TUDelft

Enhancing VSIDS with domain-specific
information for the MRCPSP

Jarno Berger
Supervisors: Dr. Emir Demirovié, Maarten Flippo, Imko Marijnissen
EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Jarno Berger
Final project course: CSE3000 Research Project
Thesis committee: Dr. Emir Demirovi¢, Maarten Flippo, Imko Marijnissen, Julia Olkhovskaia

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The Multi-Mode Resource Constraint Scheduling Problem is an NP-hard optimiza-
tion problem. It arises in various industries such as construction engineering, trans-
portation, and software development. This paper explores the integration of an adapta-
tion of the Longest Processing Time heuristic to initialize the Variable State Indepen-
dent Decaying Sum for the MRCPSP. This adaptation prioritizes tasks with a longer
duration in all possible modes. Experimental evaluation demonstrates a 10% faster
average computation time compared to default VSIDS, and the average deviation to
the optimal solution is improved from 0.080% to 0.050%. These two findings combined
show a minor improvement in using the LPT to initialize VSIDS values for the MR-
CPSP. Using the LPT also to initialize the default increment parameter, did not seem
to yield any positive results.

1 Introduction

The Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP) is a com-
plex optimization problem that arises in various industries, such as construction engineering,
transportation, and software development [27]. Tt involves scheduling tasks that require re-
sources in multiple possible modes of operation, subject to various constraints, making it
a well-established NP-Hard problem [I]. The optimization of the MRCPSP is crucial for
improving resource allocation in these industries. However, finding an optimal solution for
MRCPSP instances can be computationally intensive [I3], requiring efficient solvers.

Extensive research has been conducted on solving the MRCPSP, exploring techniques rang-
ing from exact algorithms to meta-heuristics. In the context of the MRCPSP, numerous
domain-specific heuristics have been proposed to enhance the efficiency of scheduling al-
gorithms. Commonly used heuristics include priority rules, which prioritize tasks based
on criteria such as the earliest start time, slack time, or criticality. For instance, [15] pre-
sented several priority rule-based heuristics, showing their effectiveness in generating feasible
schedules quickly. Other heuristic approaches, such as genetic algorithms and simulated an-
nealing, have also been explored for their ability to provide near-optimal solutions within
reasonable computational times [11].

Another approach is to use a Constraint Programming (CP) solver [5]. A CP solver is a
tool that efficiently finds solutions to combinatorial optimization problems by exploring the
search space while enforcing constraints to prune infeasible solutions. It utilizes constraint
propagation techniques and search algorithms to iteratively refine solutions until an optimal
solution is found. Laborie [I8] demonstrates the potential of CP solvers in handling complex
scheduling constraints and resource allocations.

Both of these ideas have been researched in the literature, however, there remains a knowl-
edge gap in combining these two optimization techniques. This research aims to address this
gap by investigating the potential of integrating domain-specific heuristics into CP solvers to
improve the runtime for the MRCPSP. By leveraging insights from previous studies on CP
solvers and domain-specific heuristics, this research seeks to identify a promising heuristic
and integrate it into a state-of-the-art CP solver. The primary research question driving
this study is:

Can domain-specific heuristics be integrated into a CP solver to improve solution times for

the MRCPSP?

A novel idea was introduced in this study, to utilize an adaptation to the Longest Processing
Time (LPT) heuristic to initialize VSIDS. The LPT is adapted to the MRCPSP by taking
the minimum of all the mode durations, this ensures a task will at least that long to sched-
ule. Then the LPT score is used to initialize VSIDS values to prioritize longer-duration
tasks. Experimental testing shows a 10% faster average computation time for all instances
when initializing VSIDS values with the LPT score. The average deviation from the opti-
mal solution has also been improved from 0.080% to 0.050%. However, using the LPT to
initialize the VSIDS default increment, resulted in equal or worse results. In conclusion, the
integration of an LPT adaptation to initialize VSIDS values for the MRCPSP has shown to
be effective. Yet whether the LPT can also be used in other parameters is not conclusive
and still has to be researched further.

The remainder of this paper is structured as follows: First Section 2 provides a formal
definition of the MRCPSP. After that Section 3 contains the related work to this subject
and Section 4 provides a basic explanation of the methods used in this study. In Section 5
the contribution of this research is introduced. Then Section 6, the experimental setup will
be described and the results will be shown and analysed. Section 7 reflects on the ethical
aspects of this research. Finally, in Section 8 a conclusion will be drawn and possible future
work will be discussed.

2 MRCPSP definition

Given is a set of activities IV, numbered from 0 to n 4+ 1 where both the first and last nodes
are dummies. Schedule these activities on R, renewable resources and R,, non-renewable
resources. Each renewable resource k € R, has a constant amount of resource available of
a), per time unit while each non-renewable resource [€ R, is restricted to an amount of
aj' resource over the entire planning. Each activity ¢ € N can be executed in one of M;
modes (dim; T} s Timy) With m € {1,2,...,M;}. The start and end dummies have one
mode and require no resources. Selecting a mode involves a duration d; ,, for each activity
1 which requires a certain amount of resources. The goal is to schedule all tasks to ensure
the shortest possible makespan.

In Fig. 1 an example can be found of the MRCPSP. On the left is a graph showing the tasks
to be scheduled. The nodes represent the tasks, where nodes 1 and 9 are the dummies. The
arrows connecting the nodes represent precedence constraints. For instance, the arrow from
node 2 to node 4 indicates that task 2 must be completed before task 4 can be scheduled.
The number at the top of a node represents the duration, while the number at the bottom is
the resource consumption per time unit. Nodes 3,5,6,8 have 2 numbers each, which represent
2 different modes. The image on the right represents the solution to the problem. Each
task is scheduled on the resource while adhering to the precedence and resource constraints.
This optimal solution results in a final makespan of 10, when the last task is finished.

resource

5 77777777777777777777777777
4 3
5 7

3
2 6

2 8
14

4

0 T T T T T T T

Figure 1: An example of the MRCPSP (J. Rezaeian, 2015)

A MIP model of the problem is defined by Talbot [26] as the following:

Minimize

Subject to:

L1 t®ng11e

>

t=esp+1
M; ls; M s
E E (t 4 diym)Tim,e < E E trjme V(i) € A,
m=1t=es; m=1t=es;
Mi lS,;

Y wimi=1 VieN,

m=1t=es;

n M; min(t—1,ls;)

E § r § : T
ri,m,k: Li,m,s < ag

i=1 m=1 s=max(t—d; m,es;)

Vke RMandt=1,...,T,

n M; ls;

n n n
E Timl E Time < a; Ve R,
i=1 m=1 t=es;

Time €{0,1} Vie Nym=1,...,M;;t=1,...,T.

x;,m,t is equal to 1 if activity ¢ is performed in mode m and started at time ¢, otherwise
0. The first line is the optimization function which tries to minimize the total time it takes
to schedule. The second line is a constraint that ensures that an activity can start without
any delay after its predecessor finishes. The third line makes every activity only performed
once and in one mode. Lines 4 and 5 satisfy the renewable resource constraint where 7" is an
upper bound on the project duration. Line 6 limits the use of renewable sources. Finally,
line 7 ensures binary decision variables. Note that the abbreviations es; and [s; are used to
denote the earliest and latest start for activity ¢ given the project upper bound 7.

10

time

3 Related work

The Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP) has been
extensively researched. In this section, we review some of the key contributions and ap-
proaches in the literature addressing MRCPSP.

Early work on MRCPSP focused on developing exact algorithms and mathematical for-
mulations to solve instances of the problem optimally. Talbot [26] introduced one of the
pioneering formulations of the MRCPSP, laying the groundwork for subsequent research.
Brucker et al. [4] proposed a branch-and-bound algorithm for solving MRCPSP instances
to optimality, showing the NP-hardness of the problem and the need for efficient exact al-
gorithms.

Researchers have developed a variety of heuristic and metaheuristic approaches to tackle
MRCPSP instances. Some of the most notable work on heuristics include: Boctor [2] [3] de-
veloped constructive heuristics that prioritize activities based on specific rules, such as the
earliest start time or minimum slack, to efficiently allocate resources and schedule activities.
Drexl [9] introduced a priority-rule-based heuristic that dynamically adjusts priorities as
the project progresses, improving the flexibility and adaptability of the scheduling process.
Kolisch [I6] proposed a set of randomized priority rules combined with a backward-forward
scheduling approach to enhance the search for optimal solutions.

On the other hand, meta-heuristic approaches offer more sophisticated mechanisms to ex-
plore the solution space and escape local optima. There are many different meta-heuristics,
some notable ones include tabu search introduced by Slowsinksi [25], genetic algorithms
by Mori [2I] and Hartmann [I2] implemented a hybrid genetic algorithm that integrates
problem-specific heuristics into the genetic framework, improving its efficiency and effec-
tiveness.

Other notable contributions include the work of Ozdamar [22], who developed a simulated
annealing algorithm that probabilistically accepts worse solutions to escape local optima
and explore the global solution space more thoroughly. Jozefowska [14] employed an ant
colony optimization approach, where artificial ants construct solutions based on pheromone
trails, reflecting collective learning and exploration.

Recent advancements in MRCPSP research include the integration of machine learning
techniques and constraint programming to address complex scheduling scenarios. Chu [6]
proposed a reinforcement learning approach for the MRCPSP, where the best algorithm for
a specific instance is selected by a machine learning model.

Generally, the idea to solve the MRCPSP is to split the process into two steps. First, a
mode assignment step is done which is modeled as a SAT solver. This problem has been
researched extensively in literature [20]. The second step is the RCPSP scheduling step this
can be done by using any optimization technique to improve this. These two steps result
in two lists that can be used to solve the MRCPSP. In [7] it is shown that combining these
two lists can also result in an improved runtime. Because recently this idea has shown very
good results, less research is being conducted on CP solvers. So this research aims to explore
the possibility of domain-specific heuristics in a CP solver. With positive results from this

study, it could open the doors to more research being conducted again for CP solvers.

4 Preliminaries

In this section, an overview will be given of the subjects required to know in order to
understand the contribution of this study. In Chapter 4.1 the Longest Processing Time
heuristic will be discussed. Then Chapter 4.2 will explain what a Constraint Programming
Solver is. After that, in Chapter 4.3 the working of Conflict Driven Clause Learning will be
given and how it is used in a CP solver. Finally, in Chapter 4.4 a high-level description of
VSIDS will be shown.

4.1 Longest Processing Time

The Longest Processing Time (LPT) heuristic prioritizes tasks that have the longest pro-
cessing time (duration) first. It is a common heuristic used in various fields of scheduling
[23]. Tt works by sorting all tasks in descending order based on their processing time. Then
going down the list schedule the task in the first available time slot, without breaking the
resource constraint. The idea of this is that by scheduling longer tasks first, they will not
become a bottleneck later. Ending off with a long task can push the makespan a lot further
back. It is also harder to optimize resource usage with larger tasks, so by scheduling them
first smaller tasks can be scheduled around the larger ones. This is better for resource usage
than first scheduling all the small tasks and then having a lot of wasted resources when you
are left with the large tasks at the end. Higher resource usage generally correlates with a
shorter makespan. This is because when resources are fully utilized, tasks are completed
more quickly, reducing the need to delay tasks. If resources are not fully used, it indicates
that tasks that could have been scheduled are being postponed, leading to a longer overall
project duration.

4.2 Constraint Programming Solver

A Constraint Programming (CP) solver is a tool used to solve combinatorial optimization
problems. It does so by efficiently exploring the search space of possible solutions. It works
by modeling the problem as a set of variables, each with a domain of possible values, and
a set of constraints that must be satisfied by the variables. The solver searches through
the possible variable assignments, using inference techniques to prune the search space and
improve efficiency. These techniques use logical deductions to infer extra information from
the current state of variable assignments and constraints. This information can then be used
to reduce the search space by removing variable assignments that would eventually lead to
an unsatisfied constraint.

4.3 Conflict Driven Clause Learning

Conflict Driven Clause Learning (CDCL) is a technique used in the field of SAT solving. It
works the following way:

1. Initialization: The algorithm starts with an empty assignment and the original set of
clauses.

2. Decision: A variable is chosen based on heuristics, and is either assigned true or false.

3. Propagation: Propagation is performed to reduce the search space based on the current
assignment.

4. Conflict Detection: If a conflict is detected during propagation, the solver performs
conflict analysis.

5. Learning: A new clause is learned from the conflict, representing the cause of the
conflict.

6. Backtracking: The solver backtracks to an earlier decision level where the conflict can
be resolved.

7. Restart: If necessary, the solver may restart, keeping the learned clauses.

CDCL is used in some CP solvers by integrating a lazy clause generator (LCG). LCG
works by mapping the integer and other domain variables to boolean literals (e.g. x=0,
x=1, x>1). Then when a conflict occurs during the search, conflict analysis is performed
similarly to CDCL in SAT solvers. From the analysis, clauses are then generated that must
be satisfied to prevent the same conflict from happening. These clauses essentially act as
additional constraints that are generated during the search. An in-depth explanation of an
LCG CP solver can be found in [I0]

4.4 Variable State Independent Decaying Sum

Variable State Independent Decaying Sum, also known as VSIDS, is a heuristic created for
SAT solvers. The idea behind VSIDS is to prioritize variables based on their past conflicts.
It works by keeping track of the activity score for each variable. The initial score is usually
set to 0. Then the variable with the highest activity will be selected. In case of a tie, it will
be randomly selected. If a conflict is found during the search, all variables participating in
the conflict will get their activity values increased. Over time all values decay, allowing for
more exploration. This is done by dividing the activity scores by a decay factor. In order to
optimize speed, the decay of activity values is done instead by multiplying future bumps by

1/decay _factor

. This gives the same result as dividing the activity values but is computationally faster.

The VSIDS will have the following parameters to be initialized:

o default VSIDS value: the value at which an activity value starts. This can be any
number but is usually set to 0.

e default VSIDS increment: the value that is added when activities participate in con-
flicts. This can also be set to any number, however, generally is 1.

e decay factor: the ratio that the activity values are decayed by. This is a number
between 0 and 1.

e max threshold: the maximum value variables can get. Since the decay factor is applied
using multiplication, activity values can become very large. Thus in order to prevent
overflows, once this value is reached by a variable, all variables will be divided by this
max threshold.

5 LPT adaptation in VSIDS

In this section, we go into the main contribution of this research: the use of an adaptation
of the LPT for the MRCPSP to enhance VSIDS. Although VSIDS is highly efficient during
the later stages of the search process, at the start of the search, all activity values are set
equally. This causes a slow start since it will randomly select a variable. Instead of selecting
randomly, a heuristic can be used to make a better initial guess on which variable will be
most efficient to start with.

Inspired by the research conducted by [24] on augmenting VSIDS with starting values for the
Resource-Constrained Project Scheduling Problem (RCPSP). Schutt initialized the values
of VSIDS with domain-specific knowledge to guide the start of the search. Subsequently
extended by [I9] to RCPSP with Time Windows (RCPSP-t), we propose a novel enhance-
ment. This enhancement involves incorporating an adaptation of the LPT to initialize the
start values and increment of VSIDS for the MRCPSP.

The LPT adaptation will work as follows: For each task, all possible modes will be consid-
ered. The duration with the shortest possible mode will be used for the LPT score. For
task 7 we can calculate the LPT score the following;:

LPT; = min(d;m) Vm e M,

By using the value of the smallest mode, we ensure that the processing time of that task will
be at least the same if not longer no matter what mode will be selected. Thus this should
essentially work the same as the LPT heuristic for the RCPSP, but with a slight adaptation
to make it suitable for the MRCPSP. The LPT score is then used to initialize the variable
values for VSIDS. Since the VSIDS can now be initialized with higher scores, the default
increment parameter of VSIDS will also be tested in the experimental section. This will be
done by trying to set the default increment to a value relative to the size of the LPT scores.

6 Experimental Setup and Results

In this section, the goal is to assess whether the adaptation of the LPT can be used to
initialize VSIDS values and increments to improve the efficiency of the solver. In Chapter
6.1 the experimental setup will be described in detail. The results and analysis of the
experiment are in Chapter 6.2.

6.1 Experimental Setup

The VSIDS enhanced with an adapted LPT score is implemented in the CP solver Pumpkin,
developed in Rust. Pumpkin is an LCG CP solver, so the variables are boolean literals as
explained in Chapter 4.3. All literals associated with a task will receive their corresponding
LPT score. The literals that aren’t associated with any tasks, will receive a score of 0. For
the value selection a solution-guided value selector is used, an explanation of how this works
can be found in [§]. The experiment will use the dataset generated by ProGen [I7], featuring
30 activities with 2 renewable and 2 non-renewable resources. This dataset can be found
in the PSPLIB and is also known as J30. This dataset also contains infeasible problems
however, these will be excluded from the results since the main focus of this experiment is

to see if the improved solver can find solutions better and faster. The experiment will be
performed locally on a computer with the following hardware:

e Processor: AMD Ryzen 7 2700X, 8 cores

e Memory: 16 GB DDR4-3200 Dual-channel (2 x 8 GB)

e Storage: Samsung 980, 3500 MB/s read, 3000 MB/s write
e OS: Windows 10 Home

By running the tests locally there is a chance of the results being skewed by performing other
tasks at the same time. Thus the computer had no other applications open or was being
used for anything else while the tests were running, to keep the results as accurate as possible.

The experiment will be conducted with four different configurations. The first configuration
will be the default CP solver. This run will act as a baseline, to compare the others to.
The other three configurations will be the augmented CP solver but with a different default
VSIDS increment parameter. For all four the decay factor will be 0.95 and the max threshold
will be 1e100. The other two parameters will be different per run as shown in Table 1.

Parameters | value increment
VSIDS 0 1
LPT LPT 1
LPT Avg LPT | AVG_LPT
LPT Max | LPT | MAX LPT

Table 1: VSIDS parameters per run

Two stop criteria of 30 and 100 seconds will be used, for each instance in the dataset. It will
stop if it either reaches this time limit or finds an optimal solution. The stop criterion of 30
seconds is used to see how fast small instances are solved and for larger instances how close
they can get to the optimal solution in a short period. The 100-second stop criterion will
evaluate the solver’s ability to converge to the optimal solution and see if it can solve some of
the harder instances. Each time a solution is found, it is logged along with a timestamp. The
performance of the baseline and enhanced CP solver will be evaluated using the following
metrics:

e The average deviation from the optimal solution
e The computation time
e Amount of optimal solutions

The solver determines if a solution is optimal if no more solutions are available to explore.
This implies that the solver may have already found the optimal solution, but it has not yet
confirmed whether it is truly optimal.

6.2 Results

In Table 2 the results with a stop criterion of 30 seconds can be found. For the LPT
adaptation, both the LPT and LPT Avg perform very close to each other, with the LPT
Avg having a slightly better performance. The LPT Max is by far the worst out of the three,
having a much higher deviation from the optimal and less optimal solutions found. Now
comparing the LPT enhanced runs to the baseline of Default VSIDS. All three of them have
an average computation time of about 0.1-0.2 seconds faster than the baseline. However,
VSIDS has the lowest average deviation of 0.126% and the most optimal solutions found with
518. Since the LPT adaptation consistently solved fewer instances optimally but maintained
a faster average time across all runs, it must have solved the optimally completed instances
more quickly. From this, we can conclude that using the LPT score to initialize VSIDS can
help solve smaller instances faster than default VSIDS. In this case, by using the LPT Avg,
it is improved from 3.031 to 2.802 seconds, which is about a 7% increase in speed. However,
for the larger instances that could not be solved optimally in 30 seconds, the default VSIDS
has the lowest deviation of 0.126% compared to the 0.127% of the LPT Avg. This shows
close to no change in the resulting makespans.

Parameters | Avg deviation | Avg time | Optimal | Satisfiable
VSIDS 0.126% 3.031s 518 32
LPT 0.130% 2.837s 517 33
LPT Avg 0.127% 2.802s 517 33
LPT Max 0.138% 2.911s 514 36

Table 2: Results with stop criterion of 30 seconds

Table 3 contains the results with a stop criterion of 100 seconds. We can see that the
LPT configuration demonstrates the best overall performance, achieving the lowest average
deviation, the fastest computation time, and the highest number of optimal solutions. The
LPT Avg also performs well, only performing slightly worse in each metric. The LPT Max
lags behind the other LPT adaptations regarding all metrics. This can be because the
increments are already much larger than the initialized values, so after the first bumps, the
initialized value will have close to no impact. Finally, the Default VSIDS performs the worst
in both the average deviation and the average time under a 100-second stop criterion. The
average deviation is 0.080% while the LPT Default Increment is 0.050%. This is a solid
improvement, but the amount of optimal solutions still differs by merely 1. Most likely
this is because the solver has already found a lot more optimal solutions, but is not done
exploring the entire solution space. So as a result the LPT Default Increment has only found
1 more optimal solution, while in reality, it has found a lot more. The average computation
time of the LPT Default Increment is also about 10% faster.

Parameters | Avg deviation | Avg time | Optimal | Satisfiable
VSIDS 0.080% 6.687s 526 24
LPT 0.050% 6.028s 527 23
LPT Avg 0.051% 6.101s 526 24
LPT Max 0.076% 6.558s 525 25

Table 3: Results with stop criterion of 100 seconds

To summarize the results presented in Table 2 and Table 3, we can draw several key conclu-
sions about the performance of the various VSIDS adaptations and parameters. Using the
LPT score to initialize values of VSIDS can offer significant improvements in computation
speed, particularly for smaller instances within shorter time limits. For longer computa-
tional times, the LPT also seems to perform better than the default VSIDS. The LPT Avg
and Max always performed either the same as the default LPT or worse, thus using the LPT
to also initialize the default increment has not shown positive results.

7 Responsible Research

In this section, the ethical aspects of this study are discussed. The data sets that were
used are all public and available in PSPLIB. All methods and parameters used in the study
are thoroughly described. This improves the reproducibility of this study however, the CP
solver Pumpkin used to run tests with, is as of the release of this paper still private. In the
future, a paper will be released about it and the model will become public. Therefore once
the model is public, this will improve the reproducibility. The tests were run locally, which
can make it harder to reproduce. But all the hardware requirements and parameters are
mentioned and can be used to reproduce the experimental setup.

The results of the experiment are also made public, they can be found on Githul{l Public
results allow for the possibility of critique and further analysis by others. The postprocessing
scripts used to gather these results can also be found to verify correctness.

8 Conclusions and Future Work

In this study we looked at if domain-specific heuristics can improve the runtime of a CP
solver for the MRCPSP. The augmentation of VSIDS led to a notable improvement of ap-
proximately 10% in average computation time across various parameterized runs. There
was also a significant reduction in the average deviation from the optimal solution, decreas-
ing from 0.080% to 0.050%. However, for the lower timeout of 30 seconds, there was no
change in average deviation from the optimal. These findings indicate that the adapted
LPT heuristic effectively enhances the performance of the CP solver with VSIDS for the
MRCPSP, particularly for instances that are solved to optimality.

Despite these promising results, the study has certain limitations. The experiments were
conducted using a specific dataset (ProGen’s J30) and a limited set of parameters. These
constraints may affect the generalizability of the findings. Nevertheless, the study makes a
novel contribution to the field by integrating domain-specific heuristics into VSIDS, demon-
strating significant performance gains for the MRCPSP.

Future research can expand upon this work by investigating the impact of other parameters,
such as changing the decay factor or testing a broader range of default increments. The
decay factor could scale depending on the size of the initialized values. The higher the
initialized values are, the higher the decay factor could be.

Thttps://github.com/JarnoBerger/RP _Results

10

Testing the solver on different datasets, can also help generalize the results of this study.
Different datasets, containing various sizes and combinations of resources could show differ-
ent results.

Finally, a benchmarking study against other state-of-the-art solvers is necessary to compare
the performance gains observed in this study. Using alternative performance metrics such
as the minimal critical path length, is also important to verify the strengths and weaknesses
of the adaptation. A graph could also be made of how the solution is approached over time
to compare the adapted solver to the default.

References

[1]

2]

13l

4]

[5]

[6]

17l

8]

19]

[10]

Jacek Blazewicz, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan. Scheduling un-
der resource constraints: Classification and complexity. Discrete Applied Mathematics,
5(1):11-24, 1983.

F. F. Boctor. Heuristics for scheduling projects with resource restrictions and several
resource-duration modes. International Journal of Production Research, 31(11):2547—
2558, 1993.

F. F. Boctor. Some efficient multi-heuristic procedures for resource-constrained project
scheduling. Furopean Journal of Operational Research, 90(2):349-361, 1996.

Peter Brucker, Andreas Drexl, Rolf Mohring, Klaus Neumann, and Erwin Pesch.
Resource-constrained project scheduling: Notation, classification, models, and meth-
ods. European journal of operational research, 112(1):3-41, 1999.

N. Christofides and R. Alvarez-Valdes. An algorithm for the resource constrained
project scheduling problem. In Furopean Journal of Operational Research, volume 29,
pages 262-273. Elsevier, 1987.

Xianghua Chu, Shuxiang Li, Fei Gao, Can Cui, Forest Pfeiffer, and Jianshuang Cui. A
data-driven meta-learning recommendation model for multi-mode resource constrained
project scheduling problem. Computers € Operations Research, 157:106290, 2023.

JOSA@ Coelho and Mario Vanhoucke. Multi-mode resource-constrained project

scheduling using rcpsp and sat solvers. FEuropean Journal of Operational Research,
213(1):73-82, 2011.

Emir Demirovi¢, Geoffrey Chu, and Peter J Stuckey. Solution-based phase saving for
cp: A value-selection heuristic to simulate local search behavior in complete solvers.
In Principles and Practice of Constraint Programming: 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings 24, pages 99-108. Springer,
2018.

Andreas Drexl and Joérg Griinewald. Nonpreemptive multi-mode resource-constrained
project scheduling. IMA Journal of Management Mathematics, 5(1):1-18, 1993.

Thibaut Feydy and Peter J Stuckey. Lazy clause generation reengineered. In In-
ternational Conference on Principles and Practice of Constraint Programming, pages
352-366. Springer, 2009.

11

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Hartmann. A competitive genetic algorithm for resource-constrained project schedul-
ing. Naval Research Logistics (NRL), 45(7):733-750, 1998.

Sonke Hartmann. Project scheduling with multiple modes: A genetic algorithm. Annals
of Operations Research, 102(1-4):111-135, 2001.

Stefan Hartmann and Dirk Briskorn. A survey of variants and extensions of the resource-
constrained project scheduling problem. Furopean Journal of Operational Research,
207(1):1-14, 2010.

Joanna Jozefowska, Jan Weglarz, Marcin J. Sobolewski, and Roman Slowinski. Multi-
mode resource-constrained project scheduling with fuzzy activity durations and renew-
able resources. Furopean Journal of Operational Research, 130(2):311-333, 2001.

Rainer Kolisch. Serial and parallel resource-constrained project scheduling meth-
ods revisited: Theory and computation. FEuropean Journal of Operational Research,
90(2):320-333, 1996.

Rainer Kolisch and Andreas Drexl. Local search for nonpreemptive multi-mode
resource-constrained project scheduling. IMA Journal of Management Mathematics,
8(4):319-334, 1997.

Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation
of a general class of resource-constrained project scheduling problems. Management
science, 41(10):1693-1703, 1995.

Philippe Laborie. Complete mcs-based search: Application to resource constrained
project scheduling. In Principles and Practice of Constraint Programming - CP 2005,
volume 3709 of Lecture Notes in Computer Science, pages 19-33. Springer, 2005.

Tijs Lenssen. Augmenting vsids heuristic for the repsp/t by initializing activity values
using domain-specific information. 2023.

Joao P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for proposi-
tional satisfiability. JEEE Transactions on Computers, 48(5):506-521, 1999.

Michiaki Mori and Choong-Ho Tseng. A genetic algorithm for multi-mode resource
constrained project scheduling problem. Furopean Journal of Operational Research,
100(1):134-141, 1997.

Linette Ozdamar. A genetic algorithm approach to a general category project scheduling
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 29(1):44-59, 1999.

Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 4th edition,
2012.

Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving the
resource constrained project scheduling problem with generalized precedences by lazy
clause generation. arXiv preprint arXiv:1009.0347, 2010.

Roman Slowinski, Stefan Son, and Jan Weglarz. Dss for multi-mode resource-
constrained project scheduling. European Journal of Operational Research, 79(2):299—
310, 1994.

12

[26] F Brian Talbot. Resource-constrained project scheduling with time-resource tradeoffs:
The nonpreemptive case. Management science, 28(10):1197-1210, 1982.

[27] Song Zhang. Selection of multimode resource-constrained project scheduling scheme
based on dea method. Scientific Programming, 2020:1-7, 2020.

13

	Introduction
	MRCPSP definition
	Related work
	Preliminaries
	Longest Processing Time
	Constraint Programming Solver
	Conflict Driven Clause Learning
	Variable State Independent Decaying Sum

	LPT adaptation in VSIDS
	Experimental Setup and Results
	Experimental Setup
	Results

	Responsible Research
	Conclusions and Future Work

