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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

This thesis focuses on asymptotic inference for smooth nonparametric esti-
mators under monotonicity constraints. We start with an introductory chap-
ter where we present fundamental facts about smooth and monotone esti-
mation and essential notations that will be used throughout the thesis. Two
aspects of asymptotic inference, namely, the pointwise and the global limit
behavior of the estimators, will be treated in Part II and III respectively.

1.1 estimation under monotonicity constraints

1.1.1 Motivation

There are many situations in statistics in which the estimation of an un-
known function is of interest. The most basic problem is recovering the un-
derlying probability density that models the randomness of a given set of
independent data points. Other examples include estimation of the regres-
sion relationship between a response variable and an explanatory variable
or estimation of the failure rate in survival analysis. All these problems
have been widely studied in the literature and a variety of methods have
been proposed. Parametric methods are the first and the most commonly
used due to their simplicity in computation, interpretation and prediction.
However, assuming that the function of interest has a certain parametric
form is usually a very strong and unrealistic assumption which, in case of
model misspecification, can lead to incorrect inference. On the other hand,
nonparametric methods require fewer or no assumptions on the functional
form and as a result are more flexible and robust.

Yet, in many real life problems, one has some prior knowledge on the
shape of the curve of interest and it is desirable to have estimators that are
consistent with these practical expectations. Shape constrained methods im-
pose certain qualitative assumptions on functional forms without needing to
specify parametric models. Monotonicity, in particular, is a shape restriction
that arises naturally in various applications. In survival analysis monotonic-
ity constraints reflect the property of aging or becoming more reliable as the
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4 introduction

survival time increases. For example, decreasing hazards are used to model
survival times of patients after a successful medical treatment. The property
of monotonicity plays an important role also when dealing with regression
relationships. Indeed, it is often very reasonable to assume that increasing
a factor X has a positive (negative) effect on a response Y. Among other ex-
amples, the econometric demand functions are monotonic in price while the
biometric age-height charts should be monotonic in age over an appropriate
range. In situations like these, incorporating monotonicity constraints in the
estimation procedure leads to more accurate results and avoids obtaining
implausible estimates. Often, monotonicity is also used because it allows
for more straightforward inference since the estimators can be constructed
without using tuning parameters.

1.1.2 Isotonic estimation

Nonparametric inference under shape constraints is currently a very active
research area in statistics which initiated with estimation of a monotone real
valued function. Two well-known criteria from parametric methods, maxi-
mum likelihood and least squares, are usually used also for nonparametric
estimation of monotone curves. The first example can be found in Grenan-
der, 1956 in the context of estimating a nonincreasing density f on [0,∞) on
the basis of an i.i.d. sample X1, . . . ,Xn from f. We start illustrating the main
ideas behind isotonic estimation through this simple density model.

The nonparametric maximum likelihood estimator of f is the maximizer
f̂n of the log-likelihood function

f 7→
n∑
i=1

log f(Xi)

over all nonincreasing functions f : [0,∞) → [0,∞). In Grenander, 1956 it
is shown that f̂n can be characterized as the left-hand slope of the least con-
cave majorant (LCM) F̂n of the empirical distribution function Fn. Hence, it
is a piecewise constant function which can jump only at the points X1, . . . ,Xn.

The concave majorant characterization leads to a fast computational algo-
rithm and also plays a role in the asymptotic analysis. Besides, it initiated
a more general strategy to produce monotone estimators. The idea is as
following. The primitive of a nonincreasing function is concave. Hence, an
estimator of the function of interest is the derivative of the least concave
majorant of an estimator for its primitive function. Similarly, in case of esti-
mating nondecreasing curves, we start with a naive estimator for the prim-
itive of the curve of interest and then take the left-derivative of the greatest
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convex minorant (GCM) of the naive estimator. Such estimators are called
Grenander-type estimators. In particular, in the density model the empiri-
cal distribution function Fn is taken as a naive estimator for the cumulative
distribution function F. The resulting Grenander-type estimator satisfies the
maximum likelihood principle.

The Grenander-type procedure has been developed in a variety of other
statistical models, e.g., regression (see Brunk, 1958), random censoring (see
Huang and Wellner, 1995), or the Cox model (see Lopuhaä and Nane, 2013).
In the next section we discuss some of them in more details.

1.1.3 Examples

The first two models we are going to consider come from survival analysis,
known also as reliability theory, which studies the time until the occurrence
of a certain event of interest. In survival analysis, subjects are followed dur-
ing a period of time (duration of the study) and event times are registered
for each of them. However, at the end of the follow-up some of the subjects
will not have experienced the event. Hence, these observations will be cen-
sored, i.e., the exact event time is not known, only partial information is
available. There are different type of censoring schemes but here we focus
on right censoring which means that the subject might leave the study be-
fore the event occurs or the event occurs after the end of the study. Moreover,
we assume that censoring times are independent of survival times.

While random variables are typically characterized by their probability
density or distribution function, in survival analysis it is more natural to fo-
cus on the hazard function (failure rate). It is defined as the probability that
an individual will experience an event within a small time interval given
that the subject has survived until the beginning of this interval. Hence, a
frequently encountered problem in this field is the estimation of the hazard
rate. In this context, monotonicity constraints arise naturally, reflecting the
property of aging or becoming more reliable as the survival time increases.

Example 1.1.1. right censoring model Suppose we have an i.i.d. sam-
ple X1, . . . ,Xn with distribution function F and density f, representing the
survival times. Let C1, . . . ,Cn be the i.i.d. censoring variables with a dis-
tribution function G and density g. Under the right random censorship
model, we assume that the survival time X and the censoring time C are in-
dependent and the observed data consists of i.i.d. pairs of random variables
(T1,∆1), . . . , (Tn,∆n), where T denotes the follow-up time T = min(X,C)
and ∆ = 1{X6C} is the censoring indicator.
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The hazard rate λ is characterized by the following relation

λ(t) =
f(t)

1− F(t)
(1.1.1)

and we refer to the quantity

Λ(t) =

∫t
0
λ(u)du = − log [1− F(t)] , (1.1.2)

as the cumulative hazard function. We aim at estimating λ, subject to the
constraint that it is decreasing (the case of an increasing hazard is analo-
gous), on the basis of n observations (T1,∆1), . . . , (Tn,∆n).

The likelihood function is given by

n∏
i=1

[f(Ti) (1−G(Ti))]
∆i [g(Ti) (1− F(Ti))]

1−∆i .

Hence, using (1.1.1) and (1.1.2), the nonparametric maximum likelihood es-
timator λ̂n of λ is the maximizer of the pseudo-loglikelihood

l(λ) =

n∑
i=1

[∆i log λ(Ti) −Λ(Ti)]

over all decreasing functions λ : [0, τF) → [o,∞), where τF is the end point
of the support of F. It is shown in Huang and Wellner, 1995 (see their The-
orem 3.3) that λ̂n is the left derivative of the least concave majorant of the
cumulative sum diagram consisting of points

Pj =
(
Wn(T(j)),Vn(T(j))

)
, j = 0, 1, . . . ,n,

where P0 = (0, 0), {T(j)}j=1,...,n is the ordered statistics of {Tj}j=1,...,n and

Wn(T(j)) =
1

n

j∑
i=1

(n− i+ 1)
(
T(i) − T(i−1)

)
, Vn(T(j)) =

1

n

j∑
i=1

∆(i).

On the other hand, the Grenander-type estimator λ̃n of λ is defined as the
left-hand slope of the least concave majorant Λ̂n of the Nelson-Aalen esti-
mator Λn for the cumulative hazard function Λ, where

Λn(t) =

n∑
i=1

1{Ti6t}∆i∑n
j=1 1{Tj>Ti}

. (1.1.3)

It turns out that, in this case the maximum likelihood estimator and the
Grenander-type estimator are different. However, as noticed in Huang and
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Wellner, 1995, the two estimators are very close for moderately large sample
size and, almost always, they have the same jump points.

Now, we consider estimating the density function f assuming that it is
nonincreasing. The nonparametric maximum likelihood estimator f̂n is again
characterized as the derivative of the least concave majorant of some cumu-
lative sum diagram (see Corollary 3.1 in Huang and Wellner, 1995). On the
other hand, to construct the Grenander-type estimator f̃n of f, we take as a
naive estimator of the cumulative distribution function F the Kaplan-Meier
estimator

Fn(t) = 1−
∏

i:X(i)6t

(
1−

di
ni

)
, (1.1.4)

where X(i), i = 1, . . . ,m are the ordered observed event times, di is the
number of events at time X(i) and ni is the number of individuals at risk
prior to time X(i). Then, f̃n is defined as the left-hand slope of the least
concave majorant F̂n of Fn. Once more, the two estimators are different but
very close to each other.

Example 1.1.2. the cox regression model The semi-parametric Cox
regression model is a very popular method in survival analysis that allows
incorporation of covariates when studying lifetime distributions in the pres-
ence of right censored data. It was initially proposed in biostatistics (Cox,
1972) and quickly became broadly used to study, for example, the time to
device failure in engineering, the effectiveness of a treatment in medicine,
mortality in insurance problems, duration of unemployment in social sci-
ences etc. The ease of interpretation, resulting from the formulation in terms
of the hazard rate as well as the proportional effect of the covariates favor
the wide use of this framework.

Let X1, . . . ,Xn be an i.i.d. sample representing the survival times of n
individuals, which can be observed only on time intervals [0,Ci] for some
i.i.d. censoring times C1, . . . ,Cn. One observes i.i.d. triplets (T1,∆1,Z1), . . . ,
(Tn,∆n,Zn), where Ti = min(Xi,Ci) denotes the follow up time, ∆i =

1{Xi6Ci} is the censoring indicator and Zi ∈ Rp is a time independent
covariate vector. Given the covariate vector Z, the event time X and the cen-
soring time C are assumed to be independent. Furthermore, conditionally
on Z = z, the event time is assumed to be a nonnegative random variable
with an absolutely continuous distribution function F(x|z) and density f(x|z).
Similarly the censoring time is assumed to be a nonnegative random vari-
able with an absolutely continuous distribution function G(x|z) and density
g(x|z). The censoring mechanism is assumed to be non-informative, i.e., F
and G share no parameters. Within the Cox model, the conditional hazard
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rate λ(x|z) for a subject with covariate vector z ∈ Rp, is related to the corre-
sponding covariate by

λ(t|z) = λ0(t) eβ
′
0z, t ∈ R+,

where λ0 represents the baseline hazard function, corresponding to a subject
with z = 0, and β0 ∈ Rp is the vector of the regression coefficients. We refer
to the quantity

Λ0(t) =

∫t
0
λ0(u)du,

as the cumulative baseline hazard. Then, for the conditional cumulative haz-
ard Λ(t|z) = − log [1− F(t|z)] we have Λ(t|z) = Λ0(t) exp(β ′0z). It follows
that the likelihood function is given by

n∏
i=1

{f(Ti|Zi) [1−G(Ti|Zi)]}
∆i {g(Ti|Zi) [1− F(Ti|Zi)]}

1−∆i

=

n∏
i=1

λ(Ti|Zi)
∆i exp {−Λ(Ti|Zi)}

n∏
i=1

g(Ti|Zi)
1−∆i [1−G(Ti|Zi)]

∆i .

Hence, we essentially need to maximize the following pseudo log-likelihood
function

l(β, λ0) =
n∑
i=1

[
∆i log λ0(Ti) +∆iβ ′Zi − eβ

′ZiΛ0(Ti)
]

(1.1.5)

over β ∈ R and λ0. Such a maximum does not exist if Λ0 is only restricted
to be absolutely continuous because we can always choose some function
λ0 with fixed values at the Ti while letting λ0(Ti) go to infinity for some Ti
with ∆i = 0.

However, if one is interested only on the effect of the covariates on sur-
vival, the proportional hazard property of the Cox model allows estimation
of β0 while leaving the baseline hazard completely unspecified. Indeed, by
now it seems to be rather a standard choice estimating β0 by β̂n, the maxi-
mizer of the partial likelihood function

β 7→
m∏
i=1

eβ
′Z(i)∑n

j=1 1{Tj>X(i)}
eβ
′Zj

, (1.1.6)

as proposed in Cox, 1972. Here X(1), . . . ,X(m) denote the ordered observed
event times. Note that each factor of the partial likelihood function can be
seen as the ratio between the hazard at time X(i) of the individual that
failed at that time and the total hazard of all the individuals that were alive
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at time X(i). The event times are actually not being used, only their ranking
is important.

The partial likelihood is a profile likelihood if the parameter space is re-
stricted to

{(β, λ0) : β ∈ R and Λ0 is increasing step function with jumps only at Ti’s}

Let λ0(t) be the jumpsize at time t. The modified loglikelihood is of the form

l(β, λ0) =
n∑
i=1

∆i log λ0(Ti) +∆iβ ′Zi − eβ
′Zi

n∑
j=1

λ0(Tj)1{Tj6Ti}

 .

and the maximum of l(β, λ0) w.r.t. λ0(Ti) is obtained at

λ̂n(Ti) =
∆i∑n

j=1 e
β ′Zj1{Tj>Ti}

.

Substituting the above values for {λ0(Ti)}i=1,...,n into the expression of
l(β, λ0), we obtain the profile log-likelihood function for β

l(β) =

m∑
i=1

β ′Z(i) − log
n∑
j=1

eβ
′Zj1{Tj>X(i)}


which is exactly the log-partial likelihood function.

On the other hand, when one is interested for instance in the absolute
time to event, estimation of λ0 is required. A piecewise constant estimator
was suggested in Breslow and Crowley, 1974, which results in

Λn(t) =
∑

i:X(i)6t

di∑n
j=1 e

β̂ ′nZj1{Tj>X(i)}

, (1.1.7)

where β̂n is the maximum partial likelihood estimator of β and di is the
number of events at time X(i). In particular, in the case of no covariates, the
Breslow estimator reduces to the Nelson-Aalen estimator in (1.1.3).

Although the most attractive property of this approach is that it does
not assume any fixed shape on the hazard curve, there are several cases
where order restrictions better match the practical expectations (e.g., see van
Geloven et al., 2013 for an example of a decreasing hazard in a large clinical
trial for patients with acute coronary syndrome). Estimation of the baseline
hazard function under monotonicity constraints has been studied in Chung
and Chang, 1994 and Lopuhaä and Nane, 2013.
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Assume we want to estimate λ0, subject to the constraint that it is in-
creasing (the case of a decreasing hazard is analogous). For a fixed β, the
constrained nonparametric maximum likelihood estimator is of the form

λ̂n(x;β) =


0 x < T(1)

λ̂i T(i) 6 x < T(i+1)∞ x > T(n),

where λ̂i is the left derivative of the greatest convex minorant at the points
Pi of the cumulative sum diagram consisting of points P0 = (0, 0),

Pj =
(
Wn(T(j+1);β),Vn(T(j+1))

)
, j = 1, 2 . . . ,n− 1,

for

Wn(x;β) =
∫ (

eβ
′z
∫x
T(1)

1u>s ds

)
dPn(u, δ, z), x > T(1),

Vn(x;β) =
∫
δ1{u6x} dPn(u, δ, z).

Then, Lopuhaä and Nane, 2013 propose λ̂n(x) = λ̂n(x, β̂n) as an estimator
of λ0, where β̂n is an estimator of β0. The standard choice for β̂n is the
maximum partial likelihood estimator.

On the other hand, taking the Breslow estimator as a naive estimator of
the cumulative baseline hazard, the Grenander estimator λ̃n of λ0 is the left
slope of the greatest convex minorant Λ̂n of Λn.

1.1.4 Distributional results

The isotonic estimators discussed in the previous sections are consistent in
the interior of the support if the function we are estimating is continuous.
Inconsistency at the boundaries or at discontinuity points has been shown
in Anevski and Hössjer, 2002; Balabdaoui et al., 2011; Woodroofe and Sun,
1993. On the other hand, in the interior of the support, the pointwise asymp-
totic behavior of isotonic estimators is typically characterized by a cube-root
n rate of convergence instead of the more common

√
n-rate. The reason be-

hind this is explained in Kim and Pollard, 1990 for argmax type of estima-
tors. Again we illustrate the main ideas for the monotone density model.
Isotonic estimators are connected to argmax estimators through the inverse
process. The inverse process related to the Grenander-type estimator of a
nonincreasing density is given by

Ûn(a) = argmax
s>0

{Fn(s) − as}, (1.1.8)
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It is a sort of inverse of f̂n in the sense that it satisfies the switching relation

f̂n(t) > a⇐⇒ Ûn(a) > t, a ∈ R, t > 0. (1.1.9)

Since tn = Ûn(a) maximizes Γn(t) = Fn(t) − at we have

Γn(tn) − Γn(t0) > 0, (1.1.10)

where t0 = f−1(a) is the maximizer of the deterministic version Γ(t) =

F(t) − at. We can write

Γn(t) − Γn(t0) = {(Γn − Γ)(t) − (Γn − Γ)(t0)}+ {Γ(t) − Γ(t0)}

= I+ II.

By a Taylor expansion it follows that II ∼ −12 |f
′(t0)|(t− t0)

2 while the first
term is normally distributed with mean zero and variance

1

n
(F(t) − F(t0)) (1− (F(t) − F(t0))) ≈

1

n
f(t0)|t− t0|.

Hence I = OP

(
n−1/2

√
|t− t0|

)
. In order to have (1.1.10) we need that I

and II have the same order, i.e.,

n−1/2
√
|t− t0| ∼ (t− t0)

2,

which means that Ûn converges at rate n1/3. By the switching relation, it
can be shown that also f̂n converges at the same rate.

The pointwise asymptotic distribution of these type of estimators was first
obtained in Prakasa Rao, 1969, 1970 and reproved in Groeneboom, 1983,
who introduced a more accessible approach based on inverses. For every
t0 > 0 such that f ′(t0) < 0 we have

n1/3
(

1

4f(t0)|f ′(t0)|

)1/3 {
f̂n(t0) − f(t0)

} d−→ argmax
t∈R

{
W(t) − t2

}
,

(1.1.11)
where Wt denotes a two-sided Brownian motion. The limit distribution is
known as the Chernoff distribution (Chernoff, 1964). It is the distribution of
the value at zero of the process

X(a) = argmax
t∈R

{
W(t) − (t− a)2

}
, (1.1.12)

which was introduced and investigated by Groeneboom, 1983; Groeneboom,
1989 and plays a key role in the asymptotic behavior of isotonic estimators.



12 introduction

The main steps for proving (1.1.11) can be found, for example, in Durot
and Lopuhaä, 2018. Apart from the direct approach, using (1.1.9), the asymp-
totic distribution of f̂n can also be obtained through the more tractable pro-
cess Ûn.

By defining the inverse process appropriately, this approach can be used
to derive the limit distribution of isotonic estimators even in other models,
given that we have a convex minorant (concave majorant) characterization as
in the previous examples. It initiated a stream of research on isotonic estima-
tors, e.g., see Huang and Zhang, 1994 for density estimation with censored
observations, Huang and Wellner, 1995 for estimation of a monotone haz-
ard in the right censoring model, Lopuhaä and Nane, 2013 for estimation of
the baseline hazard in the Cox model. A more general theory on consistency
and limit distribution of estimators that are constructed as left derivatives of
the least concave majorant (greatest convex minorant) of a cumulative sum
diagram can be found in Anevski and Hössjer, 2006; Westling and Carone,
2018.

1.2 smooth isotonic estimation

Traditional isotonic estimators, such as maximum likelihood estimators and
Grenander-type estimators are step functions which, in case of heavily cen-
sored data and small or moderate sample sizes, tend to have only a few
jumps of large size. In such situations smooth estimators would be preferred
to piecewise constant ones because they have a nice graphical representation
and are more accurate. Indeed, a long stream of research has shown that, at
the price of additional smoothness assumptions on the function of interest,
smooth estimators achieve a faster rate of convergence (with respect to the
cube-root n rate) to a Gaussian distributional law. Smooth estimation has
received considerable attention in the literature, also because it is needed to
prove that a bootstrap method works (see for instance, Kosorok, 2008; Sen,
Banerjee, and Woodroofe, 2010). Moreover, it provides a straightforward es-
timate of the derivative of the function of interest, which is of help when
constructing confidence intervals (see for instance, Nane, 2015).

Various approaches can be used to obtain smooth shape constrained es-
timators. Typically, these estimators are constructed by combining an iso-
tonization step with a smoothing step. It essentially depends on the methods
of both isotonization and smoothing and on the order of operations. Estima-
tors constructed by smoothing followed by an isotonization step have been
considered in Cheng and Lin, 1981, Wright, 1982, Friedman and Tibshirani,
1984, and Ramsay, 1998, for the regression setting, in van der Vaart and
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van der Laan, 2003 for estimating a monotone density, and in Eggermont
and LaRiccia, 2000, who consider maximum smoothed likelihood estima-
tors for monotone densities. Methods that interchange the smoothing step
and the isotonization step, can be found in Mukerjee, 1988, Durot, Groene-
boom, and Lopuhaä, 2013. Comparisons between isotonized smooth estima-
tors and smoothed isotonic estimators are made in Mammen, 1991 for the
regression setting, in Groeneboom, Jongbloed, and Witte, 2010 for the cur-
rent status model and in Groeneboom and Jongbloed, 2013 for estimating
a monotone hazard rate. Other references for combining shape constraints
and smoothness can be found in Chapter 8 in Groeneboom and Jongbloed,
2014.

Smooth estimation under monotonicity constraints for the baseline haz-
ard in the Cox model was introduced in Nane, 2013. By combining an iso-
tonization step with a smoothing step and alternating the order of smooth-
ing and isotonization, four different estimators can be constructed. Two of
them are kernel smoothed versions of the maximum likelihood estimator
and the Grenander-type estimator from Lopuhaä and Nane, 2013. The third
estimator is a maximum smoothed likelihood estimator obtained by first
smoothing the loglikelihood of the Cox model and then finding the max-
imizer of the smoothed likelihood among all decreasing baseline hazards.
The forth one is a Grenander-type estimator based on the smooth Breslow
estimator for the cumulative hazard.

1.2.1 Characterization of smooth isotonic estimators

Smoothing approaches include kernel, spline and penalized likelihood meth-
ods. Here we consider kernel smoothing which is probably the most popular
method due to its simplicity and intuitive nature.

Let k be an m-orthogonal kernel function for some m > 1, which means
that ∫

|k(u)||u|m du <∞ and
∫
k(u)uj du = 0,

for j = 1, . . . ,m− 1, if m > 2. We assume that

k has bounded support [−1, 1] and is such that
∫1
−1
k(y)dy = 1;

k is differentiable with a uniformly bounded derivative.
(1.2.1)

We denote by kb its scaled version kb(u) = b−1k(u/b). Here b = bn is a
bandwidth that depends on the sample size, in such a way that 0 < bn → 0

and nbn → ∞, as n → ∞. From now on, we will simply write b instead
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of bn. Note that if m > 2, the kernel function k necessarily attains negative
values and as a result also the kernel smoothed estimators may be negative
and monotonicity might not be preserved. To avoid this, one could restrict
oneself to m = 2. In that case, the most common choice is to let k be a
symmetric probability density.

Consider estimating a function λ : [0, 1]→ R subject to the constraint that
it is non-increasing. Suppose that on the basis of n observations we have at
hand a cadlag step estimator Λn of

Λ(t) =

∫t
0
λ(u)du, t ∈ [0, 1].

Then, at a point t ∈ [0, 1], the standard kernel estimator of λ is given by

λ̃sn(t) =

∫ (t+b)∧1
(t−b)∨0

kb(t− u)dΛn(u). (1.2.2)

This estimator is smooth but not necessarily monotone. On the other hand,
we can construct, an isotonic estimator λ̂n which is piecewise constant for
example by a Grenander-type procedure. In order to obtain an estimator
that is smooth and monotone at the same time we can smooth λ̂n or iso-
tonize λ̃sn. The first procedure produces the smoothed isotonic estimator

λ̃SIn (t) =

∫ (t+b)∧1
(t−b)∨0

kb(t− u)λ̂n(u)du =

∫ (t+b)∧1
(t−b)∨0

kb(t− u)dΛ̂n(u),

(1.2.3)
where Λ̂n is the least concave majorant of Λn. Note that, if k is a symmetric
probability density, smoothing preserves monotonicity on (b, 1−b). Indeed,
for a decreasing λ̂n and b < t < s < 1− b, by a change of variable we have

λ̃SIn (s) − λ̃SIn (t) =

∫1
−1
k(y)

[
λ̂n(s− by) − λ̂n(t− by)

]
dy 6 0.

On the other hand, the isotonized kernel estimator is constructed as follows.
First we smooth the piecewise constant estimator Λn by means of a kernel
function,

Λsn(t) =

∫
kb(t− u)Λn(u)du, for t ∈ [0, 1].

Next, we define a continuous monotone estimator λ̃ISn of λ as the left-hand
slope of the least concave majorant Λ̂sn of Λsn on [0, 1]. In this way, we define
a sort of Grenander-type estimator based on a smoothed naive estimator
for Λ. We use the superscript IS to indicate that smoothing is performed
first, followed by isotonization. Note that λ̃ISn is usually less smooth than
λ̃SIn since only continuity is guaranteed.
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For both methods, in practice one also has to choose the kernel func-
tion and the bandwidth parameter. The choice of the kernel does not effect
much the resulting estimates. The standard choice is a symmetric probabil-
ity density function. On the contrary, the choice of the bandwidth is crucial.
In particular, in situations when the data are not equally distributed, the
fixed bandwidth kernel tends to oversmooth in dense regions and under-
smooth in sparse ones. Therefore, data-dependent rules for determination
of the bandwidth would be more appropriate for achieving a uniform de-
gree of smoothing (see for example Hess, Serachitopol, and Brown, 1999,
Müller and Wang, 1990). However, for simplicity reasons, usually a global
bandwidth is used. Determining rigorous rules for optimal bandwidth se-
lection is a difficult task. Through the asymptotic analysis of the estimators
one can determine the optimal order of the bandwidth which regulates the
trade-off between the bias and the variance but this does not solve the prob-
lem for finite sample sizes. Various methods of bandwidth selection have
been proposed in the literature such as cross-validation, plug-in techniques,
bootstrap etc. However, selecting the right amount of smoothness remains
problematic.

1.2.2 Distributional results

Distribution theory of smooth isotonic estimators was first studied by Muk-
erjee, 1988, who established asymptotic normality for a kernel smoothed
least squares regression estimator, but this result is limited to a rectangular
kernel and the rate of convergence is slower than the usual rate for kernel es-
timators. Later on, a smoothed isotonic estimator and an isotonized smooth
estimator are considered in Mammen, 1991 and their asymptotic equiva-
lence is derived. In van der Vaart and van der Laan, 2003 it is shown that the
isotonized kernel density estimator has the same limit normal distribution
at the usual rate nm/(2m+1) as the ordinary kernel density estimator, when
the density is m times continuously differentiable. Similar results were ob-
tained by Groeneboom, Jongbloed, and Witte, 2010 for the smoothed maxi-
mum likelihood estimator and the maximum smoothed likelihood estimator,
and by Groeneboom and Jongbloed, 2013 for a smoothed Grenander-type
estimator. This long stream of research shows that the asymptotic behav-
ior of smooth isotonic estimators resembles the one of the standard kernel
estimator (in terms of rate of convergence and limit distribution). Next we
illustrate why this is indeed the case.

We consider first the standard kernel estimator λ̃sn in (1.2.2). Let t ∈ (0, 1).
For n large enough, we have t ∈ (b, 1− b). Thus, for now, we don’t have to
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worry about being in the boundary region. For simplicity, we also assume
m = 2, i.e., the function λ is two times continuously differentiable and we
use a 2-orthogonal kernel function. In this case, the optimal bandwidth is of
order n−1/5 and the kernel estimator converges at rate n2/5 to a Gaussian
distribution. Indeed, we have

n2/5
{
λ̃sn(t) − λ(t)

}
= n2/5

{∫
kb(t− u)dΛ(u) − λ(t)

}
+n2/5

∫
kb(t− u)d(Λn −Λ)(u).

(1.2.4)

The first (deterministic) term on the right hand side of (1.2.4) gives us the
asymptotic bias by using a change of variables, a Taylor expansion, and the
properties of the kernel:

n2/5

{∫t+b
t−b

kb(t− u) λ(u)du− λ(t)

}

= n2/5
∫1
−1
k(y) {λ(t− by) − λ(t)} dy

= n2/5
∫1
−1
k(y)

{
−λ ′(t)by+

1

2
λ ′′(ξn)b

2y2
}

dy,

→ 1

2
c2 λ ′′(t)

∫1
−1
y2 k(y)dy.

(1.2.5)

where |ξn− t| < b|y| 6 b→ 0 and n1/5b→ c > 0. In general, if the function
λwasm-times continuously differentiable and the kernel wasm-orthogonal
then the rate of convergence would be nm/(2m+1) and the optimal band-
width of order n−1/(2m+1).

On the other hand, for proving the asymptotic normality of the second
term in (1.2.4), the idea is to write it in terms of the empirical process

n2/5
∫
kb(t− u)d(Λn −Λ)(u) =

∫
gt,n(u)d

√
n(Pn − P)(u)

for some function gt,n, and then use results from empirical process theory to
show that it converges to a normal distribution with mean zero and certain
variance.

Now we want to show that the smoothed isotonic estimator λ̃SIn defined
in (1.2.3) has the same asymptotic behavior as the kernel estimator. By defi-
nition we can write

λ̃SIn (t) − λ̃sn(t) =

∫t+b
t−b

kb(t− u)d
(
Λ̂n −Λn

)
(u).
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Then, integration by parts and a change of variable yield

λ̃SIn (t) − λ̃sn(t) =
1

b2

∫t+b
t−b

{
Λ̂n(u) −Λn(u)

}
k ′
(
t− u

b

)
du

=
1

b

∫1
−1

{
Λ̂n(t− by) −Λn(t− by)

}
k ′ (y) dy.

For the density model it was shown in Kiefer and Wolfowitz, 1976 that

supt |F̂n(t) − Fn(t)| = OP

(
n−2/3(logn)2/3

)
. The result was later on ex-

tended to a more general setting which includes various statistical models
by Durot and Lopuhaä, 2014. For such models, using

sup
t∈[0,1]

|Λ̂n(t) −Λn(t)| = OP

(
n−2/3(logn)2/3

)
, (1.2.6)

we obtain
λ̃SIn (t) − λ̃sn(t) = OP

(
b−1n−2/3(logn)2/3

)
.

Hence
n2/5

{
λ̃SIn (t) − λ̃sn(t)

}
P−→ 0,

which means that the two estimators are asymptotically equivalent.

The approach for dealing with the isotonized kernel estimator λ̃ISn is dif-
ferent. It follows from Lemma 1 in Groeneboom and Jongbloed, 2010 (in the
case of a decreasing function), that λ̃ISn is the unique minimizer of

ψ(λ) =
1

2

∫1
0

(
λ(t) − λ̃naive

n (t)
)2

dt

over all nonincreasing functions λ, where λ̃naive
n (t) = dΛsn(t)/dt. Note that,

for t ∈ [b, 1− b], from integration by parts we get

λ̃naive
n (t) =

1

b2

∫t+b
t−b

k ′
(
t− u

b

)
Λn(u)du =

∫t+b
t−b

kb(t− u)dΛn(u),

(1.2.7)
i.e., λ̃naive

n coincides with the standard kernel estimator of λ on the interval
[b, 1− b]. Then, the idea is to show that for large n, the kernel estimator is
monotone with large probability and as a result, for every 0 < ε < M < 1,

P(λ̃sn(t) = λ̃
IS
n (t) for all t ∈ [ε,M])→ 1. (1.2.8)

Hence, the asymptotic distribution of λ̃ISn is the same as for the kernel
estimator.
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1.2.3 Boundary problems

If the function we are estimating has bounded support, kernel estimates are
inconsistent at the boundary regions. This effect is due to the fact that the
support of the kernel exceeds the range of the data. Indeed, if t = cb for
c ∈ [0, 1), then the bias of the kernel estimator is{∫t+b

0
kb(t− u) λ(u)du− λ(t)

}

=

∫c
−1
k(y) {λ(t− by) − λ(t)} dy− λ(t)

∫1
c
k(y)dy

= −bλ ′(t)

∫c
−1
k(y)ydy+

1

2
b2λ ′′(t)

∫c
−1
k(y)y2 dy− λ(t)

∫1
c
k(y)dy+ o(b2).

(1.2.9)

We do not get the usual bias of order b2 because
∫t/b
−1 k(y)dy 6= 0 and∫c

−1 k(y)ydy 6= 0.

In order to prevent inconsistency problems at the boundaries of the sup-
port, different approaches have been tried, including penalization (see for
instance, Groeneboom and Jongbloed, 2013) and boundary corrections (see
for instance, Albers, 2012). However, no method performs strictly better than
the others. We choose to apply some boundary correction which allows the
shape of the kernel to change in the boundaries. It is constructed by a linear
combinations of k(u) and uk(u) with coefficients depending on the value
near the boundary (see Durot, Groeneboom, and Lopuhaä, 2013; Zhang and
Karunamuni, 1998). To be precise, we define, for instance, the smoothed iso-
tonic estimator λ̂SIn by

λ̂SIn (t) =

∫ (t+b)∧1
(t−b)∨0

k
(t)
b (t− u) λ̃n(u)du (1.2.10)

with k(t)b (u) denoting the rescaled kernel b−1k(t)(u/b) and

k(t)(u) =


ψ1(

t
b )k(u) +ψ2(

t
b )uk(u) t ∈ [0,b],

k(u) t ∈ (b, 1− b)

ψ1(
1−t
b )k(u) −ψ2(

1−t
b )uk(u) t ∈ [1− b, 1],

(1.2.11)
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where k(u) is a standard kernel satisfying (1.2.1). For s ∈ [−1, 1], the coeffi-
cients ψ1(s), ψ2(s) are determined by

ψ1(s)

∫s
−1
k(u)du+ψ2(s)

∫s
−1
uk(u)du = 1,

ψ1(s)

∫s
−1
uk(u)du+ψ2(s)

∫s
−1
u2k(u)du = 0.

(1.2.12)

The coefficients ψ1 and ψ2 are not only well defined, but they are also
continuously differentiable if the kernel k is assumed to be continuous (see
Durot, Groeneboom, and Lopuhaä, 2013). Furthermore, it can be easily seen
that, for each t ∈ [0,b], equations (1.2.12) lead to∫t/b

−1
k(t)(u)du = 1 and

∫t/b
−1

uk(t)(u)du = 0. (1.2.13)

Hence, by reasoning as in (1.2.9), we get a bias of order b2 even in the
boundary regions.

Note that boundary corrected kernel smoothed estimator coincides with
the standard kernel smoothed estimator on [b, 1− b].

1.3 global errors of estimates

A lot of attention has been given in the literature to the pointwise asymp-
totic behavior of smooth and/or monotone estimators. However, for exam-
ple for goodness of fit tests, global errors of estimates are needed instead
of pointwise results. There are various measures of the global error of the
estimators but the most common ones are the Lp-errors. Among Lp-errors,
the L1, L2 and L∞-errors are very popular. The L1 and L∞-errors are more
natural because they can easily be visualized as the area and the maximum
pointwise distance between the curves. While the L1-distance can be used
in hypothesis testing, the supremum distance is more useful for construct-
ing confidence bands. Another widely used global measure of departure
from the true parameter of interest is the Hellinger distance. It is a conve-
nient metric in maximum likelihood problems, which goes back to Le Cam,
1973; Le Cam, 1970, and it has nice connections with Bernstein norms and
empirical process theory methods to obtain rates of convergence, due funda-
mentally to Birgé and Massart, 1993, Wong and Shen, 1995, and others (see
Section 3.4 of van der Vaart and Wellner, 1996 or Chapter 4 in van de Geer,
2000 for a more detailed overview).

For the Grenander estimator of a monotone density, a central limit the-
orem for the L1-error was formulated in Groeneboom, 1983 and proven
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rigorously in Groeneboom, Hooghiemstra, and Lopuhaä, 1999. A similar re-
sult was established in Durot, 2002 for the regression context. Extensions to
general Lp-errors can be found in Kulikov and Lopuhaä, 2005 and in Durot,
2007, where the latter provides a unified approach that applies to a variety of
statistical models. For the same general setup, an extremal limit theorem for
the supremum distance has been obtained in Durot, Kulikov, and Lopuhaä,
2012. Consistency in Hellinger distance of shape constrained maximum like-
lihood estimators has been investigated in Pal, Woodroofe, and Meyer, 2007,
Seregin and Wellner, 2010, and Doss and Wellner, 2016, whereas rates on
Hellinger risk measures have been obtained in Seregin and Wellner, 2010,
Kim and Samworth, 2016, and Kim, Guntuboyina, and Samworth, 2016. On
the other hand, central limit theorems for Lp-errors of regular kernel den-
sity estimators have been obtained in Csörgő and Horváth, 1988 and Csörgő,
Gombay, and Horváth, 1991. However there is no distribution theory for the
global errors of smooth and isotonic estimators.

Compared to the pointwise behavior, deriving asymptotics for global er-
rors requires some additional techniques such as strong approximations.
Once more, we illustrate the main ideas for the monotone density model.
Let f̂n be the Grenander estimator of a decreasing density f : [0, 1]→ [0,∞).
Then, for 1 6 p < 2.5, we have (see Theorem 1.1 in Kulikov and Lopuhaä,
2005 or Theorem 2 in Durot, 2007)

n1/6

{
np/3

∫1
0

∣∣f̂n(t) − f(t)∣∣p dt−mp

}
d−→ N(0,σ2p), (1.3.1)

where mp = E [|X(0)|p]
∫1
0 |4f

′(t)f(t)|p/3 dt with X(a) as in (1.1.12) and the
variance

σ2p = 8kp

∫1
0
|4f ′(t)f(t)|2(p−1)/3f(t)dt

depends on

kp =

∫∞
0
cov (|X(0)|p, |X(a) − a|p) da. (1.3.2)

For k > 2.5, the inconsistency of f̂n at the boundaries starts to dominate
the behavior of the Lp-error, so the result is no longer true. As in the point-
wise case, the central limit theorem in (1.3.1) is obtained through the more
tractable inverse process Ûn defined in (1.1.8). First, using the switching
relation (1.1.9), it can be shown that the Lp-error

Jn := np/3
∫1
0
|f̂n(t) − f(t)|

p dt
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can be approximated by

Jn ≈ np/3
∫f(0)
f(1)

|Ûn(a) − g(a)|
p|g ′(a)|1−p da,

where g(a) = f−1(a). Using properties of the argmax function we obtain

n1/3
{
Ûn(a) − g(a)

}
= argmax

t

Zn(t),

where

Zn(t) = n
2/3
{
(Fn − F)(g(a) +n−1/3t) + (Fn − F)(g(a))

}
+n2/3

{
F((g(a) +n−1/3t)) − F(g(a)) − f(g(a))n−1/3t

}
.

(1.3.3)

By a Taylor expansion, the second term in (1.3.3) can be approximated by
1
2f
′(t0)t

2. Moreover, from the embedding in Komlós, Major, and Tusnády,
1975, the empirical process Gn(t) = n1/2[Fn(t) − F(t)] can uniformly be
approximated by Bn(F(t)), where Bn is a standard Brownian bridge con-
structed on the same probability space as Fn. It follows that the process
Zn(t) converges in distribution to the process

Z(t) =W(at) +
1

2
f ′(t0)t

2.

The convergence in distribution of Zn to Z is sufficient when dealing with
pointwise limit results as in Section 1.1.4. For the global errors, since the
speed of convergence in (1.3.1) is faster than in the pointwise case, we also
need the convergence of Zn to Z to be sufficiently fast. Till now, this has
been obtained through strong embedding results that approximate the rel-
evant process Λn by a Brownian motion or Brownian bridge (see for exam-
ple Komlós, Major, and Tusnády, 1975; Major and Rejtő, 1988). Afterwards,
for the approximating process, asymptotic normality follows from a big-
blocks-small-blocks procedure. The idea is to partition the interval [0, 1] in
big blocks and small blocks. The small blocks do not contribute to the limit
distribution and they separate the big blocks in such a way that the inte-
grals over the big blocks become independent. This follows from the inde-
pendence of the increments of the Brownian motion and the fact that the
argmax of a Brownian motion with parabolic drift can actually be localized.
Then, since the sum of the integrals over the big blocks is a sum of indepen-
dent random variables, the central limit theorem can be used to derive the
limit distribution.

The situation is slightly different when dealing with the kernel estima-
tor, mainly because there is no need to go through the inverse process and
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argmax approximations. In this case, the Lp-error of the kernel estimator f̃sn
of a smooth density on R (without monotonicity constraints) satisfies the
following central limit theorem

b−1/2
{
(nb)p/2

∫
R

∣∣f̃sn(t) − f(t)∣∣p dt−mn(p)
}
d−→ N(0,σ2(p))

for some mn(p) and σ2(p) (see Csörgő and Horváth, 1988) that depend
on whether nb5 → 0 or nb5 → C > 0. Again the main idea is to use the
embedding in Komlós, Major, and Tusnády, 1975

Fn(t) = F(t) +n
−1/2Bn(F(t)) +O

(
n−1 logn

)
,

which holds uniformly in t, for approximating

f̃sn(t) − f(t) =

∫
kb(t− u)d(Fn − F)(u)

by the corresponding Gaussian process Γn(t) = n−1/2
∫
kb(t−u)dBn(F(u)).

Then, if Bn was a Brownian motion, the asymptotic normality of the Lp-
norm of Γn follows by a big-blocks-small-blocks procedure. The last step
consists in showing that even if Bn is a Brownian bridge, the asymptotic
behavior remains the same as for a Brownian motion. Note that no bound-
ary problems are present here since the density is smooth on the whole real
line.

1.4 outline

The thesis consists of two main parts. The first part establishes results on the
pointwise behavior of smooth isotonic estimators in the right censoring and
Cox regression model. The second part deals with asymptotics for global
errors of estimates in a general setting which includes estimation of a prob-
ability density, a regression function or a failure rate under monotonicity
constraints.

We start in Chapter 2 by considering kernel smoothed Grenander-type
estimators for a monotone hazard rate and a monotone density in the pres-
ence of randomly right censored data. This is a relatively simple model
since the limit distribution can be derived using a Kiefer-Wolfowitz type
of result as in (1.2.6). We show that the estimators converge at rate n2/5

and that the limit distribution at a fixed point is Gaussian with explicitly
given mean and variance. To avoid inconsistency problems of standard ker-
nel smoothing, we use some boundary correction. The obtained results are
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used to construct pointwise confidence intervals and their performance is
investigated through a simulation study.

The right censoring model is a special case of the Cox regression model
that will be treated in Chapter 3. The lack of a Kiefer-Wolfowitz type of
result makes the asymptotic analysis in this model more challenging and
techniques different from the ones described in Section 1.2.2 need to be
developed. We consider four smooth isotonic estimators for a monotone
baseline hazard rate λ0. Two of them are obtained by kernel smoothing the
constrained maximum likelihood estimator and the Grenander-type estima-
tor whereas the other two are a maximum smooth likelihood estimator and
an isotonized kernel estimator. We analyze their asymptotic behavior and
show that they are asymptotically normal at rate nm/(2m+1), when λ0 is
m > 2 times continuously differentiable. It turns out that the isotonized ker-
nel estimator is asymptotically equivalent to the kernel smoothed isotonic
estimators, while the maximum smoothed likelihood estimator exhibits the
same asymptotic variance but a different bias. Finally, we present numeri-
cal results on pointwise confidence intervals that illustrate the comparable
behavior of the four methods.

Once results for the pointwise behavior are established the interest natu-
rally moves towards global errors of the estimators. Even if our main mo-
tivation was the Cox regression model, we decided to start with a simpler
situation for two main reasons. First, there exist no results on the global er-
rors of smooth and isotonic estimators even in more common models such
as density or regression function estimation. Second, dealing directly with
the Cox model is more challenging since no strong approximation result
is available for the Breslow estimator. Hence, here we focus on a general
setup, considered also in Durot, 2007 and Durot and Lopuhaä, 2014. It in-
cludes estimation of a monotone density, regression function and hazard
rate. The main assumption is that there exist a strong approximation of Λn
by a Gaussian process.

In Chapter 4 we consider Grenander type estimators for a monotone func-
tion λ : [0, 1] → R+, obtained as the slope of a concave (convex) estimate
of the primitive of λ. Our main result is a central limit theorem for the
Hellinger loss of this estimator. Moreover, we also propose a test for expo-
nentiality knowing that the density is decreasing based on the Hellinger
distance between a parametric estimator and the Grenander-type estimator.
Its performance is investigated through simulation studies.

We proceed in Chapter 5 considering the process Λ̂n − Λn, where Λn
is a cadlag step estimator for the primitive Λ of a nonincreasing function
λ on [0, 1], and Λ̂n is the least concave majorant of Λn. We extend the re-
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sults in Kulikov and Lopuhaä, 2006, 2008 to the general setting considered
in Durot, 2007. Under this setting we prove that a suitably scaled version
of Λ̂n −Λn converges in distribution to the corresponding process for two-
sided Brownian motion with parabolic drift and we establish a central limit
theorem for the Lp-distance between Λ̂n and Λn. Such result is needed in
the next chapter for dealing with smoothed Grenander-type estimators.

Finally, the asymptotic behavior of the Lp-distance between a monotone
function on a compact interval and a smooth estimator of this function is
investigated in Chapter 6. Our main result is a central limit theorem for the
Lp-error of smooth isotonic estimators obtained by smoothing a Grenander-
type estimator or isotonizing the ordinary kernel estimator. As a preliminary
result we establish a similar result for ordinary kernel estimators. We also
perform a simulation study for testing monotonicity on the basis of the L2-
distance between the kernel estimator and the smoothed Grenander-type
estimator.

The last part of the thesis consists in some supplemental material contain-
ing proofs and additional technicalities.
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2
S M O O T H I S O T O N I C E S T I M AT I O N U N D E R R I G H T
C E N S O R I N G

In this chapter we consider kernel smoothed Grenander-type estimators for
the hazard function and the probability density in the presence of randomly
right censored data. The results presented are based on:

Lopuhaä, H. P. and Musta E. (2017) "Smooth estimation of a monotone
hazard and a monotone density under random censoring". Statictica Neer-
landica 71.1, pp. 58-82.

The Grenander estimators of a monotone hazard and a monotone den-
sity in the random censorship model (see Example 1.1.1) were considered
in Huang and Wellner, 1995. They established consistency and the limit dis-
tribution, together with the asymptotic equivalence with the maximum like-
lihood estimators. On the other hand, the smoothed maximum likelihood
estimator of a monotone hazard under right censoring was investigated in
Groeneboom and Jongbloed, 2014 and its limit distribution is stated in their
Theorem 11.8. Hence, it seems quite natural to address the problem of the
smoothed Grenander-type estimator.

We derive the limit distribution of the smoothed Grenander-type estima-
tors using a a rather short and direct argument that relies on the method
developed in Groeneboom and Jongbloed, 2013 (for non-censored observa-
tions) together with a Kiefer-Wolfowitz type of result derived in Durot and
Lopuhaä, 2014. Both Theorem 2.2.2 and Theorem 2.3.4, highlight the fact
that also after applying smoothing techniques, the constrained maximum
likelihood estimator and the Grenander estimator remain asymptotically
equivalent. In order to be able to apply the Kiefer-Wolfowitz type of re-
sult in Durot and Lopuhaä, 2014 we need to consider only estimation on a
restricted interval [0, τ∗] that does not contain the end point of the support.
Furthermore, boundary kernels are used to avoid inconsistency problems at
the boundaries.

The chapter is organized as follows. In Section 2.1 we briefly introduce
the Grenander estimator in the random censorship model and recall some
results needed in the sequel. The smoothed estimator of a monotone hazard

27
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function is described in Section 2.2 and it is shown to be asymptotically nor-
mally distributed. Moreover, a smooth estimator based on boundary kernels
is studied and uniform consistency is derived. Using the same approach, in
Section 2.3 we deal with the problem of estimating a smooth monotone
density function. Section 2.4 is devoted to numerical results on pointwise
confidence intervals.

2.1 the right censoring model

Suppose we have an i.i.d. sample X1, . . . ,Xn with distribution function
F and density f, representing the survival times. Let C1, . . . ,Cn be the
i.i.d. censoring variables with a distribution function G and density g. Un-
der the random censorship model, we assume that the survival time X and
the censoring time C are independent and the observed data consists of
i.i.d. pairs of random variables (T1,∆1), . . . , (Tn,∆n), where T denotes the
follow-up time T = min(X,C) and ∆ = 1{X6C} is the censoring indicator.

Let H and Huc denote the distribution function of the follow-up time and
the sub-distribution function of the uncensored observations, respectively,
i.e., Huc(t) = P(T 6 t,∆ = 1). Note that Huc(t) and H(t) are differentiable
with derivatives

huc(t) = f(t) (1−G(t))

and
h(t) = f(t)(1−G(t)) + g(t)(1− F(t))

respectively. We also assume that τH = τG < τF 6∞, where τF, τG and τH
are the end points of the support of F, G and H.

First, we aim at estimating the hazard function λ (see (1.1.1)), subject to
the constraint that it is increasing (the case of a decreasing hazard is analo-
gous), on the basis of n observations (T1,∆1), . . . , (Tn,∆n). Since we want
to derive asymptotic normality using the Kiefer-Wolfowitz type of result in
Durot and Lopuhaä, 2014, which holds only on intervals [0, τ∗] for τ∗ < τH,
we consider only estimation on [0, τ∗]. A similar approach was considered
in Groeneboom and Jongbloed, 2013, when estimating a monotone hazard
of uncensored observations. Let Λn be the Nelson-Aalen estimator of the
cumulative hazard function Λ defined in (1.1.3). Fix 0 < τ∗ < τH. The
Grenander-type estimator λ̃n of λ is defined as the left-hand slope of the
greatest convex minorant Λ̂n of Λn on [0, τ∗]. In practice we might not even
know τH, so the choice of an estimation interval is necessary. It is reasonable
to take as τ∗ the 95%-empirical quantile of the follow-up times, because this
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Figure 1: The Nelson-Aalen estimator (piecewise constant solid line) of the cumula-
tive hazard (dotted line) and its greatest convex minorant (solid line).

converges to the theoretical 95%-quantile, which is strictly smaller than τH.
Otherwise one can choose τ∗ < T(n).

Figure 1 shows the Nelson-Aalen estimator and its greatest convex mino-
rant for a sample of n = 500 from a Weibull distribution with shape parame-
ter 3 and scale parameter 1 for the event times and the uniform distribution
on (0, 1.3) for the censoring times. We consider only the data up to the last
observed time before the 90% quantile of H. The resulting Grenander-type
estimator can be seen in Figure 2.

In Huang and Wellner, 1995, the same type of estimator is considered
without the restriction on [0, τ∗]. Note that, in practice this requires the
knowledge of τH. They show that the Grenander estimator of a nondecreas-
ing hazard rate satisfies the following pointwise consistency result

λ(t−) 6 lim inf
n→∞ λ̃n(t) 6 lim sup

n→∞ λ̃n(t) 6 λ(t+), (2.1.1)

with probability one and for all 0 < t < τH, where λ(t−) and λ(t+) denote
the left and right limit at t. For our version of the estimator such result
would hold for all 0 < t < τ∗.

Moreover, we will also make use of the fact that for any 0 < M < τH,
√
n sup
u∈[0,M]

|Λn(u) −Λ(u)| = OP(1), (2.1.2)

(see for instance, Lopuhaä and Nane, 2013, Theorem 5, in the case β = 0, or
van der Vaart and Wellner, 1996, Example 3.9.19).
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It becomes useful to introduce

Φ(t) =

∫
1[t,∞)(y)dP(y, δ) = 1−H(t) (2.1.3)

and
Φn(t) =

∫
1[t,∞)(y)dPn(y, δ), (2.1.4)

where P is the probability distribution of (T ,∆) and Pn is the empirical
measure of the pairs (Ti,∆i), i = 1, . . . ,n. From Lemma 4 in Lopuhaä and
Nane, 2013 we have,

sup
t∈[0,τH]

|Φn(t) −Φ(t)|→ 0, a.s. and
√
n sup
t∈[0,τH]

|Φn(t) −Φ(t)| = OP(1).

(2.1.5)
Let us notice that, with these notations, we can also write

Λn(t) =

∫
δ1{u6t}

Φn(u)
dPn(u, δ), Λ(t) =

∫
δ1{u6t}

Φ(u)
dP(u, δ). (2.1.6)

Our second objective is to estimate a monotone (e.g., increasing) density
function f . In this case the Grenander-type estimator f̃n of f is defined as
the left-hand slope of the greatest convex minorant F̂n of the Kaplan-Meier
estimator Fn (see (1.1.4)) restricted on [0, τ∗]. Again, for the non-restricted
version, pointwise consistency of the Grenander estimator of a nondecreas-
ing density:

f(t−) 6 lim inf
n→∞ f̃n(t) 6 lim sup

n→∞ f̃n(t) 6 f(t+), (2.1.7)

with probability one, for all 0 < t < τH, where f(t−) and f(t+) denote
the left and right limit at t, is proved in Huang and Wellner, 1995. For any
0 < M < τH, it holds

√
n sup
u∈[0,M]

|Fn(u) − F(u)| = OP(1), (2.1.8)

(see for instance, Breslow and Crowley, 1974, Theorem 5). Moreover, by The-
orem 2 in Major and Rejtő, 1988, for each 0 < M < τH and x > 0, we have
the following strong approximation

P

{
sup

t∈[0,M]

n
∣∣∣Fn(t) − F(t) −n−1/2(1− F(t))W ◦ L(t)∣∣∣ > x+K1 logn

}
6 K2e−K3x,

(2.1.9)
where K1, K2, K3 are positive constants, W is a Brownian motion and

L(t) =

∫t
0

λ(u)

1−H(u)
du. (2.1.10)
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Figure 2: The Grenander-type estimator (dashed line) of the hazard rate (dotted line)
and the kernel smoothed version (solid line).

2.2 smooth estimation of a monotone hazard

Next, we introduce the smoothed Grenander-type estimator λ̃SGn of an in-
creasing hazard. Let k be a standard kernel, i.e.,

k is a symmetric probability density with support [−1, 1]. (2.2.1)

For a fixed t ∈ [0, τ∗], the smoothed Grenander-type estimator λ̃SGn is de-
fined by

λ̃SGn (t) =

∫ (t+b)∧τ∗
(t−b)∨0

kb(t− u) λ̃n(u)du =

∫
kb(t− u)dΛ̂n(u), (2.2.2)

where kb is the rescaled kernel function as in Section 1.2.1. Figure 2 shows
the Grenander-type estimator together with the kernel smoothed version for
the same sample as in Figure 1. We used the triweight kernel function

k(u) =
35

32
(1− u2)31{|u|61}

and the bandwidth b = copt n
−1/5, where copt is the asymptotically MSE-

optimal constant (see (2.2.5)) calculated in the point t0 = 0.5. Actually, the
choice of the kernel function does not seem to effect the estimator.

The following result is rather standard when dealing with kernel smoothed
isotonic estimators (see for instance, Nane, 2013, Chapter 5). For complete-
ness, we provide a rigorous proof.
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Theorem 2.2.1. Let k be a kernel function satisfying (2.2.1) and let λ̃SG be the
smoothed Grenander-type estimator defined in (2.2.2). Suppose that the hazard func-
tion λ is nondecreasing and continuous. Then for each 0 < ε < τ∗, it holds

sup
t∈[ε,τ∗−ε]

|λ̃SGn (t) − λ(t)|→ 0

with probability one.

Proof. First, note that for a fixed t ∈ (0, τ∗) and sufficiently large n, we have
0 < t− b < t+ b < τ∗. We start by writing

λ̃SGn (t) − λ(t) = λ̃SGn (t) − λ(n)(t) + λ(n)(t) − λ(t),

where λ(n)(t) =
∫
kb(t− u) λ(u)du. Then, a change of variable yields

λ(n)(t) − λ(t) =

∫1
−1
k(y) {λ(t− by) − λ(t)} dy.

Using the continuity of λ and applying the dominated convergence theorem,
we obtain that, for each t ∈ (0, τ∗),

λ(n)(t)→ λ(t), as n→∞. (2.2.3)

On the other hand,

λ̃SGn (t) − λ(n)(t) =

∫1
−1
k(y)

{
λ̃n(t− by) − λ(t− by)

}
dy.

Choose ε > 0. Then by continuity of λ, we can find δ > 0, such that 0 <
t− δ < t+ δ < τ∗ and |λ(t+ δ) − λ(t− δ)| < ε. Then, there exists N such
that, for all n > N and for all y ∈ [−1, 1], it holds |by| < δ. Hence, by the
monotonicity of the hazard rate, we get

λ̃n(t− δ) − λ(t+ δ) 6 λ̃n(t− by) − λ(t− by) 6 λ̃n(t+ δ) − λ(t− δ).

It follows from (2.1.1) and (1.2.1) that

−ε 6 lim inf
n→∞ λ̃SGn (t) − λ(n)(t) 6 lim sup

n→∞ λ̃SGn (t) − λ(n)(t) 6 ε,

with probability one. Since ε > 0 is arbitrary, together with (2.2.3), this
proves the strong pointwise consistency at each fixed t ∈ (0, τ∗). Finally, uni-
form consistency in [ε, τ∗ − ε] follows from the fact that we have a sequence
of monotone functions converging pointwise to a continuous, monotone
function on a compact interval.
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It is worth noticing that, if one is willing to assume that λ is twice differ-
entiable with uniformly bounded first and second derivatives, and that k is
differentiable with a bounded derivative, then we get a more precise result
on the order of convergence

sup
t∈[ε,τ∗−ε]

|λ̃SGn (t) − λ(t)| = OP(b
−1n−1/2 + b2).

Such extra assumptions are considered in Theorem 5.2 in Nane, 2013 for the
Cox model and the right censoring model is just a particular case with re-
gression parameters β = 0. Furthermore, in a similar way, it can be proved
that also the estimator for the derivative of the hazard is uniformly con-
sistent in [ε, τ∗ − ε], provided that λ is continuously differentiable and the
kernel is differentiable with bounded derivative.

The pointwise asymptotic normality of the smoothed Grenander estima-
tor is stated in the next theorem. Its proof is inspired by the approach used
in Groeneboom and Jongbloed, 2013. The key step consists in using a Kiefer-
Wolfowitz type of result for the Nelson-Aalen estimator, which has recently
been obtained by Durot and Lopuhaä, 2014.

Theorem 2.2.2. Let λ be a nondecreasing and twice continuously differentiable
hazard such that λ and λ ′ are strictly positive. Let k satisfy (2.2.1) and suppose that
it is differentiable with a uniformly bounded derivative. If bn1/5 → c ∈ (0,∞),
then for each t ∈ (0, τ∗),

n2/5
(
λ̃SGn (t) − λ(t)

) d−→ N(µ,σ2),

where

µ =
1

2
c2λ ′′(t)

∫
u2k(u)du and σ2 =

λ(t)

c (1−H(t))

∫
k2(u)du. (2.2.4)

For a fixed t ∈ (0, τ∗), the asymptotically MSE-optimal bandwidth b for λ̃SG is
given by copt(t)n−1/5, where

copt(t) =

{
λ(t)

∫
k2(u)du

}1/5{
(1−H(t))λ ′′(t)2

(∫
u2 k(u)du

)2}−1/5

.

(2.2.5)

Proof. Once again we fix t ∈ (0, τ∗). Then, for sufficiently large n, we have
0 < t− b < t+ b 6 τ∗. We write

λ̃SGn (t) =

∫
kb(t− u)dΛ(u) +

∫
kb(t− u)d(Λn −Λ)(u)

+

∫
kb(t− u)d(Λ̂n −Λn)(u).

(2.2.6)
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As in (1.2.5), the first (deterministic) term on the right hand side of (2.2.6)
gives us the asymptotic bias:

n2/5

{∫t+b
t−b

kb(t− u) λ(u)du− λ(t)

}
→ 1

2
c2 λ ′′(t)

∫1
−1
y2 k(y)dy.

On the other hand, the last term on the right hand side of (2.2.6) converges
to zero in probability. Indeed, integration by parts formula enables us to
write

n2/5
∫t+b
t−b

kb(t− u)d(Λ̂n −Λn)(u)

= n2/5
∫t+b
t−b

{
Λ̂n(u) −Λn(u)

} 1
b2
k ′
(
t− u

b

)
du

=
n2/5

b

∫1
−1

{
Λ̂n(t− by) −Λn(x− by)

}
k ′(y)dy,

and then we use supt∈[0,M] |Λ̂n(t) − Λn(t)| = Op(n
−2/3(logn)2/3) (see

Durot and Lopuhaä, 2014, Corollary 3.4) together with the boundedness of
k ′.

What remains is to prove that

n2/5
∫
kb(t− u)d(Λn −Λ)(u)

d−→ N(0,σ2),

where σ2 is defined in (2.2.4). Let us start by writing

n2/5
∫t+b
t−b

kb(t− u)d(Λn −Λ)(u) =
1√
bn1/5

∫1
−1
k(y)dŴn(y),

where, for each y ∈ [−1, 1], we define

Ŵn(y) =

√
n

b
{Λn(t− by) −Λn(t) −Λ(t− by) +Λ(t)}

=

√
n

b

∫
δ

Φn(u)

{
1[0,t−by](u) − 1[0,t](u)

}
dPn(u, δ)

−

√
n

b

∫
δ

Φ(u)

{
1[0,t−by](u) − 1[0,t](u)

}
dP(u, δ)

= b−1/2
∫

δ

Φ(u)

{
1[0,t−by](u) − 1[0,t](u)

}
d
√
n(Pn − P)(u, δ)

+

√
n

b

∫
δ
{
1[0,t−by](u) − 1[0,t](u)

}{ 1

Φn(u)
−

1

Φ(u)

}
dPn(u, δ).

(2.2.7)
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Here we took advantage of the representations in (2.1.6). The last term in
the right hand side of (2.2.7) is bounded in absolute value by√
n

b

1

Φn(M)Φ(M)

∫
δ
∣∣∣1[0,t−by](u) −1[0,t](u)

∣∣∣ |Φ(u) −Φn(u)| dPn(u, δ) = oP(1).

Indeed, by using (2.1.5), we obtain that 1/Φn(M) = OP(1) and then it
suffices to prove that

b−1/2
∫
δ
∣∣∣1[0,t−by](u) − 1[0,t](u)

∣∣∣ dPn(u, δ) = oP(1).

To do so, we write the left hand side as

b−1/2
∫
δ
∣∣∣1[0,t−by](u) − 1[0,t](u)

∣∣∣ dP(u, δ)

+ b−1/2
∫
δ
∣∣∣1[0,t−by](u) − 1[0,t](u)

∣∣∣ d(Pn − P)(u, δ)

= b−1/2
∣∣Huc(t− by) −Huc(t)∣∣+Op(b−1/2n−1/2) = oP(1).

(2.2.8)

Here we have used that Huc is continuously differentiable and that the class
of indicators of intervals forms a VC-class, and is therefore Donsker (see van
der Vaart and Wellner, 1996, Theorem 2.6.7 and Theorem 2.5.2).

The last step consists in showing that

1√
b

∫
δ

Φ(u)

{
1[0,t−by](u) − 1[0,t](u)

}
d
√
n(Pn − P)(u, δ)

d−→

√
λ(t)

1−H(t)
W(y),

whereW is a two sided Brownian motion. This follows from Theorem 2.11.23

in van der Vaart and Wellner, 1996. Indeed, we can consider the functions

fn,y(u, δ) = b−1/2
δ

Φ(u)

{
1[0,t−by](u) − 1[0,t](u)

}
, y ∈ [−1, 1].

with envelopes Fn(u, δ) = b−1/2Φ(M)−1δ1[t−b,t+b](u). It can be easily
checked that

‖Fn‖2L2(P) =
1

bΦ2(M)

∫t+b
t−b

f(u)(1−G(u))du = O(1),

and that for all η > 0,

1

bΦ2(M)

∫
{u:b−1/2Φ(M)−11[t−b,t+b](u)>η

√
n}
f(u)(1−G(u))du→ 0.



36 smooth isotonic estimation under right censoring

Moreover, for every sequence δn ↓ 0, we have

1

bΦ2(M)
sup

|s−r|<δn

∫t−b(s∧r)
t−b(s∨r)

f(u)(1−G(u))du→ 0.

Since fn,y are sums and products of bounded monotone functions, the
bracketing number is bounded (see van der Vaart and Wellner, 1996, Theo-
rem 2.7.5) by

logN[ ]

(
ε‖Fn‖L2(P),Fn, ‖ · ‖L2(P)

)
. log

(
1/ε ‖Fn‖L2(P)

)
.

Hence, since ‖Fn‖L2(P) is bounded we obtain∫δn
0

√
logN[ ]

(
ε‖Fn‖L2(P),Fn, ‖ · ‖L2(P)

)
dε . δn +

∫δn
0

√
log(1/ε)dε→ 0.

Finally, as in (2.2.8), for any s ∈ [−1, 1],

Pfn,s = b
−1/2 {Huc(t− bs) −H(t)}→ 0.

Furthermore, for 0 6 s 6 r 6 1, we have

Pfn,sfn,r = b
−1

∫t
t−bs

f(u)(1−G(u))

Φ2(u)
du = b−1

∫t
t−bs

λ(u)

1−H(u)
du

→ λ(t)

1−H(t)
s.

Similarly, for −1 6 r 6 s 6 0, Pfn,sfn,r → −sλ(t)/(1 − H(t)), whereas
Pfn,sfn,r = 0, for sr < 0. It follows that

Pfn,sfn,r − Pfn,sPfn,r →


λ(t)

1−H(t)
(|s| ∧ |r|) , if sr > 0;

0 , if sr < 0.
(2.2.9)

Consequently, according to Theorem 2.11.23 in van der Vaart and Wellner,
1996, the sequence of stochastic processes

√
n(Pn−P)fn,y converges in dis-

tribution to a tight Gaussian process G with mean zero and covariance given
on the right hand side of (2.2.9). Note that this is the covariance function of√
λ(t)/[1−H(t)]W, where W is a two sided Brownian motion. We conclude

that

n2/5
∫t+b
t−b

kb(t− u)d(Λn −Λ)(u)

=
1√
bn1/5

∫1
−1
k(y)dŴn(y)

d→
(

λ(t)

c(1−H(t))

)1/2 ∫1
−1
k(y)dW(y)

d
= N

(
0,

λ(t)

c (1−H(t))

∫1
−1
k2(y)dy

)
.
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This proves the first part of the theorem.

The optimal c is then obtained by minimizing the asymptotic mean squared
error

AMSE(λ̃SG, c) =
1

4
c4 λ ′′(t)2

(∫
u2 k(u)du

)2
+

λ(t)

c (1−H(t))

∫
k2(u)du

with respect to c.

This result is in line with Theorem 11.8 in Groeneboom and Jongbloed,
2014 on the asymptotic distribution of the SMLE under the same model,
which highlights the fact that even after applying a smoothing technique the
MLE and the Grenander-type estimator remain asymptotically equivalent.

Standard kernel density estimators lead to inconsistency problems at the
boundary. In order to prevent those, here we consider a boundary corrected
kernel. To be precise, for t ∈ [0, τ∗], we define the smoothed Grenander-type
estimator λ̂SGn by

λ̂SGn (t) =

∫ (t+b)∧τ∗
(t−b)∨0

k
(t)
b (t− u) λ̃n(u)du =

∫ (t+b)∧τ∗
(t−b)∨0

k
(t)
b (t− u)dΛ̂n(u),

(2.2.10)
with k(t)(u) as in (1.2.11). In this case, we obtain a stronger uniform consis-
tency result which is stated in the next theorem.

Theorem 2.2.3. Let λ̂SGn be defined by (2.2.10) and suppose that λ is nondecreasing
and uniformly continuous. Assume that k satisfies (1.2.1) and is differentiable with
a uniformly bounded derivative and that bnα → c ∈ (0,∞). If 0 < α < 1/2, then

sup
t∈[0,τ∗]

∣∣∣λ̂SGn (t) − λ(t)
∣∣∣→ 0

in probability.

Proof. Write

λ̂SGn (t) − λ(t) =
(
λ̂SGn (t) − λ(n)(t)

)
+
(
λ(n)(t) − λ(t)

)
,

where

λ(n)(t) =

∫ (t+b)∧τ∗
(t−b)∨0

k
(t)
b (t− u) λ(u)du.
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We have to distinguish between three cases. First, we consider the case t ∈
[0,b]. By means of (1.2.13) and the fact that λ is uniformly continuous, a
change of variable yields

sup
t∈[0,b]

|λ(n)(t) − λ(t)| 6 sup
t∈[0,b]

∫t/b
−1

k(t)(y)
∣∣λ(t− by) − λ(t)∣∣dy→ 0.

(2.2.11)
On the other hand, integration by parts and a change of variable give

λ̂SGn (t) − λ(n)(t) =

∫t+b
0

k
(t)
b (t− u)d

(
Λ̂n −Λ

)
(u)

= −

∫t+b
0

∂

∂u
k
(t)
b (t− u)

(
Λ̂n(u) −Λ(u)

)
du

=
1

b

∫t/b
−1

∂

∂y
k
(t)
b (y)

(
Λ̂n(t− by) −Λ(t− by)

)
dy.

(2.2.12)

Consequently, we obtain

sup
t∈[0,b]

∣∣∣λ̂SGn (t) − λ(n)(t)
∣∣∣ . 1

b
sup

u∈[0,τ∗]

∣∣Λ̂n(u) −Λ(u)∣∣ = Op(n−1/2+α),

because of (2.1.2) and the boundedness of the coefficients φ, ψ and of k(u)
and k ′(u). Together with (2.2.11) and since 0 < α < 1/2, this proves that,

sup
t∈[0,b]

∣∣∣λ̂SGn (t) − λ(t)
∣∣∣ = oP(1).

Similarly we also find

sup
t∈[b,τ∗−b]

∣∣∣λ̂SGn (t) − λ(t)
∣∣∣ = oP(1).

When t ∈ (b, τ∗ − b), by a change of variable and uniform continuity of λ,
it follows that

sup
t∈(b,τ∗−b)

∣∣∣λ(n)(t) − λ(t)∣∣∣ 6 ∫1
−1
k(y)|λ(t− by) − λ(t)|dy→ 0. (2.2.13)

Furthermore,

λ̂SGn (t) =

∫t+b
t−b

kb(t− u) λ̃n(u)du,

so that, arguing as in (2.2.12), we find that

sup
t∈(b,τ∗−b)

∣∣∣λ̂SGn (t) − λ(n)(t)
∣∣∣ = Op(n−1/2+α),
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Figure 3: The kernel smoothed versions (standard-dashed line and boundary
corrected-solid line) of the hazard rate (dotted line).

which, together with (2.2.13), proves that

sup
t∈(b,τ∗−b)

∣∣∣λ̂SGn (t) − λ(t)
∣∣∣ = oP(1).

This proves the theorem.

Note that for the unconstrained smoothed Grenander-type estimator on
[0, τH], even with the boundary kernels, one can not avoid inconsistency
problems at the end point of the support, i.e., uniform consistency would
hold only on intervals [0,M] for M < τH. Although a bit surprising, this
is to be expected because we can only control the distance between the
Nelson-Aalen estimator and the cumulative hazard on intervals that stay
away from the right boundary (see (2.1.2)). Figure 3 illustrates that boundary
corrections improve the performance of the smooth estimator constructed
with the standard kernel.

2.3 smoothed estimation of a monotone density

This section is devoted to the smoothed Grenander-type estimator f̃SGn of an
increasing density f. Let k be a kernel function satisfying (2.2.1). For a fixed
t ∈ [0, τ∗], f̃SGn is defined by

f̃SGn (t) =

∫ (t+b)∧τ∗
(t−b)∨0

kb(t− u) f̃n(u)du =

∫
kb(t− u)dF̂n(u). (2.3.1)
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Figure 4: The kernel smoothed versions (standard-dashed line and boundary
corrected-solid line) of the density function (dotted line).

We also consider the boundary corrected version of the smoothed Grenander-
type estimator, defined by

f̂SGn (t) =

∫ (t+b)∧τ∗
(t−b)∨0

k
(t)
b (t− u) f̃n(u)du =

∫ (t+b)∧τ∗
(t−b)∨0

k
(t)
b (t− u)dF̂n(u),

(2.3.2)
with k(t)(u) as in (1.2.11). The following results can be proved in exactly the
same way as Theorem 2.2.1 and Theorem 2.2.3.

Theorem 2.3.1. Let k be a kernel function satisfying (2.2.1) and let f̃SG be the
smoothed Grenander-type estimator defined in (2.3.1). Suppose that the density
function f is nondecreasing and continuous. Then for each 0 < ε < τ∗, it holds

sup
t∈[ε,τ∗−ε]

|f̃SGn (t) − f(t)|→ 0

with probability one.

Theorem 2.3.2. Let f̂SGn be defined by (2.2.10) and suppose that f is nondecreasing
and uniformly continuous. Assume that k satisfies (2.2.1) and is differentiable with
uniformly bounded derivatives and that bnα → c ∈ (0,∞). If 0 < α < 1/2, then

sup
t∈[0,τ∗]

∣∣∣f̂SGn (t) − f(t)
∣∣∣→ 0

in probability.

Figure 4 shows the smooth isotonic estimators of an increasing density
up to the 90% quantile of H for a sample of size n = 500. We choose

f(x) = (e5 − 1)−1ex1[0,5](x) (2.3.3)
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and
g(x) = (e5/2 − 1)−1ex/21[0,5](x) (2.3.4)

for the censoring times. The bandwidth used is b = copt n
−1/5, where

copt = 4 is the asymptotically MSE-optimal constant (see (2.3.10)) corre-
sponding to t0 = 2.5.

In order to derive the asymptotic normality of the smoothed Grenander-
type estimator f̃SGn we first provide a Kiefer-Wolfowitz type of result for the
Kaplan-Meier estimator.

Lemma 2.3.3. Let f be a nondecreasing and continuously differentiable density
such that f and f ′ are strictly positive. Then we have

sup
t∈[0,τ∗]

|F̂n(t) − Fn(t)| = OP

(
logn
n

)2/3
,

where Fn is the Kaplan-Meier estimator and F̂n is the greatest convex minorant of
Fn on [0, τ∗].

Proof. We consider f on the interval [0, τ∗] and apply Theorem 2.2 in Durot
and Lopuhaä, 2014. The density f satisfies condition (A1) of this theorem
with [a,b] = [0, τ∗]. Condition (2) of Theorem 2.2 in Durot and Lopuhaä,
2014 is provided by the strong approximation (2.1.9), with L defined in (2.1.10),
γn = O(n−1 logn)2/3, and

B(t) =
(
1− F(L−1(t))

)
W(t), t ∈ [L(0),L(τ∗)]

whereW is a Brownian motion. It remains to show that B satisfies conditions
(A2)-(A3) of Theorem 2.2 in Durot and Lopuhaä, 2014 with τ = 1. In order
to check these conditions for the process B, let x ∈ [L(0),L(τ∗)] = [0,L(τ∗)],
u ∈ (0, 1] and v > 0. Then

P

(
sup

|x−y|6u
|B(x) −B(y)| > v

)

6 P

(
sup

|x−y|6u,y∈[0,L(τ∗)]
|B(x) −B(y)| > v

)

6 2P

(
sup

|x−y|6u
|W(x) −W(y)| >

v

3

)

+ P

(
sup

|x−y|6u,y∈[0,L(τ∗)]
|F(L−1(x)) − F(L−1(y))| |W(x)| >

v

3

)
.

(2.3.5)
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Note that from the proof of Corollary 3.1 in Durot and Lopuhaä, 2014 it
follows that W satisfies condition (A2) in Durot and Lopuhaä, 2014. This
means that there exist K1,K2 > 0, such that the first probability on the right
hand side of (2.3.5) is bounded by K1 exp(−K2v2u−1). Furthermore, since
u ∈ (0, 1] and

|F(L−1(x)) − F(L−1(y))| 6
supu∈[0,τ∗] f(u)

infu∈[0,τ∗] L
′(u)

|x− y| 6
supu∈[0,τ∗] f(u)

infu∈[0,τ∗] λ(u)
|x− y|,

the second probability on the right hand side of (2.3.5) is bounded by

P

(
|W(x)| >

v

K3
√
u

)
6 P

(
sup

t∈[0,L(M)]

|W(t)| >
v

K3
√
u

)
,

for some K3 > 0. Hence, by the maximal inequality for Brownian motion,
we conclude that there exist K ′1,K ′2 > 0 such that

P

(
sup

|x−y|6u
|B(x) −B(y)| > v

)
6 K ′1 exp

(
−K ′2v

2u−1
)

which proves condition (A2) in Durot and Lopuhaä, 2014.

Let us now consider (A3). For all x ∈ [0,L(τ∗)], u ∈ (0, 1], and v > 0, we
obtain

P

(
sup
u6z6x

{
B(x− z) −B(x) − vz2

}
> 0

)

6 P

(
sup
u6z6x

{
W(x− z) −W(x) −

vz2

3

}
> 0

)

+ P

(
sup
u6z6x

{
F(L−1(x− z))[W(x) −W(x− z)] −

vz2

3

}
> 0

)

+ P

(
sup
u6z6x

{(
F(L−1(x)) − F(L−1(x− z))

)
W(x) −

vz2

3

}
> 0

)
.

(2.3.6)

Again, from the proof of Corollary 3.1 in Durot and Lopuhaä, 2014 it follows
that W satisfies condition (A3) in Durot and Lopuhaä, 2014, which means
that there exist K1,K2 > 0, such that the first probability on the right hand
side of (2.3.6) is bounded by K1 exp(−K2v2u3). We establish the same bound
for the remaining two probabilities. By the time reversal of the Brownian
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motion, the process W ′(z) = W(x) −W(x− z) is also a Brownian motion
on the interval [u, x]. Then, using the change of variable u/z = t and the
fact that W̃(t) = tu−1/2W ′(u/t), for t > 0, is again a Brownian motion, the
second probability on the right hand side of (2.3.6) is bounded by

P

(
sup
t∈(0,1]

t√
u

∣∣∣W ′ (u
t

)∣∣∣ > vu3/2

3t

)
= P

(
sup
t∈[0,1]

|W̃(t)| >
vu3/2

3

)
. (2.3.7)

Finally,

sup
u6z6x

∣∣∣∣F(L−1(x)) − F(L−1(x− z))z

∣∣∣∣ 6 supu∈[0,τ∗] f(u)

infu∈[0,τ∗] λ(u)
,

so that the third probability on the right hand side of (2.3.6) is bounded by

P

(
sup
u6z6x

∣∣∣∣F(L−1(x)) − F(L−1(x− z))z

∣∣∣∣ |W(x)| >
vu

3

)

6 P

(
|W(x)| >

vu3/2

K3

)
6 P

(
sup

t∈[0,L(τ∗)]
|W(t)| >

vu3/2

K3

)
,

(2.3.8)

for some K3 > 0. By applying the maximal inequality for Brownian motion
to the right hand sides of (2.3.7) and (2.3.8), we conclude that there exist
K ′1,K ′2 > 0, such that

P

(
sup
u6z6x

{B(x− z) −B(x) − vz2} > 0

)
6 K ′1 exp(−K ′2v

2u3),

which proves condition (A3) in Durot and Lopuhaä, 2014.

Theorem 2.3.4. Let f be a nondecreasing and twice continuously differentiable
density such that f and f ′ are strictly positive. Let k satisfy (1.2.1) and suppose that
it is differentiable with a uniformly bounded derivative. If bn1/5 → c ∈ (0,∞),
then for each t ∈ (0, τ∗), it holds

n2/5
(
f̃SGn (t) − f(t)

) d−→ N(µ,σ2),

where

µ =
1

2
c2 f ′′(t)

∫
u2 k(u)du and σ2 =

f(t)

c (1−G(t))

∫
k2(u)du. (2.3.9)

For a fixed t ∈ (0, τ∗), the asymptotically MSE-optimal bandwidth b for λ̃SG is
given by copt(x)n−1/5, where

copt =

{
f(t)

∫
k2(u)du

}1/5{
(1−G(t))f ′′(t)2

(∫
u2 k(u)du

)2}−1/5

.

(2.3.10)
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Proof. Fix t ∈ (0, τ∗). Then, for sufficiently large n, we have 0 < t − b <

t+ b 6 τ∗. Following the proof of 2.2.2, we write

f̃SGn (t) =

∫
kb(t− u)dF(u) +

∫
kb(t− u)d(Fn − F)(u)

+

∫
kb(t− u)d(F̂n − Fn)(u).

(2.3.11)

Again the first (deterministic) term on the right hand side of (2.3.11) gives
us the asymptotic bias:

n2/5

{∫t+b
t−b

kb(t− u)f(u)du− f(t)

}
→ 1

2
c2f ′′(t)

∫1
−1
y2k(y)dy,

and by the Kiefer-Wolfowitz type of result in Lemma 2.3.3, the last term on
the right hand side of (2.3.11) converges to 0 in probability. What remains is
to prove that

n2/5
∫
kb(t− u)d(Fn − F)(u)

d−→ N(0,σ2),

where σ2 is defined in (2.3.9). We write

n2/5
∫t+b
t−b

kb(t− u)d(Fn − F)(u) =
1√

bn1/5

∫1
−1
k(y)dŴn(y),

where, for each y ∈ [−1, 1], we define

Ŵn(y) =

√
n

b

{
Fn(t− by) − Fn(t) − F(t− by) + F(t)

}
=

√
n

b

{
Fn(t− by) − F(t− by) −n

−1/2(1− F(t− by))W ◦ L(t− by)
}

−

√
n

b

{
Fn(t) − F(t) −n

−1/2(1− F(t))W ◦ L(t)
}

+
1√
b

(
1− F(t)

){
W ◦ L(t− by) −W ◦ L(t)

}
+

1√
b

(
F(t) − F(t− by)

)
W ◦ L(t− by).

(2.3.12)

Using the strong approximation (2.1.9), we obtain

P

(
sup

u∈[0,τ∗]

√
n

b

∣∣∣Fn(u) − F(u) −n−1/2(1− F(u))W ◦ L(u)
∣∣∣ > ε)

6 K1 exp
{
−K2(ε

√
nb−K3 logn)

}
→ 0,
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and it then follows that the first two terms on the right hand side of (2.3.12)
converge to zero in probability uniformly in y. For the last term, we get

P

(
sup

y∈[−1,1]

∣∣∣∣ 1√b
(
F(t) − F(t− by)

)
W ◦ L(t− by)

∣∣∣∣ > ε
)

6 P

(
√
b sup
u∈[0,τ∗]

f(u) sup
u∈[0,‖L‖∞]

|W(u)| > ε

)
6 K1 exp

(
−
K2ε

2

b

)
→ 0.

For the third term on the right hand side of (2.3.12), note that

y 7→ b−1/2(W ◦ L(x− by) −W ◦ L(x)), y ∈ [−1, 1],

has the same distribution as the process

y 7→ W̃

(
L(t) − L(t− by)

b

)
, for y ∈ [−1, 1], (2.3.13)

where W̃ is a two-sided Brownian motion. By uniform continuity of the
two-sided Brownian motion on compact intervals, the sequence of stochastic
processes in (2.3.13) converges to the process {W̃ (L ′(t)y) : y ∈ [−1, 1]}:

sup
y∈[−1,1]

∣∣∣∣W̃ (
L(t) − L(t− by)

b

)
− W̃

(
L ′(t)y

)∣∣∣∣ P−→ 0.

As a result

1√
bn1/5

∫1
−1
k(y)dŴn(y)

d−→

√
f(t)

c(1−G(t))

∫1
−1
k(y)dW̃(y)

∼ N

(
0,

f(t)

c(1−G(t))

∫1
−1
k2(y)dy

)
.

The optimal c is then obtained by minimizing the asymptotic mean squared
error

AMSE(f̃SG, c) =
1

4
c4f ′′(t)2

(∫
u2 k(u)du

)2
+

f(t)

c(1−G(t))

∫
k2(u)du,

with respect to c.

2.4 pointwise confidence intervals

In this section we construct pointwise confidence intervals for the hazard
rate and the density based on the asymptotic distributions derived in The-
orem 2.2.2 and Theorem 2.3.4 and compare them to confidence intervals
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constructed using Grenander-type estimators without smoothing. Accord-
ing to Theorem 2.1 and Theorem 2.2 in Huang and Wellner, 1995, for a fixed
t0 ∈ (0, τ∗),

n1/3
∣∣∣∣ 1−G(t0)4f(t0)f ′(t0)

∣∣∣∣1/3 (f̃n(t0) − f(t0)) d−→ Z,

and

n1/3
∣∣∣∣ 1−H(t0)4λ(t0)λ ′(t0)

∣∣∣∣1/3 (λ̃n(t0) − λ(t0)) d−→ Z,

where W is a two-sided Brownian motion starting from zero and Z =

argmint∈R

{
W(t) + t2

}
. This yields 100(1 − α)%-confidence intervals for

f(t0) and λ(t0) of the following form

C1n,α = f̃n(t0)±n−1/3ĉn,1(t0)q(Z, 1−α/2),

and
C2n,α = λ̃n(t0)±n−1/3ĉn,2(t0)q(Z, 1−α/2),

where q(Z, 1−α/2) is the (1−α/2) quantile of the distribution Z and

ĉn,1(t0) =

∣∣∣∣4f̃n(t0)f̃ ′n(t0)1−Gn(t0)

∣∣∣∣1/3 , ĉn,2(t0) =

∣∣∣∣4λ̃n(t0)λ̃ ′n(t0)1−Hn(t0)

∣∣∣∣1/3 .

Here, Hn is the empirical distribution function of T and in order to avoid
the denominator taking the value zero, instead of the natural estimator of
G, we consider a slightly different version as in Marron and Padgett, 1987:

Gn(t) =



0 if 0 6 t < T(1),

1−

k−1∏
i=1

(
n− i+ 1

n− i+ 2

)1−∆i
if T(k−1) 6 t < T(k), k = 2, . . . ,n,

1−

n∏
i=1

(
n− i+ 1

n− i+ 2

)1−∆i
if t > T(n).

(2.4.1)
Furthermore, as an estimate for f̃ ′n(t0) we choose

f̃n(τm) − f̃n(τm−1)

τm − τm−1
,

where τm−1 and τm are two succeeding points of jump of f̃n such that
t0 ∈ (τm−1, τm], and λ̃ ′n(t0) is estimated similarly. The quantiles of the
distribution Z have been computed in Groeneboom and Wellner, 2001 and
we will use q(Z, 0.975) = 0.998181.
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The pointwise confidence intervals based on the smoothed Grenander-
type estimators are constructed from Theorem 2.2.2 and Theorem 2.3.4. We
find

C̃1n,α = f̃SGn (t0)±n−2/5
(
σ̂n,1(t0)q1−α/2 + µ̂n,1(t0)

)
,

and
C̃2n,α = λ̃SGn (t0)±n−2/5(σ̂n,2(t0)q1−α/2 + µ̂n,2(t0)),

where q1−α/2 is the (1−α/2) quantile of the standard normal distribution.
The estimators σ̂n,1(t0) and µ̂n,1(t0) are obtained by plugging f̃SGn and its
second derivative for f and f ′′, respectively, and Gn and copt(t0) for G and
c, respectively, in (2.3.9), and similarly σ̂n,2(t0) and µ̂n,2(t0) are obtained
from (2.2.4). Estimating the bias seems to be a hard problem because it de-
pends on the second derivative of the function of interest. As discussed, for
example in Hall, 1992, one can estimate the bias by using a bandwidth of
a different order for estimating the second derivative or one can use under-
smoothing (in that case the bias is zero and we do not need to estimate the
second derivative). We tried both methods and it seems that undersmooth-
ing performs better, which is in line with other results available in the litera-
ture (see for instance, Hall, 1992; Groeneboom and Jongbloed, 2015; Cheng,
Hall, and Tu, 2006).

When estimating the hazard rate, we choose a Weibull distribution with
shape parameter 3 and scale parameter 1 for the event times and the uni-
form distribution on (0, 1.3) for the censoring times. Confidence intervals are
calculated at the point t0 = 0.5 with τ∗ = H−1(0.9), using 1000 sets of data
and the bandwidth in the case of undersmoothing is b = copt(t0)n

−1/4,
where copt(t0) = 1.2. In case of bias estimation we use b = copt(t0)n

−5/17

to estimate the hazard and b1 = copt(t0)n
−1/17 to estimate its second

derivative (as suggested in Hall, 1992). Table 1 shows the performance, for
various sample sizes, of the confidence intervals based on the asymptotic
distribution (AD) of the Grenander-type estimator and of the smoothed
Grenander estimator (for both undersmoothing and bias estimation). The
poor performance of the Grenander-type estimator seems to be related to
the crude estimate of the derivative of the hazard with the slope of the cor-
respondent segment. On the other hand, it is obvious that smoothing leads
to significantly better results in terms of both average length and coverage
probabilities. As expected, when using undersmoothing, as the sample size
increases we get shorter confidence intervals and coverage probabilities that
are closer to the nominal level of 95%. By estimating the bias, we obtain cov-
erage probabilities that are higher than 95%, because the confidence inter-
vals are bigger compared to the average length when using undersmoothing.
Another way to compare the performance of the different methods is to take
a fixed sample size n = 500 and different points of the support of the hazard
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Grenander SG-undersmoothing SG-bias estimation

n AL CP AL CP AL CP

100 0.930 0.840 0.648 0.912 0.689 0.955

500 0.560 0.848 0.366 0.948 0.383 0.975

1000 0.447 0.847 0.283 0.954 0.295 0.977

5000 0.255 0.841 0.155 0.953 0.157 0.978

Table 1: The average length (AL) and the coverage probabilities (CP) for 95% point-
wise confidence intervals of the hazard rate at the point t0 = 0.5.

function. Figure 5 shows that confidence intervals based on undersmooth-
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Figure 5: Left panel: Actual coverage of 95% confidence intervals for the hazard rate.
Dashed line-nominal level; dotdashed line-Grenander-type; solid line-SG
undersmoothing; dotted line-SG bias estimation. Right panel: 95% confi-
dence intervals for the hazard rate using undersmoothing.

ing behave well also at the boundaries in terms of coverage probabilities,
but the length increases as we move to the left end point of the support. In
order to maintain good visibility of the performance of the smooth estima-
tors, we left out the poor performance of the Grenander estimator at point
x = 0.1.

It is also of interest to compare our confidence intervals with other com-
peting methods, in particular with those obtained via the inversion of the
likelihood ratio statistic proposed in Banerjee, 2008. We consider their set-
ting of simulation A.2 (heavy censoring case), where the event times come
from a Weibull distribution with shape parameter 2 and scale

√
2 and the

censoring times are uniform in (0, 1.5). Again, we recorded the average
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length of nominal 95% confidence intervals for the hazard rate at the point
t0 =

√
2 log 2 obtained using undersmoothing and their coverage probabil-

ities. The results for various sample sizes and choices of the constant c in
the definition of the bandwidth are displayed in Table 2. These observations
show that the performance of the confidence intervals strongly depends on
the choice of c. Most of the time the confidence intervals are shorter com-
pared to those using likelihood ratio and for c = 1 or c = 1.2 our method
produces also better coverage probabilities. On the other hand, if c is too
small, e.g. c = 0.8, the confidence intervals become quite conservative (or
anticonservative for large c). Of course the likelihood ratio method has the
advantage of not requiring estimation of nuisance parameters or choosing
the bandwidth but our results confirm that with the right choice of the
bandwidth smooth estimation performs much better. The importance of the
choice of the smoothing parameter is well-known and different methods
has been proposed in the literature to find the optimal one (see for exam-
ple Cheng, Hall, and Tu, 2006 and González-Manteiga, Cao, and Marron,
1996). However, it is beyond the scope of this paper to investigate methods
of bandwidth selection.

LR c = 0.8 c = 1 c = 1.2

n AL CP AL CP AL CP AL CP

50 3.110 0.911 2.951 0.962 2.700 0.946 2.463 0.925

100 2.408 0.917 2.213 0.964 1.991 0.951 1.820 0.935

200 1.684 0.929 1.680 0.972 1.512 0.947 1.392 0.930

500 1.073 0.932 1.202 0.970 1.070 0.952 0.981 0.927

1000 0.782 0.936 0.935 0.975 0.836 0.958 0.764 0.936

1500 0.653 0.941 0.809 0.982 0.720 0.965 0.663 0.944

Table 2: The average length (AL) and the coverage probabilities (CP) for 95% point-
wise confidence intervals of the hazard rate at t0 =

√
2 log 2 using likelihood

ratio (LR) and undersmoothing with various choices of c .

Finally, we consider estimation of the density. We simulate the event times
and the censoring times from the density functions in (2.3.3) and (2.3.4).
Confidence intervals are calculated at the point t0 = 2.5 with τ∗ = H−1(0.9),
using 1000 sets of data and the bandwidth in the case of undersmoothing
is b = copt(2.5)n−1/4, where copt(2.5) = 4. When estimating the bias we
use b = copt(2.5)n−5/17 to estimate the hazard and b1 = copt(2.5)n−1/17

to estimate its second derivative (as suggested in Hall, 1992). Table 3 shows
the performance, for various sample sizes, of the confidence intervals based
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on the asymptotic distribution (AD) of the Grenander-type estimator and
of the smoothed Grenander estimator (for both undersmoothing and bias
estimation).

Grenander SG-undersmoothing SG-bias estimation

n AL CP AL CP AL CP

50 0.157 0.822 0.129 0.948 0.136 0.929

100 0.127 0.856 0.101 0.954 0.109 0.959

500 0.073 0.859 0.056 0.971 0.064 0.979

1000 0.058 0.864 0.043 0.979 0.050 0.976

5000 0.032 0.845 0.023 0.965 0.029 0.965

Table 3: The average length (AL) and the coverage probabilities (CP) for 95% point-
wise confidence intervals of the density function at the point t0 = 2.5.

Confidence intervals based on the Grenander-type estimator have a poor
coverage, while, by considering the smoothed version, we usually obtain
high coverage probabilities. Again, undersmoothing behaves slightly better.
The performance of these three methods for a fixed sample size n = 500

and different points of the support is illustrated in Figure 6.
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Figure 6: Left panel: Actual coverage of 95% confidence intervals for the density.
Dashed line-nominal level; dotdashed line-Grenander-type; solid line-SG
undersmoothing; dotted line-SG bias estimation. Right panel: 95% confi-
dence intervals for the density using undersmoothing.



3
S M O O T H I S O T O N I C E S T I M AT I O N I N T H E C O X M O D E L

In this chapter we consider smooth estimation under monotonicity con-
straints of the baseline hazard rate in the Cox regression model. The results
presented are based on:

Lopuhaä, H. P. and Musta E. (2018) "Smoothed isotonic estimators of a
monotone baseline hazard in the Cox model". Scandinavian Journal of Statis-
tics 45.3, pp. 753-791.

Lopuhaä, H. P. and Musta E. (2017) "Isotonized smooth estimators of a
monotone baseline hazard in the Cox model". Journal of Statistical Planning
and Inference 191, pp. 43-67.

Nonparametric estimation under monotonicity constraints of the baseline
hazard function in the Cox regression model (see Example 1.1.2) has been
studied in Chung and Chang, 1994 and Lopuhaä and Nane, 2013 while
smooth isotonic estimators were introduced in Nane, 2013. By combining
an isotonization step with a smoothing step and alternating the order of
smoothing and isotonization, four different estimators can be constructed.

Two of them are kernel smoothed versions of the maximum likelihood
estimator and the Grenander-type estimator from Lopuhaä and Nane, 2013.
The third estimator is a maximum smoothed likelihood estimator obtained
by first smoothing the loglikelihood of the Cox model and then finding
the maximizer of the smoothed likelihood among all decreasing baseline
hazards. By first smoothing the loglikelihood, one avoids the discrete be-
havior of the traditional MLE. This approach is similar to the methods
in Eggermont and LaRiccia, 2000 for monotone densities and in Groene-
boom, Jongbloed, and Witte, 2010 for the current status model. The forth
estimator we consider is isotonized kernel estimator. It is a Grenander-type
estimator based on the smooth Breslow estimator for the cumulative haz-
ard. Grenander-type estimators for a nondecreasing curve are obtained as
the left-derivative of the greatest convex minorant of a naive nonparamet-
ric estimator for the integrated curve of interest, see Grenander, 1956 and
also Durot, 2007 among others. For our setup, the smoothed Breslow estima-
tor serves as an estimator for the cumulative baseline hazard. By smoothing

51
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the Breslow estimator, one avoids the discrete behavior of the left-derivative
of its least concave majorant. This approach is similar to the methods consid-
ered in Cheng and Lin, 1981, Wright, 1982, Friedman and Tibshirani, 1984,
and van der Vaart and van der Laan, 2003, and to one of the two methods
studied in Mammen, 1991.

We establish asymptotic normality at rate nm/(2m+1), where m denotes
the level of smoothness of the baseline hazard, for the four estimators. The
isotonized kernel estimator (GS) is shown to be asymptotically equivalent
to the smoothed Grenander-type estimator (SG) and the smoothed maxi-
mum likelihood estimator (SMLE). In particular, this means that the order of
smoothing and isotonization is irrelevant, which is in line with the findings
in Mammen, 1991. On the other hand, the maximum smoothed likelihood
estimator (MSLE) exhibits the same limit variance as the previous ones but
has a different asymptotic bias, a phenomenon that was also encountered
in Groeneboom, Jongbloed, and Witte, 2010. As a result, from the theoret-
ical point of view, there is no reason to prefer one estimator with respect
to the other (apart from the fact that the kernel smoothed estimators are
differentiable while the other two are usually only continuous).

Deriving asymptotic normality of the two kernel smoothed isotonic esti-
mators is particularly challenging for the Cox model, because the existing
approaches to these type of problems do not apply to the Cox model. The
smoothed Grenander-type estimator in the ordinary right censoring model
without covariates was investigated in Chapter 2. Following the approach
in Groeneboom and Jongbloed, 2013, asymptotic normality was established
by using a Kiefer-Wolfowitz type of result, recently derived in Durot and
Lopuhaä, 2014. Unfortunately, the lack of a Kiefer-Wolfowitz type of result
for the Breslow estimator provides a strong limitation towards extending the
previous approach to the more general setting of the Cox model. Recently,
Groeneboom and Jongbloed, 2014 developed a different method for find-
ing the limit distribution of smoothed isotonic estimators, which is mainly
based on uniform L2-bounds on the distance between the non-smoothed
isotonic estimator and the true function, and also uses that the maximal dis-
tance between succeeding points of jump of the isotonic estimator is of the
order Op(n−1/3 logn). A sketch of proof in the right censoring model is
given in Section 11.6 of Groeneboom and Jongbloed, 2014. However, these
two key ingredients heavily depend on having exponential bounds for tail
probabilities of the so-called inverse process, or rely on a strong embedding
for the relevant sum process. Exponential bounds for tail probabilities of the
inverse process are difficult to obtain in the Cox model and a strong embed-
ding for the Breslow estimator is not available. Nevertheless, inspired by
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the approach in Groeneboom and Jongbloed, 2014, we obtain polynomial
bounds, which are suboptimal but sufficient for our purposes.

The method used to establish asymptotic normality for isotonized smooth
estimators is quite different from the previous one because the isotonization
step was performed after a smoothing step. Here we rely on techniques de-
veloped in Groeneboom, Jongbloed, and Witte, 2010 and the key idea is
that the isotonized smooth estimator can be represented as a least squares
projection of a naive smooth estimator. The latter estimator is not mono-
tone, but much simpler to analyze and it is shown to be asymptotically
equivalent to the smooth isotonic estimator. As a consequence, the resulting
estimators are asymptotically equivalent to corresponding naive estimators
that are combinations of ordinary kernel type estimators, to which standard
techniques apply.

Furthermore, we also investigated the finite sample performance of these
estimators by constructing pointwise confidence intervals. First, making use
of the theoretical results, we construct pointwise confidence intervals based
on the limit distribution with undersmoothing to avoid bias estimation. Re-
sults confirm the comparable behavior of the four methods and favor the use
of the smoothed isotonic estimators instead of the unsmoothed Grenander-
type estimator or the kernel estimator. However, coverage probabilities are
far from the nominal level and strongly depend on the choice of the band-
width and the accuracy in the estimation of the regression coefficient β0.
Since most of the well-known methods to overcome these problems do not
seem to work in our setting, a thorough investigation is still needed for
improving the performance of the confidence intervals. Instead, we choose
to exploit pointwise confidence intervals based on smooth bootstrap pro-
cedures as proposed by Burr, 1994 and Xu, Sen, and Ying, 2014. It turns
out, the simple percentile bootstrap works better than the studentized one.
Such a phenomenon was also observed in Burr, 1994. The four estimators
again exhibit comparable behavior but the smoothed maximum likelihood
estimator and the maximum smoothed likelihood estimator have slightly
better coverage probabilities. The performance is satisfactory, but still fur-
ther investigation is required for bandwidth selection and correcting the
asymptotic bias, which might improve the results.

The chapter is organized as follows. In Section 3.1 we specify the Cox
regression model and provide some background information that will be
used in the sequel. The kernel smoothed versions of the Grenander-type
estimator and of the maximum likelihood estimator of a non-decreasing
baseline hazard function are considered in Section 3.2.We only consider the
case of a non-decreasing baseline hazard. The same results can be obtained
similarly for a non-increasing hazard. The maximum smoothed likelihood
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estimator is considered in Section 3.3 and the isotonized kernel estimator
in Section 3.4. The results of a simulation study on pointwise confidence
intervals are reported in Section 3.5. In order to keep the exposition clear
and simple, most of the proofs are delayed until Section 3.6, and remaining
technicalities have been put in the Supplementary Material A.1.

3.1 the cox regression model

Let X1, . . . ,Xn be an i.i.d. sample representing the survival times of n in-
dividuals, which can be observed only on time intervals [0,Ci] for some
i.i.d. censoring times C1, . . . ,Cn. One observes i.i.d. triplets (T1,∆1,Z1), . . . ,
(Tn,∆n,Zn), where Ti = min(Xi,Ci) denotes the follow up time, ∆i =

1{Xi6Ci} is the censoring indicator and Zi ∈ Rp is a time independent
covariate vector. Given the covariate vector Z, the event time X and the cen-
soring time C are assumed to be independent. Furthermore, conditionally
on Z = z, the event time is assumed to be a nonnegative r.v. with an abso-
lutely continuous distribution function F(x|z) and density f(x|z). Similarly
the censoring time is assumed to be a nonnegative r.v. with an absolutely
continuous distribution function G(x|z) and density g(x|z). The censoring
mechanism is assumed to be non-informative, i.e. F and G share no param-
eters. Within the Cox model, the conditional hazard rate λ(x|z) for a subject
with covariate vector z ∈ Rp, is related to the corresponding covariate by

λ(t|z) = λ0(t) eβ
′
0z, t ∈ R+,

where λ0 represents the baseline hazard function, corresponding to a subject
with z = 0, and β0 ∈ Rp is the vector of the regression coefficients.

Let H and Huc denote respectively the distribution function of the follow-
up time and the sub-distribution function of the uncensored observations,
i.e.,

Huc(t) = P(T 6 t,∆ = 1) =

∫
δ1{u6t} dP(u, δ, z), (3.1.1)

where P is the distribution of (T ,∆,Z). We also require the following as-
sumptions, some of which are common in large sample studies of the Cox
model (e.g. see Lopuhaä and Nane, 2013):

(A1) Let τF, τG and τH be the end points of the support of F, G and H.
Then

τH = τG < τF 6∞.
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(A2) There exists ε > 0 such that

sup
|β−β0|6ε

E
[
|Z|2 e2β

′Z
]
<∞.

(A3) There exists ε > 0 such that

sup
|β−β0|6ε

E
[
|Z|2 e4β

′Z
]
<∞.

Let us briefly comment on these assumptions. While the first one tells us
that, at the end of the study, there is at least one subject alive, the other two
are somewhat hard to justify from a practical point of view. One can think
of (A2) and (A3) as conditions on the boundedness of the second moment
of the covariates, uniformly for β in a neighborhood of β0.

By now, it seems to be rather a standard choice estimating β0 by β̂n, the
maximizer of the partial likelihood function in (1.1.6), as proposed by Cox,
1972. The asymptotic behavior was first studied by Tsiatis, 1981. We aim at
estimating λ0, subject to the constraint that it is increasing (the case of a de-
creasing hazard is analogous), on the basis of n observations (T1,∆1,Z1), . . . ,
(Tn,∆n,Zn). By introducing

Φ(t;β) =
∫
1{u>t} eβ

′z dP(u, δ, z), (3.1.2)

we have

λ0(t) =
h(t)

Φ(t;β0)
, (3.1.3)

where h(t) = dHuc(t)/dt (e.g., see (9) in Lopuhaä and Nane, 2013). For
β ∈ Rp and x ∈ R, the function Φ(t;β) can be estimated by

Φn(t;β) =
∫
1{u>t}e

β ′z dPn(u, δ, z), (3.1.4)

where Pn is the empirical measure of the triplets (Ti,∆i,Zi) with i =

1, . . . ,n. Moreover, in Lemma 4 of Lopuhaä and Nane, 2013 it is shown
that

sup
t∈R

|Φn(t;β0) −Φ(t;β0)| = Op(n−1/2). (3.1.5)

It will be often used throughout the paper that a stochastic bound of the
same order holds also for the distance between the cumulative hazard Λ0
and the Breslow estimator

Λn(t) =

∫
δ1{u6t}

Φn(t; β̂n)
dPn(u, δ, z), (3.1.6)
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but only on intervals staying away of the right boundary, i.e.,

sup
t∈[0,M]

|Λn(t) −Λ0(t)| = Op(n
−1/2), for all 0 < M < τH, (3.1.7)

(see Theorem 5 in Lopuhaä and Nane, 2013).

Smoothing is done by means of an m-orthogonal kernel function satis-
fying (1.2.1). Note that if m > 2, the kernel function k necessarily attains
negative values and as a result also the smooth estimators of the baseline
hazard defined in Sections 3.2 may be negative and monotonicity might not
be preserved. To avoid this, one could restrict oneself to m = 2. In that case,
the most common choice is to let k be a symmetric probability density.

3.2 smoothed isotonic estimators

We consider smoothed versions of two isotonic estimators for λ0, i.e, the
maximum likelihood estimator λ̂n and the Grenander-type estimator λ̃n,
introduced in Lopuhaä and Nane, 2013. The maximum likelihood estimator
of a nondecreasing baseline hazard rate λ0 is of the form

λ̂n(t) =


0 t < T(1)

λ̂i T(i) 6 t < T(i+1), for i = 1, . . . ,n− 1,

∞ t > T(n),

where λ̂i is the left derivative at point Pi of the greatest convex minorant
of the cumulative sum diagram consisting of points P0 = (0, 0) and Pj =(
Ŵn(T(j+1)),Vn(T(j+1))

)
, for j = 1, . . . ,n−1, where Ŵn and Vn are defined

as

Ŵn(t) =

∫ (
eβ̂
′
nz

∫t
T(1)

1{u>s} ds

)
dPn(u, δ, z), t > T(1),

Vn(t) =

∫
δ1{u<t} dPn(u, δ, z),

(3.2.1)

with β̂n being the partial maximum likelihood estimator (see Lemma 1

in Lopuhaä and Nane, 2013). For a fixed t ∈ [0, τH], the smoothed maxi-
mum likelihood estimator λ̂SMn of a nondecreasing baseline hazard rate λ0,
was defined in Nane, 2013 by

λ̂SMn (t) =

∫ (t+b)∧τH
(t−b)∨0

kb(t− u) λ̂n(u)du. (3.2.2)
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The Grenander-type estimator λ̃n of a nondecreasing baseline hazard rate
λ0 is defined as the left hand slope of the greatest convex minorant (GCM)
Λ̂n of the Breslow estimator Λn. For a fixed t0 ∈ [0, τH], we consider the
smoothed Grenander-type estimator λ̃SGn , which is defined by

λ̃SGn (t) =

∫ (t+b)∧τH
(t−b)∨0

kb(t− u)λ̃n(u)du. (3.2.3)

Uniform strong consistency on compact intervals in the interior of the sup-
port [ε,M] ⊂ [0, τH] is provided by Theorem 5.2 of Nane, 2013,

sup
t∈[ε,M]

∣∣∣λ̃SGn (t) − λ0(t)
∣∣∣→ 0, with probability one. (3.2.4)

Strong pointwise consistency of λ̂SMn in the interior of the support is estab-
lished in Theorem 5.1 in Nane, 2013. Under additional smoothness assump-
tions on λ0, one can obtain uniform strong consistency for λ̂SMn similar
to (3.2.4). Inconsistency at the boundaries is can be partially avoided by us-
ing a boundary corrected kernel. It can be proved, exactly as it is done in
Chapter 2, that uniform consistency holds on [0,M] ⊂ [0, τH].

Figure 7: Left panel: The MLE (piecewise constant solid line) of the baseline haz-
ard (dashed) together with the smoothed MLE (solid). Right panel: The
Grenander estimator (piecewise constant solid line) of the baseline hazard
(dashed) together with the smoothed Grenander estimator (solid).

Figure 7 shows the smoothed maximum likelihood estimator (left) and
the smoothed Grenander-type estimator (right) for a sample of size n = 500

from a Weibull baseline distribution with shape parameter 1.5 and scale 1.
For simplicity, we assume that the real valued covariate and the censoring
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times are uniformly (0, 1) distributed and we take β0 = 0.5. We used a
boundary corrected triweight kernel function

k(u) = (35/32)(1− u2)31{|u|61}

and bandwidth b = n−1/5. Note that, even though for deriving the asymp-
totic normality we do not need to restrict the estimation interval as in Chap-
ter 2, for finite sample sizes restriction on [0, τ∗] ⊂ [0, τH] gives better results.
For the figures we used as τ∗ the 95% empirical quantile of the follow-up
times.

In the remainder of this section we will derive the pointwise asymptotic
distribution of both smoothed isotonic estimators, in (3.2.2) and (3.2.3). As
already mentioned, our approach is inspired by techniques introduced in
Section 11.6 of Groeneboom and Jongbloed, 2014. We briefly describe this
approach for the smoothed Grenander estimator, for which the computa-
tions are more complicated. We start by writing

λ̃SGn (t) =

∫
kb(t− u)dΛ0(u) +

∫
kb(t− u)d(Λ̂n −Λ0)(u). (3.2.5)

The first (deterministic) term on the right hand side of (3.2.5) gives us the
asymptotic bias. The method applied in Chapter 2 for the right censoring
model continues by decomposing the second term in two parts∫

kb(t− u)d(Λ̂n −Λn)(u) +

∫
kb(t− u)d(Λn −Λ0)(u),

and then uses the Kiefer-Wolfowitz type of result

sup
t∈[0,M]

|Λ̂n(t) −Λn(t)| = OP

(
n−2/3(logn)2/3

)
, (3.2.6)

to show that
∫
kb(t− u)d(Λ̂n −Λn)(u) converges to zero. Finally, results

from empirical process theory are used to show the asymptotic normality
of
∫
kb(t−u)d(Λn −Λ0)(u). This approach cannot be followed in our case

because of the lack of a Kiefer-Wolfowitz type of result as in (3.2.6) for the
Cox model.

Alternatively, we proceed by describing the main steps of the L2-bounds
approach introduced in Groeneboom and Jongbloed, 2014. On an event En
with probability tending to one, we will approximate∫

kb(t− u)d(Λ̂n −Λ0)(u) (3.2.7)

by
∫
θn,t(u, δ, z)dP(u, δ, z), for some suitable function θn,t (see Lemma 3.2.1),

whose piecewise constant modification θn,t integrates to zero with respect
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to the empirical measure Pn (see Lemma 3.2.2). This enables us to approxi-
mate (3.2.7) by∫
θn,t(u, δ, z)d(Pn − P)(u, δ, z) +

∫ (
θn,t(u, δ, z) − θn,t(u, δ, z)

)
dP(u, δ, z).

(3.2.8)
Then, the key step is to bound the second integral in (3.2.8) by means of L2-
bounds on the distance between the ordinary Grenander estimator and the
true baseline hazard (see Lemma 3.2.3). The last step consists of replacing
θn,t by a deterministic function ηn,t (see Lemma 3.2.4) and use empirical
process theory to show that∫

ηn,t(u, δ, z)d(Pn − P)(u, δ, z)

is asymptotically normal.

Before we proceed to our first main result, we will formulate the steps
described above in a series of lemmas. Let t ∈ (0, τH), define

an,t(u) =
kb(t− u)

Φ(u;β0)
, u ∈ (0, τH), (3.2.9)

where Φ(u;β0) is defined in (3.1.2). Note that an,t(u) = 0 for u /∈ (t− b, t+
b). We then have the following approximation for (3.2.7). The proof can be
found in Section 3.6.

Lemma 3.2.1. Suppose that (A1)–(A2) hold. Let an,t be defined by (3.2.9) and
let β̂n be the partial MLE for β0. There exists an event En, with 1En → 1 in
probability, such that for

θn,t(u, δ, z) = 1En

{
δ an,t(u) − eβ̂

′
n z

∫u
0
an,t(v)dΛ̂n(v)

}
, (3.2.10)

it holds∫
θn,t(u, δ, z)dP(u, δ, z) = −1En

∫
kb(t− u)d(Λ̂n −Λ0)(u) +Op(n

−1/2).

Next, we consider a piecewise constant modification an,tΦn of an,tΦn,
which is constant on the same intervals as λ̃n. Since the smoothed Grenan-
der estimator is not affected by changing the values of λ̃n at the jump points,
for the proof we consider the right-continuous version of λ̃n. Let τ0 = 0,
τm+1 = τH and let (τi)

m
i=1 be successive points of jump of λ̃n. Then, for

u ∈ [τi, τi+1), we choose

an,tΦn(u; β̂n) = an,t(Ân(u))Φn(Ân(u); β̂n), (3.2.11)
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where for u ∈ [τi, τi+1),

Ân(u) =


τi, if λ0(s) > λ̃n(τi+1), for all s ∈ [τi, τi+1),

s, if λ0(s) = λ̃n(s), for some s ∈ [τi, τi+1),

τi+1, if λ0(s) < λ̃n(τi+1), for all s ∈ [τi, τi+1).

(3.2.12)

Furthermore, let En be the event from Lemma 3.2.1 and define

Ψn,t(u) =
an,tΦn(u; β̂n)
Φn(u; β̂n)

1En , u 6 T(n), (3.2.13)

and Ψn,x(u) = 0 otherwise. Let

jn1 = max{j : τj 6 t− b}, jn2 = min{j : τj > t+ b} (3.2.14)

be the last (first) jump point of λ̃n before (after) t − b (t + b). Note that,
from the definition of an,t and of Ân(u), it follows that Ψn,t(u) = 0 for
u /∈ [τjn1 , τjn2 ]. Now, define the following piecewise constant modification
of θn,t, by

θn,t(u, δ, z) = δΨn,t(u) − eβ̂
′
n z

∫u
0
Ψn,t(v)dΛ̂n(v). (3.2.15)

We then have the following property. The proof can be found in Section 3.6.

Lemma 3.2.2. Let θn,t be defined in (3.2.15). Then∫
θn,t(u, δ, z)dPn(u, δ, z) = 0. (3.2.16)

At this point it is important to discuss in some detail how we will obtain
suitable bounds for the second integral in (3.2.8). In order to do so, we first
introduce the inverse process Ũn. It is defined by

Ûn(a) = argmin
s∈[0,T(n)]

{Λn(s) − as} . (3.2.17)

and it satisfies the switching relation, λ̃n(t) 6 a if and only if Ũn(a) > t, for
t 6 T(n). In their analysis of the current status model, Groeneboom, Jong-
bloed, and Witte, 2010 encounter an integral that is similar to the second
integral in (3.2.8). They bound this integral using the fact that the maximal
distance between succeeding points of jump of the isotonic estimator is of
the order Op(n−1/3 logn). Such a property typically relies on the exponen-
tial bounds for the tail probabilities of Ûn(a), obtained either by using a
suitable exponential martingale (e.g., see Lemma 5.9 in Groeneboom and
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Wellner, 1992), or by an embedding of the relevant sum process into Brow-
nian motion or Brownian bridge (e.g., see Lemma 5.1 in Durot, Kulikov,
and Lopuhaä, 2012). Unfortunately, an embedding of the process Λn is not
available and in our current situation the martingale approach only yields
to polynomial bounds for tail probabilities of Ûn(a). A polynomial bound
was also found by Durot, 2007 (see her Lemma 2) leading to

sup
t∈In

E
[(
λ̃n(t) − λ0(t)

)p]
6 Kn−p/3, (3.2.18)

for p ∈ [1, 2) and some interval In (see her Theorem 1). By intersecting with
the event En from Lemma 3.2.1 we extend (3.2.18) to a similar bound for
p = 2. Groeneboom and Jongbloed, 2014 provide an alternative approach
to bound the second integral in (3.2.8), based on bounds for (3.2.18) with
p = 2. Unfortunately, they still make use of the fact that the maximum
distance between succeeding points of jump of the isotonic estimator is of
the order Op(n−1/3 logn) to obtain a result similar to (3.2.21). Nevertheless,
we do follow the approach in Groeneboom and Jongbloed, 2014, but instead
of using the maximum distance between succeeding points of jump of λ̃n,
we use a bound on

E

[
sup

t∈[ε,M]

(
λ̃n(t) − λ0(t)

)2] , (3.2.19)

for 0 < ε < M < τH. Exponential bounds for the tail probabilities of Ûn(a)
would yield the same bound for (3.2.19) as the one in (3.2.18) apart from a
factor logn. Since we can only obtain polynomial bounds on the tail prob-
abilities of Ûn(a), we establish a bound for (3.2.19) of the order O(n−4/9).
This is probably not optimal, but this will turn out to be sufficient for our
purposes and leads to the following intermediate result, the proof of which
can be found in Section 3.6.

Lemma 3.2.3. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τH) and let θn,t and θ̄n,t
be defined by (3.2.10) and (3.2.15), respectively. Assume that λ0 is differentiable,
such that λ ′0 is uniformly bounded above and below by strictly positive constants.
Assume that x 7→ Φ(x;β0) is differentiable with a bounded derivative in a neigh-
borhood of t and let k satisfy (1.2.1). Then, it holds∫ {

θn,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ, z) = Op(b−1n−2/3).

The last step is to replace θn,t in the first integral of (3.2.8) with a deter-
ministic approximation. This is done in the next lemma, the proof of which
can be found in Section 3.6.
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Lemma 3.2.4. Suppose that (A1)–(A3) hold. Fix t ∈ (0, τH) and take 0 < ε <

t < M ′ < M < τH. Assume that λ0 is differentiable, such that λ ′0 is uniformly
bounded above and below by strictly positive constants. Assume that x 7→ Φ(x;β0)
is differentiable with a bounded derivative in a neighborhood of t. Let θ̄n,t be defined
in (3.2.15) and define

ηn,t(u, δ, z) = 1En

(
δ an,t(u) − eβ

′
0z

∫u
0
an,t(v)dΛ0(v)

)
, u ∈ [0, τH].

(3.2.20)
where an,t is defined in (3.2.9) and En is the event from Lemma 3.2.1. Let k
satisfy (1.2.1). Then, it holds∫ {

θn,t(u, δ, z) − ηn,t(u, δ, z)
}

d(Pn − P)(u, δ, z)

= Op(b
−3/2n−13/18) +Op(n

−1/2).
(3.2.21)

We are now in the position to state our first main result.

Theorem 3.2.5. Suppose that (A1)–(A3) hold. Fix t ∈ (0, τH). Assume that
λ0 is m > 2 times continuously differentiable in t, such that λ ′0 is uniformly
bounded above and below by strictly positive constants. Moreover, assume that
x 7→ Φ(x;β0) is differentiable with a bounded derivative in a neighborhood of t and
let k satisfy (1.2.1). Let λ̃SG be defined in (3.2.3) and assume that n1/(2m+1)b→
c > 0. Then, it holds

nm/(2m+1)
(
λ̃SGn (t) − λ0(t)

)
d−→ N(µ,σ2),

where

µ =
(−c)m

m!
λ
(m)
0 (t)

∫1
−1
k(y)ym dy and σ2 =

λ0(t)

cΦ(t;β0)

∫
k2(u)du.

(3.2.22)
Furthermore,

nm/(2m+1)
(
λ̃SGn (t) − λ̂SMn (t)

)
→ 0, (3.2.23)

in probability, where λ̂SMn (t) is defined in (3.2.2), so that λ̃SMn (t) has the same
limiting distribution as λ̃SGn (t).
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Proof. Choose 0 < ε < t < M ′ < M < τH, so that for n sufficiently large,
we have ε < t− b 6 t+ b 6 M ′. Consider the event En from Lemma 3.2.1
and choose ξ1, ξ2 > 0 and ξ3, such that it satisfies (3.6.19). We write

λ̃SGn (t) =

∫
kb(t− u)dΛ̂n(u)

=

∫
kb(t− u)dΛ0(u) + 1En

∫
kb(t− u)d(Λ̂n −Λ0)(u)

+ 1Ecn

∫
kb(t− u)d(Λ̂n −Λ0)(u).

(3.2.24)

Because 1Ecn → 0 in probability, the third term on the right hand side tends
to zero in probability. For the first term, we obtain from a change of variable,
a Taylor expansion, and the properties of the kernel:

nm/(2m+1)

{∫
kb(t− u) λ0(u)du− λ0(t)

}
= nm/(2m+1)

∫1
−1
k(y) {λ0(t− by) − λ0(t)} dy

= nm/(2m+1)

∫1
−1
k(y)

{
− λ ′0(t)by+ · · ·

+
λ
(m−1)
0 (t)

(m− 1)!
(−by)m−1 +

λ
(m)
0 (ξn)

m!
(−by)m

}
dy

→ (−c)m

m!
λ
(m)
0 (t)

∫1
−1
k(y)ym dy,

(3.2.25)

with |ξn − t| < b|y|. Finally, for the second term on the right hand side
of (3.2.24), Lemmas 3.2.1 to 3.2.4 yield that

nm/(2m+1)1En

∫
kb(t− u)d(Λ̂n −Λ0)(u)

= nm/(2m+1)

∫
ηn,t(u, δ, z)d(Pn − P)(u, δ, z) + op(1).

(3.2.26)

For the first term on the right hand side of (3.2.26) we can write

nm/(2m+1)

∫
ηn,t(u, δ, z)d(Pn − P)(u, δ, z)

= nm/(2m+1)1En

∫
δkb(t− u)

Φ(u;β0)
d(Pn − P)(u, δ, z)

−nm/(2m+1)1En

∫
eβ
′
0z

∫u
0
an,t(v)dΛ0(v)d(Pn − P)(u, δ, z).

(3.2.27)
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We will show that the first term on the right hand is asymptotically normal
and the second term tends to zero in probability. Define

Yn,i = n
−(m+1)/(2m+1)∆ikb(t− Ti)/Φ(Ti;β0),

so that the first term on the right hand side of (3.2.27) can be written as

1Enn
m/(2m+1)

∫
δkb(t− u)

Φ(u;β0)
d(Pn − P)(u, δ, z) = 1En

n∑
i=1

(
Yn,i − E

[
Yn,i

])
.

Using (3.1.3), together with a Taylor expansion and the boundedness as-
sumptions on the derivatives of λ0 and Φ(t;β0), we have

n∑
i=1

Var(Yn,i)

= n−1/(2m+1)

{∫
k2b(t− u)

Φ(u;β0)2
dHuc(u) −

(∫
kb(t− u)

Φ(u;β0)
dHuc(u)

)2}

= n−1/(2m+1)

{
1

b

∫1
−1
k2(y)

λ0(t− by)

Φ(t− by;β0)
dy−

(∫
kb(t− u) λ0(u)du

)2}

=
λ0(t)

cΦ(t;β0)

∫1
−1
k2(y)dy−n− 1

2m+1

∫1
−1
yk2(y)

[
d
dt

λ0(t)

Φ(t;β0)

]
t=ξy

dy+ o(1)

=
λ0(t)

cΦ(t;β0)

∫1
−1
k2(y)dy+ o(1).

(3.2.28)

Moreover,

|Yn,i| 6 n
−(m+1)/(2m+1)Φ(M;β0)−1 sup

x∈[−1,1]
k(x),

so that
∑n
i=1E

[
|Yn,i|

21{|Yn,i|>ε}

]
→ 0, for any ε > 0, since 1{|Yn,i|>ε}

= 0,
for n sufficiently large. Consequently, by Lindeberg central limit theorem,
and the fact that 1En → 1 in probability, we obtain

1Enn
m/(2m+1)

∫
δkb(t− u)

Φ(u;β0)
d(Pn − P)(u, δ, z)→ N(0,σ2). (3.2.29)

For the second term on the right hand side of (3.2.27), write

n
m

2m+1

∫
eβ
′
0z

∫u
0
an,t(v)dΛ0(v)d(Pn − P)(u, δ, z) =

n∑
i=1

(
Ỹn,i − E[Ỹn,i]

)
.

where

Ỹn,i = n
−(m+1)/(2m+1)eβ

′
0Zi

∫Ti
0

kb(t− v)

Φ(v;β0)
dΛ0(v).
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We have

n∑
i=1

Var(Ỹn,i) 6
n∑
i=1

E
[
Ỹ2n,i

]
6 n−1/(2m+1)

∫
e2β

′
0z

(∫u
0

kb(t− v)

Φ(v;β0)
dΛ0(v)

)2
dP(u, δ, z),

where the integral on the right hand side is bounded by(∫t+b
t−b

kb(t− v)

Φ(v;β0)
dΛ0(v)

)2
Φ(0; 2β0)

6
Φ(0; 2β0)
Φ2(M;β0)

(∫t+b
t−b

kb(t− v)dΛ0(v)

)2
= O(1).

Hence, the second term on the right hand side of (3.2.27) tends to zero in
probability. Together with (3.2.24), (3.2.25), and (3.2.29), this proves the first
part of the theorem.

For the smoothed maximum likelihood estimator, we can follow the same
approach and obtain similar results as those in Lemmas 3.2.1 to 3.2.4. The
arguments are more or less the same as those used to prove Lemmas 3.2.1
to 3.2.4. We briefly sketch the main differences. First, Λ̂n, we will now be
replaced by

Λ̂n(t) =

∫t
0
λ̂n(u)du

in (3.2.7). Then, since the maximum likelihood estimator is defined as the
left slope of the greatest convex minorant of a cumulative sum diagram
that is different from the one corresponding to the Grenander-type estima-
tor, Lemmas 3.2.1 and 3.2.2 will hold with a different event Ên and Ψn,t
will have a simpler form (see Lemmas A.2.1-A.2.2 and definition (A.2.4) in
A.2. Similar to the proof of Lemma 3.2.3, the proof of its counterpart for
the maximum likelihood estimator (see Lemma A.2.10) is quite technical
and involves bounds on the tail probabilities of the inverse process corre-
sponding to λ̂n (see Lemma A.2.5), used to obtain the analogue of (3.2.19)
(see Lemma A.2.6). Moreover, the inverse process related to the maximum
likelihood estimator is defined by

Ûn(a) = argmin
s∈[T(1),T(n)]

{
Vn(s) − aŴn(s)

}
, (3.2.30)

where Vn and Ŵn are defined in (3.2.1), and we get a slightly different
bound on the tail probabilities of Ûn (compare Lemmas 3.6.3 and A.2.5). The
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reason is that the martingale decomposition of Vn(s)−aŴn(s) has a simper
form. The counterpart of Lemma 3.2.4 (see Lemma A.2.11) is established in
the same way, replacing λ̃n by λ̂n. For details we refer to Section A.2.

From (3.2.24) and (3.2.26), we have that

nm/(2m+1)λ̃SGn (t) = nm/(2m+1)

∫
kb(t− u)dΛ0(u)

+nm/(2m+1)

∫
ηn,t(u, δ, z)d(Pn − P)(u, δ, z) + op(1)

(3.2.31)

where ηn,t is defined in (3.2.20) and where

nm/(2m+1)

∫
ηn,t(u, δ, z)d(Pn − P)(u, δ, z)→ N(0,σ2). (3.2.32)

Similarly, from the results in Section A.2, we have that there exists an event
Ên, such that

nm/(2m+1)λ̂SMn (t) = nm/(2m+1)

∫
kb(t− u)dΛ0(u)

+nm/(2m+1)

∫
η̂n,t(u, δ, z)d(Pn − P)(u, δ, z) + op(1)

(3.2.33)

where η̂n,t is defined in (3.2.20) with Ên instead of En, where 1
Ên
→ 1 in

probability, and where

nm/(2m+1)

∫
η̂n,t(u, δ, z)d(Pn − P)(u, δ, z)→ N(0,σ2). (3.2.34)

Together with (3.2.32) and (3.2.34), this means that

nm/(2m+1)
(
λ̃SGn (t) − λ̂SMn (t)

)
=
(
1
Êcn
1En − 1Ecn1Ên

)
×n

m
2m+1

∫ {
δan,t(u) − eβ

′
0z

∫u
0
an,t(v)dΛ0(v)

}
d(Pn − P)(u, δ, z) + op(1)

= 1
Êcn
Op(1) − 1EcnOp(1) + op(1) = op(1),

because 1
Êcn
→ 0 and 1Ecn → 0 in probability.

Note that in the special case β0 = 0 and m = 2, we recover Theorem
2.2.2 and Theorem 11.8 in Groeneboom and Jongbloed, 2014, for the right
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censoring model without covariates. The fact that λ̃SGn (t) and λ̂SMn (t) are
asymptotically equivalent does not come as a surprise, since for the corre-
sponding isotonic estimators according to Theorem 2 in Lopuhaä and Nane,
2013, for t ∈ (0, τH) fixed, n1/3

(
λ̃n(t) − λ̂n(t)

)
→ 0, in probability. How-

ever, we have not been able to exploit this fact, and we have established the
asymptotic equivalence in (3.2.23) by obtaining the expansions in (3.2.31)
and (3.2.33) separately for each estimator.

Remark 3.2.6. The estimators considered in Theorem 3.2.5 are based on the
partial maximum likelihood estimator β̂n, which defines the Breslow esti-
mator, see (1.1.7), and the cumulative sum diagram from which the SMLE
is determined, see (3.2.1). However, Theorem 3.2.5 remains true, if β̂n is any
estimator that satisfies

β̂n −β0 → 0, a.s., and
√
n(β̂n −β0) = Op(1) (3.2.35)

In particular, this holds for the partial MLE for β0. See, e.g., Theorems 3.1
and 3.2 in Tsiatis, 1981. When proving consistency of the bootstrap, we are
not able to establish bootstrap versions of Theorems 3.1 and 3.2 in Tsiatis,
1981, but, in view of this remark, it is sufficient to assume the bootstrap
version of (3.2.35).

3.3 maximum smooth likelihood estimator

Maximum smoothed likelihood estimation is studied in Eggermont and
LaRiccia, 2000, who obtain L1-error bounds for the maximum smoothed
likelihood estimator of a monotone density. This method was also consid-
ered in Groeneboom, Jongbloed, and Witte, 2010 for estimating the distribu-
tion function of interval censored observations. The approach is to smooth
the loglikelihood and then maximize the smoothed loglikelihood over all
monotone functions of interest. For a fixed β, the (pseudo) loglikelihood for
the Cox model can be expressed as

lβ(λ0) =

∫ (
δ log λ0(t) − eβ

′z
∫t
0
λ0(u)du

)
dPn(t, δ, z), (3.3.1)

(see (1.1.5)). To construct the maximum smoothed likelihood estimator (MSLE)
we replace Pn in the previous expression with the smoothed empirical mea-
sure (in the time direction),

dP̃n(t, δ, z) =
1

n

n∑
i=1

1(∆i,Zi)(δ, z) kb(t− Ti)dt,
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and then maximize the smoothed (pseudo) loglikelihood

`sβ(λ0) =

∫ (
δ log λ0(t) − eβ

′z
∫t
0
λ0(u)du

)
dP̃n(t, δ, z). (3.3.2)

The characterization of the MSLE is similar to that of the ordinary MLE. It
involves the following processes. Fix β ∈ Rp and let

wn(t;β) =
1

n

n∑
i=1

eβ
′Zi

∫∞
t
kb(u− Ti)du,

vn(t) =
1

n

n∑
i=1

∆ikb(t− Ti).

(3.3.3)

The next lemma characterizes the maximizer of `sβ. The proof can be found
in Section 3.6.2.

Lemma 3.3.1. Let `sβ, wn and vn be defined by (3.3.2) and (3.3.3), respectively.
The unique maximizer of `sβ over all nondecreasing positive functions λ0 can be
described as the slope of the greatest convex minorant (GCM) of the continuous
cumulative sum diagram

t 7→
(∫t
0
wn(x;β)dx,

∫t
0
vn(x)dx

)
, t ∈ [0, τβ], (3.3.4)

where τβ = sup{t > 0 : wn(t;β) > 0}.

For a fixed β, let λ̂sn(·;β) be the unique maximizer of `sβ(λ0) over all
nondecreasing positive functions λ0. We define the MSLE by

λ̂MSn (t) = λ̂sn(t; β̂n), (3.3.5)

where β̂n denotes the maximum partial likelihood estimator for β0. It can
be seen that under appropriate smoothness assumptions,∫t

0
wn(u; β̂n)du =

∫
Ŵn(s)kb(t− s)ds+Op(n−1/2) +Op(b),∫t

0
vn(u)du =

∫
Vn(s)kb(t− s)ds+Op(b),

where the processes Vn and Ŵn, as defined in (3.2.1), determine the cumu-
lative sum diagram corresponding to the ordinary MLE. This means that
the cumulative sumdiagram that characterizes the MSLE, is asymptotically
equivalent to a kernel smoothed version of the cumulative sumdiagram that
characterizes the ordinary MLE.
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Figure 8: Left panel: The MSLE (solid) and the naive estimator (dotted) of the hazard
function (dashed) using bandwidth bn = 0.5n−1/5. Right panel: The same
but using bandwidth bn = n−1/5.

As can be seen from the proof of Lemma 3.3.1, the MSLE minimizes

ψ(λ) =
1

2

∫ (
λ(t) −

vn(t)

wn(t; β̂n)

)2
wn(t;β)dt, (3.3.6)

over all nondecreasing functions λ. This suggests

λ̂naive
n (t) =

vn(t)

wn(t; β̂n)
(3.3.7)

as a naive estimator for λ0. The naive estimator is the ratio of two smooth
functions, being the derivatives of the vertical and horizontal processes in
the continuous cumulative sum diagram in (3.3.4). The naive estimator is
smooth, but not necessarily monotone and its weighted least squares projec-
tion is the MSLE. Figure 8 illustrates the MSLE and the naive estimator for
a sample of size n = 500 from a Weibull baseline distribution with shape
parameter 1.5 and scale 1. For simplicity, the covariate and the censoring
time are chosen to be uniformly (0, 1) distributed and we take β0 = 0.5.
We used the triweight kernel function k(u) = (35/32)(1− u2)31{|u|61} and
bandwidth b = n−1/5. Note that if we use bandwidth bn = 0.5n−1/5, the
naive estimator is not monotone, but the distance to the MSLE (which is the
isotonic version of λ̂naive

n ) is very small. On the other hand, for bandwidth
bn = n−1/5 isotonization is not needed and the two estimators coincide. In-
deed, following the reasoning in Groeneboom, Jongbloed, and Witte, 2010,
the derivation of the asymptotic distribution of λ̂MSn is based on showing
that with probability converging to one, the naive estimator will be mono-
tone and equal to λ̂MSn on large intervals. Consequently, it will be sufficient
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to find the asymptotic distribution of the naive estimator. The advantage of
this approach is that in this way we basically have to deal with the naive
estimator, which is a more tractable process.

This approach applies more generally. The situation for the MSLE is a
special case of the more general situation, where the isotonic estimator is
the derivative dŶn/dXn of the greatest convex minorant {(Xn(t), Ŷn(t)) :

t ∈ [0, τ̂]} of the graph {(Xn(t), Yn(t)) : t ∈ [0, τ̂]}, for some 0 < τ̂ < τH,
where Xn and Yn are differentiable processes in a cumulative sumdiagram,
whereas the naive estimator is the ratio dYn/dXn of the derivatives of Xn
and Yn. The MSLE and the corresponding naive estimator from (3.3.7) form
a special case, with Xn = W̃n, Yn = Ṽn, where

W̃n(t) =

∫t
0
wn(u; β̂n)du, Ṽn(t) =

∫t
0
vn(u)du, (3.3.8)

and τ̂ = sup{t > 0 : wn(t; β̂n) > 0}. The following result considers the
general setup and shows that, in that case, the isotonic estimator and the
corresponding naive estimator coincide on large intervals with probability
tending to one.

Lemma 3.3.2. Let Xn and Yn be differentiable processes and let {(Xn(t), Ŷn(t)) :
t ∈ [0, τ̂]} be the greatest convex minorant of the graph {(Xn(t), Yn(t)) : t ∈
[0, τ̂]}, for some 0 < τ̂ < τH. Let λ̂ISn (t) = dŶn(t)/dXn(t) and λ̂naiven (t) =

dYn(t)/dXn(t), for t ∈ [0, τ̂]. Suppose that

(a) Xn(s) 6 Xn(t), for 0 6 s 6 t 6 τ̂;

(b) for every t ∈ (0, τ̂) fixed, λ̂naiven (t)→ λ0(t), in probability;

(c) for all 0 < ` < M < τ̂ fixed, P
(
λ̂naiven is increasing on [`,M]

)
→ 1;

(d) there exists processes X0 and Y0, such that

sup
t∈[0,τ̂]

|Xn(t) −X0(t)|
P−→ 0, sup

t∈[0,τ̂]
|Yn(t) − Y0(t)|

P−→ 0.

Moreover, the process X0 is absolutely continuous with a strictly positive
nonincreasing derivative x0, and X0 and Y0 are related by

Y0(t) =

∫t
0
λ0(u)dX0(u).

Then, for all 0 < ` < M < τ̂, P
(
λ̂naiven (t) = λ̂MSn (t), for all t ∈ [`,M]

)
→ 1.
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The proof of Lemma 3.3.2 can be found in the Appendix 3.6.2. We will
apply Lemma 3.3.2 to the MSLE and the naive estimator from (3.3.7). Recall
that λ̂MSn and λ̂naive

n are defined on [0, τ̂n], where

τ̂n = sup{t > 0 : wn(t; β̂n) > 0},

and note that τ̂n → τH with probability one. Condition (a) of Lemma 3.3.2
is trivially fulfilled with Xn = W̃n defined in (3.3.8). A first key result is that
for each 0 < ` < M < τH, it holds

sup
t∈[`,M]

|vn(t) − h(t)| = O(b
m) +Op(b

−1n−1/2),

sup
t∈[`,M]

|wn(t; β̂n) −Φ(t;β0)| = O(bm) +Op(b
−1n−1/2),

(3.3.9)

where vn, wn and Φ are defined in (3.3.3) and (3.1.2), see Lemma 3.6.8. A
direct consequence of (3.3.9) is the fact that the naive estimator converges
to λ0 uniformly on compact intervals within the support, as long as b → 0

and 1/b = o(n1/2), see Lemma 3.6.9. In particular, this will ensure condition
(b) of Lemma 3.3.2. A second key result is that, under suitable smoothness
conditions, for each 0 < ` < M < τH, it holds

sup
t∈[`,M]

|v ′n(t) − h
′(t)|

P−→ 0,

sup
t∈[`,M]

|w ′n(t; β̂n) −Φ
′(t;β0)|

P−→ 0,
(3.3.10)

see Lemma 3.6.8. This will imply that the naive estimator is increasing on
large intervals with probability tending to one, see Lemma 3.6.11, which
yields condition (c) of Lemma 3.3.2. Finally, condition (d) of Lemma 3.3.2 is
shown to hold with X0 = Huc from (3.1.1) and Y0 =W0, defined by

W0(t) =

∫t
0
Φ(u;β0)du. (3.3.11)

In view of (3.3.9) and (3.1.3), this is to be expected, and it is made precise
in Lemma 3.6.12. Hence, Lemma 3.3.2 applies to the MSLE and the naive
estimator from (3.3.7). Therefore we have the following corollary.

Corollary 3.3.3. Suppose that (A1)-(A2) hold. Let Huc(t) and Φ(t;β0) be de-
fined in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt, satisfying (3.1.3). Sup-
pose that h and t 7→ Φ(t;β0) are continuously differentiable, and that λ ′0 is uni-
formly bounded from below by a strictly positive constant. Let k satisfy (1.2.1) and
let λ̂naive

n be defined in (3.3.7). If b→ 0 and 1/b = O(nα), for some α ∈ (0, 1/4),
then for each 0 < ` < M < τH,

P
(
λ̂naive
n (t) = λ̂MSn (t), for all t ∈ [`,M]

)
→ 1.
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Consequently, for all t ∈ (0, τH), the asymptotic distributions of λ̂naive
n (t) and

λ̂MSn (t) are the same.

Under similar smoothness conditions as needed in Lemma 3.6.8 to ob-
tain (3.3.9), one can show that

sup
t∈[`,M]

|v ′n(t) − h
′(t)| = O(bm−1) +Op(b

−2n−1/2),

sup
t∈[`,M]

|w ′n(t; β̂n) −Φ
′(t;β0)| = O(bm−1) +Op(b

−1n−1/2).
(3.3.12)

In that case, it can also be proved that

sup
t∈[`,M]

∣∣∣∣ d
dt
λ̂naive
n (t) − λ ′0(t)

∣∣∣∣ = O(bm−1) +Op(b
−2n−1/2) = oP(1),

as long as b→ 0 and 1/b2 = o(n1/2).

From Corollary 3.3.3 and the fact that the naive estimator converges to λ0
uniformly on compact intervals within the support, see Lemma 3.6.9, an-
other consequence of Lemma 3.3.2 is the following corollary concerning
uniform convergence of the MSLE.

Corollary 3.3.4. Suppose that (A1)-(A2) hold. LetHuc(t) andΦ(t;β0) be defined
in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt, satisfying (3.1.3). Suppose
that h and t 7→ Φ(t;β0) are m > 1 times continuously differentiable, and that
λ ′0 is uniformly bounded from below by a strictly positive constant. Let k be m-
orthogonal satisfying (1.2.1). Then, the maximum smooth likelihood estimator is
uniformly consistent on compact intervals [`,M] ⊂ (0, τH):

sup
t∈[`,M]

∣∣∣λ̂MSn (t) − λ0(t)
∣∣∣ = O(bm) +Op(b

−1n−1/2).

Proof. The result follows immediately from Corollary 3.3.3 and Lemma 3.6.9.

To obtain the asymptotic distribution of λ̂MSn (t), we first obtain the asymp-
totic distribution of λ̂naive

n (t). To this end we establish the joined asymptotic
distribution of the vector (wn(t; β̂n), vn(t)), see Lemma 3.6.13. Then an ap-
plication of the delta-method yields the limit distribution of λ̂naive

n as well as
that of λ̂MSn , due to Corollary 3.3.3.

Theorem 3.3.5. Suppose that (A1)-(A2) hold. Let Huc(t) and Φ(t;β0) be defined
in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt, satisfying (3.1.3). Suppose that
h and t 7→ Φ(t;β0) are m > 2 times continuously differentiable and let k be
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m-orthogonal satisfying (1.2.1). Let λ̂MSn (t) be defined in (3.3.5) and assume that
n1/(2m+1)b→ c > 0. Then, for each t ∈ (0, τH), the following holds

nm/(2m+1)
(
λ̂MSn (t) − λ0(t)

)
d−→ N(µ̃,σ2),

where

µ̃ =
(−c)m

m!
h(m)(t) − λ0(t)Φ

(t)(x;β0)
Φ(t;β0)

∫1
−1
k(y)ym dy;

σ2 =
λ0(t)

cΦ(t;β0)

∫1
−1
k2(y)dy.

(3.3.13)

This also holds if we replace λ̂MSn (t) with λ̂naive
n (t), as defined in (3.3.7).

The proof of Theorem 3.3.5 can be found in Section 3.6.2. Theorem 3.3.5
is comparable to Theorem 3.2.5. The limiting variance is the same, but the
asymptotic mean is shifted. A natural question is whether λ̂MSn (x) is asymp-
totically equivalent to these estimators, if we correct for the difference in the
asymptotic mean. The next theorem shows that this is indeed the case. The
proof can be found in Section 3.6.2. In order to use results from Section 3.2,
apart from conditions (A1) and (A2), we have to assume also (A3).

Theorem 3.3.6. Suppose that (A1)-(A3) hold. Suppose that λ0 and t 7→ Φ(t;β0)
are m > 2 times continuously differentiable, with λ ′0 uniformly bounded from
below by a strictly positive constant, and let k be m-orthogonal satisfying (1.2.1).
Let λ̂MSn (t) be the maximum smoothed likelihood estimator and let λ̂SM(t) be the
smoothed maximum likelihood estimator, defined in (3.2.2). Let µ̃ and µ be defined
in (3.3.13) and (3.2.22), respectively. Then, for each t ∈ (0, τH), the following holds

nm/(2m+1)
(
λ̂MSn (t) − λ̂SMn (t)

)
− (µ̃− µ)→ 0

in probability, and similarly if we replace λ̂SMn (t) by the smoothed Grenander-type
estimator λ̃SGn (t), defined in (3.2.3).

3.4 isotonized kernel estimator

The fourth method that we consider is an isotonized kernel estimator. Let
Λsn be the smoothed Breslow estimator defined by

Λsn(t) =

∫
kb(t− u)Λn(u)du. (3.4.1)

In order to avoid problems at the right end of the support, we fix 0 < τ∗ <
τH and consider estimation only on [0, τ∗]. A similar approach was con-
sidered in Groeneboom and Jongbloed, 2013, when estimating a monotone
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Figure 9: Left panel: The smoothed version (solid) of the Breslow estimator (solid-
step function) for the cumulative baseline hazard (dotted) and the greatest
convex minorant (dashed). Right panel: The Grenander-type smoothed es-
timator (solid) of the baseline hazard (dotted).

hazard of uncensored observations. The main reason in our setup is that in
order to exploit the representation in (3.1.3), we must have t < τH, because
Φ(t;β0) = 0 otherwise. The isotonized kernel estimator of a nondecreasing
baseline hazard is a Grenander-type estimator, as being defined as the left
derivative of the greatest convex minorant of Λsn on [0, τ∗]. We denote this
estimator by λ̃GSn .

Note that this type of estimator was defined also in Nane, 2013 without
the restriction on [0, τ∗]. Strong pointwise consistency was proved and uni-
form consistency on intervals [ε, τH− ε] ⊂ [0, τH] follows immediately from
the monotonicity and the continuity of λ0. These results also illustrate that
there are consistency problems at the end point of the support. Since in
practice we do not even know τH, the choice of τ∗ might be an issue. Since
one wants τ∗ to be close to τH, one reasonable choice would be to take as τ∗

the 95%-empirical quantile of the follow-up times, because this converges
to the theoretical 95%-quantile, which is strictly smaller than τH. Note that
we cannot choose T(n), because it converges to τH, i.e., for large n, it will be
greater than any fixed τ∗ < τH.

Figure 9 shows the smoothed Breslow estimator and the isotonized kernel
estimator for the same sample as in Figure 8. To avoid problems at the
boundary we use the boundary corrected version of the kernel function
and consider the data up to the 95%-empirical quantile of the follow-up
times. The bandwidth is bn = n−1/5. Similar to the proof of Lemma 3.3.1,
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it follows from Lemma 1 in Groeneboom and Jongbloed, 2010, that λ̃GSn is
continuous and is the unique maximizer of

ψ(λ) =
1

2

∫τ∗
0

(
λ(t) − λ̃sn(t)

)2 dt

over all nondecreasing functions λ, where

λ̃sn(t) =
d
dt
Λsn(t) =

∫
k ′b(t− u)Λn(u)du. (3.4.2)

This suggests
λ̃naive
n (t) = λ̃sn(t) (3.4.3)

as another naive estimator for λ0(t). This naive estimator is the derivative
of the smoothed Breslow. Again, it is smooth but not necessarily monotone
and its least squares projection is the isotonized kernel estimator. Note that
by means of integration by parts, we can also write

λ̃sn(t) =

∫
kb(t− u)dΛn(u).

Hence, the naive estimator from (3.4.2) is equal to the ordinary Rosenblatt-
Parzen kernel estimator for the baseline hazard. Asymptotic normality for
this estimator under random censoring has been proven by Ramlau-Hansen,
1983 and Tanner and Wong, 1983. A similar result in a general counting pro-
cesses setup, that includes the Cox model, is stated in Wells, 1994, but only
the idea of the proof is provided. We will establish asymptotic normality for
the naive estimator from (3.4.2) in our current setup of the Cox model, see
the proof of Theorem 3.4.3.

Then, similar to the approach used in Section 3.3, the derivation of the
asymptotic distribution of λ̃GSn is based on showing that it is equal to the
naive estimator in (3.4.3) on large intervals with probability converging
to one. The isotonized kernel estimator is a special case of Lemma 3.3.2,
with Xn(t) = t, Yn(t) = Λsn(t), and τ̂ = τ∗. As before, condition (a) of
Lemma 3.3.2 is trivial and condition (b) is fairly straightforward, see (3.6.69)
for details. condition (c) of Lemma 3.3.2 is established in Lemma 3.6.14

and condition (d) is also straightforward, see (3.6.70) for details. Hence,
Lemma 3.3.2 applies to the isotonized kernel estimator and the naive es-
timator from (3.4.3), which leads to the following corollary.

Corollary 3.4.1. Suppose that (A1)-(A2) hold. Let λ0 be continuously differen-
tiable, with λ ′0 uniformly bounded from below by a strictly positive constant, and
let k satisfy (1.2.1). If b → 0 and 1/b = O(nα), for some α ∈ (0, 1/4), then for
each 0 < ` < M < τ∗, it holds

P
(
λ̃naive
n (t) = λ̃GSn (t) for all t ∈ [`,M]

)
→ 1.



76 smooth isotonic estimation in the cox model

Consequently, for all t ∈ (0, τ∗), the asymptotic distributions of λ̃naive
n (t) and

λ̃GSn (t) are the same.

The proof of Corollary 3.4.1 can be found in Section 3.6.3.

Remark 3.4.2. Note that in case the kernel function is strictly positive on
(−1, 1) and the baseline hazard is strictly increasing, one can easily check
that

t 7→
∫t/b
−1

k(y)λ0(t− by)dy

is a continuously differentiable, strictly increasing function on [0,M] and as
a result we obtain that

d
dt
λ̃naive
n (t) =

d
dt

(∫t/b
−1

k(y)λ0(t− by)dy

)

+
1

b2

∫
k ′
(
t− u

b

)
d (Λn −Λ0) (u)

> C+ oP(1).

(3.4.4)

This implies that λ̃naive
n is increasing on [0,M].

Finally, consistency and the asymptotic distribution of λ̃GSn (t) is provided
by the next theorem. Its proof can be found in Section 3.6.3.

Theorem 3.4.3. Suppose that (A1)-(A2) hold. Fix t ∈ (0, τH) and τ∗ ∈ (t, τH).
Assume that λ0 is m > 2 times continuously differentiable, with λ ′0 uniformly
bounded from below by a strictly positive constant. Assume that s 7→ Φ(s;β0)
is continuous in a neighborhood of t and let k be m-orthogonal satisfying (1.2.1).
Let λ̃GSn be the left derivative of the greatest convex minorant on [0, τ∗] of Λsn
defined in (3.4.1) and suppose that n1/(2m+1)b → c > 0. Then, for all 0 < ` <
M < τ∗,

sup
s∈[`,M]

∣∣∣λ̃GSn (s) − λ0(s)
∣∣∣ = O(bm) +Op(b

−1n−1/2),

in probability, and it holds that

nm/(2m+1)
(
λ̃GSn (t) − λ0(t)

)
d−→ N(µ,σ2),

where

µ =
(−c)m

m!
λ
(m)
0 (t)

∫1
−1
k(y)ym dy and σ2 =

λ0(t)

cΦ(t;β0)

∫1
−1
k(y)2 dy.
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According to Corollary 3.4.1, the naive estimator from (3.4.3) has the same
limiting distribution described in Theorem 3.4.3. In this case we recover a
result similar to Theorem 3.2 in Wells, 1994. As can be seen, the limiting dis-
tribution of the isotonized kernel estimator in Theorem 3.4.3 is completely
the same the one for the smoothed MLE and smoothed Grenander-type esti-
mator in Theorem 3.2.5. The following theorem shows that λ̃GSn (t) is in fact
asymptotically equivalent to both these estimators. In particular, this means
that the order of smoothing and isotonization for the Grenander-type esti-
mator does not affect the limit behavior. This is in line with the findings
in Mammen, 1991 and van der Vaart and van der Laan, 2003.

Theorem 3.4.4. Suppose that (A1)-(A3) hold. Fix t ∈ (0, τh) and τ∗ ∈ (t, τH).
Assume that λ0 is m > 2 times continuously differentiable, with λ ′0 uniformly
bounded from below by a strictly positive constant. Assume that s 7→ Φ(s;β0)
is differentiable with a bounded derivative in a neighborhood of t and let k be m-
orthogonal satisfying (1.2.1). Let λ̃GSn be the left derivative of the greatest convex
minorant on [0, τ∗] of Λsn defined in (3.4.1) and suppose that n1/(2m+1)b→ c >

0. Let λ̃SGn be the smoothed Grenander-type estimator defined in (3.2.3). Then

nm/(2m+1)
(
λ̂GSn (t) − λ̃SGn (t)

)
→ 0,

in probability, and similarly if we replace λ̃SGn (t) by the smoothed maximum like-
lihood estimator λ̂SMn (t), defined in (3.2.2). This also holds if we replace λ̃GSn (t)

with λ̃naive
n (t), defined in (3.4.3).

The proof of Theorem 3.4.4 can be found in Section 3.6.3.

3.5 numerical results for pointwise confidence intervals

In this section we illustrate the finite sample performance of the four es-
timators considered in Sections 3.2, 3.3 and 3.4 by constructing pointwise
confidence intervals for the baseline hazard rate. We consider two different
procedures: the first one relies on the limit distribution and the second one is
a bootstrap based method. In all the simulations we use the triweight kernel
function, which means that the degree of smoothness is m = 2. The reason
for choosing a second-order kernel is that higher order kernels may also
take negative values, which then might lead to non monotone estimators
for the baseline hazard.
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3.5.1 Asymptotic confidence intervals

From Theorems 3.2.5, 3.3.5 and 3.4.3, it can be seen that the asymptotic
100(1−α)%-confidence intervals at the point t0 ∈ (0, τH) are of the form

λin(t0) −n
−2/5

{
µ̂n(t0)± σ̂n(t0)q1−α/2

}
,

where q1−α/2 is the (1−α/2) quantile of the standard normal distribution,
λin(t0) is the smooth isotonic estimator at hand (i ∈ {SG, SMLE, GS, MSLE}),
and µ̂n(t0), σ̂n(t0) are corresponding plug-in estimators of the asymptotic
mean and standard deviation, respectively. However, from the expression
of the asymptotic mean in Theorems 3.2.5, 3.3.5 and 3.4.3 for m = 2, it
is obvious that obtaining the plug-in estimators requires estimation of the
second derivative of λ0. Since accurate estimation of derivatives is a hard
problem, we choose to avoid it by using undersmoothing. This procedure
is to be preferred above bias estimation, because it is computationally more
convenient and leads to better results (see also Hall, 1992, Groeneboom and
Jongbloed, 2015, Cheng, Hall, and Tu, 2006). Undersmoothing consists of us-
ing a bandwidth of a smaller order than the optimal one (in our case n−1/5).
As a result, the bias of n2/5(λin(t0) − λ0(t0)), which is of the order n2/5b2

(see (3.2.25)), will converge to zero. On the other hand, the asymptotic vari-
ance is n−1/5b−1σ2 (see (3.2.28) with m = 2). For example, with b = n−1/4,
asymptotically n2/5(λSIn (t0) − λ0(t0)) behaves like a normal distribution
with mean of the order n−1/10 and variance n1/20σ2. Hence, the confi-
dence interval becomes

λSIn (t0)±n−3/8σ̂n(t0)q1−α/2, (3.5.1)

where

σ̂n(t0) =
λSIn (t0)

cΦn(t0; β̂n)

∫1
−1
k(y)2 dy. (3.5.2)

Note that undersmoothing leads to confidence intervals of asymptotic length
OP(n

−3/8), while the optimal ones would be of length OP(n−2/5). In our
simulations, the event times are generated from a Weibull baseline distribu-
tion with shape parameter 1.5 and scale 1. The real valued covariate and the
censoring time are chosen to be uniformly distributed on the interval (0, 1)
and we take β0 = 0.5. We note that this setup corresponds to around 35%
uncensored observations. Confidence intervals are calculated at the point
t0 = 0.5 using 10 000 sets of data and we take bandwidth b = cn−1/4, with
c = 1, and kernel function k(u) = (35/32)(1− u2)31{|u|61}.

It is important to note that the performance depends strongly on the
choice of the constant c, because the asymptotic length is inversely propor-
tional to c (see (3.5.2)). This means that, by choosing a smaller cwe get wider
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SG SMLE MSLE GS

n AL CP AL CP AL CP AL CP

100 0.996 0.740 1.101 0.796 1.035 0.779 1.007 0.740

500 0.545 0.824 0.563 0.857 0.562 0.840 0.554 0.841

1000 0.421 0.852 0.430 0.883 0.424 0.846 0.428 0.843

5000 0.232 0.910 0.234 0.916 0.234 0.892 0.234 0.888

Table 4: The average length (AL) and the coverage probabilities (CP) for asymptotic
95% pointwise confidence intervals of the baseline hazard rate at t0 = 0.5.

confidence intervals and as a result higher coverage probabilities. Unfortu-
nately, it is not clear which would be the optimal choice of such a constant.
This is actually a common problem in the literature (see for example Cheng,
Hall, and Tu, 2006 and González-Manteiga, Cao, and Marron, 1996). As in-
dicated in Müller and Wang, 1990, cross-validation methods that consider a
trade-off between bias and variance suffer from the fact that the variance of
the estimator increases as one approaches the endpoint of the support. This
is even enforced in our setting, because the bias is also decreasing when
approaching the endpoint of the support. We tried a locally adaptive choice
of the bandwidth, as proposed in Müller and Wang, 1990, by minimizing an
estimator of the Mean Squared Error, but in our setting this method did not
lead to better results. A simple choice is to take c equal to the range of the
data (see Groeneboom and Jongbloed, 2015), which in our case corresponds
to c = 1. Table 4 shows the performance of the four smooth isotonic estima-
tors. For each of them we report the average length (AL) and the coverage
probabilities (CP) of the confidence intervals given in (3.5.1) for various sam-
ple sizes. Results indicate that the SMLE behaves slightly better, but as the
sample size increases its behavior becomes comparable to that of the other
estimators. Even though the coverage probabilities are below the nominal
level of 95%, smoothing leads to significantly more accurate results in com-
parison with the non-smoothed Grenander-type estimator given in the last
two columns of Table 5. The confidence intervals for the Grenander-type
estimator are constructed on the basis of Theorem 2 in Lopuhaä and Nane,
2013, i.e., they are of the form λ̃n(t0)±n−1/3Ĉn(t0)q1−α/2(Z), where

Ĉn(t0) =

(
4λ̃n(t0)λ̃

′
n(t0)

Φn(t0; β̂n)

)1/3
,

qα(Z) is the α-quantile of the distribution of Z = argmint∈R{W(t) + t2},
with W a standard two-sided Brownian motion starting from zero. In partic-
ular, q0.975(Z) = 0.998181. The main advantage of using the non-smoothed
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Kernel Grenander

n AL CP AL CP

100 1.055 0.756 0.757 0.500

500 0.560 0.822 0.449 0.615

1000 0.429 0.845 0.359 0.657

5000 0.234 0.884 0.215 0.764

Table 5: The average length (AL) and the coverage probabilities (CP) for asymptotic
95% pointwise confidence intervals of the baseline hazard rate at t0 = 0.5.

Grenander-type estimator is that it does not involve the choice of a tuning
parameter. However, the performance is not satisfactory, because we still
need to estimate the derivative of λ0, which is difficult if the estimator of λ0
is a step function. Here we use the slope of the segment [λ̃n(T(i), λ̃n(Ti+1)]
on the interval [T(i), T(i+1)] that contains t0.

We also compare the performance of the smooth isotonic estimators with
that of the ordinary (non-monotone) kernel estimator

λ̃sn(t0) =

∫
kb(t0 − u)dΛn(u),

which is shown in the first two columns of Table 5. We note that the ker-
nel estimator coincides with the naive estimator that approximates the iso-
tonized kernel estimator, see Section 3.4. In the proof of Theorem 3.4.3, it
is shown that λ̃sn exhibits a limit distribution which coincides with the one
of the smoothed estimators in Theorem 3.2.5. Also the numerical results in
Table 5 confirm that the performance of the kernel estimator is comparable
with that of the smooth isotonic estimators.

More importantly, estimation of the parameter β0 has a great effect on the
accuracy of the results. Table 6 shows that if we use the true value of β0 in
the computation of the estimators, the coverage probabilities increase signif-
icantly. However, in this case the confidence intervals for the SMLE and the
MSLE become too conservative. Things are illustrated for the isotonized ker-
nel estimator in Figure 10, which shows the kernel densities of the values of
the GS estimator and the corresponding lengths of the confidence intervals,
computed using the true parameter β0 and the partial ML estimator β̂n, for
1000 samples of size n = 500. We conclude that the use of β̂n leads to un-
derestimation or overestimation of both λ0(t0) as well as the corresponding
length of the confidence interval. In fact, underestimation of both goes hand
in hand, since the variance of the GS estimator is proportional to λ0(t0),
and similarly for overestimation. As can be seen in Table 6, estimation of β0
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Figure 10: Left panel: Values of the GS estimator computed using the true parame-
ter β0 (solid line) and the Cox’s partial MLE β̂n (dashed line). Right panel:
Values of the length of the confidence interval computed using the true
parameter β0 (solid line) and the Cox’s partial MLE β̂n (dashed line).

does not seem to effect the length of the confidence interval. However, the
coverage probabilities change significantly. When λ0(t0) is underestimated,
the midpoint of the confidence interval lies below λ0(t0) and the simulta-
neous underestimation of the length even stronger prevents the confidence
interval to cover λ0(t0). When λ0(t0) is overestimated, the midpoint of the
confidence interval lies above λ0(t0), but the simultaneous overestimation
of the length does not compensate this, so that the confidence interval too
often fails to cover λ0(t0).

Although the partial ML estimator β̂n is a standard estimator for the
regression coefficients, the efficiency results are only asymptotic. As pointed
out in Cox and Oakes, 1984 and Ren and Zhou, 2011, for finite samples
the use of the partial likelihood leads to a loss of accuracy. Recently, Ren
and Zhou, 2011 introduced the MLE for β0 obtained by joint maximization
of the loglikelihood in (3.3.1) over both β and λ0. It was shown that for
small and moderate sample sizes, the joint MLE for β0 performs better
than β̂n. However, in our case, using this estimator instead of β̂n, does
not bring any essential difference in the coverage probabilities. Pointwise
confidence intervals, for a fixed sample size n = 500, at different points of
the support are illustrated in Figure 11. The results are again comparable
and the common feature is that the length increases as we move to the
left boundary. This is due to the fact that the length is proportional to the
asymptotic standard deviation, which in this case turns out to be increasing,
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SMLE0 SG0 MSLE0 GS0
n AL CP AL CP AL CP AL CP

100 1.057 0.958 0.984 0.941 1.050 0.970 0.981 0.911

500 0.559 0.977 0.538 0.949 0.556 0.979 0.547 0.940

1000 0.430 0.979 0.419 0.957 0.429 0.976 0.424 0.953

5000 0.234 0.981 0.232 0.969 0.234 0.975 0.248 0.960

Table 6: The average length (AL) and the coverage probabilities (CP) for asymptotic
95% pointwise confidence intervals of the baseline hazard rate at the point
t0 = 0.5 using β0.

σ2(t) = 1.5
√
t/(cΦ(t;β0)). Note thatΦ(t;β0) defined in (3.1.2) is decreasing.

3.5.2 Bootstrap confidence intervals

An alternative to confidence intervals based on the asymptotic distribution
relies on bootstrap. Studies on bootstrap confidence intervals in the Cox
model are investigated in Burr, 1994 and Xu, Sen, and Ying, 2014. In the
latter paper, the authors investigate several bootstrap procedures for the
Cox model. We will use one (method M5) of the two proposals for a smooth
bootstrap that had the best performance and were recommended by the
authors.

We fix the covariates and we generate the event time X∗i from a smooth
estimate for the cdf of X conditional on Zi:

F̂n(t|Zi) = 1− exp
{
−Λsn(t)e

β̂ ′nZi
}

,

where Λsn is the smoothed Breslow estimator

Λsn(t) =

∫
kb(t− u)Λn(u)du.

The censoring times C∗i are generated from the Kaplan-Meier estimate Ĝn.
Then we take T∗i = min(X∗i ,C∗i ) and ∆∗i = 1{X∗i6C

∗
i }

. For constructing the
confidence intervals, we take 1000 bootstrap samples (T∗i ,∆∗i ,Zi) and for
each bootstrap sample we compute the smooth isotonic estimates λ̃SG,∗

n (t0),
λ̂SM,∗
n (t0), λ̂

MS,∗
n (t0) and λ̂GS,∗

n (t0). Here the kernel function is the same as
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(a) SG (b) SMLE

(c) MSLE (d) ISBE

Figure 11: 95% pointwise confidence intervals based on the asymptotic distribution
for the baseline hazard rate using undersmoothing.
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before and the bandwidth is taken to be b = n−1/5. Then, the 100(1− α)%
confidence interval is given by[

q∗α/2(t0),q
∗
1−α/2(t0)

]
, (3.5.3)

where q∗α(t0) is the α-percentile of the 1000 values of the estimates λ̃i,∗n (t0)

of the corresponding smooth isotonic estimator (i ∈ {SG, SMLE, GS, MSLE}).

We investigate the behavior of the four estimators in the following two
different settings

Model 1 Model 2

X Weibull (1.5, 1) Weibull (3, 1)

C Uniform (0, 1) Uniform (0, 2)

Z Uniform (0, 1) Bernoulli (0.5)

β0 0.5 0.1

x0 0.5 0.5

Note that Model 1 is the same as in the previous simulation. The main
differences between the two models are the following: the baseline hazard
rate is slightly increasing in Model 1 and strongly increasing in Model 2,
the covariates have a smaller effect on the hazard rate in Model 2, and
Model 1 corresponds to 35% uncensored observations, while in the Model 2

we have about 50% uncensored observations. It is also worthy noticing that,
for Model 1, we calculate the confidence intervals at the middle point of the
support t0 = 0.5 in order to avoid boundary problems, while, in Model 2 we
again consider t0 = 0.5, because the estimation becomes more problematic
on the interval [1, 2]. This is probably due to the fact that we only have a
few observations in this time interval, on which the hazard rate is strongly
increasing.

The average length and the empirical coverage for 1000 iterations and
different sample sizes are reported in Table 7 and Table 8 . We observe
that bootstrap confidence intervals behave better that confidence intervals
constructed on the basis of the asymptotic distribution, i.e., the coverage
probabilities are closer to the nominal level of 95%. Results also indicate
that the SMLE and MSLE behave slightly better than the other two estima-
tors, in general, it leads to shorter confidence intervals and better coverage
probabilities.
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SMLE SG MSLE GS

n AL CP AL CP AL CP AL CP

100 1.870 0.948 1.376 0.899 1.553 0.943 1.625 0.914

500 0.730 0.942 0.660 0.892 0.701 0.947 0.726 0.941

1000 0.521 0.960 0.487 0.902 0.512 0.949 0.527 0.963

Table 7: The average length (AL) and the coverage probabilities (CP) for the 95%
bootstrap confidence intervals of the baseline hazard rate at t0 = 0.5 for
Model 1.

SMLE SG MSLE GS

n AL CP AL CP AL CP AL CP

100 0.899 0.966 0.730 0.960 0.766 0.970 0.858 0.975

500 0.387 0.955 0.376 0.969 0.362 0.959 0.395 0.951

1000 0.279 0.954 0.275 0.960 0.271 0.959 0.286 0.962

Table 8: The average length (AL) and the coverage probabilities (CP) for the 95%
bootstrap confidence intervals of the baseline hazard rate at t0 = 0.5 for
Model 2.

In order to provide some theoretical evidence for the consistency of the
method, we would like to establish that, given the data (T1,∆1,Z1), . . . ,
(Tn,∆n,Zn), it holds

n2/5
(
λSI,∗n (t) − λSIn (t)

)
d−→ N(µ̃,σ2), (3.5.4)

for some µ̄ ∈ R (possibly different from µ in Theorem 3.2.5) and σ2 as
in (3.2.22), where λSIn is one of the smoothed isotonic estimators at hand and
λSI,∗n is the same estimator computed for the bootstrap sample. We focus
here on the smoothed Grenander-type estimator. In view of Remark 3.2.6,
we are able to obtain (3.5.4) for the smoothed Grenander estimator, if β̂∗n −

β̂n → 0, for almost all sequences (T∗i ,∆∗i ,Zi), i = 1, 2, . . ., conditional on the
sequence (Ti,∆i,Zi), i = 1, 2, . . ., and

√
n(β̂∗n − β̂n) = O∗p(1). By the latter

we mean that for all ε > 0, there exists M > 0 such that

lim sup
n→∞ P∗n

(√
n|β̂∗n − β̂n| > M

)
< ε, P − almost surely.
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where P∗n is the measure corresponding to the distribution of (T∗,∆∗,Z) con-
ditional on the data (T1,∆1,Z1), . . . ,(Tn,∆n,Zn), with T∗ = (min(X∗,C∗)
and ∆∗ = 1{X∗6C∗},Z), where X∗ conditional on Z has distribution function
F̂n(t | Z) and C∗ has distribution function Ĝn. To prove (3.5.4), we mimic
the proof of Theorem 3.2.5, which means that one needs to establish the
bootstrap versions of Lemmas 3.2.1-3.2.4. A brief sketch of the arguments is
provided in Appendix A.3.

Then, we can approximate the distribution of n2/5(λ0(t0) − λSIn (t0)) by
the distribution of n2/5(λSI,∗n (t0)−λ

SI
n (t0))− (µ̃+µ). Consequently, we can

write

P∗n{q
∗
α/2(t0) 6 λ

SI,∗
n (t) 6 q∗1−α/2(t0)}

= P∗n

{
λ0(t0) ∈

[
q∗α/2(t0) −n

−2/5(µ̃+ µ),q∗1−α/2(t0) −n
−2/5(µ̃+ µ)

]}
This means that we should actually take

[q∗α/2(t0),q
∗
1−α/2(t0)] −n

−2/5(µ̃+ µ)

instead of (3.5.3). The use of (3.5.3) avoids bias estimation. However, since
the effect of the bias is of the order n−2/5, the results are still satisfactory. In
order to further reduce the effect of the bias, we also investigated the possi-
bility of constructing bootstrap confidence intervals with undersmoothing,
i.e, we repeat the previous procedure with bandwidth b = n−1/4. Results
for Model 1 are shown in Table 9. We notice that the length of the confi-

SMLE SG MSLE GS

n AL CP AL CP AL CP AL CP

100 1.901 0.954 1.415 0.900 1.659 0.951 1.620 0.922

500 0.749 0.951 0.672 0.918 0.740 0.954 0.735 0.941

1000 0.540 0.950 0.501 0.924 0.543 0.951 0.541 0.939

Table 9: The average length (AL) and the coverage probabilities (CP) for the 95%
bootstrap confidence intervals of the baseline hazard rate at t0 = 0.5, using
b = n−1/4.

dence interval increases and the coverage probabilities improve. To summa-
rize, also the bootstrap confidence intervals are affected by the choice of
the bandwidth, but the results are more satisfactory in comparison with the
ones in Table 4.



3.6 proofs 87

3.6 proofs

3.6.1 Proofs for Section 3.2

Proof of Lemma 3.2.1. Define D(1)
n (x;β) = ∂Φn(x;β)/∂β and let D(1)

nj (x;β)

be the jth component of D(1)
n (x;β), for j = 1, . . . ,p. Then according to the

proof of Lemma 3(iv) in Lopuhaä and Nane, 2013, for any sequence β∗n,
such that β∗n → β0 almost surely, it holds

lim sup
n→∞ sup

x∈R

|D
(1)
n (x;β∗n)| <∞.

In fact, from its proof, it can be seen that

sup
x∈R

|D
(1)
nj (x;β∗n)| 6

∑
Ik⊆I

[
1

n

n∑
i=1

|Zi| eγ
′
kZi

]

→
∑
Ik⊆I

E
[
|Z|eγ

′
kZ
]
< 2p sup

|β−β0|6ε
E
[
|Z|eβ

′Z
]
<∞

with probability 1, where the summations are over all subsets Ik = {i1, . . . , ik}
of I = {1, . . . ,p}, and γk is the vector consisting of coordinates γkj =

β0j + ε/(2
√
p), for j ∈ Ik, and γkj = β0j − ε/(2

√
p), for j ∈ I \ Ik. Therefore,

sup
x∈R

|D
(1)
n (x;β∗n)| 6

√
p
∑
Ik⊆I

(
1

n

n∑
i=1

|Zi| eγ
′
kZi

)
→
√
p
∑
Ik⊆I

E
[
|Z|eγ

′
kZ
]

with probability one. Hence, if for some ξ1 > 0,

En,1 =


∣∣∣∣∣∣√p

∑
Ik⊆I

(
1

n

n∑
i=1

|Zi| eγ
′
kZi

)
−
√
p
∑
Ik⊆I

E
[
|Z|eγ

′
kZ
]∣∣∣∣∣∣ 6 ξ1

 ,

(3.6.1)
then 1En,1 → 1 in probability. Moreover, on this event, we have

sup
x∈R

|D
(1)
n (x;β∗n)| 6

√
p
∑
Ik⊆I

E
[
|Z|eγ

′
kZ
]
+ ξ1, (3.6.2)
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i.e., supx∈R |D
(1)
n (x;β∗n)| is bounded uniformly in n. For ξ2, ξ3, ξ4 > 0 and

0 < M < τH define

En,2 =
{
n2/3|β̂n −β0|

2 < ξ2

}
, En,3 =

{
sup

t∈[0,M]

|Λ̂n(t) −Λ0(t)| < ξ3

}
,

En,4 =

{
n1/3 sup

t∈R

|Φn(t;β0) −Φ(t;β0)| 6 ξ4

}
, En,5 =

{
T(n) > M

}
(3.6.3)

where T(n) denotes the last observed time. Because
√
n(β̂n − β0) = Op(1)

(see Theorem 3.2 in Tsiatis, 1981), together with (3.1.7) and Lemma 4 in Lop-
uhaä and Nane, 2013, it follows that 1En → 1 in probability, for the event
En = En,1 ∩ En,2 ∩ En,3 ∩ En,4 ∩ En,5.

From the definitions of an,t, θn,t and Huc, in (3.2.9), (3.2.10), and (3.1.1),
respectively, we have∫

θn,t(u, δ, z)dP(u, δ, z)

= 1En

{∫
an,t(u)dHuc(u) −

∫
eβ̂
′
n z

∫u
v=0

an,t(v)dΛ̂n(v)dP(u, δ, z)
}

.

Then, by applying Fubini’s theorem, together with (3.1.3), we obtain∫
θn,t(u, δ, z)dP(u, δ, z)

= 1En

{∫
an,t(u)dHuc(u) −

∫
an,t(v)

∫∞
u=v

eβ̂
′
n z dP(u, δ, z)dΛ̂n(v)

}
= 1En

{∫
an,t(u)dHuc(u) −

∫
an,t(v)Φ(v; β̂n)dΛ̂n(v)

}
= 1En

{∫
kb(t− u)

Φ(u;β0)
dHuc(u) −

∫
kb(t− u)

Φ(u; β̂n)
Φ(u;β0)

dΛ̂n(u)

}

= 1En

{∫
kb(t− u)

(
1−

Φ(u; β̂n)
Φ(u;β0)

)
dΛ̂n(u) −

∫
kb(t− u)d(Λ̂n −Λ0)(u)

}
.

The mean value theorem yields∫
kb(t− u)

∣∣∣∣∣1− Φ(u; β̂n)
Φ(u;β0)

∣∣∣∣∣ dΛ̂n(u)

=

∫
kb(t− u)

|Φ(u;β0) −Φ(u; β̂n)|
Φ(u;β0)

dΛ̂n(u)

6 |β̂n −β0| sup
y∈R

∣∣∣∣∂Φ(y;β∗)
∂β

∣∣∣∣ λ̃SGn (t)

Φ(t+ b;β0)
,
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with |β∗−β0| 6 |β̂n−β0|. According to Lemma 3(iii) in Lopuhaä and Nane,
2013, for ε > 0 from (A2),

sup
y∈R

∣∣∣∣∂Φ(y;β∗)
∂β

∣∣∣∣ < sup
y∈R

sup
|β−β0|<ε

∣∣∣∣∂Φ(y;β)
∂β

∣∣∣∣ <∞.

Furthermore, there exists M < τH, such that for sufficiently large n we have
t+ b 6 M. This yields the following bound Φ(t+ b;β0) > Φ(M;β0) > 0.
Moreover, according to (3.2.4), λ̃SGn (t) → λ0(t) with probability one. Since
|β̂n −β0| = Op(n

−1/2) (see Theorem 3.1 in Tsiatis, 1981), it follows that

1En

∫
kb(t− u)

∣∣∣∣∣1− Φ(u; β̂n)
Φ(u;β0)

∣∣∣∣∣ dΛ̃n(u) = Op(n−1/2),

which finishes the proof.

Proof of Lemma 3.2.2. By means of Fubini’s theorem∫
θn,t(u, δ, z)dPn(u, δ, z)

=

∫
δΨn,t(u)dPn(u, δ, z) −

∫
eβ̂
′
n z

∫u
v=0

Ψn,t(v)dΛ̂n(v)dPn(u, δ, z)

=

∫
δΨn,t(u)dPn(u, δ, z) −

∫T(n)
0

Ψn,t(v)

∫
1{u>v}e

β̂ ′n z dPn(u, δ, z)dΛ̂n(v)

= 1En

{∫
δ
an,tΦn(u; β̂n)
Φn(u; β̂n)

dPn(u, δ, z)

−

∫τH
0
an,tΦn(v; β̂n)dΛ̂n(v)

}
= 1En

m∑
i=0

an,tΦn(τi; β̂n)
{∫

1[τi,τi+1)(u)δ

Φn(u; β̂n)
dPn(u, δ, z)

−

(
Λ̂n(τi+1) − Λ̂n(τi)

)}
.

Then, (3.2.16) follows immediately from the characterization of the Breslow
estimator in (3.1.6).

To obtain suitable bounds for (3.2.19), we will establish bounds on the
tail probabilities of Ûn(a) defined in (3.2.17). To this end we consider a
suitable martingale that will approximate the process Λn − Λ0. For i =

1, 2, . . . ,n, let Ni(t) = 1{Xi6t}∆i be the right continuous counting process
for the number of observed failures on (0, t] and Yi(t) = 1{Ti>t} be the
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at-risk process. Then, for each i = 1, 2, . . . ,n, Mi(t) = Ni(t) −Ai(t), with
Ai(t) =

∫t
0 Yi(s)e

β ′0Zi dΛ0(s), is a mean zero martingale with respect to the
filtration

Fnt = σ
{
1{Xi6s}∆i,1{Ti>s},Zi : 1 6 i 6 n, 0 6 s 6 t

}
.

(e.g., see Kalbfleisch and Prentice, 2002). Furthermore, it is square integrable,
since

E
[
Mi(t)

2
]
6 2+ 2

∫t
0

E
[
1{Ti>s}e

2β ′0Zi
]
λ20(s)ds

6 2+ 2τH λ
2
0(τH)Φ(0; 2β0) <∞.

Finally, it has predictable variation process 〈Mi〉 = Ai(t) (e.g., see Gill, 1984

or Theorem 2 of Appendix B in Shorack and Wellner, 1986). For each n > 1,
define

Nn(t) =

n∑
i=1

Ni(t), An(t) =

n∑
i=1

Ai(t), Mn(t) = Nn(t) − An(t).

(3.6.4)
Then Mn(t) is a mean zero square integrable martingale with predictable
variation process

〈Mn〉(t) =
n∑
i=1

〈Mi〉(t) =
n∑
i=1

∫t
0
1{Ti>s} eβ

′
0Zi dΛ0(s) =

∫t
0
nΦn(s;β0)dΛ0(s),

where Φn is defined in (3.1.4).

Lemma 3.6.1. Suppose that (A1)–(A2) hold. Let 0 < M < τH and letΦ be defined
in (3.1.2). Then, the process

Bn(t) =

∫t∧M
0

1

nΦ(s;β0)
dMn(s) (3.6.5)

is a mean zero, square integrable martingale with respect to the filtration Fnt , More-
over, Bn has predictable variation process

〈Bn〉(t) =
∫t∧M
0

λ0(s)Φn(s;β0)
nΦ2(s;β0)

ds.

Proof. Write

Bn(t) =

∫t
0
Yn(s)dMn(s), where Yn(s) =

1{s6M}

nΦ(s;β0)
,
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and Mn = Nn − An. We apply Theorem B.3.1c in Shorack and Wellner,
1986 with Y, H, M, N, and A, replaced by Bn, Yn, Mn, Nn, and An, re-
spectively. In order to check the conditions of this theorem, note that Yn is
a predictable process satisfying |Yn(t)| <∞, almost surely, for all t > 0, and
that ∫t

0
Yn(s)dAn(s) =

n∑
i=1

∫t
0

1{s6M}

nΦ(s;β0)
1{Ti>s}e

β ′0Zi dΛ0(s)

=

∫t
0

1{s6M}

Φ(s;β0)
Φn(s;β0)dΛ0(s) <∞, a.s..

Moreover, since for s 6M we have Φ(s;β0) > Φ(M;β0) > 0, it follows that

E

[∫∞
0
Y2n(s)d〈Mn〉(s)

]
= E

[∫∞
0

1{s6M}

nΦ2(s;β0)
Φn(s;β0)dΛ0(s)

]
6

λ0(τH)M

n2Φ2(M;β0)

n∑
i=1

E
[
eβ
′
0Zi
]
<∞,

because of the assumption (A2). It follows from Theorem B.3.1c in Shorack
and Wellner, 1986, that Bn is a square integrable martingale with mean zero
and predictable variation process

〈Bn〉(t) =
∫t
0
Y2n(s)d〈Mn〉(s) =

∫t
0

1{s6M}

nΦ2(s;β0)
Φn(s;β0)dΛ0(s),

where Φ and Φn are defined in (3.1.2) and (3.1.4), respectively.

It is straightforward to verify that for t ∈ [0,M] and M < T(n),

Λn(t) −Λ0(t) = Bn(t) + Rn(t), (3.6.6)

where

Rn(t) =

∫t
0

Φn(s;β0)
Φ(s;β0)

dΛ0(s)−Λ0(t)+
∫t
0

(
1

Φn(s; β̂n)
−

1

Φ(s;β0)

)
dHucn (s),

(3.6.7)
with

Hucn (s) =

∫
δ1{t6s} dPn(t, δ, z). (3.6.8)

For establishing suitable bounds on the tail probabilities of Ûn(a), we need
the following result for the process Bn, which is comparable to condition
(A2) in Durot, 2007.
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Lemma 3.6.2. Suppose that (A1)–(A2) hold. Let 0 < M < τH and let Bn be
defined as in (3.6.5). Then, there exists a constant C > 0 such that, for all x > 0
and t ∈ [0,M],

E

[
sup

u∈[0,M],|t−u|6x

(
Bn(u) − Bn(t)

)2]
6
Cx

n
.

Proof. The proof is similar to that of Theorem 3 in Durot, 2007. First consider
the case t 6 u 6 t+x. According to Lemma 3.6.1, Bn is a martingale. Hence,
by Doob’s inequality, we have

E

[
sup

u∈[0,M], t6u6t+x
(Bn(u) − Bn(t))

2

]
6 4E

[(
Bn
(
(t+ x)∧M

)
− Bn(t)

)2]
= 4E

[
Bn
(
(t+ x)∧M

)2
− Bn(t)

2
]

= 4E

[∫ (t+x)∧M
t

Φn(s;β0)λ0(s)
nΦ2(s;β0)

ds

]

6
4λ(M)x

nΦ2(M;β0)
E [Φn(0;β0)] ,

(3.6.9)

where according to (A2),

E [Φn(0;β0)] =
1

n

n∑
i=1

E
[
eβ
′
0Zi
]
6 C,

for some C > 0. This proves the lemma for the case t 6 u 6 t+ x.

For the case t− x 6 u 6 t, we can write

E

[
sup

u∈[0,M],t−x6u6t

(
Bn(u) − Bn(t)

)2]

= E

[
sup

0∨(t−x)6u6t

(
Bn(u) − Bn(t)

)2]
6 2E

[(
Bn(t) − Bn(0∨ (t− x))

)2]
+ 2E

[
sup

0∨(t−x)6u<t

(
Bn(u) − Bn(0∨ (t− x))

)2] .
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Then similar to (3.6.9), the right hand side is bounded by

2E
[(

Bn(t) − Bn(0∨ (t− x))
)2]

+ 8E
[(

Bn(t) − Bn(0∨ (t− x))
)2]

= 10E
[
Bn(t)

2 − Bn(0∨ (t− x))2
]
= 10E

[∫t
0∨(t−x)

Φn(s;β0) λ0(s)
nΦ2(s;β0)

ds

]

6
10 λ(M) x

nΦ2(M;β0)
E [Φn(0;β0)] 6

Cx

n
,

for some C > 0. This concludes the proof.

In what follows, let 0 < M < τH. Moreover, let U be the inverse of λ0 on
[λ0(0), λ0(M)], i.e.,

U(a) =


0 a < λ0(0);

λ−10 (a) a ∈ [λ0(0), λ0(M)];

M a > λ0(M).

(3.6.10)

Note that U is continuous and differentiable on (λ0(0), λ0(M)), but it is
different from the inverse of λ0 on the entire interval [λ0(0), λ0(τH)].

Lemma 3.6.3. Suppose that (A1)–(A2) hold. Let 0 < M < τH and let Ûn andU be
defined in (3.2.17) and (3.6.10), respectively. Suppose that Huc, defined in (3.1.1),
has a bounded derivative h on [0,M] and that λ ′0 is bounded below by a strictly
positive constant. Then, there exists an event En, such that 1En → 1 in probability,
and a constant K such that, for every a > 0 and x > 0,

P
({

|Ûn(a) −U(a)| > x
}
∩ En ∩

{
Ûn(a) 6M

})
6 Kmax

{
1

nx3
,
1

n3x5

}
,

(3.6.11)
for n sufficiently large.

Note that Lemma 3.6.2 and Lemma 3.6.3 correspond to Theorem 3(i) and
Lemma 2 in Durot, 2007. It is useful to spend some words on the restric-
tion to the event En ∩ {Ûn(a) 6 M}. The event {Ûn(a) 6 M} is implicit
in Durot, 2007, because there the Grenander-type estimator is defined by
only considering Λn on a compact interval not containing the end point of
the support. The event En is needed in our setup because of the presence of
the covariates, which lead to more complicated processes, and because we
require (3.2.18) for p = 2.

Proof of Lemma 3.6.3. First, we note that, from the definition of U and the
fact that Ûn is increasing, it follows that

|Ûn(a) −U(a)| 6 |Ûn(λ0(0)) −U(λ0(0))|,
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if a 6 λ0(0), and

1{Ûn(a)6M}|Ûn(a) −U(a)| 6 1{Ûn(a)6M}|Ûn(λ0(M)) −U(λ0(M))|,

if a > λ0(M). Hence, it suffices to prove (3.6.11) only for a ∈ [λ0(0), λ0(M)].
Let En be the event from Lemma 3.2.1. We start by writing

P
({

|Ûn(a) −U(a)| > x
}
∩ En ∩

{
Ûn(a) 6M

})
= P

({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
+ P

({
Ûn(a) 6 U(a) − x

}
∩ En

)
.

(3.6.12)

First consider the first probability on the right hand side of (3.6.12). It is
zero, if U(a) + x > M. Otherwise, if U(a) + x 6M, then x 6M and

P
({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
6 P

(
{Λn(y) − ay 6 Λn(U(a)) − aU(a), for some y ∈ [U(a) + x,M]}∩ En

)
6 P

({
inf

y∈[U(a)+x,M]

(
Λn(y) − ay−Λn(U(a)) + aU(a)

)
6 0

}
∩ En

)
.

From Taylor’s expansion, we obtain

Λ0(y) −Λ0(U(a)) >
(
y−U(a)

)
a+ c

(
y−U(a)

)2,

where c = inft∈[0,τF) λ
′
0(t)/2 > 0, so that with (3.6.6), the probability on the

right hand side is bounded by

P

({
inf

y∈[U(a)+x,M]

(
Bn(y) − Bn(U(a)) + Rn(y) − Rn(U(a))

+ c(y−U(a))2
)
6 0

}
∩ En

)
.

Let i > 0 be such that M−U(a) ∈ [x2i, x2i+1) and note that, on the event
En one has T(n) > M. Therefore, if U(a) < y 6 M, then y 6 T(n) and
U(a) < T(n). It follows that the previous probability can be bounded by

i∑
k=0

P

({
sup
y∈Ik

(∣∣Bn(y) − Bn(U(a))
∣∣+ |Rn(y) − Rn(U(a))|

)
> c x2 22k

}
∩ En

)
.
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where the supremum is taken over y ∈ [0,M], such that y−U(a) ∈ [x2k, x2k+1).
Using that P(X + Y > ε) 6 P(X > ε/2) + P(Y > ε/2), together with the
Markov inequality, we can bound this probability by

4

i∑
k=0

(
c2x424k

)−1
E

 sup
y6M

y−U(a)∈[x2k,x2k+1)

∣∣Bn(y) − Bn(U(a))
∣∣2


+ 8

i∑
k=0

(
c3x626k

)−1
E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣Rn(y) − Rn(U(a))∣∣3
 .

(3.6.13)

We have

E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣Rn(y) − Rn(U(a))∣∣3


6 4E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣∣∣∣
∫y
U(a)

(
Φn(s;β0)
Φ(s;β0)

− 1

)
λ0(s)ds

∣∣∣∣∣
3



+ 4E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣∣∣∣
∫y
U(a)

(
1

Φn(s; β̂n)
−

1

Φ(s;β0)

)
dHucn (s)

∣∣∣∣∣
3


(3.6.14)

For the first term in the right hand side of (3.6.14) we have

E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣∣∣∣
∫y
U(a)

(
Φn(s;β0)
Φ(s;β0)

− 1

)
λ0(s)ds

∣∣∣∣∣
3


6 E

1En
(∫ (U(a)+x2k+1)∧M

U(a)

|Φn(s;β0) −Φ(s;β0)|
Φ(s;β0)

λ0(s)ds

)3
6
x323(k+1)λ30(M)

Φ(M;β0)3
E

[
1En sup

s∈[0,M]

|Φn(s;β0) −Φ(s;β0)|
3

]

6
x323(k+1) λ30(M)ξ4

nΦ(M;β0)3
,
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where we have used (3.6.3). In order to bound the second term on the right
hand side of (3.6.14), note that on the event En,

sup
s∈R

|Φn(s; β̂n) −Φ(s;β0)| 6 sup
s∈R

|Φn(s; β̂n) −Φn(s;β0)|

+ sup
s∈R

|Φn(s;β0) −Φ(s;β0)|

6 |β̂n −β0| sup
s∈R

|D
(1)
n (s;β∗)|+

ξ4

n1/3

6

√
ξ2L+ ξ4
n1/3

.

(3.6.15)

In particular, for sufficiently large n we have

sup
s∈R

∣∣Φn(s; β̂n) −Φ(s;β0)
∣∣ 6 Φ(M;β0)/2,

which yields that, for s ∈ [0,M],

Φn(s; β̂n) > Φ(s;β0) −
1

2
Φ(M;β0) >

1

2
Φ(M;β0). (3.6.16)

Using (3.6.15), on the event En, for n sufficiently large, we can write

sup
s∈[0,M]

∣∣∣∣ 1

Φn(s; β̂n)
−

1

Φ(s;β0)

∣∣∣∣ 6 sup
s∈[0,M]

∣∣Φn(s; β̂n) −Φ(s;β0)
∣∣

Φn(s; β̂n)Φ(s;β0)

6
2

Φ2(M;β0)
sup

s∈[0,M]

∣∣Φn(s; β̂n) −Φ(s;β0)
∣∣

6 Cn−1/3,

for some C > 0. Consequently, for the second term in the right hand side
of (3.6.14) we obtain

E

 sup
y<M

y−U(a)∈[x2k,x2k+1)

1En

∣∣∣∣∣
∫y
U(a)

(
1

Φn(s; β̂n)
−

1

Φ(s;β0)

)
dHucn (s)

∣∣∣∣∣
3


6
C3

n
E

1En
(
1

n

n∑
i=1

∆i1{Ti∈[U(a),(U(a)+x2k+1)∧M)]}

)3 6
C3

n4
E
[
N3
]

,

where N is a binomial distribution with probability of success

γ = Huc((U(a) + x2k+1)∧M)) −Huc(U(a)) 6 sup
s∈[0,M]

|h(s)|x2k+1.
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Furthermore,

E
[
N3
]
= nγ(1− 3γ+ 3nγ+ 2γ2 − 3nγ2 +n2γ2) 6

7nγ , if nγ 6 1;

7n3γ3 , if nγ > 1.

Using Lemma 3.6.2 and the bound in (3.6.13), for the first probability on the
right hand side of (3.6.12), it follows that there exist K1,K2 > 0, such that
for all a > 0, n > 1 and x > 0,

P
({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
6 K1

i∑
k=0

x2k+1

nx424k
+K2

i∑
k=0

max

{
x2k+1

n3x626k
,
x323(k+1)

nx626k

}

6
2K1
nx3

∞∑
k=0

2−3k + max

{
2K2
n3x5

∞∑
k=0

2−5k,
8K2
nx3

∞∑
k=0

2−3k

}

6 Kmax
{
1

nx3
,
1

n3x5

}
.

(3.6.17)

We proceed with the second probability on the right hand side of (3.6.12).
We can assume x 6 U(a), because otherwise P

(
Ûn(a) 6 U(a) − x

)
= 0. We

have

P
({
Ûn(a) 6 U(a) − x

}
∩ En

)
6 P

({
inf

y∈[0,U(a)−x]

[
Λn(y) − ay−Λn(U(a)) + aU(a)

]
6 0

}
∩ En

)
.

Let i > 0 be such that U(a) ∈ [x2i, x2i+1). By a similar argument used to
obtain the bound (3.6.13), this probability is bounded by

4

i∑
k=0

(
c2x424k

)−1
E

 sup
y6U(a)

U(a)−y∈[x2k,x2k+1)

∣∣Bn(y) − Bn(U(a))
∣∣2


+ 8

i∑
k=0

(
c3x626k

)−1
E

 sup
y6U(a)

U(a)−y∈[x2k,x2k+1)

1En

∣∣Rn(y) − Rn(U(a))∣∣3
 .

(3.6.18)
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In the same way as in the first case, we also have

E

 sup
y6U(a)

U(a)−y∈[x2k,x2k+1)

1En

∣∣Rn(y) − Rn(U(a))∣∣3


6 K2max

{
x2k+1

n3
,
x323(k+1)

n

}
.

Exactly as in (3.6.17), Lemma 3.6.2 and (3.6.18) imply that

P
({
Ûn(a) 6 U(a) − x

}
∩ En

)
6 Kmax

{
1

nx3
,
1

n3x5

}
,

for some positive constant K. Together with (3.6.12) and (3.6.17), this finishes
the proof.

Lemma 3.6.4. Suppose that (A1)–(A2) hold. Let 0 < ε < M ′ < M < τH and
suppose that Huc, defined in (3.1.1), has a bounded derivative h on [0,M]. Let λ̃n
be the Grenander-type estimator of a nondecreasing baseline hazard rate λ0, which
is differentiable with λ ′0 bounded above and below by strictly positive constants. Let
En be the event from Lemma 3.2.1 and take ξ3 in (3.6.3) such that

0 < ξ3 <
1

8
min
{
(M−M ′)2, ε2

}
inf

t∈[0,τH]
λ ′0(t). (3.6.19)

Then, there exists a constant C such that, for n sufficiently large,

sup
t∈[ε,M ′]

E
[
n2/31En

(
λ0(t) − λ̃n(t)

)2]
6 C.

Proof. It is sufficient to prove that there exist some constants C1,C2 > 0,
such that for each n ∈N and each t ∈ (ε,M ′], we have

E
[
n2/31En

{
(λ̃n(t) − λ0(t))+

}2]
6 C1, (3.6.20)

E
[
n2/31En

{
(λ0(t) − λ̃n(t))+

}2]
6 C2. (3.6.21)
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Lets first consider (3.6.20). We will make use of the following result

E
[
n2/31En

{
(λ̃n(t) − λ0(t))+

}2]
= 2

∫∞
0

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
xdx

= 2

∫2η
0

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
xdx

+ 2

∫∞
2η

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
xdx

6 4η2 + 2
∫∞
2η

P
(
n1/31En(λ̃n(t) − λ0(t)) > x/2

)
xdx

6 4η2 + 4
∫∞
η

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
xdx

for a fixed η > 0. We distinguish between the cases a+ n−1/3x 6 λ0(M)

and a+ n−1/3x > λ0(M), where a = λ0(t). We prove that, in the first case,
there exist a positive constant C such that for all t ∈ (ε,M ′] and n ∈N,

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
6 C/x3,

for all x > η, and in the second case P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
= 0.

Then (3.6.20) follows immediately.

First, assume a+n−1/3x 6 λ0(M). By the switching relation, we get

P
(
n1/31En(λ̃n(t) − λ0(t)) > x

)
= P

({
λ̃n(t) > a+n

−1/3x
}
∩ En

)
= P

({
Ûn(a+n

−1/3x) < t
}
∩ En

)
.

Because a+ n−1/3x 6 λ0(M), we have U(a+ n−1/3x) > M > t. Further-
more, {Ûn(a + n−1/3x) < t} ⊂ {Ûn(a + n−1/3x) < M}. Hence, together
with Lemma 3.6.3, we can write

P
({
Ûn(a+n

−1/3x) < t
}
∩ En

)
6 P

({ ∣∣∣U(a+n−1/3x) − Ûn(a+n
−1/3x)

∣∣∣ > U(a+n−1/3x) − t
}

∩ En ∩
{
Ûn(a+n

−1/3x) < M
})

6 Kmax

{
1

n
(
U(a+n−1/3x) − t

)3 ,
1

n3
(
U(a+n−1/3x) − t

)5
}

6
C

x3
,

(3.6.22)
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because U(a+n−1/3x)− t = U ′(ξn)n−1/3x, for some ξn ∈ (a,a+n−1/3x),
where U ′(ξn) = λ ′0(λ

−1
0 (ξn))

−1 > 1/ supt∈[0,τH] λ
′
0(t) > 0.

Next, consider the case a+n−1/3x > λ0(M). Note that, we cannot argue
as in the previous case, because for a+ n−1/3x > λ0(M) we always have
U(a + n−1/3x) = M, so that we loose the dependence on x. However, if
n1/3(λ̃n(t) − λ0(t)) > x, then for each y > t, we have

Λ̃n(y) − Λ̃n(t) > λ̃n(t) (y− t) > (a+n−1/3x) (y− t),

where a = λ0(t). In particular for y = M̃ =M ′ + (M−M ′)/2, we obtain

P
{
n1/31En(λ̃n(t) − λ0(t)) > x

}
6 P

({
Λ̃n(M̃) − Λ̃n(t) >

(
a+n−1/3x

)
(M̃− t)

}
∩ En

)
6 P

({
Λ̃n(M̃) − Λ̃n(t) −

(
Λ0(M̃) −Λ0(t)

)
>

(
a+n−1/3x

)
(M̃− t) −

(
Λ0(M̃) −Λ0(t)

)}
∩ En

)

6 P

({
2 sup
s∈[0,M]

|Λ̃n(s) −Λ0(s)| >
(
a+n−1/3x− λ0(M̃)

)
(M̃− t)

}
∩ En

)
,

(3.6.23)

also using that Λ0(M̃) − Λ0(t) > λ0(M̃)(M̃ − t). Furthermore, since a +

n−1/3x > λ0(M), it follows from (3.6.19) that(
a+n−1/3x− λ0(M̃)

)
(M̃− t) >

1

4
(M−M ′)2 inf

x∈[0,τH]
λ ′0(x) > 2ξ3,

(3.6.24)
so that, by the definition of ξ3 in (3.6.3), the probability on the right hand
side (3.6.23) is zero. This concludes the proof of (3.6.20).

Next, we have to deal with (3.6.21). Arguing as in the proof of (3.6.20),
we obtain

E
[
n2/31En

{
(λ0(t) − λ̃n(t))+

}2]
6 η2 + 2

∫∞
η

P
(
n1/31En(λ0(t) − λ̃n(t)) > x

)
xdx,

for a fixed η > 0, where

P
(
n1/31En(λ0(t) − λ̃n(t)) > x

)
= P

({
Ûn(a−n

−1/3x) > t
}
∩ En

)
,
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with a = λ0(t). First of all, we can assume that a− n−1/3x > 0, because
otherwise P{λ̃n(t) 6 a−n−1/3x} = 0. Since t = U(a), as before, we write

P
({
Ûn(a−n

−1/3x) > t
}
∩ En

)
6 P

({∣∣∣Ûn(a−n−1/3x) −U(a−n−1/3x)
∣∣∣ > t−U(a−n−1/3x)

}
∩ En

)
.

In order to apply Lemma 3.6.3, we intersect with the event Ûn(a−n−1/3x) 6
M. Note that

P
({
Ûn(a−n

−1/3x) > M
}
∩ En

)
6 P

({
λ̃n(M) 6 a−n−1/3x

}
∩ En

)
= 0.

This can be seen as follows. If λ̃n(M) 6 a− n−1/3x, then for each y < M,
we have

Λ̃n(M) − Λ̃n(y) 6 λ̃n(M)(M− y) 6 (a−n−1/3x)(M− y).

In particular for y = M̃ =M ′ + (M−M ′)/2, similar to (3.6.23), we obtain

P
({
λ̃n(M) 6 a−n−1/3x

}
∩ En

)
6

P

({
2 sup
s∈[0,M]

|Λ̃n(s) −Λ0(s)| >
(
−a+n−1/3x+ λ0(M̃)

) (
M− M̃

)}
∩ En

)
.

Because a = λ0(t) 6 λ0(M
′), we can argue as in (3.6.24) and conclude that

the probability on the right hand side is zero. It follows that

P
({
Ûn(a−n

−1/3x) > t
}
∩ En

)
6 P

({∣∣∣Ûn(a−n−1/3x) −U(a−n−1/3x)
∣∣∣ > t−U(a−n−1/3x)

}
∩ En ∩

{
Ûn(a−n

−1/3x) 6M
})

6 Kmax

{
1

n
(
t−U(a−n−1/3x)

)3 ,
1

n3
(
t−U(a−n−1/3x)

)5
}

.

To bound the right hand side, we have to distinguish between the cases
a− n−1/3x > λ0(0) and a− n−1/3x 6 λ0(0). If a− n−1/3x > λ0(0), then
the right hand side is bounded by K/x3, because t − U(a − n−1/3x) =

U ′(ξn)n−1/3x, for some ξn ∈ (a−n−1/3x,a), where

U ′(ξn) = λ
′
0(λ

−1
0 (ξn))

−1 >
1

supt∈[0,τH] λ
′
0(t)

> 0.
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Otherwise, if a−n−1/3x 6 λ0(0), then we are done because then

P
(
n1/31En(λ0(t) − λ̃n(t)) > x

)
= 0.

This can be seen as follows. When a−n−1/3x 6 λ0(0), then for each y < t,
we have

Λ̂n(t) − Λ̂n(y) 6 Λ̂n(t)(t− y) 6 (a−n−1/3x)(t− y).

In particular, for y = ε ′ = ε/2, we obtain

P
(
n1/31En

(
λ0(t) − λ̃n(t)

)
> x
)

6 P
({
Λ̂n(t) − Λ̂n(ε

′) 6
(
a−n−1/3x

) (
t− ε ′

)}
∩ En

)
6 P

({
Λ̂n(t) − Λ̂n(ε

′) −
(
Λ0(t) −Λ0(ε

′)
)

6
(
a−n−1/3x

)
(t− ε ′) −

(
Λ0(t) −Λ0(ε

′)
)}
∩ En

)

6 P

({
2 sup
s∈[0,M]

|Λ̂n(s) −Λ0(s)| >
(
−a+n−1/3x+ λ0(ε

′)
) (
t− ε ′

)}
∩ En

)
.

Because a−n−1/3x 6 λ0(0), we can argue as in (3.6.24),(
−a+n−1/3x+ λ0(ε

′)
)
(t− ε ′) >

(
λ0(ε

′) − λ0(0)
) (
ε− ε ′

)
>
1

4
ε2 inf
x∈[0,τH]

λ ′0(x) > 2ξ3.
(3.6.25)

and conclude that the probability on the right hand side is zero. This con-
cludes the proof of (3.6.21).

We also need a slightly stronger version of Lemma 3.6.4 which is used to
prove Lemma 3.2.4 and to show that the distance between the jump times
is of smaller order than b (see Lemma 3.6.6). Note that, in order to have
the uniform result in (3.6.26), we loose a factor n2/9 with respect to the
bound in Lemma 3.6.4. This might not be optimal, but it is sufficient for our
purposes.

Lemma 3.6.5. Suppose that (A1)–(A2) hold. Let 0 < ε < M ′ < M < τH and
suppose that Huc, defined in (3.1.1), has a bounded derivative h on [0,M]. Let λ̃n
be the Grenander-type estimator of a nondecreasing baseline hazard rate λ0, which
is differentiable with λ ′0 bounded above and below by strictly positive constants. Let
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En be the event from Lemma 3.2.1 and assume that ξ3 satisfies (3.6.19). Then, there
exists a constant C > 0, such that, for each n ∈N,

E

[
n4/91En sup

t∈(ε,M ′]

(
λ0(t) − λ̃n(t)

)2]
6 C. (3.6.26)

Proof. We decompose (ε,M ′] in m intervals (ck, ck+1], where

ck = ε+ k
M ′ − ε

m
, for k = 0, 1, . . . ,m,

and m = (M ′ − ε)n2/9. Then, we have

sup
t∈(ε,M ′]

(
λ0(t) − λ̃n(t)

)2
= max
06k6m−1

sup
t∈(ck,ck+1]

(
λ0(t) − λ̃n(t)

)2 .

On the other hand, the fact that λ0 is differentiable with bounded derivative
implies that

sup
t∈(ck,ck+1]

(
λ0(t) − λ̃n(t)

)2
6 2 sup

t∈(ck,ck+1]

(
λ0(t) − λ0(ck+1)

)2
+ 2 sup

t∈(ck,ck+1]

(
λ0(ck+1) − λ̃n(t)

)2
6 2

(
sup

u∈[0,M ′]
λ ′0(u)

)2 (
ck − ck+1

)2
+ 2max

{(
λ0(ck+1) − λ̃n(ck)

)2,
(
λ0(ck+1) − λ̃n(ck+1)

)2}
6 2

(
sup

u∈[0,M ′]
λ ′0(u)

)2
(M ′ − ε)2

m2

+ max
06k6m

(
λ0(ck) − λ̃n(ck)

)2
+ max
06k6m−1

(
λ0(ck+1) − λ0(ck)

)2.

Here we used that λ̃n is non-decreasing, and therefore

sup
t∈(ck,ck+1]

(
λ0(ck+1) − λ̃n(t)

)2
is achieved either at t = ck or t = ck+1, for k = 0, 1, . . . ,m− 1. Hence,

sup
t∈(ε,M ′]

(
λ0(t) − λ̃n(t)

)2
6 4 max

06k6m

(
λ0(ck) − λ̃n(ck)

)2
+ 6

(
sup

u∈[0,M ′]
λ ′0(u)

)2
(M ′ − ε)2

m2

6 4 max
06k6m

(
λ0(ck) − λ̃n(ck)

)2
+C1n

−4/9,
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where C1 = 6
(

supu∈[ε,M ′] λ
′
0(u)

)2. Consequently, using Lemma 3.6.4, we
derive

E

[
n4/91En sup

t∈(ε,M ′]

(
λ0(t) − λ̃n(t)

)2]

6 4E

[
n4/91En max

06k6m

(
λ0(ck) − λ̃n(ck)

)2]
+C1

6 4n−2/9
m∑
k=0

E
[
n2/31En

(
λ0(ck) − λ̃n(ck)

)2]
+C1

6 4
(
M ′ − ε+ 1

)
C+C1.

This concludes the proof of (3.6.26).

Lemma 3.6.6. Under the assumption of Lemma 3.6.5, if τ1, . . . , τm are jump times
of λ̃n on the interval [ε,M ′] then

max
i=1,...,m−1

|τi − τi+1| = OP(n
−2/9).

Proof. Since 1Ecn maxi=1,...,m−1 |τi − τi+1| = oP(1), it is sufficient to con-
sider 1En maxi=1,...,m−1 |τi − τi+1|. By the Markov inequality we have

P

(
n2/91En max

i=1,...,m−1
|τi − τi+1| > K

)
6

1

K2
E

[
n4/91En max

i=1,...,m−1
|τi − τi+1|

2

]
.

(3.6.27)

From the mean value theorem and the boundedness of λ ′0, it follows that,

|τi − τi+1| 6 C|λ0(τi) − λ0(τi+1)|, i = 1, . . . ,m− 1.

Now we consider three possible cases separately. First, if λ̃n(τi+1) < λ0(u)
for each u ∈ (τi, τi+1], then

|λ0(τi) − λ0(τi+1)| 6 |λ0(τi+1) − λ̃n(τi+1)|

and as a result
|τi − τi+1| 6 C|λ0(τi+1) − λ̃n(τi+1)|.

On the other hand, if λ̃n(τi+1) > λ0(u) for each u ∈ (τi, τi+1], then

|λ0(τi) − λ0(τi+1)| 6 lim
t↓τi

|λ0(t) − λ̃n(t)|

and consequently

|τi − τi+1| 6 C lim
t↓τi

|λ0(t) − λ̃n(t)|.
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The last case is when λ̃n(s) > λ0(s) for some s ∈ (τi, τi+1]. Then we have

|λ0(τi) − λ0(τi+1)| 6 |λ0(τi+1) − λ̃n(τi+1)|+ lim
t↓τi

|λ0(t) − λ̃n(t)|

and it follows that

|τi − τi+1| 6 C

{
|λ0(τi+1) − λ̃n(τi+1)|+ lim

t↓τi
|λ0(t) − λ̃n(t)|

}
.

In other words, it always holds

|τi − τi+1| 6 2C sup
t∈[ε,M ′]

|λ0(t) − λ̃n(t)|. (3.6.28)

Therefore, (3.6.27) and Lemma 3.6.5 yield

P

(
n2/91En max

i=1,...,m−1
|τi − τi+1| > K

)
6
4C2

K2
E

[
n4/91En sup

t∈[ε,M ′]
|λ0(t) − λ̃n(t)|

]

6
C ′

K
,

which concludes the proof.

Lemma 3.6.7. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τh). Let 0 < ε < x <

M ′ < M < τH and suppose that Huc, defined in (3.1.1), has a bounded derivative
h on [0,M]. Let λ̃n be the Grenander-type estimator of a nondecreasing baseline
hazard rate λ0, which is differentiable with λ ′0 bounded above and below by strictly
positive constants. Let En be the event from Lemma 3.2.1 and assume that ξ3
satisfies (3.6.19). Let jn1 and jn2 be defined as in (3.2.14). Then

1En

∫τjn2
τjn1

(λ0(u) − λ̃n(u))
2du = Op(bn

−2/3).

Proof. Define the eventAn = {|(t−b)−τjn1 | < b∧|τjn2 −(t+b)| < b}. From
the definition of τjn1 and τjn2 and Lemma 3.6.6, it follows that P(Acn) → 0.
We start by writing

P

(
b−1n2/31En

∫τjn2
τjn1

(λ0(u) − λ̃n(u))
2 du > K

)

6 P

(
b−1n2/31En∩An

∫τjn2
τjn1

(λ0(u) − λ̃n(u))
2 du > K

)
+ P(Acn)

6 P

(
b−1n2/31En

∫t+2b
t−2b

(λ0(u) − λ̃n(u))
2 du > K

)
+ o(1).
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Moreover, Markov’s inequality and Fubini, yield

P

(
b−1n2/31En

∫t+2b
t−2b

(λ0(u) − λ̃n(u))
2 du > K

)

6
1

K
E

[
b−1n2/31En

∫t+2b
t−2b

(λ0(u) − λ̃n(u))
2 du

]

6
2

K
sup

u∈[t−2b,t+2b]
E
[
n2/31En(λ0(u) − λ̃n(u))

2
]

.

For n sufficiently large [t−2b, t+2b] ⊂ [ε,M ′], so that according to Lemma 3.6.4,
the right hand side is bounded by 2C/K, for some constant C > 0. This
proves the lemma.

Proof of Lemma 3.2.3. Take t < M < τH and n sufficiently large such that
t+ b 6M. With an,tΦn defined in (3.2.11), we have∫ {

θn,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ, z)

= 1En

∫
1[τjn1 ,τjn2 ]

(u)δ

(
an,tΦn(u; β̂n)
Φn(u; β̂n)

− an,t(u)

)
dP(u, δ, z)

− 1En

∫
eβ̂
′
nz

∫u
0

(
Ψn,t(v) − an,t(v)

)
d Λ̂n(v)dP(u, δ, z)

Using Fubini, the definition (3.1.2) of Φ, and the fact that an,tΦn and an,t
are zero outside [τjn1 , τjn2 ], we obtain∫ {

θn,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ, z)

= 1En

∫τjn2
τjn1

(
an,tΦn(u; β̂n)
Φn(u; β̂n)

− an,t(u)

)
dHuc(u)

− 1En

∫τjn2
τjn1

(
an,tΦn(v; β̂n)
Φn(v; β̂n)

− an,t(v)

)
Φ(v; β̂n)dΛ̂n(v).

(3.6.29)

Write Φ̂n(u) = Φn(u; β̂n), Φ̂(u) = Φ(u; β̂n), and Φ0(u) = Φ(u;β0). Then
the right hand side can be written as

1En

∫τjn2

τjn1

an,t(Ân(u))Φ̂n(Ân(u)) − an,t(u)Φ̂n(u)

Φ̂n(u)

(
Φ0(u)λ0(u) − Φ̂(u)λ̃n(u)

)
du
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where Ân(u) is defined in (3.2.12). The Cauchy-Schwarz inequality then
yields ∣∣∣∣∫ {θn,t(u, δ, z) − θn,t(u, δ, z)

}
dP(u, δ, z)

∣∣∣∣
6 1En

∥∥∥∥∥ (an,t ◦ Ân)(Φ̂n ◦ Ân) − an,tΦ̂n

Φ̂n
1[τjn1 ,τjn2 ]

∥∥∥∥∥
L2

×
∥∥∥(Φ0λ0 − Φ̂λ̃n)1[τjn1 ,τjn2 ]

∥∥∥
L2

.

(3.6.30)

Furthermore,

1En

∥∥∥∥∥ (an,t ◦ Ân)(Φ̂n ◦ Ân) − an,tΦ̂n

Φ̂n
1[τjn1 ,τjn2 ]

∥∥∥∥∥
L2

6 21En

∫τjn2
τjn1

(
kb(t− Ân,t(u))

Φ0(Ân(u))
−
kb(t− u)

Φ0(u)

)2
du

+ 21En

∫τjn2
τjn1

(
kb(t− Ân(u))

Φ0(Ân(u))

)2 (Φ̂n(Ân(u)) − Φ̂n(u))2
Φ̂n(u)2

du

Then, using the boundedness of k ′, dΦ(x;β0)/dx and 1/Φ(x;β0) on [0, τj2n ] ⊆
[0,M], we obtain

1En

∥∥∥∥∥ (an,t ◦ Ân)(Φ̂n ◦ Ân) − an,tΦ̂n

Φ̂n
1[τjn1 ,τjn2 ]

∥∥∥∥∥
L2

6 21En

∫τjn2
τjn1

(
d

dy
kb(t− y)

Φ0(y)

∣∣∣∣
y=ξu

)2 (
Ân(u) − u

)2
du

+ 1En
c1

b2Φ̂n(M)2

∫τjn2
τjn1

(
Φ̂n(Ân(u)) − Φ̂n(u)

)2
du

6 1En
c2
b4

∫τjn2
τjn1

(
Ân(u) − u

)2
du

+ 1En
c1

b2Φ̂n(M)2

∫τjn2
τjn1

(
Φ̂n(Ân(u)) − Φ̂n(u)

)2
du,

(3.6.31)

for some constants c1, c2 > 0. Then, since λ0(u) − λ0(Ân(u)) = λ ′0(ξ)(u−

Ân(u)) and λ ′0 is bounded and strictly positive on [0,M] ⊇ [τj1n , τj2n ], there
exists a constant K > 0 such that

|u− Ân(u)| 6 K |λ0(u) − λ0(Ân(u))|.
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If u ∈ [τi, τi+1) and Ân(u) < τi+1, then λ̃n(u) = λ̃n(Ân(u)) and we obtain

|u− Ân(u)| 6 K|λ0(u) − λ̃n(u)|+K|λ̃n(Ân(u)) − λ0(Ân(u))|

6 2K|λ0(u) − λ̃n(u)|.
(3.6.32)

This holds also in the case Ân(u) = τi+1, simply because |λ0(u)−λ0(Ân(u))| 6
|λ0(u)− λ̃n(u)|. As a result, using Lemma 3.6.7, for the first term on the right
hand side of (3.6.31), we derive that

1En
1

b4

∫τjn2
τjn1

(
Ân(u) − u

)2
du 6

C

b4
1En

∫τjn2
τjn1

(
λ0(u) − λ̃n(u)

)2 du

= Op(b
−3n−2/3).

(3.6.33)

For the second term on the right hand side of (3.6.31), we find

∣∣Φn(Ân(u); β̂n) −Φn(u; β̂n)
∣∣

6 2 sup
x∈R

∣∣Φn(x; β̂n) −Φn(x;β0)
∣∣+ ∣∣Φ(Ân(u);β0) −Φ(u;β0)

∣∣
+ 2 sup

x∈R

|Φn(x;β0) −Φ(x;β0)|

6 2|β̂n −β0| sup
x∈R

∣∣D(1)
n (x;β∗)

∣∣+ |Φ ′(ξ;β0)||Ân(u) − u|

+ 2 sup
x∈R

|Φn(x;β0) −Φ(x;β0)|,

which, using (3.6.2), (3.1.5) and |β̂n − β0| = Op(n
−1/2) (see Theorem 3.2

in Tsiatis, 1981), leads to

b−21En

∫τjn2
τjn1

(
Φn(Ân(u); β̂n) −Φn(u; β̂n)

)2
du

6 8OP(b
−1)1En |β̂n −β0|

2 sup
x∈R

∣∣D(1)
n (x;β∗)

∣∣2
+ 2b−21En sup

s∈[ε,M]

Φ ′(s;β0)
∫τjn2
τjn1

(
Ân(u) − u

)2
du

+ 8OP(b
−1) sup

x∈R

|Φn(x;β0) −Φ(x;β0)|2

= Op(b
−1n−1) +Op(b

−1n−2/3) +Op(b
−1n−1) = Op(b

−1n−2/3).
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Consequently, from (3.6.31) together with (3.6.16), for the first term on the
right hand side of (3.6.30), we obtain

1En

∥∥∥∥∥ (an,t ◦ Ân)(Φ̂n ◦ Ân) − an,tΦ̂n

Φ̂n
1[τjn1 ,τjn2 ]

∥∥∥∥∥
2

L2

= Op(b
−3n−2/3) +Op(b

−1n−2/3)

= Op(b
−3n−2/3).

For the second term on the right hand side of (3.6.30), we first write∥∥∥(Φ0λ0 − Φ̂λ̃n)1[τjn1 ,τjn2 ]

∥∥∥
L2

6
∥∥∥(Φ0 − Φ̂) λ01[τjn1 ,τjn2 ]

∥∥∥
L2

+
∥∥∥(λ0 − λ̃n) Φ̂1[τjn1 ,τjn2 ]

∥∥∥
L2

(3.6.34)

On the event En, we find

1En

∥∥∥(Φ0 − Φ̂) λ01[τjn1 ,τjn2 ]

∥∥∥2
L2

6 2OP(b)1En |β̂n −β0|
2 sup
x∈R

∣∣D(1)
n (x;β∗)

∣∣2 sup
u∈[0,M]

λ0(u)

= Op(bn
−1),

and

1En

∥∥∥(λ0 − λ̃n) Φ̂1[τjn1 ,τjn2 ]

∥∥∥2
L2

6 Φ(0, β̂n)1En

∫τjn2
τjn1

(
λ0(u) − λ̃n(u)

)2 du

= Op(bn
−2/3),

due to Lemma 3.6.7. It follows that

1En

∥∥∥(Φ0λ0 − Φ̂λ̃n)1[t−b,t+b]

∥∥∥
L2

= Op(b
1/2n−1/3).

Together with (3.6.30), this concludes the proof.

Proof of Lemma 3.2.4. Let n be sufficiently large such that t+ b 6M ′ < M <
τH. Denote by Rn the left hand side of (3.2.21). Write Gn =

√
n(Pn − P)

and decompose Rn = Rn1 + Rn2, where

Rn1 =
1√
n
1En

∫ δ1[τjn1
,τjn2

](u)

Φn(u; β̂n)

(
ān,tΦ̄n(u; β̂n) − an,t(u)Φn(u; β̂n)

)
dGn(u, δ, z),

Rn2 =
1√
n
1En

∫
1{u>τjn1

}

[
eβ̂

′
nz

∫u∧τjn2

τjn1

ān,tΦ̄n(v; β̂n)
Φn(v; β̂n)

dΛ̂n(v)

− eβ
′
0z

∫u∧(t+b)

t−b
an,t(v)dΛ0(v)

]
dGn(u, δ, z).
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Choose η > 0. We prove separately that there exists ν > 0, such that

lim sup
n→∞ P

(
b3/2n13/18|Rn1| > ν

)
6 η

lim sup
n→∞ P

(
n1/2|Rn2| > ν

)
6 η.

(3.6.35)

We consider the following events.

An1 =
{
λ̃n(M) > K1

}
,

An2 =

{
sup

s∈[ε,M ′]

∣∣λ0(s) − λ̃n(s)∣∣ > K2n−2/9

}
,

(3.6.36)

where K1,K2 > 0, and let An = An1 ∪An2. Since λ̃n(M) = Op(1) we can
choose K1 > 0, such that P(An1) 6 η/3 and from Lemma 3.6.5 we find that
we can choose K2 > 0, such that P(An2) 6 η/3, so that P(An) 6 2η/3. First
consider Rn1. Since

P
(
b3/2n13/18|Rn1| > ν

)
6 P (An) + P

({
b3/2n13/18|Rn1| > ν

}
∩Acn

)
6 2η/3+ b3/2n13/18ν−1E

[
|Rn1|1Acn

]
,

(3.6.37)

it suffices to show that there exists ν > 0, such that

b3/2n13/18ν−1E
[
|Rn1|1Acn

]
6 η/3,

for all n sufficiently large. Write

w(u) =
1

Φn(u; β̂n)

(
an,t(Ân(u))Φn(Ân(u); β̂n) − an,t(u)Φn(u; β̂n)

)
=
an,t(Ân(u))

Φn(u; β̂n)

(
Φn(Ân(u); β̂n) −Φ(Ân(u);β0)

)
+

an,t(u)

Φn(u; β̂n)

(
Φ(u;β0) −Φn(u; β̂n)

)
+

1

Φn(u; β̂n)

(
an,t(Ân(u))Φ(Ân(u);β0) − an,t(u)Φ(u;β0)

)
.

We will argue that the function Wn = b2n2/9w is uniformly bounded and
of bounded variation. Because of (3.6.15), we have that

n1/3(Φn(Ân(u); β̂n) −Φ(Ân(u);β0)) and n1/3(Φ(u;β0) −Φn(u; β̂n))

are uniformly bounded. Moreover, they are of bounded variation, as be-
ing the difference of two monotone functions. Similarly, 1/Φn(u; β̂n) is of
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bounded variation and on the event En it is also uniformly bounded. Fur-
thermore, by the definition of an,t, we have

an,t(Ân(u))Φ(Ân(u);β0) − an,t(u)Φ(u;β0) = kb
(
t− Ân(u)

)
− kb(t− u).

This is a function of bounded variation, such that multiplied by b2n2/9 it is
uniformly bounded on the event Acn, because using (3.6.32), we obtain∣∣kb (t− Ân(u))− kb(t− u)∣∣ 6 b−2|Ân(u) − u| sup

x∈[−1,1]
|k ′(x)|

6 2Kb−2|λ̃n(u) − λ0(u)| sup
x∈[−1,1]

|k ′(x)|

6 b−2n−2/92KK2 sup
x∈[−1,1]

|k ′(x)|.

(3.6.38)

Finally, ban,t(u) = bkb(t− u)/Φ(u;β0) is also a function of bounded vari-
ation, as being the product of a function of bounded variation bkb(t− u)
with the monotone function 1/Φ(u;β0), and it is uniformly bounded. Then,
since ban,t(Ân(u)) is the composition of an increasing function with a func-
tion of bounded variation that is uniformly bounded, it is also a function
of bounded variation and uniformly bounded. As a result, being the sum
and product of functions of bounded variation that are uniformly bounded,
Wn = b2n2/9w belongs to the class BK̃ of functions of bounded varia-
tion, uniformly bounded by some constant K̃. Moreover, from Lemma 3.6.6,
it follows that on the event Acn2 the distance between the jump times of
λ̃n on [ε,M ′] is of smaller order than b. In particular, this means that,
|τjn1 − (t− b)| < b and |τjn2 − (t+ b)| < b. Consequently, on Acn, it holds

Rn1 = n−1/21En

∫
δ1[t−2b,t+2b](u)w(u)d

√
n(Pn − P)(u, δ, z)

= b−2n−13/181En

∫
δ1[t−2b,t+2b](u)Wn(u)d

√
n(Pn − P)(u, δ, z).

Let BK̃ be the class of functions of bounded variation on [0,M], that are uni-
formly bounded by K̃ > 0, and let Gn = {ζB,n : B ∈ BK̃}, where ζB,n(u, δ) =
δ1[t−2b,t+2b](u)B(u). Then, δ1[t−2b,t+2b]Wn is a member of the class Gn,
which has envelope Fn(u, δ) = K̃δ1[t−2b,t+2b](u). Furthermore, if J(δ,Gn)
is the corresponding entropy-integral (see Section 2.14 in van der Vaart and
Wellner, 1996), then according to Lemma A.1.1, J(δ,Gn) 6

∫δ
0

√
1+C/εdε,
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for some C > 0. Consequently, together with Theorem 2.14.1 in van der
Vaart and Wellner, 1996, we obtain that

E
[
|Rn1|1Acn

]
6 b−2n−13/18E sup

ζ∈Gn

∣∣∣∣∫ ζB,n(u, δ, z)d
√
n(Pn − P)(u, δ, z)

∣∣∣∣
6 KJ(1,Gn)‖Fn‖L2(P)b

−2n−13/18

6 K ′ (Huc(t+ 2b) −Huc(t− 2b))1/2 b−2n−13/18

6 K ′′b−3/2n−13/18,

because Huc is absolutely continuous. As a result, for sufficiently large ν

b3/2n13/18ν−1E
[
|Rn1|1Acn

]
6
K ′′

ν
6 η/3.

This proves the first part of (3.6.35).

We proceed with Rn2. Similar to (3.6.37),

P
(
n1/2|Rn2| > ν

)
6 2η/3+n1/2ν−1E

[
|Rn2|1Acn

]
. (3.6.39)

and it suffices to show that there exists ν > 0, such that

n1/2ν−1E
[
|Rn2|1Acn

]
6 η/3,

for all n sufficiently large. We write

n1/2Rn2 = 1En

∫ (
eβ̂
′
nzr1,n(u) − eβ

′
0zr2,n(u)

)
d
√
n(Pn − P)(u, δ, z),

where

r1,n(u) = 1{u>τjn1 }

∫u∧τjn2
τjn1

an,t(Ân(v))

Φn(v; β̂n)
Φn(Ân(v); β̂n)λ̃n(v)dv,

r2,n(u) = 1{u>t−b}

∫u∧(t+b)

t−b
an,t(v) λ0(v)dv,

are both monotone functions, uniformly bounded by some constant C on
the event Acn ∩ En. Let MC be the class of monotone functions bounded
uniformly by C > 0 and let Gn = {ζr,β(u, z) : r ∈MC,β ∈ RP, |β−β0| 6 ξ2},
where ξ2 is chosen as in (3.6.3) and ζr,β(u, z) = r(u)eβ

′z. Then eβ̂
′
nzr1,n(u)

is a member of the class Gn, which has envelope

Fn(u, z) = C exp


p∑
j=1

(β0,j − σn)zj ∨ (β0,j + σn)zj

 ,
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with σn =
√
ξ2n−2/3 is the envelope of Gn. If J[ ](δ,Gn,L2(P)) is the brack-

eting integral (see Section 2.14 in van der Vaart and Wellner, 1996), then
according to Lemma A.1.2, J[ ](δ,Gn,L2(P)) 6

∫δ
0

√
1+C/εdε, for some

C > 0. Hence, together with Theorem 2.14.2 in van der Vaart and Wellner,
1996, we obtain

E

[∣∣∣∣1Acn∩En ∫ eβ̂
′
nzr1,n(u)d

√
n(Pn − P)(u, δ, z)

∣∣∣∣]
6 E sup

ζ∈Gn

∣∣∣∣∫ ζr,β(u, z)d
√
n(Pn − P)(u, δ, z)

∣∣∣∣
6 KJ[ ](1,Gn,L2(P))‖Fn‖L2(P) 6 K

′,

for some K ′ > 0. We conclude that,

ν−1E

[∣∣∣∣1Acn∩En ∫ eβ̂
′
nzr1,n(u)d

√
n(Pn − P)(u, δ, z)

∣∣∣∣] 6 K ′

ν
6 η/6,

for sufficiently large ν. In the same way, it can also be proved

ν−1E

[∣∣∣∣1Acn∩En ∫ eβ0zr2,n(u)d
√
n(Pn − P)(u, δ, z)

∣∣∣∣] 6 K

ν
6 η/6

for sufficiently large ν, concluding the proof of (3.6.39) and therefore the
second part of (3.6.35).

3.6.2 Proofs for Section 3.3

Proof of Lemma 3.3.1. We start by writing

`sβ(λ0) =
1

n

n∑
i=1

∆i

∫∞
0

log λ0(t)kb(t− Ti)dt

−
1

n

n∑
i=1

eβ
′Zi

∫∞
0

(∫t
0
λ0(u)du

)
kb(t− Ti)dt

=

∫∞
0

log λ0(t)

(
1

n

n∑
i=1

∆ikb(t− Ti)

)
dt

−

∫∞
0
λ0(u)

(
1

n

n∑
i=1

eβ
′Zi

∫∞
u
kb(t− Ti)dt

)
du,
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which is equal to∫∞
0

{
vn(t) log λ0(t) −wn(t;β)λ0(t)

}
dt

=

∫∞
0

{
vn(t)

wn(t;β)
log λ0(t) − λ0(t)

}
wn(t;β)dt,

with vn and wn defined in (3.3.3). Maximizing the right hand side over
nondecreasing λ0 is equivalent to minimizing∫

∆Φ

(
vn(t)

wn(t;β)
, λ(t)

)
wn(t;β)dt (3.6.40)

over nondecreasing λ, where ∆Φ(u, v) = Φ(u) −Φ(v) − (u− v)φ(v), with
Φ(u) = u logu. Theorem 1 in Groeneboom and Jongbloed, 2010 provides a
characterization of the minimizer λ̂sn(t;β) of (3.6.40), and hence of the max-
imizer of `sβ. It is the unique solution of a generalized continuous isotonic
regression problem, i.e., it is continuous and it is the minimizer of

ψ(λ) =
1

2

∫ (
λ(t) −

vn(t)

wn(t;β)

)2
wn(t;β)dt,

over all nondecreasing functions λ and can be described as the slope of the
GCM of the graph defined by (3.3.4).

Proof of Lemma 3.3.2. It is enough to prove that for an arbitrarily fixed ε > 0
and for sufficiently large n

P
(
λnaive
n (t) = λISn (t), for all t ∈ [`,M]

)
> 1− ε.

Recall that λISn (t) is defined as the slope of the greatest convex minorant{(
Xn(t), Ŷn(t)

)
, t ∈ [0, τ̂]

}
of the graph

{(
Xn(t), Yn(t))

)
, t ∈ [0, τ̂]

}
. We con-

sider Yn on the interval [`,M] and define the linearly extended version of Yn
on [0, τ̂] by

Y∗n(t) =


Yn(`) +

(
Xn(t) −Xn(`)

)
λnaive
n (`), for t ∈ [0, `),

Yn(t), for t ∈ [`,M],

Yn(M) +
(
Xn(t) −Xn(M)

)
λnaive
n (M), for t ∈ (M, τ̂].

It suffices to prove that, for sufficiently large n,

P
({(
Xn(t), Y∗n(t)

)
: t ∈ [0, τ̂]

}
is convex

)
> 1− ε/2, (3.6.41)

and
P (Y∗n(t) 6 Yn(t), for all t ∈ [0, τ̂]) > 1− ε/2. (3.6.42)
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Indeed, if (3.6.41) and (3.6.42) hold, then with probability greater than or
equal to 1− ε, the curve

{(
Xn(t), Y∗n(t)

)
: t ∈ [0, τ̂]

}
is a convex curve lying

below the graph
{(
Xn(t), Yn(t)

)
: t ∈ [0, τ̂]

}
, with Y∗n(t) = Yn(t) for all

t ∈ [`,M]. Hence, Yn(t) = Y∗n(t) 6 Ŷn(t) 6 Yn(t), for all t ∈ [`,M]. It
follows that, for sufficiently large n,

P

(
λnaive
n (t) =

dYn(t)
dXn(t)

=
dŶn(t)
dXn(t)

= λISn (t), for all t ∈ [`,M]

)
> 1− ε.

To prove (3.6.41), define the event

An =
{
λnaive
n is increasing on [`− η1,M+ η2]

}
,

for η1 ∈ (0, `) and η2 ∈ (0, τ̂ −M). Note that on the intervals [0, `) and
(M, τ̂], the curve

{(
Xn(t), Y∗n(t)

)
: t ∈ [0, τ̂]

}
is the tangent line of the graph{(

Xn(t), Yn(t)
)
: t ∈ [0, τ̂]

}
at the points

(
Xn(`), Yn(`)

)
and

(
Xn(M), Yn(M)

)
.

As a result, on the event An the curve is convex, so that together with con-
dition (c), for sufficiently large n

P
({(
Xn(t), Y∗n(t)

)
: t ∈ [0, τ̂]

}
is convex

)
> P(An) > 1− ε/2.

To prove (3.6.42), we split the interval [0, τ̂] in five different intervals I1 =

[0, `−η1), I2 = [`−η1, `), I3 = [`,M], I4 = (M,M+η2], and I5 = (M+η2, τ̂],
and show that

P (Y∗n(t) 6 Yn(t), for all t ∈ Ii) > 1− ε/10, i = 1, . . . , 5. (3.6.43)

For t ∈ I3, Y∗n(t) = Yn(t) and thus (3.6.43) is trivial. For t ∈ I2, by the mean
value theorem,

Yn(t) − Yn(`) =
(
Xn(t) −Xn(`)

)
λnaive
n (ξt),

for some ξt ∈ [t, `]. Thus, since Xn(t) 6 Xn(`) according to condition (a),

P (Y∗n(t) 6 Yn(t), for all t ∈ I2)

= P
((
Xn(t) −Xn(`)

)(
λnaive
n (ξt) − λ

naive
n (`)

)
> 0, for all t ∈ I2

)
= P

((
λnaive
n (ξt) − λ

naive
n (`)

)
6 0, for all t ∈ I2

)
> P(An) > 1− ε/10,

(3.6.44)

for n sufficiently large, according to condition (c). The argument for t ∈ I4 is
exactly the same. Furthermore, making use of condition (d), for each t ∈ I1,
we obtain

Y0(t) − Y0(`) − λ0(`)
(
X0(t) −X0(`)

)
=

∫`
t

(
λ0(`) − λ0(u)

)
dX0(u)

>
∫`
`−η1

(
λ0(`) − λ0(u)

)
dX0(u).
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This implies that

Yn(t) − Y
∗
n(t) = Yn(t) − Yn(`) −

(
Xn(t) −Xn(`)

)
λnaive
n (`)

> Yn(t) − Y0(t) + Y0(`) − Yn(`) + λ0(`)
(
X0(t) −Xn(t)

)
+ λ0(`)

(
Xn(`) −X0(`)

)
+
(
λnaive
n (`) − λ0(`)

)(
Xn(`) −Xn(t)

)
+

∫`
`−η1

(
λ0(`) − λ0(u)

)
dX0(u)

> −2 sup
s∈[0,`]

|Yn(s) − Y0(s)|− 2λ0(`) sup
s∈[0,`]

|Xn(s) −X0(s)|

− 2|λnaive
n (`) − λ0(`)| sup

s∈[0,`]
|Xn(s)|

+

∫`
`−η1

(
λ0(`) − λ0(u)

)
dX0(u).

According to conditions (b) and (c), the first three terms on the right hand
side tend to zero in probability. This means that the probability on the left
hand side of (3.6.43) for i = 1, is bounded from below by

P

(
Zn 6

∫`
`−η1

(
λ0(`) − λ0(u)

)
dX0(u)

)
,

where Zn = op(1). This probability is greater than 1−ε/10 for n sufficiently
large, since∫`

`−η1

(
λ0(`) − λ0(u)

)
dX0(u) > x0(`)

∫`
`−η1

(
λ0(`) − λ0(u)

)
du > 0,

using that λ0 is strictly increasing. For I5 we can argue exactly in the same
way.

Lemma 3.6.8. Suppose that (A1)-(A2) hold. Let Huc(t) and Φ(t;β0) be defined
in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt. Suppose that h and t 7→
Φ(t;β0) are m > 1 times continuously differentiable and let k be m-orthogonal
satisfying (1.2.1). Then, for each 0 < ` < M < τH, it holds

sup
t∈[`,M]

|vn(t) − h(t)| = O(b
m) +Op(b

−1n−1/2),

sup
t∈[`,M]

|wn(t; β̂n) −Φ(t;β0)| = O(bm) +Op(b
−1n−1/2),

(3.6.45)

where vn, wn and Φ are defined in (3.3.3) and (3.1.2).

Proof. To obtain the first result in (3.6.45), we write

vn(t) − h(t) = vn(t) − hs(t) + hs(t) − h(t),
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where
hs(t) =

∫
kb(t− u)h(u)du. (3.6.46)

By a change of variable and a Taylor expansion, using that k ism-orthogonal,
we deduce that

hs(t) − h(t)

=

∫1
−1
k(y)

{
−h ′(t)by+ · · ·+ h(m−1)(t)

(m− 1)!
(−by)m−1 +

h(m)(ξty)

m!
(−by)m

}
dy

=
(−b)m

m!

∫1
−1
h(m)(ξty)k(y)y

m dy,

(3.6.47)

for some |ξty − t| < |by|. It follows that

sup
t∈[`,M]

|hs(t) − h(t)| 6
bm

m!
sup

t∈[0,τH]

∣∣∣h(m)(t)
∣∣∣ ∫1

−1
|k(y)||y|m dy = O(bm).

(3.6.48)
Let Hucn be the empirical sub-distribution function of the uncensored obser-
vations, defined by

Hucn (t) =

∫
δ1{u6t} dPn(u, δ, z).

Then integration by parts yields

vn(t) − hs(t) =

∫
kb(t− u)d(Hucn −Huc)(u)

= −

∫
∂

∂u
kb(t− u) (H

uc
n −Huc)(u)du

=
1

b

∫1
−1
k ′(y) (Hucn −Huc)(t− by)dy.

(3.6.49)

Note that Hucn (x)−Huc(x) =
∫
δ1{u6x} d(Pn−P)(u, δ, z). Because the class

of functions F = {f(·; x) : x ∈ [0, τH]}, with f(u; x) = 1{u6x}, is a VC-class
(e.g., see Example 2.6.1 in van der Vaart and Wellner, 1996), also the class
of functions {G = δf : f ∈ F} is a VC-class, according to Lemma 2.6.18

in van der Vaart and Wellner, 1996. It follows that the class G is Donsker, i.e.,
the process

√
n(Hucn −Huc) converges weakly, see Theorems 2.6.8 and 2.5.2

in van der Vaart and Wellner, 1996. It follows by the continuous mapping
theorem that √

n sup
t∈[0,τH]

|Hucn (t) −Huc(t)| = Op(1). (3.6.50)
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Hence, we get

sup
t∈[`,M]

|vn(t) − hs(t)| 6
1

b
sup

t∈[`,M]

|Hucn (t) −Huc(t)|

∫1
−1

|k ′(y)|dy

= Op(b
−1n−1/2).

(3.6.51)

Together with (3.6.48), this proves the first result in (3.6.45).

To prove the second result in (3.6.45), note that from (3.3.3) and (3.1.4) we
have

wn(t;β) =
1

n

n∑
i=1

eβ
′Zi

∫∞
t
kb(u− Ti)du =

∫1
−1
k(y)Φn(t− by;β)dy.

(3.6.52)
Consequently, we can write

wn(t; β̂n) −Φ(t;β0) =
∫1
−1
k(y)

{
Φn(t− by; β̂n) −Φ(t;β0)

}
dy

=

∫1
−1
k(y)

{
Φn(t− by; β̂n) −Φ(t− by;β0)

}
dy

+

∫1
−1
k(y) {Φ(t− by;β0) −Φ(t;β0)} dy.

Similar to (3.6.47) and (3.6.48), for the second term on the right hand side,
we obtain

sup
t∈[`,M]

∣∣∣∣∣
∫1
−1
k(y) {Φ(t− by;β0) −Φ(t;β0)} dy

∣∣∣∣∣ = O(bm).

Hence, by means of the triangular inequality,

sup
t∈[`,M]

∣∣wn(t; β̂n) −Φ(t;β0)
∣∣ 6 sup

t∈R

∣∣Φn(t; β̂n) −Φ(t;β0)
∣∣+O(bm)

= Op(n
−1/2) +O(bm),

according to Lemma 4 in Lopuhaä and Nane, 2013.

Lemma 3.6.9. Let λ̂naive
n be defined in (3.3.7). Then, under the assumptions of

Lemma 3.6.8, for each 0 < ` < M < τH,

sup
t∈[`,M]

|λ̂naive
n (t) − λ0(t)| = O(b

m) +Op(b
−1n−1/2).
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Proof. By (3.1.3) and the definition of λ̂naive
n , we have

sup
t∈[`,M]

|λ̂naive
n (t) − λ0(t)| = sup

t∈[`,M]

∣∣∣∣ vn(t)

wn(t; β̂n)
−

h(t)

Φ(t;β0)

∣∣∣∣
6

supt∈[`,M]

∣∣vn(t)Φ(t;β0) − h(t)wn(t; β̂n)
∣∣

|wn(M; β̂n)|Φ(M;β0)
.

The triangular inequality and Lemma 3.6.8 yield

sup
t∈[`,M]

∣∣vn(t)Φ(t;β0) − h(t)wn(t; β̂n)
∣∣ = O(bm) +Op(b

−1n−1/2).

and wn(M; β̂n)−1 = Op(1). The statement follows immediately.

Lemma 3.6.10. Suppose that (A1)-(A2) hold. Let Huc(t) and Φ(t;β0) be de-
fined in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt. Suppose that h and t 7→
Φ(t;β0) are m > 1 times continuously differentiable and let k be m-orthogonal
satisfying (1.2.1). If b→ 0 and 1/b = O(nα), for some α ∈ (0, 1/4), then for each
0 < ` < M < τH, it holds

sup
t∈[`,M]

|v ′n(t) − h
′(t)|

P−→ 0, sup
t∈[`,M]

|w ′n(t; β̂n) −Φ
′(t;β0)|

P−→ 0,

(3.6.53)
where vn, wn and Φ are defined in (3.3.3) and (3.1.2).

Proof. Let us consider the first statement of (3.6.53). We write

v ′n(t) − h
′(t) = v ′n(t) − h

′
s(t) + h

′
s(t) − h

′(t),

where hs is defined in (3.6.46). For the second term we have

sup
t∈[`,M]

∣∣h ′s(t) − h ′(t)∣∣ 6 sup
t∈[`,M]

∫1
−1

|k(y)|
∣∣h ′(t− by) − h ′(t)∣∣ dy→ 0,

by the uniform continuity of h ′. Moreover, similar to (3.6.49) and (3.6.51),

sup
t∈[`,M]

∣∣v ′n(t) − h ′s(t)∣∣
6
1

b2
sup

t∈[`,M]

|Hucn (t) −Huc(t)|

∫1
−1

|k ′′(y)|dy

= Op(n
2α−1/2),

which tends to zero in probability, as α < 1/4. To obtain the second state-
ment of (3.6.53), first note that from (3.3.3),

w ′n(t; β̂n) =
∫
k ′b(t− u)Φn(u; β̂n)du, (3.6.54)
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and write

w ′n(t; β̂n) −Φ
′(t;β0) = w ′n(t; β̂n) −w

′
s(t;β0) +w

′
s(t;β0) −Φ

′(t;β0),
(3.6.55)

where
ws(t;β0) =

∫
kb(t− u)Φ(u;β0)du.

For the second difference on the right hand side of (3.6.55) we have

sup
t∈[`,M]

∣∣w ′s(t;β0) −Φ ′(t;β0)∣∣
= sup
t∈[`,M]

∣∣∣∣∣
∫1
−1
k(y)Φ ′(t− by;β0)dy−Φ ′(t;β0)

∣∣∣∣∣
6 sup
t∈[`,M]

∫1
−1

|k(y)|
∣∣Φ ′(t− by;β0) −Φ ′(t;β0)

∣∣ dy→ 0,

(3.6.56)

by uniform continuity of Φ ′. Furthermore, with (3.6.54), we obtain

sup
t∈[`,M]

∣∣w ′n(t; β̂n) −w ′s(t;β0)∣∣ 6 1

b
sup
t∈R

|Φn(t; β̂n)−Φ(t;β0)|
∫1
−1

|k ′(y)|dy,

which converges to zero because

sup
t∈R

|Φn(t; β̂n) −Φ(t;β0)| 6 sup
t∈R

|Φn(t; β̂n) −Φn(t;β0)|

+ sup
t∈R

|Φn(t;β0) −Φ(t;β0)|

6 sup
t∈R

∣∣∣∣∂Φn(t;β∗n)∂β

∣∣∣∣ (β̂n −β0) +Op(n
−1/2)

= Op(n
−1/2),

(3.6.57)

due to Lemmas 3 and 4 in Lopuhaä and Nane, 2013. Together with (3.6.56)
this proves the last result.

Lemma 3.6.11. Suppose that (A1)-(A2) hold. Let Huc(t) and Φ(t;β0) be de-
fined in (3.1.1) and (3.1.2), and let h(t) = dHuc(t)/dt, satisfying (3.1.3). Sup-
pose that h and t 7→ Φ(t;β0) are continuously differentiable, and that λ ′0 is uni-
formly bounded from below by a strictly positive constant. Let k satisfy (1.2.1) and
let λ̂naive

n be defined in (3.3.7). If b→ 0 and 1/b = O(nα), for some α ∈ (0, 1/4),
then for each 0 < ` < M < τH, it holds

P
(
λ̂naive
n is increasing on [`,M]

)
→ 1.
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Proof. Note that wn(x, β̂n) = 0 if and only if Ti 6 x− b, for all i = 1, . . . ,n,
which happens with probability H(x− b)n 6 H(M)n → 0. This means that
with probability tending to one, wn(x, β̂n) > 0 for all x ∈ [`,M]. Thus with
probability tending to one, λ̂naive

n is well defined on [`,M] and

d
dt
λ̂naive
n (t) =

v ′n(t)wn(t; β̂n) − vn(t)w ′n(t; β̂n)
wn(t; β̂n)2

. (3.6.58)

In order to prove that λ̂naive
n is increasing on [`,M] with probability tending

to one, it suffices to show that

P

(
inf

t∈[`,M]

{
v ′n(t)wn(t; β̂n) − vn(t)w

′
n(t; β̂n)

}
6 0

)
→ 0. (3.6.59)

We can write

v ′n(t)wn(t; β̂n) − vn(t)w
′
n(t; β̂n)

= wn(t; β̂n)
(
v ′n(t) − h

′(t)
)
+ vn(t)

(
Φ ′(t;β0) −w ′n(t; β̂n)

)
+ h ′(t)

(
wn(t; β̂n) −Φ(t;β0)

)
+Φ ′(t;β0) (h(t) − vn(t))

+ h ′(t)Φ(t;β0) −Φ ′(t;β0)h(t),

where the right hand side can be bounded from below by

− sup
t∈[`,M]

|v ′n(t) − h
′(t)| sup

t∈[`,M]

|wn(t; β̂n)|

− sup
t∈[`,M]

|Φ ′(t;β0) −w ′n(t; β̂n)| sup
t∈[`,M]

|vn(t)|

− sup
t∈[`,M]

|wn(t; β̂n) −Φ(t;β0)| sup
t∈[`,M]

|h ′(t)|

− sup
t∈[`,M]

|h(t) − vn(t)| sup
t∈[`,M]

|Φ ′(t;β0)|+ h ′(t)Φ(t;β0) −Φ ′(t;β0)h(t).

From the proof of Lemma 3.6.12 we have that

sup
t∈[`,M]

|vn(t)| = OP(1) and sup
t∈[`,M]

wn(t; β̂n) = OP(1),

so that from Lemmas 3.6.10 and 3.6.8 (with m = 1), it follows that the first
four terms on the right hand side tend to zero in probability. Therefore, the
probability in (3.6.59) is bounded by

P

(
Xn > inf

t∈[`,M]

(
h ′(t)Φ(t;β0) −Φ ′(t;β0)h(t)

))
,

where Xn = op(1). This probability tends to zero, because with (3.1.3), we
have

inf
t∈[`,M]

(
h ′(t)Φ(t;β0) −Φ ′(t;β0)h(t)

)
= inf
t∈[`,M]

λ ′0(t)Φ(t;β0)2

> Φ(M;β0)2 inf
t∈[0,τH]

λ ′0(t) > 0.
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Lemma 3.6.12. Let W̃n, Ṽn, and W0 be defined by (3.3.8) and (3.3.11), and
let Huc be defined in (3.1.1). If b → 0 and 1/b = O(n−1/2), then, under the
assumptions of Lemma 3.6.8, it holds

sup
t∈[0,τH]

∣∣Ṽn(t) −Huc(t)∣∣ P−→ 0, sup
t∈[0,τH]

∣∣W̃n(t) −W0(t)∣∣ P−→ 0. (3.6.60)

Proof. To prove the first result in (3.6.60), we take 0 < ε < τH arbitrarily and
write

sup
t∈[0,τH]

|Ṽn(t) −H
uc(t)| 6

∫τH
0

|vn(u) − h(u)|du

=

∫ε
0
|vn(u) − h(u)|du+

∫τH−ε

ε
|vn(u) − h(u)|du+

∫τH
τH−ε

|vn(u) − h(u)|du

6 2ε sup
u∈[0,τH]

|vn(u)|+ 2ε sup
u∈[0,τH]

|h(u)|+ (τH − 2ε) sup
u∈[ε,τH−ε]

|vn(u) − h(u)|.

(3.6.61)

Since h is bounded and the last term tends to zero in probability, according
to Lemma 3.6.8, it suffices to prove that supu∈[0,τH] |vn(u)| = Op(1). By
definition and the triangular inequality we have

|vn(t)| =

∣∣∣∣∫ kb (t− u) dHucn (u)

∣∣∣∣
6 b−1 |Hucn ((t+ b)∧ τH) −H

uc
n ((t− b)∨ 0)| sup

y∈[−1,1]
|k(y)|

6 b−1
{∣∣∣Hucn ((t+ b)∧ τH) −H

uc((t+ b)∧ τH)

−Hucn ((t− b)∨ 0) +Huc((t− b)∨ 0)
∣∣∣

+Huc((t+ b)∧ τH) −H
uc((t− b)∨ 0)

}
sup

y∈[−1,1]
|k(y)|

6 2

{
1

b
sup

y∈[0,τH]

|Hucn (y) −Huc(y)|+ 2 sup
u∈[0,τH]

|h(u)|

}
sup

y∈[−1,1]
|k(y)|.
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Using (3.6.50), it follows that the right hand side of the previous inequality
is bounded in probability. For the second result in (3.6.60), similar to (3.6.61)
we have

sup
t∈[0,τH]

∣∣W̃n(t) −W0(t)∣∣ 6 ∫τH
0

∣∣wn(u; β̂n) −Φ(u;β0)
∣∣ du

6 2ε sup
u∈[0,τH]

|wn(u; β̂n)|+ 2ε sup
u∈[0,τH]

|Φ(u;β0)|

+ (τH − 2ε) sup
u∈[ε,τH−ε]

∣∣wn(u; β̂n) −Φ(u;β0)
∣∣ .

By using Lemma 3.6.8 and the fact that Φ(u;β0) is bounded, it remains to
handle the first term on right hand side. Since∣∣∣∣∫∞

t
kb(s− u)ds

∣∣∣∣ =
∣∣∣∣∣
∫∞
(t−u)/b

k(y)dy

∣∣∣∣∣ 6 2 sup
y∈[−1,1]

|k(y)|, (3.6.62)

and kb(t− u) = 0, for u < t− b, we have

|wn(t; β̂n)| =
∣∣∣∣∫ eβ̂

′
nz

∫∞
t
kb(s− u)dsdPn(u, δ, z)

∣∣∣∣
6 2 sup

y∈[−1,1]
|k(y)|

∫∞
t−b

eβ̂
′
nz dPn(u, δ, z)

= 2Φn(t− b; β̂n) sup
y∈[−1,1]

|k(y)|,

whereas Lemma 3 in Lopuhaä and Nane, 2013 gives that supt∈RΦn(t; β̂n) =
Op(1). This establishes the second result in (3.6.60).

Proof of Corollary 3.3.3. According to Lemmas 3.6.9, 3.6.11 and 3.6.12, to-
gether with (3.1.3), conditions (b)-(d) of Lemma 3.3.2 are satisfied, with
Xn = W̃n, Yn = Ṽn, and τ̂ = sup{t > 0 : wn(t; β̂n) > 0}, and condition (a)
of Lemma 3.3.2 is trivially fulfilled with Xn = W̃n. Hence, the corollary
follows from Lemma 3.3.2.

Lemma 3.6.13. Suppose that (A1)-(A2) hold. Fix t ∈ (0, τH). Let Huc and Φ
be defined in (3.1.1) and (3.1.2), and let h(s) = dHuc(s)/ds, satisfying (3.1.3).
Suppose that h and s 7→ Φ(s;β0) are m > 2 times continuously differentiable and
that λ ′0 is uniformly bounded from below by a strictly positive constant. Let k be
m-orthogonal satisfying (1.2.1). Let vn and wn be defined in (3.3.3) and suppose
that n1/(2m+1)b→ c > 0. Then

nm/(2m+1)

([
wn(t; β̂n)

vn(t)

]
−

[
Φ(t;β0)

h(t)

])
→ N

([
µ1

µ2

]
,

[
0 0

0 σ2

])
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where[
µ1

µ2

]
=

(−c)m

m!

∫1
−1
k(y)ym dy

[
Φ(m)(t;β0)

h(m)(t)

]
, σ2 =

h(t)

c

∫1
−1
k2(y)dy.

Proof. First we show that

nm/(2m+1)(wn(t; β̂n) −wn(t;β0))→ 0

in probability, which enables us to replace wn(t; β̂n) with wn(t;β0) in the
statement. From (3.3.3), together with (3.6.62), we find

∣∣wn(t; β̂n) −wn(t;β0)∣∣ 6 1

n

n∑
i=1

∣∣∣eβ̂ ′nZi − eβ
′
0Zi
∣∣∣ ∣∣∣∣∫∞
t
kb(u− Ti)du

∣∣∣∣
6 2 sup

y∈[−1,1]
|k(y)|

1

n

n∑
i=1

|Zi|e
β̃ ′n,iZi

∣∣β̂n −β0
∣∣ ,

for some |β̃n,i −β0| 6 |β̂n −β0| = Op(n
−1/2). Furthermore, for all M > 0,

P

(
1

n

n∑
i=1

|Zi|e
β̃ ′n,iZi >M

)
6

1

nM

n∑
i=1

E
[
|Zi|e

β̃ ′n,iZi
]

6
1

M
sup

|β−β0|6ε
E
[
|Z|eβ

′Z
]

,

where sup|β−β0|6ε
E[|Z|eβ

′Z] <∞ according to assumption (A2). It follows
that

nm/(2m+1)
(
wn(t; β̂n) −wn(x;β0)

)
= Op(n

−1/(4m+2)).

Now, define

Yni =

[
Yni,1

Yni,2

]
= n−(m+1)/(2m+1)

[
eβ
′
0Zi
∫∞
t kb(s− Ti)ds

kb(t− Ti)∆i

]
.

By a Taylor expansion, using that h is m times continuously differentiable
and that k is m-orthogonal, as in (3.6.47) we obtain

E
[
Yni,2

]
= n−(m+1)/(2m+1)

∫1
−1
k(y)h(t− by)dy

= n− m+1
2m+1

(
h(t) +

(−b)m

m!
h(m)(t)

∫1
−1
k(y)ym dy+ o(bm)

)
.

(3.6.63)
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Similarly, with Fubini we get

E
[
Yni,1

]
= n−(m+1)/(2m+1)

∫
eβ
′
0z

∫∞
t
kb(s− u)dsdP(u, δ, z)

= n−(m+1)/(2m+1)

∫1
−1

(∫
eβ
′
0z1{u>t−by} dP(u, δ, z)

)
k(y)dy

= n−(m+1)/(2m+1)

∫1
−1
k(y)Φ(t− by;β0)dy

= n− m+1
2m+1

(
Φ(t;β0) +

(−b)m

m!
Φ(m)(t;β0)

∫1
−1
k(y)ym dy+ o(bm)

)
.

(3.6.64)

Hence, we have

E [Yni] = n
−(m+1)/(2m+1)

[
Φ(t;β0)

h(t)

]
+n−1

[
µ1

µ2

]
+ o(n−1),

and we can write

n− m+1
2m+1

([
wn(t; β̂n)

vn(t)

]
−

[
Φ(t;β0)

h(t)

])
=

[
µ1

µ2

]
+

n∑
i=1

(
Yni − E [Yni]

)
+ o(1).

It remains to show that
∑n
i=1

(
Yni − E [Yni]

)
converges in distribution to a

bivariate normal distribution with mean zero. From (3.6.64) we have,

Var(Yni,1) = E
[
Y2ni,1

]
+O(n−2(m+1)/(2m+1))

= n−2 m+1
2m+1

∫
e2β

′
0z

(∫∞
t
kb(s− u)ds

)2
dP(u, δ, z) +O

(
n−2 m+1

2m+1

)
= O

(
n−2(m+1)/(2m+1)

)
,

(3.6.65)

using that, with (3.6.62),∫
e2β

′
0z

(∫∞
t
kb(s− u)ds

)2
dP(u, δ, z)

6

(
2 sup
y∈[−1,1]

|k(y)|

)2 ∫
e2β

′
0z dP(u, δ, z)

=

(
2 sup
y∈[−1,1]

|k(y)|

)2
Φ(0; 2β0) <∞.
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Moreover,

Cov(Yni,1, Yni,2) = E
[
Yni,1Yni,2

]
+O

(
n−2(m+1)/(2m+1)

)
= n−2 m+1

2m+1

∫
δeβ

′
0z

(∫∞
t
kb(s− u)ds

)
kb(t− u)dP(u, δ, z) +Op

(
n−2 m+1

2m+1

)
= o(n−1) +O

(
n−2(m+1)/(2m+1)

)
,

because, with (3.6.62),∣∣∣∣b ∫ δeβ ′0z(∫∞
t
kb(s− u)ds

)
kb(t− u)dP(u, δ, z)

∣∣∣∣
6 2 sup

y∈[−1,1]
|k(y)|

∫
1{x−b6u6x+b}e

β ′0z

∣∣∣∣k(x− ub
)∣∣∣∣ dP(u, δ, z)

6 2

(
sup

y∈[−1,1]
|k(y)|

)2 (
Φ(t− b;β0) −Φ(t+ b;β0)

)
→ 0.

Once again, by a Taylor expansion, from (3.6.63), we obtain

Var(Yni,2) = E
[
Y2ni,2

]
+O

(
n−2(m+1)/(2m+1)

)
= n−2 m+1

2m+1b−1
∫1
−1
k2(y)h(t− by)dy+O

(
n−2 m+1

2m+1

)
= n−1σ2 + o(n−1).

(3.6.66)

It follows that
n∑
i=1

Cov(Yni) =

[
0 0

0 σ2

]
+ o(1).

Furthermore, since

|Yni|
2 = n−2(m+1)/(2m+1)

(
e2β

′
0Zi

(∫∞
t
kb(s− Ti)ds

)2
+ k2b(t− Ti)∆i

)
,

with (3.6.62), we obtain

n∑
i=1

E
[
|Yni|

21{|Yni|>ε}

]
6

(
2 sup
y∈[−1,1]

|k(y)|

)2
n−1/(2m+1)E

[
e2β

′
0Z
]

+n−2 m+1
2m+1b−2 sup

y∈[−1,1]
|k(y)|

n∑
i=1

P (|Yni| > ε) ,

where the right hand side tends to zero, because E[e2β
′
0Z] = Φ(0; 2β0) <∞

and, with (3.6.65) and (3.6.66), we have
n∑
i=1

P (|Yni| > ε) 6 ε
−2

n∑
i=1

E|Yni|
2 = O(1).
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By the multivariate Lindeberg-Feller central limit theorem, we get

n∑
i=1

(
Yni − E [Yni]

) d→ N

([
µ1

µ2

]
,

[
0 0

0 σ2

])
,

which finishes the proof.

Proof of Theorem 3.3.5. By definition of λ̂naive
n (t) in (3.3.7) together with (3.1.3),

we can write

λ̂naive
n (t) − λ0(t) = ϕ

(
wn(t; β̂n), vn(t)

)
−ϕ

(
Φ(t;β0), λ0(t)Φ(t;β0)

)
with ϕ(w, v) = v/w. The asymptotic distribution of λ̂naive

n (t) then follows
from an application of the delta method to the result in Lemma 3.6.13. Then,
by Corollary 3.3.3, this also gives the asymptotic distribution of λ̂MSn (t).

Proof of Theorem 3.3.6. First note that by means of (3.1.3), it follows from the
assumptions of the theorem that h(s) = dHuc(s)/ds is m > 2 times contin-
uously differentiable. We write

nm/(2m+1)
(
λ̂MSn (t) − λ̂SMn (t)

)
= nm/(2m+1)

(
λ̂naive
n (t) − λ̂SMn (t)

)
+nm/(2m+1)

(
λ̂MSn (t) − λ̂naive

n (t)
)

.

By Corollary 3.3.3, the second term on the right hand side converges to zero
in probability. Furthermore, as can be seen from the proof of Theorem 3.2.5

n
m

2m+1

(
λ̂SMn (t) − λ0(t)

)
= µ+n

m
2m+1

∫
δkb(t− u)

Φ(u;β0)
d(Pn−P)(u, δ, z)+op(1),

with µ from (3.2.22). From the proof of Lemma 3.6.13, we have

λ̂naive
n (t) − λ0(t) = φ

(
wn(t; β̂n), vn(t)

)
−φ

(
Φ(t;β0), λ0(t)Φ(t;β0)

)
,

where φ(w, v) = v/w and

nm/(2m+1)

([
wn(t; β̂n)

vn(t)

]
−

[
Φ(t;β0)

h(t)

])
=

[
µ1

µ2

]
+

[
Zn1

Zn2

]
+ o(1),

with Zn1 = oP(1) and[
µ1

µ2

]
=

(−c)m

m!

∫1
−1
k(y)ym dy

[
Φ(m)(t;β0)

h(m)(t)

]
.
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Then with a Taylor expansion it follows that

nm/(2m+1)
(
λ̂naive
n (t) − λ0(t)

)
=

[
−

λ0(t)

Φ(t;β0)
1

Φ(t;β0)

]([
µ1

µ2

]
+

[
Zn1

Zn2

])
+ op(1)

= µ̃+
Zn2

Φ(t;β0)
+ op(1),

where µ̃ is from Theorem 3.3.5. Moreover, from the proof of Lemma 3.6.13

it can be seen that
Zn2

Φ(t;β0)
=

1

Φ(t;β0)
nm/(2m+1)

∫
δkb(t− u) (Pn − P)(u, δ, z) + oP(1)

= nm/(2m+1)

∫
δkb(t− u)

Φ(u;β0)
(Pn − P)(u, δ, z)

+n
m

2m+1

∫
δkb(t− u)

(
1

Φ(t;β0)
−

1

Φ(u;β0)

)
(Pn − P)(u, δ, z)

+ oP(1)

= nm/(2m+1)

∫
δkb(t− u)

Φ(u;β0)
(Pn − P)(u, δ, z) + oP(1),

because

nm/(2m+1)

∫
δkb(t− u)

(
1

Φ(t;β0)
−

1

Φ(u;β0)

)
(Pn − P)(u, δ, z)

=

n∑
i=1

(Xni − E [Xni])

with

Xni = n
−(m+1)/(2m+1)∆ikb(t− Ti)

(
1

Φ(t;β0)
−

1

Φ(Ti;β0)

)
,

where similar to the proof of Lemma 3.6.13,

E
[
X2ni

]
= n−2(m+1)/(2m+1)

∫
k2b(t− u)

(
1

Φ(t;β0)
−

1

Φ(u;β0)

)2
h(u)du

= n−2 m+1
2m+1b−1

∫
k2(y)

(
1

Φ(t;β0)
−

1

Φ(t− by;β0)

)2
h(t− by)dy

= o(n−1).

We conclude that

n
m

2m+1

(
λ̂naive
n (t) − λ0(t)

)
= µ̃+n

m
2m+1

∫
δkb(t− u)

Φ(u;β0)
(Pn − P)(u, δ, z) + oP(1)

= µ̃− µ+n
m

2m+1

(
λ̃SMn (t) − λ0(t)

)
+ op(1)
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which proves the first statement in the theorem. The second statement is
immediate using the asymptotic equivalence in (3.2.23).

3.6.3 Proofs for Section 3.4

Lemma 3.6.14. Suppose that (A1)-(A2) hold. Let λ0 be continuously differentiable,
with λ ′0 uniformly bounded from below by a strictly positive constant, and let k
satisfy (1.2.1). If b → 0 and 1/b = O(nα), for some α ∈ (0, 1/4), then for each
0 < ` < M < τ∗, it holds

P
(
λ̃naive
n is increasing on [`,M]

)
→ 1.

Proof. From (3.4.3), it follows with integration by parts that

λ̃naive
n (t) =

∫
k ′b(t− u)Λ0(u)du+

∫
k ′b(t− u) (Λn(u) −Λ0(u)) du

= λ0(t) +

∫
kb(t− u)

{
λ0(u) − λ0(t)

}
du

+

∫
kb(t− u)d (Λn −Λ0) (u),

(3.6.67)

so that

d
dt
λ̃naive
n (t) = λ ′0(t) +

∫1
−1
k(y)
{
λ ′0(t− by) − λ

′
0(t)
}

dy

+
1

b2

∫
k ′
(
t− u

b

)
d (Λn −Λ0) (u).

(3.6.68)

By assumption, the first term on the right hand side of (3.6.68) is bounded
from below by a strictly positive constant and the second term converges
to zero because of the continuity of λ ′0. Moreover, for n sufficiently large
M + b < τ∗. Then, the second term on the right hand side of (3.6.68) is
bounded from above in absolute value by

1

b2
sup

s∈[0,τ∗]
|Λn(s) −Λ0(s)| sup

y∈[−1,1]
|k ′′(y)| = Op(n

2α−1/2) = op(1),

according to (3.1.7) and the fact that α < 1/4. We conclude that λ̃naive
n is

increasing on [`,M] with probability tending to one.
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Proof of Corollary 3.4.1. We apply Lemma 3.3.2. Condition (a) is trivial with
Xn(t) = t. Furthermore, for every fixed t ∈ (0, τ∗), we have for sufficiently
large n, that t ∈ (b, τ∗ − b) and

λ̃naive
n (t) − λ0(t)

=

∫
kb(t− u)λ0(u)du− λ0(t) +

∫
kb(t− u)d (Λn(u) −Λ0(u))

=

∫1
−1
k(y) {λ0(t− by) − λt(t)} dy+

1

b

∫1
−1

(Λn(t− by) −Λ0(t− by)) k
′(y)dy

= op(1),
(3.6.69)

by continuity of λ0 and (3.1.7), which proves condition (b) of Lemma 3.3.2.
Condition (c) follows from Lemma 3.6.14. Finally, for t ∈ [0, τ∗],∣∣Λ̂sn(t) −Λ0(t)∣∣ =

∣∣∣∣∣
∫ (t+b)∧τ∗
(t−b)∨0

kb(t− u) (Λn(u) −Λ0(u)) du

+

∫ (t+b)∧τ∗
(t−b)∨0

kb(t− u)Λ0(u)du−Λ0(t)

∣∣∣∣∣
6 sup
x∈[0,τ∗]

|Λn(t) −Λ0(t)|

∫1
−1

|k(y)|dy

+

∣∣∣∣∣
∫t/b∧1
−1∨(t−τ∗)/b

k(y)Λ0(t− by)dy−Λ0(t)

∣∣∣∣∣ .
According to (3.1.7), the first term on the right hand side is of the order
Op(n

−1/2). For the second term we distinguish between t < b, t ∈ [b, τ∗ −
b] and t > τ∗ − b. When t ∈ [b, τ∗ − b], then with (1.2.1),∣∣∣∣∣
∫1
−1
k(y)Λ0(t− by)dy−Λ0(t)

∣∣∣∣∣ 6
∫1
−1

|k(y)|
∣∣∣Λ0(t− by) −Λ0(t)∣∣∣dy

= b sup
t∈[0,τH]

|λ0(t)|

∫1
−1

|k(y)|dy→ 0,

uniformly for t ∈ [b, τ∗ − b]. When t < b, then again with (1.2.1), we can
write ∣∣∣∣∣

∫t/b
−1

k(y)Λ0(t− by)dy−Λ0(t)

∣∣∣∣∣
6
∫t/b
−1

|k(y)|
∣∣∣Λ0(t− by) −Λ0(t)∣∣∣dy+Λ0(t) ∫1

t/b
|k(y)|dy

6 O(b) + bλ0(b)
∫1
−1

|k(y)|dy→ 0,
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uniformly for t ∈ [0,b]. Similarly, we deal with the case t ∈ (τ∗ − b, τ∗]. It
follows that

sup
t∈[0,τ∗]

∣∣Λ̂sn(t) −Λ0(t)∣∣ = oP(1), (3.6.70)

which proves condition (d) of Lemma 3.6.11. The result now follows from
Lemma 3.6.14.

Proof of Theorem 3.4.3. From (3.6.69), similar to (3.6.47), we find

λ̃naive
n (t) − λ0(t) =

∫1
−1
k(y) {λ0(t− by) − λ0(t)} dy

+
1

b

∫1
−1

(Λn(t− by) −Λ0(t− by)) k
′(y)dy

=
(−b)m

m!

∫1
−1
λ
(m)
0 (ξty)k(y)y

m dy

+
1

b

∫1
−1

(Λn(t− by) −Λ0(t− by)) k
′(y)dy,

for some |ξty − x| 6 |by|. It follows that

sup
t∈[`,M]

∣∣∣λ̃naive
n (t) − λ0(t)

∣∣∣ 6 bm

m!
sup

t∈[0,τH]

∣∣∣λ(m)
0 (t)

∣∣∣ ∫1
−1

|k(y)||y|m dy

+ b−1 sup
x∈[`,M]

|Λn(t) −Λ0(t)|

∫1
−1

|k ′(y)|dy

= op(1).

Similar to (3.6.48), the first term on the right hand side is of the orderO(bm),
and according to (3.1.7) the second term is of the order Op(b−1n−1/2). The
first statement now follows directly from Corollary 3.4.1.

To obtain the asymptotic distribution, note that from (3.6.67), (3.1.3) and (3.1.7),
we have

nm/(2m+1)
(
λ̃naive
n (t) − λ0(t)

)
= nm/(2m+1)

(∫
kb(t− u) λ0(u)du− λ0(t)

)
+nm/(2m+1)

∫
kb(t− u)

δ

Φ(u;β0)
d(Pn − P)(u, δ, z)

+n−(m+1)/(2m+1)
n∑
i=1

kb(t− Ti)∆i

(
1

Φn(Ti; β̂n)
−

1

Φ(Ti;β0)

)
.

(3.6.71)
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We find that, the first term in the right hand side of (3.6.71) converges to µ,
since

nm/(2m+1)

(∫
kb(t− u) λ0(u)du− λ0(t)

)
= nm/(2m+1)

∫1
−1
k(y) {λ0(t− by) − λ0(t)} dy

= nm/(2m+1) (−b)
m

m!

∫1
−1
λ
(m)
0 (ξty)k(y)y

m dy

→ (−c)m

m!
λ
(m)
0 (t)

∫1
−1
k(y)ym dy,

(3.6.72)

for some |ξty − x| 6 |by|. Let 0 < M < M ′ < τH, so that t+ b 6 M ′ for
sufficiently large n. Because 1/Φn(M ′; β̂n) = Op(1), similar to (3.6.57)

sup
u∈[0,M ′]

∣∣∣∣ 1

Φn(u; β̂n)
−

1

Φ(u;β0)

∣∣∣∣ 6 sup
u∈[0,M ′]

∣∣∣∣∣ Φn(u; β̂n) −Φ(u;β0)
Φn(M ′; β̂n)Φ(M ′;β0)

∣∣∣∣∣
= Op(n

−1/2),

and similar to (3.6.66)

Var

(
n−(m+1)/(2m+1)

n∑
i=1

|kb(t− Ti)|∆i

)
= O(n−1),

so that the last term on the right hand side of (3.6.71) converges to zero in
probability. The second term on the right hand side of (3.6.71) can be written
as

n∑
i=1

(Yni − E [Yni]) , Yni = n
−(m+1)/(2m+1)kb(t− Ti)

∆i
Φ(Ti;β0)

.

where similar to (3.6.66),

Var(Yni) = E
[
Y2ni

]
+O(n−2(m+1)/(2m+1))

= n−2 m+1
2m+1

1

b

∫1
−1

k2(y)h(t− by)

Φ2(t− by;β0)
dy+O

(
n−2 m+1

2m+1

)
= n−1σ2 + o(n−1).

(3.6.73)

Moreover,

n∑
i=1

E
[
|Yni|

21{|Yni|>ε}

]
6 n−2 m+1

2m+1
1

b2
sup

y∈[−1,1]
|k(y)|

n∑
i=1

P (|Yni| > ε) ,
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where the right hand side tends to zero, because with (3.6.73),
n∑
i=1

P (|Yni| > ε) 6
n∑
i=1

E|Yni|
2

ε2
= O(1).

By Lindeberg-Feller central limit theorem, we obtain
n∑
i=1

(Yni − E [Yni])
d−→ N(0,σ2),

which determines the asymptotic distribution of λ̃naive
n (t). Then, by Corol-

lary 3.4.1, this also gives the asymptotic distribution of λ̃GSn (t).

Proof of Theorem 3.4.4. We write

nm/(2m+1)
(
λ̃SGn (t) − λ̃GSn (t)

)
= nm/(2m+1)

(
λ̃SGn (t) − λ̃naiven (t)

)
+nm/(2m+1)

(
λ̃naiven (t) − λ̃GSn (t)

)
.

By Corollary 3.4.1, the second term on the right hand side converges to zero
in probability. Furthermore, as can be seen from the proof of Theorem 3.2.5,

nm/(2m+1)λ̃SGn (t) = nm/(2m+1)

∫
kb(t− u)dΛ0(u)

+nm/(2m+1)

∫
δkb(t− u)

Φ(u;β0)
d(Pn − P)(u, δ, z) + op(1).

Similarly, from the proof of Theorem 3.4.3, we have

nm/(2m+1)λ̃naiven (t) = nm/(2m+1)

∫
k ′b(t− u)Λn(u)du

= nm/(2m+1)

∫
kb(t− u)dΛn(u)

= n
m

2m+1

∫
kb(t− u)dΛ0(u) +n

m
2m+1

∫
kb(t− u)d(Λn(u) −Λ0(u))

= n
m

2m+1

∫
kb(t− u)dΛ0(u) +n

m
2m+1

∫
δkb(t− u)

Φ(u;β0)
d(Pn − P)(u, δ, z) + op(1).

From this it immediately follows that

nm/(2m+1)
(
λ̃SGn (t) − λ̃naiven (t)

)
= op(1),

and hence, with Corollary 3.4.1, also

nm/(2m+1)
(
λ̃SGn (t) − λ̃GSn (t)

)
= op(1).

The second statement about λ̂SMn (t), is immediate using the asymptotic
equivalence in (3.2.23).
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4
T H E H E L L I N G E R L O S S O F G R E N A N D E R - T Y P E
E S T I M AT O R S

In this chapter we consider the Hellinger loss of Grenander type estimators
for a monotone function λ : [0, 1]→ R+. The results presented are based on:

Lopuhaä, H. P. and Musta E. (2018) "A central limit theorem for the
Hellinger loss of Grenander-type estimators". To appear in Statistica Neer-
landica.

The Hellinger distance is a convenient metric in maximum likelihood
problems, which goes back to Le Cam, 1973; Le Cam, 1970, and it has nice
connections with Bernstein norms and empirical process theory methods
to obtain rates of convergence, due fundamentally to Birgé and Massart,
1993, Wong and Shen, 1995, and others, see Section 3.4 of van der Vaart
and Wellner, 1996 or Chapter 4 in van de Geer, 2000 for a more detailed
overview. Consistency in Hellinger distance of shape constrained maximum
likelihood estimators has been investigated in Pal, Woodroofe, and Meyer,
2007, Seregin and Wellner, 2010, and Doss and Wellner, 2016, whereas rates
on Hellinger risk measures have been obtained in Seregin and Wellner, 2010,
Kim and Samworth, 2016, and Kim, Guntuboyina, and Samworth, 2016.
However, there is no distribution theory available for the Hellinger loss of
shape constrained nonparametric estimators.

We present a first result in this direction, i.e., a central limit theorem for
the Hellinger loss of Grenander type estimators for a monotone function λ.
The result applies to statistical models that satisfy the setup in Durot, 2007,
which includes estimation of a probability density, a regression function, or
a failure rate under monotonicity constraints.

In fact, after approximating the squared Hellinger distance by a weighted
L2-distance, a central limit theorem can be obtained by mimicking the ap-
proach introduced in Durot, 2007. An interesting feature of our main re-
sult is that in the monotone density model, the variance of the limiting
normal distribution for the Hellinger distance does not depend on the un-
derlying density. This phenomena was also encountered for the L1-distance
in Groeneboom, 1983; Groeneboom, Hooghiemstra, and Lopuhaä, 1999.

137



138 the hellinger loss of grenander-type estimators

In Section 4.1 we define the setup and approximate the squared Hellinger
loss by a weighted L2-distance. A central limit theorem for the Hellinger dis-
tance is established in Section 4.2. A short discussion on the consequences
for particular statistical models can be found in Section 4.3. The chapter ends
with a a simulation study on testing exponentiality against a non-increasing
density by means of the Hellinger distance (Section 4.4).

4.1 relation to the L2 -distance

Consider the problem of estimating a non-increasing (or non-decreasing)
function λ : [0, 1] → R+ on the basis of n observations. Suppose that we
have at hand a cadlag step estimator Λn for

Λ(t) =

∫t
0
λ(u)du, t ∈ [0, 1].

If λ is non-increasing, then the Grenander-type estimator λ̂n for λ is de-
fined as the left-hand slope of the least concave majorant (LCM) of Λn, with
λ̂n(0) = limt↓0 λ̂n(t). If λ is non-decreasing, then the Grenander-type es-
timator λ̂n for λ is defined as the left-hand slope of the greatest convex
minorant (GCM) of Λn, with λ̂n(0) = limt↓0 λ̂n(t). We aim at proving the
asymptotic normality of the Hellinger distance between λ̂n and λ defined
by

H(λ̂n, λ) =

(
1

2

∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dt

)1/2
. (4.1.1)

We will consider the same general setup as in Durot, 2007, i.e., we will
assume the following conditions

(A1) λ is monotone and differentiable on [0, 1] with

0 < inf
t
|λ ′(t)| 6 sup

t

|λ ′(t)| <∞.

(A2’) Let Mn = Λn − Λ. There exist C > 0 such that for all x > 0 and
t ∈ {0, 1},

E

[
sup

u∈[0,1],x/26|t−u|6x
(Mn(u) −Mn(t))

2

]
6
Cx

n
. (4.1.2)

In Durot, 2007, an additional condition (A2) is considered in order to ob-
tain bounds on p-th moments without requiring (A4) (see Theorem 1 and
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Corollary 1 in Durot, 2007). Here, as in Theorem 2 in Durot, 2007, we need
(A4) to get a central limit theorem type of result. Hence, condition (A2’) is
sufficient.

(A3) λ̂n(0) and λ̂n(1) are stochastically bounded.

(A4) Let Bn be either a Brownian bridge or a Brownian motion. There exists
q > 12, Cq > 0, L : [0, 1] 7→ R and versions of Mn = Λn −Λ and Bn,
such that

P

(
n1−1/q sup

t∈[0,1]

∣∣∣Mn(t) −n−1/2Bn ◦ L(t)
∣∣∣ > x) 6 Cqx

−q

for x ∈ (0,n]. Moreover, L is increasing and twice differentiable on
[0, 1] with supt |L

′′(t)| <∞ and inft L ′(t) > 0.

In Durot, 2007 a variety of statistical models are discussed for which the
above assumptions are satisfied, such as estimation of a monotone proba-
bility density, a monotone regression function, and a monotone failure rate
under right censoring. In Section 4.3, we briefly discuss the consequence of
our main result for these models. We restrict ourselves to the case of a non-
increasing function λ. The case of non-decreasing λ can be treated similarly.
Note that, even if this may not be a natural assumption, for example in the
regression setting, we need to assume that λ is positive for the Hellinger
distance to be well-defined.

The reason that one can expect a central limit theorem for the Hellinger
distance is the fact that the squared Hellinger distance can be approximated
by a weighted squared L2-distance. This can be seen as follows,∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dt =

∫1
0

(
λ̂n(t) − λ(t)

)2(√
λ̂n(t) +

√
λ(t)

)−2

dt

≈
∫1
0

(
λ̂n(t) − λ(t)

)2
(4λ(t))−1 dt.

(4.1.3)

Since L2-distances for Grenander-type estimators obey a central limit the-
orem (e.g., see Durot, 2007; Kulikov and Lopuhaä, 2005), similar behavior
might be expected for the squared Hellinger distance. An application of the
delta-method will then do the rest.

The next lemma makes the approximation in (4.1.3) precise.

Lemma 4.1.1. Assume (A1), (A2’), (A3), and (A4). Moreover, suppose that there
exist C ′ > 0 and s > 3/4 with

|λ ′(t) − λ ′(x)| 6 C ′|t− x|s, for all t, x ∈ [0, 1]. (4.1.4)
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If λ is strictly positive, we have that∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dt =

∫1
0

(
λ̂n(t) − λ(t)

)2
(4λ(t))−1 dt+ op(n−5/6).

In order to prove Lemma 4.1.1, we need the preparatory lemma below. To
this end, we introduce the inverse of λ̂n, defined by

Ûn(a) = argmax
u∈[0,1]

{
Λ+
n(u) − au

}
, for all a ∈ R, (4.1.5)

where

Λ+
n(t) = max

{
Λn(t), lim

u↑t
Λn(u)

}
.

Note that
λ̂n(t) > a⇒ Ûn(a) > t. (4.1.6)

Furthermore, let g denote the inverse of λ. We then have the following result.

Lemma 4.1.2. Under the conditions of Lemma 4.1.1, it holds∫1
0
|λ̂n(t) − λ(t)|

3 dt = oP
(
n−5/6

)
.

Proof. We follow the line of reasoning in the first step of the proof of The-
orem 2 in Durot, 2007 with p = 3. For completeness we briefly sketch the
main steps. We will first show that∫1

0
|λ̂n(t) − λ(t)|

3 dt =
∫λ(1)
λ(0)

|Ûn(b) − g(b)|
3λ ′(g(b))2 db+ oP(n−5/6).

To this end, consider

I1 =

∫1
0

(
λ̂n(t) − λ(t)

)3
+

dt, I2 =

∫1
0

(
λ(t) − λ̂n(t)

)3
+

dt,

where x+ = max{x, 0}. We approximate I1 by

J1 =

∫1
0

∫ (λ(0)−λ(t))3
0

1{λ̂n(t)>λ(t)+a1/3}
dadt.

From the reasoning on page 1092 of Durot, 2007, we deduce that

0 6 I1 − J1 6
∫n−1/3 logn

0

(
λ̂n(t) − λ(t)

)3
+

dt

+ |λ̂n(0) − λ(1)|
31{n1/3Ûn(λ(0))>logn}.
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Since the λ̂n(0) is stochastically bounded and λ(1) is bounded, together
with Lemma 4 in Durot, 2007, the second term is of the order op(n−5/6).
Furthermore, for the first term we can choose p ′ ∈ [1, 2) such that the first
term on the right hand side is bounded by

|λ̂n(0) − λ(1)|
3−p ′

∫n−1/3 logn

0
|λ̂n(t) − λ(t)|

p ′ dt.

As in Durot, 2007, we get

E

[∫n−1/3 logn

0
|λ̂n(t) − λ(t)|

p ′ dt

]
6 Kn−(1+p ′)/3 logn = o(n−5/6),

by choosing p ′ ∈ (3/2, 2). It follows that I1 = J1 + oP(n
−5/6). By a change

of variable b = λ(t) + a1/3, we find

I1 =

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

3(b− λ(t))21{g(b)<Ûn(b)} dtdb+ op(n−5/6).

Then, by a Taylor expansion, (A1) and (4.1.4), there exists a K > 0, such that∣∣∣(b− λ(t))2 − { (g(b) − t) λ ′(g(b))}2∣∣∣ 6 K (t− g(b))2+s , (4.1.7)

for all b ∈ (λ(1), λ(0)) and t ∈ (g(b), 1]. We find

I1 =

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

3(t− g(b))2λ ′(g(b))21{g(b)<Ûn(b)} dtdb

+ Rn + op(n
−5/6),

(4.1.8)

where

|Rn| 6
∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

3K(t− g(b))2+s1{g(b)<Ûn(b)} dtdb

6
3K

3+ s

∫λ(0)
λ(1)

|Ûn(b) − g(b)|
3+s db = Op(n

−(3+s)/3) = op(n
−5/6),

by using (23) from Durot, 2007, i.e., for every q ′ < 3(q − 1), there exists
Kq ′ > 0 such that

E

[(
n1/3|Ûn(a) − g(a)|

)q ′]
6 Kq ′ , for all a ∈ R. (4.1.9)

It follows that

I1 =

∫λ(0)
λ(1)

(
Ûn(b) − g(b)

)3
λ ′(g(b))21{g(b)<Ûn(b)} db+ op(n−5/6).
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In the same way, one finds

I2 =

∫λ(0)
λ(1)

(
g(b) − Ûn(b)

)3
λ ′(g(b))21{g(b)>Ûn(b)} db+ op(n−5/6),

and it follows that∫1
0
|λ̂n(t) − λ(t)|

3 dt = I1 + I2

=

∫λ(0)
λ(1)

|Ûn(b) − g(b)|
3λ ′(g(b))2 db+ op(n−5/6).

Now, since λ ′ is bounded, by Markov’s inequality, for each ε > 0, we can
write

P

(
n5/6

∫λ(1)
λ(0)

|Ûn(b) − g(b)|
3λ ′(g(b))2 db > ε

)

6
1

cεn1/6

∫λ(1)
λ(0)

E
[
n|Ûn(b) − g(b)|

3
]

db 6 Kn−1/6 → 0.

For the last inequality we again used (4.1.9) with q ′ = 3. It follows that∫λ(1)
λ(0)

|Ûn(b) − g(b)|
3λ ′(g(b))2 db = oP(n

−5/6), (4.1.10)

which concludes the proof.

Proof of Lemma 4.1.1. Similar to (4.1.3), we write∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dt =

∫1
0

(
λ̂n(t) − λ(t)

)2
(4λ(t))−1 dt+ Rn,

where

Rn =

∫1
0

(
λ̂n(t) − λ(t)

)2{(√
λ̂n(t) +

√
λ(t)

)−2

− (4λ(t))−1

}
dt.

Write

4λ(t) −

(√
λ̂n(t) +

√
λ(t)

)2
= λ(t) − λ̂n(t) − 2

√
λ(t)

(√
λ̂n(t) −

√
λ(t)

)

=
(
λ(t) − λ̂n(t)

)1+ 2
√
λ(t)√

λ̂n(t) +
√
λ(t)

 .
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Since 0 < λ(1) 6 λ(t) 6 λ(0) <∞, this implies that

|Rn| 6
∫1
0

(
λ̂n(t) − λ(t)

)2
∣∣∣∣∣4λ(t) −

(√
λ̂n(t) +

√
λ(t)

)2∣∣∣∣∣
4λ(t)

(√
λ̂n(t) +

√
λ(t)

)2 dt

6 C
∫1
0

∣∣λ̂n(t) − λ(t)∣∣3 dt,

for some positive constant C only depending on λ(0) and λ(1). Then, from
Lemma 4.1.2, it follows that n5/6Rn = oP(1).

4.2 a central limit theorem

The following theorem gives a central limit theorem for the squared Hellinger
loss. Note that the limit distribution depends on the process X defined in
(1.1.12).

Theorem 4.2.1. Assume (A1), (A2’), (A3), (A4), and (4.1.4). Moreover, suppose
that λ is strictly positive. Then, the following holds

n1/6

{
n2/3

∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dt− µ2

}
→ N(0,σ2),

where

µ2 = E
[
|X(0)|2

] ∫1
0

|λ ′(t)L ′(t)|2/3

22/3λ(t)
dt,

and

σ2 = 21/3k2

∫1
0

|λ ′(t)L ′(t)|2/3L ′(t)

λ(t)2
dt,

with k2 defined in (1.3.2).

Proof. According to Lemma 4.1.1, it is sufficient to show that

n1/6
(
n2/3In − µ2

)
→ N(0,σ2),

with

In =

∫1
0

(
λ̂n(t) − λ(t)

)2
(4λ(t))−1 dt.

Again, we follow the same line of reasoning as in the proof of Theorem 2

in Durot, 2007. We briefly sketch the main steps of the proof. We first express
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In in terms of the inverse process Ûn, defined in (4.1.5). To this end, similar
to the proof of Lemma 4.1.2, consider

Ĩ1 =

∫1
0

(
λ̂n(t) − λ(t)

)2
+
(4λ(t))−1 dt, Ĩ2 =

∫1
0

(
λ(t) − λ̂n(t)

)2
+
(4λ(t))−1 dt.

For the first integral, we can now write

Ĩ1 =

∫1
0

∫∞
0
1{
λ̂n(t)>λ(t)+

√
4aλ(t)

} dadt.

Then, if we introduce

J̃1 =

∫1
0

∫ (λ(0)−λ(t))2/4λ(t)
0

1{
λ̂n(t)>λ(t)+

√
4aλ(t)

} dadt, (4.2.1)

we obtain

0 6 Ĩ1 − J̃1 6
∫ Ûn(λ(0))
0

∫∞
(λ(0)−λ(t))2/4aλ(t)

1{
λ̂n(t)>λ(t)+

√
4aλ(t)

} dadt

6
1

4λ(1)

∫ Ûn(λ(0))
0

(
λ̂n(t) − λ(t)

)2
+

dt.

Similar to the reasoning in the proof of Lemma 4.1.2, we conclude that

Ĩ1 = J̃1 + op(n
−5/6).

Next, the change of variable b = λ(t) +
√
4aλ(t) yields

J̃1 =

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

b− λ(t)

2λ(t)
1{Ûn(b)>g(b)}

dtdb

=

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

b− λ(t)

2b
1{Ûn(b)>g(b)}

dtdb

+

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

(b− λ(t))2

2bλ(t)
1{Ûn(b)>g(b)}

dtdb.

(4.2.2)



4.2 a central limit theorem 145

Let us first consider the second integral on the right hand side of (4.2.2). We
then have∫λ(0)

λ(1)

∫ Ûn(b)
g(b)

(b− λ(t))2

2bλ(t)
1{Ûn(b)>g(b)}

dtdb

6
1

2λ(1)2

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

(b− λ(t))2 1{Ûn(b)>g(b)} dtdb

6
1

2λ(1)2
sup
t∈[0,1]

|λ ′(t)|

∫λ(0)
λ(1)

1{Ûn(b)>g(b)}

∫ Ûn(b)
g(b)

(t− g(b))2 dtdb

=
1

6λ(1)2
sup
t∈[0,1]

|λ ′(t)|

∫λ(0)
λ(1)

1{Ûn(b)>g(b)}

(
Ûn(b) − g(b)

)3
db.

Again by using (4.1.9) with q ′ = 3 we obtain∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

(b− λ(t))2

2bλ(t)
1{Ûn(b)>g(b)}

dtdb = oP(n
−5/6).

Then consider the first integral on the right hand side of (4.2.2). Similar
to (4.1.7), there exists K > 0 such that, for all b ∈ (λ(1), λ(0)) and t ∈ (g(b), 1],∣∣(b− λ(t) − (g(b) − t)λ ′(g(b)))

∣∣ 6 K(t− g(b))1+s.

Taking into account that λ ′(g(b)) < 0, similar to (4.1.8), it follows that

Ĩ1 =

∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

|λ ′(g(b))|

2b
(t− g(b))1{Ûn(b)>g(b)} dtdb

+ R̃n + op(n
−5/6),

where

|R̃n| 6
∫λ(0)
λ(1)

∫ Ûn(b)
g(b)

K

2λ(1)
(t− g(b))1+s1{g(b)<Ûn(b)} dtdb

6
K

2λ(1)(2+ s)

∫λ(0)
λ(1)

|Ûn(b) − g(b)|
2+s db

= Op(n
−(2+s)/3) = op(n

−5/6),

by using (4.1.9) once more, and the fact that s > 3/4. It follows that

Ĩ1 =

∫λ(0)
λ(1)

|λ ′(g(b))|

4b

(
Ûn(b) − g(b)

)2
1{Ûn(b)>g(b)}

db+ op(n−5/6).

In the same way

Ĩ2 =

∫λ(0)
λ(1)

|λ ′(g(b))|

4b

(
Ûn(b) − g(b)

)2
1{Ûn(b)<g(b)}

db+ op(n−5/6),
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so that

In = Ĩ1 + Ĩ2 =

∫λ(0)
λ(1)

(
Ûn(b) − g(b)

)2 |λ ′(g(b))|

4b
db+ oP(n−5/6).

We then mimic step 2 in the proof of Theorem 2 in Durot, 2007. Let Bn be
the process in condition (A4). Consider the representation

Bn(t) =Wn(t) − ξnt,

where Wn is a standard Brownian motion, ξn = 0 if Bn is Brownian motion,
and ξn is a standard normal random variable independent of Bn, if Bn is a
Brownian bridge. Then, define

Wt(u) = n
1/6
{
Wn(L(t) +n

−1/3u) −Wn(L(t))
}

, for t ∈ [0, 1],

which has the same distribution as a standard Brownian motion. Now, for
t ∈ [0, 1], let d(t) = |λ ′(t)|/(2L ′(t)2) and define

Ṽ(t) = argmax
|u|6logn

{
Wt(u) − d(t)u

2
}

. (4.2.3)

Then similar to (26) in Durot, 2007, we will obtain

n2/3In =

∫1
0

∣∣∣∣Ṽ(t) −n−1/6 ξn

2d(t)

∣∣∣∣2 ∣∣∣∣λ ′(t)L ′(t)

∣∣∣∣2 1

4λ(t)
dt+ oP(n−1/6). (4.2.4)

To prove (4.2.4), by using the approximation

Ûn(a) − g(a) ≈
L(Ûn(a)) − L(g(a))

L ′(g(a))

and a change of variable aξ = a−n1/2ξnL
′(g(a)), we first obtain

n2/3In = n2/3
∫λ(0)−δn
λ(1)+δn

∣∣∣L(Ûn(aξ)) − L(g(aξ))∣∣∣2 |λ ′(g(a))|

(L ′(g(a)))2
1

4a
da

+ op(n
−1/6),

where δn = n−1/6/ logn. Apart from the factor 1/4a, the integral on the
right hand side is the same as in the proof of Theorem 2 in Durot, 2007

for p = 2. This means that we can apply the same series of succeeding
approximations for L(Ûn(aξ)) − L(g(aξ)) as in Durot, 2007, which yields

n2/3In = n2/3
∫λ(0)−δn
λ(1)+δn

∣∣∣∣Ṽ(g(a)) −n−1/6 ξn

2d(g(a))

∣∣∣∣2 |λ ′(g(a))|

(L ′(g(a)))2
1

4a
da

+ op(n
−1/6).
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Finally, because the integrals over [λ(1), λ(1) + δn] and [λ(0) − δn, λ(0)] are
of the order op(n−1/6), this yields (4.2.4) by a change of variables t = g(a).

The next step is to show that the term with ξn can be removed from (4.2.4).
This can be done exactly as in Durot, 2007, since the only difference with
the corresponding integral in Durot, 2007 is the factor 1/4λ(t), which is
bounded and does not influence the argument in Durot, 2007. We find that

n2/3In =

∫1
0
|Ṽ(t)|2

∣∣∣∣λ ′(t)L ′(t)

∣∣∣∣2 1

4λ(t)
dt+ oP(n−1/6).

Then define

Yn(t) =
(
|Ṽ(t)|2 − E

[
|Ṽ(t)|2

]) ∣∣∣∣λ ′(t)L ′(t)

∣∣∣∣2 1

4λ(t)
. (4.2.5)

By approximating Ṽ(t) by

V(t) = argmax
u∈R

{
Wt(u) − d(t)u

2
}

,

and using that, by Brownian scaling, d(t)2/3V(t) has the same distribution
as X(0), see Durot, 2007 for details, we have that∫1

0
E
[
|Ṽ(t)|2

] ∣∣∣∣λ ′(t)L ′(t)

∣∣∣∣2 1

4λ(t)
dt

= E
[
|X(0)|2

] ∫1
0
d(t)−4/3

∣∣∣∣λ ′(t)L ′(t)

∣∣∣∣2 1

4λ(t)
dt+ o(n−1/6)

= µ2 + o(n−1/6).

It follows that

n1/6(In − µ2) = n1/6
∫1
0
Yn(t)dt+ oP(1).

We then first show that

Var

(
n1/6

∫1
0
Yn(t)dt

)
→ σ2. (4.2.6)

Once more, following the proof in Durot, 2007 we have

vn = Var

(∫1
0
Yn(t)dt

)

= 2

∫1
0

∫1
s

∣∣∣∣λ ′(t)L ′(t)

λ ′(s)

L ′(s)

∣∣∣∣2 1

4λ(t)

1

4λ(s)
cov(|Ṽ(t)|2, |Ṽ(s)|2)dtds.
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After the same sort of approximations as in Durot, 2007, we get

vn = 2

∫1
0

∫min(1,s+cn)

s

∣∣∣∣λ ′(s)L ′(s)

∣∣∣∣4 cov(|Vt(s)|2, |Vs(s)|2)
(4λ(s))2

dtds+ o(n−1/3),

where cn = 2n−1/3 logn/ inft L ′(t) and where, for all s and t,

Vt(s) = argmax
u∈R

{
Wt(u) − d(s)u

2
}

.

Then use that d(s)2/3Vt(s) has the same distribution as

X
(
n1/3d(s)2/3

(
L(t) − L(s)

))
−n1/3d(s)

(
L(t) − L(s)

)
,

so that the change of variable a = n1/3d(s)2/3(L(t) − L(s)) in vn leads to

n1/3vn → 2

∫1
0

∫∞
0

∣∣∣∣λ ′(s)L ′(s)

∣∣∣∣4 1

(4λ(s))2
1

d(s)10/3L ′(s)
cov(|X(a)|2, |X(0)|2)dads

→ 2k2

∫1
0

∣∣∣∣λ ′(s)L ′(s)

∣∣∣∣4 1

(4λ(s))2
210/3|L ′(s)|17/3

|λ ′(s)|10/3
ds = σ2,

which proves (4.2.6).

Finally, asymptotic normality of n1/6
∫1
0 Yn(t)dt follows by Bernstein’s

method of big blocks and small blocks in the same way as in step 6 of the
proof of Theorem 2 in Durot, 2007.

Corollary 4.2.2. Assume (A1), (A2’), (A3), (A4), and (4.1.4) and let H(λ̂n, λ)
be the Hellinger distance defined in (4.1.1). Moreover, suppose that λ is strictly
positive. Then,

n1/6
{
n1/3H(λ̂n, λ) − µ̃

}
→ N(0, σ̃2),

where µ̃ = 2−1/2µ and σ̃2 = σ2/8µ2, where µ2 and σ2 are defined in Theo-
rem 4.2.1.

Proof. This follows immediately by applying the delta method with φ(x) =
2−1/2

√
x to the result in Theorem 4.2.1.

4.3 examples

The type of scaling for the Hellinger distance in Corollary 4.2.2 is similar to
that in the central limit theorem for Lp-distances. This could be expected in
view of the approximation in terms of a weighted squared L2-distance, see
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Lemma 4.1.1, and the results, e.g., in Kulikov and Lopuhaä, 2005 and Durot,
2007. Actually, this is not always the case. The phenomenon of observing
different speeds of convergence for the Hellinger distance from those for
the L1 and L2 norms is considered in Birgé, 1986. In fact, this is related to
the existence of a lower bound for the function we are estimating. If the
function of interest is bounded from below, which is the case considered
in this paper, then the approximation (4.1.3) holds, see Birgé, 1986 for an
explanation.

When we insert the expressions for µ2 and σ2 from Theorem 4.2.1, then
we get

σ̃2 =
k2

4E
[
|X(0)|2

] ∫10 |λ ′(t)L ′(t)|2/3L ′(t)λ(t)−2 dt∫1
0 |λ
′(t)L ′(t)|2/3λ(t)−1 dt

,

where k2 is defined in (1.3.2). This means that in statistical models where
L = Λ in condition (A4), and hence L ′ = λ, the limiting variance σ̃2 =

k2/(4E[|X(0)|2]) does not depend on λ.

One such a model is estimation of the common monotone density λ on
[0, 1] of independent random variables X1, . . . ,Xn. Then, Λn is the empir-
ical distribution function of X1, . . . ,Xn and λ̂n is Grenander’s estimator
(Grenander, 1956). In that case, if inft λ(t) > 0, the conditions of Corol-
lary 4.2.2 are satisfied with L = Λ (see Theorem 6 in Durot, 2007), so that the
limiting variance of the Hellinger loss for the Grenander estimator does not
depend on the underlying density. This behavior was conjectured in Well-
ner, 2015 and coincides with that of the limiting variance in the central
limit theorem for the L1-error for the Grenander estimator, first discovered
by Groeneboom, 1983 (see also Durot, 2002; Groeneboom, Hooghiemstra,
and Lopuhaä, 1999 and Durot, 2007; Kulikov and Lopuhaä, 2005).

Another example is when we observe independent identically distributed
inhomogeneous Poisson processes N1, . . . ,Nn with common mean function
Λ on [0, 1] with derivative λ, for which Λ(1) <∞. Then Λn is the restriction
of (N1 + · · · +Nn)/n to [0, 1]. Also in that case, the conditions of Corol-
lary 4.2.2 are satisfied with L = Λ (see Theorem 4 in Durot, 2007), so that
the limiting variance of the Hellinger loss for λ̂n does not depend on the
common underlying intensity λ. However, note that for this model, the L1-
loss for λ̂n is asymptotically normal according to Theorem 2 in Durot, 2007,
but with limiting variance depending on the value Λ(1) −Λ(0).
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Consider the monotone regression model yi,n = λ(i/n) + εi,n, for i =

1, . . . ,n, where the εi,n’s are i.i.d. random variables with mean zero and
variance σ2 > 0. Let

Λn(t) =
1

n

∑
i6nt

yi,n, t ∈ [0, 1],

be the empirical distribution function. Then λ̂n is (a slight modification of)
Brunk’s estimator from Brunk, 1958. Under appropriate moment conditions
on the εi,n, the conditions of Corollary 4.2.2 are satisfied with L(t) = tσ2

(see Theorem 5 in Durot, 2007). In this case, the limiting variance of the
Hellinger loss for λ̂n depends on both λ and σ2, whereas the L1-loss for λ̂n
is asymptotically normal according to Theorem 2 in Durot, 2007, but with
limiting variance only depending on σ2.

Suppose we observe a right-censored sample (X1,∆1), . . . , (Xn,∆n), where
Xi = min(Ti, Yi) and ∆i = 1{Ti6Yi}, with the Ti’s being nonnegative i.i.d. fail-
ure times and the Yi’s are i.i.d. censoring times independent of the Ti’s. Let
F be the distribution function of the Ti’s with density f and let G be the
distribution function of the Yi’s. The parameter of interest is the monotone
failure rat λ = f/(1 − F) on [0, 1]. In this case, Λn is the restriction of he
Nelson-Aalen estimator to [0, 1]. If we assume (A1) and inft λ(t) > 0, then
under suitable assumptions on F and G the conditions of Corollary 4.2.2
hold with

L(t) =

∫t
0

λ(u)

(1− F(u)))(1−G(u))
du, t ∈ [0, 1],

(see Theorem 3 in Durot, 2007). This means that the limiting variance of the
Hellinger loss depends on λ, F and G, whereas the limiting variance of the
L1-loss depends only on their values at 0 and 1. In particular, in the case
of nonrandom censoring times, L = (1− F)−1 − 1, the limiting variance of
the Hellinger loss depends on λ and F, whereas the limiting variance of the
L1-loss depends only on the value F(1).

4.4 testing exponentiality against a non-decreasing density

In this section we investigate a possible application of Theorem 4.2.1, i.e.,
testing for an exponential density against a non-increasing alternative by
means of the Hellinger loss. The exponential distribution is one of the most
used and well-known distributions. It plays a very important role in reli-
ability, survival analysis, and in renewal process theory, when modeling
random times until some event. As a result, a lot of attention has been given
in the literature to testing for exponentiality against a wide variety of al-
ternatives, by making use of different properties and characterizations of
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the exponential distribution (see Meintanis, 2007, Alizadeh Noughabi and
Arghami, 2011, Jammalamadaka and Taufer, 2003, Haywood and Khmal-
adze, 2008). In this section we consider a test for exponentiality, assuming
that data comes from a decreasing density. The test is based on the Hellinger
distance between the parametric estimator of the exponential density and
the Grenander-type estimator of a general decreasing density. In order to be
able to apply the result of Corollary 4.2.2, we first investigate a test whether
the data is exponentially distributed with a fixed parameter λ0 > 0. Since
such a test may not be very interesting from a practical point of view, we
also investigate testing exponentiality leaving the parameter λ > 0 unspeci-
fied.

4.4.1 Testing a simple null hypothesis of exponentiality

Let fλ(x) = λe−λx1{x>0} be the exponential density with parameter λ >
0. Assume we have a sample of i.i.d. observations X1, . . . ,Xn from some
distribution with density f and for λ0 > 0 fixed, we want to test

H0 : f = fλ0 against H1 : f is non-increasing.

Under the alternative hypothesis we can estimate f on an interval [0, τ] by
the Grenander-type estimator f̂n from Section 4.1. Then as a test statistic we
take Tn = H(f̂n, fλ0), the Hellinger distance on [0, τ] between f̂n and fλ0 ,
and at level α, we reject the null hypothesis if Tn > cn,α,λ0 , for some critical
value cn,α,λ0 > 0.

According to Corollary 4.2.2, it follows that Tn is asymptotically normally
distributed, but the mean and the variance depend on the constant k2 de-
fined in (1.3.2). To avoid computation of k2, we estimate the mean and the
variance of Tn empirically. We generate B = 10 000 samples from fλ0 . For
each of these samples we compute the Grenander estimator f̂n,i and the
Hellinger distance Tn,i = H(f̂n,i, fλ0), for i = 1, 2, . . . ,B. Finally, we com-
pute the mean T̄ and the variance sT of the values Tn,1, . . . , Tn,B. For the
critical value of the test we take cn,α,λ0 = T̄ + q1−αsT , where q1−α is the
100(1−α)% quantile of the standard normal distribution. Note that, even if
in the density model the asymptotic variance is independent of the underly-
ing distribution, the asymptotic mean does depend on λ0, i.e., the test is not
distribution free. Another possibility, instead of the normal approximation,
is to take as a critical value c̃n,α,λ0 the empirical 100(1−α)% quantile of the
values Tn,1, . . . , Tn,B.

To investigate the performance of the test, we generate N = 10 000 sam-
ples from fλ0 . For each sample we compute the value of the test statistic
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Tn = H(f̂n, fλ0) and we reject the null hypothesis if Tn > cn,α,λ0 (or if
Tn > c̃n,α,λ0 ). The percentage of rejections gives an approximation of the
level of the test. Table 10 shows the results of the simulations for differ-
ent sample sizes n and two values of λ0 and α = 0.01, 0.05, 0.10. Here we
take τ = 5, since the mass of the exponential distribution with parameter
one or five outside the interval [0, 5] is negligible. We observe that the per-
centage of rejections is close to the nominal level if we use c̃n,α,λ0 as critical
value for the test, but it is a bit higher if we use cn,α,λ0 . This is due to the
fact that for small sample sizes, the normal approximation of Corollary 4.2.2
is not very precise. Moreover, to investigate the power, we generate a sample

λ0 = 1 λ0 = 5

α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

n = 20 0.0229 0.0680 0.1016 0.0310 0.0791 0.1127

0.0118 0.0498 0.0971 0.0117 0.0533 0.1058

n = 50 0.0244 0.0684 0.1123 0.0243 0.0659 0.1086

0.0106 0.0469 0.0923 0.0103 0.0494 0.0964

n = 100 0.0190 0.0589 0.1021 0.0236 0.0673 0.1126

0.0106 0.0531 0.1063 0.0091 0.0453 0.0951

Table 10: Simulated levels of Tn using cn,α,λ0 (top) and c̃n,α,λ0 (bottom), with α =

0.01, 0.05, 0.10, under the null hypothesis varying the sample size n and
the parameter λ0.

from the Weibull distribution with shape parameter ν and scale parameter
λ−10 . Recall that Weibull(1, λ−10 ) corresponds to the exponential distribution
with parameter λ0 and that a Weibull distribution with ν < 1 has a de-
creasing density. We compute the Hellinger distance Tn = H(f̂n, fλ0) and
we reject the null hypothesis if Tn > cn,α,λ0 (or if Tn > c̃n,α,λ0 ). After
repeating the procedure N = 10 000 times, we compute the percentage of
times that we reject the null hypothesis, which gives an approximation of
the power of the test.

The results of the simulations, done with n = 100, λ0 = 1, α = 0.05
and alternatives for which ν varies between 0.4 and 1 by steps of 0.05, are
shown in Figure 12. As a benchmark, we compute the power of the like-
lihood ratio test statistic for each ν. As expected, our test is less powerful
with respect to the LR test, which is designed to test against a particular al-
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Figure 12: Simulated powers using cn,α,λ0 (solid) and c̃n,α,λ0 (dashed), with α =

0.05, of Tn and the power of the LR test (dotted) for λ = 1, ν =

0.4, 0.45, . . . , 1 and n = 100.

ternative. However, as the sample size increases, the performance improves
significantly and the difference of the results when using cn,α,λ0 or c̃n,α,λ0
becomes smaller.

4.4.2 Testing a composite null hypothesis of exponentiality

Assume we have a sample of i.i.d.observations X1, . . . ,Xn from some distri-
bution with density f and we want to test

H0 : f = fλ, for some λ > 0, against H1 : f is non-increasing.

Under the null hypothesis, we can construct a parametric estimator of the
density which is given by fλ̂n , where λ̂n = n/

∑n
i=1 Xi is the MLE of λ.

On the other hand, under the alternative hypothesis we can estimate f on
an interval [0, τ] by the Grenander-type estimator f̂n from Section 4.1. Then
as a test statistic we take Rn = H(f̂n, fλ̂n), the Hellinger distance on [0, τ]
between the two estimators, and at level α, we reject the null hypothesis if
Rn > dn,α for some critical value dn,α > 0. Because the limit distribution
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of the test statistic is not known we use a bootstrap procedure to calibrate
the test. We generate B = 1000 bootstrap samples of size n from fλ̂n and
for each of them we compute the estimators fλ̂∗n,i

, f̂∗n,i and the test statistic

R∗n,i = H(fλ̂∗n,i
, f̂∗n,i), for i = 1, 2, . . . ,B. Then we determine the 100α-th

upper-percentile d∗n,α of the values R∗n,1, . . . ,R∗n,B. Finally we reject the null
hypothesis if Rn > d∗n,α.

To investigate the level of the test, for α = 0.05 and λ > 0 fixed, we
start with a sample from an exponential distribution with parameter λ and
repeat the above procedure N = 10 000 times. We count the number of
times we reject the null hypothesis, i.e., the number of times the value of the
test statistics exceeds the corresponding 5th upper-percentile. Dividing this
number byN gives an approximation of the level. Table 11 shows the results
of the simulations for different sample sizes n and different values of λ. The
rejection probabilities are close to 0.05 for all the values of λ, which shows
that the test performs well in the different scenarios (slightly and strongly
decreasing densities).

λ 0.05 0.1 0.5 1 2 3 4 5

n = 50 0.051 0.052 0.049 0.049 0.05 0.053 0.051 0.054

n = 100 0.049 0.047 0.050 0.052 0.054 0.047 0.049 0.050

n = 500 0.052 0.049 0.049 0.049 0.053 0.052 0.053 0.048

n = 1000 0.053 0.046 0.049 0.051 0.049 0.048 0.048 0.052

Table 11: Simulated levels of Rn under the null hypothesis varying the sample size
n and the parameter λ.

To investigate the power, for α = 0.05 and fixed 0 < ν < 1 and λ > 0, we
now start with a sample from a Weibull distribution with shape parameter
ν and scale parameter λ−1 and compute the value Rn = H(fλ̂n , f̂n). In
order to calibrate the test, we treat this sample as if it were an exponential
sample, and estimate λ by λ̂n = n/

∑n
i=1 Xi. Next, we generate B = 1000

bootstrap samples of size n from the exponential density with parameter λ̂n.
For each bootstrap sample we compute the test statistic R∗n,i = H(fλ̂∗n,i

, f̂∗n,i),

for i = 1, 2, . . . ,B, and we determine the 5th upper-percentile d∗n,0.05 of the
values R∗n,1, . . . ,R∗n,B. Finally, we reject the null hypothesis if Rn > d∗n,0.05.
After repeating the above procedure N = 10 000 times, each time starting
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(a) Weibull (b) Beta

Figure 13: Simulated powers of the Hellinger distance test (black solid) and some
other competitor tests: T1 (blue), T2 (green), ω2n (yellow), Sn (brown),
EPn (red), KLmn (purple), COn (orange), and the power of the LR test
(black dotted) for n = 100, λ = 1, 0.4 6 ν 6 1 (left) and 1 6 β 6 8 (right).

with a Weibull sample, we compute the percentage of times that we reject
the null hypothesis, which gives an approximation of the power of the test.

We compare the Hellinger distance test to some of the tests from Alizadeh
Noughabi and Arghami, 2011, which are designed to test exponentiality
against all the possible alternatives, i.e., not only against decreasing densi-
ties. These test are all distribution free, which means that their critical values
can be computed independently of λ. Then, for each of the Weibull samples
generated before, we count the percentage of times that the tests T1, T2,
ω2n, Sn, EPn, KLmn, COn (see Alizadeh Noughabi and Arghami, 2011 for
a precise definition) reject the null hypothesis. Finally, we also compare the
power of our test with the likelihood ratio test for each ν.

The results of the simulations, done with n = 100, λ = 1, and alterna-
tives for which ν varies between 0.4 and 1, are shown in the left panel in
Figure 13. Actually, we also investigated the power for different choices of
λ and we observed similar behavior as for λ = 1. The figure shows that
the test based on the Hellinger distance performs worse that the other tests.
In this case, the test of Cox and Oakes COn has greater power. However,
Alizadeh Noughabi and Arghami, 2011 concluded that none of the tests is
uniformly most powerful with respect to the others.

We repeated the experiment taking, instead of the Weibull distribution,
the beta distribution with parameters α = 1 and 1 6 β 6 8 as alternative.
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Note that it has a non-increasing density on [0, 1] proportional to (1− x)β−1

and the extreme case β = 1 corresponds to the uniform distribution. Results
are shown in the right panel in Figure 13. We observe that for small values of
β the Hellinger distance test again behaves worse than the others and in this
case Rn and EPn have greater power. However, for larger β the Hellinger
distance test outperforms all the others.



5
T H E D I S TA N C E B E T W E E N A N A I V E C U M U L AT I V E
E S T I M AT O R A N D I T S L E A S T C O N C AV E M A J O R A N T

In this chapter we consider the process Λ̂n −Λn, where Λn is a cadlag step
estimator for the primitive Λ of a nonincreasing function λ on [0, 1], and Λ̂n
is the least concave majorant of Λn. The results presented are based on:

Lopuhaä, H. P. and Musta E. (2018) "The distance between a naive cu-
mulative estimator and its least concave majorant". Statistics and Probability
Letters 139, pp. 119-128.

A large part of the literature is devoted to investigating properties of
Grenander-type estimators for monotone curves, and somewhat less atten-
tion is paid to properties of the difference between the corresponding naive
estimator for the primitive of the curve and its LCM. Kiefer and Wolfowitz,
1976 show that supt |F̂n − Fn| = Op((n

−1 logn)2/3). Although the first mo-
tivation for this type of result has been asymptotic optimality of shape
constrained estimators, it has several important statistical applications. The
Kiefer-Wolfowitz result was a key argument in Sen, Banerjee, and Woodroofe,
2010 to prove that the m out of n bootstrap from F̂n works. Mammen, 1991

suggested to use the result to make an asymptotic comparison between a
smoothed Grenander-type estimator and an isotonized kernel estimator in
the regression context. See also Wang and Woodroofe, 2007 for a similar ap-
plication of their Kiefer-Wolfowitz comparison theorem. An extension to a
more general setting was established in Durot and Lopuhaä, 2014, which has
direct applications in Durot, Groeneboom, and Lopuhaä, 2013 to prove that
a smoothed bootstrap from a Grenander-type estimator works for k-sample
tests, and in Groeneboom and Jongbloed, 2013 and in Chapter 2 of this
thesis to extract the pointwise limit behavior of smoothed Grenander-type
estimators for a monotone hazard from that of ordinary kernel estimators.
However, to approximate the Lp-error of smoothed Grenander-type estima-
tors by that of ordinary kernel estimators, such as in Csörgő and Horváth,
1988 for kernel density estimators, a Kiefer-Wolfowitz type result no longer
suffices. In that case, results on the Lp-distance, between F̂n and Fn are more
appropriate, such as the ones in Durot and Tocquet, 2003 and Kulikov and
Lopuhaä, 2008.

157
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We extend the results in Kulikov and Lopuhaä, 2006, 2008 to the general
setting considered in Durot, 2007. Under this setting we prove that a suitably
scaled version of Λ̂n −Λn converges in distribution to the corresponding
process for two-sided Brownian motion with parabolic drift and we estab-
lish a central limit theorem for the Lp-distance between Λ̂n and Λn. In this
paper, we extend the results in Durot and Tocquet, 2003 and Kulikov and
Lopuhaä, 2008 to the general setting of Durot, 2007. Our main result is a
central limit theorem for the Lp-distance between Λ̂n and Λn, where Λn
is a naive estimator for the primitive Λ of a monotone curve λ and Λ̂n is
the LCM of Λn. As special cases we recover Theorem 5.2 in Durot and Toc-
quet, 2003 and Theorem 2.1 in Kulikov and Lopuhaä, 2008. Our approach
requires another preliminary result, which might be of interest in itself, i.e.,
a limit process for a suitably scaled difference between Λ̂n and Λn. As spe-
cial cases we recover Theorem 1 in Wang, 1994, Theorem 4.1 in Durot and
Tocquet, 2003, and Theorem 1.1 in Kulikov and Lopuhaä, 2006.

5.1 process convergence

We consider the general setting in Durot, 2007. Let λ : [0, 1] → R be non-
increasing and assume that we have at hand a cadlag step estimator Λn
of

Λ(t) =

∫t
0
λ(u)du, t ∈ [0, 1].

In the sequel we will make use of the following assumptions.

(A1) λ is strictly decreasing and twice continuously differentiable on [0, 1]
with inft |λ ′(t)| > 0.

(A2) Let Bn be either a Brownian motion or a Brownian bridge. There exists
q > 6, Cq > 0, L : [0, 1] → R, and versions of Mn = Λn −Λ and Bn
such that

P

(
n1−1/q sup

t∈[0,1]

∣∣∣Mn(t) −n−1/2Bn ◦ L(t)
∣∣∣ > x) 6 Cqx

−q

for all x ∈ (0,n]. Moreover, L is increasing and twice differentiable on
[0, 1], with supt |L

′′(t)| <∞ and inft |L ′(t)| > 0.

Note that this setup includes several statistical models, such as monotone
density, monotone regression, and the monotone hazard model under ran-
dom censoring, see Section 3 in Durot, 2007.
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We consider the distance between Λn and its least concave majorant Λ̂n =

CM[0,1]Λn, where CMI maps a function h : R → R into the least concave
majorant of h on the interval I ⊂ R. Consider the process

An(t) = n
2/3

(
Λ̂n(t) −Λn(t)

)
, t ∈ [0, 1], (5.1.1)

and define

Z(t) =W(t) − t2, ζ(t) = [CMRZ](t) −Z(t), (5.1.2)

where W denotes a standard two-sided Brownian motion originating from
zero. For each t ∈ (0, 1) fixed and t+ c2(t)sn−1/3 ∈ (0, 1), define

ζnt(s) = c1(t)An

(
t+ c2(t)sn

−1/3
)

, (5.1.3)

where

c1(t) =

(
|λ ′(t)|

2L ′(t)2

)1/3
, c2(t) =

(
4L ′(t)

|λ ′(t)|2

)1/3
. (5.1.4)

Our first result is the following theorem, which extends Theorem 1.1 in Ku-
likov and Lopuhaä, 2006.

Theorem 5.1.1. Suppose that assumptions (A1)-(A2) are satisfied. Let ζnt and ζ
be defined in (5.1.3) and (5.1.2). Then the process {ζnt(s) : s ∈ R} converges in
distribution to the process {ζ(s) : s ∈ R} in D(R), the space of cadlag function on
R.

Note that as a particular case ζnt(0) converges weakly to ζ(0). In this way,
we recover Theorem 1 in Wang, 1994 and Theorem 4.1 in Durot and Tocquet,
2003. The proof of Theorem 5.1.1 follows the line of reasoning in Kulikov
and Lopuhaä, 2006.

Let us briefly sketch the argument to prove Theorem 5.1.1. Note thatAn =

D[0,1][n
2/3Λn] and ζ = DR[Z], where DIh = CMIh − h, for h : R → R.

Since DI is a continuous mapping, the main idea is to apply the continuous
mapping theorem to properly scaled approximations of the processes Λn
and Z on a suitable chosen fixed interval I. The first step is to determine the
weak limit of Λn, which is given in the following lemma.

Lemma 5.1.2. Suppose that assumptions (A1)-(A2) are satisfied. Then for fixed
t ∈ (0, 1) , the process

Xnt(s) = n
2/3

(
Λn(t+ sn

−1/3) −Λn(t) −
(
Λ(t+ sn−1/3) −Λ(t)

))
converges in distribution to the process {W(L ′(t)s) : s ∈ R}.
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Since

n2/3(Λ(t+ sn−1/3) −Λ(t)) ≈ n1/3λ(t)s+ λ ′(t)s2/2

and DI is invariant under addition of linear functions, it follows that the
process An can be approximated by a Brownian motion with a parabolic
drift. The idea now is to use continuity of DI, for a suitably chosen inter-
val I = [−d,d], to show that DIEnt converges to DIZt, where

Ent(s) = n
2/3Λn(t+ sn

−1/3)

Zt(s) =W(L ′(t)s) + λ ′(t)s2/2.
(5.1.5)

In order to relate this to the processes ζnt and ζ in Theorem 5.1.1, note that
An(t+ sn

−1/3) = [DIntEnt](s), where Int = [−tn1/3, (1− t)n1/3], and by
Brownian scaling, the process Z(s) has the same distribution as the process
c1(t)Zt(c2(t)s). This means that we must compare the concave majorants
of Ent on the intervals Int and I, as well as the concave majorants of Zt on
the interval I and R. Lemma 1.2 in Kulikov and Lopuhaä, 2006 shows that,
locally, with high probability, both concave majorants of the process Zt co-
incide on [−d/2,d/2], for large d > 0. A similar result is established for the
concave majorants of the process Ent in Lemma 5.1.3, which is analogous
to Lemma 1.3 in Kulikov and Lopuhaä, 2006. As a preparation for Theo-
rem 5.2.1, the lemma also contains a similar result for a Brownian motion
version of Ent.

Let Bn be as in assumption (A2) and let ξn be a N(0, 1) distributed ran-
dom variable independent of Bn, if Bn is a Brownian bridge, and ξn = 0,
when Bn is a Brownian motion. Define versions Wn of a Brownian motion
by Wn(t) = Bn(t) + ξnt, for t ∈ [0, 1], and define

AWn = n2/3
(

CM[0,1]Λ
W
n −ΛWn

)
(5.1.6)

where ΛWn (t) = Λ(t) + n−1/2Wn(L(t)), with L as in assumption (A2). Fur-
thermore, define En =

√
n(Λn −Λ), ΛEn = Λn, AEn = An. The superscripts

E and W refer to the empirical and Brownian motion version. For d > 0, let
Int(d) = [0, 1]∩ [t− dn−1/3, t+ dn−1/3] and, for J = E,W, define the event

NJnt(d) =
{
[CM[0,1]Λ

J
n](s) = [CMInt(d)Λ

J
n](s), for all s ∈ Int(d/2)

}
.

(5.1.7)
Let Int = Int(logn) and NJnt = N

J
nt(logn).

Lemma 5.1.3. Assume that assumptions (A1)-(A2) hold. For d > 0, let NJnt(d)
be the event defined in (5.1.7). There exists C > 0, independent of n, t, d, such that

P
(
(NWnt(d))

c
)
= O

(
e−Cd

3
)

P
(
(NEnt(d))

c
)
= O

(
n1−q/3d−2q + e−Cd

3
)

,
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where q is from assumption (A2).

The proof of Theorem 5.1.1 now follows the same line of reasoning as
that of Theorem 1.1 in Kulikov and Lopuhaä, 2006, see Section 5.3 for more
details.

5.2 clt for the Lp -distance

The next step is to deal with the Lp norm. Our main result is the following.

Theorem 5.2.1. Suppose that assumptions (A1)-(A2) are satisfied and letAn and ζ
be defined by (5.1.1) and (5.1.2), respectively. Let µ be a measure on the Borel sets
of R, such that

(A3) dµ(t) = w(t)dt, where w(t) > 0 is differentiable with bounded derivative
on [0, 1].

Then, for all 1 6 p < min(q, 2q− 7), (with q as in assumption (A2)),

n1/6

(∫1
0
An(t)

p dµ(t) −m

)
d−→ N(0,σ2),

where

m = E [ζ(0)p]

∫1
0

2p/3L ′(t)2p/3

|λ ′(t)|p/3
dµ(t)

and

σ2 =

∫1
0

2(2p+5)/3L ′(t)(4p+1)/3

|λ ′(t)|(2p+2)/3
w2(t)dt

∫∞
0

cov (ζ(0)p, ζ(s)p) ds.

For the special cases that λ is a probability density or a regression function,
we recover Theorem 2.1 in Kulikov and Lopuhaä, 2008 and Theorem 5.2
inDurot and Tocquet, 2003, respectively. In order to prove Theorem 5.2.1 we
first need some preliminary results. We aim at approximating the Lp-norm
of An by that of the Brownian motion version AWn and then finding the
asymptotic distribution for the latter one. To this end, we first need to relate
the moments ofAn to those ofAWn . We start by showing that, for J = E, W, a
rescaled version of ΛJn can be approximated by the same process Ynt plus a
linear term. This result corresponds to Lemma 4.1 in Kulikov and Lopuhaä,
2008.

Lemma 5.2.2. Suppose that assumptions (A1)-(A2) are satisfied. Then, for fixed
t ∈ (0, 1) , for J = E,W, and s ∈ [−tn1/3, (1− t)n1/3], it holds

n2/3ΛJn(t+n
−1/3s) = Ynt(s) + L

J
nt(s) + R

J
nt(s),
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where LJnt(s) is linear in s and

Ynt(s) = n
1/6
{
Wn(L(t+n

−1/3s)) −Wn(L(t))
}
+
1

2
λ ′(t)s2.

Moreover, for all p > 1,

E

[
sup

|s|6logn

∣∣∣RWnt(s)∣∣∣p
]
= O

(
n−p/3(logn)3p

)
,

uniformly in t ∈ (0, 1). If, in addition 1 6 p < q (with q as in assumption (A2)),
then

E

[
sup

|s|6logn

∣∣∣REnt(s)∣∣∣p
]
= O

(
n−p/3+p/q

)
uniformly in t ∈ (0, 1).

Since the mapDI is invariant under addition of linear terms, Lemma 5.2.2
allows us to approximate the moments of AJn(t) = n2/3D[0,1]Λ

J
n by those

of [DHntYnt](0) for some interval Hnt, as in Lemma 4.2 in Kulikov and
Lopuhaä, 2008.

Lemma 5.2.3. Suppose that assumptions (A1)-(A2) are satisfied. and let Ynt be
the process defined in Lemma 5.2.2. Define

Hnt = [−n1/3t,n1/3(1− t)]∩ [− logn, logn].

Then for all p > 1, it holds

E
[
AWn (t)p

]
= E [[DHntYnt] (0)

p] + o
(
n−1/6

)
,

uniformly for t ∈ (0, 1). If, in addition 1 6 p < min(q, 2q − 7), with q from
condition (A2), then also

E
[
AEn(t)

p
]
= E [[DHntYnt] (0)

p] + o
(
n−1/6

)
,

uniformly for t ∈ (0, 1).

The process Ynt has the same distribution as

Ỹnt =W
(
n1/3

(
L
(
t+n−1/3s

)
− L(t)

))
+
1

2
λ ′(t)s2, (5.2.1)

which is close to the process Zt in (5.1.5) by continuity of Brownian motion.
Lemma 4.3 in Kulikov and Lopuhaä, 2008 is then used to show that the con-
cave majorants at zero are sufficiently close. Note that, with by Brownian
scaling, the process c1(t)Zt(c2(t)s) has the same distribution as the process
Z(s). As a consequence of Lemma 5.2.3 the moments of AJn(t) can be re-
lated to those of the process ζ. This formulated in the next lemma, which
corresponds to Lemma 4.4 in Kulikov and Lopuhaä, 2008.
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Lemma 5.2.4. Suppose that assumptions (A1)-(A2) hold. Then, for all p > 1,

E
[
AWn (t)p

]
=

(
2L ′(t)2

|λ ′(t)|

)p/3
E [ζ(0)p] + o

(
n−1/6

)
uniformly in t ∈ (n−1/3 logn, 1−n−1/3 logn) and

E
[
AWn (t)p

]
6

(
2L ′(t)2

|λ ′(t)|

)p/3
E [ζ(0)p] + o

(
n−1/6

)
uniformly in t ∈ (0, 1). If, in addition 1 6 p < min(q, 2q− 7), where q is from
assumption (A2), then the same (in)equalities hold for AEN(t).

In Lemmas 5.2.3 and 5.2.4 the moments of AEn and AWn are approximated
by the moments of the same process. This suggests that the difference be-
tween them is of smaller order than n−1/6. Indeed, on the events NJnt,
where AJn = n2/3DIntΛ

J
n, we make use of Lemma 5.2.3 and the fact that

DI is invariant under addition of linear functions to obtain that

sup
t∈(0,1)

∣∣∣n2p/3[DIntΛEn](t) −n2p/3[DIntΛWn ](t)
∣∣∣

6 sup
t∈(0,1)

sup
|s|6logn

{
|REnt(s)|+ |RWnt(s)|

}
,

where the processes RJnt converge to zero sufficiently fast. On the other
hand, on (NJnt)

c we just need the boundedness of the moments of AJn,
which follows by Lemma 5.2.4 and the fact that the probability of these
events is very small (Lemma 5.1.3).

Lemma 5.2.5. Suppose that assumptions (A1)-(A2) hold. Then, for 1 6 p <

min(q, 2q− 7), with q from assumption (A2), it holds

E
[∣∣∣AEn(t)p −AWn (t)p

∣∣∣] = o(n−1/6
)

E
[∣∣∣AEn(t) −AWn (t)

∣∣∣p] = o(n−1/6
)

uniformly in t ∈ (0, 1).

From Lemma 5.2.4 it follows that

n1/6

∣∣∣∣∣m−

∫1
0

E
[
AWn (t)p

]
dt

∣∣∣∣∣→ 0,
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where m is the asymptotic mean in Theorem 5.2.1. Moreover, Lemma 5.2.5
implies that

n1/6

∣∣∣∣∣
∫1
0
AEn(t)

p dt−
∫1
0
AWn (t)p dt

∣∣∣∣∣ 6 n1/6
∫1
0

∣∣∣AEn(t)p −AWn (t)p
∣∣∣ dt→ 0.

As a consequence, in order to prove Theorem 5.2.1, it suffices to prove
asymptotic normality of its Brownian motion version

TWn = n1/6
∫1
0

(
AWn (t)p − E

[
AWn (t)p

])
dµ(t).

The proof of this is completely similar to that of Theorem 2.1 in Kulikov
and Lopuhaä, 2008. First, by using Theorem 5.1.1 for a Brownian version of
ζnt and the mixing property of AWn (this can be obtained in the same way
as Lemma 4.6 in Kulikov and Lopuhaä, 2008), we derive the asymptotic
variance of TWn in the following lemma.

Lemma 5.2.6. Suppose that assumptions (A1)-(A3) are satisfied. Then, for every
p > 1,

Var

(
n1/6

∫1
0
AWn (t)p dµ(t)

)

→
∫1
0

2(2p+5)/3L ′(t)(4p+1)/3

|λ ′(t)|(2p+2)/3
w2(t)dt

∫∞
0

cov (ζ(0)p, ζ(s)p) ds.

The last step is proving the asymptotic normality of TWn . This is done
by a big-blocks small-blocks argument, where the contribution of the small
blocks to the asymptotic distribution is negligible, while the mixing prop-
erty of AWn allows us to approximate the sum over the big blocks by a sum
of independent random variables which satisfy the assumptions of Linde-
berg central limit theorem.

5.3 proofs

Proof of Lemma 5.1.2. The proof is completely similar to that of Lemma 1.1
in Kulikov and Lopuhaä, 2006, but this time En =

√
n(Λn −Λ) and

sup
t∈[0,1]

|En(t) −Bn ◦ L(t)| = Op(n−1/2+1/q),
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according to (A2). Similar to the proof of Lemma 1.1 in Kulikov and Lop-
uhaä, 2006, this means that

Xnt(s) = n
1/6

(
Wn(L(t+ sn

−1/3)) −Wn(L(t))
)
+Op(n

−1/3+1/q)

d
=W(L ′(t)s) + Rn(s),

where sups∈I |Rn(s)|→ 0 in probability for compact I ⊂ R. From here on the
proof is the same as that of Lemma 1.1 in Kulikov and Lopuhaä, 2006.

Proof Lemma 5.1.3. Let λ̂Wn be the left derivative of Λ̂Wn = CM[0,1]Λ
W
n . De-

fine the inverse process

UWn (a) = argmax
t∈[0,1]

{
ΛWn (t) − at

}
and

VWn (a) = n1/3
(
L(UWn (a)) − L(g(a))

)
,

where g denotes the inverse of λ. As in the proof of Lemma 1.3 in Kulikov
and Lopuhaä, 2006 [see (2.2)], we get

P
(
(NWnt(d))

c
)
6 P

(
λ̂Wn (t−n−1/3d) = λ̂Wn (t−n−1/3d/2)

)
+ P

(
λ̂Wn (t+n−1/3d) = λ̂Wn (t+n−1/3d/2)

)
.

(5.3.1)

Then, with s = t− dn−1/3/2, x = d/2, and εn = inft∈[0,1] |λ
′(t)|dn−1/3/8,

it holds (see (2.3) in Kulikov and Lopuhaä, 2006),

P
(
λ̂Wn (t−n−1/3d) = λ̂Wn (t−n−1/3d/2)

)
6 P

(
λ̂Wn (s+n−1/3x) − λ(s+n−1/3x) > εn

)
+ P

(
λ̂Wn (s) − λ(s) < −εn

)
.

(5.3.2)

Moreover, using the switching relation λ̂Wn (t) > a⇔ UWn (a) > t, we rewrite
this probability as

P
{
UWn

(
λ
(
s+n−1/3x

)
+ εn

)
> s+n−1/3x

}
= P
{
VWn

(
λ(s+n−1/3x) + εn

)
>

n1/3
(
L
(
s+n−1/3x

)
− L

(
g
(
λ
(
s+n−1/3x

)
+ εn

)))}
= P

{
VWn

(
λ
(
s+n−1/3x

)
+ εn

)
>

inft∈[0,1] |λ
′(t)| inft∈[0,1] L

′(t)d

8 supt∈[0,1] |λ
′(t)|

}
.
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It suffices to show that there exists positive constants C1, C2 such that

P
(
VWn (a) > x

)
6 C1e−C2x

3
(5.3.3)

because then it follows that

P

(
VWn

(
λ
(
s+n−1/3x

)
+ εn

)
>

inft |λ ′(t)| inft L ′(t)d
8 supt |λ ′(t)|

)
6 C̃1e−C̃2d

3
.

Similarly we can also bound the second probabilities in (5.3.1) and (5.3.2).
Then the statement of the lemma follows immediately.

Now we prove (5.3.3). First write

VWn (a) = n1/3

(
L

(
argmax
t∈[0,1]

{
W(L(t)) +

√
n(Λ(t) − at)

})
− L(g(a))

)

= n1/3

(
argmax

s∈[L(0),L(1)]

{
W(s) +

√
n
(
Λ
(
L−1(s)

)
− aL−1(s)

)}
− L(g(a))

)
.

Using properties of the argmax functional we obtain that the right hand side
is equal to the argmax of the process

n1/6
{
W
(
n−1/3s+ L(g(a))

)
−W (L(g(a)))

}
+n2/3

{
Λ
(
L−1

(
n−1/3s+ L(g(a))

))
−Λ(g(a))

−aL−1
(
n−1/3s+ L(g(a))

)
+ ag(a)

}
for

s ∈ In(a) = [n1/3(L(0) − L(g(a))),n1/3(L(1) − L(g(a)))].

By Brownian motion scaling, VWn (a) is equal in distribution to

argmax
t∈In(a)

{W(t) −Da,n(t)} ,

where W is a standard two-sided Brownian motion originating from zero
and

Da,n(s) = −n2/3
{
Λ
(
L−1

(
n−1/3s+ L(g(a))

))
−Λ(g(a))

− aL−1
(
n−1/3s+ L(g(a))

)
+ ag(a)

}
.

By Taylor’s formula and the assumptions on λ and L, one can show that
there exist a constant c0 > 0, independent of n, a and t, such that Da,n(t) >
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c0t
2. Then (5.3.3) follows from Theorem 4 in Durot, 2002, which proves the

first statement.

To continue with the second statement, let λ̂n be the left derivative of Λ̂n
and define the inverse process

Un(a) = argmax
t∈[0,1]

{Λn(t) − at} , and Vn(a) = n
1/3 (Un(a) − g(a)) ,

where g denotes the inverse of λ. As in (5.3.1), we get

P
(
(NEnt(d))

c
)
6 P

(
λ̂n(t−n

−1/3d) = λ̂n(t−n
−1/3d/2)

)
+ P

(
λ̂n(t+n

−1/3d) = λ̂n(t+n
−1/3d/2)

)
.

(5.3.4)

where similar to (5.3.2),

P
(
λ̂n(t−n

−1/3d) = λ̂n(t−n
−1/3d/2)

)
6 P

(
λ̂n(s+n

−1/3x) − λ(s+n−1/3x) > εn

)
+ P

(
λ̂n(s) − λ(s) < −εn

)
.

(5.3.5)

Then using the switching relation λ̂n(t) 6 a ⇔ Un(a) 6 t, we rewrite the
first probability in (5.3.5) as

P

(
Vn

(
λ
(
s+n−1/3x

)
+ εn

)
>

inft∈[0,1] |λ
′(t)|d

8 supt∈[0,1] |λ
′(t)|

)
.

According to Lemma 6.4 in Durot, Kulikov, and Lopuhaä, 2012, there exists
positive constants C1,C2 > 0, independent of n, a, and x, such that

P (Vn(a) > x) 6
C1n

1−q/3

x2q
+ 2e−C2x

3
.

It follows that

P

(
Vn

(
λ(s+n−1/3x) + εn

)
>

inft∈[0,1] |λ
′(t)|d

8 supt∈[0,1] |λ
′(t)|

)
6
C̃1n

1−q/3

d2q
+2e−C̃2d

3
.

Similarly we can also bound the second probabilities in (5.3.4) and (5.3.5).
Then the statement of the lemma follows immediately.

Proof Theorem 5.1.1. The proof is similar to the proof of Theorem 1.1 in Ku-
likov and Lopuhaä, 2006. We briefly sketch the main steps. Arguing as
in the proof of Theorem 1.1 inKulikov and Lopuhaä, 2006, it suffices to
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show that for any compact K ⊂ R, the process {An(t + sn
−1/3) : s ∈ K}

converges in distribution to the process {[DRZt](s) : s ∈ K} on D(K), the
space of cadlag functions on K, where Zt is defined in (5.1.5). By definition
An(t+ sn

−1/3) = [DIntEnt](s), for s ∈ Int = [−tn1/3, (1− t)n1/3], where
Ent is defined in (5.1.5). To prove convergence in distribution, we show that
for any bounded continuous function g : D(K)→ R,

|E [g (DIntEnt)] − E [g (DRZt)]|→ 0. (5.3.6)

To this end, we choose d > 0 sufficiently large, such that K ⊂ [−d/2,d/2] ⊂
[−d,d] = I and take n sufficiently large so that I ⊂ Int. Then, similar to in-
equality (2.7) in Kulikov and Lopuhaä, 2006, the triangular inequality yields

|E [g (DIntEnt)] − E [DRZt]| 6 |E[g(DIntEnt)] − E[DIEnt]|

+ |E[g(DIEnt)] − E[DIZt]|

+ |E[g(DIZt)] − E[DRZt]| .

(5.3.7)

In the same way as in Kulikov and Lopuhaä, 2006, the three terms on the
right hand side are shown to go to zero. For the last term on the right
hand side of (5.3.7), the argument is exactly the same and makes use of
their Lemma 1.2. The first term on the right hand side of (5.3.7) is bounded
similar to their inequality (2.9) and then uses Lemma 5.1.3. For the second
term on the right hand side of (5.3.7), note that from Lemma 5.1.2, it follows
that

Znt(s) = n
2/3

(
Λn(t+ sn

−1/3) −Λn(t) −
(
Λ(t+ sn−1/3) −Λ(t)

))
+
1

2
λ ′(t)s2,

converges in distribution to Zt. Therefore, because of the continuity of the
mapping DI, we get

|E[h(DIZnt)] − E[h(DIZt)]|→ 0,

for any h : D(I)→ R bounded and continuous. Moreover, we now have

Ent(s) = Znt(s) +n
2/3Λn(t) + λ(t)sn

1/3 + Rnt(s),

where

Rnt(s) = n
2/3

(
Λ(t+ sn−1/3) −Λ(t) − λ(t)sn−1/3 −

1

2
λ ′(t)s2n−2/3

)
.

Similar to the argument leading up to (2.11) in Kulikov and Lopuhaä, 2006,
from the continuity of DI, its invariance under addition of linear functions,
and continuity of λ ′, it follows that |E[g(DIZnt)] − E[g(DIEnt)]| → 0. This
establishes (5.3.6) and finishes the proof.
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Proof of Lemma 5.2.2. By a Taylor expansion, together with (5.1.6), we can
write

n2/3ΛWn (t+n−1/3s) = Ynt(s) + L
W
nt(s) + R

W
nt(s),

where
LWnt(s) = n

2/3Λ(t) +n1/6Wn(L(t)) +n
1/3λ(t)s

and

RWnt(s) = n
2/3

(
Λ(t+n−1/3s) −Λ(t) −n−1/3λ(t)s−

1

2
n−2/3λ ′(t)s2

)
=
1

6
n−1/3λ ′′(θ1)s

3

for some |θ1 − t| 6 n−1/3|s|. Then, from the assumptions (A1)-(A2), it fol-
lows that

sup
|s|6logn

∣∣∣RWnt(s)∣∣∣p = O
(
n−p/3(logn)3p

)
,

uniformly in t ∈ (0, 1). Similarly, we also obtain

n2/3ΛEn(t+n
−1/3s) = n2/3ΛWn (t+n−1/3s) −n1/6ζn

(
L(t) + L ′(t)n−1/3s

)
+n1/6

(
En(t+n

−1/3s) −Bn(L(t+n
−1/3s))

)
−n1/6ζn

(
L(t+n−1/3s) − L(t) − L ′(t)n−1/3s

)
= Ynt(s) + L

E
nt(s) + R

E
nt(s),

where LEnt(s) = L
W
nt(s) −n

1/6ζnL(t) −n
−1/6ζnL

′(t)s and

REnt(s) = R
W
nt(s) +n

1/6
(
En(t+n

−1/3s) −Bn(L(t+n
−1/3s))

)
−
1

2
n−1/2ζnL

′′(θ2)s
2,

for some |θ2 − t| 6 n−1/3|s|. Let Sn = sups∈[0,1] |En(s) − Bn(L(s))|. From

assumption (A2) we have P(Sn > n−1/2+1/qx) 6 Cqx
−q and it follows

that

E [Spn] =

∫∞
0

P (Spn > x) dx = p
∫∞
0
yp−1P (Sn > y) dy

= pn−p/2+p/q

∫∞
0
xp−1P

(
Sn > n−1/2+1/qx

)
dx

6 pn−p/2+p/q

{∫1
0
xp−1 dx+Cq

∫∞
1
xp−1−q dx

}
= O

(
n−p/2+p/q

)
,

(5.3.8)

if p < q. Consequently E
[
sup|s|6logn

∣∣REnt(s)∣∣p] = O(n−p/3+p/q
)

.
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Proof of Lemma 5.2.3. Note that we can write

AJn(t)1NJnt
= n2/3[DIntΛ

J
n](t)1NJnt

.

We have

E
[
AJn(t)

p
]
= n2p/3E

[
[DIntΛ

J
n](t)

p
]

+ E
[(
AJn(t)

p −n2p/3[DIntΛ
J
n](t)

p
)
1
(NJnt)

c

]
.

To bound the second term on the right hand side, first note that∣∣∣AJn(t)p −n2p/3[DIntΛJn](t)p∣∣∣ 6 2AJn(t)p, (5.3.9)

because the LCM on [0, 1] always lies above the LCM over Int. Since Λ is
concave, we have that∣∣∣CM[0,1]Λ

E
n −ΛEn

∣∣∣ 6 ∣∣∣CM[0,1]Λ
E
n − [CM[0,1]Λ

∣∣∣+ ∣∣∣ΛEn −Λ
∣∣∣+ ∣∣∣CM[0,1]Λ−Λ

∣∣∣
=
∣∣∣CM[0,1]Λ

E
n − [CM[0,1]Λ

∣∣∣+ ∣∣∣ΛEn −Λ
∣∣∣

6 2 sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s)∣∣∣ ,
which means that

0 6 AEn(t)
p 6 2pn2p/3 sup

s∈[0,1]

∣∣∣ΛEn(s) −Λ(s)∣∣∣p .

Furthermore,

0 6 AWn (t)p 6 2pn2p/3
{
Λ(1) +n−1/2 sup

s∈[0,1]
|Wn(s)|

}p
.

In contrast to Kulikov and Lopuhaä, 2008 it is more convenient to treat both
cases separately. For the case J = E, with (5.3.9), we find that

E
[(
AEn(t)

p −n2p/3[DIntΛ
E
n](t)

p
)
1(NEnt)c

]
6 2p+1n2p/3E

[
sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s)∣∣∣p 1(NJnt)c
]

,

where

sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s)∣∣∣p 6 2p
{

sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s) −n−1/2Wn(L(s))
∣∣∣p

+n−p/2 sup
s∈[0,1]

|Wn(L(s))|
p

}
.
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For the first term on the right hand side we get with Hölder’s inequality

n2p/3E

[
sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s) −n−1/2Wn(L(s))
∣∣∣p 1(NEnt)c

]

6 n2p/3E

[
sup
s∈[0,1]

∣∣∣ΛEn(s) −Λ(s) −n−1/2Wn(L(s))
∣∣∣p`]1/`P

(
(NEnt)

c
)1/` ′

= n2p/3O
(
n−p+p/q

)
O
(
n1−q/3(logn)−2q + e−C(logn)3

)1/` ′
,

for any `, ` ′ > 1 such that 1/`+1/` ′ = 1, according to (5.3.8) and Lemma 5.1.3.
When q > 6, then the right hand side is of the order o(n−1/6). For the sec-
ond term, with Hölder’s inequality

n2p/3E

[
sup
s∈[0,1]

|Wn(L(s))|
p
1(NEnt)c

]

6 n2p/3E

[
sup

s∈[0,L(1)]
|Wn(s)|

p`

]1/`
P
(
(NEnt)

c
)1/` ′

for any `, ` ′ > 1 such that 1/` + 1/` ′ = 1. Since sups∈[0,L(1)] |Wn(s)| has
finite moments of any order, it follows from Lemma 5.1.3 that the right
hand side is of the order

n2p/3E

[
sup
s∈[0,1]

|Wn(L(s))|
p
1(NEnt)c

]

6 n2p/3O
(
n1−q/3(logn)−2q + e−C(logn)3

)1/` ′
.

Hence, because q > 6 and p < 2q− 7, it follows that∣∣∣AEn(t)p −n2p/3[DIntΛEn](t)∣∣∣ = o(n−1/6).

Next, consider the case J = W. Then with (5.3.9) and Cauchy-Schwarz, we
find

E
[(
AWn (t)p −n2p/3[DIntΛ

W
n ](t)p

)
1(NWnt)c

]
6 2p+1n2p/3E

(Λ(1) +n−1/2 sup
s∈[0,1]

|Wn(s)|

)2p1/2 {P
(
(NWnt)

c
)}1/2

.

Again using that all moments of sups∈[0,L(1)] |Wn(s)| are finite, according
to Lemma 5.1.3, the right hand side is of the order

n2p/3O(e−C(logn)3) = o(n−1/6).
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It follows that for J = E,W,

E
[
AJn(t)

p
]
= n2p/3E

[
[DIntΛ

J
n](t)

p
]
+ o

(
n−1/6

)
.

Moreover, Lemma 5.2.2 implies that

n2/3
[
DIntΛ

J
n

]
(t) = [DHntYnt] (0) +∆nt,

where
∆nt =

[
DHnt(Ynt + R

J
nt)
]
(0) − [DHntYnt] (0).

From Lemma 5.2.2, we have

E|∆nt|
p 6 2pE

[
sup

|s|6logn

∣∣∣RJnt(s)∣∣∣p
]
= O

(
n−p/3+p/q

)
. (5.3.10)

Then as in Lemma 4.2 in Kulikov and Lopuhaä, 2008, one can show that

E
[
AJn(t)

p
]
= E [[DHntYnt(0)

p] + εnt + o
(
n−1/6

)
= E [[DHntYnt(0)

p] +O
(
n−1/3+1/q(logn)2p−2

)
+ o

(
n−1/6

)
= E [[DHntYnt(0)

p] + o
(
n−1/6

)
.

This concludes the proof.

Proof of Lemma 5.2.4. The proof is exactly the same as the one for Lemma 4.4
in Kulikov and Lopuhaä, 2008. Define

Jnt =

[
n1/3

L(ant) − L(t)

L ′(t)
,n1/3

L(bnt) − L(t)

L ′(t)

]
,

where ant = max(0, t − n−1/3 logn) and bnt = min(1, t + n−1/3 logn).
Furthermore, here we take

φnt(s) =
n1/3

(
L(t+n−1/3s) − L(t)

)
L ′(t)

.

As in the proof of Lemma 4.4 in Kulikov and Lopuhaä, 2008, it follows that
1− αn 6 φnt(s)/s 6 1+ αn, for s ∈ Hnt, the interval from Lemma 5.2.3,
and αn = C1n

−1/3 logn, with C1 > 0 only depending on L ′. Let Zt be the
process in (5.1.5). Then

(Zt ◦φnt)(s) = Ỹnt +
1

2
λ ′(t)s2

(
φnt(s)

2

s2
− 1

)
,
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where Ỹnt is defined in (5.2.1). Lemma 4.3 in Kulikov and Lopuhaä, 2008,
then allows us to approximate the moments of [DHnt Ỹnt](0) by the mo-
ments of [DJntZt](0). Completely similar to the proof of Lemma 4.4 in Ku-
likov and Lopuhaä, 2008, the result now follows from Lemma 5.2.3 and
Brownian scaling.

Proof of Lemma 5.2.5. Let Int and NJnt be as in Lemma 5.2.3 and define
Knt = N

E
nt ∩NWnt. Then

E

∣∣∣AEn(t)p −AWn (t)p
∣∣∣ = n2p/3E

∣∣∣[DIntΛEn](t)p − [DIntΛ
W
n ](t)p

∣∣∣1Knt
+ E

∣∣∣AEn(t)p −AWn (t)p
∣∣∣1Kcnt .

(5.3.11)

We bound the two terms on the right hand side, following the same line
of reasoning as in Lemma 4.5 in Kulikov and Lopuhaä, 2008. Using that
according to Lemma 5.1.3,

P(Kcnt) 6 P
(
(NEnt)

c
)
+P

(
(NWnt)

c
)
= O

(
n1−q/3(logn)−2q + e−C(logn)3

)
,

the second term on the right hand side of (5.3.11) is of the order

O
(

P(Kcnt)
1/2
)
= o

(
n−1/6

)
,

because q > 6. On the other hand, the first term on the right hand side
of (5.3.11) can be bounded by

pE

[(
AEn(t)

p−1 +AWn (t)p−1
)2] 12

E

( sup
|s|6logn

|REnt|+ sup
|s|6logn

|RWnt|

)2 12 ,

where the right hand side is of the order O
(
n−1/3+1/q

)
= o

(
n−1/6

)
,

according to Lemmas 5.2.2 and 5.2.4.

In the same way, we have

E
[∣∣∣AEn(t) −AWn (t)

∣∣∣p 1Kcnt] = O(P(Kcnt)
1/2
)
= o

(
n−1/6

)
and

n2p/3E
[∣∣∣[DIntΛEn](t) − [DIntΛ

W
n ](t)

∣∣∣p 1Knt]
6 E

[(
sup

|s|6logn
|REnt|+ sup

|s|6logn
|RWnt|

)p]
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which is of the orderO
(
n−p/3+p/q

)
= o

(
n−1/6

)
, according to Lemma 5.2.2.

Proof of Lemma 5.2.6. The proof is completely similar to the one of Lemma 4.7
in Kulikov and Lopuhaä, 2008. For t ∈ (0, 1) fixed, and t+ c2(t)sn−1/3 ∈
(0, 1), let

ζnt(s) = c1(t)A
W
n

(
t+ c2(t)sn

−1/3
)

,

where AWn is defined in (5.1.6) and c1(t) and c2(t) are defined in (5.1.4).
According to Theorem 5.1.1, ζnt converges in distribution to ζ, as defined
in (5.1.2). As in the proof of Lemma 4.7 in Kulikov and Lopuhaä, 2008,
Lemma 5.2.4 yields that, for s, t, and k fixed, the sequence ζWnt(s)

k is uni-
formly integrable, so that the moments of (ζWnt(0)

k, ζWnt(s)
k) converge to the

corresponding moments of (ζ(0)k, ζ(s)k).

Furthermore, the process {AWn (t) : t ∈ (0, )} is strong mixing, i.e., for
d > 0,

sup |P(A∩B) − P(A)P(B)| = αn(d) = 48e−Cnd
3

(5.3.12)

where C > 0 only depends on λ and L from (A2), and where the supremum
is taken over all sets

A ∈ σ
{
AWn (s) : 0 6 s 6 t

}
and B ∈ σ

{
AWn (s) : t+ d 6 s < 1

}
.

This can be obtained by arguing completely the same as in the proof of
Lemma 4.6 in Kulikov and Lopuhaä, 2008. The rest of the proof is the same
as that of Lemma 4.7 in Kulikov and Lopuhaä, 2008.

Proof of Theorem 5.2.1. The proof is completely similar to the proof of Theo-
rem 2.1 in Kulikov and Lopuhaä, 2008, by using the method of big-blocks
small-blocks and the exponential decreasing mixing function αn from (5.3.12).



6
O N T H E Lp - E R R O R O F S M O O T H I S O T O N I C
E S T I M AT O R S

In this chapter we investigate the Lp-error of smooth isotonic estimators ob-
tained by kernel smoothing the Grenander-type estimator or by isotonizing
the ordinary kernel estimator. The results presented are based on:

Lopuhaä, H. P. and Musta E. (2018) "Central limit theorems for global
errors of smooth isotonic estimators". Submitted to Electronic Journal of Statis-
tics.

We consider the same general setup as in Durot, 2007, which includes
estimation of a probability density, a regression function, or a failure rate
under monotonicity constraints (see Section 3 in Durot, 2007 for more de-
tails on these models). An essential assumption in this setup is that the
observed process of interest can be approximated by a Brownian motion or
a Brownian bridge. Our main results are central limit theorems for the Lp-
error of smooth isotonic estimators for a monotone function on a compact
interval. However, since the behavior of these estimators is closely related
to the behavior of ordinary kernel estimators, we first establish a central
limit theorem for the Lp-error of ordinary kernel estimators for a mono-
tone function on a compact interval. This extends the work by Csörgő and
Horváth, 1988 on the Lp-error of densities that are smooth on the whole
real line, but is also of interest by itself. The fact that we no longer have
a smooth function on the whole real line, leads to boundary effects. Unex-
pectedly, different from Csörgő and Horváth, 1988, we find that the limit
variance of the Lp-error changes, depending on whether the approximating
process is a Brownian motion or a Brownian bridge. Such a phenomenon
has also not been observed in other isotonic problems, where a similar em-
bedding assumption was made. Usually, both approximations lead to the
same asymptotic results (e.g., see Durot, 2007 and Kulikov and Lopuhaä,
2005).

After establishing a central limit theorem for the Lp-error of ordinary
kernel estimators, we transfer this result to the smoothed Grenander esti-
mator (SG). The key ingredient here is the behavior of the process obtained
as the difference between a naive estimator and its least concave majorant.

175
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For this we use results from Chapter 5. As an intermediate result, we show
that the Lp-distance between the smoothed Grenander-type estimator and
the ordinary kernel estimator converges at rate n2/3 to some functional of
two-sided Brownian motion minus a parabolic drift.

The situation for the isotonized kernel estimator (GS) is much easier, be-
cause it can be shown that this estimator coincides with the ordinary kernel
estimator on large intervals in the interior of the support, with probabil-
ity tending to one. However, since the isotonization step is performed last,
the estimator is inconsistent at the boundaries. For this reason, we can only
obtain a central limit theorem for the Lp-error on a sub-interval that ap-
proaches the whole support, as n diverges to infinity. Finally, the results on
the Lp-error can be applied immediately to obtain a central limit theorem
for the Hellinger loss.

The chapter is organized as follows. In Section 6.1 we describe the model,
the assumptions and fix some notation that will be used throughout the
paper. A central limit theorem for the Lp-error of the kernel estimator is
obtained in Section 6.2. This result is used in Section 6.3 and 6.4 to obtain
the limit distribution of the Lp-error of the SG and GS estimators. Section 6.5
is dedicated to corresponding asymptotics for the Hellinger distance. In
Section 6.6 we provide a possible application of our results by considering
a test for monotonicity on the basis of the L2-distance between the kernel
estimator and the smoothed Grenander-type estimator. Details of some of
the proofs are delayed to Section 6.7 and additional technicalities have been
put in Appendix B.

6.1 assumptions and notations

Consider estimating a function λ : [0, 1] → R subject to the constraint that
it is non-increasing. Suppose that on the basis of n observations we have at
hand a cadlag step estimator Λn of

Λ(t) =

∫t
0
λ(u)du, t ∈ [0, 1].

A typical example is the estimation of a monotone density λ on a compact
interval. In that case, Λn is the empirical distribution function. Hereafter
Mn denotes the process Mn = Λn −Λ, µ is a measure on the Borel sets of
R, and

k is a twice differentiable symmetric probability density with sup-
port [−1, 1].

(6.1.1)



6.1 assumptions and notations 177

The rescaled kernel is defined as kb(u) = b−1k (u/b) where the bandwidth
b = bn → 0, as n → ∞. In the sequel we will make use of the following
assumptions.

(A1) λ is decreasing and twice continuously differentiable on [0, 1] with
inft |λ ′(t)| > 0.

(A2) Let Bn be either a Brownian motion or a Brownian bridge. There exists
q > 5/2, Cq > 0, L : [0, 1]→ R and versions of Mn and Bn such that

P

(
n1−1/q sup

t∈[0,1]

∣∣∣Mn(t) −n−1/2Bn ◦ L(t)
∣∣∣ > x) 6 Cqx

−q

for all x ∈ (0,n]. Moreover, L is increasing and twice differentiable on
[0, 1] with supt |L

′′(t)| <∞ and inft |L ′(t)| > 0.

(A3) dµ(t) = w(t)dt, where w(t) > 0 is continuous on [0, 1].

In particular, the approximation of the process Mn by a Gaussian process,
as in assumption (A2), is required also in Durot, 2007. It corresponds to a
general setting which includes estimation of a probability density, regres-
sion function or a failure rate under monotonicity constraints (see Section 3

in Durot, 2007 for more details on these models).

First we introduce some notation. We partly adopt the one used in Csörgő
and Horváth, 1988 and briefly explain their appearance. Let λ̃sn be the stan-
dard kernel estimator of λ, i.e.

λ̃sn(t) =

∫t+b
t−b

kb(t− u)dΛn(u), for t ∈ [b, 1− b]. (6.1.2)

As usual we decompose into a random term and a bias term:

(nb)1/2
(
λ̃sn(t) − λ(t)

)
= (nb)1/2

∫
kb(t− u)d(Λn −Λ)(u) + g(n)(t)

(6.1.3)
where

g(n)(t) = (nb)1/2
(
λ(n)(t) − λ(t)

)
, λ(n)(t) =

∫
kb(t− u)λ(u)du.

(6.1.4)
When nb5 → C0 > 0, then g(n)(t) converges to

g(t) =
1

2
C0λ

′′(t)

∫
k(y)y2 dy. (6.1.5)

After separating the bias term, the first term on the right hand side of (6.1.3)
involves an integral of kb(t−u) with respect to the processMn. Due to (A2),
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this integral will be approximated by an integral with respect to a Gaussian
process. For this reason, the limiting moments of the Lp-error involve inte-
grals with respect to Gaussian densities, such as

φ(x) = (2π)−1/2 exp(−x2/2),

ψ(u, x,y) =
1

2π
√
1− u2

exp
(
−
x2 − 2uxy+ y2

2(1− u2)

)
=

1√
1− u2

φ

(
x− uy√
1− u2

)
φ(y),

(6.1.6)

and a Taylor expansion of kb(t−u) yields the following constants involving
the kernel function:

D2 =

∫
k(y)2 dy, r(s) =

∫
k(z)k(s+ z)dz∫
k2(z)dz

. (6.1.7)

For example, the limiting means of the Lp-error and a truncated version are
given by:

mn(p) =

∫
R

∫1
0

∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣pw(t)φ(x)dtdx,

mcn(p) =

∫
R

∫1−b
b

∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣pw(t)φ(x)dtdx,

(6.1.8)

where D and g(n) are defined in (6.1.7) and (6.1.4). Depending on the rate
at which b → 0, the limiting variance of the Lp-error has a different form.
When nb5 → 0, the limiting variance turns out to be

σ2(p) = σ1D
2p

∫1
0

∣∣L ′(u)∣∣pw(u)2 du, (6.1.9)

where

σ1 =

∫
R

{∫
R

∫
R

|xy|pψ(r(s), x,y)dxdy−
∫

R

∫
R

|xy|pφ(x)φ(y)dxdy
}

ds,

(6.1.10)
with σ1 representing p-th moments of bivariate Gaussian vectors, where D,
ψ, and φ are defined in (6.1.7) and (6.1.6). When nb5 → C0 > 0 and Bn
in (A2) is a Brownian motion, the limiting variance of the Lp-error is

θ2(p) =

∫1
0

∫
R3

∣∣∣g(u)2 + g(u)(x+ y)√L ′(u)D+D2L ′(u)xy
∣∣∣p

w2(u)
(
ψ(r(s), x,y) −φ(x)φ(y)

)
dsdydxdu,

(6.1.11)
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where g, D, ψ, and φ are defined in (6.1.5), (6.1.7) and (6.1.6), whereas, if
Bn in (A2) is a Brownian bridge, the limiting variance is slightly different,

θ̃2(p) = θ2(p) −
θ21(p)

D2L(1)
, (6.1.12)

with

θ1(p) =

∫1
0

∫
R

∣∣∣√L ′(t)Dx+ g(t)∣∣∣p xφ(x)dx
√
L ′(t)w(t)dt. (6.1.13)

Finally, the following inequality will be used throughout this chapter:∫B
A
||q(t)|p − |h(t)|p| dµ(t) 6 p2p−1

∫B
A
|q(t) − h(t)|p dµ(t)

+ p2p−1

(∫B
A
|h(t)|p dµ(t)

)1− 1
p
(∫B
A
|q(t) − h(t)|p dµ(t)

) 1
p

,

(6.1.14)

where p ∈ [1,∞), −∞ 6 A < B 6∞ and q,h ∈ Lp(A,B).

6.2 kernel estimator of a decreasing function

We extend the results of Csörgő and Horváth, 1988 and Csörgő, Gombay,
and Horváth, 1991 to the case of a kernel estimator of a decreasing func-
tion with compact support. Note that, since the function of interest cannot
be twice differentiable on R (not even continuous), the kernel estimator is
inconsistent at zero and one. Moreover we show that the contribution of
the boundaries to the Lp-error is not negligible, so in order to avoid the Lp-
distance to explode we have to restrict ourselves to the interval [b, 1− b] or
apply some boundary correction.

6.2.1 A modified Lp-distance

Let λ̃sn be the standard kernel estimator of λ defined in (6.1.2). In order to
avoid boundary problems, we start by finding the asymptotic distribution
of a modification of the Lp-distance

Jcn(p) =

∫1−b
b

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t), (6.2.1)

instead of

Jn(p) =

∫1
0

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t). (6.2.2)
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Theorem 6.2.1. Assume that (A1)-(A3) hold. Let k satisfy (6.1.1) and let Jcn be
defined in (6.2.1). Suppose p > 1 and nb→∞.

i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2Jcn(p) −m

c
n(p)

}
d−→ N(0, 1);

ii) If nb5 → C20 > 0, and Bn in Assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2Jcn(p) −m

c
n(p)

}
d−→ N(0, 1);

iii) If nb5 → C20 > 0, and Bn in Assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2Jcn(p) −m

c
n(p)

}
d−→ N(0, 1),

where mcn(p), σ2(p), θ2(p), θ̃2(p) are defined in (6.1.8), (6.1.9), (6.1.11), and
(6.1.12), respectively.

The proof goes along the same lines as in the one for the case of the Lp-
norms for kernel density estimators on the whole real line (see Csörgő and
Horváth, 1988 and Csörgő, Gombay, and Horváth, 1991). The main idea is
that by means of assumption (A2), it is sufficient to prove the central limit
theorem for the approximating process. When Bn in (A2) is a Brownian mo-
tion, the latter one can be obtained by a big-blocks-small-blocks procedure
using the independence of the increments of the Brownian motion. When
Bn in (A2) is a Brownian bridge, we can still obtain a central limit theorem,
but the limiting variance turns out to be different. The latter result differs
from what is stated in Csörgő and Horváth, 1988. In Csörgő and Horváth,
1988, the complete proof for both Brownian motion and Brownian bridge, is
only given for the case nb5 → 0, and it is shown that the random variables
obtained by using the Brownian motion and the Brownian bridge as approxi-
mating processes are asymptotically equivalent (see their Lemma 6). In fact,
when dealing with a Brownian bridge, the rescaled Lp-error is asymptoti-
cally equivalent to the Lp-error that corresponds to the Brownian motion
process plus an additional term which is equal to CW(L(1)), for a constant
C proportional on θ1(p) defined in (6.1.13). When the bandwidth is small,
i.e., nb5 → 0, the bias term g(t) in the definition of θ1(p) disappears. Hence,
by the symmetry property of the standard normal density, θ1(p) = 0 and
as a consequence C = 0. This means that the additional term resulting from
the fact that we are dealing with a Brownian bridge converges to zero. For
details, see the proof of Lemma 6.7.1. When nb5 → C20 > 0, only a sketch
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of the proof is given in Csörgő and Horváth, 1988 for Bn being a Brownian
motion and it is claimed that again the limit distribution would be the same
for Bn being a Brownian bridge. However, we find that the limit variances
are different.

Proof of Theorem 6.2.1. From the definition of Jcn(p) we have

(nb)p/2Jcn(p) =

∫1−b
b

∣∣∣∣(nb)1/2 ∫ kb(t− u)d(Λn −Λ)(u) + g(n)(t)

∣∣∣∣p dµ(t).

Let (Wt)t∈R be a Wiener process and define

Γ
(1)
n (t) =

∫
k

(
t− u

b

)
dW(L(u)), (6.2.3)

Hence, if Bn in assumption (A2) is a Brownian motion, then according
to (6.1.14),∣∣∣∣∣(nb)p/2Jcn(p) −

∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

∣∣∣∣∣
6 p2p−1b−p/2

∫1−b
b

∣∣∣∣∫ k(t− ub
)

d(Bn ◦ L(u) −n1/2Mn(u))
∣∣∣∣p dµ(t)

+ p2p−1

(
b−p/2

∫1−b
b

∣∣∣∣∫ k(t− ub
)

d(Bn ◦ L−n1/2Mn)(u)
∣∣∣∣p dµ(t)

)1/p
·

·

(∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)1−1/p
We can write ∣∣∣∣∫ k(t− ub

)
d(Bn ◦ L−n1/2Mn)(u)

∣∣∣∣
=

∣∣∣∣∣
∫1
−1
k(y)d(Bn ◦ L−n1/2Mn)(t− by)

∣∣∣∣∣
=

∣∣∣∣∣
∫1
−1

(Bn ◦ L−n1/2Mn)(t− by)dk(y)

∣∣∣∣∣
6 C sup

t∈[0,1]

∣∣∣Bn ◦ L(t) −n1/2Mn(t)∣∣∣ .
(6.2.4)

According to assumption (A2), the right hand side of (6.2.4) is of the order
OP(n

−1/2+1/q), and because

b−1/2OP(n
−1/2+1/q)= (nb5)3/10OP(n

−2/5+1/q) = oP(1)
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we derive that∣∣∣∣∣(nb)p/2Jcn(p) −
∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

∣∣∣∣∣ = oP(1).
As a result, the statement follows from the fact that

(bσ2(p))−1/2

{∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(p)

}
d−→ N(0, 1),

where g(n) and mcn(p) are defined in (6.1.4) and (6.1.8), respectively. This
result is a generalization of Lemmas 1-5 in Csörgő and Horváth, 1988 and
the proof goes in the same way. However, for completeness we give all the
details in Appendix B (see Lemma B.1.1).

Finally, if Bn is a Brownian bridge on [0,L(1)], we use the representation
Bn(t) =W(t) − tW(L(1))/L(1). By replacing Γ (1)n with

Γ
(2)
n (t) =

∫
k

(
t− u

b

)
d
(
W(L(u)) −

L(u)

L(1)
W(L(1))

)
(6.2.5)

in the previous reasoning, the statement follows from Lemma 6.7.1.

When nb4 → 0, the centering constant mn(p) can be replaced by a quan-
tity that does not depend on n.

Theorem 6.2.2. Assume that (A1)-(A3) hold. Let k satisfy (6.1.1) and let Jcn be
defined in (6.2.1). Suppose p > 1 and nb→∞, such that nb4 → 0. Then

(bσ2(p))−1/2
{
(nb)p/2Jcn(p) −m(p)

}
d−→ N(0, 1),

where σ2(p) is defined in (6.1.9) and

m(p) =

∫
R

|x|pφ(x)dx
(∫
k2(t)dt

)p/2 ∫1
0
|L ′(t)|p/2 dµ(t).

Proof. If |mcn(p)−m(p)| = o(b1/2), the statement follows from Theorem 6.2.1.
First we note that∫b

0
|L ′(t)|p/2 dµ(t) = o(b1/2) and

∫1
1−b

|L ′(t)|p/2 dµ(t) = o(b1/2).
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Moreover, according to (6.1.14), for each x ∈ R, we have∫1−b
b

∣∣∣∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣p − ∣∣∣√L ′(t)Dx∣∣∣p∣∣∣ dµ(t)

6 p2p−1
∫1−b
b

∣∣∣g(n)(t)∣∣∣p dµ(t)

+ p2p−1

(∫1−b
b

∣∣∣√L ′(t)Dx∣∣∣p dµ(t)

)1−1/p(∫1−b
b

∣∣∣g(n)(t)∣∣∣p dµ(t)

)1/p
,

where g(n)(t) is defined in (6.1.4). Hence, it suffices to prove

b−p/2
∫1−b
b

∣∣∣g(n)(t)∣∣∣p dµ(t) = o(1).

This follows, since supt∈[0,1]

∣∣∣g(n)(t)∣∣∣ = O((nb)1/2b2) and

b−p/2(nb)p/2b2p = (nb4)p/2 → 0.

6.2.2 Boundary problems

We show that, actually, we cannot extend the results of Theorem 6.2.1 to the
whole interval [0, 1], because then the inconsistency at the boundaries dom-
inates the Lp-error. A similar phenomenon was also observed in the case of
the Grenander-type estimator (see Durot, 2007 and Kulikov and Lopuhaä,
2005), but only for p > 2.5. In our case the contribution of the boundaries to
the Lp-error is not negligible for all p > 1. This mainly has to do with the
fact that the functions g(n), defined in (6.1.4), diverge to infinity. As a result,
all the previous theory, which relies on the fact that g(n) = O(1) does not
hold. For example, for t ∈ [0,b), we have

g(n)(t) = (nb)1/2
∫t+b
0

kb(t− u)dΛ(u) − λ(t)

= (nb)1/2
∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy− (nb)1/2λ(t)

∫1
t/b

k(y)dy

= (nb)1/2

{∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy− λ(t)
∫1
t/b

k(y)dy

}
.

(6.2.6)



184 on the lp -error of smooth isotonic estimators

For the first term within the brackets, we have∣∣∣∣∣
∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy

∣∣∣∣∣ 6 b sup
t∈[0,1]

|λ ′(t)|

∣∣∣∣∣
∫t/b
−1

k(y)ydy

∣∣∣∣∣ = O(b),
(6.2.7)

whereas for any 0 < c < 1 and t ∈ [0, cb],

0 < inf
t∈[0,1]

λ(t)

∫1
c
k(y)dy 6 λ(t)

∫1
t/b

k(y)dy 6 λ(0). (6.2.8)

Because nb→∞, this would mean that

sup
t∈[0,cb]

g(n)(t)→ −∞. (6.2.9)

What would solve the problem is to assume that λ is twice differentiable as a
function defined on R (see Csörgő and Horváth, 1988 and Csörgő, Gombay,
and Horváth, 1991). This is not the case, because here we are considering
a function which is positive and decreasing on [0, 1] and usually is zero
outside this interval. This means that as a function on R, λ is not monotone
anymore and has at least one discontinuity point.

The following results indicate that inconsistency at the boundaries domi-
nates the Lp-error, i.e., the expectation and the variance of the integral close
to the end points of the support diverge to infinity. We cannot even approach
the boundaries at a rate faster than b (as in the case of the Grenander-type
estimator), because the kernel estimator is inconsistent on the whole interval
[0,b) (and (1− b, 1]).

Proposition 6.2.3. Assume that (A1)-(A3) hold and let λ̃sn be defined in (6.1.2).
Let k satisfy (6.1.1). Suppose that p > 1 and nb→∞.

i) When nb3 →∞, then for each p > 1,

(nb)p/2E

[∫b
0

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t)

]
→∞;

ii) If bn1−1/p → 0, then

b−1/2

{∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣g(n)(t)∣∣∣p dµ(t)

}
→ 0,

where g(n) is defined in (6.1.4);

iii) Let

Yn(t) = b
1/2

∫t+b
0

kb(t− u)dBn(L(u)), t ∈ [0,b]. (6.2.10)
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If b−1n−1+1/q = O(1) and bp−1np−2+2/q → 0, then

b−1/2

∣∣∣∣∣
∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣Yn(t) + g(n)(t)∣∣∣p dµ(t)

∣∣∣∣∣
(6.2.11)

converges to zero in probability. Moreover, when bn1−1/p → ∞, then for
all 0 < c < 1,

b−1Var

(∫cb
0

∣∣∣Yn(t) + g(n)(t)∣∣∣p dµ(t)

)
→∞,

where g(n) is defined in (6.1.4).

The previous results also hold if we consider the integral on (1− b, 1] instead of
[0,b).

The proof can be found in Appendix B.
Remark 6.2.4. Note that, if b ∼ n−α, for some 0 < α < 1, then for α < 1/3,
Proposition 6.2.3(i) shows that for all p > 1, the expectation of the boundary
regions in the Lp-error tends to infinity. This holds in particular for the
optimal choice α = 1/5. For p < 1/(1−α), Proposition 6.2.3(ii) allows us to
include the boundary regions in the central limit theorem for the Lp-error
of the kernel estimator,

(bσ2(p))−1/2
{
(nb)p/2Jn(p) − m̄n(p)

}
d−→ N(0, 1),

with Jn(p) defined in (6.2.2) and m̄n(p) =
∫1
0

∣∣∣g(n)(t)∣∣∣p dµ(t). However,
the bias term m̄n(p) is not bounded anymore. On the other hand, if p >
1/(1− α), Proposition 6.2.3(iii) shows that the boundary regions in the Lp-
error behave asymptotically as random variables whose variance tends to
infinity.
Remark 6.2.5. The choice of the measure µ instead of the Lebesgue measure,
in Csörgő and Horváth, 1988 and Csörgő, Gombay, and Horváth, 1991, is
motivated by the fact that, for a particular µ(t) = w(t)dt, the normalizing
constants m(p) and σ(p) in the CLT will not depend on the unknown func-
tion. In our case, a proper choice for µ can also be used to get rid of the
boundary problems. This happens when µ puts less mass on the boundary
regions in order to compensate the inconsistency of the kernel estimator. For
example, if µ(t) = t2p(1− t)2pdt, then∫b

0
|g(n)(t)|

p dµ(t) +
∫1
1−b

|g(n)(t)|
p dµ(t)→ 0

and, as a result, Theorem 6.2.1 also holds if we replace Jcn(p) with Jn(p),
defined in (6.2.2).
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6.2.3 Kernel estimator with boundary correction

One way to overcome the inconsistency problems of the standard kernel es-
timator is to apply some boundary correction. Let now λ̂sn be the ’corrected’
kernel estimator of λ, i.e.

λ̂sn(t) =

∫t+b
t−b

k
(t)
b (t− u)dΛn(u), for t ∈ [0, 1], (6.2.12)

where k(t)b (u) denotes the rescaled kernel b−1k(t)(u/b), with k(t)(u) as in
(1.2.11).

We aim at showing that in this case, Theorem 6.2.1 holds for the Lp-error
on the whole support, i.e., with Jn(p) instead of Jcn(p). Note that boundary
corrected kernel estimator coincides with the standard kernel estimator on
[b, 1− b]. Hence the behavior of the Lp-error on [b, 1− b] will be the same.
We just have to deal with the boundary regions [0,b] and [1− b, 1].

Proposition 6.2.6. Assume that (A1)-(A3) hold and let λ̂sn be defined in (6.2.12).
Let k satisfy (6.1.1) and suppose p > 1 and nb→∞. Then

b−1/2(nb)p/2
∫b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t) P−→ 0.

The previous result also holds if we consider the integral on (1− b, 1] instead of
[0,b).

The proof can be found in Appendix B.

Corollary 6.2.7. Assume that (A1)-(A3) hold and let Jn(p) be defined in (6.2.2).
Let k satisfy (6.1.1) and suppose p > 1 and nb→∞. Then

i) if nb5 → 0, then it holds

(bσ2(p))−1/2
{
(nb)p/2Jn(p) −mn(p)

}
d−→ N(0, 1);

ii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian motion, then
it holds

(bθ2(p))−1/2
{
(nb)p/2Jn(p) −mn(p)

}
d−→ N(0, 1);

iii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian bridge, then it
holds

(bθ̃2(p))−1/2
{
(nb)p/2Jn(p) −mn(p)

}
d−→ N(0, 1),
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where σ2, θ2, θ̃2 and mn are defined respectively in (6.1.9), (6.1.11), (6.1.12) and
(6.1.8).

Proof. It follows from combining Theorem 6.2.1 and Proposition 6.2.6, to-
gether with the fact that

b−1/2
∫

R

∫b
0

∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣pw(t)φ(x)dtdx→ 0,

where D and g(n) are defined in (6.1.7) and (6.1.4).

6.3 smoothed grenander-type estimator

The smoothed Grenander-type estimator is defined by

λ̃SGn (t) =

∫1∧(t+b)

0∨(t−b)
k
(t)
b (t− u)dΛ̂n(u), for t ∈ [0, 1], (6.3.1)

where Λ̂n is the least concave majorant of Λn. We are interested in the
asymptotic distribution of the Lp-error of this estimator:

ISGn (p) =

∫1
0

∣∣∣Λ̂SGn (t) − λ(t)
∣∣∣p dµ(t). (6.3.2)

We will compare the behavior of the Lp-error of λ̃SGn with that of the regular
kernel estimator λ̂sn from (6.2.12). Because

λ̃SGn (t) − λ̂sn(t) =

∫
k
(t)
b (t− u)d(Λ̂n −Λn)(u),

we will make use of the behavior of Λ̂n−Λn, which has been investigated in
Chapter 5, extending similar results from Durot and Tocquet, 2003 and Ku-
likov and Lopuhaä, 2008. The idea is to represent Λ̂n − Λn in terms of
the mapping CMI that maps a function h : R → R into the least con-
cave majorant of h on the interval I ⊂ R, or equivalently by the mapping
Dh = CMIh− h.

Let Bn be as in assumption (A2) and ξn a N(0, 1) distributed r.v. indepen-
dent of Bn. Define versions Wn of Brownian motion by

Wn(t) =

Bn(t) + ξnt if Bn is a Brownian bridge

Bn(t) if Bn is a Brownian motion.
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Define

AEn = n2/3
(

CM[0,1]Λn −Λn

)
= n2/3D[0,1]Λn,

AWn = n2/3
(

CM[0,1]Λ
W
n −ΛWn

)
= n2/3D[0,1]Λ

W
n .

(6.3.3)

where
ΛWn (t) = Λ(t) +n−1/2Wn(L(t)), (6.3.4)

with L as in Assumption (A2). We start with the following result on the
Lp-distance between λ̃SGn and λ̂sn. In order to use results from Chapter 5,
we need that 1 6 p < min(q, 2q − 7), where q is from Assumption (A2).
Moreover, in order to obtain suitable approximations in combination with
results from Chapter 5, we require additional conditions on the rate at which
1/b tends to infinity. Also see Remark 6.3.2. For the optimal rate b ∼ n−1/5,
the result in Theorem 6.3.1 is valid, as long as p < 5 and q > 9.

Theorem 6.3.1. Assume that (A1) − (A2) hold and let µ be a finite measure
on (0, 1). Let k satisfy (6.1.1) and let λ̃SGn and λ̂sn be defined in (6.3.1) and (6.2.12),
respectively. If 1 6 p < min(q, 2q− 7) and nb→∞, such that

1/b = o
(
n1/3−1/q

)
, 1/b = o

(
n(q−3)/(6p)

)
and

1/b = o
(
n1/6+1/(6p)(logn)−(1/2+1/(2p))

)
,

then

n2/3

(∫1−b
b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

)1/p
d−→ α0[DRZ](0),

where Z(t) = W(t) − t2, with W being a two-sided Brownian motion originating
from zero, and

α0 =

(∫1
0

∣∣∣∣ c ′1(t)c1(t)2

∣∣∣∣p dµ(t)

)1/p
, c1(t) =

∣∣∣∣ λ ′(t)2L ′(t)2

∣∣∣∣1/3 .

Proof. We write

n2/3

(∫1−b
b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

)1/p
= b−1

(∫1−b
b

|Yn(t)|
p dµ(t)

)1/p
,

where

Yn(t) = bn
2/3

(∫t+b
t−b

kb(t− u)d(Λ̂n −Λn)(u)

)
, t ∈ (b, 1− b).

(6.3.5)
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We first show that

b−p
∫1−b
b

|Yn(t)|
p dµ(t) d−→ α

p
0 [DRZ](0)

p, (6.3.6)

and then the result would follow from the continuous mapping theorem.
Note that integration by parts yields

Yn(t) =
1

b

∫1
−1
k ′
(
t− v

b

)
AEn(v)dv.

The proof consists of several succeeding approximations of AEn. For details,
see Lemmas 6.7.2 to 6.7.6. First we replace AEn in the previous integral by
AWn . The approximation of Yn(t) by

Y
(1)
n (t) =

1

b

∫1
−1
k ′
(
t− v

b

)
AWn (v)dv. (6.3.7)

where AWn is defined in (6.3.3), is possible thanks to Assumption (A2). Ac-
cording to (6.1.14),∣∣∣∣∣
∫1−b
b

|Yn(t)|
p dµ(t) −

∫1−b
b

|Y
(1)
n (t)|p dµ(t)

∣∣∣∣∣
6 p2p−1

∫1−b
b

|Yn(t) − Y
(1)
n (t)|p dµ(t)

+ p2p−1

(∫1−b
b

|Yn(t) − Y
(1)
n (t)|p dµ(t)

) 1
p
(∫1−b
b

|Y
(1)
n (t)|p dµ(t)

)1− 1
p

.

(6.3.8)

According to Lemma 6.7.2, b−p
∫1−b
b |Yn(t) − Y

(1)
n (t)|p dµ(t) = oP(1). Con-

sequently, in view of (6.3.8), if we show that

b−p
∫1−b
b

|Y
(1)
n (t)|p dµ(t) d−→ α0

p[DRZ](0)
p, (6.3.9)

then we obtain

b−p
∫1−b
b

|Yn(t)|
p dµ(t) = b−p

∫1−b
b

|Y
(1)
n (t)|p dµ(t) + oP(1), (6.3.10)

and (6.3.6) follows.

In order to prove (6.3.9), we replace AWn by n2/3DInvΛ
W
n , i.e., we approx-

imate Y(1)n by

Y
(2)
n (t) =

1

b

∫t+b
t−b

k ′
(
t− v

b

)
n2/3[DInvΛ

W
n ](v)dv. (6.3.11)
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where Inv = [0, 1] ∩ [v − n−1/3 logn, v + n−1/3 logn] and ΛW is defined
in (6.3.4). From Lemma 6.7.3, we have that

b−p
∫1−b
b

|Y
(1)
n (t) − Y

(2)
n (t)|p dµ(t) = oP(1).

Hence, similar to the argument that leads to (6.3.10), if we show that

b−p
∫1−b
b

|Y
(2)
n (t)|p dµ(t) d−→ α0

p[DRZ](0)
p, (6.3.12)

then, together with (6.1.14), it follows that

b−p
∫1−b
b

|Y
(1)
n (t)|p dµ(t) = b−p

∫1−b
b

|Y
(2)
n (t)|p dµ(t) + oP(1).

Consequently, (6.3.9) is equivalent to (6.3.12).

In order to prove (6.3.12), let

Ynv(s) = n
1/6

[
Wn(L(v+n

−1/3s)) −Wn(L(v))
]
+
1

2
λ ′(v)s2. (6.3.13)

Let Hnv = [−n1/3v,n1/3(1− v)]∩ [− logn, logn] and

∆nv = n2/3[DInvΛ
W
n ](v) − [DHnvYnv](0).

We approximate Y(2)n by

Y
(3)
n (t) =

1

b

∫t+b
t−b

k ′
(
t− v

b

)
[DHnvYnv](0)dv. (6.3.14)

From Lemma 6.7.4, we have that

b−p
∫1−b
b

|Y
(2)
n (t) − Y

(3)
n (t)|p dµ(t) = oP(1).

Again, similar to the argument that leads to (6.3.10), if we show that

b−p
∫1−b
b

|Y
(3)
n (t)|p dµ(t) d−→ α0

p[DRZ](0)
p. (6.3.15)

then, together with (6.1.14), it follows that

b−p
∫1−b
b

|Y
(2)
n (t)|p dµ(t) = b−p

∫1−b
b

|Y
(3)
n (t)|p dµ(t) + oP(1),

which would prove (6.3.12).
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We proceed with proving (6.3.15). Let W be a two sided Brownian motion
originating from zero. We have that

n1/6
[
Wn(L(v+n

−1/3s)) −Wn(L(v))
]
d
=W

(
n1/3(L(v+n−1/3s) − L(v))

)
as a process in s. Consequently,

Y
(3)
n (t)

d
=
1

b

∫t+b
t−b

k ′
(
t− v

b

)
[DHnv Ỹnv](0)dv

where

Ỹnv(s) =W(n1/3(L(v+n−1/3s) − L(v))) +
1

2
λ ′(v)s2. (6.3.16)

Now define
Znv(s) =W(L ′(v)s) +

1

2
λ ′(v)s2. (6.3.17)

and

Jnv =

[
n1/3

L(anv) − L(v)

L ′(v)
,n1/3

L(bnv) − L(v)

L ′(v)

]
,

where anv = max(0, v − n−1/3 logn) and bnv = min(1, v + n−1/3 logn).
We approximate Ỹnv by Znv, i.e., we approximate Y(3)n by

Y
(4)
n (t) =

1

b

∫t+b
t−b

k ′
(
t− v

b

)
[DJnvZnv](0)dv, (6.3.18)

Lemma 6.7.5 yields

b−p
∫1−b
b

|Y
(3)
n (t) − Y

(4)
n (t)|p dµ(t) = oP(1).

Once more, similar to the argument that leads to (6.3.10), if we show that

b−p
∫1−b
b

|Y
(4)
n (t)|p dµ(t) d−→ α0

p[DRZ](0)
p, (6.3.19)

then, together with (6.1.14), it follows that

b−p
∫1−b
b

|Y
(3)
n (t)|p dµ(t) = b−p

∫1−b
b

|Y
(4)
n (t)|p dµ(t) + oP(1),

and as a result, also (6.3.15) holds.

As a final step, we prove (6.3.19). Since c1(v)W (L ′(v)c2(v)s)
d
=W(s) as a

process in s, where

c1(v) =

(
|λ ′(v)|

2L ′(v)2

)1/3
, c2(v) =

(
4L ′(v)

|λ ′(v)|2

)1/3
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we obtain that

Y
(4)
n (t)

d
=
1

b

∫t+b
t−b

k ′
(
t− v

b

)
1

c1(v)
[DInvZ](0)dv

where Inv = c2(v)
−1Jnv and Z(t) = W(t) − t2. We approximate DInv by

DR, i.e., we approximate Y(4)n by

Y
(5)
n (t) = [DRZ](0)

1

b

∫t+b
t−b

k ′
(
t− v

b

)
1

c1(v)
dv. (6.3.20)

It remains to show that

b−p
∫1−b
b

|Y
(5)
n (t)|p dµ(t) d−→ α

p
0 [DRZ](0)

p, (6.3.21)

because then, it follows that

b−p
∫1−b
b

|Y
(4)
n (t)|p dµ(t) = b−p

∫1−b
b

|Y
(5)
n (t)|p dµ(t) + oP(1)

so that (6.3.19) holds. Since

1

b

∫t+b
t−b

k ′
(
t− v

b

)
1

c1(t)
dv =

1

c1(t)

∫1
−1
k ′ (y) dy = 0.

we can write

1

b

∫t+b
t−b

k ′
(
t− v

b

)
1

c1(v)
dv =

1

b

∫t+b
t−b

k ′
(
t− v

b

)(
1

c1(v)
−

1

c1(t)

)
dv

=

∫1
−1
k ′ (y)

(
1

c1(t− by)
−

1

c1(t)

)
dy.

Assumptions (A1) and (A2) imply that t 7→ c1(t) is strictly positive and
differentiable with bounded derivative, so by a Taylor expansion we get∫1

−1
k ′ (y)

(
1

c1(t− by)
−

1

c1(t)

)
dy =

c ′1(t)

c1(t)2
b

∫1
−1
k ′ (y)ydy+O(b2).

Hence,

b−p
∫1−b
b

|Y
(5)
n (t)|p dµ(t) = [DRZ](0)

pb−p
∫1−b
b

∣∣∣∣c ′1(t)bc1(t)2

∣∣∣∣p dµ(t) + oP(1)

= [DRZ](0)
p

∫1
0

∣∣∣∣ c ′1(t)c1(t)2

∣∣∣∣p dµ(t) + oP(1)

which concludes the proof of (6.3.21) and concludes the proof of the theorem.
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Remark 6.3.2. Note that the assumption

1/b = o
(
n1/6+1/(6p)(logn)−(1+1/p)

)
of the previous theorem puts a restriction on p, when b has the optimal
rate n−1/5. This is due to the approximation of Y(4)n (t) by Y(5)n (t) for t ∈
(b, 1− b). This restriction on p can be avoided if we consider the Lp-error
on the smaller interval (b+n−1/3 logn, 1− b−n−1/3 logn).

Remark 6.3.3. For p > 1, the boundary regions cannot be included in the
CLT of Theorem 6.3.1. For example, for t ∈ (0,b), it can be shown that there
exists a universal constant K > 0, such that

n2p/3
∫b
0

∣∣∣λ̃SGn (t) − λ̃sn(t)
∣∣∣p dµ(t) > Kb−p+1[DRZ](0)

p + oP(b
−p+1),

which is not bounded in probability for p > 1. For details see Appendix B
The same result also holds for t ∈ (1− b, 1).

In the special case p = 1, for t ∈ (0,b) we have

n2/3
∫b
0

∣∣∣λ̃SGn (t) − λ̃sn(t)
∣∣∣ dµ(t)

= [DRZ](0)
1

b

∫b
0

∣∣∣∣∣ 1

c1(t)

∫t/b
−1

d
dy
k(t) (y) dy

∣∣∣∣∣ dµ(t) + oP(1).

If (A3) holds, then

1

b

∫b
0

∣∣∣∣∣ 1

c1(t)

∫t/b
−1

d
dy
k(t) (y) dy

∣∣∣∣∣ dµ(t)

→ w(0)

c1(0)

∫1
0
|ψ1 (y) k (y) +ψ2 (y)yk (y)| dy.

Similarly, we can deal with the case t ∈ (1− b, 1). It follows that

n2/3
∫1
0

∣∣∣λ̃SGn (t) − λ̃sn(t)
∣∣∣ dµ(t) d−→ α̃0[DRZ](0)

with

α̃0 = α0 +

(
w(0)

c1(0)
+
w(1)

c1(1)

) ∫1
0
|ψ1 (y) k (y) +ψ2 (y)yk (y)| dy.

We are now ready to formulate the CLT for the smoothed Grenander-
type estimator. The result will follow from combining Corollary 6.2.7 with
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Theorem 6.3.1. Because we now deal with the Lp-error between λ̃SGn and
λ, the contribution of the integrals over the boundary regions (0, 2b) and
(1− 2b, 1) can be shown to be negligible. This means we no longer need the
third requirement in Theorem 6.3.1 on the rate of 1/b.

Theorem 6.3.4. Assume that (A1) − (A3) hold and let k satisfy (6.1.1). Let ISGn
be defined in (6.3.2). If 1 6 p < min(q, 2q− 7) and nb→∞, such that

1/b = o
(
n1/3−1/q

)
and 1/b = o

(
n(q−3)/(6p)

)
.

i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2ISGn (p) −mn(p)

}
d−→ N(0, 1);

ii) If nb5 → C20 > 0, and Bn in assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2ISGn (p) −mn(p)

}
d−→ N(0, 1);

iii) If nb5 → C20 > 0, and Bn in assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2ISGn (p) −mn(p)

}
d−→ N(0, 1),

where ISGn , mn, σ2, θ2, and θ̃2 are defined in (6.3.2), (6.1.8), (6.1.9), (6.1.11), and
(6.1.12), respectively.

Proof. Define

γ2(p) =

σ2(p) if nb5 → 0

θ2(p) if nb5 → C20.
(6.3.22)

By Corollary 6.2.7, we already have that

(bγ2(p))−1/2

{
(nb)p/2

∫1
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t) −mn(p)

}
d−→ N(0, 1),

for λ̂sn defined in (6.2.12). Hence it is sufficient to show that

b−1/2(nb)p/2

∣∣∣∣∣
∫1
0

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫1
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣ P−→ 0,

in all three cases (i)-(iii). First we show that

b−1/2(nb)p/2

∣∣∣∣∣
∫2b
0

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫2b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣ P−→ 0.

(6.3.23)
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Indeed, by (6.1.14), we get∣∣∣∣∣
∫2b
0

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫2b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣
6 p2p−1

∫2b
0

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

+ p2p−1

(∫2b
0

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

) 1
p
(∫2b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

)1− 1
p

.

Moreover, by integration by parts and the Kiefer-Wolfowitz type of result in
Corollary 3.1 in Durot and Lopuhaä, 2014, it follows that

sup
t∈[0,1]

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣ = sup

t∈[0,1]

∣∣∣∣∫ k(t)b (t− u)d(Λ̂n −Λn)(u)

∣∣∣∣
6 Cb−1 sup

t∈[0,1]
|Λ̂n(t) −Λn(t)|

= OP

(
b−1

(
logn
n

)2/3)
.

(6.3.24)

Hence∫2b
0

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t) = OP

(
b1−p

(
logn
n

)2p/3)
. (6.3.25)

Together with Proposition 6.2.6 this implies (6.3.23). Similarly, we also have

b−
1
2 (nb)

p
2

∣∣∣∣∣
∫1
1−2b

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫1
1−2b

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣ P−→ 0.

Thus, it remains to prove

b−
1
2 (nb)

p
2

∣∣∣∣∣
∫1−2b
2b

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫1−2b
2b

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣ P−→ 0.

(6.3.26)
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Again, from (6.1.14), we have∣∣∣∣∣
∫1−2b
2b

∣∣∣λ̃SGn (t) − λ(t)
∣∣∣p dµ(t) −

∫1−2b
2b

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

∣∣∣∣∣
6 p2p−1

∫1−2b
2b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

+ p2p−1

(∫1−2b
2b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t)

)1/p
(∫1−2b
2b

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

)1−1/p
.

(6.3.27)

Because b−1 = o(n1/3−1/q) implies that

(2b, 1− 2b) ⊂ (b+n−1/3 logn, 1− b−n−1/3 logn),

from Theorem 6.3.1, in particular Remark 6.3.2, we have∫1−2b
2b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t) = OP(n−2p/3) = oP(n

−p/2). (6.3.28)

Then, (6.3.26) follows immediately from (6.3.27) and the fact that, according
to Theorem 6.2.1,∫1−2b

2b

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t) = OP((nb)−p/2).

This proves the theorem.

Remark 6.3.5. Note that, if b = cn−α, for some 0 < α < 1, the proof is
simple and short in case α < p/(3(1 + p)) because the Kiefer-Wolfowitz
type of result in Corollary 3.1 in Durot and Lopuhaä, 2014 is sufficient to
prove (6.3.28). Indeed, from (6.3.24), it follows that∫1−2b

2b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣p dµ(t) = OP

(
b−p

(
logn
n

)2p/3)
= oP

(
b1/2 (nb)−p/2

)
.

However, this assumption on α is quite restrictive because for example if
α = 1/5 then the theorem holds only for p > 3/2 (not for the L1-loss) and if
α = 1/4 then the theorem holds only for p > 3.
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6.4 isotonized kernel estimator

The isotonized kernel estimator is defined as follows. First, we smooth the
piecewise constant estimator Λn by means of a boundary corrected kernel
function, i.e., let

Λsn(t) =

∫ (t+b)∧1
(t−b)∨0

k
(t)
b (t− u)Λn(u)du, for t ∈ [0, 1], (6.4.1)

where k(t)(u) defined as in (1.2.11). Next, we define a continuous monotone
estimator λ̃GSn of λ as the left-hand slope of the least concave majorant Λ̂sn
of Λsn on [0, 1]. In this way we define a sort of Grenander estimator based
on a smoothed naive estimator for Λ. For this reason we use the superscript
GS.

We are interested in the asymptotic distribution of the Lp-error of this
estimator:

IGSn (p) =

∫1
0

∣∣∣λ̃GSn (t) − λ(t)
∣∣∣p dµ(t).

It follows from Lemma 1 in Groeneboom and Jongbloed, 2010 (in the case of
a decreasing function), that λ̃GSn is continuous and is the unique minimizer
of

ψ(λ) =
1

2

∫1
0

(
λ(t) − λ̃sn(t)

)2 dt

over all nonincreasing functions λ, where λ̃sn(t) = dΛsn(t)/dt. This suggests
λ̃sn(t) as a naive estimator for λ0(t). Note that, for t ∈ [b, 1− b], from inte-
gration by parts we get

λ̃sn(t) =
1

b2

∫t+b
t−b

k ′
(
t− u

b

)
Λn(u)du =

∫t+b
t−b

kb(t− u)dΛn(u), (6.4.2)

i.e., λ̃sn coincides with the usual kernel estimator of λ on [b, 1− b].

Let 0 < γ < 1. It can be shown that

P(λ̃sn(t) = λ̃
GS
n (t) for all t ∈ [bγ, 1− bγ])→ 1. (6.4.3)

See Corollary B.2.2 in Appendix B. Hence, their Lp-error between λ̃GSn and
λ̃sn will exhibit the same behavior in the limit. Note that this holds for every
γ < 1, which means that the interval we are considering is approaching
(b, 1− b). Consider a modified Lp-error of the isotonized kernel estimator
defined by

IGS,c
n,γ (p) =

∫1−bγ
bγ

∣∣∣λ̃GSn (t) − λ(t)
∣∣∣p dµ(t). (6.4.4)

We then have the following result.
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Theorem 6.4.1. Assume that (A1)-(A3) hold and let IGS,c
n,γ (p) be defined in (6.4.4).

Let k satisfy (6.1.1) and let L be as in Assumption (A2). Assume b → 0 and
1/b = o(n1/4) and let 1/2 < γ < 1.

i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p) −mn(p)
}
d−→ N(0, 1);

ii) If nb5 → C20 > 0 and Bn in assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p) −mn(p)
}
d−→ N(0, 1);

iii) If nb5 → C20 > 0 and Bn in assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p) −mn(p)
}
d−→ N(0, 1),

where σ2, θ2, θ̃2 and mn are defined respectively in (6.1.9), (6.1.11), (6.1.12) and
(6.1.8).

Proof. It follows from Theorem 6.2.1 and (6.4.3). Note that the results of
Theorem 6.2.1 do not change if we consider the interval [bγ, 1− bγ] instead
of [b, 1− b] and that b−1/2|mcn(p) −mn(p)|→ 0.

6.5 hellinger error

In this section we investigate the global behavior of estimators by means of
a weighted Hellinger distance

H(λ̂n, λ) =

(
1

2

∫1
0

(√
λ̂n(t) −

√
λ(t)

)2
dµ(t)

)1/2
, (6.5.1)

where λ̂n is the estimator at hand. This metric is convenient in maximum
likelihood problems, which goes back to Birgé and Massart, 1993; Le Cam,
1973; Le Cam, 1970. Consistency in Hellinger distance of shape constrained
maximum likelihood estimators has been investigated in Pal, Woodroofe,
and Meyer, 2007, Seregin and Wellner, 2010, and Doss and Wellner, 2016,
whereas rates on Hellinger risk measures have been obtained in Seregin and
Wellner, 2010, Kim and Samworth, 2016, and Kim, Guntuboyina, and Sam-
worth, 2016. The first central limit theorem type of result for the Hellinger
distance was presented in Chapter 4 for Grenander type estimators of a
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monotone function. We deal with the smooth (isotonic) estimators follow-
ing the same approach.

Note that, for the Hellinger distance to be well defined we need to assume
that λ takes only positive values. We follow the same line of argument as in
Chapter 4. We first establish that∫1

0

(√
λ̂sn(t) −

√
λ(t)

)2
dµ(t) =

∫1
0

(
λ̂sn(t) − λ(t)

)2
(4λ(t))−1 dµ(t)

+OP

(
(nb)−3/2

)
,

which shows that the squared Hellinger loss can be approximated by a
weighted squared L2-distance. For details, see Lemma B.3.1 in Appendix B,
which is the corresponding version of Lemma 4.1.1. Hence, a central limit
theorem for squared the Hellinger loss follows directly from the central
limit theorem for the weighted L2-distance (see Theorem B.3.2, which corre-
sponds to Theorem 4.2.1. An application of the delta method will then lead
to the following result.

Theorem 6.5.1. Assume (A1)-(A3) hold. Let λ̃sn be defined in (6.1.2), with k sat-
isfying (6.1.1), and let H be defined in (6.5.1). Suppose that nb→∞ and that λ is
strictly positive.

i) If nb5 → 0, then(
b
τ2(2)

8µn(2)

)−1/2 {
(nb)1/2H(λ̂sn, λ) − 2−1/2µn(2)1/2

}
d−→ N(0, 1).

ii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian motion, then(
b
κ2(2)

8µn(2)

)−1/2 {
(nb)1/2H(λ̂sn, λ) − 2−1/2µn(2)1/2

}
d−→ N(0, 1),

iii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian bridge, then(
b
κ̃2(2)

8µn(2)

)−1/2 {
(nb)1/2H(λ̂sn, λ) − 2−1/2µn(2)1/2

}
d−→ N(0, 1),

where τ2, κ2, κ̃2 and µn are defined as in (6.1.9), (6.1.11), (6.1.12) and (6.1.8),
respectively, by replacing w(t) with w(t)(4λ(t))−1.

(iv) Under the conditions of Theorem 6.3.4, results (i)-(iii) also hold when replac-
ing λ̂sn by the smoothed Grenander-type estimator λ̃SGn , defined in (6.3.1).
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Proof. The proof consists of an application of the delta-method in combina-
tion with Theorem B.3.2. According to part (i) of Theorem B.3.2,

b−1/2
(
2nbH(λ̂sn, λ) − µn(2)

) d−→ Z

where Z is a mean zero normal random variable with variance τ2(2). There-
fore, in order to obtain part (i) of Theorem 6.5.1, we apply the delta method
with the mapping φ(x) = 2−1/2x1/2. Parts (ii)-(iv) are obtained in the same
way.

To be complete, note that from Corollary B.2.2, the previous central limit
theorems also hold for the isotonized kernel estimator λ̃GSn , defined in Sec-
tion 6.4, when considering a Hellinger distance corresponding to the inter-
val (bγ, 1− bγ) instead of (0, 1) in (6.5.1).

6.6 testing monotonicity

In this section we investigate a possible application of the results obtained
in Section 6.3 for testing monotonicity. For example, Theorem 6.3.4 could
be used to construct a test for the single null hypothesis H0 : λ = λ0, for
some known monotone function λ0. Instead, we investigate a nonparametric
test for monotonicity on the basis of the Lp-distance between the smoothed
Grenander-type estimator and the kernel estimator, see Theorem 6.3.1.

The problem of testing a nonparametric null hypothesis of monotonic-
ity has gained a lot of interest in the literature (see for example Kulikov
and Lopuhaä, 2004 for the density setting, Hall and Van Keilegom, 2005,
Groeneboom and Jongbloed, 2012 for the hazard rate, Akakpo, Balabdaoui,
and Durot, 2014, Birke and Dette, 2007, Birke and Neumeyer, 2013, Gijbels
et al., 2000 for the regression function).

We consider a regression model with deterministic design points

Yi = λ

(
i

n

)
+ εi, i ∈ {1, . . . ,n}, (6.6.1)

where the εi’s are independent normal random variables with mean zero
and variance σ2. Such a model satisfies Assumption (A2) with q = +∞ and
Λn(t) = n

−1
∑
i6nt Yi, for t ∈ [0, 1] (see Theorem 5 in Durot, 2007).

Assume we have a sample of n observations Y1, . . . , Yn. Let D be the
space of decreasing functions on [0, 1]. We want to test H0 : λ ∈ D against
H1 : λ /∈ D. Under the null hypothesis we can estimate λ by the smoothed
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Grenander-type estimator λ̃SGn defined as in (6.3.1). On the other hand, un-
der the alternative hypothesis we can estimate λ by the kernel estimator
with boundary corrections λ̂sn defined in (6.2.12). Then, as a test statistic we
take

Tn = n2/3

(∫1−b
b

∣∣∣λ̃SGn (t) − λ̂sn(t)
∣∣∣2 dt

)1/2
,

and at level α, we reject the null hypothesis if Tn > cn,α for some critical
value cn,α > 0.

In order to use the asymptotic quantiles of the limit distribution in Theo-
rem 6.3.1, we need to estimate the constant C0 which depends on the deriva-
tives of λ. To avoid this, we choose to determine the critical value by a boot-
strap procedure. We generate B = 1000 samples of size n from the model
(6.6.1) with λ replaced by its estimator λ̃SGn under the null hypothesis. For
each of these samples we compute the estimators λ̃SG,∗

n , λ̂s,∗
n and the test

statistic

T∗n,j = n
2/3

(∫1−b
b

∣∣∣λ̃SG,∗
n (t) − λ̂s,∗

n (t)
∣∣∣2 dt

)1/2
, j = 1, . . . ,B.

Then we take as a critical value, the 100α-th upper-percentile of the values
T∗n,1, . . . , T∗n,B. We repeat this procedure N = 1000 times and we count the
percentage of rejections. This gives an approximation of the level (or the
power) of the test if we start with a sample for which the true λ is decreasing
(or non-decreasing).

We investigate the performance of the test by comparing it to tests pro-
posed in Akakpo, Balabdaoui, and Durot, 2014, Baraud, Huet, and Laurent,
2005 and in Gijbels et al., 2000. For a power comparison, Akakpo, Balab-
daoui, and Durot, 2014 and Baraud, Huet, and Laurent, 2005 consider the
following functions

λ1(x) = −15(x− 0.5)31{x60.5} − 0.3(x− 0.5) + exp
(
−250(x− 0.25)2

)
,

λ2(x) = 16σx, λ3(x) = 0.2 exp
(
−50(x− 0.5)2

)
, λ4(x) = −0.1 cos(6πx),

λ5(x) = −0.2x+ λ3(x), λ6(x) = −0.2x+ λ4(x),

λ7(x) = −(1+ x) + 0.45 exp
(
−50(x− 0.5)2

)
,

We denote by TB the local mean test of Baraud, Huet, and Laurent, 2005

and Sregn the test proposed in Akakpo, Balabdaoui, and Durot, 2014 on the
basis of the distance between the least concave majorant of Λn and Λn. The
result of the simulations for n = 100, α = 0.05, b = 0.1, are given in Table 12.
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Function λ1 λ2 λ3 λ4 λ5 λ6 λ7

σ2 0.01 0.01 0.01 0.01 0.004 0.006 0.01

Tn 1 1 1 1 1 1 0.99

TB 0.99 0.99 1 0.99 0.99 0.98 0.76

S
reg
n 0.99 1 0.98 0.99 0.99 0.99 0.68

Table 12: Simulated power of Tn, TB and Sregn for n = 100.

We see that, apart from the last case, all the three tests perform very well
and they are comparable. However, our test behaves much better for the
function λ7, which is more difficult to detect than the others.

The second model that we consider is taken from Akakpo, Balabdaoui,
and Durot, 2014 and Gijbels et al., 2000, which is a regression function given
by

λa(x) = −(1+ x) + a exp
(
−50(x− 0.5)2

)
, x ∈ [0, 1].

The results of the simulation, again for n = 100, α = 0.05, b = 0.1 and
various values of a and σ2 are given in Table 13. We denote by Sregn the test
of Akakpo, Balabdaoui, and Durot, 2014 and by Trun the test of Gijbels et
al., 2000. Note that when a = 0, the regression function is decreasing so H0

a = 0 a = 0.25 a = 0.45

σ 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

Tn 0.012 0.025 0.022 0.927 0.497 0.219 1 1 0.992

Trun 0 0 0 0.106 0.037 0.014 1 1 0.805

S
reg
n 0 0.002 0.013 0.404 0.053 0.007 1 1 0.683

Table 13: Simulated power of Tn, Trun and Sregn for n = 100.

is satisfied. We observe that our test rejects the null hypothesis more often
than Trun and Sregn so the price we pay for getting higher power is higher
level. As the value of a increases, the monotonicity of λa is perturbed. For
a = 0.25 our test performs significantly better than the other two and, as
expected, the power decreases as the variance of the errors increases. When
a = 0.45 and σ2 not too large, the three tests have power one but, when σ2

increases, Tn outperforms Trun and Sregn .

We note that the test performs the same way if, instead of the L2-distance
between λ̃SGn and λ̂sn, we use the L1-distance on (0, 1). Indeed, in Remark 6.3.3
we showed that , for p = 1, the limit theorem holds on the whole interval
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(0, 1). Moreover, we did not investigate the choice of the bandwidth. We
take b = 0.1, which seems to be a reasonable one considering that the whole
interval has length one.

6.7 auxiliary results and proofs

6.7.1 Proofs for Section 6.2

Lemma 6.7.1. Let L : [0, 1]→ R be strictly positive and twice differentiable, such
that inft∈[0,1] L

′(t) > 0 and supt∈[0,1] |L
′′(t)| < ∞. Let Γ (2)n , g(n), and mcn(p)

be defined in (6.2.5), (6.1.4), and (6.1.8), respectively. Assume that (A1) and (A3)
hold.

1. If nb5 → 0, then

(bσ2(p))−
1
2

{∫1−b
b

∣∣∣b− 1
2 Γ

(2)
n (t) + g(n)(t)

∣∣∣p dµ(t) −mcn(p)

}
d−→ N(0, 1),

where σ2(p) is defined in (6.1.9).

2. If nb5 → C20, then

(bθ̃2(p))−
1
2

{∫1−b
b

∣∣∣b− 1
2 Γ

(2)
n (t) + g(n)(t)

∣∣∣p dµ(t) −mcn(p)

}
d−→ N(0, 1),

where θ̃2(p) is defined in (6.1.12).

Proof. From the properties of the kernel function and L we have

Γ
(2)
n (t) =

∫
k

(
t− u

b

)
dW(L(u)) −

W(L(1))

L(1)

∫
k

(
t− u

b

)
L ′(u)du

=

∫
k

(
t− u

b

)
dW(L(u)) − b

W(L(1))

L(1)
L ′(t) +OP(b

3),

where the OP term is uniformly for t ∈ [0, 1]. Hence, (6.1.14) implies that∫1−b
b

∣∣∣b−1/2Γ (2)n (t) + g(n)(t)
∣∣∣p dµ(t) =∫1−b

b

∣∣∣∣b− 1
2

∫
k

(
t− u

b

)
dW(L(u)) + g(n)(t) − b

1
2
W(L(1))

L(1)
L ′(t)

∣∣∣∣p dµ(t)

+O(b3).
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Therefore, it is sufficient to prove a CLT for∫1−b
b

∣∣∣∣b−1/2 ∫ k(t− ub
)

dW(L(u)) + g(n)(t) − b
1/2W(L(1))

L(1)
L ′(t)

∣∣∣∣p dµ(t).

(6.7.1)
Let

Xn,t = b
−1/2

∫
k

(
t− u

b

)
dW(L(u)) + g(n)(t). (6.7.2)

Then Xnt ∼ N(g(n)(t),σ2n(t)), where

σ2n(t) =
1

b

∫
k2
(
t− u

b

)
L ′(u)du. (6.7.3)

We can then write

b−1/2

{∫1−b
b

∣∣∣b−1/2Γ (2)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(p)

}

= b−1/2

{∫1−b
b

∣∣∣∣Xn,t − b
1/2W(L(1))

L(1)
L ′(t)

∣∣∣∣p dµ(t) −mcn(p)

}
+ o(1)

= b−1/2

{∫1−b
b

|Xn,t|
p dµ(t) −mcn(p)

}

− p
W(L(1))

L(1)

∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt

+ b−1/2
∫1−b
b

O
(
bW(L(1))2

)
dt+ o(1),

(6.7.4)

where we use

|x|p = |y|p + p(x− y)|y|p−1 sgn(y) +O((x− y)2) (6.7.5)

for the first term in the integrand on the right hand side of the first equal-
ity in (6.7.4). The third term on the right hand side of (6.7.4) converges to
zero in probability, so it suffices to deal with the first two terms. To estab-
lish a central limit theorem for the first term, one can mimic the approach
in Csörgő and Horváth, 1988 using a big-blocks-small-blocks procedure. See
Lemmas B.1.1 and B.1.2 for details. It can be shown that

b−1/2

{∫1−b
b

|Xn,t|
p dµ(t) −mcn(p)

}
= b1/2

M3∑
i=1

ζi + oP(1),

where ζi =
∑di
j=ci

ξj, with

ci = (i− 1)(M2 + 2) + 1 and di = (i− 1)(M2 + 2) +M2,
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for some 0 < ν < 1, M2 = [(M1 − 1)
ν],

M1 =

[
1

b
− 1

]
and M3 =

[
M1 − 1

M2 + 2

]
,

and

ξi = b
−1

∫ ib+b
ib

{
|Xn,t|

p −

∫+∞
−∞

∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣pφ(x)dx
}
w(t)dt.

The random variables ζi are independent and satisfy

b1/2
M3∑
i=1

ζi
d−→ N(0,γ2(p)), (6.7.6)

where γ2(p) is defined in (6.3.22).

Next, consider the second term in the right hand side of (6.7.4). We have

E

[∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt

]

=

∫1−b
b

∫
R

∣∣∣σn(t)x+ g(n)(t)∣∣∣p−1 sgn
{
σn(t)x+ g(n)(t)

}
φ(x)dxL ′(t)w(t)dt

→
∫1
0

∫
R

∣∣∣√L ′(t)Dx+ g(t)∣∣∣p−1 sgn
{√

L ′(t)Dx+ g(t)
}
φ(x)dx L ′(t)w(t)dt,

where D and σn(t) are defined in (6.1.7) and (6.7.3), respectively, and φ

denotes the standard normal density. Note that

d

dx

∣∣∣√L ′(t)Dx+ g(t)∣∣∣p = p
∣∣∣√L ′(t)Dx+ g(t)∣∣∣p−1 sgn

{√
L ′(t)Dx+ g(t)

}
.

Hence, integration by parts gives∫1
0

∫
R

∣∣∣√L ′(t)Dx+ g(t)∣∣∣p−1 sgn
{√

L ′(t)Dx+ g(t)
}
φ(x)dx L ′(t)w(t)dt

=
θ1(p)

Dp
,

where θ1 is defined in (6.1.13). We conclude

E

[∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt

]
→ θ1(p)

Dp
.
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Moreover,

Var

(∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt

)

=

∫1−b
b

∫1−b
b

Covar
(
|Xn,t|

p−1 sgn {Xn,t} , |Xn,s|
p−1 sgn {Xn,s}

)
· L ′(t)L ′(s)w(t)w(s)dtds

=

∫1−b
b

∫1−b
b

1{|t−s|62b}Covar
(
|Xn,t|

p−1 sgn {Xn,t} , |Xn,s|
p−1 sgn {Xn,s}

)
· L ′(t)L ′(s)w(t)w(s)dtds,

because for |t− s| > 2b, Xn,t is independent of Xn,s. As a result, using that
Xn,t has bounded moments, we obtain

Var

(∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt

)
→ 0.

This means that∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt→ θ1(p)

Dp
,

in probability and

−p
W(L(1))

L(1)

∫1−b
b

|Xn,t|
p−1 sgn {Xn,t}L

′(t)w(t)dt = CW(L(1)) + oP(1),

where

C = −
θ1(p)

DL(1)
. (6.7.7)

Going back to (6.7.4), we conclude that

b−1/2

{∫1−b
b

∣∣∣b−1/2Γ (2)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(p)

}

= b1/2
M3∑
i=1

ζi +CW(L(1)) + oP(1).

(6.7.8)

In the case nb5 → 0, we have g(t) = 0 in the definition of θ1(p) in (6.1.13).
Hence, by the symmetry of the standard normal distribution, it follows that
θ1(p) = 0 and as a result C = 0. According to (6.7.6) and (6.7.8), this means
that

b−1/2

{∫1−b
b

∣∣∣b−1/2Γ (2)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(p)

}
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converges in distribution to a mean zero normal random variable with vari-
ance σ2(p).

Then, consider the case nb5 → C20 > 0. Note that ζi depends only on
the Brownian motion on the interval [cib− b, cib+ b]. These intervals are
disjoint, because ci+1b− b = dib+ b. We write

W(L(1)) =

M3∑
i=1

[W(ti+1) −W(ti)] +W(L(1)) −W(tM3
),

where ti = L(cib− b), for i = 1, . . . ,M3. Moreover, W(L(1)) −W(tM3
)→ 0,

in probability, since tM3
∼ L(1+O(b)) → L(1). Hence, the left hand side

of (6.7.8), can be written as

M3∑
i=1

Yi + oP(1), Yi = b
1/2ζi +C [W(ti+1) −W(ti)] .

Since now we have a sum of independent random variables, we apply the
Lindeberg-Feller central limit theorem. Using E[Yi] = O(b

5/2M2), it suffices
to show that

E


M3∑
i=1

Yi

2
→ θ̃2(p)> 0, (6.7.9)

and that the Lyapounov condition

M3∑
i=1

E[Y4i ]

M3∑
i=1

E[Y2i ]

−2

→ 0. (6.7.10)

is satisfied. Once we have (6.7.9), condition (6.7.10) is equivalent to

M3∑
i=1

E[Y4i ]→ 0.

In order to prove this, we use that E[ζ4i ] = O(M22), (see (B.1.4) in the proof
of Lemma B.1.2. Then, we get

M3∑
i=1

E[Y4i ] 6 O(b
2)

M3∑
i=1

E[ζ4i ] +O(1)

M3∑
i=1

E[(W(ti+1) −W(ti))
4]

6 O(M3b
2M22) +O(M3(ti+1 − ti)

2)

= o(1) +O(M3M
2
2b
2) = o(1).
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Because E[Yi] = O(b
5/2M2), for (6.7.9) we have

E


M3∑
i=1

Yi

2
 =

M3∑
i=1

E
[
Y2i

]
+ o(1)

= b

M3∑
i=1

E
[
ζ2i

]
+C2

M3∑
i=1

(ti+1 − ti)

+ 2Cb1/2
M3∑
i=1

E[ζi{W(ti+1) −W(ti)}] + o(1).

It can be shown that b
∑M3
i=1E

[
ζ2i
]
→ 0, see Lemma B.1.2 for details. More-

over,

M3∑
i=1

(ti+1 − ti) = L((M3 − 1)(M2 + 2)b) − L(0) = L(1) + o(1).

Finally, since

ζi = b
−1

∫dib
cib

{
|Xn,t|

p −

∫+∞
−∞

∣∣∣√l(t)Dx+ g(n)(t)∣∣∣pφ(x)dx
}
w(t)dt,

we can write

2Cb1/2
M3∑
i=1

E[ζi{W(ti+1) −W(ti)}] = 2C

M3∑
i=1

∫dib
cib

E [|Xn,t|
pZn,t]w(t)dt,

where Zn,t = b
−1/2{W(ti+1) −W(ti)}. Note that

(Xn,t,Zn,t) ∼ N

([
g(n)(t)

0

]
,

[
σ2n(t) ρn(t)σn(t)σ̃n(t)

ρn(t)σn(t)σ̃n(t) σ̃2n(t))

])
.

where σ2n(t) is defined in (6.7.3) and

σ̃2n(t) = b
−1[L(t+ b) − L(t− b)],

ρn(t) = σn(t)
−1σ̃n(t)

−1b−1
∫
k

(
t− u

b

)
l(u)du.

Using

Zn,t | Xn,t = x ∼ N

(
σ̃n(t)

σn(t)
ρn(t)(x− g(n)(t)),

(
1− ρ2n(t)

)
σ̃2n(t)

)
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we obtain

E [|Xn,t|
pZn,t] = E [|Xn,t|

pE[Zn,t | Xn,t]]

= E

[
|Xn,t|

p σ̃n(t)

σn(t)
ρn(t)

(
Xn,t − g(n)(t)

)]
=
σ̃n(t)

σn(t)
ρn(t)E

[
|Xn,t|

p
(
Xn,t − g(n)(t)

)]
=
σ̃n(t)

σn(t)
ρn(t)

∫
R

|g(n)(t) + σn(t)x|
pσn(t)xφ(x)dx

= σn(t)
−1b−1

∫
k

(
t− u

b

)
l(u)du

∫
R

|g(n)(t) + σn(t)x|
pxφ(x)dx.

Because σ2n(t) → D2l(t), where D is defined in (6.1.7), g(n)(t) → g(t), as
defined in (6.1.5), and b−1

∫
k
(
t−u
b

)
l(u)du→ l(t), we find that

E [|Xn,t|
pZn,t]→

√
l(t)

D

∫
R

|g(t) +D
√
l(t)x|pxφ(x)dx.

Hence

E


M3∑
i=1

Yi

2


= θ2(p) +C2L(1) +
2C

D

M3∑
i=1

∫dib
cib

∫
R

|g(t) +
√
l(t)Dx|pxφ(x)dx

√
l(t)w(t)dt+ o(1)

= θ2(p) +C2L(1) +
2C

D

∫1
0

∫
R

|g(t) +D
√
l(t)x|pxφ(x)dx

√
l(t)w(t)dt+ o(1)

= θ2(p) +C2L(1) + 2CD−1θ1(p) + o(1)

= θ2(p) −
θ21(p)

D2L(1)
+ o(1),

applying the definitions of C and θ1(p) in (6.7.7) and (6.1.13), respectively.

It follows from the Lindeberg-Feller central limit theorem that
∑M3
i=1 Yi

d−→
N(0, θ̃2(p)), where θ̃(p) is defined in (6.1.12).

6.7.2 Proofs for Section 6.3

Lemma 6.7.2. Let Yn and Y(1)n be defined in (6.3.5) and (6.3.7), respectively. As-
sume that (A1) − (A2) hold. If 1 6 p < min(q, 2q− 7),

1/b = o
(
n1/3−1/q

)
and 1/b = o

(
n(q−3)/(6p)

)
,
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then

b−p
∫1−b
b

|Yn(t) − Y
(1)
n (t)|p dµ(t) = oP(1).

Proof. We follow the same reasoning as in the proof of Lemma 5.2.5. Let
Inv = [0, 1]∩ [v−n−1/3 logn, v+n−1/3 logn] and for J = E,W, let

NJnv =
{
[CM[0,1]Λ

J
n](s) = [CMInvΛ

J
n](s) for all s ∈ Inv

}
. (6.7.11)

Then according to Lemma 5.1.3, there exists C > 0, independent of n, v,d,
such that

P
(
(NWnv)

c
)
= O(e−Cd

3
)

P
(
(NEnv)

c
)
= O(n1−q/3d−2q + e−Cd

3
).

(6.7.12)

Let Knv = NEnv ∩NWnv and write

E
[∣∣∣AEn(v)p −AWn (v)

∣∣∣] = E
[∣∣∣AEn(v)p −AWn (v)

∣∣∣1Kcnv]
+n2p/3E

[∣∣∣[DInvΛn](t)p − [DInvΛ
W
n ](t)p

∣∣∣1Knv] .

From the proof of Lemma 5.2.5, using (6.7.12) with d = logn, we have

E
[∣∣∣AEn(v)p −AWn (v)

∣∣∣1Kcnv] = OP(n1/2−q/6(logn)−q + e−C(logn)3/2/2)

and

n2p/3E
[∣∣∣[DInvΛn](t)p − [DInvΛ

W
n ](t)p

∣∣∣1Knv] = Op (n−1/3+1/q
)

.

It follows that

b−p
∫1−b
b

|Yn(t) − Y
(1)
n (t)|p dµ(t)

6 Cb−p
∫1
−1

|AEn(t− by) −A
W
n (t− by)|p dy

= b−pOP

(
n−p/3+p/q

)
+ b−pOP

(
n1/2−q/6(logn)−q + e−C(logn)3/2

)
.

According to the assumptions on the order of b−1, the right hand side is of
order oP(1).

Lemma 6.7.3. Let Y(1)n and Y(2)n be defined in (6.3.7) and (6.3.11), respectively.
Assume that (A1) − (A2) hold. If b→ 0, such that nb→∞, then

b−p
∫1−b
b

|Y
(1)
n (t) − Y

(2)
n (t)|p dµ(t) = oP(1).
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Proof. We have

sup
t∈(b,1−b)

E
[∣∣∣Y(1)n (t) − Y

(2)
n (t)

∣∣∣p]
= sup
t∈(b,1−b)

E

[∣∣∣∣ 1b
∫
k ′
(
t− v

b

)
1(NWnv)c

(
AWn (v) −n

2
3 [DInvΛ

W
n ](v)

)
dv
∣∣∣∣p]

6 c sup
t∈(b,1−b)

E

[
sup
v∈[0,1]

∣∣∣AWn (v) −n
2
3 [DInvΛ

W
n ](v)

∣∣∣p( 1
b

∫t+b
t−b

1(NWnv)c
dv

)p]
,

where NWnv is defined in (6.7.11). Moreover, since

sup
v∈[0,1]

∣∣∣AWn (v) −n
2
3 [DInvΛ

W
n ](v)

∣∣∣ 6 4n 23 {Λ(1) +n−1/2 sup
s∈[0,L(1)]

|Wn(s)|

}
,

from the Cauchy-Schwartz inequality we obtain

sup
t∈(b,1−b)

E

[
sup
v∈[0,1]

∣∣∣AWn (v) −n2/3[DInvΛ
W
n ](v)

∣∣∣p( 1
b

∫t+b
t−b

1(NWnv)c
dv

)p]

6 4pn2p/3E

{Λ(1) +n−1/2 sup
s∈[0,L(1)]

|Wn(s)|

}2p1/2

· sup
t∈(b,1−b)

E

( 1
b

∫t+b
t−b

1(NWnv)c
dv

)2p1/2 .

For the last term on the right hand side, we can use Jensen’s inequality:(
1

b− a

∫b
a
f(x)dx

)p
6

1

b− a

∫b
a
f(x)p dx,

for all a < b, p > 1, and f(x) > 0. Because all the moments of

sup
s∈[0,L(1)]

|Wn(s)|

are finite, together with (6.7.12), it follows that

sup
t∈(b,1−b)

E
[∣∣∣Y(1)n (t) − Y

(2)
n (t)

∣∣∣p]

6 Cn2p/3 sup
t∈(b,1−b)

E

[
1

b

∫t+b
t−b

1(NWnv)c
dv

]1/2
= O

(
n2p/3 exp

(
−C(logn)3/2

))
.

(6.7.13)
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Since

b−pn2p/3 exp
(
−C(logn)3/2

)
= (nb)

2p
3 −

C(logn)2
2 b−p−

2p
3 +

C(logn)2
2 → 0,

this concludes the proof.

Lemma 6.7.4. Let Y(2)n and Y(3)n be defined in (6.3.11) and (6.3.14), respectively.
Assume that (A1) − (A2) hold. If 1/b = o

(
n1/3−1/q

)
, then

b−p
∫1−b
b

|Y
(2)
n (t) − Y

(3)
n (t)|p dµ(t) = oP(1).

Proof. Let Hnv = [−n1/3v,n1/3(1− v)]∩ [− logn, logn] and

∆nv = n2/3[DInvΛ
W
n ](v) − [DHnvYnv](0).

By definition, we have∫1−b
b

|Y
(2)
n (t) − Y

(3)
n (t)|p dµ(t) =

∫1−b
b

∣∣∣∣∣ 1b
∫t+b
t−b

k ′
(
t− v

b

)
∆nv dv

∣∣∣∣∣
p

dµ(t).

Moreover, using

sup
t∈(0,1)

E
[
|∆nt|

p] = O(n−p/3+p/q
)

(see the proof of Lemma 5.2.3, we obtain

sup
t∈(b,1−b)

E

[∣∣∣∣∣ 1b
∫t+b
t−b

k ′
(
t− v

b

)
∆nv dv

∣∣∣∣∣
p]

6 sup
u∈[−1,1]

|k ′(u)|p sup
t∈(b,1−b)

E

[∣∣∣∣∣ 1b
∫t+b
t−b

∆nv dv

∣∣∣∣∣
p]

6 C sup
t∈(b,1−b)

1

b

∫t+b
t−b

E
[
|∆nv|

p] dv 6 2C sup
v∈(0,1)

E
[
|∆nv|

p]
= O

(
n−p/3+p/q

)
.

(6.7.14)

Because 1/b = o
(
n1/3−1/q

)
, this concludes the proof.

Lemma 6.7.5. Let Y(3)n and Y(4)n be defined in (6.3.14) and (6.3.18), respectively.
Assume that (A1) − (A2) hold. If 1/b = o

(
n1/3−1/q

)
, then

b−p
∫1−b
b

|Y
(3)
n (t) − Y

(4)
n (t)|p dµ(t) = oP(1).
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Proof. Let Hnv be defined as in the proof of Lemma 6.7.4 and let

Jnv =

[
n1/3

L(anv) − L(v)

L ′(v)
,n1/3

L(bnv) − L(v)

L ′(v)

]
,

where anv = max(0, v−n−1/3 logn) and bnv = min(1, v+n−1/3 logn). As
in (4.31) in Kulikov and Lopuhaä, 2008 we have

sup
v∈(0,1)

E
[∣∣[DHnv Ỹnv](0) − [DJnvZnv](0)

∣∣p] = O(n−p/3(logn)3p),

where Ỹnv and Znv are defined in (6.3.16) and (6.3.17). This means that,

sup
t∈(b,1−b)

E
[∣∣∣Y(3)n (t) − Y

(4)
n (t)

∣∣∣p]
6 C sup

t∈(b,1−b)
E

[∣∣∣∣∣ 1b
∫t+b
t−b

{
[DHnv Ỹnv](0) − [DJnvZnv](0)

}
dv

∣∣∣∣∣
p]

6 C sup
t∈(b,1−b)

1

b

∫t+b
t−b

E
[∣∣[DHnv Ỹnv](0) − [DJnvZnv](0)

∣∣p] dv

6 C sup
v∈(b,1−b)

E
[∣∣[DHnv Ỹnv](0) − [DJnvZnv](0)

∣∣p] = O(n−p/3(logn)3p
)

.

(6.7.15)

Since 1/b = o
(
n1/3−1/q

)
, this concludes the proof.

Lemma 6.7.6. Let Y(4)n and Y(5)n be defined in (6.3.18) and (6.3.20), respectively.
Assume that (A1) − (A2) hold. If nb→∞, such that

1/b = o(n1/6+1/(6p)(logn)−(1/2+1/(2p))),

then

b−p
∫1−b
b

|Y
(4)
n (t) − Y

(5)
n (t)|p dµ(t) = oP(1).

Proof. We argue as in the proof of Lemma 4.4 in Kulikov and Lopuhaä, 2008.
When v ∈ (n−1/3 logn, 1 − n−1/3 logn), there exists M > 0, depending
only on λ, such that [−M logn,M logn] ⊂ Inv, and on [−M logn,M logn]
we have that

CM[−M logn,M logn]Z 6 CMInvZ 6 CMRZ.

Let NnM = N(M logn), where N(d) is the event that [CM[−d,d]Z](s) is
equal to [CMRZ](s) for s ∈ [−d/2,d/2]. According to Lemma 1.2 in Kulikov
and Lopuhaä, 2006, it holds that

P(N(d)c) 6 exp(−d3/27). (6.7.16)



214 on the lp -error of smooth isotonic estimators

For convenience, write δn = n−1/3 logn. Because

[CM[−M logn,M logn]Z](0) = [CMInvZ](0) = [CMRZ](0)

on the event NnM, we have by means of Cauchy-Schwartz, we find that

sup
v∈(δn,1−δn)

E
[
|[DInvZ](0) − [DRZ](0)|

p]
= sup
v∈(δn,1−δn)

E
[
|[DInvZ](0) − [DRZ](0)|

p]
1NcnM

6 2pE

[(
sup
s∈R

|Z(s)|

)p
1NcnM

]

6 2p

E

(sup
s∈R

|Z(s)|

)2p1/2P(NcnM)1/2.

Because E[(sup |Z|)2p] <∞, together with (6.7.16), we find that

sup
v∈(δn,1−δn)

E
[
|[DInvZ](0) − [DRZ](0)|

p] = O(exp(−C(logn)3)
)

.

Note that

Y
(4)
n (t) − Y

(5)
n (t) =

1

b

∫t+b
t−b

k ′
(
t− v

b

)
1

c1(v)
([DInvZ](0) − [DRZ](0))dv.

(6.7.17)
When t ∈ (b+ δn, 1− b− δn), then v ∈ (t− b, t+ b) ⊂ (δn, 1− δn), so after
change of variables, it follows that

sup
t∈(b+δn,1−b−δn)

E
[∣∣∣Y(4)n (t) − Y

(5)
n (t)

∣∣∣p]
6 2p

supu∈[−1,1] |k
′(u)|p

infv∈(0,1) c1(v)
p

sup
v∈(δn,1−δn)

E
[
|[DInvZ](0) − [DRZ](0)|

p]
= O

(
exp(−C(logn)3)

)
.

(6.7.18)

Next, consider the case where t ∈ (b,b+ δn). In this case we split the inte-
gral on the right hand side of (6.7.17) into an integral over v ∈ (t− b, δn)
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and an integral over v ∈ (δn, t+ b). The latter integral can be bounded in
the same way as in (6.7.18), whereas for the first integral we have∣∣∣∣∣ 1b

∫δn
t−b

k ′
(
t− v

b

)
1

c1(v)
([DInvZ](0) − [DRZ](0))dv

∣∣∣∣∣
6 b−1δn

supu∈[−1,1] |k
′(u)|

infv∈(0,1) c1(v)
|[DInvZ](0) − [DRZ](0)|

6 b−1δn
supu∈[−1,1] |k

′(u)|

infv∈(0,1) c1(v)
[DRZ](0),

where we also use that [DInvZ](0) 6 [DRZ](0). Furthermore, since [DRZ](0)

has bounded moments of any order, for t ∈ (b,b+ δn), we obtain

sup
t∈(b,b+δn)

E
[∣∣∣Y(4)n (t) − Y

(5)
n (t)

∣∣∣p]
6 b−pδpn

supu∈[−1,1] |k
′(u)|p

infv∈(0,1) c1(v)
p

E [[DR]Z](0)
p] +O

(
exp(−C(logn)3)

)
= OP

(
b−pδpn

)
+OP

(
exp(−C(logn)3)

)
.

(6.7.19)

A similar bound can be obtained for t ∈ (1− b− δn, 1− b). Putting things
together yields,∫1−b
b

∣∣∣Y(4)n (t) − Y
(5)
n (t)

∣∣∣p dµ(t) = OP
(

exp(−C(logn)3)
)
+OP

(
b−pδp+1n

)
.

Because nb→∞ implies

b−p exp(−C(logn)3)→ 0 and
1

b
= o

(
n1/6+1/(6p)(logn)−(1/2+1/(2p))

)
yields b−2pδp+1n → 0, this concludes the proof.
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C O N C L U S I O N S





7
C O N C L U S I O N S A N D R E M A R K S

This thesis deals with smooth estimation under monotonicity constraints of
a real valued function on a compact interval. Functions of prime interest are
probability densities, hazard rates and regression relationships. We consid-
ered different scenarios in which such an estimation problem is encountered
and we analyzed various estimators obtained by a two step procedure: iso-
tonization and smoothing (the order can be reversed). Isotonization is done
through a constrained maximum likelihood or a Grenander-type procedure
and smoothing through kernel functions. We were mainly interested in rates
of convergence, which reflect the accuracy of the estimators, and large sam-
ple distributional properties, which are necessary for making statistical in-
ference.

7.1 local behavior of estimators

There is a wide literature on pointwise asymptotic results of various smooth
monotone estimators in particular models (mostly for density and regres-
sion problems). Our objective was to apply and investigate smooth isotonic
estimation in survival analyses, in particularly for the semi-parametric Cox
regression model.

This model was initially proposed in biostatistics and quickly became
broadly used to study the time to device failure in engineering, the effective-
ness of a treatment in medicine, mortality in insurance problems, duration
of unemployment in social sciences etc. One advantage of such a model is
that it allows for the presence of censored data and covariates. Moreover,
the proportional hazard property allows estimation of the regression coeffi-
cients while leaving the baseline hazard completely unspecified. However,
when one is interested for instance in the absolute time to event, estimation
of the baseline hazard is required. In practice, due to simplicity, a paramet-
ric assumption is commonly made on the baseline distribution but, in case
of model misspecification, this can lead to incorrect inference. On the other
hand, when one does not want to assume any particular functional form,
nonparametric methods can be used (for example the Breslow estimator for
the cumulative baseline hazard). However, it was shown that if a monotone
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hazard is expected (for example when modeling survival times of patients
after a successful medical treatment or failure times of mechanical compo-
nents that degrade over time), using shape-constrained methods produces
more accurate and reasonable estimates.

Motivated by these results, we aimed at further improving estimation of
a monotone baseline hazard by means of smoothing, which in general leads
to a faster rate of convergence and a nicer graphical representation. Indeed,
if the true hazard function is twice differentiable and the bandwidth con-
verges at an optimal rate, then we showed that the smooth isotonic estima-
tors converge pointwise at rate n2/5 (instead of n1/3 for the isotonic ones) to
a Gaussian distribution. The convergence could be faster if the true function
was smoother but in that case higher order kernels need to be used which
might lead to negative values of the estimates or deviations of monotonicity.
We considered four different estimators and concluded that interchanging
the order of smoothing and isotonization does not effect the asymptotic
distribution. Moreover, smoothing preserves the asymptotic equivalence be-
tween the isotonic estimators. Hence, from the theoretical point of view,
there is no reason to prefer one estimator with respect to the others. Such
behavior was to be expected in view of existing results in other frameworks
such as density or regression models. However, to our best knowledge, this
is the first study that investigates and compares at the same time four dif-
ferent smooth isotonic estimators, varying both the method of isotonization
and the order of the procedures.

From a methodological point of view, the Cox model is more challenging
than standard density and regression models because it contains a para-
metric an a nonparametric component. The estimates of the nonparametric
baseline hazard depend on the parametric estimator of the regression co-
efficients. To emphasize this, we first considered the simpler right random
censoring model without covariates and showed that there, the asymptotic
normality is obtained using a short and direct argument that relies on a
Kiefer-Wolfowitz type of result. This approach does not apply to the Cox
model because such result is not available. Hence, we followed a more tech-
nical method that is mainly based on tail probabilities for the inverse process
and uniform L2-bounds for the distance between the non-smoothed isotonic
estimator and the true function.

As an application, we considered constructing pointwise confidence inter-
vals using the asymptotic distribution or a bootstrap procedure. Numer-
ical results show that smoothing improves the performance of the non-
smooth isotonic estimators. Moreover, undersmoothing leads to more ac-
curate asymptotic confidence intervals with respect to bias estimation. We
observe that the performance of the confidence intervals depends on the
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choice of the constant c in the definition of the bandwidth (b = cn−1/5).
However, with right choice of the smoothing parameter, the asymptotic con-
fidence intervals based on the smooth isotonic estimators can behave even
better than those obtained through inversion of likelihood ratio statistics
which, on the other hand, has the advantage of being parameter free. The
fact that estimation in the Cox model is more challenging is also reflected by
the lower coverage probabilities compared to the ones for the right censor-
ing model. For finite sample sizes, estimation of β0 effects the performance
of the estimators even if it does not influence the limit distribution. How-
ever, using a bootstrap procedure, instead of the normal approximation,
leads to more satisfactory results. In particular, bootstrap confidence inter-
vals with undersmoothing seem to have the most accurate coverage prob-
abilities. Simulations confirm that the four smooth isotonic estimators that
we considered (and the ordinary kernel estimator) have comparable behav-
ior, with the smoothed maximum likelihood and the maximum smoothed
likelihood being slightly more accurate.

Unfortunately, it is still not clear how to optimally choose the smoothing
parameter. Various methods of bandwidth selection have been proposed in
the literature such as cross-validation, plug-in techniques, bootstrap etc. For
an increasing hazard estimation, cross-validation methods seem to suffer
from the fact that the variance of the estimator increases as one approaches
the endpoint of the support. We also tried a locally optimal bandwidth by
minimizing the estimated asymptotic mean squared error but, in our setting,
it did not improve the results. We did not investigate this problem in details
but chose to prefer simplicity by using a constant c equal to the range of
the data in the definition of the bandwidth. However, more insight into this
problem would certainly be useful for the practical use of smooth monotone
estimators.

7.2 global behavior of estimators

In contrast to pointwise asymptotic results of shape constrained estimators,
the literature on global errors of estimates is more limited. Common mea-
sures are the Lp and the Hellinger distances. Central limit theorems for
the Lp-errors were previously established for the Grenander-type estimator
of a monotone density or a monotone function in a general setting which
includes the density, regression and right censoring model. On the other
hand, central limit theorems for the kernel estimator of a smooth density
on R (without monotonicity constraints) were also available but there was
no result on global errors of smooth isotonic estimators. Hence, instead of
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investigating directly the global behavior of smooth isotonic estimators in
the Cox model, which is quite challenging, we started with a simpler setup.
We considered estimation of a general monotone function under a strong
approximation assumption of the observed cumulative process by a Gaus-
sian process. Such an assumption was shown to be satisfied in the density,
regression and right censoring model, but does not hold in the Cox frame-
work.

We first derived a central limit theorem for the Hellinger distance of the
Grenander-type estimator by relating it to a weighted L2-error. We observed
that, in the density model, the limit variance of the Hellinger-error does
not depend on the underlying density. Such a phenomenon was previously
encountered for the L1-distance. Moreover, we investigated the use of the
Hellinger distance for goodness of fit tests. In particular, we considered test-
ing exponentiality, which is of interest in practice, against a decreasing alter-
native. The critical region of the test is determined using a bootstrap proce-
dure and the performance is investigated in different scenarios. In terms of
level, the test behaves quite well but it is usually less powerful than existing
tests for exponentiality (which is to be expected because they make use of
properties of the exponential distribution). However, there are cases (Beta
distribution) in which our test is more powerful than the other competing
tests.

Afterwards we investigated the asymptotic behavior of the Lp-error of
the smoothed Grenander-type estimator and the isotonized kernel estima-
tor. First, we noticed that when dealing with global errors, a uniform bound
on the distance between a naive cumulative estimator and its least concave
majorant (Kiefer-Wolfowitz result) is no longer sufficient for connecting the
smoothed Grenander-type estimator to the kernel estimator. Hence, as an
intermediate step, we generalized previous results in the literature (only
available for density functions) to our general setting. We proved the pro-
cess convergence of Λ̂n −Λn after a suitable rescaling and a central limit
theorem for the Lp-distance between Λ̂n and Λn. Such result was then used
to show that the Lp-error of the smoothed Grenander-type estimator has the
same asymptotic behavior as the Lp-error of the kernel estimator. We con-
clude that the smooth isotonic estimators have the same limit distribution
as the kernel estimator even in terms of global distances.

For the Lp-error of the ordinary kernel estimator, we observe that not hav-
ing a smooth density on the whole real line leads to boundary effects which
can be overcome by using a boundary corrected kernel. In the latter case,
the contribution of the boundary regions in the limit distribution of the Lp-
error is negligible. An interesting fact is that we find a limit variance which
changes according to whether the approximating process is a Brownian mo-
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tion or a Brownian bridge. Such a phenomenon has not been observed be-
fore in isotonic problems and also contradicts the previously made claim in
Csörgő and Horváth, 1988 that the limit variance of the Lp-error of the ker-
nel density estimator (in this case the approximating process is a Brownian
bridge) is the same as if the approximating process was a Brownian motion.
Such difference is not encountered only when the bandwidth is taken of
smaller order than n−1/5.

As an application, we propose a test for monotonicity based on the L2-
distance between the smoothed Grenander estimator and the kernel estima-
tor. We consider a regression model with deterministic design points and
compute the critical region of the test by a bootstrap procedure instead of
using the asymptotic distribution (to avoid estimation of unknown quanti-
ties). Compared to other tests available in the literature, this test performs
better in terms of power. However, a more thorough investigation is still
needed to show that the bootstrap method works and that the test also has
the right level.

To conclude, it remains to address the global errors of isotonic and smooth
isotonic estimators in the Cox model. This is more challenging since a strong
approximation by a Gaussian process, that we assumed here, is not available
for the Cox model. Such a problem is object of my current (and future)
research. We expect that similar results to those established in Part III of
this thesis would hold even in the Cox model. In contrast to the pointwise
case, we expect that, for a bandwidth of order n−1/5, β̂n will effect the limit
distribution of the Lp-error of the kernel estimator (and of smooth isotonic
estimators).





Part V

S U P P L E M E N TA RY M AT E R I A L





A
S U P P L E M E N T T O : S M O O T H I S O T O N I C E S T I M AT I O N I N
T H E C O X M O D E L

a.1 entropy bounds for the sg estimator

Lemma A.1.1. Let 0 < t < M < τH and let BK̃ be the class of functions of
bounded variation on [0,M], that are uniformly bounded by K̃ > 0. Let Gn =

{ζB,n : B ∈ BK̃}, where ζB,n(u, δ) = δ1[t−2b,t+2b](u)B(u). For δ > 0, let

J(δ,Gn) = sup
Q

∫δ
0

√
1+ logN(ε‖Fn‖L2(Q),Gn,L2(Q))dε

where N(ε,Gn,L2(Q)) is the minimal number of L2(Q)-balls of radius ε needed
to cover Gn, Fn = K̃δ1[t−2b,t+2b] is the envelope of Gn, and the supremum is
taken over measures Q on [0,M] × {0, 1} ×Rp, for which Q([t − 2b, t + 2b] ×
{1}×Rp) > 0. Then J(δ,Gn) 6

∫δ
0

√
1+C/εdε, for some C > 0.

Proof. We first bound the entropy of Gn with respect to any probability
measure Q on [0,M]× {0, 1}×Rp, such that

‖Fn‖2L2(Q) = K̃Q ([t− 2b, t+ 2b]× {1}×Rp) > 0. (A.1.1)

Fix such a probability measure Q and let ε > 0. Let Q ′ be the probability
measure on [0,M] defined by

Q ′(S) =
Q(S∩ [t− 2b, t+ 2b]× {1}×Rp)

Q([t− 2b, t+ 2b]× {1}×Rp)
, S ∈ [0,M],

For a given ε ′ > 0, select a minimal ε ′-net B1, . . . ,BN in BK̃ with respect to
L2(Q

′), where N = N(ε ′,BK̃,L2(Q ′)). Then, from (2.6) in Geer, 2000

logN(ε ′,BK̃,L2(Q ′)) 6
K

ε ′
, (A.1.2)

for some constant K > 0. Then, consider the functions ζB1,n, . . . , ζBN,n cor-
responding to B1, . . . ,BN. For any ζB,n ∈ Gn, there exists a Bi in the ε ′-net
that is closest function to B, i.e., ‖B−Bi‖L2(Q ′) 6 ε

′. Then, we find

‖ζB,n − ζBi,n‖L2(Q) = Q([t− 2b, t+ 2b]× {1}×Rp)1/2‖B−Bi‖L2(Q ′)
6 Q([t− 2b, t+ 2b]× {1}×Rp)1/2ε ′.

(A.1.3)
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Hence, if we take ε ′ = ε/Q([t − 2b, t + 2b]× {1}×Rp)1/2, it follows that
ζB1,n, . . . , ζBN,n forms an ε-net in Gn with respect to L2(Q), and

N(ε,Gn,L2(Q)) 6 N(ε ′,BK̃,L2(Q ′)).

Using (A.1.2), this implies that

logN(ε,Gn,L2(Q)) 6
K

ε ′
=
K ·Q([t− 2b, t+ 2b]× {1}×Rp)1/2

ε

where K does not depend on Q, and according to (A.1.1),

J(δ,Gn) = sup
Q

∫δ
0

√
1+ logN(ε‖Fn‖L2(Q),Gn,L2(Q))dε

6
∫δ
0

√
1+

C

εK̃1/2
dε,

for some C > 0.

Lemma A.1.2. Let MC be the class of monotone functions bounded uniformly by
C > 0. Let Gn = {ζr,β(u, z) : r ∈ MC,β ∈ RP, |β− β0| 6 ξ2}, where ξ2 is
chosen as in (3.6.3) and ζr,β(u, z) = r(u)eβ

′z. For δ > 0, let

J[ ](δ,Gn,L2(P)) =

∫δ
0

√
1+ logN[ ](ε‖Fn‖L2(P),Gn,L2(P))dε.

where N[ ](ε,Gn,L2(P)) is the bracketing number and

Fn(u, z) = C exp


p∑
j=1

(β0,j − σn)zj ∨ (β0,j + σn)zj

 ,

with σn =
√
ξ2n−2/3 is the envelope of Gn. Then

J[ ](δ,Gn,L2(P)) 6
∫δ
0

√
1+C/εdε,

for some C > 0.

Proof. The entropy with bracketing for the class of bounded monotone func-
tions on R satisfies

logN[ ](γ,MC,Lp(Q)) 6
K

γ
, (A.1.4)

for every probability measure Q, γ > 0 and p > 1 (e.g., see Theorem 2.7.5
in van der Vaart and Wellner, 1996). Define the probability measure Q on R

by

Q(S) =

∫
1S(u)dP(u, δ, z), for all S ⊆ R,
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and fix ε > 0. For a given γ > 0, take a net of γ-brackets {(l1,L1) . . . , (lN,LN)}

in MC with respect to L4(Q), where N = N[ ](γ,MC,L4(Q)). For every
j = 1, . . . ,p, divide the interval [β0,j−σn,β0,j+σn] in subintervals of length
γ, i.e., [

akj ,bkj
]
=
[
β0,j − σn + kjγ,β0,j − σn + (kj + 1)γ

]
,

for kj = 0, . . . , N̄− 1, where N̄ = 2σn/γ. Then, for i = 1, . . . ,N and kj =
0, . . . , N̄ − 1, j = 1, . . . ,p, construct brackets (li,k1,...,kp ,Li,k1,...,kp), in the
following way:

li,k1,...,kp(u, z) = li(u) exp


p∑
j=1

akjzj ∧ bkjzj

 ,

Li,k1,...,kp(u, z) = Li(u) exp


p∑
j=1

akjzj ∨ bkjzj

 .

By construction, using (A.1.4), the number of these brackets is

N · N̄p 6 exp{K/γ} ·
(
2σn

γ

)p
6 exp{K/γ} · exp

{
2p
√
ξ2/γ

}
= eK1/γ,

(A.1.5)
for some K1 > 0 independent of n > 1. For any ζr,β ∈ Gn, there exist a
γ-bracket (li,Li), such that r ∈ [li,Li], and intervals [akj ,bkj ], such that
βj ∈ [akj ,bkj ], for all j = 1, . . . ,p. It follows that there exists a bracket
(li,k1,...,kp ,Li,k1,...,kp), such that ζr,β ∈ [li,k1,...,kp ,Li,k1,...,kp ]. Moreover, for
each i = 1, . . . ,n and kj = 0, . . . , N̄− 1, for j = 1, . . . ,p,∥∥li,k1,...,kp − Li,k1,...,kp

∥∥
L2(P)

6

∥∥∥∥∥∥exp


p∑
j=1

akjzj ∧ bkjzj

 (li(u) − Li(u))

∥∥∥∥∥∥
L2(P)

+C

∥∥∥∥∥∥exp


p∑
j=1

akjzj ∧ bkjzj

− exp


p∑
j=1

akjzj ∨ bkjzj


∥∥∥∥∥∥
L2(P)

6

∥∥∥∥∥∥exp


p∑
j=1

akjzj ∧ bkjzj


∥∥∥∥∥∥
L4(P)

‖li − Li‖L4(P)

+C

∥∥∥∥∥∥exp


p∑
j=1

akjzj ∧ bkjzj

− exp


p∑
j=1

akjzj ∨ bkjzj


∥∥∥∥∥∥
L2(P)

.

For the first term on the right hand side, we use that for all j = 1, . . . ,p,∣∣∣akj −β0,j

∣∣∣ 6 σn and
∣∣∣bkj −β0,j

∣∣∣ 6 σn, (A.1.6)
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so that, according to (A3), there exist a K1 > 0, such that for n sufficiently
large

∫
exp

4
p∑
j=1

akjzj ∧ bkjzj

 dP(u, δ, z) 6 sup
|β−β0|6pσn

E
[
e4β

′Z
]
6 K1.

For the second term we have ‖li−Li‖L4(Q) 6 γ, by construction, and by the
mean value theorem, the third term on the right hand side can be bounded
by

C

∫ (γ p∑
i=1

|zi|

)2
e2θzdP(u, δ, z)

1/2 6 C ′γ

(∫
|z|2e2θzdP(u, δ, z)

)1/2
,

for some
∑p
j=1 akjzj ∧ bkjzj 6 θz 6

∑p
j=1 akjzj ∨ bkjzj. Consequently, in

view of (A.1.6), we find

‖li,k1,...,kp − Li,k1,...,kp‖L2(P) 6 γK
1/4
1 +C ′γ

(
sup

|β−β0|6pσn

E
[
|Z|2e2β

′Z
])1/2

6 K ′γ,

for some K ′ > 0, using (A2). Hence, if we take γ = ε/K ′, then the brack-
ets {(li,k1,...,kp ,Li,k1,...,kp)}, for i = 1, . . . ,n and kj = 0, . . . , N̄− 1, for j =
1, . . . ,p, forms a net of ε-brackets, and according to (A.1.5), there exists a
K > 0, such that

logN[ ](ε,Gn,L2(P)) 6
K

ε
.

As a result,

J[ ](1,Gn,L2(P)) =

∫1
0

√
1+ logN[ ](ε ‖F‖L2(P),Gn,L2(P))dε

=

∫1
0

√
1+

K

ε
dε,

for some K > 0.

a.2 smooth maximum likelihood estimator

To derive the pointwise asymptotic distribution of λ̂SMn , we follow the same
approach as the one used for λ̃SGn . We will go through the same line of
reasoning as used to obtain Theorem 3.2.5. However, large parts of the proof
are very similar, if not the same. We briefly sketch the main steps.
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In this case we take

Λ̂n(t) =

∫t
0
λ̂n(u)du,

where λ̂n is the MLE for λ0. First, the analogue of Lemma 3.2.1 still holds.

Lemma A.2.1. Suppose that (A1)–(A2) hold. Let an,t be defined by (3.2.9) and let
β̂n be the partial maximum likelihood estimator for β0. Define

θn,t(u, δ, z) = 1En

{
δan,t(u) − eβ̂

′
n z

∫u
0
an,t(v)dΛ̂n(v)

}
, (A.2.1)

Then, there exists an event En, with 1En → 1 in probability, such that∫
θn,t(u, δ, z)dP(u, δ, z) = −1En

∫
kb(t− u)d(Λ̂n −Λ0)(u) +Op(n

−1/2).

Proof. We modify the definition of the event En from Lemma 3.2.1 as follows.
The events En,1, En,2, En,4, and En,5, from (3.6.1) and (3.6.3) remain the
same. Replace En,3 in (3.6.3) by

En,3 =

 sup
x∈[T(1),T(n)]

|Vn(x) −H
uc(x)| < ξ3

 , (A.2.2)

and let
En,6 =

{
T(1) 6 ε

}
, (A.2.3)

for some ε > 0 and ξ3 > 0. Then P(En,6) → 1, and also P(En,3) → 1 ac-
cording to Lemma 5 in Lopuhaä and Nane, 2013. As before En =

⋂6
i=1 En,i.

Similar to the proof of Lemma 3.2.1, we obtain∫
θn,t(u, δ, z)dP(u, δ, z)

= 1En

{∫
an,t(u)dHuc(u) −

∫
eβ̂
′
nz

∫u
v=0

an,t(v)dΛ̂n(v)dP(u, δ, z)
}

= 1En

{∫
kb(t− u)

(
1−

Φ(u; β̂n)
Φ(u;β0)

)
dΛ̂n(u) −

∫
kb(t− u)d(Λ̂n −Λ0)(u)

}

and

1En

∫
kb(t− u)

∣∣∣∣∣1− Φ(u; β̂n)
Φ(u;β0)

∣∣∣∣∣ dΛ̂n(u) = Op(n−1/2).

which proves the lemma.
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Next, we slightly change the definition of Ψn,x from (3.2.13), i.e.,

Ψn,t(u) = an,t(u)1En = an,t(Ân(u))1En (A.2.4)

where En is the event from Lemma A.2.1 and Ân, as defined in (3.2.12), is
now taken constant on [τi, τi+1) and consider

θ̄n,t(u, δ, z) = δΨn,t(u) − eβ̂
′
nz

∫u
0
Ψn,t(v)dΛ̂n(v). (A.2.5)

Let

jn1 = max{j : τj 6 t− b}, jn2 = min{j : τj > t+ b} (A.2.6)

where (τj)j=1...,m are jump point of λ̂n. Note that, from the definition of
an,t and of Ân(u), it follows that Ψn,t(u) = 0 for u /∈ [τjn1 , τjn2 ]. With this
θ̄n,t, we have the same property as in Lemma 3.2.2.

Lemma A.2.2. Let θ̄n,t be defined in (A.2.5). Then∫
θ̄n,t(u, δ, z)dPn(u, δ, z) = 0.

Proof. Similar to the proof of Lemma 3.2.2, we have∫
θ̄n,t(u, δ, z)dPn(u, δ, z)

= 1En

m∑
i=0

an,t(τi)

{∫
1[τi,τi+1)(u)δdPn(u, δ, z) −

∫τi+1
τi

Φn(v; β̂n)dΛ̂n(v)
}

= 1En

m∑
i=0

an,t(τi)
{
Vn(τi+1) − Vn(τi) − λ̂n(τi)

(
Ŵn(τi+1) − Ŵn(τi)

)}
= 0,

The last equality follows from the characterization of the maximum likeli-
hood estimator.

Furthermore, for θ̄n,t defined in (A.2.5), we also have∫ {
θ̄n,t(u, δ, z) − θn,t(u, δ, z)

}
dP(u, δ, z) = Op(b−1n−2/3), (A.2.7)

see Lemma A.2.10, and∫ {
θ̄n,t(u, δ, z) − ηn,t(u, δ, z)

}
d(Pn − P)(u, δ, z)

= Op(b
−3/2n−13/18) +Op(n

−1/2),
(A.2.8)
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see Lemma A.2.11, where ηn,t is defined similar to (3.2.20), but with En
taken from Lemma A.2.1. Similar to the proof of Lemma 3.2.3, the proof
of Lemma A.2.10 is quite technical and involves bounds on the tail prob-
abilities of the inverse process corresponding to λ̂n (see Lemma A.2.5),
used to obtain the analogue of (3.2.19) (see Lemma A.2.6). The inverse pro-
cess defined as in (3.2.30) satisfies the switching relation λ̂n(t) 6 a if and
only if Ûn(a) > t. Let U be the inverse of λ0 on [λ0(ε), λ0(M)], for some
0 < ε < M < τH, i.e.,

U(a) =


ε a < λ0(ε);

λ−10 (a) a ∈ [λ0(ε), λ0(M)];

M a > λ0(M).

(A.2.9)

In order to bound the tail probabilities of Ûn(a) we first introduce a suitable
martingale that will approximate the process Vn(t) − aŴn(t).

Lemma A.2.3. Suppose that (A1)–(A2) hold. Define

B̄n(t) = Vn(t) −

∫t
0
Φn(s;β0)λ0(s)ds. (A.2.10)

The process {(B̄n(t),Fnt ) : 0 6 t < τH} is a square integrable martingale with
mean zero and predictable variation process

〈B̄n〉(t) =
1

n

∫t
0
Φn(s;β0)dΛ0(s).

Proof. Note that

B̄n(t) =
1

n
Mn(t) −

1

n

n∑
i=1

1{Ti=t}∆i

where Mn is defined in (3.6.4). Since Huc is absolutely continuous, we have
1{Ti=t}∆i = 0 a.s., which means that B̄n = Mn a.s.. Hence B̄n is a mean
zero martingale and has the same predictable variation as n−1Mn.

Lemma A.2.4. Suppose that (A1)–(A2) hold. There exists a constant C > 0 such
that, for all x > 0 and t ∈ [0, τH],

E

[
sup

u∈[0,τH],|t−u|6x

(
B̄n(u) − B̄n(t)

)2]
6
Cx

n
.
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Proof. First, consider the case t 6 u 6 t+ x. Then, by Doob’s inequality, we
have

E

[
sup

u∈[0,τH],t6u6t+x
(B̄n(u) − B̄n(t))

2

]
6 4E

[(
B̄n
(
(t+ x)∧ τH

)
− B̄n(t)

)2]
= 4E

[(
B̄n
(
(t+ x)∧ τH

))2
−
(
B̄n(t)

)2]
=
4

n
E

[∫ (t+x)∧τH
t

Φn(s;β0)λ0(s)ds

]

6
4λ0(τH)x

n
E [Φn(0;β0)]

=
4λ0(τH)x

n

1

n

n∑
i=1

E
[
eβ
′
0Zi
]
6
Kx

n

for some K > 0, using (A2). For the case t− x 6 u 6 t, we can write

E

[
sup

u∈[0,τH],t−x6u6t

(
B̄n(u) − B̄n(t)

)2]

= E

[
sup

0∨(t−x)6u6t

(
B̄n(u) − B̄n(t)

)2]
6 2E

[(
B̄n(t) − B̄n(0∨ (t− x))

)2]
+ 2E

[
sup

0∨(t−x)6u<t

(
B̄n(u) − B̄n(0∨ (t− x))

)2] .

Then similar, the right hand side is bounded by

2E
[(

B̄n(t) − B̄n((t− x)+)
)2]

+ 8E
[(

B̄n(t) − B̄n((t− x)+)
)2]

= 10E
[
B̄n(t)

2 − B̄n((t− x)+)
2
]
=
10

n
E

[∫t
(t−x)+

Φn(s;β0)λ0(s)ds

]

6
10λ0(τH)x

n
E [Φn(0;β0)] 6

Cx

n
,

for some C > 0. This concludes the proof.

Lemma A.2.5. Suppose that (A1)–(A2) hold. Let 0 < ε < M < τH and let
Ûn(a) and U be defined in (3.2.30) and (A.2.9). Suppose that λ ′0 is uniformly
bounded below by a strictly positive constant. Then, there exists an event En, such
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that 1En → 1 in probability, and a constant K such that, for every a > 0 and
x > 0,

P
({

|Ûn(a) −U(a)| > x
}
∩ En ∩

{
ε 6 Ûn(a) 6M

})
6

K

nx3
. (A.2.11)

Proof. Similar to the proof of Lemma 3.6.3, we start by writing

P
({

|Ûn(a) −U(a)| > x
}
∩ En ∩

{
ε 6 Ûn(a) 6M

})
= P

({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
+ P

({
ε 6 Ûn(a) 6 U(a) − x

}
∩ En

)
.

(A.2.12)

The first probability is zero if U(a) + x > M. Otherwise, if U(a) + x 6 M,
then x 6M and we get

P
({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
6

P

({
inf

y∈[U(a)+x,M]

(
Vn(y) − aŴn(y) − Vn(U(a)) + aŴn(U(a))

)
6 0

}
∩ En

)
.

Define

R̄n(t) = a

∫t
0

(
Φn(s;β0) −Φn(s; β̂n)

)
ds. (A.2.13)

Then, for T(1) < U(a) < y,

B̄n(y) − B̄n(U(a)) + R̄n(y) − R̄n(U(a))

= Vn(y) − Vn(U(a)) −

∫y
U(a)

Φn(s;β0)λ0(s)ds

+ a

∫y
U(a)

(
Φn(s;β0) −Φn(s; β̂n)

)
ds

= Vn(y) − Vn(U(a)) − a

∫y
U(a)

Φn(s; β̂n)ds−
∫y
U(a)

Φn(s;β0)λ0(s)ds

+ a

∫y
U(a)

Φn(s;β0)ds

= Vn(y) − aŴn(y) − Vn(U(a)) + aŴn(U(a))

−

∫y
U(a)

Φn(s;β0)(λ0(s) − a)ds.
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On the event En, by Taylor expansion we find that∫y
U(a)

Φn(s;β0)(λ0(s) − a)ds

=

∫y
U(a)

Φn(s;β0)(λ0(s) − λ0(U(a)))ds

=

∫y
U(a)

Φn(s;β0)
(
λ ′0(ξs)(s−U(a))

)
ds

> inf
t∈[0,τH)

λ ′0(t)
(
Φ(M;β0) − ξ4n−1/3

) 1
2
(y−U(a))2

> c(y−U(a))2

for some c > 0. Similar to the proof of Lemma 3.6.3, it follows that

P

({
inf

y∈[U(a)+x,M]

(
Vn(y) − aŴn(y) − Vn(U(a)) + aŴn(U(a))

)
6 0

}
∩ En

)
6 P

({
inf

y∈[U(a)+x,M]

(
B̄n(y) − B̄n(U(a)) + R̄n(y) − R̄n(U(a))

+ c(y−U(a))2
)
6 0

}
∩ En

)
.

Hence, as before

P
({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
6

i∑
k=0

P

({
sup
Ik

(∣∣B̄n(y) − B̄n(U(a))
∣∣+ ∣∣R̄n(y) − R̄n(U(a))∣∣

)
> cx222k

}
∩ En

)

where the supremum runs over y 6 M, such that y−U(a) ∈ [x2k, x2k+1).
With Markov, we can bound this probability by

4

i∑
k=0

(
c2x424k

)−1
E

 sup
y6M

y−U(a)∈[x2k,x2k+1)

∣∣B̄n(y) − B̄n(U(a))
∣∣2


+ 8

i∑
k=0

(
c3x626k

)−1
E

 sup
y6M

y−U(a)∈[x2k,x2k+1)

1En

∣∣R̄n(y) − R̄n(U(a))∣∣3
 .

(A.2.14)
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As in the proof of Lemma 3.6.3, we will bound both expectations separately.
We have

E

[
sup

y<M,y−U(a)∈[x2k,x2k+1)
1En

∣∣R̄n(y) − R̄n(U(a))∣∣3
]

6 E

1En
(∫ (U(a)+x2k+1)∧M

U(a)
a
∣∣Φn(s;β0) −Φn(s; β̂n)∣∣ ds

)3
6 x323(k+1)λ0(M)3E

[
1En sup

s∈[0,M]

∣∣Φn(s;β0) −Φn(s; β̂n)∣∣3
]

6 x323(k+1)λ0(M)3E

[
1En |β̂n −β0|

3 sup
x∈R

∣∣∣D(1)
n (β∗; x)

∣∣∣3]

6 x323(k+1)λ0(M)3
L3ξ

3/2
2

n
6
Cx323(k+1)

n
,

for some C > 0.

To bound the first expectation in (A.2.14), we use Lemma A.2.4 and we
can argue as in the proof of Lemma 3.6.3 to obtain

P
({
U(a) + x 6 Ûn(a) 6M

}
∩ En

)
6

K

nx3
.

We can deal in the same way as in the proof of Lemma 3.6.3 with the second
probability on the right hand side of (A.2.12), using the properties of B̄n
and R̄n.

Note that on the event En from Lemma A.2.1, similar to (3.6.15), we have

sup
x∈R

|Φn(x; β̂n) −Φ(x;β0)| 6
Cφ

n1/3
, (A.2.15)

where Cφ =
√
ξ2L+ ξ4, with L the upper bound from (3.6.2).

Lemma A.2.6. Suppose that (A1)–(A2) hold. Take 0 < ε < ε ′ < M ′ < M < τH.
Let λ̂n be the maximum likelihood estimator of a nondecreasing baseline hazard rate
λ0, which is differentiable with λ ′0 uniformly bounded above and below by strictly
positive constants. Let En be the event from Lemma A.2.1. Take ξ2 > 0 and ξ4 > 0
in (3.6.3) sufficiently small, such that

Cφ <
Φ(M;β0)
2λ0(M)

min
{
ε ′ − ε,M−M ′

}
inf

t∈[0,τH]
λ ′0(t). (A.2.16)
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and take ξ3 in (A.2.2) sufficiently small, such that

ξ3 6
1

4

{
(M−M ′)

2
inf

t∈[0,τH]
λ ′0(t) −

Cφ

Φ(M;β0)
λ0(M)

}
(M−M ′)Φ(M;β0).

(A.2.17)
Then, there exists a constant C such that, for each n ∈N,

sup
t∈[ε ′,M ′]

E
[
n2/31En

(
λ0(t) − λ̂n(t)

)2]
6 C.

Proof. It is sufficient to prove that there exist some constants C1, C2 such
that for each n ∈N and each t ∈ [ε ′,M ′], we have

E
[
n2/31En

{
(λ̂n(t) − λ0(t))+

}2]
6 C1, (A.2.18)

E
[
n2/31En

{
(λ0(t) − λ̂n(t))+

}2]
6 C2. (A.2.19)

Lets first consider (A.2.18). Then as in the proof of Lemma 3.6.4 we have

E
[
n2/31En

{
(λ̂n(t) − λ0(t))+

}2]
6 4η2 + 4

∫∞
η

P
(
n1/31En(λ̂n(t) − λ0(t)) > x

)
xdx,

for a fixed η > 0, where

P
(
n1/3 1En (λ̂n(t) − λ0(t)) > x

)
= P

(
{Ûn(a+n

−1/3x) < t}∩ En
)

.

We distinguish between the cases

a+n−1/3x 6 λ0(M) and a+n−1/3x > λ0(M),

where a = λ0(t). We prove that, in the first case, there exist a positive con-
stant C such that for all t ∈ (ε,M ′], and n ∈N,

P{n1/31En(λ̂n(t) − λ0(t)) > x} 6
C

x3
,

for all x > η, and in the second case P
(
n1/31En(λ̂n(t) − λ0(t)) > x

)
= 0.

Then (A.2.18) follows immediately.

First assume a+n−1/3x > λ0(M). Note that, if λ̂n(t) > a+n−1/3x, then
for each y > t, we have

Vn(y)−Vn(t) > λ̂n(t)
(
Ŵn(y) − Ŵn(t)

)
>
(
a+n−1/3x

) (
Ŵn(y) − Ŵn(t)

)
.
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In particular for y = M̃ =M ′ + (M−M ′)/2, we obtain

P
(
n1/31En(λ̂n(t) − λ0(t)) > x

)
6 P

({
Vn(M̃) − Vn(t) −

(
Huc(M̃) −Huc(t)

)
>
(
a+n−1/3x

) (
Ŵn(M̃) − Ŵn(t)

)
−
(
Huc(M̃) −Huc(t)

)}
∩ En

)
6 P

({
2 sup
s∈[T(1),T(n)]

|Vn(s) −H
uc(s)|

>

∫M̃
t

{(
a+n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

}
∩ En

)
.

(A.2.20)

Note that according to (A.2.15), Φn(s; β̂n) − Φ(s,β0) > −Cφ, and that
a+ n−1/3x > λ0(M) > λ0(M̃) > λ0(s). Therefore, since Cφ 6 Φ(M;β0),
from (A.2.17), we have∫M̃
t

{(
a+n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

> Φ(M;β0)
∫M̃
t

{(
a+n−1/3x

)(
1−

Cφ

Φ(M;β0)

)
− λ0(s)

}
ds

> Φ(M;β0)(M̃−M ′)

(
λ0(M)

(
1−

Cφ

Φ(M;β0)

)
− λ0(M̃)

)
>
1

2

{
M−M ′

2
inf

x∈[0,τH]
λ ′0(x) −

Cφ

Φ(M;β0)
λ0(M)

}
(M−M ′)Φ(M;β0) > 2ξ3.

(A.2.21)

Hence, similar to (3.6.24) and (3.6.25), we conclude that the probability on
the right hand side of (A.2.20) is zero.

Then, consider the case a + n−1/3x 6 λ0(M). Similar to (3.6.22), from
Lemma A.2.5, we have

P
({
ε 6 Ûn(a+n

−1/3x) < t
}
∩ En

)
6
C

x3

for some C > 0. Moreover, for the case Ûn(a+n−1/3x) < ε, we find

P
({
Ûn(a+n

−1/3x) < ε
}
∩ En

)
= P

({
λ̂n(ε) > a+n

−1/3x
}
∩ En

)
.

Note that, if λ̂n(ε) > a+n−1/3x, then for each y > ε, we have

Vn(y) − Vn(ε) > λ̂n(ε)
(
Ŵn(y) − Ŵn(ε)

)
>
(
a+n−1/3x

) (
Ŵn(y) − Ŵn(ε)

)
.
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In particular for y = ε̃ = ε+ (ε ′ − ε)/2, similar to (A.2.20), we obtain

P
({
λ̂n(ε) > a+n

−1/3x
}
∩ En

)
6 P

({
Vn(ε̃) − Vn(ε) >

(
a+n−1/3x

) (
Ŵn(y) − Ŵn(ε)

)}
∩ En

)
6 P

({
2 sup
s∈[T(1),T(n)]

|Vn(s) −H
uc(s)|

>

∫ ε̃
ε

{(
a+n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

}
∩ En

)
.

(A.2.22)

Then, similar to (A.2.21) and using ε̃ > ε ′, from (A.2.17) we obtain∫ ε̃
ε

{(
a+n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

>
1

2

{
ε ′ − ε

2
inf

x∈[0,τH]
λ ′0(x) −

Cφ

Φ(M,β0)
λ0(ε

′)

} (
ε ′ − ε

)
Φ(M;β0) > 2ξ3,

and we conclude that the probability on the right hand side of (A.2.22) is
zero. This concludes the proof of (A.2.18).

We proceed with (A.2.19). Arguing as in the proof of (A.2.18), we obtain

E
[
n2/31En

{
(λ0(t) − λ̂n(t))+

}2]
6 η2 + 2

∫∞
η

P
(
n1/31En

(
λ0(t) − λ̂n(t)

)
> x
)
xdx,

for a fixed η > 0, where

P
(
n1/31En

(
λ0(t) − λ̂n(t)

)
> x
)
= P

({
Ûn(a−n

−1/3x) > t
}
∩ En

)
,

where a = λ0(t). First consider the case 0 < a− n−1/3x 6 λ0(ε). For each
y < t, we have

Vn(t)−Vn(y) 6 λ̂n(t)
(
Ŵn(t) − Ŵn(y)

)
6
(
a−n−1/3x

) (
Ŵn(t) − Ŵn(y)

)
.

In particular, for y = ε̃ = ε+ (ε ′ − ε)/2, similar to (A.2.22), we obtain

P
(
n1/31En

(
λ0(t) − λ̂n(t)

)
> x
)

6 P

({
2 sup
s∈[T(1),T(n)]

|Vn(s) −H
uc(s)|

>
∫t
ε̃

{(
−a+n−1/3x

)
Φn(s; β̂n) + λ0(s)Φ(s;β0)

}
ds

}
∩ En

)
.

(A.2.23)
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As before, using that −a + n−1/3x + λ0(s) > 0 and t − ε̃ >= 1
2 (ε
′ − ε),

similar to (A.2.21), from (A.2.17) we have∫t
ε̃

{(
−a+n−1/3x

)
Φn(s; β̂n) + λ0(s)Φ(s;β0)

}
ds

>
1

2

{
ε ′ − ε

2
inf

s∈[0,τH]
λ ′0(s) −

Cφ

Φ(M;β0)
λ0(ε)

}
(ε ′ − ε)Φ(M;β0) > 2ξ3.

(A.2.24)

and we conclude that the probability on the right hand side of (A.2.23) is
zero.

Next, suppose that a−n−1/3x > λ0(ε) and consider

P
({
Ûn(a−n

−1/3x) > t
}
∩ En

)
.

In order to use Lemma A.2.5, we must intersect with the event

{ε 6 Ûn(a−n
−1/3x) 6M}.

Since t ∈ [ε ′,M ′], Ûn(a−n−1/3x) > t implies Ûn(a−n−1/3x) > ε. Using
Lemma A.2.5 and the mean value theorem, we obtain

P
({
t 6 Ûn(a−n

−1/3x) 6M
}
∩ En

)
= P

({
Ûn(a−n

−1/3x) −U(a−n−1/3x) > t−U(a−n−1/3x)
}

∩
{
ε 6 Ûn(a−n

−1/3x) 6M
}
∩ En

)

6 P

({
|Ûn(a−n

−1/3x) −U(a−n−1/3x)| > t−U(a−n−1/3x)
}

∩
{
ε 6 Ûn(a−n

−1/3x) 6M
}
∩ En

)

6
K

n
{
t−U(a−n−1/3x)

}3 6
K

(U ′(ξn))3x3
6
C

x3

where t = U(a), ξn ∈ (a − n−1/3x,a), and U ′(ξn) = 1/λ ′0(λ
−1
0 (ξn)) is

bounded. Finally, note that

P
({
Ûn(a−n

−1/3x) > M
}
∩ En

)
6 P

({
λ̂n(M) 6 a−n−1/3x

}
∩ En

)
.

If λ̂n(M) 6 a−n−1/3x, then for each y < M, we have

Vn(M) − Vn(y) 6 λ̂n(M)
(
Ŵn(M) − Ŵn(y)

)
6
(
a−n−1/3x

) (
Ŵn(M) − Ŵn(y)

)
.
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In particular for y = M̃ =M ′ + (M−M ′)/2, similar to (A.2.23), we obtain

P
({
λ̂n(M) 6 a−n−1/3x

}
∩ En

)
6 P

({
2 sup
s∈[T(1),T(n)]

|Vn(s) −H
uc(s)|

>
∫M
M̃

{(
a−n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

}
∩ En

)
(A.2.25)

As before, similar to (A.2.24), from (A.2.17) we have∫M
M̃

{(
a−n−1/3x

)
Φn(s; β̂n) − λ0(s)Φ(s;β0)

}
ds

>
1

2

{
M−M ′

2
inf

s∈[0,τH]
λ ′0(s) −

Cφ

Φ(M;β0)
λ0(M

′)

}
(M−M ′)Φ(M;β0) > 2ξ3.

and we conclude that the probability on the right hand side of (A.2.25) is
zero. This concludes the proof.

To establish the analogue of Lemma 3.2.4 for λ̂n and to show that the
distance between jump times of λ̂n is of smaller order than b, similar to
Lemma 3.6.5, we need a stronger version of Lemma A.2.6. As before, we
loose a factor n2/9 with respect to the bound in Lemma A.2.6, which might
not be optimal, but suffices for our purposes.

Lemma A.2.7. Suppose that (A1)–(A2) hold. Take 0 < ε < ε ′ < M ′ < M < τH.
Let λ̂n be the maximum likelihood estimator of a nondecreasing baseline hazard rate
λ0, which is differentiable with λ ′0 uniformly bounded above and below by strictly
positive constants. Let En be the event from Lemma A.2.1 and choose Cφ and
ξ3 such that they satisfy (A.2.16) and (A.2.17), respectively. Then, there exists a
constant C > 0 such that, for each n ∈N,

E

[
n4/91En sup

t∈[ε ′,M ′]

(
λ0(t) − λ̂n(t)

)2]
6 C. (A.2.26)

Proof. The proof is exactly the same as the proof of Lemma 3.6.5 (replacing
λ̃n with λ̂n).

Lemma A.2.8. Under the assumption of Lemma A.2.7, if τ1, . . . , τm are jump
times of λ̂n on the interval [ε ′,M ′] then

max
i=1,...,m−1

|τi − τi+1| = OP(n
−2/9).
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Proof. The proof is similar to that of Lemma 3.6.6. This time we use Lemma A.2.7
instead of Lemma 3.6.5.

Lemma A.2.9. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τH) and take 0 < ε <
ε ′ < M ′ < M < τH. Let λ̂n be the maximum likelihood estimator of a nondecreas-
ing baseline hazard rate λ0 which is differentiable with λ ′0 uniformly bounded above
and below by strictly positive constants. Let En be the event from Lemma A.2.1 and
choose Cφ and ξ3 such that they satisfy (A.2.16) and (A.2.17), respectively. Let
τjn1 , τjn2 be defined as in (A.2.6). Then

1En

∫τjn2
τjn1

(λ0(u) − λ̂n(u))
2 du = Op(bn

−2/3).

Proof. The proof is exactly the same as the proof of Lemma 3.6.7 (replacing
λ̃n with λ̂n).

We are now in the position to establish the analogue (A.2.7) of Lemma 3.2.3.

Lemma A.2.10. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τH) and let θn,t and
θ̄n,t be defined by (A.2.1) and (A.2.5), respectively. Assume that λ0 is differentiable,
such that λ ′0 is uniformly bounded above and below by strictly positive constants
and let k satisfy (1.2.1). Then, it holds∫ {

θ̄n,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ, z) = Op(b−1n−2/3).

Proof. Take 0 < ε < ε ′ < t < M ′ < M < τH and consider n sufficiently
large such that [τjn1 , τjn2 ] ⊂ [ε ′,M ′]. Similar to (3.6.29), we have∫ {

θ̄n,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ)

= 1En

∫τjn2
τjn1

(
an,t(Ân(u)) − an,t(u)

) (
Φ(u;β0)λ0(u) −Φ(u; β̂n)λ̂n(u)

)
du

so that by Cauchy-Schwarz inequality∣∣∣∣∫ {θ̄n,t(u, δ, z) − θn,t(u, δ, z)
}

dP(u, δ, z)
∣∣∣∣

6 1En

∥∥∥(an,t ◦ Ân − an,t
)
1[τjn1 ,τjn2 ]

∥∥∥
L2

∥∥∥(Φ0λ0 − Φ̂nλ̂n)1[τjn1 ,τjn2 ]

∥∥∥
L2

,

(A.2.27)

where Φ0(u) = Φ(u;β0) and Φ̂n(u) = Φn(u; β̂n). Similar to (3.6.31),

1En

∥∥∥(an,t(Ân) − an,t)1[τjn1 ,τjn2 ]

∥∥∥2
L2

6
c

b4
1En

∫τjn2
τjn1

(Ân(u) − u)
2 du,
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for some constant c, and by the same reasoning as in (3.6.32), for u ∈
[τi, τi+1) and Ân(u) < τi+1, we obtain

|u− Ân(u)| 6 2K|λ0(u) − λ̂n(u)|,

which also holds in the case Ân(u) = τi+1 simply because

|λ0(u) − λ0(Ân(u))| 6 |λ0(u) − λ̂n(u)|.

As a result, using Lemma A.2.9, we derive that

1En
1

b4

∫τjn2
τjn1

(
Ân(u) − u

)2
du 6

C

b4
1En

∫τjn2
τjn1

(
λ0(u) − λ̂n(u)

)2
du

= Op(b
−3n−2/3).

The argument for second factor in (A.2.27) is the same as for (3.6.34), and
yields

1En

∥∥∥(Φ0λ0 − Φ̂λ̃n)1[τjn1 ,τjn2 ]

∥∥∥
L2

= Op(b
1/2n−1/3).

Together with (A.2.27), this concludes the proof.

Lemma A.2.11. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τH) and take 0 < ε <
ε ′ < t < M ′ < M < τH. Assume that λ0 is differentiable, and such that λ ′0
is uniformly bounded above and below by strictly positive constants. Assume that
x 7→ Φ(x;β0) is differentiable with a bounded derivative in a neighborhood of t.
Let θ̄n,t be defined in (A.2.5) and let ηn,t be defined by (3.2.20), where En is the
event from Lemma A.2.1. Let k satisfy (1.2.1). Then, it holds∫ {

θ̄n,t(u, δ, z) − ηn,t(u, δ, z)
}

d(Pn − P)(u, δ, z)

= Op(b
−3/2n−13/18) +Op(n

−1/2).
(A.2.28)

Proof. Let n be sufficiently large, such that ε ′ < τjn1 < τjn2 < M
′. Denote

by Rn the left hand side of (A.2.28) and write Rn = Rn1 + Rn2, where

Rn1 = n−1/21En1[τjn1 ,τjn2 ]
(u)

∫
δ {ān,t(u) − an,t(u)} d

√
n(Pn − P)(u, δ, z),

Rn2 = n−1/21En

∫
1{u>τjn1 }

{
eβ̂
′
nz

∫u∧τjn2
τjn1

ān,tn(u)dΛ̂n(v)

− eβ
′
0z

∫u∧(t+b)

t−b
an,t(v)dΛ0(v)

}
d
√
n(Pn − P)(u, δ, z).
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Choose η > 0. Consider similar two events as in (3.6.36):

An1 =
{
λ̂n(M) > K1

}
,

An2 =

{
sup

s∈[ε ′,M ′]

∣∣λ0(s) − λ̂n(s)∣∣ > K2n−2/9

}
,

(A.2.29)

where K1,K2 > 0, and let An = An1 ∪An2. From Lemma A.2.7 and the
fact that λ̂n(M) = Op(1), it follows that we can choose K1,K2 > 0 such
that P(An) 6 2η/3. As in the proof of Lemma 3.2.4, it suffices to show
that there exists ν > 0, such that b3/2n13/18ν−1E

[
|Rn1|1Acn

]
6 η/3 and

n1/2ν−1E
[
|Rn2|1Acn

]
6 η/3, for all n sufficiently large.

Let us first consider Rn1. We have

an,t(Ân(u)) − an,t(u) =
kb(t− Ân(u)) − kb(t− u)

Φ(Ân(u);β0)

+ kb(t− u)
Φ(u;β0) −Φ(Ân(u);β0)
Φ(Ân(u);β0)Φ(u;β0)

.

(A.2.30)

Similar to (3.6.38),∣∣kb(t− Ân(u)) − kb(t− u)∣∣ 6 b−2n−2/9K2 sup
x∈[−1,1]

|k ′(x)|,

for some K2 > 0, and similarly, using that x 7→ Φ(x;β0) is differentiable
with bounded derivative in a neighborhood of t,

b−1|Φ(u;β0) −Φ(Ân(u);β0)| 6 Kb−1 |Ân(u) − u| 6 b−1n−2/9KK3,

Consequently, as in the proof of Lemma 3.2.4, on the event Acn we can write
Rn1 as

Rn1 = 1Enb
−2n−13/18

∫
1[t−2b,t+2b](u)δWn(u)d

√
n(Pn − P)(u, δ, z),

where Wn is a function of bounded variation, uniformly bounded. Com-
pletely similar to the proof of Lemma 3.2.4, together with Lemma A.1.1 we
find that

b2n13/18ν−1E
[
|Rn1|1Acn

]
6

K ′′

νn2/90
6 η/3,

for sufficiently large ν. For Rn2 we write

n1/2Rn2 = 1En

∫ (
eβ̂
′
nzr1,n(u) − eβ

′
0zr2,n(u)

)
d
√
n(Pn − P)(u, δ, z),
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where

r1,n(u) = 1{u>τjn1 }

∫u∧τjn2
τjn1

an,t(Ân(v)) λ̂n(v)dv,

r2,n(u) = 1{u>t−b}

∫u∧(t+b)

t−b
an,t(v) λ0(v)dv,

are both monotone functions, uniformly bounded by some constant C on
the event Acn. Once more, from here we follow exactly the same proof as the
one for Lemma A.1.1.

Theorem A.2.12. Suppose that (A1)–(A2) hold. Fix t ∈ (0, τH). Assume that λ0
is m > 2 times differentiable in t, such that λ ′0 is uniformly bounded above and
below by strictly positive constants. Moreover, that x 7→ Φ(x;β0) is differentiable
with a bounded derivative in a neighborhood of t, and let k satisfy (1.2.1). Let λ̂SMn
be defined in (3.2.2) and assume that n1/(2m+1)b→ c > 0. Then, it holds

nm/(2m+1)
(
λ̂SMn (t) − λ0(t)

)
d−→ N(µ,σ2),

where

µ =
(−c)m

m!
λ
(m)
0 (t)

∫
k(u)um du and σ2 =

λ0(t)

cΦ(t;β0)

∫
k2(u)du.

Proof. The proof is completely analogous to that of Theorem 3.2.5 and is
based on a similar decomposition as in (3.2.24). After using Lemmas A.2.1,
A.2.2, A.2.10, and A.2.11, it remains to obtain the limit of (3.2.27), where En
is the event from Lemma A.2.1. This is completely similar to the argument
in the proof of Theorem 3.2.5.

a.3 consistency of the bootstrap

Instead of Pn, we consider P∗n, the empirical measure corresponding to
the bootstrap sample (T∗1 ,∆∗1,Z1),. . ., (T∗n,∆∗n,Zn), and instead of P, we
consider P∗n, the measure corresponding to the bootstrap distribution of
(T∗,∆∗,Z) = (min(X∗,C∗),1{X∗6C∗},Z) conditional on the data (T1,∆1,Z1),
. . . ,(Tn,∆n,Zn), where X∗ conditional on Z has distribution function F̂n(x |
Z) and C∗ has distribution function Ĝn. To prove (3.5.4), we mimic the proof
of Theorem 3.2.5, which means that one needs to establish the bootstrap
versions of Lemmas 3.2.1-3.2.4.

In view of Remark 3.2.6, let β̂n be an estimate for β0 satisfying (3.2.35).
Let β̂∗n be the bootstrap version and suppose that β̂∗n − β̂n → 0, for al-
most all sequences (T∗i ,∆∗i ,Zi), i = 1, 2, . . ., conditional on the sequence
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(Ti,∆i,Zi), i = 1, 2, . . ., and that
√
n(β̂∗n − β̂n) = O∗p(1), meaning that for

all ε > 0, there exists M > 0 such that

lim sup
n→∞ P∗n

(√
n|β̂∗n − β̂n| > M

)
< ε, P − almost surely.

Then, similar to (3.2.9) and(3.1.2), define

a∗n,t(u) =
kb(t− u)

Φ∗(u; β̂n)
and Φ∗(t; β̂n) =

∫
1{u>t} eβ̂

′
nz dP∗n(u, δ, z).

and let

θ∗n,t(u, δ, z) = 1E∗n

{
δ a∗n,t(u) − e(β̂

∗
n)
′ z
∫u
0
a∗n,t(v)dΛ̂∗n(v)

}
.

Here Λ̂∗n is the greatest convex minorant of the bootstrap Breslow estimator

Λ∗n(t) =

∫
δ1{u6t}

Φ∗n(u; β̂∗n)
dP∗n(u, δ, z),

with
Φ∗n(t;β) =

∫
1{u>t}e

β ′z dP∗n(u, δ, z),

and E∗n is an event such that 1E∗n = 1+ o∗p(1), meaning that for all ε > 0,

lim sup
n→∞ P∗n(|1E∗n − 1| > ε) = 0, P − almost surely.

To obtain the bootstrap equivalent of Lemma 3.2.1, we first show that

Λ∗0(t) :=

∫
δ1{u6t}

Φ∗(u; β̂n)
dP∗n(u, δ, z) = Λsn(t).

For constructing of the event E∗n, we prove that
√
n supt∈[0,M] |Λ̂

∗
n(t) −

Λsn(t)| and
√
n supx∈R |Φ∗n(x; β̂n) −Φ∗(x; β̂n)| are of the order O∗p(1). This

yields the bootstrap equivalent of Lemma 3.2.1:∫
θ∗n,t(u, δ, z)dP∗n(u, δ, z) = −1E∗n

∫
kb(t− u)d(Λ̂∗n −Λsn)(u) +O

∗
p(n

−1/2).

The proof of the bootstrap version of Lemma 3.2.2 is completely the same
as that of Lemma 3.2.2. The bootstrap versions of Lemmas 3.6.1-3.6.7, which
are preparatory for the bootstrap version of Lemma 3.2.3, can be obtained
by means of similar arguments. This requires a suitable martingale that
approximates the process Λ∗n −Λsn. To this end we define

M∗n(t) =
n∑
i=1

(
1{X∗i6t}

∆∗i −

∫t
0
Y∗i (u)e

β̂ ′nZi dΛsn(u)
)
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and

B∗n(t) =

∫t∧M
0

1

nΦ∗(s; β̂n)
dM∗n(s),

where the latter can be shown to be a mean zero square integrable mar-
tingale, that satisfies a bound similar to one in Lemma 3.6.2. Similar to
Lemma 3.6.3, this leads to a suitable bound on the tail probabilities of the
bootstrap inverse process, defined for a ∈ [λ̃sn(ε), λ̃sn(M)], for 0 < ε < M <

τH, by

U∗n(a) =


ε a < λ̃sn(ε);

(λsn)
−1(a) a ∈ [λ̃sn(ε), λ̃sn(M)];

M a > λ̃sn(M).

(A.3.1)

This enables us to obtain L2-bounds similar to Lemmas 3.6.1 and 3.6.2,

sup
t∈[ε ′,M ′]

E∗
[
n2/31E∗n

(
λ̃sn(t) − λ̃

∗
n(t)

)2]
6 C;

1E∗n

∫t+b
t−b

(λ̃sn(u) − λ̃
∗
n(u))

2dt = O∗p(bn
−2/3),

for 0 < ε < ε ′ < M ′ < M < τH, where E∗ denotes the expectation with
respect to P∗n. Moreover, since the proof of Lemma 3.2.3 makes use of the
derivative of kb(t− y)/Φ(y;β0), differentiation of its bootstrap counterpart
kb(t− y)/Φ

∗(y; β̂n) has to be circumvented. This is done by a suitable dif-
ferentiable approximation of Φ∗(y; β̂n), and we then obtain the bootstrap
version of Lemma 3.2.3:∫ {

θ
∗
n,t(u, δ, z) − θ∗n,t(u, δ, z)

}
dP∗n(u, δ, z) = O∗p(b

−1n−2/3),

Finally, after proving the bootstrap version of Lemma 3.6.5, i.e.,

E∗

[
n4/91E∗n sup

t∈(ε ′,M ′]

(
λ̃sn(t) − λ̃

∗
n(t)

)2]
6 C,

we obtain the bootstrap version of Lemma 3.2.4 for

η∗n,t(u, δ, z) = 1E∗n

(
δ a∗n,t(u) − eβ̂

′
nz

∫u
0
a∗n,t(v)dΛsn(v)

)
, u ∈ [0, τH],

by using arguments similar to those in the proof of Lemma 3.2.4. Next, the
proof of (3.5.4) for λ̃SG,∗

n is the same as that of Theorem 3.2.5 for λ̃SGn .
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S U P P L E M E N T T O : O N T H E Lp - E R R O R O F S M O O T H
I S O T O N I C E S T I M AT O R S

b.1 kernel estimator of a decreasing function

Lemma B.1.1. Let l(t) be a differentiable function on [0, 1] such that inf[0,1] l(t) >

0 and sup[0,1] |l
′(t)| < ∞. Define L(t) =

∫t
0 l(u)du and let Γ (1)n be as in (6.2.3).

Assume that (A1) and (A3) hold. Then

(bγ2(p))−1/2

{∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(p)

}
d−→ N(0, 1),

where γ2(p), g(n) andmcn(p) are defined respectively in (6.3.22), (6.1.4) and (6.1.8).

Proof. With a change of variable we can write∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t) −mcn(l,p)

= b

∫ (1−b)/b
1

{∣∣∣∣∣b−1/2
∫t+1
t−1

k(t− y)dW(L(by)) + g(n)(tb)

∣∣∣∣∣
p

w(tb)

−

∫
R

∣∣∣l(tb)Dx+ g(n)(tb)∣∣∣pφ(x)dx
}

dt

= b


M1−1∑
i=1

ξi + η

 ,

where M1 = [1/b− 1],

ξi =

∫ i+1
i

{∣∣∣∣∣b−1/2
∫t+1
t−1

k(t− y)dW(L(by)) + g(n)(tb)

∣∣∣∣∣
p

−

∫+∞
−∞

∣∣∣l(tb)Dx+ g(n)(tb)∣∣∣pφ(x)dx
}
w(tb)dt

(B.1.1)

249
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and

η =

∫ (1−b)/b
M1

{∣∣∣∣∣b−1/2
∫t+1
t−1

k(t− y)dW(L(by)) + g(n)(tb)

∣∣∣∣∣
p

−

∫+∞
−∞

∣∣∣l(tb)Dx+ g(n)(tb)∣∣∣pφ(x)dx
}
w(tb)dt.

First, we show that η has no effect on the asymptotic distribution, i.e. is
negligible. Using Jensen inequality and (a+ b)p 6 2p(ap + bp) and the fact
that l and w are bounded, we obtain

η2 6
∫ (1−b)/b
M1


∣∣∣∣∣b−1/2

∫t+1
t−1

k(t− y)dW(L(by)) + g(n)(tb)

∣∣∣∣∣
2p

+

(∫
R

∣∣∣l(tb)Dx+ g(n)(tb)∣∣∣pφ(x)dx
)2}

w(tb)dt

6 C1

∫ 1−b
b

M1


∣∣∣∣∣b− 1

2

∫t+1
t−1

k(t− y)dW(L(by))

∣∣∣∣∣
2p

+
∣∣∣g(n)(tb)∣∣∣2p

 dt+C2,

for some positive constants C1 and C2. On the other hand,∫ 1−b
b

M1

∣∣∣g(n)(tb)∣∣∣2p dt = (nb)p
∫ (1−b)/b
M1

∣∣∣λ(n)(tb) − λ(tb)∣∣∣2p dt

= (nb)pb−1
∫1−b
M1b

∣∣∣λ(n)(t) − λ(t)∣∣∣2p dt

= (nb)pb−1
∫1−b
M1b

∣∣∣∣∫ k(y)[λ(t− by) − λ(t)]dy
∣∣∣∣2p dt

6 (nb)pb4p sup
t∈[0,1]

|λ ′′(t)|2p
∣∣∣∣∫ k(y)y2 dy

∣∣∣∣2p
Hence,

E[η2] 6 C1

∫ 1−b
b

M1

E

∣∣∣∣∣b− 1
2

∫t+1
t−1

k(t− y)dW(L(by))

∣∣∣∣∣
2p
+ 2C3(nb)

pb4p +C2

= O
(
(nb)pb4p

)
= O(1).

This means that bη = oP(1). The statement follows immediately from Lemma B.1.2.
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Lemma B.1.2. Let l(t) be a differentiable function on [0, 1] such that inf[0,1] l(t) >

0 and sup[0,1] |l
′(t)| <∞. Define L(t) =

∫t
0 l(u)du . Assume that (A1) and (A3)

hold. Let ξi, for i = 1, . . . ,M1 − 1, be defined as in (B.1.1). Then we have

b1/2γ(p)−1
M1−1∑
i=1

ξi → N(0, 1),

where γ2(p) is defined in (6.3.22).

Proof. Let γ ∈ (0, 1) and M2 = [(M1 − 1)
γ], M3 = [(M1 − 1)/(M2 + 2)].

Define

ζi =

(i−1)(M2+2)+M2∑
j=(i−1)(M2+2)+1

ξj, i = 1, . . . ,M3

γi = ξiM2+2i−1 + ξiM2+2i, γ∗ =

M1−1∑
j=M3(M2+2)+1

ξj.

With this notation we can write

M1−1∑
i=1

ξi =

M3∑
i=1

ζi +

M3∑
i=1

γi + γ
∗

and we aim at showing that the first term in the right hand side of the
previous equation determines the asymptotic distribution of

∑M1−1
i=0 ξi.

Note that

b−1/2
∫t+1
t−1

k(t− y)dW(L(by)) ∼ N
(
0,σ2t

)
where

σ2t =

∫t+1
t−1

k2(t− y)l(by)dy = D2l(bt) +O(b2)

and

E

[∣∣∣∣∣b−1/2
∫t+1
t−1

k(t− y)dW(L(by)) + g(n)(tb)

∣∣∣∣∣
p]

=

∫+∞
−∞

∣∣∣σtx+ g(n)(tb)∣∣∣pφ(x)dx

=

∫+∞
−∞

∣∣∣D√l(tb)x+ g(n)(tb)∣∣∣pφ(x)dx+O(b2).
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Hence, we get E[ξi] = O(b2) and E[γi] = O(b2). Furthermore, and, as we
did for η, it can be seen that E[ξ2i ] = O(1) and E[γ2i ] = O(1).

Since γi depends only on the Brownian motion on the interval

[L(b(iM2 + 2i− 2)),L(b(iM2 + 2i+ 2))] ,

it follows that γi are independent (note that M2 > 2). Moreover, γ∗ is inde-
pendent of γi, i = 1, . . . ,M3 − 1 and E[γ∗] = O(M2b

2). In addition, since
ξi is independent of ξj for |i− j| > 3, we also have E[(γ∗)2] 6 CM2. As a
result

E


M3∑
i=1

γi + γ
∗

2
 6 c(M3 +M2) = o(1/b) (B.1.2)

because bM2 → 0 and bM3 → 0. Indeed M2 6 (T/b)γ and

b

[
[(1− b)/b]

[[(1− b)/b]γ] + 2

]
6

1− b[
1−b
b

]γ
+ 1

6
1− b

1+
(1−2b)γ

bγ

=
bγ

(1− 2b)γ + bγ
→ 0.

Consequently

b1/2

M3∑
i=1

γi + γ
∗

 P−→ 0.

Next, since ζi, i = 1, . . . ,M3 are independent, we apply the central limit
theorem to conclude that

b1/2γ(p)−1
M3∑
i=0

ζi → N(0, 1)

It suffices to show that

bE


M3∑
i=1

ζi

2
 = b

M3∑
i=0

E[ζ2i ]→ γ2(p). (B.1.3)

and that they satisfy the Lyapunov’s condition∑
iE[ζ4i ](∑
iE[ζ2i ]

)2 → 0.

Note that, once we have (B.1.3), the Lyapunov’s condition is equivalent to
b2
∑
iE[ζ4i ]→ 0. Using

E[ζ4i ] = 4!
∑

k,l,m,r∈Ii
k6l6m6r

E[ξkξlξmξr],
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for Ii = {(i− 1)(M2 + 2) + 1, . . . , (i− 1)(M2 + 2) +M2}, the fact that

E[ξkξlξmξr] = O(b
2)4 if l > k+ 3 or r > m+ 3

and that all the moments of the ξi’s are finite, we obtain that

E[ζ4i ] = O(M
2
2), (uniformly w.r.t. i). (B.1.4)

Consequently b2
∑
iE[ζ4i ] = O(b2M3M

2
2) → 0 because bM2 → 0 and

bM3M2 = O(1). Indeed

bM2M3 6 bM2
M1 − 1

M2 + 2
6 bM1 6 1.

In particular, it also follows that

b
∑
i

E[ζ2i ] = bE


M3∑
i=0

ζi

2
+ bO(M23M

2
2b
4) = O(bM3M2) = O(1).

(B.1.5)
Now we prove (B.1.3). From (B.1), it follows that

Var

(∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)
= b2Var

M1−1∑
i=1

ξi + η

 .

Moreover, since E[ξi] = O(b
2) for i = 1, . . . ,M1 − 1 and E[η] = 0, we get

b−1Var

(∫1−b
b

∣∣∣l(t)b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)

= bE


M1−1∑
i=1

ξi + η

2
+ o(1)

= bE[η2] + 2bE

M1−1∑
i=1

ξi

η
+ bE


M1−1∑
i=1

ξi

2
+ o(1)
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We have already shown in the proof of the previous lemma that E[η2] =

O(1), so the first term in the right hand side of the previous equation con-
verges to zero. Furthermore,

bE


M1−1∑
i=1

ξi

2
 = bE


M3∑
i=1

ζi +

M3∑
i=1

γi + γ
∗

2


= bE


M3∑
i=1

ζi

2
+ bE


M3∑
i=1

γi + γ
∗

2


+ bE

M3∑
i=1

ζi

M3∑
i=1

γi + γ
∗

 .

Now, making use of (B.1.2), (B.1.5) and the fact that, by Cauchy-Schwartz,

E

M3∑
i=1

ζi

M3∑
i=1

γi + γ
∗

 6 E


M3∑
i=1

ζi

2

1
2

E


M3∑
i=1

γi + γ
∗

2

1
2

we obtain

bE


M1−1∑
i=1

ξi

2
 = bE


M3∑
i=1

ζi

2
+ o(1).

Similarly,

bE

M1−1∑
i=1

ξi

η
 = bE

M3∑
i=1

ζi +

M3∑
i=1

γi + γ
∗

η


6 bE[η2]1/2

E


M3∑
i=1

ζi

2

1/2

+ E


M3∑
i=1

γi + γ
∗

2

1/2
→ 0.

This means that

bE


M3∑
i=1

ζi

2
 = b−1Var

(∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)
+ o(1).

Define

Xn,t = b
−1/2

∫t+b
t−b

k

(
t− y

b

)
dW(L(y)) + g(n)(t). (B.1.6)
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Then, from Lemma B.1.3, it follows that

b−1Var

(∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)

=
1

b

∫1−b
b

∫1−b
b

{
E
[
|Xn,tXn,u|

p]− ∫
R

∣∣∣σn(t)x+ g(n)(t)∣∣∣pφ(x)dx

·
∫+∞
−∞

∣∣∣σn(u)y+ g(n)(u)∣∣∣pφ(y)dy
}
w(t)w(u)dtdu

=
1

b

∫1−b
b

∫1−b
b

∫
R2

{
|An(t,u, x,y)|p −

∣∣∣σn(t)x+ g(n)(t)∣∣∣p}
·
∣∣∣σn(u)y+ g(n)(u)∣∣∣pw(t)w(u)φ(x)φ(y)dxdydtdu

=
1

b

∫1−b
b

∫1−b
b

∫
R2

{
|An(t,u, x,y)|p −

∣∣∣√L ′(t)Dx+ g(n)(t)∣∣∣p}
·
∣∣∣√L ′(u)Dy+ g(n)(u)∣∣∣pw(t)w(u)φ(x)φ(y)dxdydtdu+ o(1)

where

An(t,u, x,y) = g(n)(t) + σn(t)ρn(t,u)y+
√
1− ρ2n(t,u)σn(t)x

with ρn(t,u) and σn(t) as defined in (B.1.8) and (B.1.7).

First we consider the case nb5 → 0 and show that we can remove the g(n)
functions from the previous integral. Indeed, since∣∣∣∣∣∣√L ′(u)Dy+ g(n)(u)∣∣∣p − |

√
L ′(u)Dy|p

∣∣∣
6 p2p−1|g(n)(u)|

p + p2p−1|
√
L ′(u)Dy|p−1|g(n)(u)|

we obtain∣∣∣∣∣Vn −
1

b

∫
I2n

∫
R2

∣∣∣√l(u)Dy∣∣∣p Bn(t,u, x,y)w(t)w(u)φ(x)φ(y)dxdydtdu

∣∣∣∣∣
6
c

b

∫
I2n

∫
R2

{∣∣∣g(n)(u)∣∣∣p + ∣∣∣√l(u)Dy∣∣∣p−1 ∣∣∣g(n)(u)∣∣∣}
· |Bn(t,u, x,y)|w(t)w(u)φ(x)φ(y)dxdydtdu,

where In = [b, 1− b],

Vn = b−1Var

(∫1−b
b

∣∣∣b−1/2Γ (1)n (t) + g(n)(t)
∣∣∣p dµ(t)

)
and

Bn(t,u, x,y) = |An(t,u, x,y)|p −
∣∣∣√l(t)Dx+ g(n)(t)∣∣∣p .
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Note that, if |t − u| > 2b, then ρn(t,u) = 0 and the previous integrand
is equal to zero. Hence, a sufficient condition for the left hand side of the
previous inequality to converge to zero is to have

b−1
∫1−b
b

∫1−b
b

1{|t−u|<2b}

∣∣∣g(n)(u)∣∣∣p ∣∣∣g(n)(t)∣∣∣p dudt→ 0.

and

b−1
∫1−b
b

∫1−b
b

1{|t−u|<2b}

∣∣∣g(n)(u)∣∣∣p dudt→ 0.

This is indeed the case because gn(u) = O
(
(nb)1/2b2

)
uniformly w.r.t. u

and (nb)1/2b2 → 0. In the same way we can remove also the other g(n)
functions from the integrand, i.e.

Vn =
1

b

∫
I2n

∫
R2

∣∣∣√l(u)Dy∣∣∣p B ′n(t,u, x,y)w(t)w(u)φ(x)φ(y)dxdydtdu+o(1)

where

B ′n(t,u, x,y) =
∣∣∣∣σn(t)ρn(t,u)y+√1− ρ2n(t,u)σn(t)x∣∣∣∣p − ∣∣∣√l(t)Dx∣∣∣p

With the change of variable t = u+ sb, we get

Vn =

∫1−b
b

(1−b−u)/b∫
1−u/b
|s|62

∫
R

∫
R

{∣∣∣∣yr(s) +√1− r2(s)x∣∣∣∣p − |x|p
}

∣∣∣√l(u)√l(u+ sb)D2y
∣∣∣pw(u)w(u+ sb)φ(x)φ(y)dxdydsdu+ o(1),

where r(s) is defined in (6.1.7). The continuity of the functions l and w and
the dominated convergence theorem yield

Vn =

∫1−b
b

∫
|s|62

∫
R2

∣∣∣√l(u)∣∣∣2pD2p|y|p{∣∣∣∣yr(s) +√1− r2(s)x∣∣∣∣p − |x|p
}

·w(u)2φ(x)φ(y)dxdydsdu+ o(1).

Then, with the change of variable yr(s) +
√
1− r2(s)x = z we can write

equivalently

Vn =
1

2π

∫
R3

|y|p

{
|z|p −

∣∣∣∣∣ z− r(s)y√
1− r2(s)

∣∣∣∣∣
p}

e
− z2+y2−2rzy

2(1−r2(s))
1√

1− r2(s)
dzdyds

·D2p
∫1−b
b

∣∣∣√L ′(u)∣∣∣2pw(u)2 du+ o(1)

= σ1D
2p

∫1
0

∣∣∣√L ′(u)∣∣∣2pw(u)2 du+ o(1)
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where σ1 is defined in (6.1.10).

Let us now consider the case nb5 → c20 > 0. First we show that the g(n)(u)
functions can be replaced by g(u) defined in (6.1.5). Indeed, g(n)(u) =

g(u) + o((nb)1/2b2), where the big O term is uniform w.r.t. u and similar
calculations to those of the previous case allow us to conclude that

Vn =
1

b

∫
I2n

∫
R2

∣∣∣√l(u)Dy+ g(u)∣∣∣p B ′n(t,u, x,y)

·w(t)w(u)φ(x)φ(y)dxdydtdu+ o(1)

where

B ′n(t,u, x,y) =
∣∣∣∣g(t) +√L ′(t)D [ρn(t,u)y+√1− ρ2n(t,u)x]∣∣∣∣p
−
∣∣∣√L ′(t)Dx+ g(t)∣∣∣p .

With the change of variable t = u+ sb, we get

Vn =

∫
In

(1−b−u)/b∫
(b−u)/b

|s|62

∫
R2

{∣∣∣∣g(u+ sb) +
√
l(u+ sb)D[yr(s) +

√
1− r2(s)x]

∣∣∣∣p

−
∣∣∣g(u+ sb) +

√
l(u+ sb)Dx

∣∣∣p}
·
∣∣∣g(u) +√L ′(u)Dy∣∣∣pw(u)w(u+ sb)φ(x)φ(y)dxdydsdu+ o(1).

Again, by the continuity of the functions l, w and g and the dominated
convergence theorem we obtain that An converges to∫1

0

∫
R3

∣∣∣g(u) +√L ′(u)Dy∣∣∣p{∣∣∣∣g(u) +√L ′(u)D[yr(s) +
√
1− r2(s)x]

∣∣∣∣p
−
∣∣∣g(u) +√L ′(u)Dx∣∣∣p}w(u)2φ(x)φ(y)dxdydsdu,

which is exactly θ2(p) defined in (6.1.11).

Lemma B.1.3. Let l(t) be a differentiable function on [0, 1] such that inf[0,1] l(t) >

0 and sup[0,1] |l
′(t)| < ∞. Define L(t) =

∫t
0 l(u)du and, for t ∈ [0, 1], let Xn,t

be as in (B.1.6). It holds

E [|Xn,tXn,u|
p] =

∫
R

∫
R

∣∣∣∣g(n)(t) + σn(t)ρn(t,u)y+√1− ρ2n(t,u)σn(t)x∣∣∣∣p
·
∣∣∣σn(u)y+ g(n)(u)∣∣∣pφ(x)φ(y)dxdy,
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where

σ2n(t) = l(t)D
2 +O(b2), σn(t,u) = b−1

∫
k(t− y)k(u− y)l(y)dy.

(B.1.7)
and

ρn(t,u) =

∫
k
(
t−y
b

)
k
(u−y
b

)
l(y)dy

b
√
D2l(t) +O(b2)

√
D2l(u) +O(b2)

(B.1.8)

Proof. First, note that

(Xn,t,Xn,u) ∼ N

([
g(n)(t)

g(n)(u)

]
,

[
σ2n(t) σn(t,u)

σn(t,u) σ2n(u)

])
.

Hence, Xn,t|Xn,u = x2 is distributed as

N

(
g(n)(t) +

σn(t)

σn(u)
ρn(t,u)

(
x2 − g(n)(u)

)
, (1− ρ2n(t,u))σ

2
n(t)

)
and

E [|Xn,t|
p|Xn,u] =

∫
R

∣∣∣∣∣g(n)(t) + σn(t)

σn(u)
ρn(t,u)

(
Xn,u − g(n)(u)

)
+
√
1− ρ2n(t,u)σn(t)x

∣∣∣∣∣
p

φ(x)dx

Consequently, we obtain

E [|Xn,tXn,u|
p] = E [E [|Xn,tXn,u|

p|Xn,u]]

=

∫
R

∫
R

∣∣∣∣g(n)(t) + σn(t)ρn(t,u)y+√1− ρ2n(t,u)σn(t)x∣∣∣∣pφ(x)dx

·
∣∣∣σn(u)y+ g(n)(u)∣∣∣p φ(y)dy

=

∫
R

∫
R

∣∣∣∣g(n)(t) + σn(t)ρn(t,u)y+√1− ρ2n(t,u)σn(t)x∣∣∣∣p
·
∣∣∣σn(u)y+ g(n)(u)∣∣∣pφ(x)φ(y)dxdy.



B.1 kernel estimator of a decreasing function 259

Proof of Proposition 6.2.3. We first prove (i). For each t ∈ [0,b), we have

λ̃sn(t) − λ(t) =

∫t+b
0

kb(t− u)dΛn(u) − λ(t)

=

∫t+b
0

kb(t− u)d(Λn −Λ)(u) +

∫t+b
0

kb(t− u)dΛ(u) − λ(t)

=

∫t+b
0

kb(t− u)d(Λn −Λ)(u) +

∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy

− λ(t)

∫1
t/b

k(y)dy.

Note that∣∣∣∣∣
∫t+b
0

kb(t− u)d(Λn −Λ)(u)

∣∣∣∣∣
=
1

b2

∣∣∣∣∣
∫t+b
0

(Λn −Λ)(u)k ′
(
t− u

b

)
du

∣∣∣∣∣
6 cb−1 sup

u62b
|Mn(u) −Mn(0)|

6 cb−1
{

sup
u62b

∣∣∣Mn(u) −n− 1
2Bn ◦ L(u)

∣∣∣+n− 1
2 |Bn ◦ L(u) −Bn ◦ L(0)|

}
= OP

(
b−1n−1+1/q

)
+n−1/2b−1 sup

y6cb
|Bn(y)| = OP

(
(nb)−1/2

)
,

(B.1.9)

uniformly in t ∈ [0,b], and that according to (6.2.7),∣∣∣∣∣
∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy

∣∣∣∣∣ = O(b),
Moreover, for t 6 b/2,

λ(t)

∫1
t/b

k(y)dy > inf
t∈[0,1]

λ(t)

∫1
1/2

k(y)dy = C > 0.

Now, define the event

An =

{
sup
t∈[0,b]

(∣∣∣∣ ∫t+b
0

kb(t− u)d(Λn −Λ)(u)

∣∣∣∣
+

∣∣∣∣ ∫t/b
−1

k(y)[λ(t− by) − λ(t)]dy
∣∣∣∣) 6 C/2

}
.
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Then, P(An) → 1 and on the event An, |λ̃sn(t) − λ(t)| > C/2. Consequently
we obtain

E

[∫b
0

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t)

]
> E

[∫b/2
0

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t)

]

> E

[
1An

∫b/2
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

]
> cP(An)b,

(B.1.10)

for some c > 0. Hence

(nb)p/2E

[∫b
0

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t)

]
> cb(nb)p/2P(An)→∞,

because b(nb)p/2 > b(nb)1/2 = (nb3)1/2 →∞.

In order to prove (ii), due to (6.1.14), we can bound

b−1/2

∣∣∣∣∣
∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣g(n)(t)∣∣∣p dµ(t)

∣∣∣∣∣
by

p2p−1b−1/2(nb)p/2
∫b
0

∣∣∣∣∣
∫t+b
0

kb(t− u)d(Λn −Λ)(u)

∣∣∣∣∣
p

dµ(t)

+ p2p−1b−1/2

(∫b
0
(nb)p/2

∣∣∣∣∣
∫t+b
0

kb(t− u)d(Λn −Λ)(u)

∣∣∣∣∣
p

dµ(t)

)1/p

·

(∫b
0

∣∣∣g(n)(t)∣∣∣p dµ(t)

)1−1/p
.

According to (B.1.9)∣∣∣∣∣
∫t+b
0

kb(t− u)d(Λn −Λ)(u)

∣∣∣∣∣ = OP ((nb)−1/2) ,

uniformly in t ∈ [0,b]. Furthermore, using (6.2.6), (6.2.7), and (6.2.8), we
have

g(n)(t) = O
(
(nb)1/2

)
, (B.1.11)
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uniformly for t ∈ [0,b]. Hence, we obtain

b−1/2

∣∣∣∣∣
∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣g(n)(t)∣∣∣p dµ(t)

∣∣∣∣∣
6 OP

(
b1/2

)
+OP

(
n(p−1)/2bp/2

)
→ 0,

because n(p−1)/2bp/2 = (bn1−1/p)p/2 → 0.

Next we deal with (iii). Again by means of (6.1.14), we can bound

b−1/2

∣∣∣∣∣
∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣Yn(t) + g(n)(t)∣∣∣p dµ(t)

∣∣∣∣∣
by

p2p−1b−
1
2

∫b
0

∣∣∣∣∣(nb)1/2
∫t+b
0

kb(t− u)d(Λn −Λ−n− 1
2Bn ◦ L)(u)

∣∣∣∣∣
p

dµ(t)

+ p2p−1b−
1
2

(∫b
0

∣∣∣Yn(t) + g(n)(t)∣∣∣p dµ(t)

)1−1/p

·

(∫b
0

∣∣∣∣∣(nb) 12
∫t+b
0

kb(t− u)d(Λn −Λ−n− 1
2Bn ◦ L)(u)

∣∣∣∣∣
p

dµ(t)

)1/p
Note that

sup
t∈[0,b]

|Yn(t)| = sup
t∈[0,b]

∣∣∣∣∣b1/2
∫t+b
0

kb(t− u)dBn(L(u))

∣∣∣∣∣ = OP(1),
and, as in (B.1.9),∣∣∣∣∣

∫t+b
0

kb(t− u)d(Λn −Λ−n−1/2Bn ◦ L)(u)

∣∣∣∣∣
6
1

b
sup
u62b

∣∣∣(Λn −Λ−n−1/2Bn ◦ L)(u)
∣∣∣ = OP (b−1n−1+1/q

)
,

uniformly for t ∈ [0,b]. Together with (B.1.11), we obtain

b−1/2

∣∣∣∣∣
∫b
0
(nb)p/2

∣∣λ̃sn(t) − λ(t)∣∣p dµ(t) −
∫b
0

∣∣∣Yn(t) + g(n)(t)∣∣∣p dµ(t)

∣∣∣∣∣
6 OP

(
b−1/2(nb)p/2bn−p+p/qb−p

)
+OP

(
b−1/2b(nb)p/2n−1+1/qb−1

)
= b−1/2(nb)p/2n−1+1/q

{
OP

(
(n−1+1/qb−1)p−1

)
+OP(1)

}
.
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Because n−1+1/qb−1 = O(1), the term within the brackets is of order
OP(1), and since bp−1np−2+2/q → 0, the right hand side tends to zero.
This proves (6.2.11).

Then, by Jensen’s inequality, we get

b−1Var

(∫cb
0

|Yn(t) + g(n)(t)|
p dµ(t)

)

=
1

b
E

(∫cb
0

|Yn(t) + g(n)(t)|
p dµ(t) −

∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t)

)2
>
1

b
E

[∣∣∣∣∣
∫cb
0

|Yn(t) + g(n)(t)|
p dµ(t) −

∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t)

∣∣∣∣∣
]2

.

(B.1.12)

Note that Yn(t) ∼ N(0,σ2n(t)), where,

σ2n(t) = b
−1

∫t+b
0

k2
(
t− u

b

)
L ′(u)du =

∫t/b
−1

k2(y)L ′(t− by)dy,

if Bn is a Brownian motion, and

σ2n(t) =

∫t/b
−1

k2(y)L ′(t− by)dy+O(b),

if Bn is a Brownian bridge. Now, choose ε > 0. Then

lim inf
n→∞ P (ε 6 Yn(0) 6 2ε) > 0 and lim inf

n→∞ P (−2ε 6 Yn(0) 6 −ε) > 0.

For c > 0, define the events

An1 = {ε/2 6 Yn(t) 6 3ε, for all t ∈ [0, cb]} ,

An2 = {−3ε 6 Yn(t) 6 −ε/2, for all t ∈ [0, cb]} ,

and let

Bn =

{∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t) >
∫cb
0

|g(n)(t)|
p dµ(t)

}
.

Then, since Yn has continuous paths, we have

lim inf
n→∞ P(An1) > 0 and lim inf

n→∞ P(An2) > 0.

Moreover, Yn(t) > 0 on the event An1, and from (6.2.9), it follows that
Yn(t) + g(n)(t) < 0, for n sufficiently large. Therefore, for n sufficiently
large, we have on An1,∫cb

0
|Yn(t) + g(n)(t)|

p dµ(t) 6
∫cb
0

|ε/2+ g(n)(t)|
p dµ(t). (B.1.13)



B.1 kernel estimator of a decreasing function 263

Similarly, Yn(t) < 0 on the event An2 and Yn(t) + g(n)(t) < 0, for large n,
so that on An2,∫cb

0
|Yn(t) + g(n)(t)|

p dµ(t) >
∫cb
0

|− ε/2+ g(n)(t)|
p dµ(t). (B.1.14)

Next, let

Xn =

∫cb
0

|Yn(t) + g(n)(t)|
p dµ(t) −

∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t)

and write

E [|Xn|] > E
[
|Xn|1An1

]
1Bn + E

[
|Xn|1An2

]
1Bcn . (B.1.15)

Consider the first term on the right hand side. Because for n large, Yn(t) +
g(n)(t) < 0 on the event An1, we have |Yn(t)+g(n)(t)| 6 |g(n)(t)|. It follows
that on the event An1 ∩Bn:∫cb

0
|Yn(t) + g(n)(t)|

p dµ(t) 6
∫cb
0

|g(n)(t)|
p dµ(t)

<

∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t).

This means that we can remove the absolute value signs in the first term
on the right hand side of (B.1.15). Similarly, Yn(t) + g(n)(t) < 0, for n suffi-
ciently large on the event An2, so that on the event An2 ∩Bcn:∫cb

0
|Yn(t) + g(n)(t)|

p dµ(t) >
∫cb
0

|g(n)(t)|
p dµ(t)

>
∫cb
0

E
[
|Yn(t) + g(n)(t)|

p
]

dµ(t),

so that we can also remove the absolute value signs in the second term on
the right hand side of (B.1.15). It follows that the right hand of (B.1.15) is
equal to

E
[
−Xn1An1

]
1Bn + E

[
Xn1An2

]
1Bcn

>

(∫cb
0

|g(n)(t)|
p dµ(t) −

∫cb
0

∣∣∣ε
2
+ g(n)(t)

∣∣∣p dµ(t)

)
P(An1)1Bn

+

(∫cb
0

∣∣∣−ε
2
+ g(n)(t)

∣∣∣p dµ(t) −
∫cb
0

|g(n)(t)|
p dµ(t)

)
P(An2)1Bcn ,

by using (6.2.7) and (6.2.8). Furthermore, for the first term on the right hand
side

|g(n)(t)|
p − |ε/2+ g(n)(t)|

p = |g(n)(t)|
p
(
1− |εn(t) + 1|

p) ,
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where εn(t) = ε/(2g(n)(t)) = O((nb)−1/2) → 0, due to (6.2.6), (6.2.7)
and (6.2.8), where the big-O term is uniformly for t ∈ [0,b]. This means
that, for n large, 1+ εn(t) > 0, and by a Taylor expansion

|1+ εn(t)|
p = 1+ pεn(t) +O((nb)

−1).

It follows that∫cb
0

|g(n)(t)|
p dµ(t) −

∫cb
0

|ε/2+ g(n)(t)|
p dµ(t)

=

∫cb
0

|g(n)(t)|
p
{
1− |εn(t) + 1|

p} dµ(t)

= −p

∫cb
0

|g(n)(t)|
pεn(t)dµ(t) + cb sup

t∈[0,cb]
|g(n)(t)|

pO((nb)−1)

= p(ε/2)

∫cb
0

|g(n)(t)|
p−1 dµ(t) +O

(
b(nb)(p−1)/2

)
= O

(
b(nb)(p−1)/2

)
due to (B.1.11). Similarly∫cb
0

|− ε/2+ g(n)(t)|
p dµ(t) −

∫cb
0

|g(n)(t)|
p dµ(t) = O

(
b(nb)(p−1)/2

)
.

Going back to (B.1.12), since P(An1) → 1 and P(An2) → 1, we conclude
that

b−1Var

(∫cb
0

|Yn(t) + g(n)(t)|
p dµ(t)

)
> b−1O

(
b(nb)(p−1)/2

)2
.

The statement follows from the fact that b−1(nb)p−1b2 = np−1bp →∞.

Finally, one can deal in the same way with the Lp-error on the interval
(1− b, 1].

Proof of Proposition 6.2.6. By definition we have

(nb)p/2
∫b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

=

∫b
0

∣∣∣∣∣(nb)1/2
∫t+b
0

k
(t)
b (t− u)d(Λn −Λ)(u) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t),

where

ḡ(n)(t) = (nb)1/2
(∫
k
(t)
b (t− u)λ(u)du− λ(t)

)
. (B.1.16)
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When Bn in assumption (A2) is a Brownian motion, we can argue as in the
proof of Theorem 6.2.1. By means of (6.1.14) we can bound

b−1/2

∣∣∣∣∣(nb)p/2
∫b
0

∣∣λ̂sn(t) − λ(t)∣∣p dµ(t)

−

∫b
0

∣∣∣∣∣b−1/2
∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

∣∣∣∣∣,
from above by

p2p−1b−1/2b−p/2
∫b
0

∣∣∣∣∣
∫t+b
0

k(t)
(
t− u

b

)
d(Bn ◦ L−n1/2Mn)(u)

∣∣∣∣∣
p

dµ(t)

+ p2p−1b−
1
2

(
b−

p
2

∫b
0

∣∣∣∣∣
∫t+b
0

k(t)
(
t− u

b

)
d(Bn ◦ L−n

1
2Mn)(u)

∣∣∣∣∣
p

dµ(t)

) 1
p

·

(∫b
0

∣∣∣∣∣b− 1
2

∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

)1− 1
p

.

(B.1.17)

Similar to (6.2.4),

sup
t∈[0,b]

∣∣∣∣∣
∫t+b
0

k(t)
(
t− u

b

)
d(Bn ◦ L−n1/2Mn)(u)

∣∣∣∣∣
6

∣∣∣∣∣
∫t/b
−1

{
ψ1

(
t

b

)
k(y) +ψ2

(
t

b

)
yk(y)

}
d(Bn ◦ L−n1/2Mn)(t− by)

∣∣∣∣∣
6 C sup

t∈[0,1]

∣∣∣Bn ◦ L(t) −n1/2Mn(t)∣∣∣
= OP(n

−1/2+1/q).
(B.1.18)

Note that here we used the boundedness of the coefficients ψ1 and ψ2.
Similar to the proof of Theorem 6.2.1, the idea is to show that

b−1/2
∫b
0

∣∣∣∣∣b−1/2
∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)→ 0,

(B.1.19)
in probability. We first bound the left hand side of (B.1.19) by

Cb−1/2
∫b
0

{
|ḡ(n)(t)|

p + b−p/2

∣∣∣∣∣
∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u))

∣∣∣∣∣
p}

dµ(t).
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According to (1.2.13), a Taylor expansion gives

sup
t∈[0,b]

|ḡ(n)(t)| = (nb)1/2 sup
t∈[0,b]

∣∣∣∣∣
∫t+b
0

k
(t)
b (t− u)λ(u)du− λ(t)

∣∣∣∣∣
= (nb)1/2 sup

t∈[0,b]

∣∣∣∣∣
∫t/b
−1

k(t)(y) [λ(t− by) − λ(t)] dy

∣∣∣∣∣
= (nb)1/2b2 sup

t∈[0,b]

∣∣∣∣∣12
∫t/b
−1

k(t)(y)y2λ ′′(ξt,y)dy

∣∣∣∣∣
= OP

(
(nb5)1/2

)
= OP(1).

Furthermore,

E

[∣∣∣∣∣
∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u))

∣∣∣∣∣
p]

=

∫
R

(∫t+b
0

(
k(t)

(
t− u

b

))2
L ′(u)du

)p/2
|x|pφ(x)dx

= bp/2
∫

R

(∫t+b
0

(
k(t)

(
t− u

b

))2
L ′(u)du

)p/2
|x|pφ(x)dx

= O(bp/2),

where φ denotes the standard normal density. This proves (B.1.19) for the
case that Bn is a Brownian motion.

When Bn in (A2) is a Brownian bridge, then we use the representation
Bn(u) = Wn(u) − uWn(L(1))/L(1), for some Brownian motion Wn. In this
case, by means of (6.1.14), we can bound

b−1/2
∣∣∣∣ ∫b
0

∣∣∣∣∣b−1/2
∫t+b
0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

−

∫b
0

∣∣∣∣∣b−1/2
∫t+b
0

k(t)
(
t− u

b

)
dWn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)
∣∣∣∣
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by

p2p−1b−
1
2

∫b
0

∣∣∣∣∣b− 1
2
Wn(L(1)

L(1)

∫t+b
0

k(t)
(
t− u

b

)
L ′(u)du+ ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

+
p2p−1√

b

(∫b
0

∣∣∣∣∣Wn(L(1))√
bL(1)

∫t+b
0

k(t)
(
t− u

b

)
L ′(u)du+ ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

) 1
p

·

(∫b
0

∣∣∣∣∣b− 1
2

∫t+b
0

k(t)
(
t− u

b

)
dWn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dµ(t)

)1− 1
p

,

which tends to zero in probability, due to (B.1.19).

b.2 isotonized kernel estimator

Lemma B.2.1. Assume (A1)-(A2) and let λ̃sn be defined in (6.1.2). Let k sat-
isfy (6.1.1) and let p > 1. If b→ 0, nb→∞, and 1/b = o(n1/4), then

P
(
λ̃sn is decreasing on [b, 1− b]

)
→ 1.

Proof. The proof is completely similar to that of Lemma 3.6.14. Note that
(3.1.7) follows from our Assumption (A2) and that here λ is a decreasing
function.

We use the fact that on [b, 1− b], λ̃sn is the standard kernel estimator of λ
given by (6.4.2) and we get

d
dt
λ̃sn(t) =

∫t+b
t−b

1

b2
k ′
(
t− u

b

)
d (Λn −Λ) (u)+

∫t+b
t−b

1

b2
k ′
(
t− u

b

)
λ(u)du.

(B.2.1)
The first term on the right hand side of (B.2.1) converges to zero because in
absolute value it is bounded from above by

1

b2
sup
x∈[0,1]

|Λn(x) −Λ(x)| sup
y∈[−1,1]

|k ′′(y)| = Op(b
−2n−1/2) = op(1),

according to Assumption (A2) and the fact that 1/b = o(n−1/4). Moreover,
integration by parts gives∫

1

b2
k ′
(
t− u

b

)
λ(u)du =

∫1
−1
k(y)λ ′(t− by)dy.

Hence, the second term on the right hand side of (B.2.1) is bounded from
above by a strictly negative constant because of Assumption (A1). We con-
clude that λ̃sn is decreasing on [b, 1− b] with probability tending to one.
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Corollary B.2.2. Assume (A1)-(A2) and let λ̃sn and λ̃GSn be defined in (6.1.2) and
Section 6.4, respectively. Let k satisfy (6.1.1). Let 0 < γ < 1 and p > 1. If b → 0,
nb→∞, and 1/b = o(n1/4), then

P
(
λ̃sn(t) = λ̃

GS
n (t) for all t ∈ [bγ, 1− bγ]

)
→ 1.

Proof. The proof is completely similar to that of Lemma 3.3.2, but now we
want to extend the interval to [bγ, 1−bγ], which is not fixed but approaches
the boundaries as n → ∞. In this case we define the linearly extended
version of Λsn by

Λ̂∗n(t) =


Λsn(b

γ) +
(
t− bγ

)
λ̃sn(b

γ), for t ∈ [0,bγ),

Λsn(t), for t ∈ [bγ, 1− bγ],

Λsn(1− b
γ) +

(
t− 1+ bγ

)
λ̃sn(1− b

γ), for t ∈ (1− bγ, 1].

Choose 0 < δ < 2. It suffices to prove that, for sufficiently large n,

P
(
Λ̂∗n is concave on [0, 1]

)
> 1− δ/2, (B.2.2)

and
P
(
Λ̂∗n(t) > Λ

s
n(t), for all t ∈ [0, 1]

)
> 1− δ/2. (B.2.3)

To prove (B.2.2), define the event

An =
{
λ̃sn is decreasing on [b, 1− b]

}
.

On the event An the curve Λ̂∗n is concave on [0, 1], so

P
(
Λ̂∗n is concave on [0, 1]

)
> P(An),

and the result follows from Lemma B.2.1. To prove (B.2.3), we split the
interval [0, 1] in five intervals I1 = [0,b), I2 = [b,bγ), I3 = [bγ, 1 − bγ],
I4 = (1− bγ, 1− b] and I5 = (1− b, 1]. Then, as in Lemma 3.3.2, we show
that

P
(
Λ̂∗n(t) > Λ

s
n(t), for all t ∈ Ii

)
> 1− δ/10, i = 1, . . . , 5. (B.2.4)

For t ∈ I3, Λ̂∗n(t) = Λsn(t), so (B.2.4) is trivial. For t ∈ I2, by the mean value
theorem,

Λ̂∗n(t) −Λ
s
n(t) = Λ

s
n(b

γ) +
(
t− bγ

)
λ̃sn(b

γ) −Λsn(t)

= (bγ − t)
[
λ̃sn(ξt) − λ̃

s
n(b

γ)
]

,

for some ξt ∈ (t,bγ) ⊂ (b,bγ). Thus,

P
(
Λ̂∗n(t) > Λ

s
n(t), for all t ∈ I2

)
> P(An) > 1− δ/10,
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for n sufficiently large, according to Lemma B.2.1. The argument for I4 is
exactly the same.

Next, we consider t ∈ I1. We have

Λ̂∗n(t) −Λ
s
n(t)

= Λsn(b
γ) +

(
t− bγ

)
λ̃sn(b

γ) −Λsn(t)

= [Λsn(b
γ) −Λs(bγ)] + [Λs(t) −Λsn(t)] +Λ

s(bγ) −Λs(t) −
(
bγ − t

)
λ̃sn(b

γ)

> −2 sup
t∈[0,1]

|Λsn(t) −Λ
s(t)|+Λs(bγ) −Λs(t) − (bγ − t)λ(bγ)

+
(
bγ − t

) [
λ(bγ) − λ̃sn(b

γ)
]

,
(B.2.5)

where Λs is the deterministic version of Λsn,

Λs(t) =

∫ (t+b)∧1
(t−b)∨0

k
(t)
b (t− u)Λ(u)du.

For the first term on right hand side of (B.2.5), note that

sup
t∈[0,1]

|Λsn(t) −Λ
s(t)| = sup

t∈[0,1]

∣∣∣∣∣
∫ (t+b)∧1
(t−b)∨0

k
(t)
b (t− u) [Λn(u) −Λ(u)] du

∣∣∣∣∣
= sup
t∈[0,1]

∣∣∣∣∫ k(t)(y) [Λn(t− by) −Λ(t− by)] dy
∣∣∣∣

6 sup
t∈[0,1]

|Λn(t− by) −Λ(t− by)|

∫
sup
t∈[0,1]

∣∣∣k(t)(y)∣∣∣ dy

= OP

(
n−1/2

)
,

(B.2.6)

due to Assumption (A2). Moreover, for the third term on right hand side
of (B.2.5), for t ∈ (b, 1− b), we have

∣∣λ(t) − λ̃sn(t)∣∣ 6 ∣∣∣∣λ(t) − ∫ kb(t− u)λ(u)du
∣∣∣∣+ ∣∣∣∣∫ kb(t− u)d(Λ−Λn)(u)

∣∣∣∣
=

∣∣∣∣∫ k(y)[λ(t) − λ(t− by)]dy
∣∣∣∣+ 1

b

∣∣∣∣∫ k ′(y)(Λ−Λn)(t− by)dy
∣∣∣∣

= O(b2) +OP(b
−1n−1/2).

(B.2.7)
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For the second term on right hand side of (B.2.5), for t ∈ [0,b), we write

Λs(bγ) −Λs(t) − (bγ − t)λ(bγ)

=

∫bγ+b
bγ−b

kb(b
γ − u)Λ(u)du−

∫t+b
0

k
(t)
b (t− u)Λ(u)du− (bγ − t)λ(bγ)

=

∫bγ+b
bγ−b

kb(b
γ − u)[Λ(u) −Λ(bγ)]du−

∫t+b
0

k
(t)
b (t− u)[Λ(u) −Λ(t)]du

+ [Λ(bγ) −Λ(t) − (bγ − t)λ(bγ)]

=

∫1
−1
k(y)[Λ(bγ − by) −Λ(bγ)]dy−

∫t/b
−1

k(t)(y)[Λ(t− by) −Λ(t)]dy

−
1

2
(bγ − t)2λ ′(ξt)

>
∫1
−1
k(y)[Λ(bγ − by) −Λ(bγ)]dy−

∫t/b
−1

k(t)(y)[Λ(t− by) −Λ(t)]dy

− inf
t∈[0,1]

|λ ′(t)|b1+γ +
1

2
inf

t∈[0,1]
|λ ′(t)|b2γ

(B.2.8)

where ξt ∈ (t,bγ). Furthermore, the first two integrals on the right hand
side can be written as

b2

2

∫1
−1
k(y)y2λ ′(ξ1,y)dy−

b2

2

∫t/b
−1

k(t)(y)y2λ ′(ξ2,y)dy

> −
b2

2

∣∣∣∣∣
∫1
−1
k(y)y2λ ′(ξ1,y)dy−

∫t/b
−1

k(t)(y)y2λ ′(ξ2,y)dy

∣∣∣∣∣
> −

b2

2

∣∣∣∣∣
∫1
−1
k(y)y2λ ′(ξ1,y)dy−

∫t/b
−1

k(t)(y)y2λ ′(ξ2,y)dy

∣∣∣∣∣ = O(b2),
with ξt ∈ (t,bγ), |ξ1,y − bγ| 6 by and |ξ2,y − t| 6 by. This means that

P
(
Λ̂∗n(t) −Λ

s
n(t) > 0, for all x ∈ I1

)
> P

(
Yn 6

1

2
inf

t∈[0,1]
|λ ′(t)|b2γ

)
,

where

Yn = OP(n
−1/2) +O(bγ)

{
O(b2) +OP(b

−1n−1/2)
}

+O(b2) − inf
t∈[0,1]

|λ ′(t)|b1+γ

= OP(b
1+γ).

Hence, for n large enough, this probability is greater than 1− δ/10, because
γ < 1.
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b.3 clt for the hellinger loss

Lemma B.3.1. Assume (A1)-(A3) hold. If λ is strictly positive, we have∫1
0

(√
λ̂sn(t) −

√
λ(t)

)2
dµ(t) =

∫1
0

(
λ̂sn(t) − λ(t)

)2
(4λ(t))−1 dµ(t)

+OP

(
(nb)−3/2

)
.

The previous results holds also if we replace λ̂sn with the smoothed Grenander-type
estimator λ̃SGn .

Proof. As in the proof of Lemma 4.1.1, we get∫1
0

(√
λ̂sn(t) −

√
λ(t)

)2
dµ(t) =

∫1
0

(
λ̂sn(t) − λ(t)

)2
(4λ(t))−1 dµ(t) + Rn,

where

|Rn| 6 C
∫1
0

∣∣λ̂sn(t) − λ(t)∣∣3 dµ(t)

for some positive constant C only depending on λ(0) and λ(1). Then, from

Corollary 6.2.7, it follows that Rn = OP

(
(nb)−3/2

)
. When dealing with

the smoothed Grenander-type estimator, the result follows from Theorem
6.3.4.

Theorem B.3.2. Assume (A1)-(A3) hold and that λ is strictly positive.

i) If nb5 → 0, then it holds

(bσ2,∗(2))−1/2
{
2nbH(λ̂sn, λ)2 −m∗n(2)

}
d−→ N(0, 1).

ii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian motion, then
it holds

(bθ2,∗(2))−1/2
{
2nbH(λ̂sn, λ)2 −m∗n(2)

}
d−→ N(0, 1),

iii) If nb5 → C20 > 0 and Bn in Assumption (A2) is a Brownian bridge, then it
holds

(bθ̃2,∗(2))−1/2
{
2nbH(λ̂sn, λ)2 −m∗n(2)

}
d−→ N(0, 1),



272 supplement to : on the lp -error of smooth isotonic estimators

where σ2,∗, θ2,∗, θ̃2,∗ and m∗n are defined, respectively, as in (6.1.9), (6.1.11),
(6.1.12) and (6.1.8) by replacing w(t) with w(t)(4λ(t))−1.

If p < min(q, 2q− 7) and

1

b
= o

(
n(1/3−1/q)min(q/(2p),1)

)
,

the same results hold also when replacing λ̂sn by the smoothed Grenander-type esti-
mator λ̃SGn .

Proof. According to Lemma B.3.1, it is sufficient to show that the results
hold if we replace 2H(λ̂sn, λ)2 by∫1

0

(
λ̂sn(t) − λ(t)

)2
(4λ(t))−1 dµ(t) =

∫1
0

(
λ̂sn(t) − λ(t)

)2
dµ̃(t),

where

dµ̃(t) =
1

4λ(t)
dµ(t) =

w(t)

4λ(t)
dt.

It suffices to apply Corollary 6.2.7 with a weight µ̃ instead of µ.

For the smoothed Grenander estimator the result would follow from The-
orem 6.3.4.
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S U M M A RY

In this thesis we address the problem of estimating a curve of interest (which
might be a probability density, a failure rate or a regression function) under
monotonicity constraints. This problem arises in different fields of appli-
cation. For example, in survival analysis, a monotone hazard rate reflects
the property of aging, meaning that components become less reliable as the
survival time increases. Monotonic regression relationships are reasonable
in econometrics (demand-price), biometrics (age-height) etc. In such situa-
tions, incorporating monotonicity constraints in the estimation procedure
leads to more accurate results. There is a large body of literature on iso-
tonic estimation which focuses on two methods: constrained nonparametric
maximum likelihood estimation and a Grenander-type procedure. These es-
timators are piecewise constant and converge at rate cube-root n. On the
other hand, smooth estimators are usually preferred because, among other
reasons, they have a faster rate of convergence and a nicer graphical repre-
sentation.

The main concern of this thesis is investigating large sample distributional
properties of smooth isotonic estimators. In the first part we focus on the
pointwise behavior of estimators for the hazard rate in survival analysis
while the second part is dedicated to global errors of estimators in a general
setup, which includes estimation of a probability density, a failure rate, or a
regression function.

In Chapter 2 we consider kernel smoothed Grenander-type estimators for
a monotone hazard or a monotone density in the right censoring model.
Weak convergence of the estimators at a fixed point is established through a
Kiefer-Wolfowitz type of result and the use of a boundary corrected kernel
is proposed to avoid inconsistency at the boundary regions. Once having
derived the asymptotic distribution of the estimators, a practical applica-
tion is constructing pointwise confidence intervals. Simulations show that
smoothing leads to more accurate results and undersmoothing is preferred
with respect to bias estimation.

Chapter 3 focuses on smooth isotonic estimation of the baseline hazard in
the Cox regression model, which is a generalization of the right censoring
model that takes into account the presence of covariates. Four different es-
timators are obtained by combining an isotonization step with a smoothing
step and alternating the order of smoothing and isotonization. We show that
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three of the estimators are asymptotically equivalent with a Gaussian limit
distribution at rate n2/5 while the fourth one has a different asymptotic bias.
Hence, there is no preference between the four methods on the basis of large
samples theoretical properties. Moreover, we assess the finite sample perfor-
mance of the estimators by means of simulation studies for constructing
pointwise confidence intervals. We investigate both asymptotic confidence
intervals using undersmoothing to avoid bias estimation and bootstrap con-
fidence intervals. We observe that the second method performs better and
the estimators have comparable behavior (with smoothed maximum likeli-
hood estimator and maximum smoothed likelihood estimator being slightly
more accurate). However, it is presently not clear how to "optimally" choose
the smoothing parameter which in practice might be an issue.

Chapter 4 provides a central limit theorem for the Hellinger error of
Grenander-type estimators of a monotone function obtained by approximat-
ing the squared Hellinger distance with a weighted L2-distance. A goodness
of fit test under the assumption of a non-increasing density is proposed
based on the Hellinger distance between a parametric estimator and the
Grenander-type estimator. Its performance is investigated through a simu-
lation study on testing exponentiality.

In Chapter 5 we proceed by considering the process Λ̂n −Λn, where Λn
is a cadlag step estimator for the primitive Λ of a nonincreasing function
λ on [0, 1], and Λ̂n is the least concave majorant of Λn. We extend the re-
sults in Kulikov and Lopuhaä, 2006, 2008 to the general setting considered
in Durot, 2007. Under this setting we prove that a suitably scaled version
of Λ̂n −Λn converges in distribution to the corresponding process for two-
sided Brownian motion with parabolic drift and we establish a central limit
theorem for the Lp-distance between Λ̂n and Λn. Such result is then used
in the Chapter 6 for dealing with smoothed Grenander-type estimators.

Finally, in Chapter 6 we provide central limit theorems for the Lp-error
of smooth isotonic estimators obtained by kernel smoothing the Grenander-
type estimator or isotonizing the kernel estimator. Both of them are con-
nected to the behavior of the Lp-error of the ordinary kernel estimator, for
which we extend the results from Csörgő and Horváth, 1988. However, dif-
ferently from Csörgő and Horváth, 1988 we find that the limit variance
changes depending on whether the approximating process of Λn −Λ is a
Brownian motion or a Brownian bridge. As an application we consider test-
ing monotonicity of a regression function on the basis of the L2-distance
between the ordinary kernel estimator and the smoothed Grenander estima-
tor. The limit theorem cannot be directly used for determining the critical
region of the test due to the presence of unknown parameters in the limit
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distribution. Instead, we use a bootstrap procedure and compare the perfor-
mance of the test with other tests available in the literature.





S A M E N VAT T I N G

In dit proefschrift behandelen we het probleem van het schatten van een
curve (zoals een kansdichtheid, een hazard functie, of een regressiefunc-
tie) onder de aanname van monotonie. Dit probleem doet zich voor in
verschillende toepassingsgebieden. Bijvoorbeeld in de analyse van levens-
duren wordt veroudering weerspiegeld door een monotone hazard func-
tie, evenals het minder betrouwbaar worden van onderdelen naarmate de
overlevingstijd toeneemt. Monotone regressierelaties komen vaak voor in
de Economie (bijvoorbeeld tussen de omvang van de vraag en de prijs),
in de Biologie (bijvoorbeeld tussen leeftijd en lengte), enz. In dergelijke
situaties leidt het opnemen van monotonie in de schattingsprocedure tot
nauwkeuriger resultaten. Er is een uitgebreide literatuur over isotone schat-
ters, die zich richt op twee methoden: de niet-parametrische maximum like-
lihood schatter en een soort van Grenander-schatter. Deze schatters zijn
stuksgewijs constant en convergeren met snelheid n1/3. Aan de andere
kant, hebben gladde schatters meestal de voorkeur omdat ze, naast andere
redenen, een hogere convergentiesnelheid hebben en een mooiere grafische
weergave.

Het belangrijkste doel van dit proefschrift is het onderzoeken van asymp-
totische verdelingseigenschappen van gladde isotone schatters. In het eerste
deel concentreren we ons op het puntsgewijze gedrag van schatters voor
de hazard functie bij de analyse van levensduren, terwijl het tweede deel
gewijd is aan globale afwijkingen in een algemene opzet die het schatten
van een kansdichtheid, een hazard functie, en een regressiefunctie bevat.

In Hoofdstuk 2 beschouwen we glad gemaakte Grenander-schatters voor
een monotone hazard en een monotone kansdichtheid in het rechts cen-
surerings model. Puntsgewijze zwakke convergentie van de schatters wordt
aangetoond met behulp van een soort van Kiefer-Wolfowitz resultaat, ge-
bruikmakend van van een rand-gecorrigeerde kernfunctie om inconsistentie
aan de rand te voorkomen. Nadat de asymptotische verdeling van de schat-
ters is afgeleid, is een praktische toepassing het construeren van puntsgewi-
jze betrouwbaarheidsintervallen. Simulaties laten zien dat het glad maken
leidt tot meer accurate resultaten en dat “undersmoothing” de voorkeur
heeft boven het schatten van de “bias”.

Hoofdstuk 3 richt zich op gladde isotone schatters voor de baseline haz-
ard in het Cox model, een generalisatie van het rechts-censurerings model
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dat rekening houdt met de aanwezigheid van covariaten. Vier verschillende
schatters worden verkregen door twee soorten van isotonisatie te combineren
met een “smoothing”-stap in twee verschillende volgorden. We laten zien
dat de schatters asymptotisch normaal verdeeld zijn en consistent zijn met
snelheid n2/5. Drie van de schatters zijn asymptotisch equivalent terwijl
de vierde schatter een andere asymptotische bias heeft. Derhalve is er geen
voorkeur voor een van de vier methoden op basis van theoretische eigen-
schappen voor grote steekproeven. Verder onderzoeken we de prestaties van
de schatters bij eindige steekproeven bij het construeren van puntsgewijze
betrouwbaarheidsintervallen door middel van simulaties. We onderzoeken
zowel asymptotische betrouwbaarheidsintervallen, met behulp van “under-
smoothing” om het schatten van de bias te vermijden, alsmede bootstrap-
betrouwbaarheidsintervallen. We zien dat de tweede methode beter presteert
en dat de schatters een vergelijkbaar gedrag vertonen (waarbij de glad ge-
maakte maximum likelihood schatter en de maximum smoothed likelihood
schatter iets nauwkeuriger zijn). Het is echter momenteel niet duidelijk hoe
de gladheidsparameter "optimaal" kan gekozen worden, hetgeen in de prak-
tijk een probleem kan zijn.

Hoofdstuk 4 bevat een centrale limietstelling voor de afwijking in Hellinger-
afstand voor Grenander-schatters voor een monotone functie, verkregen
door de gekwadrateerde Hellinger-afstand te benaderen met een gewogen
L2-afstand. Onder de aanname van een niet-stijgende kansdichtheid stellen
we een goodness-of-fit toets voor op basis van de Hellinger-afstand tussen
een parametrische schatter en de Grenander-schatter. De prestaties hiervan
worden onderzocht door middel van simulaties voor het toetsen van expo-
nentialiteit.

In Hoofdstuk 5 gaan we verder met het proces Λ̂n −Λn, waarbij Λn een
stuksgewijs constante schatter is voor de primitieve Λ van een niet-stijgende
functie λ op [0, 1], en Λ̂n de kleinste concave majorant is van Λn. We breiden
de resultaten in Kulikov and Lopuhaä, 2006, 2008 uit naar de algemene
opzet die in Durot, 2007 wordt gebruikt. Voor deze opzet bewijzen we dat
een geschikt geschaalde versie van Λ̂n −Λn in verdeling convergeert naar
het overeenkomstige proces voor een tweezijdige Brownse beweging met
parabolische drift. Bovendien leiden we een centrale limietstelling af voor
de Lp-afstand tussen Λ̂n en Λn. Dit resultaat wordt vervolgens gebruikt in
Hoofdstuk 6 voor het behandelen van glad gemaakte Grenander-schatters.

Tenslotte behandelen we in Hoofdstuk 6 centrale limietstellingen voor
de afwijking in Lp-afstand voor gladde isotone schatters die verkregen zijn
door glad maken van een Grenander-schatters of door het isotoniseren van
een kernschatter. In beide gevallen is het gedrag gerelateerd aan dat van
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de Lp-afstand voor een reguliere kernschatter, waarvoor we de resultaten
van Csörgő and Horváth, 1988 uitbreiden. Echter, anders dan in Csörgő
and Horváth, 1988, zien we dat de limietvariantie verschillend is, afhanke-
lijk van of het benaderende proces voor Λn −Λ een Brownse beweging is
of een Brownse brug. Als een toepassing beschouwen we het toetsen van
monotonie van een regressiefunctie op basis van de L2-afstand tussen de
kernschatter en de glad gemaakte Grenander-schatter. De limietstelling kan
niet rechtstreeks worden gebruikt voor het bepalen van het kritieke gebied
van de toets vanwege de aanwezigheid van onbekende parameters in de
limietverdeling. In plaats daarvan gebruiken we een bootstrap procedure
en vergelijken we de prestaties van de toets met andere toetsen die in de
literatuur beschikbaar zijn.
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