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Abstract
Simulating the seismic behaviour of unreinforced masonry (URM) is challenging due to 
large deformations and severe damage. Capturing this highly nonlinear response requires 
advanced numerical modelling strategies that represent block separation, debonding, fric-
tion, and impact. Discontinuum-based modelling strategies, such as the Distinct Element 
Method (DEM), are well suited, as they explicitly represent bond failure and damage 
progression from cracking to collapse. DEM relies on the explicit time integration scheme 
of motion equations; hence, the choice of the damping scheme becomes critical. Typically, 
mass-proportional damping is used in dynamic analysis, often without complementing it 
with stiffness-proportional damping which requires unpractical reduction of the time steps 
to ensure numerical stability. Yet relying solely on mass-proportional damping can over-
damp low frequencies and underdamp high frequencies. This study implements and vali-
dates an alternative damping approach, Maxwell damping, where multiple spring-dashpot 
elements are introduced at unit-mortar interfaces within a simplified micro-model. This 
work introduces an optimization algorithm to tune the Maxwell elements without heu-
ristics, targeting near-uniform damping over a broad frequency range. Effectiveness is 
assessed against shake-table tests on a full-scale cross-vault URM specimen. Predicted 
displacements, accelerations, damage evolution, and computational efficiency is compared 
with mass-proportional and zero-viscous damping models. This study investigates Max-
well damping as a practical relaxation scheme for the seismic analysis of complex ma-
sonry systems using DEM, building on prior formulations in the literature and extending 
them to the present modelling and validation context.

Keywords  Masonry cross-vault · Simplified micro-modelling · Distinct element 
method · Dynamic analysis · Rayleigh damping · Maxwell elements
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1  Introduction

The seismic assessment of unreinforced masonry (URM) structures remains a significant 
challenge due to their inherent vulnerability to lateral loads and complex nonlinear behav-
iour under seismic excitations. Historical URM systems frequently incorporate intricate and 
curved geometries, such as cross-vaults, arches, and domes, which are prone to large defor-
mations and exhibit highly nonlinear responses prior to collapse. Post-earthquake inves-
tigations (Sorrentino et al. 2014; Cole et al. 2012; Brandonisio et al. 2013) and analyses 
(Davis et al. 2023; D’Altri et al. 2017; Lagomarsino 2012) have consistently reported that 
masonry cross-vaults are particularly susceptible to earthquake damage due to the simulta-
neous activation of multiple collapse mechanisms. Depending on the direction of seismic 
excitation and interactions with adjacent structural components, out-of-plane collapse via 
four-hinge mechanisms and in-plane collapse due to vault web detachment may occur con-
currently. Given this complex response, the development and validation of reliable numeri-
cal modelling strategies for URM cross-vaults have been a major focus of the research 
community in recent decades (Bertolesi et al. 2019). Among these, discontinuum-based 
numerical methods have gained prominence. These methods model masonry either at the 
microscale level, with individual units and joints represented explicitly, or at the mesoscale 
level, using blocky structures connected through zero-thickness interfaces defined by con-
tact laws. The comprehensive review conducted by Malomo and Pulatsu (2024) highlighted 
the capabilities of discontinuum approaches for simulating various URM typologies under 
seismic loading, including (i) Joint opening/closure and frictional sliding; (ii) progressive 
bond failure and crack propagation without predefined paths; (iii) block separation, impact 
and pounding; (iv) out-of-plane (OOP) rocking, instability and overturning; (v) mechanism 
formation in walls and vaulted systems; and (vi) collapse at component and building scale.

Several discontinuum-based numerical methods have been employed for the seismic 
assessment of cross-vaults, including the Distinct Element Method (DEM) (Oktiovan et 
al. 2023b; Bianchini et al. 2024b; Mele et al. 2012), mixed FEM-DEM (Smoljanović et 
al. 2013), Non-smooth Contact Dynamics (NSCD) (Ferrante et al. 2024), and the Applied 
Element Method (AEM) (Davis et al. 2023). In this study, DEM has been selected for imple-
mentation due to its detailed modelling of individual components and its robust explicit 
time-marching integration scheme, which various researchers have already successfully 
employed ranging from simple geometries such as wall (Meriggi et al. 2019; Pulatsu et al. 
2020; Oktiovan et al. 2024), arch (De Lorenzis et al. 2007; Lemos and Sarhosis 2023; Sar-
hosis et al. 2014), barrel vault (Oktiovan et al. 2023a; Chen et al. 2021), to complex geom-
etries such as cross-vault (Davis et al. 2023; Oktiovan et al. 2023b; Bianchini et al. 2024), 
fan vault (Chen and Bagi 2024b), pavilion vault (Dell’endice et al. 2021), dome (Paris et 
al. 2020), buildings (Galvez et al. 2023; Malomo and DeJong 2022; Gubana and Melotto 
2021), and many more.

Several authors have emphasized that the selection of damping schemes within DEM 
models can significantly influence the accuracy and computational efficiency of numerical 
analyses (Lemos and Sarhosis 2023; Lemos et al. 2022; Galvez et al. 2022a). In time-domain 
analysis, viscous damping models such as Rayleigh damping are frequently employed to 
account for dynamic energy dissipation not fully captured by constitutive hysteresis and 
contact mechanics. Rayleigh damping comprises two components, one proportional to 
the mass and the other to the stiffness of the mechanical system. However,  Hall (2006) 
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and Galvez et al. (2022a), have cautioned that relying solely on mass-proportional damp-
ing can lead to unconservative or misleading collapse predictions due to spurious vibration 
damping and overfitting of damping parameters. Moreover, studies have shown that mass-
proportional damping in DEM can result in unintended interface oscillations, particularly 
in curved geometries (DeJong 2009; De Lorenzis et al. 2007). On the other hand, using 
only the stiffness-proportional component can be computationally prohibitive, as it imposes 
very small timesteps for numerical stability. While stiffness-proportional damping has been 
shown to improve prediction accuracy for small-scale systems (Godio and Beyer (2019); 
Galvez et al. (2022b; Peña et al. 2007; Tomassetti et al. (2019)), its use in complex configu-
rations such as cross-vaults remains impractical due to excessive computational demands.

To mitigate spurious high-frequency response without incurring severe timestep penal-
ties, we adopt a Maxwell damping scheme (i.e., a generalized Maxwell/Maxwell–Wiechert 
model) in which linear Maxwell spring–dashpot branches are placed in parallel with the 
interface springs at unit–mortar contacts and with the internal tetrahedral elements of the 
deformable blocks. This yields a frequency-selective viscous dissipation akin to stiffness-
proportional damping but without the severe timestep penalties, following  Lemos et al. 
(2022); Lemos and Sarhosis (2023). The damping characteristics of the Maxwell scheme 
are optimised by tuning multiple elements simultaneously to achieve the desired damping 
ratio within a specified frequency band. Crucially, this paper introduces a novel optimisa-
tion framework that automatically calibrates the Maxwell parameters using a nonlinear least 
squares approach with the Levenberg–Marquardt algorithm. This eliminates the need for 
heuristic calibration or trial-and-error procedures, enabling a systematic and efficient search 
for optimal damping configurations (Lemos and Sarhosis 2023).

Various researchers have demonstrated the advantages of Maxwell elements as a dissipa-
tion mechanism in structural dynamics (Huang et al. 2019; Genta 2009; Liu et al. 1976). 
The effectiveness of the Maxwell damping scheme is benchmarked against mass-propor-
tional, Rayleigh, and zero-viscous damping models. These schemes are evaluated in terms 
of their predictive accuracy and computational efficiency by comparing simulation results 
with shake-table test data of a masonry cross-vault subjected to unilateral seismic excitation 
(Bianchini et al. 2024a). Key performance indicators include displacement and acceleration 
time histories, damage patterns, and overall computational cost.

Building upon the foundational work of  Galvez et al. (2022a) who examined damp-
ing schemes in the context of rocking simulations, as well as Lemos and Sarhosis (2023) 
who first applied Maxwell damping to small bi-dimensional URM components, this study 
makes a further advancement by applying Maxwell damping to a highly complex three-
dimensional masonry structure. To the best of the authors’ knowledge, this is the first study 
to integrate Maxwell damping with an optimisation algorithm for the dynamic analysis of 
a URM cross-vault using the DEM framework. The results provide critical insights into 
the application of DEM for nonlinear seismic assessment of intricate heritage structures 
and contribute to advancing damping strategies for improved predictive performance and 
efficiency.
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2  Overview of the cross-vault shake-table experiment

To provide readers with appropriate context, this section briefly describes the experimental 
tests conducted by Bianchini et al. (2024a, b). Multiple researchers have also used the data 
from this experimental campaign as part of the Seismology and Earthquake Engineering 
Research Infrastructure Alliance for Europe (SERA) blind prediction and post-diction com-
petition, summarized in the overview of the results by Calderini et al. (2024). The experi-
mental campaign consists of incremental shake-table tests on two distinct configurations: 
an unstrengthened (UNS) specimen and a strengthened (STR) one with a steel/basalt grid 
and lime-based mortar. This paper focuses only on the unstrengthened case, which is used 
to evaluate all the numerical predictions obtained. The URM specimen was designed to 
represent a cross-vault located in a central aisle of a typical three-nave church (Bianchini et 
al. 2024a). The detailed specification of the specimen, along with the full-scale geometrical 
model, is presented in Fig. 1. The experimental specimens were constructed at LNEC, the 
National Civil Engineering Laboratory in Lisbon, Portugal.

The masonry cross-vault is a single-ring vault with a square plan of 3.5 × 3.5 m2, a 
rise of 1.2 m, a net span of 2.9 m, and a thickness of 0.12 m. The specimen is placed on a 
4.4 × 4.9 m2 concrete slab, which is connected to the shake table actuator. The brick unit 
within the cross-vault was stacked in an orthogonal bond pattern with the unit dimensions 
of 0.045 × 0.12 × 0.23 m3 (H x W x L), and a 0.01 m thick mortar layer. Two movable piers 
of steel masses attached to wheels are left free to slide in both transversal and longitudinal 
directions. The other piers are made of masonry assemblages and are fixed to the reinforced 
concrete slab. To avoid torsional mechanisms, the piers are connected through three couples 
of ϕ32 mm steel bars, except for the fixed piers connection, which is done through steel pro-
files. Steel UPN profiles are also added to the fixed piers to increase the stiffness and reduce 
the relative displacements between the piers, as shown in Fig. 1. Four corners of the vault, 
up to half of its rise, have masonry infill, and steel profiles are added along the boundaries 
of the infill and the height of the steel supports for the fixed piers.

Fig. 1  The experimental cross-vault detailed specifications (Bianchini et al. 2024a)
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The instrumentation setup for the UNS cross-vault specimen is shown in Fig. 2a. Four 
optical cameras (OC, i.e., still cameras used for optical displacement tracking) were placed 
to record the displacement response at the vault’s extrados, following the experimental ter-
minology of Bianchini et al. (2024a) (OC1–OC4; see Fig. 2a). Four video cameras (VC) on 
each elevation of the vault were used to document crack initiation and propagation during 
the tests

The seismic input is the 6th April 2009 L’Aquila earthquake record taken along the 
North-South direction from the Italian Rete Accelerometrica Nazionale (RAN) Station AQA 
(Bianchini et al. 2024a). Figure 2b illustrates the 75% scaled input (AQA75). The maximum 
absolute acceleration, velocity, and displacement of the AQA75 earthquake are 4.25 ms−2, 
26.33 cms−1, and 37.0 mm, respectively. For the numerical analysis we adopt the 25 s input 
segment provided by the experimental campaign and use its first 15 s (t = 0–15 s) as load-
ing. This truncation contains 97% of the Arias intensity of the 25 s sample (Fig. 2b). The 
effective duration based on the 5% to 95% Arias interval is 8.28 s.

The seismic load was applied unidirectionally along the longitudinal (North-South) 
direction of the vault four increments of amplitude considered for the UNS specimen; 10, 
25, 50, and 75%. The shake-table test for the UNS vault specimen was performed up to the 
level of damage at which the structural equilibrium is still maintained, allowing strengthen-
ing through the TRM grid.

For more details regarding the material characterization tests, design and construction 
processes, and experimental results, readers are referred to Bianchini et al. (2024a). The 
experimentally observed crack patterns at the end of tests for 50 and 75% maximum ampli-
tude of AQA EQ are presented in Fig. 3. No visible cracks were observed at the 10 and 25% 
load increments. At the end of 50% load increment, detachments between the infill masonry 
and the cross-vault were observed at both the fixed and moving piers in the north section 
(Fig. 3a). Significant damage was observed at the 75% load increment, representing an in-
plane shear failure mode. The damage started from the vault crown, propagated toward the 

Fig. 2  Instrumentation setup of the unstrengthened (UNS) cross-vault specimen Bianchini et al. (2024a) 
and AQA75 input signal
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groins in all directions, and eventually dispersed to the four webs of the cross-vault. Since 
full collapse was out of the scope of the experiment, load increment was stopped at 75%.

3  Distinct element modelling of masonry cross-vaults

This section provides an overview of the formulation adopted for the dynamic analysis 
using the Distinct Element Method (DEM), with particular focus on the numerical model 
developed for the cross-vault structure. The modelling approach, assumptions, and key 
parameters used in the DEM simulation are outlined, alongside a detailed description of the 
cross-vault geometry and contact definitions.

3.1  Formulation overview of the distinct element method

The modelling of the masonry cross-vault follows the principle of the simplified micro-mod-
elling strategy, originally proposed by Lourenço and Rots (1997) and later simply defined 
as “meso-modelling” in discontinuum domains by Malomo and Pulatsu (2024), in which 
the unit-mortar nonlinearity is lumped at the zero-thickness interfaces formed between the 
contacting blocks, and the masonry units are extended to include the thickness of the mor-
tar layers. A contact-based approach developed within the DEM scheme is implemented 
for the numerical analysis of the cross-vault model, as illustrated in Fig. 4. This approach 
represents the unit-mortar interfaces as assemblages of cohesive-frictional contact points 
(CPs) comprising three orthogonal springs (two in shear and one in normal directions). The 
extended masonry units are modeled as deformable blocks discretized into constant-strain 
tetrahedra with three degrees of freedom at each node. As the relative distance between two 
blocks falls within the specified tolerance of a fictitious plane (termed the common plane 
by Cundall (1988)) that bisects the contacting blocks, the blocks are assumed to be in con-

Fig. 3  Experimental crack patterns at the end of tests for 50% and 75% of AQA EQ amplitude Bianchini 
et al. (2024a)
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tact, and the CPs are generated automatically. These CPs are then connected to the adjacent 
CPs generated within the common plane to create the interface, as shown in Fig. 4.

The equations of motion in DEM for static and dynamic problems are solved through 
an explicit time-marching integration scheme. This scheme is advantageous, particularly in 
the dynamic analysis of complex systems, as it allows continuous updates of the structural 
geometry and contact recognition as the simulation progresses, as well as finite (large) dis-
placements and rotations of the blocks while maintaining the overall stability of the system. 
One drawback of the explicit solver is that small timesteps are needed to maintain numeri-
cal stability. The critical timestep is calculated in Eq. 1 (Lemos 2008), without considering 
damping. 

	
∆t = 2

ωmax
where ωmax = max

(√
ki

mi

)
� (1)

where mi and ki are the mass and stiffness associated with node i, respectively. The ωmax 
term is an upper bound to the highest eigenfrequency of the linear elastic system, estimated 
with a conservative upper estimate of the stiffness to reduce the computational effort. For 
deformable block configuration with constant strain tetrahedral elements, the nodal stiffness 
ki comprises both the stiffness of the element ktet,i and the contact stiffness kn,i, where 
applicable (see Eq. 2 (Belytschko et al. 2013)). 

	
ki = kn,i + ktet,i where ktet,i =

(
K + 4

3
G

) (
3A

h

)
� (2)

Fig. 4  Simplified micro-modelling strategy in DEM
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where K and G are the bulk and shear moduli, respectively, A is the largest tetrahedral area, 
and h is the shortest height of the tetrahedron. Finding a balance between the size of the 
tetrahedral elements (in terms of area and edge length) and their total number is essential 
for achieving an optimal stable timestep while maintaining the accuracy and efficiency of 
the numerical model. From Eq. (1)–Eq. (2), the stability controller is expressed in Eq. (3). 

	
ωmax = max

i

√
ki

mi
= max

i

√
kn,i + ktet,i

mi

� (3)

For constant–strain tetrahedra, refining the mesh decreases the shortest height h (and typi-
cally increases the ratio A/h), which increases ktet,i and hence ωmax. In addition, larger 
contact stiffnesses kn,i (when contacts are active) further raise ki. Because the lumped nodal 
mass mi scales with the element volume, the net effect of refinement is an increase in ki/mi, 
so that the critical explicit time step ∆tcrit = 2

ωmax
 decreases with mesh refinement and 

with stiffer contacts. In practice, there is a trade–off between spatial resolution and computa-
tional cost. We choose the tetrahedral size such that the target frequency band is represented 
while keeping ∆tcrit within feasible limits.

Energy dissipation in the dynamic analysis of masonry structures using DEM can be 
represented through viscous damping (e.g., Rayleigh or Maxwell damping), and the con-
stitutive model of the contact points representing the unit-mortar interfaces, including fric-
tional damping (Coulomb stick–slip dissipation) at the contacts. This paper investigates 
the dynamic behaviour of the cross-vault model with and without the presence of viscous 
damping. Different constitutive models are adopted depending on the contacting compo-
nents to better represent the mechanical behaviour of the masonry and other components. 
The implemented contact constitutive model in the simulation of the cross-vault model is 
illustrated in Fig. 5 (Oktiovan et al. 2023b).

The elastic joint model (Fig. 5A) governs the interface behaviour through normal and 
shear stiffnesses, without incorporating any strength limits, and thus applies uniformly 
across all loading regimes. In the present setup, elastic joints are used for the auxiliary ele-
ments (backframe connectors and fixtures), where a linear elastic transfer of forces without 
inelastic mechanisms is intended. The Mohr–Coulomb joint model (Fig. 5B) builds upon 
the elastic formulation by introducing strength limits in tension (fT) and shear τmax, which 
degrade to the residual shear strength τres upon failure. We employ Mohr–Coulomb joints 
at the interfaces of the movable piers, where frictional strength and potential sliding govern 
the response.

The mortar joints in the discontinuum-based analysis of the cross-vault are modeled 
using the elasto–softening joint model (Fig. 5C), which provides a phenomenological repre-
sentation of cracking, shearing, and crushing of masonry constituents through the unit–mor-
tar interfaces Pulatsu (2023). This elasto–softening formulation is adopted for all masonry 
unit–mortar interfaces and for the infill-to-structure contacts, to capture tensile cracking, 
shear degradation, and compressive crushing. The fracture energies governing the post-peak 
behaviour in tension, shear, and compression regimes are defined empirically through Eq. 
(4) to (6), respectively Lourenço (2010). 

	 GI
f = 0.025(2ft)0.7� (4)
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	 GII
f = 10GI

f � (5)

	 Gc = 15 + 0.43fc − 0.0036f2
c � (6)

Equation (4) for Mode I and Eq. (6) for compression follow empirical relations reported in 
the CEB–FIP Model Code 1990 (CEBFIP1990 (1993)) for normal-weight concrete. Equa-
tion (5) adopts a common masonry-interface assumption used in micro/meso-modelling. 

Fig. 5  Implemented contact model (Oktiovan et al. 2023b)
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These expressions were originally devised for concrete and are used here by analogy for 
clay-brick masonry unit–mortar interfaces: parameters are reported in N/mm with strengths 
in MPa, and final values are calibrated to the target softening behaviour of the adopted 
elasto–softening joint law. This model also accounts for energy dissipation via hysteresis 
effects observed during unloading and reloading cycles. Contact stiffness degradation is 
considered in tension and compression for loading-unloading cycles, whereas the same ini-
tial stiffness is used upon unloading after peak strength in shear. Further details regarding 
the contact model can be found in Pulatsu (2023).

3.2  Description of the cross-vault numerical model

The cross-vault numerical model for this paper was taken from the work of Oktiovan et al. 
(2023b), from which the baseline model used in this work was taken and adapted according 
to the new scope of this paper. The model was built using COMPAS Masonry, an open-
source computational framework for assessing unreinforced masonry structures (Iannuzzo 
et al. 2021). For details regarding the geometrical generation of the cross-vault model, read-
ers are referred to Oktiovan et al. (2023b).

The mesh discretization of the cross-vault model in the DEM software 3DEC (Itasca 
Consulting Group Inc 2013), utilized for the numerical analysis presented herein, is shown 
in Fig. 6a. The wheel system on the movable piers (Fig. 2) is disregarded in the numerical 
model due to modelling complexity. To allow the movable piers to slide along the horizontal 
directions, a significantly low shear stiffness and friction angle are applied to the contact 
points between them and the shake table base. As explained by Oktiovan et al. (2023b), 
movable piers and concrete foundation are meshed independently, considering different 
CST element edge-lengths to eliminate irregular meshes that could bottleneck the critical 
timestep of the system Eq.(1).

The maximum edge length for the tetrahedral elements of the masonry components is 
set to 25 cm while the maximum edge length for the steel frame and movable piers is set to 
50 cm. The maximum edge length for the concrete elements (vault support, tie anchors, and 
shake table base) is set to 25 cm. The steel ties were also modeled using truss structural ele-
ments, with one degree of freedom at each end and a perfect connection to the tie anchors. 
The cross-section of the steel ties is 8 × 10−4 m2 and the density is set to 7800 kg m2. The 
contact discretization on each component of the cross-vault model is presented in Fig. 6b. 
The elastic joint model is defined for the contacts between the steel frame parts and the 

Fig. 6  Mesh discretization of the cross-vault components
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other components. In contrast, the Mohr-Coulomb joint model with zero tensile strength, 
cohesion, and low friction is implemented on the movable piers to simulate the dry joint 
connection between them and the shake table base. The elasto-softening joint model is used 
to make contacts within the vault and infill components, better representing the mechanical 
behaviour of masonry constituents.

The material properties obtained from the material characterization test Bianchini et al. 
(2024a) and used as the modelling input parameters are summarized in Table 1. The normal 
and shear stiffnesses needed for the contact constitutive laws are obtained using Eq. (7) 
(Lourenço 1996)), where tm is the thickness of the actual mortar layer. There is no distinc-
tion between parallel and perpendicular joints to the web of the vault in the cross-vault 
model for this paper. 

	
kn = EbEm

tm (Eb − Em)
and ks = kn

2(1 + v) � (7)

The normal and shear stiffnesses defined in Eq. (7) apply only to the brick-to-brick con-
tacts, i.e., the contact points with the elasto-softening joint constitutive model. For the linear 
elastic joint model, the normal and shear stiffnesses are set to a relatively high value of 
100 GPa m−1. For the Mohr-Coulomb joint model, the normal stiffness is set to 10 GPa m−1 
to avoid interpenetration of the movable piers to the shake table base. The shear stiffness is 
equal to 0.01 GPa m−1 while the cohesive strength and friction angle are set to 0 MPa and 
1◦, respectively. Additionally, the density and Young’s modulus of the auxiliary components 
are provided in Table 2. Since there are steel parts connecting the fixed piers, the density for 
the back frame is modified such that the numerical prediction error is negligible.

Density scaling is commonly used to enhance the computational efficiency of explicit 
solvers in the DEM, particularly for large and geometrically complex models (Malomo et 
al. 2019). In this approach, the density of certain elements is artificially increased to per-

Table 1  Material properties used for the modelling input parameters (Bianchini et al. 2024a)
Units Mortar Interface/joints
Young’s modulusa Poisson 

ratio
Young’s modulusa Tensile 

strength
Comp. 
strength

Cohesion Fric-
tion 
angle

[0.3 cm]Eb v Em ft fc c ϕ
MPa - MPa MPa MPa MPa deg
6200 0.25 370.05 0.3 9.1 0.3 38
a Modulus of elasticity was obtained from the average slope of the secant line at 50% and 80% compressive 
strength

Component Density Young’s modulus Poisson ratio
ρ E v
kg/m3 GPa -

Back Frame Steel 10685 200 0.3
Rolling Piers 5570 200 0.3
Tie Anchors 2000 200 0.3
Concrete 2000 25 0.3

Table 2  Density and Young’s 
modulus of the auxiliary 
components
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mit a larger stable timestep, thereby reducing the overall simulation time. However, global 
density scaling—where the mass of all elements in the model is uniformly increased—can 
introduce significant inertial artefacts, making it unsuitable for dynamic simulations.

Nonetheless, small or highly distorted tetrahedral elements may still form during auto-
matic mesh generation. These elements typically control the critical timestep due to their 
high stiffness-to-mass ratios, necessitating substantial timestep reductions to maintain 
numerical stability for the explicit integration scheme. To address this, partial density scal-
ing is applied selectively to only the distorted elements. This localised adjustment increases 
their mass enough to meet a prescribed timestep, without significantly altering the system’s 
total mass. In 3DEC, the partial density scaling is applied by specifying a target timestep, 
allowing the program to apply the necessary amount of density scaling to the system to 
achieve that timestep.

The density scaling factor (dsf) shown in Fig. 7 is defined as a nodal mass multiplier, 
dsfi = mscaled

i /mreal
i . Hence, dsf = 1.0 indicates no mass scaling, while dsf > 1.0 indi-

cates added mass. Without applying partial density scaling, the critical timestep for the 
cross-vault model is limited to 5.27 × 10−7 s. By increasing the timestep to 1.25 × 10−6 s 
through partial density scaling, the total system mass increases by only 5.92%. Furthermore, 
as illustrated in Fig. 7, density scaling is confined to the steel components and tie anchors, 
which are not expected to influence the structural behaviour of the vault. Consequently, the 
numerical simulations presented in the following section employ density scaling with the 
target timestep of 1.25 × 10−6 s.

4  Damping for discrete dynamic problems

For solving dynamic problems using the Distinct Element Method, the numerical simula-
tions should account for the forces required to stabilize the out-of-balance forces and the 
damping required to simulate the energy dissipation of the actual system when subjected 
to dynamic loading. In the case of dynamic analysis, viscous damping in the form of Ray-

Fig. 7  Density scaling factor plot of the cross-vault model with the target timestep of 1.25 × 10−6 s
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leigh damping formulation is typically used to dampen the oscillation of the system (Bathe 
and Wilson 1976), described in Sect. 4.1.The alternative damping scheme called Maxwell 
damping is implemented in this study, and the formulation is described in Sect. 4.2.

4.1  Rayleigh damping

Consider the equation of motion for a linear elastic multi-degree-of-freedom (MDOF) sys-
tem, as shown in Eq. (8). 

	 Mü(t) + Cu̇(t) + Ku(t) = 0� (8)

where M, C, and K are the mass, damping, and stiffness matrices, respectively, and ü(t), 
u̇(t), and u(t) are the acceleration, velocity, and displacement vectors at time t. Rayleigh 
damping is defined as a linear combination of mass and stiffness matrices, expressed in Eq. 
(9). 

	 C = αM + βK� (9)

where α and β are the mass-proportional and stiffness-proportional damping constants, 
respectively. The critical damping ratio ζ at any given angular frequency ω can be obtained 
as presented in Eq. (10). 

	
ζn = 1

2

(
α

ωn
+ βωn

)
� (10)

The plot of the variation of the damping ratio towards the natural frequency is presented 
in Fig. 8. Aside from the Rayleigh damping variation from Eq. (10), the mass and stiff-
ness components of the equation are also separated in Fig. 8. It can be seen that the mass-
proportional damping provides a higher damping ratio at a lower frequency range, while 
the stiffness-proportional damps the higher frequency range. Several authors have utilized 
only the mass-proportional component of the Rayleigh damping for the dynamic analysis of 
masonry structures (Oktiovan et al. 2023b; Bianchini et al. 2024b; Masi et al. 2020; Galvez 

Fig. 8  Rayleigh damping and its 
components plot over natural 
frequency
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et al. 2022b; Peña et al. 2007; Malomo and DeJong 2022; Kim et al. 2021; de Felice et al. 
2022), successfully matching the numerical prediction against the experimentally observed 
values while disregarding the fact that the low-frequency range is overdamped and the high-
frequency range is underdamped. Furthermore, the fundamental frequency of the numerical 
system at the damaged state could be reduced even further than the fundamental frequency 
at the undamaged state due to the progressive softening when nonlinear models are used. 
The damaged dominant frequency could fall into the low-frequency range for the mass-pro-
portional damping in Fig. 8, resulting in an overdamped response at the failure or collapse 
condition of the numerical models.

On the other hand, due to the explicit time-marching integration scheme, the stiffness-
proportional part of the Rayleigh damping is also discouraged in the DEM framework for 
analyzing complex masonry structures. Although the explicit algorithm for the DEM frame-
work is sufficiently robust as it does not require matrix solutions and intricate techniques to 
deal with convergence issues, the algorithm is conditionally stable on the limiting timestep 
required to achieve stability (Eq. 1). With the stiffness-proportional damping considered, the 
limiting timestep is calculated according to Eq. (11) (Belytschko 1983). 

	
∆t = 2

ωmax

(√
1 + ζ2

max − ζmax

)
� (11)

where ζmax is the critical damping ratio at ωmax. As the damping ratio increases linearly with 
the given frequency for stiffness-proportional damping (Fig. 8), the term in parenthesis in 
Eq. (11) causes a significant reduction to the limiting timestep Δt, up to one or two orders of 
magnitude (Lemos and Sarhosis 2023). The computational effort due to the timestep limita-
tion could work under simple models or models with rigid block formulation. However, the 
reduction due to the stiffness-proportional component could be prohibitive in the complex 
cross-vault model with a deformable block configuration with many degrees of freedom.

4.2  Maxwell damping

Considering the limitation above on using Rayleigh damping for dynamic analysis, several 
researchers have used springs and dashpots placed in series to dissipate energy, termed the 
Maxwell element. Dawson and Cheng (2021) implemented a Maxwell damping formula-
tion on finite elements using an explicit time-marching integration scheme for geotechnical 
seismic analysis. Lemos et al. (2022) implemented a similar formulation for the numerical 
analysis of rigid blocks using the DEM framework and extended the implementation for the 
dynamic analysis of masonry arches (Lemos and Sarhosis 2023). The Maxwell elements are 
applied in the joints between the blocks in DEM, as shown in Fig. 9. Maxwell spring–dash-
pot branches are attached in parallel to the internal tetrahedral elements of the deformable 
blocks, following the finite-element implementation of Dawson and Cheng (2021), where 
Maxwell branches are added in parallel to element stiffness and formulated in a modal/state-
space form. This provides frequency-selective viscous dissipation with negligible change to 
the static elastic response. Dynamically, the added parallel stiffness produces only a small 
upward shift of natural frequencies and avoids the severe timestep penalties associated with 
stiffness-proportional Rayleigh damping.
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Through the joint constitutive model, the contact points relate the relative displacements 
and velocities between the blocks to the contact forces. The Maxwell elements are added 
in parallel with this joint constitutive model (represented in the forms of normal and shear 
springs in Fig. 9) and are subjected to the same relative displacements as the joint model.

4.2.1  Formulation for a single Maxwell element

The mathematical formulation for a single Maxwell element is hereby defined first. For sim-
plicity, the mathematical formulation is explained in generic expressions that cover both the 
normal and shear directions. The Maxwell damping scheme concept is based on the Stan-
dard Linear Solid (SLS) model, which consists of two parallel systems: a Maxwell ‘arm’ 
with spring and dashpot in series and another system with only spring. The total joint stress 
in one contact point is the sum due to the joint constitutive model σj and the stress obtained 
from the Maxwell element σm.

The stress due to the constitutive model σj is a function of the elastic stiffness and the 
joint relative displacement under the linear elastic law. Meanwhile, the Maxwell element 
stress is explained in the standard visco-elastic equation (Findley and Davis 2013) where the 
joint displacement rate u̇ is related to the Maxwell element stress σm and the stress rate ˙σm. 
The relation is defined in Eq. (12). 

	
u̇ =

˙σm

α · k
+ σm

η
� (12)

where α is the non-dimensional factor that defines the Maxwell spring as a fraction of the 
joint stiffness k, and the viscosity parameter η relates the joint stress to the joint displace-
ment rate. The differential equation in Eq. (12) is solved in the frequency domain using 
the phasor method, where a steady–state harmonic motion is assumed and substituted to 
u(t) = ℜ{û eiωt} (and likewise for the internal variables), which yields the complex–
amplitude relation summarized in Eq. (13). Note that, due to the viscous dashpot, stress and 
displacement are not in phase. In Eq. (13), u0 and σ0 denote the complex amplitudes (pha-
sors) of displacement and stress, respectively. 

	 u = u0 exp (iωt) and σm = σm
0 exp (iωt)� (13)

Fig. 9  Maxwell elements at the interface level
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where ω is the angular frequency, u0 and σm
0  are the complex amplitudes of the displace-

ments and Maxwell stress, respectively, which is governed by a complex modulus kM , 
expressed in Eq. (14). 

	
σm

0 = kMu0 where M = ατ2ω2

1 + τ2ω2 + i
ατω

1 + τ2ω2 � (14)

where τ is the relaxation time, the ratio of viscosity η to elastic stiffness kM = αk. Since the 
SLS model comprises the Maxwell component and the elastic spring that acts in parallel, 
the stiffness of the SLS system is simply the sum of the individual stiffness. Therefore, the 
normalized complex modulus is given by Eq. 15. 

	
MT = 1 + M = 1 + ατ2ω2

1 + τ2ω2 + i
ατω

1 + τ2ω2 � (15)

The critical damping ratio for the SLS model is then defined as the ratio of the imaginary 
and the real terms of the complex modulus (Dawson and Cheng 2021; Bland 2016), pre-
sented in Eq. (16). The critical damping ratio reaches the maximum value ζmax at the fre-
quency of ωmax, as expressed in Eq. (17). 

	

ζ = Im(MT )
2Re(MT )

= α τ ω

2
[
1 + (τω)2(1 + α)

] � (16)

where 

	
ζmax = α

4
√

1 + α
at ωmax = 1

τ
√

1 + α
� (17)

The spring in the Maxwell element increases the overall stiffness of the joint, which is 
represented by the absolute value of the complex modulus, as shown in Eq. (18). At low 
excitation frequencies (ω → 0), the dashpots do not resist (their stress tends to zero), so the 
effective stiffness is that of the main elastic springs alone. At high frequencies (ω → ∞), 
the dashpots behave as rigid links (no dashpot deformation), and the effective stiffness tends 
to the sum of the main spring and all Maxwell-branch springs. At intermediate frequencies, 
the dashpots deform and carry stress, dissipating energy and yielding a nonzero damping 
ratio ζ(ω). 

	
|MT | =

√
1 + α(2 + α) τ2ω2

1 + τ2ω2 where |MT |max = 1 + α� (18)

4.2.2  Formulation for multiple Maxwell elements

The general case for the Maxwell damping scheme comprises multiple Maxwell elements 
stacked in parallel along with the joint stiffness, as shown in Fig. 9. The Maxwell elements 
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are subjected to the same joint displacements, and the contact stress is calculated as the sum 
of the joint stress and all of the Maxwell element stresses. Figure 10a shows the plot of the 
damping ratio of each element Eq. (16) as a function of frequency, for a target damping ratio 
of 4% in the range 1 Hz to 40 Hz. The combined damping ratio (red curve in Fig. 10a) is 
obtained through the ratio of the imaginary and real components of the total complex modu-
lus from multiple Maxwell elements, as shown in Eq. (19) for n Maxwell elements. Lemos 
and Sarhosis (2023) and Dawson and Cheng (2021) have shown that using three Maxwell 
elements is enough to provide a uniform damping over a range of frequencies. It is evident 
from Fig. 10a that the damping ratio is relatively uniform within the specified range of fre-
quencies while gradually decreasing outside of that range.

	
ζn = Im(MTn )

2Re(MTn )
where MTn

= 1 +
n∑
i

(M)i� (19)

Similar to the SLS model with a single Maxwell element, the magnitude of the total com-
plex modulus in Eq. (19) imposes an increase in the joint stiffness due to the presence of 
the Maxwell elements. The plot of the magnitude of the total complex modulus at any given 
frequency is shown in Fig. 10b. The increase in the system’s response frequency is propor-
tional to the square root of the total modulus factor (Lemos and Sarhosis 2023). In the case 
of the three Maxwell elements in Fig. 10a and the corresponding dynamic modulus in Fig. 
10b, the modulus reaches a maximum value of 1.39, which means that the Maxwell damp-
ing with three elements will impose an increase of approximately 1.18 in the upper-bound 
of the frequency range. The stiffness increase also causes a reduction of timestep in the 
explicit solver (Lemos and Sarhosis 2023), as presented in Eq. (20). The term in parentheses 
is the reduction of timestep imposed by the Maxwell damping scheme, with the sum of the 
α parameters representing the stiffness increase. The reduction due to Maxwell damping is 
smaller than Eq. (11). 

	
∆t <

2
ωmax

(
1√

1 +
∑n

i αi

)
� (20)

Fig. 10  Plot of damping ratio and magnitude of the total complex modulus vs input frequency for three 
Maxwell elements
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The Maxwell damping elements are deactivated at the onset of tensile and shear failure, 
similar to the procedure used in stiffness-proportional damping, as the stiffness-proportional 
β component is implemented directly into the joint model.

4.2.3  Optimization algorithm for Maxwell damping parameters

While center frequencies and damping ratios can be tuned by trial-and-error (as in prior 
uses of Maxwell damping, e.g., (Lemos et al. 2022; Lemos and Sarhosis 2023; Dawson and 
Cheng 2021)), this work determines them by solving a nonlinear least-squares optimization 
problem that targets an approximately constant damping ratio ζ⋆ over a specified frequency 
range [ωlb, ωub]. To that end, a set of M = 500 logarithmically spaced evaluation frequencies 
is sampled within the prescribed band: 

	
ωj = ωlb

(
ωub

ωlb

) j−1
M−1

, j = 1, . . . , M,� (21)

and the Maxwell parameters are identified by minimizing Eq. (22). 

	
min

{αr,τr}3
r=1

M∑
j=1

[ζ⋆ − ζ(ωj ; α, τ )]2 .� (22)

where α = {α1, α2, α3} and τ = {τ1, τ2, τ3}. To enforce bounds and ordering on the 
branch center frequencies without inequality constraints, unconstrained variables νk ∈ R 
are mapped to strictly ordered scalars tr ∈ (0, 1) via Eq. (23). 

	
tr = σ(νr)

r−1∏
k=1

[1 − σ(νk)], r = 1, 2, 3� (23)

with σ(u) = (1 + e−u)−1. Center frequencies are then set by a log–linear map on the pre-
scribed band in Eq. (24). 

	 ωr = ω tr

lb ω 1−tr

ub , r = 1, 2, 3,� (24)

Enforcing Eq. (24) follows that: 

	 ωlb ≤ ω1 < ω2 < ω3 ≤ ωub.� (25)

Frequencies outside [ωlb, ωub] are not sampled and not part of the objective. The input 
parameter for the optimization algorithm is thus constrained to the target damping ratio 
ζ⋆, and the frequency band [ωlb, ωub]. The initial guess for the damping parameters at each 
Maxwell element is arbitrarily defined.

The objective in Eq. (22) is solved as nonlinear least squares with the Levenberg–Mar-
quardt (LM) algorithm. Unless stated otherwise, equal weights are used, a gradient (infinity-
norm) tolerance of 10−9 is adopted, and the maximum number of iterations is set to 200. 
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Initial values place ωr uniformly on the log scale in [ωlb, ωub]. Up to three small random 
restarts are allowed, and the best solution is retained.

The fitted damping curve is compared against the parameters reported by Lemos and 
Sarhosis (2023). For this comparison, the frequency band is set to 1 Hz to 40 Hz and the tar-
get damping ratio set to 5%, matching Lemos and Sarhosis (2023), while the initial guesses 
of the damping ratios for the three Maxwell branches are randomized. Figure 11 plots 
ζ(ω) for the initial guess (green), the LM-converged fit (red), and the reference parameters 
from Lemos and Sarhosis (2023) (blue). In the case shown, convergence is achieved in eight 
LM iterations, and the fitted parameters reproduce the nearly uniform target damping within 
the specified band to a high degree of accuracy. The same optimization setup (band, grid, 
solver, and mappings) is used in all subsequent numerical analyses.

The Maxwell damping is assigned per contact point (and per internal tetrahedral link for 
deformable blocks), with three parallel Maxwell branches at each contact. Consequently, 
the formulation is mesh-agnostic as refining the discretization only changes the number 
of contacts, not the damping law at a contact. The parameter identification in Eq. (22) is 
also independent of mesh size and contact count. It fits dimensionless branch fractions and 
branch center frequencies/relaxation times to realize an approximately constant ζ(ω) over 
a prescribed band, and the resulting three-branch set is applied uniformly to all contacts. If 
a change in discretization alters the model’s resolvable frequency band (through ωmax or 
numerical dispersion), the same optimization is re-run with the updated [ωlb, ωub].

Fig. 11  Comparison of the Levenberg-Marquardt predicted Maxwell damping parameters against those 
reported by Lemos and Sarhosis (2023)
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5  Comparison of damping schemes for seismic analysis - significant 
duration method

For the numerical analysis a fixed time window t = 0–15 s is used, extracted from the 25 s 
sample of the ground–motion record. This window contains 97% of the Arias intensity of 
that 25 s sample (the effective duration based on the 5–95% interval is 8.28 s). Due to 
the extremely small timesteps required by the stiffness-proportional and Rayleigh damping 
schemes—4 × 10−10 s and 5 × 10−9 s, respectively—even when partial density scaling is 
applied, the computational cost of performing a complete incremental dynamic analysis 
for the cross-vault model is prohibitively high. Consequently, in this section, the perfor-
mance of the Maxwell damping scheme is evaluated only against the experimental results 
and benchmarked against the mass-proportional (MassProp) and zero viscous damping 
(noDamp) schemes. The plot of damping ratio over the frequency range for the MassProp 
and Maxwell models is shown in Fig. 12. It is important to highlight that noDamp model 
refers to the absence of viscous damping (e.g. Rayleigh or Maxwell damping), while the 
hysteretic damping is still present through the joint constitutive model.

The damping ratio for the MassProp model is taken at 4% with a center frequency of 
7.5 Hz. The center frequency corresponds to the first mode natural frequency of the cross-
vault model, which is slightly shifted to account for the reduction of the natural frequency 
due to damage. Meanwhile, the damping for the Maxwell model is set to 3% with a fre-
quency range of 1 Hz to 40 Hz. The damping ratio is taken according to the previous pre-
diction made by Oktiovan et al. (2023b) and suggestions provided by other researchers for 
masonry structures Bianchini et al. (2024b). The performance of each damping scheme is 
compared through the displacement and acceleration responses and damage patterns. All 

Fig. 12  Plot of critical damping ratio over frequency for mass-proportional damping and Maxwell 
damping
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numerical models were conducted sequentially on a workstation with a Ryzen Threadripper 
Pro 5945WX processor (12-cores 4.1 GHz) and 256 GB of memory, on 3DEC v7.0.160.

To reduce bias from the damping parameters selection, a focused sweep was perormed 
around the selected damping parameters for both the MassProp and Maxwell models. For 
MassProp, target ratios ζ∗ ∈{2, 3, 4, 5}% and center frequencies fc ∈{3, 7.5, 15} Hz were 
tested. The target ratios were selected based on common practice for masonry structures, 
covering the accepted light-damping range for masonry with 5% as the code-reference spec-
trum  (CEN 2004) and 2% to 5% as the commonly adopted near-linear regime. Meanwhile, 
the center frequencies were selected to cover the dominant response band of the undamaged 
and damaged states of the vault, with a simple octave spacing. This selection follows stan-
dard guidance for viscous damping calibration in structural dynamics  (Chopra 2017) where 
band that contributes the most to the structural response was tuned to avoid unrealistically 
low/high targets that the model cannot resolve reliably.

For Maxwell, branches were identified on the fixed band [1, 40] Hz with ζ∗ ∈{2, 3, 4, 5}%. 
The [1, 40] Hz band is the intersection of the input’s dominant content with the model’s 
resolvable spectrum. A much wider band (e.g., [1, 4000] Hz) lie largely outside the numeri-
cally meaningful range for this DEM discretization. Results are summarized for a displace-
ment/drift channel (OC1-y) and the acceleration channel (ACC18-y) at the vault crown in 
Fig. 13.

For MassProp, ACC18-y favors larger fc and ζ∗, while OC1-y favors moderate values at 
fc = 7.5 Hz and ζ∗ = 4%. The balanced setting MP: ζ∗ =4% at fc =7.5 Hz was retained 
for validation runs to keep drift bias small while avoiding excessive low-mode damping. 
For Maxwell on [1, 40] Hz, ACC18-y improves with increasing ζ∗, while OC1-y shows the 
smallest bias at ζ∗ ≈3%. The balanced setting Maxwell: ζ∗ =3% on [1, 40] Hz was adopted, 
prioritizing displacement while keeping accelerations acceptable. The summary is given in 
Table 3.

5.1  Displacement predictions

Comparison of the displacement responses from each damping scheme along the North-
South direction at the crown of the cross-vault (the OC1-y measurement point in Fig. 2a) 
is shown in Fig. 14 from AQA25 to AQA75. The comparison initially examines the vault 
crown, as significant damage was noted during the last dynamic run (AQA75), allowing 
for a direct comparison of the performance of the damping schemes. It is important to note 
that the experimental displacement response was initialized to zero by subtracting all values 
from the first entry. At the 25% seismic load increment, the response of all models is identi-
cal, even up to the end of the analysis. Beyond 10 s, the predicted displacement response 
deviated by 18% for the MassProp and Maxwell models, and 20% for the noDamp model, 
compared to the experimentally observed values. This is due to observable diagonal cracks 
along the connections between the infill and cross-vault bricks (Bianchini et al. 2024a), 
which closed under the self-weight of the vault at the end of the shock.

The behaviour is relatively similar at the 50% seismic load increment, where the maxi-
mum peak at the positive loading direction was predicted significantly well by all com-
pared damping schemes. When the seismic load changes direction at the dynamic time of 
4 s, which was triggered by a low-frequency high-amplitude acceleration as shown in Fig. 
2b, the prediction of the MassProp and Maxwell model underestimated the experimentally 
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observed response by 18%. This is due to the activation of frequency-dependent viscous 
damping on the mass-proportional and Maxwell damping schemes, in contrast to the sole 
presence of frequency-independent hysteretic damping in the noDamp model.

At 75% of the AQA eq., significant damage is observed at both the vault groins and webs 
as reported by Bianchini et al. (2024a). Similar to the previous seismic load increment, the 
peak displacement in the positive loading direction is predicted significantly well by all 

Channel Scheme Best cell (grid) Selected 
(validation)

ACC18-y MP 5% @ 15 Hz: 40.2 4% @ 
7.5 Hz: 63.3

OC1-y MP 4% @ 7.5 Hz: 
−13.1

4% @ 
7.5 Hz: −13.1

ACC18-y Maxwell 
[1, 40] Hz

5%: 18.1 3%: 52.9

OC1-y Maxwell 
[1, 40] Hz

3%: 4.2 3%: 4.2

Table 3  Sensitivity analysis: best 
cells vs. selected settings (signed 
peak bias, %)

 

Fig. 13  Sensitivity analysis results for (a-b) MassProp and (c-d) Maxwell damping
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compared damping schemes. The seismic load that leads to the peak positive displacement 
(from time t = 0 s to 3 s) was the high frequency and relatively large amplitude, as presented 
in Fig. 2b. From time t = 3 s to 4 s, the seismic load input changes to a low-frequency 
and high-amplitude load. This transition to a low-frequency region causes the model with 
mass-proportional damping to overdamp the numerical model (Fig. 8). This results in the 
underestimated prediction of the negative peak displacement, as presented in the MassProp 
model with 75% load increment in Fig. 14.

In contrast, the Maxwell model predicts the peak displacement in the negative loading 
direction more accurately than the MassProp model, reducing the prediction error from 17% 
to 4%. The Maxwell damping does not overdamp the system’s response as the seismic load 
input transitioned from high to low frequency with large amplitude due to the relatively uni-
form damping ratio applied from 1 Hz to 40 Hz. However, the model response after the peak 
displacement in the negative loading direction is relatively similar to that of the MassProp 
model, with the overall prediction error of 12% beyond 4.2 s. The only exception is that the 

Fig. 14  Comparison of displacement response at the crown of the vault for each compared damping 
scheme
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Maxwell model experienced higher fluctuation at the sudden change of loading direction 
from t = 4 s to 11 s.

Similar to the previous two models, the noDamp model predicts the positive peak dis-
placement significantly well at the 75% increment of the AQA earthquake. The peak nega-
tive displacement is predicted with a 8% error, which is slightly better than the MassProp 
model but less accurate than the Maxwell model. This is postulated due to a more distributed 
failure of the joints found in the noDamp model compared to the MassProp and Maxwell 
models (Galvez et al. 2022a). As explained in the following section, the failure of the joints 
in the noDamp model is widely distributed along the web of the cross-vault in the North and 
West directions. The response of the noDamp model after the negative peak displacement is 
relatively similar to that of the MassProp model, with fewer fluctuations in the displacement 
response at the sudden change of direction, bringing the overall prediction error down to 
4%. However, the displacement response after the negative peak displacement is closer to 
the experimentally observed values.

The prediction errors for the maximum (positive-peak) and minimum (negative-peak) 
displacements at all observed optical cameras (OC1, OC2, and OC4) are presented in Fig. 
15a at the 75% of the AQA earthquake load. The locations of the optical cameras can be 
found in Fig. 2a. The comparison is done on the displacement parallel (North-South (NS), y) 
and perpendicular (East-West (EW), x) to the excitation direction. The displacement in the 
direction parallel to the seismic load is predicted relatively well, except for the OC2 mea-
surement point. Oktiovan et al. (2023b), Bianchini et al. (2024a, b) have reported that the 
OC2 measurement point experienced a relatively large rotational effect that caused discrep-
ancies in the displacement measurements (the maximum positive and negative displace-
ments of NS and EW were observed between t equal to 10 and 14 s). From Fig. 15a, the 
cross-vault model with Maxwell damping can predict the experimental response slightly 
better than the MassProp and noDamp models. The prediction differences in the collapse 
state cannot be observed, as full collapse was beyond the scope of the experiment. Never-

Fig. 15  Displacement prediction error metrics relative to experimental values
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theless, the relative errors of the absolute peak displacement on each damping scheme are 
17.53%, 4.4%, 8.82% for the MassProp, Maxwell, and noDamp models, respectively. This 
shows that the Maxwell damping model is 75 and 50% more accurate than the MassProp 
and noDamp models, respectively.

To observe the deviation of the numerical prediction from the experimental value, the root 
mean squared displacement (RMSD) is calculated and compared against the experimental 
RMSD. Let d ∈ {x, y} be the displacement in the East-West and North-South directions, 
respectively, k ∈ {1, 2, 4} be the measurement point at OC1, OC2, and OC4, and {ti}N

i=1 be 
the sampled times. For any signal uk,d(t) (both experimental and numerical), the RMSD is 
calculated as follows: 

	
RMSDk,d[u] =

√√√√ 1
N

N∑
i=1

(uk,d(ti))2� (26)

Averaged across the selected optical cameras: 

	
RMSDd[u] = 1

3

3∑
k=1

RMSDk,d[u]� (27)

which is then compared to the experimental RMSD to obtain the relative error: 

	
ϵd

RMSD =

∣∣∣RMSDd[u] − RMSDd[uexp]
∣∣∣

RMSDd[uexp]
× 100%� (28)

The averaged Normalized Root Mean Square Error (NRMSE) over the observed OCs is plot-
ted in Fig. 15b. The deviation between the predicted displacement responses in the North-
South direction for the MassProp and Maxwell models and the experimental responses 
increases as the applied seismic load increment rises. However, it is important to note that 
the relative error remains within 30% for both MassProp and Maxwell models. This finding 
is consistent with that of Bianchini et al. (2024b), where the numerically predicted displace-
ment response also deviated at the 75% seismic load increment. The RMSD of the noDamp 
model experiences a sharp increase in the seismic increase 75% due to the significant devia-
tion of the displacement response in OC2y and OC4y, as presented in Fig. 16.

On the other hand, the predictions of all compared models along the East-West direc-
tion, for which displacement values are comparably smaller, deviate from the experimental 
responses even at the 25% of AQA earthquake load, even though the relative error drop for 
the MassProp and Maxwell model at the 75% seismic load increment due to the presence 
of failure at the masonry joints. These differences are due to multiple factors, including the 
large rotational effects found in the experimental measurement of OC2 and the opening of 
web joints close to OC4 at the 25% load increment reported in the experiment (Bianchini et 
al. 2024a). These factors are not primarily caused by the different viscous damping mecha-
nisms applied to the numerical model. Furthermore, it is important to note that the displace-
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ment response in the transverse direction is significantly lower than that of the longitudinal 
direction (maximum of 7.5 mm on OC4x at AQA75 (Oktiovan et al. 2023b)).

Overall, the comparisons in Figs. 14 and 15a indicate good qualitative agreement between 
model predictions and measurements across the reported cases, with differences that are gen-
erally modest in amplitude and timing. Quantitatively, typical discrepancies are on the order 
of NRMSE ≈ 20% for response histories and a peak drift error at OC1y  of ≈ 20%. These 
figures should be interpreted as indicative rather than definitive: the number of test cases is 
limited and uncertainties in material properties and boundary conditions are non-negligible. 
Accordingly, the evidence supports the model’s ability to reproduce key response features 
under the tested conditions but does not warrant strong general claims; broader datasets 
would be required to substantiate such claims. Finally, differences in the collapse state can-
not be assessed here, as full collapse lay outside the scope of the experiment.

5.2  Damage pattern prediction

The numerically predicted damage patterns of the cross-vault model for each damping 
scheme at the end of each seismic load increment are presented in Fig. 17, with compari-
son to the experimental cracks in Fig. 3. The damage is viewed and compared only with 
the vault’s extrados, as the experimental damage distribution was the most apparent and 
representative in this section. The damage pattern is obtained by plotting the scalar dam-
age parameter based on the joint constitutive law proposed by Pulatsu (2023). At the 75% 
input level, the numerical response of all compared damping schemes is generally consis-
tent with the experimental observation in Fig. 3b. Among them, the Maxwell configuration 
provides the closest qualitative match in terms of first-crack locations, hinge formation at 

Fig. 16  Displacement response comparison of OC2y and OC4y at AQA75
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the haunches, and overall damage extent, while the other schemes capture the same mecha-
nisms with small differences in extent and localization.

At AQA25, all models show no relevant damage at the vault sections, consistent with 
the experimental response. At AQA50, the noDamp model suffers significant damage at 
the vault groins and connections to the infill elements. Failure at the Northern and Eastern 
webs is observed in the noDamp model (Fig. 17a). Meanwhile, only slight detachment is 
found at the northern web and the infill elements for the MassProp and Maxwell models. At 
AQA75 (Fig. 17b), the MassProp model exhibits detachment of the northwest and south-
east piers with damage at the vault groin distributed in all directions. Damage through the 
web is observed in the eastern section of the vault, propagating from the vault groin. The 
Maxwell model also exhibits damage at the vault groin, which propagates in all directions, 
even though the intensity was visibly less compared to the MassProp model. The cracks 
in the Maxwell model, which propagate from the vault groin, are also found through the 
northern, eastern, and western webs. The difference between the MassProp model and the 
Maxwell model is that the Maxwell model does not exhibit infill element detachments in 
the southeast section of the vault. Furthermore, the cracks on the northeastern groin of the 
Maxwell model drift slightly and propagate through the adjacent vault webs instead. This is 
postulated due to the formation of the hinge line away from the vault crown.

Fig. 17  Predicted damage pattern from the compared damping schemes at (a) AQA50 and (b) AQA75. 
Comparison is drawn to Fig. 3
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Finally, the joints of the noDamp model damaged at AQA50 are propagated further at 
AQA75. The cracks at the vault groin are found in all directions of the groin, but the inten-
sity was scattered, where the cracks in the northeastern groin are visibly lower than those 
in the other groins. Furthermore, detachments are observed in all connections between 
the infill and vault elements except for the northeast pier, followed by cracks propagating 
through the vault webs. Cracks propagating through the vault webs from the crown are 
observed in the noDamp model.

The noDamp configuration is used as a lower-bound damage-prone baseline: by exclud-
ing viscous damping, the model tends to anticipate crack initiations and propagations at 
earlier stages of the seismic loading (see Fig. 17a). While such early cracking cannot be 
entirely ruled out experimentally, especially for minor diagonal fractures, the measured 
sequence (Bianchini et al. 2024a) suggests that the time of occurrence and extent of diago-
nal cracking in the noDamp model are conservative relative to test observations. The close 
match of the noDamp displacement during the 0–6 s window of AQA50 (Fig. 14) reflects 
the system’s response before substantial joint degradation has occurred. Beyond that, the 
lack of frequency-dependent damping leads to noisier accelerations and sustained oscilla-
tions, as shown in the next subsection.

Overall, the comparisons in Figs. 17 and 3 indicate that the model captures the primary 
features of the observed damage pattern (locations of first cracking, dominant shear slip 
along unit–mortar interfaces, and hinge formation at the vault haunches). Differences remain 
in crack extent and exact localization, which are sensitive to thresholding and registration of 
the experimental images as well as to uncertainties in joint parameters and boundary condi-
tions. Given the limited number of tests and the qualitative nature of the available ground 
truth, these results should be viewed as indicative rather than conclusive. The figures are 
intended as the primary basis for comparison, and the observations support the model’s abil-
ity to reproduce salient damage mechanisms under the tested conditions, without warrant-
ing strong general claims. A broader validation with additional specimens and independent 
damage quantification would be needed for firmer conclusions.

5.3  Acceleration predictions

Further comparison of the performance of the damping schemes includes analyzing the 
model’s acceleration response compared to the data recorded by the accelerometers during 
the experiment. The experimental acceleration is determined by the accelerometers attached 
to the vault extrados. However, the acceleration response from the numerical model cannot 
be directly obtained, as the explicit solution procedure of the blocky system in 3DEC typi-
cally produces excessive noise in the higher frequency range. Therefore, the model output 
is first recorded as translational velocities at the corresponding global X or Y direction at 
the node closest to the instrument location. Accelerations are then obtained by numerical 
differentiation of these velocities using a centered finite-difference scheme on a uniform 
time grid. These accelerations are then immediately compared to the experimental results. 
This allows an averaged acceleration response over the given time interval to be obtained.

The acceleration prediction at the vault crown for each damping scheme is shown in Fig. 
18 at each seismic load increment. At 25% load increment, both MassProp and Maxwell 
models predict the acceleration response at the vault crown relatively well compared to the 
noDamp model. On the other hand, there is significant noise in the acceleration response of 
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the noDamp model, specifically at the low frequency and high amplitude sequence from t 
equals 3 s to 4 s.

At 50% load increment, the acceleration response of MassProp and Maxwell is relatively 
similar. The difference lies in the slightly higher amplitude from 4 s to 5 s for the Maxwell 
model. Since the noDamp model experiences significant damage at the vault groins, the 
northern web, and the detachments of infill elements (Fig. 17a), the acceleration response is 
noisier compared to the 25% load increment. Furthermore, the acceleration response beyond 
7 s shows a steady-state response which fluctuates between −2.5 m s−2 and 2.5 m s−2. This 
highlights that frequency-independent hysteretic damping is often inadequate to dampen the 
numerical model properly when subjected to seismic load.

At 75% load increment, the acceleration response of all compared damping schemes is 
considerably different. The MassProp acceleration response shows high fluctuations at the 
low-frequency, high-amplitude sequence. This is the consequence of impacts in opening 
and closing contacts, which generate high-frequency noise in the velocity and acceleration 
responses. Since mass-proportional damping is applied to the equations of motion, it has a 

Fig. 18  Comparison of acceleration response at the crown of the vault
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more marked effect on rigid body motion than the impacts between the blocks in contact. It 
has to rely on the hysteretic damping through the contact constitutive model.

The cross-vault model with Maxwell damping, on the other hand, can dampen the high-
frequency impact due to blocks in contact, as seen in the 75% load increment plot of the 
Maxwell model in Fig. 18. The acceleration response at the sequence between 3 s and 4 s is 
considerably lower compared to the MassProp model. Similar to the stiffness-proportional 
damping, the Maxwell damping is directly applied to the masonry joints, so the high-fre-
quency impact caused by the opening and closing contacts can be damped more effectively. 
The response beyond 4 s is similar to that of the MassProp model, where the viscous damp-
ing and the equilibrium state of the cross-vault dampen the acceleration response.

The noDamp model response is also considerably different. As damage in the vault groin 
and the webs already existed at the previous load increments, it is clear that the model started 
with high fluctuations of acceleration response between 0 s and 2 s. The low-frequency and 
high-amplitude excitation do not significantly affect the acceleration response at the vault 
crown, as the joints are already opened in this state. The steady-state response beyond 4 s 
persists until the end of the analysis.

The numerical prediction of the other observed accelerometers in Fig. 2a is presented 
in Fig. 19 regarding the relative error of the maximum and minimum acceleration to the 
experimental values. Given experimental acceleration aEXP(t) and numerical acceleration 
aNUM(t), define the experimental extremes over the analysis window J as Eq. (29) 

	
aEXP

max = max
t∈J

aEXP(t), aEXP
min = min

t∈J
aEXP(t),� (29)

and the numerical extremes aNUM
max , aNUM

min  analogously. The relative errors reported in Fig-
ure 19 are then defined as Eq. (30) 

Fig. 19  Relative error of maximum and minimum accelerations (NUM vs. EXP). Dark bars: REmax (max-
imum acceleration); light bars: REmin (minimum acceleration)
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REmax[%] = 100

∣∣ aNUM
max − aEXP

max
∣∣∣∣ aEXP

max
∣∣ , REmin[%] = 100

∣∣ aNUM
min − aEXP

min
∣∣∣∣ aEXP

min
∣∣ .� (30)

The acceleration responses in the X-direction (Fig. 19a) predicted by the Maxwell damping 
model agree relatively better with the experimental values than the MassProp and noDamp 
models. The Maxwell model overpredicts the Y-direction of the ACC14 and ACC18 accel-
erometers (Fig. 19b), corresponding to the southeast pier and vault crown, respectively. 
As previously observed at the measurement of OC-2, there was a large asymmetric move-
ment at the southeast pier that persisted until the end of the experiment. This asymmetric 
rotational movement was not captured in any numerical model. Furthermore, the discrep-
ancy found at ACC18 could be caused by the numerical artifacts, as extensive damage is 
observed at the vault crown. These numerical artifacts denote the spurious high-frequency 
content that can arise locally from rapid contact-state changes (stick-slip and open-close 
transitions) at the unit-mortar interfaces, mesh-dependent local modes of the tetrahedral 
blocks near the crown, and amplification introduced by numerical differentiation when com-
puting the numerical accelerations. These effects are most pronounced near the vault crown 
(ACC18), where damage initiates and contact transitions are most frequent. On average, 
the Maxwell damping model predicts the acceleration responses 64.68% and 74.73% more 
accurately than the MassProp and the noDamp model, respectively.

In conclusion, even though predicting the acceleration responses of an experimental 
shake-table test is challenging for a numerical model with an explicit solver, using appropri-
ate damping schemes could alleviate the difficulties by isolating the acceleration response 
due to numerical artifacts and the actual response due to the structure being subjected to 
excitations. It is also important to point out that solely hysteretic damping on seismic analy-
sis is inadequate to dampen the steady state acceleration response, as shown in Fig. 18.

5.4  Required computational times

The total elapsed time of all models for each level of seismic input is summarized in Table 
4. From the total elapsed time of the Maxwell model, it is evident that Eq. (20) imposes a 
slight reduction of the timestep required for numerical stability, which eventually causes 
an increase in the total elapsed time of the incremental dynamic analysis. In the case of the 
cross-vault model with Maxwell damping set at 3%, the total elapsed time is 50% longer 
than the model with mass-proportional damping set at 4%.

The noDamp model experiences a slight decrease of 8% in the total elapsed time com-
pared to the MassProp model. This difference can be attributed to many factors, including 
the processors’ performance and the variability in the complete mechanical cycle, which 
considers the total number of contacts, contact updates, calculation of internal stresses in 
the blocks, etc.

Table 4  Total elapsed time of all models divided for each level of seismic input
Model dynamic timestep AQA25 AQA50 AQA75 Total Time reduction vs Maxwell

[s] [min] [min] [min] [h] [%]
MassProp 1.25 × 10−6 1066.73 1057.00 1051.28 52.91 33.38
Maxwell 9.37 × 10−7 1633.15 1611.70 1522.12 79.43 -
noDamp 1.25 × 10−6 1066.73 909.48 935.63 48.53 38.90
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6  Comparison of damping schemes for seismic analysis with wavelet-
based truncation method

In the previous section, it was mentioned that conducting incremental dynamic analyses 
with complete input signals for the stiffness-proportional and Rayleigh damping schemes is 
complex due to the prohibitive timestep limitation (see Eq. (11)). This section presents mod-
ifications to the cross-vault model to facilitate the use of Rayleigh and stiffness-proportional 
damping schemes. However, even with these modifications, implementing stiffness-propor-
tional damping for a large and complex model, such as the one simulating a cross-vault, is 
still significantly prohibitive. Therefore, this section exclusively compares responses from 
the Rayleigh damping (Rayleigh) scheme against the mass-proportional damping (Mass), 
Maxwell damping (Maxwell), and zero viscous damping (noDamp) schemes.

6.1  Modifications on the numerical model and seismic record

This sub-section introduces two modifications that help simplify the numerical model and 
therefore improve computational efficiency.

6.1.1  Mixed discrete-continuum modelling approach

First, as shown in Fig. 7, the steel frame elements are subjected to significantly higher lev-
els of density scaling compared to the rest of the structure. This indicates that the smallest 
elements—those which govern the critical timestep of the system via the mi term in Eq. 
(1)—are concentrated within the steel frame. To address this bottleneck, a mixed discrete–
continuum modelling approach is adopted following Pulatsu et al. (2019). In this strategy, 
the steel frame is treated as an auxiliary structural component and modelled as rigid blocks, 
while the remainder of the structure is modelled using deformable blocks. Rendering the 
steel elements rigid not only eliminates their influence on the limiting timestep by removing 
their small deformable mesh size, but also reduces the overall geometrical complexity of the 
model. This simplification significantly increases the stable timestep, thereby improving the 
dynamic analysis’s computational efficiency.

This allows the target timestep for density scaling to be increased from 1.25 × 10−6 s to 
4.5 × 10−6 s with significantly less impact of the density scaling on the essential elements 
(e.g., vault, infill, or the pier elements). The mixed discrete-continuum model is then rerun 
with the same input signal used in Sect. 5. The comparison of the displacement response at 
the vault crown at each load increment is given in Fig. 20.

6.1.2  Wavelet-based truncation of the seismic record

Second, given the practical challenges in applying the same truncated input record used 
in Sect. 5 to models incorporating full Rayleigh damping, particularly the stiffness-pro-
portional (SP) variant, an alternative truncation strategy is introduced to improve feasi-
bility. For this purpose, the wavelet-based truncation method proposed by Repapis et al. 
(2020) is adopted. In this method, a single finite-duration pulse (termed the mother wave-
let) of Mavroeidis–Papageorgiou (M&P) type Mavroeidis et al. (2004) is fitted to the pro-
cessed velocity record. The MP pulse uses a cosine carrier under a raised-cosine envelope 

1 3



Bulletin of Earthquake Engineering

with parameters θ = {A, γ, Tp, t0, φ}: amplitude A, envelope width γ > 1, carrier period 
Tp, center time t0, and phase φ. Over its support t ∈ [t0 − γTp/2, t0 + γTp/2], the M&P 
pulse velocity is defined as Eq. (31) with closed-form expressions for aMP (t) and uMP (t) 
obtained by differentiation/integration. 

	
vMP (t) =




A

2

[
1 + cos

( 2π

γTp
(t − t0)

)]
cos

(2π

Tp
(t − t0) + φ

)
, t0 − γTp

2
≤ t ≤ t0 + γTp

2
,

0, otherwise.
� (31)

The carrier period is fixed at the dominant spectral peak, Tp = 0.526 s. With ξ = 0.05, the 
amplitude is scaled from the pseudo-spectral velocity at Tp as 

	
A =

4 ξ PSV(Tp)
1 − e−2πγξ

(
1 + (γ − 1)ξ

)
.� (32)

The remaining parameters are identified by maximizing the Pearson cross-correlation 
between vw(t) and the processed velocity v(t) over bounded grids: 

	γ ∈ [1.01, 10] (100 samples), t0 ∈ [0, 5] s (100 samples), φ ∈ [0, 396] (36 samples).

Peak constraints are imposed to avoid unrealistic pulses: 

	 |vMP |max ≤ 26.33 cm/s, |aMP |max ≤ 4.25 m/s2, |uMP |max ≤ 37 mm.

The optimal (γ⋆, t⋆
0, φ⋆) maximizes the correlation metric. The input window is the fitted 

pulse support 
[
t⋆
0 − γ⋆Tp

2 , t⋆
0 + γ⋆Tp

2
]
, applied to the original AQA record. This compact, 

reproducible selection follows the practical wavelet-based truncation logic by Repapis et 
al. (2020).

Figures 21a and b show the extracted wavelet pulse overlaid on the original input and 
the resulting truncated seismic signal, respectively. Applying this method to the AQA earth-
quake record results in a reduced input duration of 4.34 s, spanning from 0.86 s to 5.20 s. 
For comparison, the significant duration method (Trifunac and Brady 1975), which uses the 
10–90% Arias intensity range, yields an effective duration of 5.34 s (Bianchini et al. 2024a).

Fig. 20  Comparison of the OC1-y displacement response on mixed discrete-continuum and full 
deformable
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Figure 21b shows that the truncation method, with baseline correction, produced a coin-
ciding acceleration and velocity response. Still, the displacement plot is slightly different 
from that of the original EQ record. Furthermore, the truncated seismic record accounts 
for Arias intensity increase from 0% to 70%. Even though the accounted Arias intensity 
is lower than the significant duration-based truncation method (Trifunac and Brady 1975), 
it can be seen in Fig. 21b that the truncation passed through both the maximum and mini-
mum observed displacements. Considering that the wavelet-based truncation method is suf-
ficiently accurate to predict both displacement peaks, this method is used in the dynamic 
analysis of the cross-vault model using Rayleigh damping.

6.2  Comparative analysis of numerical results

In this subsection, incremental dynamic analysis up to the truncated AQA75 record is con-
ducted on the MassProp, Maxwell, noDamp, and Rayleigh models with the mixed discrete-
continuum representation. The displacement prediction and computational resources needed 
to complete the analysis based on the newly truncated record are compared.

The displacement response of each damping scheme at the vault crown (OC1-y) using the 
modified model and record at each seismic load increment is given in Fig. 22. At AQA25, 
the experimental maximum and minimum peak displacements are predicted significantly 
well across all damping schemes, as no damage is found at this stage, both numerically 
and experimentally. At AQA50, the maximum and minimum peak displacements from all 
damping schemes underestimated the experimentally observed displacements, with aver-
aged relative errors of 6.82% and 12.38% for the maximum and minimum peak displace-
ments, respectively. The maximum displacement prediction error increased at 75% scaling 
with an average error of 11.63%, although the minimum peak displacement prediction error 
drops to 4.93%.

The relative error to EXP at AQA75 on each observed measurement point is summarized 
in Fig. 23. There are no significant differences in the prediction error on OC2 and OC4 

Fig. 21  Truncated AQA EQ record using the wavelet method by Repapis et al. (2020)
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across all compared damping schemes. The Rayleigh damping model predicts the maximum 
and minimum peak displacement at the crown vault relatively better than the other damping 
schemes. However, when the prediction error is compared to the model with the longer seis-
mic record (Fig. 15), the OC1-y prediction error is relatively higher. This larger prediction 
error can be attributed to the truncation method, where the maximum peak displacement 
observed in the displacement history of the truncated EQ record (Fig. 21b) is lower than 
the full EQ record. Nevertheless, the truncation method coupled with the mixed-discrete 
continuum method to increase the target timestep is sufficiently capable of facilitating the 
dynamic analysis of complex structures using Rayleigh damping.

In this analysis with mixed-discrete block formulation, the dynamic timestep for each 
damping scheme has increased compared to the fully deformable model. The dynamic 
timesteps for the MassProp, Maxwell, noDamp, and Rayleigh models are 4.5 × 10−6 s, 
3.75 × 10−6 s, 4.5 × 10−6 s, and 1.47 × 10−8 s, respectively. Using the same computational 
resource as the one used for Sect. 5, the entire incremental dynamic analysis (up to AQA75) 
for the MassProp and noDamp models took 3.5 hours to complete, while the Maxwell model 
took 6.25 hours to complete. However, the Rayleigh model took 1.5 months to complete 
the entire run, even with the newly truncated seismic record. This concludes that although 
using the full Rayleigh damping scheme provides only a slight gain in accuracy in terms 
of displacement prediction, it is shown to be prohibitive for a complex model such as the 
cross-vault.

Fig. 22  The OC1-y displacement response prediction of each damping scheme using the modified model 
and truncated seismic record
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7  Conclusions

This study presents a comprehensive evaluation of damping schemes for the dynamic analy-
sis of unreinforced masonry (URM) cross-vaults, contributing significantly to the advance-
ment of seismic assessment techniques using the Distinct Element Method (DEM). A 
novel implementation of Maxwell damping is introduced, accompanied by an optimisation 
framework that enables the automated tuning of multiple Maxwell elements to achieve a 
near-uniform damping ratio over a specified frequency range. This approach eliminates the 
reliance on heuristic calibration or trial-and-error procedures, offering a systematic method 
for damping characterisation in DEM.

The performance of the proposed Maxwell damping model is benchmarked against tra-
ditional approaches—mass-proportional damping and zero-viscous damping—using shake-
table data from a URM cross-vault as reference. Due to the severe timestep constraints 

Fig. 23  Maximum and minimum peak displacement relative error to EXP of the modified model and 
truncated record at AQA75
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and well-documented prohibitive computational cost associated with stiffness-proportional 
and Rayleigh damping models in explicit time integration schemes, these models were not 
included in the comparison.

Under the tested conditions, the Maxwell damping configuration showed modest, case-
dependent improvements relative to the alternatives. It reduced peak displacement errors by 
75 and 50% compared to the mass-proportional and zero-viscous models, respectively, and 
improved peak acceleration at crown-vault accuracy by 64 and 74%, while aiding numerical 
stability and reducing high-frequency noise. These benefits, however, came with an average 
40% increase in computational time in our setup. Albeit this may be deemed as acceptable 
especially when performing a limited set of nonlinear dynamic analyses as commonly done 
when using discontinuum and in general advanced numerical models (typically 11 are rec-
ommended (Crowley et al. 2017)), further studies involving different structural types and 
sub-systems at different scales are needed to generalize the findings of this paper.

This study highlights the difficulties of using classical stiffness proportional relaxation 
methods in DEM and the necessity of modifications, such as adopting a mixed-discrete con-
tinuum approach and a wavelet-based trun-cation method, to address computational limi-
tations. The mixed discrete-continuum approach adopted herein enhanced computational 
efficiency through partial density scaling with minimal impact on critical structural com-
ponents, while the wavelet-based truncation method allowed for effective signal reduction, 
preserving reasonable accuracy in peak displacement predictions. The analyses conducted 
on the modified model revealed that the prohibitive computational costs outweigh the slight 
improvement in prediction accuracy offered by full Rayleigh damping.

Importantly, this work is the first to integrate Maxwell damping with an optimisation 
algorithm within a DEM framework for the dynamic analysis of large-scale URM cross-
vaults. It marks a significant step forward from prior research by extending damping assess-
ments beyond simplified rocking blocks to geometrically complex structural assemblies 
validated against experimental data. The methodology developed herein lays a foundation 
for systematic damping scheme comparisons in DEM, addressing both numerical and prac-
tical challenges.

In terms of future work and current limitations, it is worth mentioning that our study does 
not model complete collapse, focusing instead on the seismic load increments to structural 
failure. Subsequent work will select experimental campaigns that involve the full collapse 
of the structures to validate the performance of each damping scheme in extreme situations. 
Second, while this study focuses on masonry cross-vaults, future research should compare 
different damping schemes across different types of geometries, e.g., arches, domes, and 
low-to-mid-rise standard buildings, to generalize the findings. Finally, the current research 
only focuses on unreinforced masonry structures. Investigating different damping perfor-
mances in the dynamic analysis of retrofitted masonry structures could provide insights into 
their effectiveness in preservation and retrofitting.

Author contributions  All authors contributed to the study conception and design. Material preparation, data 
collection and analysis were performed by Y.P. Oktiovan, B. Pulatsu, and D. Malomo. The first author Y.P. 
Oktiovan implemented the optimisation framework in 3DEC and performed the numerical simulations. The 
second author J. V. Lemos implemented the Maxwell damping scheme in 3DEC. The first draft of the manu-
script was written by Y.P. Oktiovan and all authors commented on previous versions of the manuscript. All 
authors read and approved the final manuscript.

1 3



Bulletin of Earthquake Engineering

Funding  The authors declare that no funds, grants, or other support were received during the preparation of 
this manuscript.

Data availability  The datasets generated during and/or analysed during the current study are available from 
the corresponding author, Y. P. Oktiovan, on reasonable request.

Declarations

Competing interests  The authors have no relevant financial or non-financial interests to disclose.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall civil engineering 
and mechanics series, Prentice-Hall. ​h​t​t​p​s​:​​/​/​c​i​r​​.​n​i​i​.​a​​c​.​j​p​​/​c​r​i​d​​/​1​1​3​0​​2​8​2​2​7​2​​3​2​8​8​​5​3​3​7​6

Belytschko T (1983) An overview of semidiscretization and time integration procedures. Comput Methods 
Transient Anal 1–65

Belytschko T, Liu WK, Moran B et al (2013) Chapter 6 (solution methods and stability). In: Nonlinear finite 
elements for continua and structures, 2nd edn. John Wiley & Sons, Chichester, UK

Bertolesi E, Adam JM, Rinaudo P et al (2019) Research and practice on masonry cross vaults – a review. Eng 
Struct 180:67–88. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​N​G​S​T​​R​U​C​T​.​2​​0​1​8​.​​1​0​.​0​8​5

Bianchini N, Mendes N, Calderini C et al (2024a) Shaking table testing of an unstrengthened and strength-
ened with textile reinforced mortar (TRM) full-scale masonry cross vault. Int J Archit Herit 1–26. ​h​t​t​p​s​
:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​2​3​​.​2​2​9​​5​9​0​0

Bianchini N, Mendes N, Lourenço PB et al (2024b) Modelling of the dynamic response of a full-scale 
masonry groin vault: unstrengthened and strengthened with textile-reinforced mortar (TRM). Int J 
Archit Herit 1–25. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​2​4​​.​2​3​2​​0​8​5​7

Bland DR (2016) The theory of linear viscoelasticity. Courier Dover Publications
Brandonisio G, Lucibello G, Mele E et al (2013) Damage and performance evaluation of masonry churches 

in the 2009 L’Aquila earthquake. Eng Fail Anal 34:693–714. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​N​G​F​A​​I​L​A​N​A​
L​​.​2​0​1​​3​.​0​1​.​0​2​1

Calderini C, Bianchini N, Lourenço PB et al (2024) Shake-table testing of a brick masonry groin vault: over-
view of blind predictions and postdictions and comparison with experimental results. Int J Archit Herit 
1–27. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​2​4​​.​2​4​1​​9​5​4​5

CEBFIP1990 (1993) CEB-FIP model code 1990 for concrete structures. Comité euro-International du Béton 
/ Fédération Internationale du Béton, Lausanne, Switzerland, source of empirical fracture-energy rela-
tions adopted by many masonry models by analogy

CEN (2004) EN 1998-1:2004 eurocode 8: design of structures for earthquake resistance – part 1: general 
rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, 
including amendments A1:2013 and corrigendum AC:2009

Chen S, Bagi K (2024) DEM analysis of the mechanical role of backfill of jointed masonry fan vaults: results 
of virtual experiments. Int J Archit Herit 18(1):64–83. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​2​2​​.​2​1​0​​4​1​4​2

Chen S, Ferrante A, Clementi F et al (2021) DEM analysis of the effect of bond pattern on the load bearing 
capacity of barrel vaults under vertical loads. Int J Masonry Res Innov 6(3):346–373. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​5​0​4​/​I​J​M​R​I​.​2​0​2​1​.​1​1​6​2​3​4​​​​​​​

Chopra AK (2017) Dynamics of structures: theory and applications to earthquake Engineering, 5th edn edn. 
Pearson, Harlow

Cole GL, Dhakal RP, Turner FM (2012) Building pounding damage observed in the 2011 Christchurch earth-
quake. Earthq Eng Struct Dyn 41(5):893–913. https://doi.org/10.1002/eqe.1164

1 3

http://creativecommons.org/licenses/by/4.0/
https://cir.nii.ac.jp/crid/1130282272328853376
https://doi.org/10.1016/J.ENGSTRUCT.2018.10.085
https://doi.org/10.1080/15583058.2023.2295900
https://doi.org/10.1080/15583058.2023.2295900
https://doi.org/10.1080/15583058.2024.2320857
https://doi.org/10.1016/J.ENGFAILANAL.2013.01.021
https://doi.org/10.1016/J.ENGFAILANAL.2013.01.021
https://doi.org/10.1080/15583058.2024.2419545
https://doi.org/10.1080/15583058.2022.2104142
https://doi.org/10.1504/IJMRI.2021.116234
https://doi.org/10.1504/IJMRI.2021.116234
https://doi.org/10.1002/eqe.1164


Bulletin of Earthquake Engineering

Crowley H, Polidoro B, Pinho R et al (2017) Framework for developing fragility and consequence models for 
local personal risk. Earthq Spectra 33(4):1325–1345. https://doi.org/10.1193/083116eqs140m

Cundall PA (1988) Formulation of a three-dimensional distinct element model—part I. A scheme to detect 
and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech 25(3):107–
116. https://doi.org/10.1016/0148-9062(88)92293-0

D’Altri AM, Castellazzi G, de Miranda S et al (2017) Seismic-induced damage in historical masonry vaults: 
a case-study in the 2012 emilia earthquake-stricken area. J Build Eng 13:224–243. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​1​6​/​J​.​J​O​B​E​.​2​0​1​7​.​0​8​.​0​0​5​​​​​​​

Davis L, Cogliano M, Casotto C et al (2023) Pragmatic seismic collapse meso-scale analysis of old Dutch 
masonry churches. Earthq Eng Struct Dyn 53:622–645. https://doi.org/10.1002/EQE.4037

Dawson EM, Cheng Z (2021) Maxwell damping: an alternative to rayleigh damping. In: Geo-Extreme 2021, 
Geo-Extreme 2021. ASCE, pp 34–45. https://doi.org/10.1061/9780784483701.004

de Felice G, Liberatore D, De Santis S et al (2022) Seismic behaviour of rubble masonry: shake table test 
and numerical modelling. Earthq Eng Struct Dyn 51(5):1245–1266. https://doi.org/10.1002/EQE.3613

De Lorenzis L, DeJong M, Ochsendorf J (2007) Failure of masonry arches under impulse base motion. 
Earthq Eng Struct Dyn 36(14):2119–2136. https://doi.org/10.1002/EQE.719

DeJong MJ (2009) Seismic assessment strategies for masonry structures. Doctoral thesis, Massachusetts 
Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139-4307

Dell’endice A, Iannuzzo A, DeJong MJ et al (2021) Modelling imperfections in unreinforced masonry 
structures: discrete element simulations and scale model experiments of a pavilion vault. Eng Struct 
228:111499. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​N​G​S​T​​R​U​C​T​.​2​​0​2​0​.​​1​1​1​4​9​9

Ferrante A, Dubois F, Morenon P (2024) Comparison of continuous and discrete modeling strategies for the 
structural assessment of a masonry vault under dynamic seismic loading. Int J Archit Herit. ​h​t​t​p​s​:​​/​/​d​o​i​​.​
o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​2​4​​.​2​3​7​​7​2​9​7

Findley WN, Davis FA (2013) Creep and relaxation of nonlinear viscoelastic materials. Courier Dover 
Publications

Galvez F, Dizhur D, Ingham JM (2023) Adjacent interacting masonry structures: shake table test blind pre-
diction discrete element method simulation. Bull Earthq Eng 22(12):6037–6063. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​
7​/​S​1​​0​5​1​8​-​​0​2​3​-​0​1​​6​4​0​-​​Y​/​F​I​G​U​R​E​S​/​1​6

Galvez F, Sorrentino L, Dizhur D et al (2022a) Damping considerations for rocking block dynamics using 
the discrete element method. Earthq Eng Struct Dyn 51(4):935–957. https://doi.org/10.1002/EQE.3598

Galvez F, Sorrentino L, Dizhur D et al (2022b) Seismic rocking simulation of unreinforced masonry parapets 
and façades using the discrete element method. Earthq Eng Struct Dyn 51(8):1840–1856. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​0​0​2​/​E​Q​E​.​3​6​4​1​​​​​​​

Genta G (2009) Vibration dynamics and control, vol 616. Springer, New York
Godio M, Beyer K (2019) Evaluation of force-based and displacement-based out-of-plane seismic assess-

ment methods for unreinforced masonry walls through refined model simulations. Earthq Eng Struct 
Dyn 48(4):454–475. https://doi.org/10.1002/EQE.3144

Gubana A, Melotto M (2021) Evaluation of timber floor in-plane retrofitting interventions on the seismic 
response of masonry structures by DEM analysis: a case study. Bull Earthq Eng 19(14):6003–6026. ​h​t​t​
p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​7​/​S​1​​0​5​1​8​-​​0​2​1​-​0​1​​1​9​0​-​​1​/​F​I​G​U​R​E​S​/​1​3

Hall JF (2006) Problems encountered from the use (or misuse) of Rayleigh damping. Earthq Eng Struct Dyn 
35(5):525–545. https://doi.org/10.1002/EQE.541

Huang Y, Sturt R, Willford M (2019) A damping model for nonlinear dynamic analysis providing uniform 
damping over a frequency range. Comput Struct 212:101–109. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​j​.​​c​o​m​p​s​​t​r​u​c​.​2​​0​
1​8​.​​1​0​.​0​1​6

Iannuzzo A, Dell’endice A, Avelino R et al (2021) COMPAS masonry: a computational framework for prac-
tical assessment of unreinforced masonry structures. In Proceedings of the 12th International Confer-
ence on Structural Analysis of Historical Constructions (SAHC 2020), SAHC, Barcelona, 1882–1892. 
https://doi.org/10.23967/sahc.2021.054

Itasca Consulting Group Inc (2013) 3DEC - Three dimensional distinct element code ver. 7.0. Software
Kim J, Lorenzoni F, Salvalaggio M et al (2021) Seismic vulnerability assessment of free-standing massive 

masonry columns by the 3D discrete element method. Eng Struct 246:113004. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​
J​.​​E​N​G​S​T​​R​U​C​T​.​2​​0​2​1​.​​1​1​3​0​0​4

Lagomarsino S (2012) Damage assessment of churches after L’Aquila earthquake (2009). Bull Earthq Eng 
10:73–92. https://doi.org/10.1007/s10518-011-9307-x

Lemos J (2008) Block modelling of rock masses: concepts and application to dam foundations. Eur J Environ 
Civ Eng 12(7–8):915–949

Lemos J, Sarhosis V (2023) Dynamic analysis of masonry arches using Maxwell damping. Struct 49:583–
592. https://doi.org/10.1016/j.istruc.2023.01.139

1 3

https://doi.org/10.1193/083116eqs140m
https://doi.org/10.1016/0148-9062(88)92293-0
https://doi.org/10.1016/J.JOBE.2017.08.005
https://doi.org/10.1016/J.JOBE.2017.08.005
https://doi.org/10.1002/EQE.4037
https://doi.org/10.1061/9780784483701.004
https://doi.org/10.1002/EQE.3613
https://doi.org/10.1002/EQE.719
https://doi.org/10.1016/J.ENGSTRUCT.2020.111499
https://doi.org/10.1080/15583058.2024.2377297
https://doi.org/10.1080/15583058.2024.2377297
https://doi.org/10.1007/S10518-023-01640-Y/FIGURES/16
https://doi.org/10.1007/S10518-023-01640-Y/FIGURES/16
https://doi.org/10.1002/EQE.3598
https://doi.org/10.1002/EQE.3641
https://doi.org/10.1002/EQE.3641
https://doi.org/10.1002/EQE.3144
https://doi.org/10.1007/S10518-021-01190-1/FIGURES/13
https://doi.org/10.1007/S10518-021-01190-1/FIGURES/13
https://doi.org/10.1002/EQE.541
https://doi.org/10.1016/j.compstruc.2018.10.016
https://doi.org/10.1016/j.compstruc.2018.10.016
https://doi.org/10.23967/sahc.2021.054
https://doi.org/10.1016/J.ENGSTRUCT.2021.113004
https://doi.org/10.1016/J.ENGSTRUCT.2021.113004
https://doi.org/10.1007/s10518-011-9307-x
https://doi.org/10.1016/j.istruc.2023.01.139


Bulletin of Earthquake Engineering

Lemos JV, Dawson E, Cheng Z (2022) Application of Maxwell damping in the dynamic analysis of masonry 
structures with discrete elements. Int J Masonry Res Innov 7(6):663–686. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​5​0​4​/​i​j​m​r​
i​.​2​0​2​1​.​1​0​0​4​3​2​6​6​​​​​​​

Liu HP, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; implications for seismol-
ogy and mantle composition. Geophys J Int 47(1):41–58. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​1​1​/​j​.​​1​3​6​5​-​​2​4​6​X​.​1​​9​7​6​.​​t​b​
0​1​2​6​1​.​x

Lourenço PB (1996) Computational strategies for masonry structures. Doctoral thesis, Delft University, 
Stevinweg 1, 2628CN Delft, NL

Lourenço PB (2010) Recent advances in masonry modelling: micromodelling and homogenisation. Multi-
scale Modeling in Solid Mechanics: Computational Approaches pp 251–294

Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 
123(7):660–668. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​6​1​/​(​A​S​C​E​)​0​7​3​3​-​9​3​9​9​(​1​9​9​7​)​1​2​3​:​7​(​6​6​0​)

Malomo D, DeJong MJ (2022) M-DEM simulation of seismic pounding between adjacent masonry struc-
tures. Bull Earthq Eng 1–26. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​7​/​S​1​​0​5​1​8​-​​0​2​2​-​0​1​​5​4​5​-​​2​/​F​I​G​U​R​E​S​/​1​2

Malomo D, DeJong MJ, Penna A (2019) Distinct element modelling of the in-plane cyclic response of URM 
walls subjected to shear-compression. Earthq Eng Struct Dyn 48(12):1322–1344. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​0​2​/​e​q​e​.​3​1​7​8​​​​​​​

Malomo D, Pulatsu B (2024) Discontinuum models for the structural and seismic assessment of unreinforced 
masonry structures: a critical appraisal. Struct 62:106108. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​J​.​I​S​T​R​U​C​.​2​0​2​4​.​1​0​
6​1​0​8​​​​​​​

Masi F, Stefanou I, Maffi-Berthier V et al (2020) A discrete element method based-approach for arched 
masonry structures under blast loads. Eng Struct 216:110721. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​N​G​S​T​​R​U​C​
T​.​2​​0​2​0​.​​1​1​0​7​2​1

Mavroeidis GP, Dong G, Papageorgiou AS (2004) Near-fault ground motions, and the response of elastic and 
inelastic single-degree-of-freedom (SDOF) systems. Earthq Eng Struct Dyn 33(9):1023–1049. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​0​0​2​/​E​Q​E​.​3​9​1​​​​​​​

Mele T, Mcinerney J, DeJong M et al (2012) Physical and computational discrete modeling of masonry 
vault collapse. In Proceedings of the 8th International Conference on Structural Analysis of Historical 
Constructions

Meriggi P, De Felice G, De Santis S et al (2019) Distinct element modelling of masonry walls under out-of-
plane seismic loading. Int J Archit Herit 13(7):1110–1123. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​8​.​2​0​1​9​​.​1​6​
1​​5​1​5​2

Oktiovan Y, Messali F, Rots J (2023a) Detailed distinct element modeling of a utrecht wharf cellar for the 
assessment of the load-bearing capacity and failure mechanism. In Proceedings of the Seventeenth 
International Conference on Civil, Structural and Environmental Engineering Computing 6, pp 1–10. 
https://doi.org/10.4203/CCC.6.6.2

Oktiovan YP, Davis L, Wilson R et al (2023b) Simplified micro-modeling of a masonry cross-vault for seis-
mic assessment using the Distinct element method. Int J Archit Herit. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​5​​5​8​3​0​5​​
8​.​2​0​2​3​​.​2​2​7​​7​3​2​8

Oktiovan YP, Messali F, Pulatsu B et al (2024) A contact-based constitutive model for the numerical analysis 
of masonry structures using the distinct element method. Comput Struct 303:107499. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​
.​1​0​​1​6​/​J​.​​C​O​M​P​S​​T​R​U​C​.​2​​0​2​4​.​​1​0​7​4​9​9

Paris V, Pizzigoni A, Adriaenssens S (2020) Statics of self-balancing masonry domes constructed with a 
cross-herringbone spiraling pattern. Eng Struct 215:110440. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​N​G​S​T​​R​U​C​T​.​
2​​0​2​0​.​​1​1​0​4​4​0

Peña F, Prieto F, Lourenço PB et al (2007) On the dynamics of rocking motion of single rigid-block struc-
tures. Earthq Eng Struct Dyn 36(15):2383–2399. https://doi.org/10.1002/EQE.739

Pulatsu B (2023) Coupled elasto-softening contact models in DEM to predict the in-plane response of 
masonry walls. Comput Part Mech 10:1759–1770. https://doi.org/10.1007/s40571-023-00586-x

Pulatsu B, Erdogmus E, Lourenço PB (2019) Comparison of in-plane and out-of-plane failure modes of 
masonry arch bridges using discontinuum analysis. Eng Struct 178:24–36. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​E​
N​G​S​T​​R​U​C​T​.​2​​0​1​8​.​​1​0​.​0​1​6

Pulatsu B, Erdogmus E, Lourenço PB et al (2020) Simulation of the in-plane structural behavior of unrein-
forced masonry walls and buildings using DEM. Struct 27:2274–2287. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​J​.​I​S​T​R​
U​C​.​2​0​2​0​.​0​8​.​0​2​6​​​​​​​

Repapis CC, Mimoglou PP, Dimakopoulou VV et al (2020) Efficient strong motion duration of pulse-like 
records for nonlinear structural analyses. Earthq Eng Struct Dyn 49(5):479–497. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​
0​2​/​E​Q​E​.​3​2​4​9​​​​​​​

Sarhosis V, Oliveira DV, Lemos JV et al (2014) The effect of skew angle on the mechanical behaviour of 
masonry arches. Mech Res Commun 61:53–59. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​1​6​/​J​.​​M​E​C​H​R​​E​S​C​O​M​.​​2​0​1​4​​.​0​7​.​0​
0​8

1 3

https://doi.org/10.1504/ijmri.2021.10043266
https://doi.org/10.1504/ijmri.2021.10043266
https://doi.org/10.1111/j.1365-246X.1976.tb01261.x
https://doi.org/10.1111/j.1365-246X.1976.tb01261.x
https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660)
https://doi.org/10.1007/S10518-022-01545-2/FIGURES/12
https://doi.org/10.1002/eqe.3178
https://doi.org/10.1002/eqe.3178
https://doi.org/10.1016/J.ISTRUC.2024.106108
https://doi.org/10.1016/J.ISTRUC.2024.106108
https://doi.org/10.1016/J.ENGSTRUCT.2020.110721
https://doi.org/10.1016/J.ENGSTRUCT.2020.110721
https://doi.org/10.1002/EQE.391
https://doi.org/10.1002/EQE.391
https://doi.org/10.1080/15583058.2019.1615152
https://doi.org/10.1080/15583058.2019.1615152
https://doi.org/10.4203/CCC.6.6.2
https://doi.org/10.1080/15583058.2023.2277328
https://doi.org/10.1080/15583058.2023.2277328
https://doi.org/10.1016/J.COMPSTRUC.2024.107499
https://doi.org/10.1016/J.COMPSTRUC.2024.107499
https://doi.org/10.1016/J.ENGSTRUCT.2020.110440
https://doi.org/10.1016/J.ENGSTRUCT.2020.110440
https://doi.org/10.1002/EQE.739
https://doi.org/10.1007/s40571-023-00586-x
https://doi.org/10.1016/J.ENGSTRUCT.2018.10.016
https://doi.org/10.1016/J.ENGSTRUCT.2018.10.016
https://doi.org/10.1016/J.ISTRUC.2020.08.026
https://doi.org/10.1016/J.ISTRUC.2020.08.026
https://doi.org/10.1002/EQE.3249
https://doi.org/10.1002/EQE.3249
https://doi.org/10.1016/J.MECHRESCOM.2014.07.008
https://doi.org/10.1016/J.MECHRESCOM.2014.07.008


Bulletin of Earthquake Engineering

Smoljanović H, Živaljić N, N (2013) A combined finite-discrete element analysis of dry stone masonry struc-
tures. Eng Struct 52:89–100. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​​1​0​​1​​6​​/​j​.​e​n​g​​s​t​r​​u​c​​t​.​​2​​0​1​​3​.​0​2​.​0​1​0

Sorrentino L, Liberatore L, Decanini LD et al (2014) The performance of churches in the 2012 emilia earth-
quakes. Bull Earthq Eng 12(5):2299–2331. https://doi.org/10.1007/s10518-013-9519-3

Tomassetti U, Graziotti F, Sorrentino L et al (2019) Modelling rocking response via equivalent viscous damp-
ing. Earthq Eng Struct Dyn 48(11):1277–1296. https://doi.org/10.1002/EQE.3182

Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bull Seismol 
Soc Am 65(3):581–626. https://doi.org/10.1785/BSSA0650030581

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Yopi P. Oktiovan1  · José V. Lemos2 · Bora Pulatsu3 · Francesco Messali1 · Jan G. Rots1 · 
Daniele Malomo4

	
 Yopi P. Oktiovan
y.p.oktiovan@tudelft.nl

1	 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 
Netherlands

2	 National Laboratory for Civil Engineering (LNEC), Lisbon, Portugal
3	 Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada
4	 Department of Civil Engineering, McGill University, Montréal, Canada

1 3

https://doi.org/10.1016/j.engstruct.2013.02.010
https://doi.org/10.1007/s10518-013-9519-3
https://doi.org/10.1002/EQE.3182
https://doi.org/10.1785/BSSA0650030581
http://orcid.org/0000-0001-9660-1932

	﻿Evaluating damping schemes for the discontinuum seismic analysis of masonry cross-vaults
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Overview of the cross-vault shake-table experiment
	﻿3﻿ ﻿Distinct element modelling of masonry cross-vaults
	﻿3.1﻿ ﻿Formulation overview of the distinct element method
	﻿3.2﻿ ﻿Description of the cross-vault numerical model

	﻿4﻿ ﻿Damping for discrete dynamic problems
	﻿﻿4.1﻿ ﻿Rayleigh damping
	﻿﻿4.2﻿ ﻿Maxwell damping
	﻿4.2.1﻿ ﻿Formulation for a single Maxwell element
	﻿4.2.2﻿ ﻿Formulation for multiple Maxwell elements
	﻿4.2.3﻿ ﻿Optimization algorithm for Maxwell damping parameters


	﻿﻿5﻿ ﻿Comparison of damping schemes for seismic analysis - significant duration method
	﻿5.1﻿ ﻿Displacement predictions
	﻿5.2﻿ ﻿Damage pattern prediction
	﻿5.3﻿ ﻿Acceleration predictions
	﻿5.4﻿ ﻿Required computational times

	﻿6﻿ ﻿Comparison of damping schemes for seismic analysis with wavelet-based truncation method
	﻿6.1﻿ ﻿Modifications on the numerical model and seismic record
	﻿6.1.1﻿ ﻿Mixed discrete-continuum modelling approach
	﻿6.1.2﻿ ﻿Wavelet-based truncation of the seismic record


	﻿6.2﻿ ﻿Comparative analysis of numerical results
	﻿7﻿ ﻿Conclusions
	﻿References


