
Determining viewing points for catoptric anamorphoses

Casper Henkes , Baran Usta , Elmar Eisemann
TU Delft

Abstract
Finding good viewpoints for catoptric anamor-
phoses by hand is hard. However, it should be pos-
sible to find the optimal viewpoint using just the
specifications of the mirror. This problem is solved
by first generating a set of candidate viewpoints us-
ing the specifications of the mirror. Then all candi-
dates are ranked based on metrics like visible sur-
face area. The optimal is then easily found.

1 Introduction
Catoptric anamorphosis a form of anamorphosis that uses a
reflective object and a surface with art on it. The intention is
that viewing the art from a specific viewpoint shows a second
image in the mirror object that is a reflection of the surface.
These catoptric anamorphoses are found in multiple fields,
from art to architecture.

Mirror anamorphoses have multiple aspects. They consist
of a surface, an image on that surface, a reflective object, and
a viewpoint. Finding the best viewpoint for a given scene can
be difficult as, depending on the metric you use, any perspec-
tive can work. This paper aims to define a method that con-
structs the optimal viewpoint given a surface, a reflective ob-
ject, and some metric to optimize for. Take any mirror shape
and some surface with coloured dots on it. Now finding a
viewpoint for which the coloured dots cover the maximum
surface area is hard. This is unfeasible to do by hand and thus
a computer-aided process is preferable.

The paper discusses topics related to image quality, opti-
mization, and viewpoints. Several metrics for the image qual-
ity of catoptric anamorphoses and the benefits and drawbacks
of each of them are discussed. These metrics then allow com-
parisons of viewpoints which leads to finding the most opti-
mal one.

Given a representation of catoptric anamorphoses, how do
you find an optimal viewpoint? To generate an optimal re-
sult it is required to have good metrics and optimizations. For
the image quality, a method is implemented to calculate the
apparent quality of a scene from a certain viewpoint which al-
lows for direct comparison of multiple viewpoints. The met-
rics are also discussed. What makes a good metric is for mir-

ror anamorphoses and can combining multiple metrics can
lead to better result?

The methods proposed here makes a few assumptions
about the scenes. First of all, it assumes that there is only
one mirror object present. It also assumes that a surface is a
plane. Furthermore, it is assumed that the wanted viewpoints
have to lie outside of the reflective object.

1.1 Related work
Methods exist to construct catoptric anamorphoses digitally.
This is preferred for more complex shapes as doing all re-
quired calculations by hand is not feasible. Francesco pro-
poses one such method. This method requires the user to
provide the surface, object, and viewpoint. Then it uses ray-
tracing software to construct the image [1]. For a cylindrical
mirror, interactive applications exist that implement anamor-
phosis. The tablet shows an image such that its reflection in
the mirror displays the desired form. The mirror can then be
rotated to change the image seen on the surface and the mir-
ror. [5].

It is difficult to provide a good viewpoint for the catoptric
anamorphoses in some cases. In those cases, finding such a
point is required before the technique can be used success-
fully.

Another aspect of the method proposed in this paper is de-
termining the quality of a given viewpoint. Prior research
has studied techniques for determining image quality assess-
ment. The book Modern Image Quality Assessment [4] gives
a broad overview of these techniques. These techniques take
different input compared to the method proposed in this paper
and thus cannot be used directly.

The initial viewpoint generation problem is similar to a
problem in visual sensor networks. The goal is to get max-
imum coverage using the minimal amount of camera’s [3].
The problem in this requires optimally placing a single cam-
era and in that way differs from this previous research.

The methods used here implement a small ray tracer to test
the reflection and the visible surfaces. These methods could
have used some of the known acceleration structures that can
be used for optimizing ray tracing like bounding volumes. A
lot of work has been done in this field and a small summary
of a few techniques can be read in this report from 2005 [2].

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering



Figure 1: Side view of a scene

There is also previous research done on candidate view-
point selection which is very similar to one of the optimiza-
tion challenges in this paper. This paper describes a new al-
gorithm for this and compares it to other known algorithms
[6].

2 Pipeline
The problem the paper is tackling is finding the optimal view-
point for mirror anamorphoses. Finding these viewpoints is
done using: the reflective object, the surface, and metrics.
The object, a mesh representing the mirror in the images de-
picted in grey, is used to deform the image that resides on the
surface, a plane in the images depicted as green, such that
the reflected image is as desired. The surface can be anything
from a plane to some complex shape. The metrics mentioned
here are used to assign numerical values to viewpoints en-
abling comparison between them.

This section describes all components of the pipeline used
in the method that computes the optimal viewpoint for catop-
tric anamorphosis. This pipeline works as follows. First of all
the scene file, a side view of which can be seen in figure 1, is
loaded. Then preprocessing is done on the object to find the
initial set of potential viewpoints. After that, the metrics are
used to determine the score of each of those viewpoints and
then the best viewpoint is selected based on that score.

2.1 Generating initial viewpoints
This section shows the implementation of the algorithm used
for generating initial viewpoints. This section also contains
some analysis done on the discussed algorithms, the meth-
ods are then further compared in the results section. A good
implementation would be able to find the optimal viewpoint
using as few potential viewpoints as possible. To be able to
make fairer comparisons all methods worked with the same
maximum distance. This distance set to be three times the
longest distance between any two vertexes of the object.

The most basic implementation of generating these view-
points is a brute-force approach. This approach works by fill-
ing a sphere around the object with points. Start by creating a
bounding box around the object. The center of this sphere is
the center of the object, calculated by taking the average of all
vertexes, and the radius is half the maximum distance. Then

Figure 2: faces method used to find this viewpoint for the metric
total area

the method creates a uniform grid of points in a square around
the center of the object such that an edge of the square is two
times the radius of the sphere. Then add all points for which
the distance from it to the center of the circle is smaller than
the radius. Some optimizations can be done for this method.
Note that all viewpoints close to the object can be removed.
First of all the viewpoints that are within the object itself can
be removed as we assumed that the optimal viewpoint would
lie outside of the reflective object. And for other points close
to the object another assumption made is that it is better to use
more of the mirror. It is impossible to view the entire object
from a close enough viewpoint and those points can thus also
be removed.

The previous approach does not in any way use the object
itself to determine initial viewpoints. It should be possible to
reduce the number of points generated by taking the object
itself into account. The first idea is to design a method, from
now on called faces that should work well for a plane and then
try to apply that for objects consisting of more faces. A face
here means a collection of vertexes and edges forming a flat
surface. For each face generate a viewpoint where the origin
of the viewpoint is found by adding some linear combination
of the face normal and the surface normal to the center of the
face. A realization of this method for the plane can be seen
in figure 2. The idea behind this method is that such a view-
point is often used for existing artworks using a plane mirror
and even for cylindrical mirrors. No single way of making
this linear combination may exist such that the viewpoints for
both the plane mirror and the cylindrical mirror are optimal.

Another idea for generating viewpoints is to generate view-
points in front of the vertexes of the object, from now on
called vertexes. to find the origin of the viewpoint shoot a
ray towards each vertex and then scale that ray such that the
distance is equal to the maximum distance. The assumption is
that the vertexes being situated along the edges of the object
could give good indications of where the object changes and
might thus be interesting to include in the view. A realization
of this method for the cube object can be seen in figure 3

The last method, from now on called hsphere generates
points in front of each face that form the surface of a sphere.

fig:planeF
fig:cubeV


Figure 3: vertexes method used to find this viewpoint for the metric
total area

Figure 4: hspere method used to find this viewpoint for the metric
total area

The assumption here is that the faces are interesting to look
at. However, it is unknown from what angle it is best viewed.
By generating points on the surface of a sphere gives a good
spread of points for the face while still generating fewer
points than the brute-force method. A realization of this
method can be seen in figure 4

2.2 Metrics
This section describes all metrics implemented in the method
and explains the reasons to use them. For all following cal-
culations, the algorithm takes into account some camera field
of view in form of a camera angle. First of all, a point in the
reflective object is selected as the center of the field of view.
Then the angle between the ray to check and the ray from
the viewpoint to the target point is calculated. If this angle
is smaller than half of the camera angle then it is counted as
being within the field of view.

First of the algorithm can calculate the faces that are visi-
ble from a viewpoint. Determining the visible faces is done
as follows. For each face shoot a ray at its center and cal-
culate if that ray intersects with any other face before hitting
the target face. If the ray does not hit anything else then the
algorithm counts that face as visible. This does have its limi-
tations, however. Take a plane and lay a small ball on top of

Figure 5: the plane object optimized for the visible object area

the center of the plane. Now the algorithm thinks the plane
cannot be seen, however, most of it is visible. An example of
this problem can be seen in figure 4 where only about half of
the plane is within the field of view. However, the algorithm
still counts the entire plane as visible as its center is within
the field of view. This metric is mostly used in further calcu-
lations but can be used to prune viewpoints from which the
object cannot be seen as those are uninteresting.

The next metric is the visible object area. To calculate this
the area of all visible faces is added. The total area of a given
face is calculated by triangulating the face and calculating the
area of all triangles and adding those together. This total area
is then projected based on the viewing angle. The visible
surface area is used to determine how much of the mirror is
visible from a given viewpoint. A viewpoint for which the
object area is optimized can be seen in figure 5

After that is the visible surface area. Before the area is
calculated, it is necessary to find where the reflection of the
face on the surface is. Finding the reflected vertexes is done
by shooting rays at the vertexes of the object face. Those
rays are then reflected using the vertexes as reflection point
and the face to get normal. Then the algorithm calculates
the intersection point with the surface for that reflected ray.
Using those vertexes on the surface a new face is created.
After this, the area can be calculated using the method used
by the visible object area. The visible surface area is used
to determine how much of the mirror is visible from a given
viewpoint. A viewpoint for which this is optimized can be
seen in figure 6

Another metric is the resolution. If there is a big difference
between the visible object and surface area then there are a lot
of pixels on one of the areas that map to very few pixels on the
other. These metrics attempt to solve that issue by comparing
the two areas. it does this by dividing the smaller of the two
areas by the other area. This metric can be used to limit the
difference in the area.

The last metric is a combination of previous metrics, from
now on called total area. It is calculated by adding the visible
object and surface area and multiplying it by the resolution.
It also prunes viewpoints for which one of the areas is zero.
This metric tries to solve the problems that previous metrics

fig:cyl
fig:planeOjb
fig:planeOjb
fig:planeSurf


Figure 6: the plane object optimized for the visible surface area

had. The object area by itself does not say anything about the
reflection. The surface area is better, but it does not say any-
thing about the area of the object that is in use. The resolution
by itself does not tell anything about the areas used possible
allowing both to be very small which can be unwanted. This
metric eliminates those issues as it ensures a non-zero area
for both, and including the resolution ensures some balance
in the size differences of the 2 areas.

3 Results
This section shows the results that the different generation
methods create. The results are structured per scene starting
with the simplest scene, the scene with the least faces, and in-
creasing in complexity. It briefly discusses each scene giving
some reasons for the performance of the different viewpoint
generation methods. It is good to note that not all faces and
vertexes will generate viewpoints. If a viewpoint would end
up below the surface it is not added as the object would not
be visible. Under here is defined as on the other side of the
surface as the object.

Table 1: Plane object

Plane score amount origin equal

faces object area 3.2549338 1 (0.0,-3.5,3.500001) 1
surface area 8.854383 1 (0.0,-3.5,3.500001) 1

total area 4.451471 1 (0.0,-3.5,3.500001) 1

hsphere object area 4 104 (0.0,-6.0,1.000001) 1
surface area 7.3664336 104 (0.5,-5.0,4.250001) 2

total area 4.858289 104 (-0.5,-5.0,4.250001) 2

vertexes object area 0 2 (4.243,-0.0,5.243) 2
surface area 0 2 (4.243,-0.0,5.243) 2

total area 0 2 (4.243,-0.0,5.243) 2

bruteforce object area 4 38964 (0.0,-3.25,1.000001) 12
surface area 13.891902 38964 (0.0,-6.0,3.500001) 1

total area 5.044677 38964 (0.0,-5.75,4.750001) 1

In the plane scene consists of one face, and four vertexes. The
faces method performs relatively well which is expected as it
was partly optimized for this scene. An interesting fact is that
the vertexes method does not work for this scene. This is
because both potential viewpoints are generated right above

the plane. All rays shot from those viewpoints towards the
face can only be parallel to it and thus the face is not visible
from those viewpoints.

Table 2: Cube object

Cube score tested origin equal

faces object area 4.519845 4 (0.0,-4.5,3.5) 4
surface area 20.660212 4 (0.0,-4.5,3.5) 4

total area 5.5086536 4 (0.0,-4.5,3.5) 4

hsphere object area 5.2061205 591 (-3.5,2.75,4.25) 24
surface area 14.310835 591 (0.0,-5.0,4.0) 4

total area 9.73931 591 (-4.5,-2.75,3.25) 4

vertexes object area 5.392128 4 (3.464,3.464,4.464) 4
surface area 9.561445 4 (3.464,3.464,4.464) 4

total area 8.432991 4 (3.4646,3.464,4.464) 4

bruteforce object area 5.588843 38964 (-4.0,4.0,4.75) 12
surface area 21.263098 38964 (-6.0,-0.0,3.75) 4

total area 10.880931 38964 (-3.25,3.25,6.0) 4

The cube, scene consists of six faces and eight vertexes.
The faces method can find a rather good viewpoint for the
surface area. Other than that both the vertexes as well as the
hsphere methods get close to the brute-force solution for the
visible object area.

Table 3: Cylinder object

Cylinder score tested origin equal

faces object area 3.7096868 32 (0.441,-9.474,3.5) 3
surface area 88.67456 32 (-2.852,-8.475,3.5) 1

total area 3.944156 32 (-0.441,-9.474,3.5) 1

hsphere object area 3.9120922 2500 (-4.702,-5.789,4.25) 1
surface area 915.4229 2500 (-2.381,0.269,2.25) 1

total area 7.0510383 2500 (0.750,-2.500,6.25) 1

vertexes object area 3.9416814 32 (-4.243,-5.000,5.243) 1
surface area 26.070793 32 (-3.528,-7.357,5.243) 1

total area 4.8833265 32 (4.161,-5.828,5.243) 1

bruteforce object area 4.119752 38964 (-4.5,-8.000,5.25) 1
surface area 1349.9253 38964 (-5.25,-0.750,2.25) 1

total area 7.341034 38964 (0,-8.000,6.75) 1

The cylinder scene consists of thirty-four faces and sixty-
four vertexes. the faces method is not able to perform that
well on this scene, this is interesting as it is partly optimized
for this scene. Here this means that the combination men-
tioned in the viewpoint generation is tweaked in such a way
to generate the best results for both the plane and this scene
as the expectation was that it could perform well on those
scenes.



Table 4: Icosphere object

Sphere score tested origin equal

faces object area 2.392097 80 (-1.443,-0.0,7.703) 1
surface area 73.30085 80 (-3.958,1.373,2.019) 1

total area 2.6971087 80 (-1.443,-0.0,7.703) 1

hsphere object area 2.3421383 8960 (3.642,-0.0,-3.768) 1
surface area 2307.4412 8960 (-5.017,2.470,2.176) 1

total area 4.6010475 8960 (5.342,2.528,0.926) 1

vertexes object area 2.333751 26 (-2.552,1.854,6.104) 1
surface area 67.37094 26 (1.658,-5.104,3.683) 1

total area 3.3571286 26 (3.527,4.854,1.000) 1

bruteforce object area 2.4158323 38964 (-2.0,4.0,6.25) 2
surface area 1298.0822 38964 (-4.0,1.5,1.750) 1

total area 4.6619964 38964 (4.25,4.5,1.000) 1

The icosphere scene consists of eighty faces and forty-two
vertexes. For this scene it is interesting to note that the visible
surface area found by the hsphere method is larger than the
one found by the brute-force method. An explanation for this
is that the brute-force method generates a grid inside of the
volume and does not check the entire volume, the brute-force
method likely skips over some more optimal viewpoints. The
issue could be fixed by forcing all viewpoints to align to some
small grid enforcing the brute-force method to iterate over all
possible viewpoints. However, as can be seen here it is then
possible that the actual optimal viewpoint is not contained
within that set.

4 Discussion
This section discusses the limitations of the methods used in
this paper and possible ways to improve upon them in future
work. A limitation that is already discussed briefly in the re-
sult section is the precision of the methods used. It is not
possible for this method to iterate over a volume and thus it
is possible to miss the optimal viewpoint in the grid that is
created. This might be solved by ensuring the optimal view-
point is aligned to the grid. It could also be solved by finding
a way to transform a volume into a finite set of points to be
tested.Another limitation is the metrics. The total area metric

seems to generate the most natural results. However, it does
not check the distance to the object and it also does not test
how much of the field of view is in use. Using these two fac-
tors might lead to better results in the end.Another interesting

question that came up during the research is one of symmetry.
It might for example be possible to find if an object has sym-
metry by comparing the viewpoints that generate the same
scores. The cube object seems to support this possibility by
generating at least 4 equal optimal viewpoints for each met-
ric and method, one for each face not facing the surface or
directly away from it.

5 Conclusion
The faces method performs relatively well for the plane and
cube objects on the visible surface area metrics. More specif-
ically the visible surface area it finds for the cube object is

quite close to the maximum found by the brute-force solution
for the cube object. The vertexes method can score better than
both the faces and hsphere methods for the object area metric
on the cube and cylinder objects. The hsphere method is the
best alternative method for finding the optimal viewpoint for
the total area as it scores second in this category for every ob-
ject file. It is even able to surpass the brute-force method for
finding the maximum visible surface area for the icosphere
object. A possible reason for this is already explained in
the results section. The brute-force method performs as ex-
pected scoring the highest on all but one of the scenes and
metrics.This shows that the methods proposed here are not

optimal. It does however show that some parts of the search
space of the scene generally score higher than other parts.
With some more work in improving the precision and refin-
ing the metrics, I believe that it should be possible to find
an optimal viewpoint by checking only a fraction of the total
search space. Another point that supports this claim is the op-
timization done on the brute-force method that all points too
close to the object were removed. Since the optimal view-
points found by this method stayed the same that is possible
to prune the search space.

References
[1] Francesco De Comité. A general procedure for the con-

struction of mirror anamorphoses. In George W. Hart and
Reza Sarhangi, editors, Proceedings of Bridges 2010:
Mathematics, Music, Art, Architecture, Culture, pages
231–238, Phoenix, Arizona, 2010. Tessellations Publish-
ing. Available online at http://archive.bridgesmathart.org/
2010/bridges2010-231.html.

[2] Niels Thrane, Lars Ole Simonsen, and Advisor Peter
Ørbæk. A comparison of acceleration structures for gpu
assisted ray tracing. Technical report, 2005.

[3] Chang Wang, Fei Qi, and Guang-Ming Shi. Nodes place-
ment for optimizing coverage of visual sensor networks.
In Paisarn Muneesawang, Feng Wu, Itsuo Kumazawa,
Athikom Roeksabutr, Mark Liao, and Xiaoou Tang, ed-
itors, Advances in Multimedia Information Processing -
PCM 2009, pages 1144–1149, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[4] Zhou Wang and A.C. Bovik. Modern Image
Quality Assessment. Morgan & Claypool, 2006.
https://doi.org/10.2200/S00010ED1V01Y200508IVM003.

[5] Yuko Yanagawa, Kaori Ikematsu, Chihiro Suga, Mana
Sasagawa, Yasushi Matoba, and Itiro Siio. Anamor-
phicons: An extended display utilizing a cylindrical mir-
ror widget. In Proceedings of the 29th Australian Confer-
ence on Computer-Human Interaction, OZCHI ’17, page
457–461, New York, NY, USA, 2017. Association for
Computing Machinery.

[6] TianXing Yu, LiYang Xiong, Min Cao, ZhiHui Wang,
YiChi Zhang, and Guo’An Tang. A new algorithm based
on region partitioning for filtering candidate viewpoints
of a multiple viewshed. International Journal of Geo-
graphical Information Science, 30(11):2171–2187, 2016.

http://archive.bridgesmathart.org/2010/bridges2010-231.html
http://archive.bridgesmathart.org/2010/bridges2010-231.html

	Introduction
	Related work

	Pipeline
	Generating initial viewpoints
	Metrics

	Results
	Discussion
	Conclusion

