forecasting [2]. Therefore, statistical
post-processing techniques are used, where the NWP forecasts are used as predictor variables to
estimate statistics of the conditional distribution of precipitation given the numerical forecasts.
In this thesis, we focus on estimating the expectation of the conditional distribution. In other
words, this means looking at the statistical relation between the precipitation forecast and the
actual precipitation observations, in expectation.

Since the HARMONIE model does not only give forecasts on the precipitation, but also
about atmospheric stability, airflows, precipitable water, and numerous other weather metrics
that might be related to precipitation, we can use all these variables to predict the actual amount
of precipitation. Our problem can then be stated as follows: given all these data, we want
to estimate the conditional expectation of the amount of precipitation given all HARMONIE
forecasts, such that when we only know the forecasts from the HARMONIE model, we can predict
the expected amount of precipitation as accurately as possible. The KNMI has provided us with
a data set, containing these forecasts together with the eventual precipitation observations, on
which our models can be trained or validated.

In Chapter 2, we will explain this data set in more detail, and show some interesting properties
of the data. We will see that our problem is an example of a non-parametric regression problem,
which will be explained in Chapter 3. Existing methods of dealing with non-parametric regression
will be introduced and explained in Chapter 4. We will evaluate the performance of these methods
by doing a simulation study in Chapter 5. In order to address the problems arising with these
approaches, we will introduce a new method, and show its performance in Chapter 6. In Chapter
7, we will apply all methods to real-world data of precipitation in the Netherlands. Finally, we
will conclude the thesis in Chapter 8 and discuss areas for further research in Chapter 9.
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Chapter 2

Precipitation data

2.1 KNMI data set

In the precipitation data set that the KNMI provided us, the Netherlands has been divided into
twelve rectangular regions of roughly equal size, and a day has been split into four time windows
of six hours, namely 0:00-6:00, 6:00-12:00, 12:00-18:00 and 18:00-24:00 UTC. For each region and
each time window, we know the hourly maximum precipitation that was observed from radar data,
within a three by three kilometers grid box in the region.1 This hourly maximum precipitation
is the most important metric for issuing, for instance, a code yellow warning.2 Hence, this is the
metric that we aim to predict.

In order to do so, we use other metrics from the HARMONIE model, which gives predictions
on 2.5 by 2.5 kilometers grid boxes [3]. As mentioned in the introduction, the data set contains
forecasts about atmosphere stability, airflows, precipitable water, and other weather metrics that
might be related to precipitation. Moreover, we know the numerical prediction for the hourly
maximum precipitation. In total, there are 42 measurements, of which we only know their hourly
extreme values (i.e. minimum and maximum), leading to 84 numbers per region per time window.
We have got these forecast data for different lead times: a lead time is defined as the time difference
between the beginning of the interval for which the forecast is valid and the time at which the
forecast is made. The available lead times are 6, 12, 18, 24, 30, 36 and 42 hours in advance. Using
these data, we will see from how many hours in advance (which lead time) extreme precipitation
can be predicted with enough accuracy.

2.2 Properties of the data

In order to gain insight on how the precipitation “behaves”, e.g. whether there is more precipita-
tion in certain months or regions than in others, we will make violin plots of the observed hourly
precipitation values. A violin plot is similar to a box plot, with the only difference that there is
a rotated kernel density plot on each side [4]. Hence, the violin plot is more informative than
a box plot, since it shows the distribution of the data instead of only summary statistics such
as the mean and some interquartile ranges. We can see in Figure 2.1(a) that there seems to be
less extreme precipitation in coastal areas, namely regions 1, 2, 4, 7 and 10.3 Since our intuition
tells us that the total amount of precipitation should be larger in coastal areas, probably there
are longer periods of rain along the coastline, with less extreme precipitation. Also, we see in

1We only have information about the warm seasons (April 15 until October 15) of the years 2010, 2011 and
2013, since these are the most interesting periods for extreme precipitation. For each year, there are approximately
8500 observations available.

2Code yellow can be issued in several situations, ranging from extreme temperatures to heavy wind. We will
be focusing on the criterion for precipitation: code yellow is issued when the local precipitation, i.e. within a three
by three kilometers grid box, exceeds 30 millimeters per hour.

3For the reader’s information: the regions are numbered from west to east (three regions per row), and then
from north to south (four regions per column). This means that regions 1, 2 and 3 form the northern coastline,
and regions 1, 4, 7 and 10 are along the western coast of the Netherlands.
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CHAPTER 2. PRECIPITATION DATA 4

Figure 2.1(b) that there seems to be more extreme precipitation in summer months (June, July
and August).

An average Dutch summer day starts with good weather in the morning, after which it will
be hot in the afternoon, and heavily raining by the end of the day. It is thus interesting to look
at the influence of the different time windows on the precipitation. As a reminder, the time
windows are 0:00-6:00, 6:00-12:00, 12:00-18:00 and 18:00-24:00 UTC, corresponding to 2:00-8:00,
8:00-14:00, 14:00-20:00 and 20:00-2:00 local time. Figure 2.1(c) indeed tells us that there is more
extreme precipitation at the end of the day.

There could, of course, possibly be regions where the peak in the precipitation occurs in the
early morning; or there could be months in which there is more extreme precipitation in coastal
areas than in the rest of the country. Therefore, we also made violin plots for the twelve regions,
split by month; violin plots for the seven months, split by region; violin plots for the twelve
regions, split by time window; and violin plots for the four time windows, split by region. These
are not really relevant for the thesis; interesting readers can find these plots in Figures A.1, A.2,
A.3 and A.4 of the appendix.
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(a) Twelve regions

(b) Seven months

(c) Four time windows

Figure 2.1: Violin plots of the observed hourly precipitation for all twelve regions, seven months
and four time windows.



Chapter 3

Regression

In statistical modeling, we often want to estimate the relationship between variables, such as
the numerically predicted and observed precipitation, or a person’s foot length and body height.
For example, we have observations Y1, . . . , Yn ∈ R, which are and independent identically dis-
tributed random variables. The expectation E(Y ) of these random variables, where Y is a ran-
dom variable with the same distribution as Y1, . . . , Yn, can then be estimated by the average

µ̂ =
1

n

n∑
i=1

Yi. Sometimes, for each i = 1, . . . , n, we observe a d-dimensional vector of variables

Xi = (Xi1, . . . , Xid), which contains information about Yi. In other words, there is a regression
function f : Rd → R, that we do not know, satisfying

Yi = f(Xi) + εi

for each i = 1, . . . , n, where εi is the error term or noise, a random variable with expectation 0, for
instance εi ∼ N (0, σ2). We refer to Yi as the response variable, and to Xi1, . . . , Xid as covariates.
We have got data points (X1, Y1), . . . , (Xn, Yn), where X1, . . . ,Xn ∈ Rd and Y1, . . . , Yn ∈ R.
Sometimes, we also refer to X1, . . . ,Xn as data points; the context will make clear which of the
two is meant. The number of data points, n, will be called the sample size. Then the problem
is as follows: given a new point x∗ ∈ Rd, what is the expected corresponding value y∗? In other
words, what is the conditional mean function E(Y |X = x) = f(x)? The problem of estimating
such a function is known as a regression problem.

If we assume that f(x) (with x = (x1, . . . , xd)) is linear in the covariates x1, . . . , xd, i.e.
f(x1, . . . , xd) = α + β1x1 + . . . + βdxd, we have a linear regression problem. In this case, the
method of least squares [5] can be used to estimate the parameter vector β ∈ Rd+1, such that an

estimator for the conditional mean function is given by f̂(x) =
[
1 x1 x2 · · · xd

]
β̂, where

x = (x1, . . . , xd).
However, it is quite restrictive to assume that f is a linear function. If we drop this assump-

tion, we are dealing with non-parametric regression [6]. Two of the methods of estimating the
conditional mean function, are k-nearest neighbors, and random forests. The k-nearest neighbors
method estimates f(x) by taking an average over the k values of Yi for which the Euclidean
distance between Xi and x is the smallest. The random forests approach does something similar,
taking an average over the Yi values of the closest Xi points, using a data-driven distance mea-
sure, instead of the Euclidean one. Both methods will be explained in more detail in the next
chapter.

There are numerous applications of non-parametric regression, mainly for prediction and fore-
casting. In Chapter 7, we will deal with applying non-parametric regression methods to the
prediction of extreme precipitation in the Netherlands.
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Chapter 4

Existing methods

Instead of predicting precipitation, we will illustrate the methods via a simple and more easily
understandable example. Consider the problem of predicting a person’s body height, using their
foot and hair length. Using the observed foot length, hair length, and body height for n persons,
we want to predict the body height of a new person, while knowing only their foot and hair
length. In this case, we have a two-dimensional regression function f : R2 → R, satisfying

Y = f(X1, X2) + ε,

where X1 and X2 are covariates of the foot length and hair length, respectively. Moreover, ε is
the noise term, reflecting the fact that people with exactly the same hair and foot lengths, do
not necessarily have exactly the same body height. Y is the body height, depending on the foot
length and hair length, with some noise. We have n people of whom we know foot length, hair
length and body height: (X11, X21, Y1), . . . , (X1n, X2n, Yn). Now the problem is as follows: given
a new person with foot length x∗1 and hair length x∗2, what is their body height y∗? In other
words, we are searching for the conditional mean function E[Y |(X1, X2) = (x1, x2)] = f(x1, x2).

Since we do not know how the body height depends on the hair and foot length, we have a
non-parametric regression problem. In this case, the k-nearest neighbors method or the random
forests approach can be used. Both methods are of interest in this thesis and will be discussed
below.

4.1 k-nearest neighbors

Continuing with the example above, Figure 4.1 shows the n observations of foot length, hair
length and body height, X1, . . . ,Xn, which have been plotted in black. We aim to predict the
body height of the red point x∗, given only the foot and hair length. The k-nearest neighbors
method has one parameter, denoted by k, and predicts, as the name already suggests, based on
the k closest points (i.e. nearest neighbors) of the red point [7]. Closeness is in this case defined
by the distance, which means we need a distance metric: usually the Euclidean distance || · ||2
is used. Let Sk(x∗) ⊆ {X1, . . . ,Xn} be the set of k nearest neighbors of x∗. If we take k = 4
in our example, then this set consists of the people with a body height of 167, 188, 190 and
202 centimeters, respectively. The prediction for the body height of the red point can then be
computed by the average of those four body heights, which is 187 centimeters.

In order to explain the rationale behind taking the average, we will first define a measure for
the error of the prediction, namely the mean squared error (MSE). For a certain prediction ŷ∗,
the mean squared error of data points Xi ∈ Sk(x∗) equals

1

k

∑
Xi∈Sk(x∗)

(ŷ∗ − Yi)2. (4.1)

Of course, we want to choose ŷ∗ in such a way that this error is minimized, which means that for

7



CHAPTER 4. EXISTING METHODS 8

Figure 4.1: On the horizontal axis is the hair length in centimeters; on the vertical axis the foot
length in centimeters. For the black points, the known body height is shown; the body height of
the red point needs to be predicted.

the ultimate prediction, our error is

min
y∗

1

k

∑
Xi∈Sk(x∗)

(y∗ − Yi)2,

and

ŷ∗ = arg min
y∗

1

k

∑
Xi∈Sk(x∗)

(y∗ − Yi)2.

We can find ŷ∗ by differentiation with respect to y∗. Linearity of the differential operator yields

d

dy∗

1

k

∑
Xi∈Sk(x∗)

(y∗ − Yi)2
 =

1

k

∑
Xi∈Sk(x∗)

2(y∗ − Yi) =
2

k

ky∗ − ∑
Xi∈Sk(x∗)

Yi

 .

This evaluates to zero for

y∗ =
1

k

∑
Xi∈Sk(x∗)

Yi, (4.2)

and for that value of y∗, we have

d2

d(y∗)2

 ∑
Xi∈Sk(x∗)

(y∗ − Yi)2
 = 2k > 0. (4.3)

Hence, we indeed have a minimum in y∗ =
1

k

∑
Xi∈Sk(x∗)

Yi, which means

ŷ∗ =
1

k

∑
Xi∈Sk(x∗)

Yi =: avgXi∈Sk(x∗) Yi, (4.4)

the average of the k-nearest neighbors1.
A generalization of the method is to use different weights for the average, depending on the

distance between the red point x∗ and the covariate Xi:

ŷ∗ =
∑

Xi∈Sk(x∗)

wi(x
∗)Yi. (4.5)

1We do not use the notation Ȳ for the average, since we want to make clear over which points the average is
being taken.
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Note that in any case, we rely on the assumption that people with similar hair and foot lengths,
have similar body heights as well. Moreover, note that the weights need to sum to one:∑

Xi∈Sk(x∗)

wi(x
∗) = 1.

4.2 Random forests

It is probably clear that there is a (strong) correlation between humans’ foot lengths and body
heights. Nevertheless, we do not expect a dependence between hair lengths and body heights.
This is where the term redundancy comes in; the hair length is in this case a so-called redundant
variable, as there is no reason to assume that people with similar hair lengths, have similar body
heights as well. People with similar foot lengths, on the other hand, are expected to have similar
body heights. Hence, in Figure 4.1, the black point with a body height of 177 centimeters, gives
a much better indication for the body height of the red point, than for example the point with a
height of 202 centimeters; yet the latter point is closer to the red point than the former. Exactly
this problem, the random forest approach is able to deal with. It defines the distance between
points differently, and in such a way that the “177 cm” point is indeed closer to the red point
than the “202 cm” point. Note that there are several versions of the random forests approach,
of which classical random forests [8] are best-known. We are, however, using the Generalized
Random Forests approach, which has been published very recently [9].

This approach works by constructing several so-called regression trees, an example of such a
tree has been given in Figure 4.2 (with a great amount of fantasy, one can see this as a tree growing
upside-down, with the root on top and the leaves at the bottom). The first step in constructing
a tree, is taking a random sample (without replacement) of the n data points, usually of size
n/2, let’s call this sample S ⊆ {X1, . . . ,Xn}. This set S will be further split randomly into two
sets of roughly equal size, namely St and Sw. The (approximately n/4) data points in St will be
used to construct the tree, those in Sw will be used to determine the weights; it will become clear
what that means. Splitting S into St and Sw causes the tree to be what Wager and Athey call
“honest” [9].

Figure 4.2: Example of a regression tree.

Before looking into how trees are constructed, note that, analogous to equation (4.1), the
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mean squared error of data points X1, . . . ,Xp for a certain prediction ŷ∗ equals

1

p

p∑
i=1

(ŷ∗ − Yi)2.

In the same way as done in equations (4.1) to (4.4), we find that we have a minimum in y∗ =
1

p

p∑
i=1

Yi, which means

ŷ∗ =
1

p

p∑
i=1

Yi =: avgp
i=1 Yi,

the average of the data points. The mean squared error is then equal to

min
y∗

p∑
i=1

(y∗ − Yi)2 =

p∑
i=1

[(avgp
i=1 Yi)− Yi]

2.

For constructing the regression tree, the points in St will be split recursively, into so-called
nodes.

The first node will consist of all points in St. Then we will split this node along one of the d
dimensions. In our example, we either put people with short feet in one group and those with long
feet in another, or we put all people with short hair into one group and those with long hair in
another. In other words, we choose j ∈ {1, . . . , d} and a ∈ R and put all Xi = (X1

i , . . . , X
d
i ) ∈ St

with Xj
i ≤ a in one set, and those with Xj

i > a in another, making two nodes out of each
single node. j and a are chosen in such a way that the total MSE, the sum of the MSEs in
both resulting nodes, is minimized. Let X1, . . . ,Xp again be the data points in our node, where

Xi = (X1
i , . . . , X

d
i ), and let p1(j, a) = #{i : Xj

i ≤ a} and p2(j, a) = #{i : Xj
i > a}. Then we

need to choose j ∈ {1, . . . , d} and a ∈ R such that the MSE

1

p1(j, a)

∑
i:Xj

i≤a

[(avgi:Xj
i≤a

Yi)− Yi]2 +
1

p2(j, a)

∑
i:Xj

i >a

[(avgi:Xj
i >a Yi)− Yi]

2

is minimized. In other words, we let

(j, a) = arg min
(j̃,ã)

 1

p1(j̃, ã)

∑
i:X j̃

i≤ã

[(avg
i:X j̃

i≤ã
Yi)− Yi]2 +

1

p2(j̃, ã)

∑
i:X j̃

i >ã

[(avg
i:X j̃

i >ã
Yi)− Yi]2


Note that since we have finitely many data points, we in fact have finitely many choices for a
resulting in different outcomes. Now we have split our node containing data points {X1, . . . ,Xp}
into two smaller nodes, containing {Xi : Xj

i ≤ a} and {Xi : Xj
i > a}, respectively. Then we

repeat this process for each of the resulting nodes, giving us four even smaller nodes. We can split
again and again, ending up with more and smaller nodes, until we reach the stop condition, which
is a parameter called min.node.size or simply s, specifying the minimum number of points from
St that need to be in a node. When the stop condition has been reached, we stop splitting, ending
up with nodes (leaves) such as in Figure 4.3.

After having built the tree with the data points from St, we determine in which leaf every
data point from Sw ends up. For a fixed x∗, the tree obtains a prediction of y∗ by averaging all
observations Y ∈ Sw that are in the same leaf.

One tree does not constitute a forest yet, so we start again by taking a new, independent
random sample of the data points S ⊆ {X1, . . . ,Xn}, which will be, with very high probability,
different from our previous sample. Again, we split S into two sets St and Sw of roughly equal
size, build the tree with points from St and determine another prediction for y∗ based on this tree
and the points from Sw. In total, many trees are being built, each having their own prediction
for y∗.
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Figure 4.3: Example of how the leaves in a tree could look like. The axes are (in this case two)
covariates. In this example, the tree prediction of the red point’s y-value is the average of the
green-circled data points.

Now let M be the number of trees, and y∗j for j = 1, . . . ,M the prediction of tree j, then we
have

ŷ∗j =

n∑
i=1

Lj(x
∗,Xi)Yi

n∑
k=1

Lj(x∗,Xk)
,

where Lj(x
∗,Xi) = 1 if x∗ and Xi are in the same leaf of tree j; and Lj(x,y) = 0 otherwise. Note

that Lj(x,y) = 0 for all Xi 6∈ Sw, since for a fixed tree, the leaf nodes only contain observations
from Sw. Then the prediction of the random forest is given by

ŷ∗ =
1

M

M∑
j=1

y∗j ,

the average of all tree predictions. Note that we can also write

ŷ∗ =
1

M

n∑
i=1

M∑
j=1

Lj(x
∗,Xi)Yi

n∑
k=1

Lj(x∗,Xk)
=

n∑
i=1

wi(x
∗)Yi (4.6)

for wi(x
∗) =

1

M

M∑
j=1

Lj(x
∗,Xi)

n∑
k=1

Lj(x∗,Xk)
. Since wi(x

∗) ≥ 0 for all i = 1, . . . , n and all test points x∗,

and since
n∑

i=1

wi(x
∗) = 1, it follows that ŷ∗ is a weighted average of Y1, . . . , Yn, and the weight

for Yi, when predicting y∗, is given by wi(x
∗). Thus, data points ending up in the same leaf as

x∗ more often, get more weight when predicting y∗. Equation (4.6) shows a relationship between
k-nearest neighbors and random forests (compare this to equation (4.5)), since they both predict
by using a weighted average of the y-values of the data points and can thus be considered weighted
neighborhoods schemes [10]. An example of a weight assignment when using random forests, is
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Figure 4.4: The red point is the (fixed) test point x∗, and the black points are all data points Xi

having nonzero weight wi(x
∗) when predicting y∗. The greater wi(x

∗), the bigger Xi has been
depicted.

given in Figure 4.4, where the test point is colored red, and the black points are its neighborhood.
We can see that in general, data points with roughly the same x1-value as the test point, get
larger weights than data points having comparable x2-value. Hence, probably the first covariate
has more predictive power than the second. The first covariate could be, for instance, the foot
length in our example, whereas the second covariate is the hair length. This example illustrates
that the shape of the neighborhood gives information about the importance of the covariates [10].



Chapter 5

Performance evaluation using
simulation

5.1 Bias-variance trade-off

A measure for the performance of a method, is the error of the predictions. This can be represented
by the mean squared error, as already mentioned in the previous chapter. The MSE is the
expectation of the square of the difference between the true and predicted value. In other words,
let f̂(x∗) be the prediction for the underlying true value y∗, then the MSE is given by

MSE(f̂(x∗)) = E[(f̂(x∗)− f(x∗))2] = var(f̂(x∗)) + bias2(f̂(x∗)),

and can be decomposed in a variance part var(f̂(x∗)) = E[(f̂(x∗) − E(f̂(x∗)))2] and a bias part

bias(f̂(x∗)) = E(f̂(x∗)− f(x∗)). Thus, the variance is the variability of the predictions, and the
bias is the extent to which the expected prediction differs from the actual value; both the variance
and bias cause error. If we want to minimize the MSE, we are dealing with the bias-variance trade-
off (or bias-variance dilemma) [11]: finding a balance between bias and variance to minimize the
mean squared error. When using simulations, we typically take m random independent samples
f̂1, . . . , f̂m from the distribution of f̂ , and approximate the MSE, variance and bias as follows:

MSE(f̂(x∗)) ≈ 1

m

m∑
i=1

(f̂i(x
∗)− f(x∗))2;

variance(f̂i(x
∗)) ≈ 1

m

m∑
i=1

f̂i(x∗)− 1

m

m∑
j=1

(f̂j(x
∗))

2

;

bias(f̂(x∗)) ≈ 1

m

m∑
i=1

(f̂i(x
∗)− f(x∗)).

Suppose we set k = n in the k-nearest neighbors method, then the prediction of any y∗ will
be the average of the y-values of the n nearest neighbors, which is the average of all y-values. In
other words, every point gets the same prediction, so there is a small variance, but a very large
bias (so still a big error). On the other hand, if we choose k = 1, then we have a small bias
but a large variance (so a big error as well). As already mentioned, the goal is to find a balance
between variance and bias (and determining the k-value as such), in order to minimize the MSE.

For s, the parameter that determines the minimal number of data points in a leaf (with
random forests), we have something similar: for great values of s, we have a small variance and
a large bias; for small values of this parameter, we have a small bias and a large variance. When
determining the optimal parameter choice, we should thus again find a balance between bias and
variance.

The number of trees M in a forest when using random forests, has influence on the MSE as
well. A single tree is only trained on a single part of the training set, which causes the high

13
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variance; by averaging multiple trees that are trained on different parts of the training set, the
variance is reduced [12]. Therefore, M will in any case be chosen large enough, such that the
variance caused by the number of trees is sufficiently small. This causes a small increase in the
bias, but overall the MSE is decreased.

5.2 Simulation study

In order to measure the performance of the different methods, we need to test them within several
fixed settings. As such, we generate data from a regression model Y = f(X) + ε, where X ∈ Rd

with d = 1, 2, . . . , 10 and f : Rd → R is one of:

• f1(x1, . . . , xd) = sin(2πx1−π): a function that essentially depends only on x1, which means
it will have redundancy for d > 1;

• f2(x1, . . . , xd) =
d∏

i=1

sin(2πxi − π): a function that essentially depends on all covariates,

with no redundancy.

We draw n ∈ {100, 300, 1000, 3000, 10000} independent and identically distributed samples of
X ∼ Unif[0, 1] and ε ∼ N (0, 1), namely X1, . . . ,Xn and ε1, . . . , εn. Then we will compute
Yi = f(Xi) + εi for i = 1, . . . , n, and apply our methods, the k-nearest neighbors method and the
random forest approach, to the generated samples (X1, Y1), . . . , (Xn, Yn), in order to estimate f .
In other words, we choose a set of test points within the domain of f and estimate f(x) for all test
points x. The set of test points is chosen as {(a, a, . . . , a) ∈ Rd : a = 0, 0.005, 0.01, . . . , 0.995, 1}.

For the simulations, we use the statistical environment R, version 3.4.1. The software is freely
available at www.r-project.org. The simulations are performed using a notebook with 8 GB
Random Access Memory and an Intel i7-6700HQ Central Processing Unit, with a clock rate of
2.59 GHz.

5.3 Approximating mean squared error

In simulations as well as in practical situations, we need to determine optimal parameter values
for the different methods. When doing simulations, we can use our knowledge of the function f
in order to compute the errors of the predictions, and we can choose the parameter that leads to
the smallest error. However, the magnitude of the MSE depends on the test point; for certain test
points we can have a more accurate prediction than for others. It can thus be that one parameter
value is a better choice for certain test points, but a worse choice for others. We would like to
have a single number, capturing the overall error for all test points. If the test points are from
a continuous domain, we can use the mean integrated squared error (MISE), which is given by
integrating the pointwise MSE over the test domain D:

MISE(f̂) =

∫
D

MSE(f̂(x∗))dx∗ = E
(∫

D

(f̂(x∗)− f(x∗))2dx∗
)

≈ 1

m

m∑
i=1

∫
D

(f̂i(x
∗)− f(x∗))2dx∗,

where f̂1, . . . , f̂m are independent samples from the distribution of f̂ , and the expectation is
approximated by taking average over all m samples. Using the mean integrated squared error,
we can objectively compare different parameter values, and pick the one with the smallest error.

In real-world situations, when we do not have the knowledge of the function f , the optimal
parameter value can be determined using predictive analytics. An example of such a technique
is l-fold cross-validation, which will be discussed in Section 7.3.

www.r-project.org
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5.4 Simulation results

As could perhaps already be expected, the k-nearest neighbors method performs poorly when the
number of dimensions d is large, especially when there is much redundancy. For example, when
d = 20 and f = f1, k-nearest neighbors is being outperformed by random forests, as can be seen
in Figure 5.1. Obviously, since f1 essentially depends only on x1, the function and its estimations

(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

Figure 5.1: Estimations and errors when using k-nearest neighbors and random forests with d = 2,
f = f1 and n = 1000. The parameters k and s have been chosen optimally.

have been projected on the x1-axis. Since we have an even higher number of dimensions in the
precipitation data set and more redundancy, the k-nearest neighbors method will not be the
solution.

When using random forests, the bias is highly dominating the variance, even when choosing
the smallest possible parameter value s = 1. This effect gets more severe as the dimension
increases, but is already clearly visible for d = 2, f = f2, see Figure 5.2. The function values are
drawn and tested for points on the line x1 = x2, which has been projected onto the x1-axis in the
plots. It is proven that the bias vanishes as n→∞ [13], so it is perhaps not a surprise that the
bias stops dominating for sufficiently large n. However, when slightly increasing the dimension
to only d = 5, we can see in Figure 5.3 that even n = 300000 is not enough to bring the bias
down to a reasonable level. Again, function values are drawn and tested for points on the line
x1 = x2 = . . . = x5, which has been projected onto the x1-axis in the plots. The sample sizes
needed to stop the bias from dominating, are unfeasibly high. Regarding the fact that in our
precipitation data set, the dimension is even much higher (d ≥ 84), whereas the sample size is
around n = 15000, random forests will not work either.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

(e) Ratio between squared biases and variances

Figure 5.2: Estimations and errors when using random forests with d = 2, f = f2, s = 1 and
n = 100, 300, 1000, 3000, 10000. The bias is dominating over the variance for small n.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

(e) Ratio between squared biases and variances

Figure 5.3: Estimations and errors when using random forests with d = 5, f = f2, s = 1 and
n = 1000, 10000, 30000. The bias is dominating over the variance for all reasonable values of n.



Chapter 6

Proposed method: k-nearest
forest neighbors

We saw in the previous chapter that both existing methods, k-nearest neighbors and random
forests, are not good enough to be applied to the precipitation data set, as they both have their
own drawbacks. Of course both methods do have advantages as well, so we can combine the best
of their worlds into a new method, called k-nearest forest neighbors. In this chapter, we will
explain this new method, and evaluate its performance again by simulation.

6.1 Explanation

In Chapter 4, we explained the random forests approach. For a certain test point, the prediction
of its y-values is done as follows. The forest consists of several trees, and for each of them, we
see in which leaf the test point ends up. The prediction for the tree is then the average of the
data points in the leaf; the ultimate prediction is the average of the prediction of all trees in the
forest. Certain data points end up in the same leaf as the test point more often than others,
and have therefore more influence on the prediction for the test point’s y-value. We could also
say that these data points have more weight. Often, there are many data points with nonzero
weight, causing a dominating bias and worse predictions. This is illustrated in the four left plots
of Figure 6.1, where a simulation has been done using random forests with n = 5000, d = 2 and
f = f1. We see that even for the smallest possible parameter value s = 1, there is a big amount
of data points having non-zero weight, and this gets even worse for larger values of s. This is
exactly the problem that our proposed method, k-nearest forest neighbors, attempts to fix.

According to equation (4.6), we have ŷ∗ =
n∑

i=1

wi(x
∗)Yi, where wi(x

∗) is the weight of data

point Xi when predicting y∗. Now the intuition behind k-nearest forest neighbors is simple. For
each test point, we take the K 1 data points that have the highest weight, and set the others to
zero. Thus, let K ∈ Z with K ≤ n be a new parameter and let WK be the set consisting of the

K data points that have the largest weight. Now we assign new weights w
(K)
i (x∗) to each data

point xi as follows:

w
(K)
i (x∗) =

wi(x
∗)
/ ∑

xj∈WK

wj(x
∗), if xi ∈WK ;

0, otherwise.

In other words, we take the K largest weights and scale them so that their sum equals 1, and set
all other weights to zero. This reduces the number of data points with nonzero weight, and thus
reduces the bias as well. Now our prediction is computed using the new weights,

ŷ =

n∑
i=1

w
(K)
i (x∗)Yi =

∑
xi∈WK

w
(K)
i (x∗)Yi,

1We will use a capital K instead of k, in order not to get confused with the k-nearest neighbors method.
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(a) s = 1 (b) s = 1, K = 50

(c) s = 10 (d) s = 10, K = 70

(e) s = 100 (f) s = 100, K = 70

(g) s = 300 (h) s = 300, K = 150

Figure 6.1: The red point is the (fixed) test point x∗. For the plots at the left, the black points
are all data points Xi having nonzero weight wi(x

∗) when predicting y∗ using random forests,
with different values of s; for the plots at the right, the black points are the data points having
non-zero weight wK

i (x∗) when predicting y∗ using k-nearest forest neighbors, with parameter K.
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as a weighted average over the y-values of the K elements in WK . In Figure 6.1 (the four plots
at the right), we can see that using k-nearest forest neighbors indeed helps reducing the number
of data points having non-zero weight. We will see in the next section whether this new method
also helps reducing the bias.

6.2 Performance evaluation using simulation

In Figure 5.2, we saw the results when using random forests for d = 2 and f = f2. When using
the k-nearest forest neighbors method on the exact same data set, the results improve for every
value of n: the bias heavily decreases whereas the variance increases insignificantly, causing a

significant drop in the ratio
bias2

variance
. We will now focus on comparing n = 300, for the results

with other sample sizes, the reader is referred to Figure B.1 in the appendix. The results obtained
using the two methods with n = 300, are given in Figure 6.2. We see that the bias has been
significantly decreased by using the k-nearest forest neighbors method, while the variance has
hardly increased. This is especially visible in parts (b), (c) and (e) the figure. Therefore, the
sample size needed for the bias to be sufficiently small, decreases when using k-nearest forest
neighbors.

We also saw that random forest performed poorly for d = 5 and f = f2, for reasonable sample
sizes. When applying the k-nearest forest neighbors approach to the same data set, we again see
an improvement for each value of n: again we can see the decreasing bias, whereas the variance
does not increase significantly. The estimations thus improve, but are unfortunately still poor.
We will show the results for n = 10000 in Figure 6.3; the results obtained for other sample sizes
can be found in Figure B.2 of the appendix. Again, we see that the sample size needed for the
bias to be sufficiently small, decreases when using k-nearest forest neighbors.

We will not show here that the k-nearest forest neighbors method also outperforms k-nearest
neighbors, interested readers are referred to Figure B.3 of the appendix, where the k-nearest
forest neighbors estimation has been added to Figure 5.1. To see whether the k-nearest forest
neighbors method really works, however, we need to apply it to the precipitation data set, which
will be done in the next chapter.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

(e) Ratio between squared biases and variances

Figure 6.2: Estimations and errors when using random forest and k-nearest forest neighbors with
d = 2, f = f2 and n = 300. The bias domination has been greatly reduced by using k-nearest
forest neighbors.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

(e) Ratio between squared biases and variances

Figure 6.3: Estimations and errors when using random forest and k-nearest forest neighbors with
d = 5, f = f2 and n = 10000. The bias domination has been greatly reduced by using k-nearest
forest neighbors, but the estimations are still poor.



Chapter 7

Application on precipitation
prediction

7.1 Adding new covariates to the data set

The precipitation data set from the KNMI was explained in Chapter 2. Apart from the 84 covari-
ates resulting from the HARMONIE model, containing forecasts of precipitation, atmospheric
stability, airflows and precipitable water (among others), we saw in Section 2.2 that region, date
and time can be correlated to the precipitation as well. Namely, it seems that there is more
extreme precipitation in non-coastal areas, in summer months and by the end of the afternoon.
We can therefore add information about the region, date and time to the 84 already existing
covariates.

Region

Since the regions are in a two-dimensional plane, we need two numbers to reflect their distances
correctly. In the current situation, region 9 is closer to region 12 than to region 10, whereas the
numbers 9 and 10 are closer to each other than 9 and 12, which is undesirable. Hence, we will
introduce two covariates:

region x = [(region− 1) mod 3] + 1, and region y = dregion/3e,

which means regions 1, 2, 3, 4, . . . , 12 become (1, 1), (2, 1), (3, 1), (1, 2), . . . , (3, 4), respectively.

Date

For the date, we just let April 1st be day number 1, April 2nd day number 2, until October
31st, which is then day number 214. From the violin plots in Section 2.2, it followed that the
weather in April was not comparable to the weather in October, so it makes no sense to define
some periodic metric (where April 1st is close to October 31st). Note that the year is not being
taken into account, which means April 3rd, 2011 and April 3rd, 2013 will both have date = 3.
We also expect that the weathers on the same day in different years will have some correlation.

Time

For the time, it does make sense to have periodicity, since the time window 18:00-24:00 is close
to the time window 0:00-6:00 of the next day. However, this is not as simple as it appeared at
first sight. Choosing a single sinusoid results in −1, 0, 1, 0 for the time windows 0-6, 6-12, 12-18
and 18-24, respectively. This gives 6-12 and 18-24 the same metric, which is clearly not what we
want. Shifting the sinusoid does not solve this problem.

Another option could be combining date and time, and adding time as a fraction to the date.
April 1st 18:00-24:00 then becomes 1.75, and April 2nd 0:00-6:00 would be 2.00. However, the
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time was introduced to reflect that, for instance, April 5th 12:00-18:00 and May 2nd 12:00-18:00
should be comparable, and using such a metric throws away the link between those two (as their
distance becomes large). Keeping only the fraction, results in a large distance between the time
windows 18-24 (0.75) and 0-6 (0.00), so this is not a good solution either.

The solution has been found in adding another metric for time. Besides −1, 0, 1, 0, we have
0, 1, 0,−1 as well. This means the (Euclidean) distance between two neighboring time windows is√

2, and the distance between two opposing time windows is 2. One could compare these metrics
to the (x, y) coordinates of the points where the unit circle intersects the axes. Each of these four
intersection points (±1, 0), (0,±1) then represents a time window.

7.2 Selecting the most predictive covariates

After adding these covariates about region, date and time, we have a total of 89 covariates in
the data set. We already saw that all methods have difficulties dealing with a large number of
covariates; even the k-nearest forest neighbors method did not significantly improve upon using
random forests, for sufficiently many covariates with a fixed sample size. Since the sample size in
the data set is fixed, we need to limit the number of covariates. We will do so by selecting only
D << 89 of them to train the models on, which means the precipitation predictions will only be
based on these covariates. It goes without saying that we want to choose the D most predictive
ones. When building a random forest, the data points are split across the most predictive co-
variates, which means the splits give an indication of a covariates’ predictive value. A technique
for ranking the covariates according to their importance, is described in [8], and implemented in
the variable importance function of the grf package [17]. This function has two parameters
decay.exponent and max.depth: the latter specifies the maximum depth of the splits to con-
sider, since deeper splits give less information about predictive value. Hence, deeper splits should
also be given less weight in determining the variable importance, and this is exactly what the
decay.exponent parameter is controlling. After having tried different values, it turned out that
decay.exponent = 2 and max.depth = 4 gave the best results.

The covariate importances of all 89 covariates are given in Tables B.1 and B.2 in the appendix.
The twenty most predictive covariates per lead time are given in Table 7.1. The physical meaning
of the covariates is beyond the scope of this thesis. However, it is worth saying that the covariates
ending on a + and - are hourly maxima and minima, respectively. The suffix xm means that the
measurement has been taken x meters above the ground, and ymb means that the measurement
was taken with an air pressure of y millibars, which is also an indication of the altitude, as air
gets thinner further above the ground. Generally, a covariate having a person’s name, such as
Boyden or Rackliff, is about atmosphere stability. The covariate Rain is the HARMONIE model
precipitation prediction.

We will now focus on lead time number 3, which is 18 hours in advance. The simple reason
for this choice is that earlier lead times are hard to predict, whereas later lead times are more
easily predictable; lead time number 3 is thus a good balance in terms of predictability. We can
build a random forest using only the twenty most predictive covariates, and retrieve the variable
importances again. This turns out to change the order of importance, as can be seen in table 7.2.
We see that Rain 0m.+ makes a giant leap forward, whereas SWEAT 0m.+ suffers from a free fall.
We will see that in general, taking the top-D from the second list (best of 20) gives better results
than taking the top-D from the first one. It is also intuitive that a covariate such as Rain 0m.+

has a high predictive value. Thus, our top-D will be taken from the second list, i.e. the “best D
of 20”.

7.3 Validation setting

In section 5.3, we discussed how to determine error measures, such as the MSE, when having
knowledge of the underlying regression function f . When applying the methods to the pre-
cipitation data set, however, we do not have this knowledge. There are several ways of still
approximating the errors, and one of those is l-fold cross-validation. Being able to approximate,
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for example, the MSE, not only allows us to estimate a method’s predictive accuracy, but also to
select the optimal parameter value of a certain method, simply by selecting the parameter value
leading to the smallest error.

For validation, we cannot use the same data points for estimating the function, as well as
judging the predictive accuracy of the estimated function. Otherwise, we would favor strange
functions that perfectly fit out training data. Hence, we partition the data set into two equally
sized sets: one used for estimating (the training set), and the other for testing this estimation
(the estimation set or test set), with which we estimate a measure of performance, for instance
the MSE. The idea of cross-validation is that we could also use the second set for estimating and
the first one for testing the estimation, and thus get another value for predictive performance.
The performance is then calculated by averaging these two values.

This exactly describes 2-fold cross-validation. We could generalize this into l-fold cross-
validation, by randomly partitioning the n data points into l sets, called folds, having roughly
equal size n/l. Then we use all folds except the first one in order to make an estimation, and
evaluate the predictive performance using the first fold. After this, we use all folds except the
second one to make (another) estimation, and evaluate its performance using the second fold.
We repeat this process for all l folds, and calculate the performance by averaging over all these
l values [14]. The parameter value (e.g. s or k) for which we have the best performance (least
error), is the value that we eventually choose. In practice, 10-fold cross-validation is often chosen
[15].

Since we have comparable data about three years, it is natural to use 3-fold cross-validation
in our case, where the folds are the different years. As an error measure, we use the root mean
squared error (RMSE), which is the square root of the MSE. Since the root function is strictly
increasing, this preserves the ordering in terms of predictive accuracy. The advantage of using
RMSE, is that its unit is the same as the precipitation unit (millimeters per hour), which makes
the numbers more easily interpretable. The (high-level) pseudo-code for the cross-validation is
given in Algorithm 1, the R code documentation can be found in Appendix C. We can repeat

Algorithm 1 Pseudo-code for 3-fold cross-validation on precipitation data.

1: procedure CrossValidation(model, data, t (lead time number), top-D covariates for lead
time number t)

2: add new covariates (region, date, time) to data
3: for i = 2010, 2011, 2013 do
4: cov ← top-D covariates for lead time t
5: training data← data of the covariates cov, all years except i
6: train model on training data
7: for each data point p in year i do
8: predict hrly.obs of p using model and compute MSE using its value in data

9: e[i]← average of the MSEs over all p

10: MSE[t]← average of e[i] over i = 2010, 2011, 2013
11: return

√
MSE[t]

this procedure for different parameter values and pick the best one, i.e. the one with the smallest
RMSE. This way, we can obtain an average root mean squared error for each method (k-nearest
neighbors, random forest and k-nearest forest neighbors) and each lead time. We can then
determine which of the methods performs best for a certain lead time, and see how early (in
which lead time) extreme precipitation can be predicted accurately enough.
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Table 7.1: Top-20 of most predictive covariates per lead time.
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Number best of all best of 20
1 Boyden 0m.+ Boyden 0m.+ (− 0)
2 Lifted 0m.- Lifted 0m.- (− 0)
3 VWND 700mb.- Rain 0m.+ (↑ 10)
4 VWND 700mb.+ VWND 700mb.- (↓ 1)
5 Rackliff 0m.- VWND 700mb.+ (↓ 1)
6 Lifted 0m.+ Sur CI 0m.- (↑ 3)
7 SWEAT 0m.+ Helicity 0m.- (↑ 7)
8 UWND 700mb.- LCL 0m.- (↑ 2)
9 Sur CI 0m.- Helicity 0m.+ (↑ 3)
10 LCL 0m.- UWND 700mb.+ (↑ 1)
11 UWND 700mb.+ LFC 0m.- (↑ 5)
12 Helicity 0m.+ Rackliff 0m.- (↓ 7)
13 Rain 0m.+ Lifted 0m.+ (↓ 7)
14 Helicity 0m.- UWND 700mb.- (↓ 6)
15 Tot 1e 0m.+ Boyden 0m.- (↑ 2)
16 LFC 0m.- Tot 1e 0m.+ (↓ 1)
17 Boyden 0m.- Rackliff 0m.+ (↑ 3)
18 Tot 1e 0m.- SWEAT 0m.+ (↓ 11)
19 SWEAT sin 0m.+ Tot 1e 0m.- (↓ 1)
20 Rackliff 0m.+ SWEAT sin 0m.+ (↓ 1)

Table 7.2: Top-20 of most predictive covariates, for lead time number 3.
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7.4 Validation results

We computed the RMSE for different methods: the NWP prediction, k-nearest neighbors method,
random forests approach, and k-nearest forest neighbors, with different parameter values. The
results are given in Table 7.3.

D method best parameter RMSE
− NWP − 3.006
89 knn k = 31 3.072
89 rf s = 1 2.891
89 knfn s = 1,K = 205 2.888
20 knn k = 59 3.291
20 rf s = 1 2.903
20 knfn s = 1,K = 609 2.885
5 knn k = 64 2.957
5 rf s = 1 2.931
5 knfn s = 1,K = 502 2.918
3 knn k = 15 3.118
3 rf s = 1 2.957
3 knfn s = 1,K = 541 2.927

Table 7.3: RMSEs after applying different methods on precipitation data set, for lead time
number 3. The abbreviations knn, rf and knfn stand for k-nearest neighbors, random forests, and
k-nearest forest neighbors, respectively.

As expected, we see that random forests and k-nearest forest neighbors perform better than k-
nearest neighbors, regardless of the number of covariates. We can also see that in general, taking
fewer covariates (smaller D) results in worse predictions, which is very intuitive since selecting
few covariates means throwing away much information. There is one notable exception: when
using k-nearest neighbors, we get significantly better results with D = 5 than D = 20. This
can be explained as follows: we saw in Section 5.4 that k-nearest neighbors has a lot of trouble
when there is a large number of covariates, due to the redundancy. Namely, it does not know
which covariates are predictive, and which are not. In this case, however, the D most predictive
covariates have already been selected by random forests, and this apparently helps the k-nearest
neighbors method to perform better. When using D = 3, the performance gets worse again, as
valuable information (the fourth and fifth covariate) has been thrown away.

It is also good to see that k-nearest forest neighbors and random forests give better predic-
tions than the NWP model. Moreover, our newly developed method, k-nearest forest neighbors,
has more predictive accuracy than the other approaches; the difference with random forests is,
however, not significantly large. Analogous to the simulation study, we see that the improvement
upon random forests gets more significant as the number of covariates decreases. We also saw in
the simulation study that the improvement gets more significant when the sample size increases,
which suggests that the insignificance of the improvement is likely due to the limited sample size
in the precipitation data set as well.
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Conclusion

In this report, we started by doing a simulation study of two existing non-parametric regression
methods, namely k-nearest neighbors and random forests. This study gave much insight into how
these existing methods work. It turned out that the k-nearest neighbors method was not able to
deal with the redundancy present in the simulated data, and was thus outperformed by random
forests. The random forests approach itself had a problem as well: the dominating bias, causing
a large mean squared error in the predictions.

We attempted to solve this problem by introducing a new approach called k-nearest forest
neighbors. When applying this method to the simulated data, we indeed saw that it improved
upon random forests. When using a small number of covariates, this improvement was more
significant than in a model with many covariates.

Since the KNMI precipitation data set contained 89 covariates, we decided to select the most
predictive D of them, in order to limit the number of covariates. The predictive value of a
covariate was estimated by growing a forest on the precipitation data.

We saw that both k-nearest forest neighbors and random forests give better predictions on the
precipitation data set than the NWP model, which means that regression is a good post-processing
method for predicting extreme precipitation. Furthermore, the k-nearest forest neighbors method
performed better than random forests, in terms of root mean squared error. The difference be-
tween those methods was, however, not really significant, partly due to the limited available
sample size in the precipitation data set. Analogous to the simulated data, we saw the improve-
ment getting more significant for smaller values of D. It might therefore be safe to conclude that
the k-nearest forest neighbors method that we developed, is promising and has the potential of
significantly improving upon random forests.
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Further research

The k-nearest forest neighbors method that we developed, still leaves room for improvement.
Below are listed some possible areas for further research, which will hopefully lead to the k-
nearest forest neighbors method ultimately outperforming random forests significantly.

Firstly, when doing a simulation study, more different cases can be considered. In this thesis,
we assumed a uniform distribution of the covariates, and normality of the noise term. If different
distributions are used, the performance of the methods can possibly change.

Besides, the validation of the method can be done more theoretically, instead of only using
simulations. This kind of validation could give more insight into the mathematical side of the
method. It could, for example, make clear that a slight modification of the method can improve
its performance.

Furthermore, since the bias and variance are dependent on the test point x∗, the optimal
parameter value will depend on x∗, too. Choosing a constant parameter value, as was done in
this thesis, likely causes sub-optimality for certain test points. The mean squared error could
thus be further reduced when choosing different parameter values for different test points.

Last but not least, since our goal is forecasting extreme precipitation, it would be interesting to
see if the models can correctly predict whether the hourly precipitation will exceed P millimeters.
Different values of P could then be chosen; for example, P = 30 would indicate whether the models
justly issue a code yellow warning. The RMSEs that we have computed in this thesis, only tell
us something about averaged errors, without giving information about the ability to correctly
forecast extreme numbers.
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Appendix A

Additional data properties

As mentioned in Section 2.2, we would include violin plots for the twelve regions, split by month;
violin plots for the seven months, split by region; violin plots for the twelve regions, split by time
window; and violin plots for the four time windows, split by region. This is to gain more insight
into the combinations of regions, months and time windows in which there is the most extreme
precipitation. Judging from Figure A.1, it seems that in months like May and September,
there is quite much precipitation in coastal areas such as regions 7 and 10. In summer months,
however, there is relatively little precipitation. In Figure A.2, we can see that the peaks for the
coastal areas are relatively late (after summer), whereas most areas have their peaks in summer,
as expected. Furthermore, it is notable that there is a huge peak in September in region 10, as
well as in August in region 3.

The violin plots for the twelve regions, split by time frame; and for the four time windows,
split by region, are given in figures A.3 and A.4, respectively. It seems that there is the
least extreme precipitation during the night (0-6 UTC), and as expected, the most extreme
precipitation happens at the end of the day (12-18 UTC in the southeast, 18-24 UTC in the rest
of the country). In region 3, however, it seems that the most extreme precipitation occurs in the
morning, judging from A.3(b) and A.4(c). Nevertheless, generally the last two time frames of a
day are most interesting in terms of extreme precipitation.
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(a) April (b) May

(c) June (d) July

(e) August (f) September

(g) October

Figure A.1: Violin plots of the observed hourly precipitation for all twelve regions, split by the
seven months.
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(a) Region 1 (b) Region 2 (c) Region 3

(d) Region 4 (e) Region 5 (f) Region 6

(g) Region 7 (h) Region 8 (i) Region 9

(j) Region 10 (k) Region 11 (l) Region 12

Figure A.2: Violin plots of the observed hourly precipitation for the seven months, split by all
twelve regions.
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(a) 0-6 UTC (b) 6-12 UTC

(c) 12-18 UTC (d) 18-24 UTC

Figure A.3: Violin plots of the observed hourly precipitation for all twelve regions, split by the
four time windows.
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(a) Region 1 (b) Region 2 (c) Region 3

(d) Region 4 (e) Region 5 (f) Region 6

(g) Region 7 (h) Region 8 (i) Region 9

(j) Region 10 (k) Region 11 (l) Region 12

Figure A.4: Violin plots of the observed hourly precipitation for the four time windows, split by
all twelve regions.



Appendix B

Additional simulation results

In this appendix, some additional illustrations are given, which were not relevant enough to be
included in the chapters, but might be interesting to have a look at. All plots and table below
have been referenced in at least one of the chapters.
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(a) Estimations (b) Pointwise MSEs

(c) Pointwise variances (d) Pointwise squared biases

(e) Ratio between squared biases and variances

Figure B.1: Estimations and errors when using k-nearest forest neighbors with d = 2, f = f2 and
n = 100, 300, 1000, 3000, 10000, the parameters s and K are chosen in an optimal way. The bias
domination has been greatly reduced.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

(e) Ratio between squared biases and variances

Figure B.2: Estimations and errors when using k-nearest forest neighbors with d = 5, f = f2
and n = 1000, 10000, 30000, the parameters s and K are chosen in an optimal way. The bias
domination has been greatly reduced, but the estimations are still poor.
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(a) Estimations (b) Pointwise variances

(c) Pointwise squared biases (d) Pointwise MSEs

Figure B.3: Estimations and errors when using k-nearest neighbors, random forests and k-nearest
forest neighbors with d = 2, f = f1 and n = 1000. The parameters k, s and K have been chosen
optimally.



APPENDIX B. ADDITIONAL SIMULATION RESULTS 41

Covariate LT1 LT2 LT3 LT4 LT5 LT6 LT7
Boyden 0m.hrlymax 0.04275 0.04104 0.04116 0.04091 0.04197 0.03717 0.05119
Boyden 0m.hrlymin 0.03401 0.03811 0.03407 0.03571 0.0416 0.0408 0.03364

Bradbury 0m.hrlymax 0.00112 0.00061 0.00088 0.00129 0.00067 0.00083 0.00053
Bradbury 0m.hrlymin 0.00087 0.00085 0.00081 0.00075 0.00091 0.00102 0.00095
DPT 500mb.hrlymax 0.00223 0.00142 0.0012 0.00162 0.00158 0.00178 0.00185
DPT 500mb.hrlymin 7e-04 0.00045 6e-04 0.00046 0.00061 0.00079 0.00071
DPT 600mb.hrlymax 0.00185 0.00231 0.00322 0.0118 0.01107 0.00966 0.01373
DPT 600mb.hrlymin 0.0011 0.00095 0.00185 0.00113 0.00105 0.00372 0.00186
DPT 700mb.hrlymax 0.00235 0.00298 0.00702 0.01431 0.01088 0.01026 0.00756
DPT 700mb.hrlymin 0.00316 0.00404 0.0327 0.00437 0.00521 0.00393 0.00271
DPT 850mb.hrlymax 0.00094 0.00079 0.00088 0.00103 0.00142 0.00175 0.00168
DPT 850mb.hrlymin 0.00189 0.00169 0.0016 0.0013 0.00172 0.00155 0.00206
Fateev 0m.hrlymax 0.02042 0.01895 0.01646 0.02644 0.01899 0.01479 0.02016
Fateev 0m.hrlymin 0.00266 0.00202 0.00375 0.00476 0.00445 0.00771 0.00419

Helicity 0m.hrlymax 0.02812 0.04133 0.03523 0.03467 0.03523 0.03521 0.04729
Helicity 0m.hrlymin 0.04367 0.03972 0.0344 0.03784 0.03703 0.0381 0.04591
Jefferson 0m.hrlymax 0.00199 0.00421 0.00648 0.00647 0.00285 0.00779 0.00585
Jefferson 0m.hrlymin 0.00097 0.00103 0.00148 0.00125 0.00139 0.00238 0.00142
K index 0m.hrlymax 0.00712 0.00967 0.00989 0.01455 0.01489 0.01012 0.01079
K index 0m.hrlymin 0.00249 0.00229 0.00182 0.00257 0.00301 0.00251 0.00355
LCL 0m.hrlymax 0.04013 0.03922 0.02377 0.01181 0.0123 0.01344 0.01098
LCL 0m.hrlymin 0.04014 0.04179 0.03676 0.03103 0.03916 0.04021 0.02692
LFC 0m.hrlymax 0.02349 0.01784 0.02462 0.02571 0.03437 0.02225 0.04302
LFC 0m.hrlymin 0.04346 0.01985 0.03413 0.03342 0.02793 0.03639 0.03073

LidStrength 0m.hrlymax 0.00122 0.00157 0.00181 0.00202 0.00204 0.00127 0.00121
LidStrength 0m.hrlymin 0.00026 0.00029 0.00023 0.00027 0.00029 0.00031 0.00021

Lifted 0m.hrlymax 0.04304 0.03676 0.03819 0.03752 0.03991 0.04233 0.04271
Lifted 0m.hrlymin 0.04375 0.04106 0.04077 0.03635 0.01651 0.01187 0.02737

PrecipitableWater 0m.hrlymax 0.00251 0.00184 0.00219 0.00338 0.00336 0.00327 0.00274
PrecipitableWater 0m.hrlymin 0.00101 0.00087 0.00126 0.00105 0.00135 0.00115 0.00111

Rackliff 0m.hrlymax 0.0371 0.03714 0.03322 0.03359 0.03696 0.04407 0.03942
Rackliff 0m.hrlymin 0.04145 0.03778 0.03822 0.03966 0.04123 0.0407 0.04176
Rain 0m.hrlymax 0.03608 0.03511 0.03518 0.02724 0.02579 0.02366 0.02479
Rain 0m.hrlymin 0.00044 0.00037 0.00277 0.00176 0.00137 0.00126 0.00139

Richardson 1m.hrlymax 0.00091 0.00114 0.00117 0.00115 0.00119 0.00121 0.00121
Richardson 1m.hrlymin 0 0 0 0 1e-05 1e-05 0
Richardson 2m.hrlymax 0.00094 0.00172 0.00133 0.00162 0.00135 0.0014 0.00108
Richardson 2m.hrlymin 5e-05 6e-05 0.00014 0.00011 7e-05 0.00015 9e-05

SWEAT 0m.hrlymax 0.03788 0.04049 0.03765 0.03288 0.03543 0.04126 0.04395
SWEAT 0m.hrlymin 0.00076 0.00073 0.00056 7e-04 0.00093 0.00077 0.00126

SWEAT sin 0m.hrlymax 0.03841 0.03754 0.03341 0.03262 0.03121 0.03095 0.01998
SWEAT sin 0m.hrlymin 0.0066 0.00883 0.00466 0.0045 0.0067 0.00283 0.00461
Shear 0m.hrlymax 0.00056 0.00063 0.00075 0.00066 0.00056 0.00074 0.00077
Shear 0m.hrlymin 0.00074 0.00065 0.00114 0.00149 0.00109 0.00079 0.00087

Table B.1: Covariate importances, after building a random forest with s = 1 (part 1).
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Covariate LT1 LT2 LT3 LT4 LT5 LT6 LT7
Showalter 0m.hrlymax 6e-04 0.001 0.00066 0.00217 0.00153 0.00195 0.00322
Showalter 0m.hrlymin 0.00074 0.00135 0.00099 0.00088 0.00147 0.00098 0.00081
StormTravel 0m.hrlymax 6e-04 0.00071 0.00088 0.00096 0.0011 0.00056 0.00101
StormTravel 0m.hrlymin 0.00077 0.00067 0.00075 0.0011 0.00116 0.00079 0.00101
Surface CAPE 0m.hrlymax 0.00151 0.00211 0.003 0.00252 0.00244 0.00415 0.00276
Surface CAPE 0m.hrlymin 1e-05 2e-05 1e-05 0 0 1e-05 0
Surface CAPE 35m.hrlymax 0.00739 0.0085 0.00913 0.00918 0.00918 0.00887 0.008
Surface CAPE 35m.hrlymin 0.00012 0.00018 0.00022 0.00021 0.00023 0.00022 0.00022

Surface ConvInhib 0m.hrlymax 0.00116 0.00075 6e-04 0.00072 0.00087 0.00096 0.00071
Surface ConvInhib 0m.hrlymin 0.03872 0.0393 0.0374 0.03707 0.03661 0.04714 0.04229

TQ 0m.hrlymax 0.01545 0.02011 0.01828 0.02569 0.01362 0.01528 0.00881
TQ 0m.hrlymin 0.00407 0.00346 0.00446 0.00544 0.00349 0.00297 0.0055

TotalTotals 0m.hrlymax 0.01111 0.01946 0.01002 0.01804 0.00666 0.00482 0.00668
TotalTotals 0m.hrlymin 0.00152 0.00164 0.00222 0.00322 0.00145 0.00137 0.00145

TotalTotals 1e 0m.hrlymax 0.04144 0.03699 0.03417 0.03141 0.03364 0.04131 0.04676
TotalTotals 1e 0m.hrlymin 0.04144 0.04015 0.03365 0.03086 0.02783 0.04428 0.03268
TotalTotals 2e 0m.hrlymax 0.00866 0.01388 0.01098 0.02174 0.01052 0.00618 0.00755
TotalTotals 2e 0m.hrlymin 0.00275 0.00223 0.00209 0.01446 0.00475 0.00268 0.00379

UWND 700mb.hrlymax 0.04002 0.03599 0.03635 0.03129 0.03755 0.03849 0.04465
UWND 700mb.hrlymin 0.04069 0.03857 0.03743 0.0378 0.03419 0.04285 0.03798
VWND 700mb.hrlymax 0.02592 0.03296 0.03921 0.03505 0.02752 0.0062 0.00492
VWND 700mb.hrlymin 0.03579 0.04196 0.04017 0.03396 0.03533 0.03846 0.04324
WDIR 500mb.hrlymax 0.00219 0.00265 0.00195 0.00262 0.00236 0.00194 0.00106
WDIR 500mb.hrlymin 0.00241 0.00362 0.0079 0.01467 0.02239 0.01017 0.01392
WDIR 850mb.hrlymax 0.00586 0.00484 0.00865 0.00403 0.01319 0.00466 0.0188
WDIR 850mb.hrlymin 0.00056 0.00095 5e-04 0.00099 0.00116 0.00051 0.00053
WSPD 500mb.hrlymax 0.00062 0.00067 0.00068 0.00067 0.00073 0.00075 0.00074
WSPD 500mb.hrlymin 0.00134 0.00103 0.00142 0.00097 0.00095 0.00095 0.00091
WSPD 850mb.hrlymax 0.00178 0.00181 0.00115 0.00098 0.0011 0.00146 0.00254
WSPD 850mb.hrlymin 0.00077 0.00084 0.00056 0.00072 0.00088 9e-04 0.00128

modJefferson 0m.hrlymax 0.01168 0.01428 0.01485 0.01706 0.01831 0.01851 0.01555
modJefferson 0m.hrlymin 0.00371 0.00402 0.00366 0.00238 0.00391 0.0037 0.00608
theataW 500mb.hrlymax 0.00134 0.00057 0.00072 0.00079 0.00101 0.00115 0.00098
theataW 500mb.hrlymin 0.00052 0.00044 0.00052 0.00069 0.00092 0.00077 0.00083
theataW 850mb.hrlymax 0.00056 0.00048 0.00071 0.00068 0.00098 0.00103 0.00097
theataW 850mb.hrlymin 0.00072 0.00083 0.00066 0.00098 0.00058 0.00098 0.00059
theataW 925mb.hrlymax 0.00081 0.00064 0.00074 0.00079 0.00095 0.00106 0.00135
theataW 925mb.hrlymin 0.00068 0.00049 6e-04 0.00062 8e-04 0.00062 0.00068
theataWs 500mb.hrlymax 0.00079 0.00053 0.00064 0.00066 0.00096 0.00074 0.00066
theataWs 500mb.hrlymin 6e-04 0.00041 0.00074 0.00067 0.00104 0.00089 0.00075

region x 0.00078 0.00059 0.00071 0.00047 0.00089 0.00038 0.00131
region y 0.00014 0.00016 0.00015 0.00014 0.00022 0.00025 0.00018
date 0.00016 0.00018 0.00015 0.00067 0.03763 0.0436 0.00013
time1 9e-05 9e-05 8e-05 0.00012 0.00017 0.00015 0.00018
time2 0.00011 0.00016 0.00014 1e-04 1e-04 0.00015 0.00015

Table B.2: Covariate importances, after building a random forest with s = 1 (part 2).
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R code documentation

add covariates

Description

Adds covariates about region, date and time to the existing covariates.

Input

data: list containing all covariates, the response variable and information about region, date and
time

Output

List containing original and newly added covariates and response variable.

Dependencies

R built-in: ceiling, list, min, strftime
rlist package: list.append

calculate

Description

Calculates accuracy of predictions.

Input

predictions: matrix of which each row is a sample with predictions for all test points
f: regression function

Output

List containing the pointwise mean, pointwise bias, pointwise squared bias, pointwise MSE (all
vectors) and MISE (a single number).

Dependencies

R built-in: colMeans, integrate, length, list, round
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create estimate

Description

Creates simulated data and applies the regression methods on these data.

Input

no of samples: number of samples
sample size: sample size
test: vector of test points
f: regression function
k: k (only applicable if alg is ‘knn’ or ‘all’)
s: s (only applicable if alg is not ‘knn’)
K: K (only applicable if alg is ‘knfn’)
d: number of covariates
error: error function (noise term)
alg: one of ‘knn’, ‘rf’, ‘knfn’, ‘all’

Output

Matrix of size no of samples × |test|, giving a prediction for each sample and each test point.
If alg is ‘all’, then a list of three matrices is returned.

Dependencies

Own code: estimate
R built-in: length, rnorm, runif

create test set

Description

Creates test set, given size and number of dimensions.

Input

test size: number of test points
dim: number of dimensions

Output

Matrix of size test size × dim, where each of the test size contains a dim-dimensional test
point

Dependencies

R built-in: matrix, seq
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cross validation

Description

Applies 3-fold cross-validation on precipitation data.

Input

lead: lead time number
D: number of most predictive covariates to consider
ks: vector of k-values to use (only applicable if method is ‘knn’ or ‘all’)
ss: vector of s-values to use (only applicable if method is ‘knn’ or ‘nwp’)
Ks: vector of K-values to use (only applicable if method is ‘knfn’)
method: one of ‘nwp’, ‘knn’, ‘rf’, ‘knfn’, ‘all’

Output

The minimal RMSE among all parameter values in the input, together with the parameter value
for which the minimal RMSE was achieved.

Dependencies

Own code: add covariates, estimate, top D

R built-in: match, mean, min, length, list, readRDS

estimate

Description

Applies the regression methods on input data.

Input

X: matrix of covariates
Y: vector of response values
no of samples: number of samples
test: vector of test points
k: k (only applicable if method is ‘knn’ or ‘all’)
s: s (only applicable if method is not ‘knn’)
K: K (only applicable if method is ‘knfn’)
method: one of ‘knn’, ‘rf’, ‘knfn’, ‘all’

Output

Matrix of size no of samples × |test|, giving a prediction for each sample and each test point.
If method is ‘all’, then a list of three matrices is returned.

Dependencies

Own code: K largest

R built-in: length, list, matrix, sum
KernelKnn package: KernelKnn
grf package: get sample weights, predict, regression forest
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K largest

Description

Computes w
(K)
i (x∗) based on wi(x

∗) and K.

Input

weights: vector of weights
K: K

Output

Vector of length |weights|, where the all weights in weights except the K largest have been set
to zero, and the non-zero weights rescaled to sum one.

Dependencies

R built-in: sort, sum, vector

top D

Description

Gets top-D of most predictive covariates.

Input

X: matrix of covariates
Y: vector of response variables
D: number of most predictive covariates to consider

Output

A new matrix of covariates containing only the D most predictive ones.

Dependencies

R built-in: matrix, order
grf package: regression forest, variable importance
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