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ABSTRACT

Computational Fluid Dynamics (CFD) and Fluid–Structure Interaction (FSI) are growing dis-

ciplines in the aeroelastic analysis and design of long-span bridges, which, with their bluff body

characteristics, offer major challenges to efficient simulation. In this paper we employ Isogeo-

metric Analysis (IGA) based on Non-Uniform Rational B-Splines (NURBS) to numerically sim-

ulate turbulent flows over moving bridge sections in 3D. Stationary and dynamic analyses of two

bridge sections, an idealized rectangular shape with aspect ratio 1:10 and a 1:50 scale model of the

Hardanger bridge, are performed. Wind tunnel experiments and comparative Finite Element (FE)

analyses of the same sections are also conducted. Studies on the convergence, static dependencies

on the angle-of-attack, and self-excited forces in terms of the aerodynamic derivatives show that
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IGA successfully captures the bluff-body flow characteristics, and exhibits superior per degree-of-

freedom accuracy compared to the more traditional lower-order FE discretizations.

INTRODUCTION

The concept of Isogeometric Analysis (IGA) was proposed in (Hughes et al. 2005), in which ge-

ometry modeling technologies from Computer-Aided Design (CAD) were applied to the numerical

simulation of problems governed by partial differential equations (PDEs). IGA uses Non-Uniform

Rational B-Splines (NURBS) (Piegl and Tiller 1995), and other spline types amenable to local re-

finement, for spatial discretization. NURBS are powerful too for geometry representation and have

the advantage of being able to exactly represent all conics. Another important advantage of using

NURBS is that the basis functions offer a higher degree of smoothness across element boundaries

than standard Finite Element (FE) approximations. A comprehensive introduction to IGA is given

in (Cottrell et al. 2009). Since its introduction to structural mechanics, IGA has been success-

fully applied and proven its efficiency in a large variety of computational physics and engineering

areas, such as structural dynamics (Cottrell et al. 2006), contact mechanics (De Lorenzis et al.

2011; Mathisen et al. 2015), Computational Fluid Dynamics (CFD) (Bazilevs et al. 2007a), Fluid–

Structure Interaction (FSI) (Bazilevs et al. 2008), including Space-Time (ST) formulations (Tak-

izawa and Tezduyar 2011), phase field modeling (Gómez et al. 2008) and electromagnetics (Buffa

et al. 2014), to name a few.

In this paper we combine IGA and the Arbitrary Lagrangian–Eulerian Variational Multiscale

(ALE-VMS) formulation for Navier–Stokes equations for incompressible flows (Bazilevs et al.

2012b; Bazilevs et al. 2013a; Bazilevs et al. 2014; Takizawa et al. 2014b; Bazilevs et al. 2015c;

Bazilevs et al. 2015b) to simulate bridge aerodynamics. The formulation is augmented with weak

enforcement of essential Boundary Conditions (BCs) (Bazilevs and Hughes 2007; Bazilevs et al.

2007b; Bazilevs and Akkerman 2010; Golshan et al. 2015), which alleviate classical restrictions

on boundary-layer mesh size, and thus may be thought of as a near-wall model. IGA and VMS

methods have been successfully employed, in both ALE and ST context, in a wide range of turbu-

lent flow problems, see, e.g., (Bazilevs et al. 2013a; Hsu et al. 2012; Hsu et al. 2014b; Takizawa
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et al. 2013a; Yan et al. 2016; Takizawa et al. 2016a; Takizawa et al. 2016b; Takizawa et al. 2017a),

including bridge aerodynamics (Scotta et al. 2016). The authors previously applied the ALE-VMS

formulation for bridge aerodynamics modeling (Helgedagsrud et al. 2018), but in the context of

standard FE for spatial discretizations.

We perform stationary and dynamic simulations for two bridge sections in 3D - an idealized

rectangular shape with aspect ratio 1:10 (R10), characterized by the strongly detached flow at the

leading edges, and a more streamlined 1:50 scale model of the Hardanger bridge. The former has

been studied numerically be several authors, see, e.g., (de Miranda et al. 2014; Patruno 2015). The

Hardanger bridge section has been studied previously in (Takizawa et al. 2014a; Helgedagsrud

et al. 2017; Helgedagsrud et al. 2018). Numerical simulations of similar generic bridge sections

are reported in (Scotta et al. 2016; Larsen and Walther 1998; Bai et al. 2010; Šarkić et al. 2012;

Brusiani et al. 2013). Our study focuses on stationary load coefficients and aerodynamic deriva-

tives, which are among the most critical quantities in long-span bridge design. To validate the

numerical simulations, forced-vibration wind tunnel experiments were also performed, some of

which are reported in (Siedziako et al. 2017; Helgedagsrud et al. 2018), and others carried out

specifically for this work.

The bridge deck is taken as a rigid object, and the problem domain is represented by an ex-

truded slice of the wind-tunnel interior with the sectional model installed. NURBS models of

the bridge sections are constructed by first defining the initial, coarse multi-patch geometry, and

then performing k-refinement to reach quadratic order in all parametric directions. This procedure

results in a mostly C1-continuous discretization with a few C0 lines.

The paper is outlined as follows. First, the governing equations are presented. Next, we give

a brief introduction to NURBS-based IGA followed by a description of the experimental setup

and aerodynamic forces. Next, the analysis setup and mesh definition are presented before the

numerical results. Lastly, conclusions are drawn.

ALE-VMS FORMULATION OF THE NAVIER–STOKES EQUATIONS OF

INCOMPRESSIBLE FLOWS
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In this section we summarize the governing equations of the ALE-VMS formulation of incom-

pressible flows. For a thorough description the reader is referred to (Bazilevs et al. 2013a) and

references therein.

Governing equations

On a spatial fluid mechanics domain Ωt ∈ Rnsd , nsd = 2, 3 with boundary Γt, with subscript

t indicating time-dependence, the Navier–Stokes equations of incompressible flows in the ALE

frame may be written as

ρ

(
∂u
∂t

∣∣∣∣
x̂

+ (u− û) · OOOu− f
)
− OOO · σ = 0, (1)

OOO · u = 0. (2)

In Eqs. (1)–(2), ρ is the density, u is the fluid velocity, û is the fluid-domain velocity arising from

the ALE description (Hughes et al. 1981), and f is the body force. The subscript |x̂ on the partial

derivative denotes that the time-derivative is taken with the referential coordinates x̂ kept fixed.

The spatial derivatives are taken with respect to the current position x. σ is the fluid Cauchy stress

tensor, given by

σ (u, p) = −pI + 2µ ε(u), (3)

where p and µ are the fluid pressure and dynamic viscosity, respectively, and ε(u) is the symmetric

gradient of u.

Discrete formulation

At the discrete level we partition the fluid domain Ωt into nel elements denoted Ωe
t , and the

boundary Γt into neb surface elements denoted Γb
t , and define the finite-dimensional functional

spaces for velocity, pressure and displacement (denoted by ŷ), respectively, as Sh
u , Sh

p and Sh
m, and

their corresponding test functions as Vh
u , Vh

p and Vh
m. Superscript h indicates that its attribute is
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finite-dimensional. The semi-discrete ALE-VMS formulation is given as follows. Find uh ∈ Sh
u ,

ph ∈ Sh
p and ŷh ∈ Sh

m, such that ∀wh ∈ Vh
u , qh ∈ Vh

p and wh
m ∈ Vh

m:

∫
Ωt

wh · ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh

)
dΩ

+
∫

Ωt

ε(wh) : σ(uh, ph) dΩ +
∫

Ωt

qhOOO · uh dΩ

−
∫

Ωt

wh · ρ fh dΩ−
∫

(Γt)h

wh · hh dΓ

+
nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· OOOwh + OOOqh

ρ

)
· rM

(
uh, ph

)
dΩ

+
nel∑
e=1

∫
Ωe

t

ρνLSICOOO ·whrC(uh) dΩ

−
nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM

(
uh, ph

)
· OOOuh

)
dΩ

−
nel∑
e=1

∫
Ωe

t

OOOwh

ρ
:
(
τSUPSrM

(
uh, ph

))
⊗
(
τSUPSrM

(
uh, ph

))
dΩ

+
∫

Ωt̃

ε(wh
m) : Dh ε

(
ŷh(t)− ŷh(t̃)

)
= 0 (4)

In Eq. (4), hh is the prescribed surface traction. rM and rC are residuals of the Navier–Stokes

linear-momentum balance and continuity, respectively, given by

rM =ρ
(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· OOOuh − fh

)
− OOO · σ

(
uh, ph

)
, (5)

rC =OOO · uh. (6)

Eq. (4) introduces the stabilization parameters τSUPS and νLSIC. These have been designed to render

optimal stability and convergence through extensive studies, see e.g., (Hughes et al. 1986; Tezduyar

and Park 1986; Tezduyar and Osawa 2000; Tezduyar 2003; Hughes and Sangalli 2007; Hsu et al.

2010; Takizawa et al. 2018) and references therein. In this work we use the definitions given in
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(Bazilevs et al. 2008). The last line in Eq. (4) corresponds to the linear elastostatics operator with

the elastic tensor Dh, which is used to compute the displacement of the fluid-mechanics mesh

interior from the that of the fluid-object interface. In a forced-vibration setting, the fluid-object

interface motion is user-defined and is assumed known.

To augment the formulation with weak enforcement of the essential boundary conditions (Γt)g,

they are removed from the trial functions and replaced by the following terms added to the left-hand

side of Eq. (4):

−
neb∑
b=1

∫
Γb

t∩(Γt)g

wh · σ
(
uh, ph

)
n dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)g

(
2µε

(
wh
)

n + qhn
)
·
(
uh − gh

)
dΓ

−
neb∑
b=1

∫
Γb

t∩(Γt)−
g

wh · ρ
((

uh − ûh
)
· n
) (

uh − gh
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τTAN
(
wh −

(
wh · n

)
n
)
·
((

uh − gh
) ((

uh − gh
)
· n
)

n
)

dΓ

+
neb∑
b=1

∫
Γb

t∩(Γt)g

τNOR
(
wh · n

) ((
uh − gh

)
· n
)

dΓ, (7)

where n is the outward normal vector of the boundary. τTAN and τNOR are boundary penalty

parameters in the tangential and normal directions, respectively, as defined in (Bazilevs and Hughes

2007), and (Γt)−g is defined as the inflow part of (Γt)g:

(Γt)−g =
{

x|
(
uh − ûh

)
· n < 0,∀x ⊂ (Γt)g

}
. (8)

ISOGEOMETRIC ANALYSIS

For space discretization of the ALE-VMS equations we employ NURBS-based IGA. The con-

cept of IGA was proposed in (Hughes et al. 2005) to better integrate CAD and FE. NURBS are

6 Helgedagsrud, March 4, 2019



0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5 6 7 8 9 10

(a) C0-linear.
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(b) C1-quadratic.

Fig. 1. One-dimensional basis functions for C0-linear and C1-quadratic isogeometric analysis.

the most popular basis-function technology implemented in IGA, where they are used to simul-

taneously model geometry and provide interpolation spaces for analysis. Similar to FE methods,

IGA mostly uses a variational framework, in combination with the isoparametric concept and p−

and h−refinement, to discretize PDE systems. Attributes that are unique to IGA include higher-

order inter-element continuity and a feature called k−refinement, where the order and degree of

smoothness of the basis functions are raised simultaneously. (See Fig. 1 for an illustration in 1D.)

IGA was first applied in the context of turbulent flows and VMS methods in (Bazilevs et al.

2007a), where it showed excellent performance on a set of challenging benchmark problems. For

incompressible turbulent flows, significant improvement in the per-degree-of-freedom accuracy

due to the higher-order smoothness of NURBS was clearly demonstrated in (Akkerman et al.

2008; Motlagh and Ahn 2012). NURBS-based IGA in combination with weakly-enforced es-

sential boundary conditions was shown to preform very well for wall-bounded turbulent flows

in (Bazilevs et al. 2010) and (Bazilevs and Akkerman 2010). Recent applications of IGA in flu-

ids and FSI include wind-turbine aerodynamics (Hsu et al. 2011; Bazilevs et al. 2013b; Takizawa
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et al. 2015; Bazilevs et al. 2012a), spacecraft aerodynamics (Takizawa et al. 2013b), cardiovascular

fluid mechanics (Bazilevs et al. 2008; Bazilevs et al. 2009; Takizawa et al. 2017c), turbomachin-

ery (Takizawa et al. 2017a) and tire aerodynamics (Takizawa et al. 2018).

Despite the excellent accuracy of NURBS-based discretizations for turbulent flows, IGA still

remains a more popular technology for structures, or the “structure part” of the FSI problem (see,

e.g., (Bazilevs et al. 2012b; Takizawa et al. 2012; Korobenko et al. 2013; Bazilevs et al. 2013a)).

This is due to the fact that many applications make use of shell structures, which may be dis-

cretized using surface spline technology that is implemented in many general-purpose geometry

modeling and CAD software tools. Volumetric meshing, which is essential for flow problems, is

much less developed in IGA, and often requires the use of in-house research codes. However, re-

cent developments in non-matching discretizations and sliding interfaces for CFD (Bazilevs et al.

2012a; Hsu et al. 2014a; Bazilevs et al. 2015a; Takizawa et al. 2017b; Otoguro et al. 2017) are now

providing technology to begin eliminating the limitations associated with conforming multi-patch

discretizations.

WIND TUNNEL EXPERIMENTS AND AERODYNAMIC FORCES

Pitot tube

Sectional model

Load cells

Actuators

Width = 2.680 m

Height = 1.815 m

Fig. 2. Inside the wind tunnel with the Hardanger bridge sectional model installed.

This section gives a brief presentation of the experimental setup and the definition of aerody-

namic forces. The wind tunnel experiments are carried out at the Fluid Mechanics Laboratory of
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the Norwegian University of Science and Technology using the same setup as in (Siedziako et al.

2017), in which a comprehensive description of the experiments is given. This closed, medium-

sized wind tunnel has a 11 m long test section and a cross-sectional dimension of 2.7 m by 1.8 m.

Fig. 2 shows the interior of the wind tunnel with the Hardanger bridge sectional model installed.

The sectional model is mounted to a six-axis force/torque transducer at each end, which in turn is

mounted to a 3 degree-of-freedom actuator driven by electric motors in a user-defined motion.

Since the force measurements include inertia, each motion history needs to be conducted also

in still-air. The aerodynamic forces are then given by the difference between the in-wind and

still-wind force measurements. This subtraction also cancels out any biasing. The wind velocity is

sampled through an upwind pitot tube. The experiments are conducted for wind velocities between

4 and 12 m/s. In this range the turbulence intensity is typically less than 0.2 %.

B = 0.500 m

H
=

0.
1B

U
L, h

D, p

M , θ

B = 0.366 m

H
=

0.
18
B

0.
61
H

Fig. 3. Geometries of the R10 and Hardanger cross sections with the definition of the aerodynamic
forces shown on the former. Note the direction of the pitching moment.

With reference to the bridge sections and sign convention in Fig. 3, we define the aerodynamic

forces, namely, drag D, lift L, and pitching moment M , per unit chord length acting on the line of

centroids as:
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D = 1
2ρU

2HCD(t), (9)

L = 1
2ρU

2BCL(t), (10)

M = 1
2ρU

2B2CM(t), (11)

where U is the mean wind velocity and B and H are the stream-wise and cross-wind dimensions

of the cross section, respectively. CD(t), CL(t) and CM(t) are the dimensionless aerodynamic

coefficients, typically depending on the geometry and angle of attack.

The motion-induced, or self-excited, contributions of the aerodynamic forces can be expressed

using the empirical formulation as originally proposed in (Scanlan and Tomko 1971):

Cse
L (t) = KH∗1

ḣ

U
+KH∗2

Bθ̇

U
+K2H∗3θ +K2H∗4

h

B
, (12)

Cse
M(t) = KA∗1

ḣ

U
+KA∗2

Bθ̇

U
+K2A∗3θ +K2A∗4

h

B
. (13)

where h and θ are the vertical and angular displacements, respectively, as shown in Fig. 3. K =

ωB/U is the so-called reduced frequency, where ω is the circular frequency of the structural mo-

tion. H∗i and A∗i , i = {1 .. 4} are the aerodynamic derivatives. These shape-dependent parameters

may be regarded as transfer functions between body motion and self-excited forces, and are com-

monly expressed as functions of the reduced frequency, K. Superscript se refers to the self-excited

part of the forces. See (Chen and Kareem 2002) for more details.

Using the forced-vibration method, whether in the context of experiments or numerical stud-

ies, greatly simplifies identification of the aerodynamic derivatives compared to the free-vibration

approach. In the simulations, no FSI or fluid-object interaction coupling needs to be considered,

because the interface motion is prescribed analytically. In addition, much shorter simulation times

are needed to collect the required data for parameter identification. These advantages were pointed
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out by other authors (see, e.g., (Le Maître et al. 2003; Nieto et al. 2015)). In the present work, the

aerodynamic derivatives are identified by the least-squares method described in (Siedziako et al.

2017).

GEOMETRY DEFINITION AND ANALYSIS SETUP

4.0 m

1.815 m

0.25 m

U

Fig. 4. Computational domain constructed from five NURBS patches representing a slice of the
wind tunnel.

The computational domains represents a 0.25 m wide slice of the wind tunnel, where the ceiling

and floor are placed 0.930 m and 0.885 m from the cross section centroid, respectively. The

inflow surface, with prescribed uniform velocity U , is placed 1.0 m upwind of the centroid, and

the zero-traction outflow surface is placed 3.0 m downwind of the centroid. The bridge-deck

sectional models, whose cross sections are shown in Fig. 3, are subjected to weakly-enforced no-

slip boundary conditions.

For the idealized rectangular shape, two geometries are considered. The first makes use of

sharp corners and is composed of five NURBS patches as shown in Fig. 4. Because the pressure

singularities at the sharp corners may lead to increased sensitivity of the results to the problem

input, we also created an alternative shape with slightly rounded corners. Here, additional NURBS

patches are used to replace the sharp corners with exact circular arcs. The curvature radius is set to

H/50. This setup is outlined in Fig. 5. Although the physical sectional model is built to represent

a true rectangular shape, its actual average radius of curvature is estimated to be H/500.
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(a) (b)

Fig. 5. Nine NURBS patches representing the R10 section with rounded corners: a) Full view; b)
Zoom on the leading edge indicating the scale of curvature.

Fig. 6. Patch topology for the Hardanger bridge section.

The Hardanger bridge geometry is composed by 17 patches, as shown in Fig. 6. The patches

are constructed to yield minimal mesh distortion near the bridge deck surface, see Fig. 7. Also for

this section we utilize NURBS to represent the circular leading edges exactly.

(a) (b)

Fig. 7. Analysis model of the Hardanger bridge. a) Zoom on the bridge deck; b) Further zoom on
the leading edge.
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The air density ρ and the dynamic viscosity µ is set to 1.1835 kg/m3 and 1.848× 10−5 kg/ms,

respectively. The computational time stepping is chosen such that the maximum Courant number

stays below 2.0, typically 5− 10× 10−5 s.

From the definition of the initial patch geometry, order elevation and knot insertion is easily

performed using the algorithms in (Piegl and Tiller 1995). The continuous mesh is created by

merging the boundary nodes of the internal patch surfaces, in which the continuity is C0.

The computations are performed in a parallel environment adopted from (Hsu et al. 2011),

where the domain is partitioned into between 128 and 1024 subdomains using METIS (Karypis

and Kumar 1998).

NUMERICAL RESULTS

In this section we present the numerical results, focusing on the load coefficients and aerody-

namic derivatives. We also look at the pressure coefficient distribution on the R10 bridge deck

surface given by Cp = p/(1/2ρU2), and the Strouhal number given by St = fwH/U , where fw is

the vortex-shedding frequency. Both experiment and simulations are performed using the inflow

air speed of U = 8 m/s, giving the Reynolds number Re = ρUB/µ = 2.6× 105.

A numerical Buttersworth filter (Rabiner and Gold 1975) with low-pass frequency of 3 Hz is

applied to the raw experimental force data in order to remove signal noise and high-frequency

vibrations of the sectional model. These issue are discussed in detail in (Siedziako et al. 2017).

Such disturbances do not occur in the numerical simulations, and the results are presented without

filtering of the computed force data.

Convergence study

A mesh convergence study is performed on the sharp and rounded R10 sections. Three meshes

of increasing resolution are employed in the simulations and shown in Fig. 8. For the section

with sharp corners, the coarse mesh (labeled M1) has 36.9× 103 control points, the medium mesh

(labeled M2) has 261.4 × 103 control points, and the fine mesh (labeled M3) has 1 252.4 × 103

control points. A similar resolution is employed for the section with rounded corners. From the

initial patch definition, we use k-refinement to construct C1-continuous NURBS analysis meshes
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Fig. 8. NURBS meshes used in the convergence study of the R10 section with sharp corners.
For visualization purposes, quadratic NURBS elements are interpolated using standard serendipity
elements.

that are quadratic in all parametric directions. A mesh convergence study is performed with the

bridge section kept fixed at θ = 2°. This configuration is chosen for the following reasons: i) The lift

and pitching moment are nonzero, and a linear relationship to the angle of attack can be assumed

valid; ii) Earlier work (for aspect ratio 1:8) (Patruno 2015; de Miranda et al. 2014) revealed large

differences between experimental and simulation results; and iii) The wind tunnel test results have

relatively low scatter at this angle of attack.

TABLE 1. Averaged load coefficients and Strouhal numbers for mesh refinement study of the R10
bridge section at 2° angle-of-attack and Re = 2.6× 105.

Method C̄D C̄L C̄M St

Experiment 1.25 0.29 0.030 0.17 – 0.19
M1 sharp 1.23 0.33 0.053 0.17 – 0.19
M2 sharp 1.14 0.33 0.061 0.18 – 0.20
M3 sharp 1.17 0.37 0.053 0.15 – 0.17
M1 rounded 1.14 0.31 0.059 0.22 – 0.23
M2 rounded 1.09 0.33 0.065 0.21 – 0.22
M3 rounded 1.11 0.34 0.060 0.19 – 0.21

The mesh refinement study results are presented in Tab. 1 and Figs. 9 and 10. Fig. 9 illustrates

the turbulent-flow features by visualizing vorticity magnitude contours on a spanwise cut, while

Fig. 10 compares the pressure distribution on the top and bottom surfaces of the deck for both

geometries. The coarse meshes do not capture the flow reattachment and shear layer well. The

results improve with mesh refinement, as expected. This lack of good resolution on the coarse

meshes is reflected in the corresponding pressure distributions, especially on the top surface of the
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(a) M1 sharp (b) M2 sharp (c) M3 sharp

(d) M1 rounded (e) M2 rounded (f) M3 rounded

Fig. 9. Convergence of the instantaneous vorticity magnitude for the two R10 geometries.

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-1.0 -0.5 0.0 0.5 1.0

Bottom surface

Top surface

C
p

x/B

M1 rounded
M2 rounded
M3 rounded

M3 sharp
M2 sharp
M1 sharp

Fig. 10. Pressure distribution on the top and bottom surfaces of the R10 section with sharp and
rounded corners. Mesh refinement results are plotted.

deck (see Fig. 10). While the overall lift and drag forces are not as sensitive, the aerodynamic

center location is shifted, resulting in higher sensitivity of the pitching moment to mesh resolution.

Since the pressure distribution reflects the position of flow reattachment, it follows that the pitching

moment is mainly governed by the reattachment length. We believe this explains the two-sided

convergence of the pitching moment, considering that the reattachment first become more distinct
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for M2.

The geometry with rounded corners produces a slightly lower drag force, but otherwise very

similar results are attained, including response under mesh refinement. The lower drag force

mainly results from the fact that the corners render more low-profiled shear layers. This also

leads to an earlier reattachment, as can be seen from the pressure distribution, which in this case

appear to increase the magnitude of the pitching moment.

Lastly, we note that the top and bottom surface pressure distributions exhibit more consistent

convergence patterns for the case of rounded corners. Although rounding the corners is advanta-

geous from the standpoint of numerical stability and convergence, the differences observed in the

quantities of interest are not significant to justify using rounded corners in the remaining simula-

tions.

R10 section stationary analysis
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Fig. 11. Angle-of-attack time series employed in the experimental study.

We now keep the mesh density fixed at the level of M2, and compute the mean aerodynamic

load coefficients with respect to the angle of attack in the range of θ = [−5°, 5°] for the R10

section with sharp corners. To determine the static coefficients experimentally, we have tested three

angle-of-attack time series shown in Fig. 11. The results from the sine wave and fine-resolution

staircase are presented as continuous curves, while the coarse staircase is represented by points
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with temporal statistics.

Stationary simulations are performed in a similar fashion, using the mesh-moving method to

construct a similar staircase function. On each interval the simulation is run for 1.5 s of which the

last 1 s is sampled. The load coefficients are then represented by their mean value and the 90 %

confidence interval of the fluctuation.

For comparison, ALE-VMS FE simulations using linear tetrahedra and approximately the same

number of degrees-of-freedom are performed. A thorough description of the FE analysis setup is

given in (Helgedagsrud et al. 2018).
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Fig. 12. Static drag coefficients CD from wind tunnel experiments and numerical simulations for
the R10 section.

Figs. 12, 13 and 14 show the experimentally measured and numerically computed load coef-

ficients for drag, lift and pitching moment, respectively. For drag and lift we are able to capture

the absolute value and initial slope with very good accuracy. For the pitching moment, however,

the numerical simulations deviate more from the experimental data. As discussed in the ”Con-

vergence Study” section, the pitching moment for this section is extremely sensitive to the reat-

tachment length. In the FE simulation the flow stays detached much longer, which consequently

leads to a smaller magnitude of the pitching moment. This leads again to a premature appearance

of the non-linear behavior that occurs at the angle-of-attack when the flow does not attack at all.

The same non-linear features are also seen for the lifting force, however less prominent. In this

17 Helgedagsrud, March 4, 2019



-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

C
L

θ [°]
WT stair
WT sine

FEA
IGA

WT pt

Fig. 13. Static lift coefficients CL from wind tunnel experiments and numerical simulations for the
R10 section.
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Fig. 14. Static moment coefficients CM from wind tunnel experiments and numerical simulations
for the R10 section.

respect IGA shows good agreement with the experiments. Earlier works analyzing the same sec-

tion (de Miranda et al. 2014; Patruno 2015) also point out the difficulties and sensitivity of the

pitching moment.

Although FE captures the initial slope of the pitching moment better, we claim that we are

able to achieve an overall better per-degree-of-freedom accuracy with IGA, when we take drag

and lift and the point of no reattachment into account. Finally, we would like to point out that,
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especially for the pitching moment, the experiments must be taken with some uncertainty. Due to

the large ratio between the lift and pitching moment, small disturbances such as vibration of the

sectional model, geometrical imperfections and free-stream turbulence (Mills et al. 2002) may give

a significant impact on the latter.

Hardanger section stationary analysis
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Fig. 15. Static drag coefficients CD from wind tunnel experiments and numerical simulations for
the Hardanger section.
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Fig. 16. Static lift coefficients CL from wind tunnel experiments and numerical simulations for the
Hardanger section.
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Fig. 17. Static moment coefficients CM from wind tunnel experiments and numerical simulations
for the Hardanger section.

(a) θ = -5 ° (b) θ = 0 ° (c) θ = 5 °

Fig. 18. Velocity contours time-averaged over 0.25 s for the Hardanger section at different angles
of attack.

Stationary analyses are performed for the Hardanger bridge section using the same simulation

strategy. A similar mesh density is used as in the quadratic NURBS model for the R10 deck,

giving a total of 313 × 103 control points. Figs. 15, 16 and 17 show the load coefficients for

drag, lift and pitching moment, respectively. For this bridge section we capture the slope of the

lift and pitching moment curves with excellent accuracy, however, the absolute values are slightly

shifted. For the drag, the simulations show less sensitivity to the angle of attack than is observed

in the experiments. Unlike for the R10 section, IGA does not show as much improvement over FE.

Nevertheless, IGA gives better per degree-of-freedom accuracy for: i) Absolute value of the drag;

and ii) Slopes of the lift and pitching-moment curves. The latter is important for the computation
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of aerodynamic derivatives, as the stationary analyses represent the limit of Ured →∞.

Compared to the R10 section, the Hardanger section exhibits a much more streamlined behav-

ior, and the flow stays mostly attached, even for large pitching angles, as can be seen from the

velocity contours shown in Fig. 18. This explains the less pronounced differences between IGA

and FE simulations, considered that variation in the reattachment length appeared in the previous

sections to be a major source of uncertainty. Although the flow is mostly attached, small differ-

ences in the flow separations that occur at the top and bottom surface toward the leading edge and

the fact that the section is unsymmetrical in height may further explain the differences in the abso-

lute value of the lift and pitching moment. E.g., a small increase in the reattachment length on the

bottom surface will increase the base suction at the lower upwind corner, which again will lead to

a decrease in the lift and the pitching moment, as seen in Figs. 16 and 17.

Forced-vibration analysis and aerodynamic derivatives

TABLE 2. Forced-vibration test setup for wind tunnel experiments and simulations. In the exper-
iments each frequency is run for 50 s, giving rise to a variable number of cycles.

Property Wind tunnel Simulations
Amplitude h 15 mm 15 mm
Amplitude θ 2° 2°
Wind velocities 4, 8, 10 and 12 m/s 8 m/s

Vibration frequencies
0.5, 0.8, 1.1, 1.4, 1.7, 2.0 and
2.5 Hz

0.5, 0.8, 1.1 and 2.0 Hz

Number of cycles 25 – 100 2
Sampling frequency 200 Hz 250 Hz

We now actuate the R10 and Hardanger bridge decks in the torsional and vertical harmonic mo-

tion in order to carry our forced-vibration experiments and simulations, and compute aerodynamic

derivatives. An overview of the test conditions for the wind tunnel experiments and numerical

simulations is given in Tab. 2. Different vibration frequencies, run sequentially, and different wind

velocities (for the experiments only) are analyzed in order to obtain the dependence of the aero-

dynamic derivatives on the reduced frequency K. A thorough description of the experimental
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setup is reported in (Siedziako et al. 2017), where the identification procedure for the aerody-

namic derivatives is also described. A comprehensive description of the numerical approach for

the forced-vibration simulations, including the mesh-moving algorithms, is given in (Helgedagsrud

et al. 2018), where aerodynamic derivatives for the same sections were computed using tetrahedral

FE. For comparison, the results from that reference are presented alongside the IGA results from

the present analysis. We note, however, that the FE computations used approximately twice the

number of degrees-of-freedom compared to the IGA models.
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Fig. 19. Self-excited force coefficients for the vertical motion with f = 0.8 Hz and U = 8 m/s.
Output from the IGA simulation compared to experimental results.

The bridge sections are initially kept at rest for 1 s in order to develop the flow prior to starting

the moving-domain forced-vibration simulations. To ensure that the self-excited forces can be

regarded as a stationary process, the first 0.25 s of data after the sections are set in motion are

ignored. The self-excited forces are then sampled over two complete cycles. Figs. 19 and 20 show

examples of the forced-vibration time series, more specifically the R10 section undergoing vertical

and torsional motions, respectively, at the frequency of f = 0.8 Hz. In the same plots the predicted

aerodynamic forces, back-substituted from Eqs. (12) and (13) and the aerodynamic derivatives

(labeled IGA AD) and the experimentally obtained self-excited forces are shown.
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Fig. 20. Self-excited force coefficients for the pitching motion with f = 0.8 Hz and U = 8 m/s.
Output from the IGA simulation compared to experimental results.
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The aerodynamic derivatives for the R10 section are shown in Fig. 21 We observe that the H∗-

type aerodynamic derivatives that govern the self-excited lift force are captured with very good

accuracy, and IGA outperforms FE both in terms of magnitudes and phase angles. The A∗-type
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Fig. 22. Aerodynamic derivatives for the Hardanger bridge section. The wind tunnel and FE results
are from (Helgedagsrud et al. 2018).

aerodynamic derivatives, however, are overestimated in the simulations. This also corresponds

with the steep inclination seen in Fig. 14. Regarding the phase angle of the self-excited pitching

moments, IGA produce more accurate results than the FE simulations. The overestimated pitching

moments will consequently lead to a reduction of the critical wind speed compared with the wind

tunnel experiments.

The aerodynamic derivatives for the Hardanger section are shown in Fig. 22. Consistent with

the findings in the stationary analysis, IGA is in better agreement than FE with the experimental

data, especially for the most important aerodynamic derivatives in flutter analysis, H∗3 , A∗1, A∗2 and

A∗3 (Øiseth et al. 2010). Similar to the R10 section, IGA overestimate the lifting forces to a lesser

extent than FE, however, the differences between the two approaches are not as pronounced.

CONCLUSIONS

In this work we investigated the application NURBS-based IGA to the simulation of bluff

body aerodynamics on moving domains with emphasis on bridge engineering. IGA shares many

features with the more standard FE analysis, but also possesses unique features, such as exact

geometry and higher-order smoothness that have proven beneficial in many applications, including
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turbulent flows (Motlagh and Ahn 2012; Bazilevs and Akkerman 2010; Hsu et al. 2011).

The present study considered a rectangular section with aspect ratio B/H = 10 (R10) and

a 1:50 scale sectional model of the Hardanger bridge. To validate and assess the accuracy and

efficiency of the IGA approach, wind tunnel experiments were conducted for the same sections,

and FE analyses were carried out for comparison purposes.

A mesh convergence study on a stationary R10 shape at 2° angle of attack were performed.

Geometries with sharp and slightly rounded corners were considered. The geometry with rounded

corners produced a more consistent convergence pattern for the load coefficients and pressure

distribution, and resulted in slightly lower drag values. The moment coefficient exhibited the most

deviation from experimental values, which confirms the findings by other researchers (de Miranda

et al. 2014; Patruno 2015). This example is, in part, meant to illustrate the challenges of simulating

turbulent flows over bluff bodies for bridge aerodynamics.

The aerodynamic load coefficients for the R10 and Hardanger sections were computed from

stationary analyses at angles of attack in the range of [−5°, 5°]. Comparative wind tunnel experi-

ments and FE analyses show that IGA was able to capture the aerodynamic forces with very good

accuracy, and generally outperformed the FE approach. IGA showed significant improvement for

the more challenging R10 shape. For the Hardanger bridge section, a more modest improvement

over FE of the slopes of the lift and pitching-moment curves were obtained using IGA. In general,

both methods performed very well for this more streamlined section.

The IGA approach was employed for moving-domain forced-vibration simulations, and the

aerodynamic derivatives were computed for both bridge sections. The self-excited forces were

captured with good accuracy, especially for the R10 section, where, as in the prior simulations,

IGA showed a significant improvement over FE.

The investigations presented herein have shown that IGA, in combination with the ALE-VMS

technique and weakly enforced essential BCs, presents a powerful tool for the simulation of bridge

aerodynamics on moving domains. The validity of the proposed approach was strengthened by

comparing the IGA simulations with experimental measurements and more standard FE simula-
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tions. We also find it counterintuitive (and somewhat ironic) that it is the geometrically simpler

shapes that appear to be more challenging for simulating bluff-body turbulent arodynamics than

complex-geometry objects.
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