

Delft University of Technology

Unrolling of Simplicial ElasticNet for Edge Flow Signal Reconstruction

Liu, Chengen; Leus, Geert; Isufi, Elvin

DOI
10.1109/OJSP.2023.3339376
Publication date
2023
Document Version
Final published version
Published in
IEEE Open Journal of Signal Processing

Citation (APA)
Liu, C., Leus, G., & Isufi, E. (2023). Unrolling of Simplicial ElasticNet for Edge Flow Signal Reconstruction.
IEEE Open Journal of Signal Processing, 5, 186 - 194. https://doi.org/10.1109/OJSP.2023.3339376

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/OJSP.2023.3339376
https://doi.org/10.1109/OJSP.2023.3339376

Received 15 September 2023; revised 28 November 2023; accepted 29 November 2023. Date of publication 5 December 2023;
date of current version 29 December 2023. The review of this article was arranged by Associate Editor L. Chaari.

Digital Object Identifier 10.1109/OJSP.2023.3339376

Unrolling of Simplicial ElasticNet for Edge
Flow Signal Reconstruction

CHENGEN LIU , GEERT LEUS (Fellow, IEEE), AND ELVIN ISUFI (Member, IEEE)
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, The Netherlands

CORRESPONDING AUTHOR: CHENGEN LIU (email: c.liu-35@student.tudelft.nl).

This work was supported in part by Dutch Research Council (NWO) through TTW-OTP Project GraSPA under Grant 19497 and in part by TU Delft AI programme.

ABSTRACT The edge flow reconstruction task consists of retreiving edge flow signals from corrupted or
incomplete measurements. This is typically solved by a regularized optimization problem on higher-order
networks such as simplicial complexes and the corresponding regularizers are chosen based on prior knowl-
edge. Tailoring this prior to the setting of interest can be challenging or it may not even be possible. Thus,
we consider to learn this prior knowledge via a model-based deep learning approach. We propose a new
regularized optimization problem for the simplicial edge flow reconstruction task, the simplicial ElasticNet,
which combines the advantages of the �1 and �2 norms. We solve the simplicial ElasticNet problem via
the multi-block alternating direction method of multipliers (ADMM) algorithm and provide conditions on
its convergence. By unrolling the ADMM iterative steps, we develop a model-based neural network with
a low requirement on the number of training data. This unrolling network replaces the fixed parameters
in the iterative algorithm by learnable weights, thus exploiting the neural network’s learning capability
while preserving the iterative algorithm’s interpretability. We enhance this unrolling network via simplicial
convolutional filters to aggregate information from the edge flow neighbors, ultimately, improving the net-
work learning expressivity. Extensive experiments on real-world and synthetic datasets validate the proposed
approaches and show considerable improvements over both baselines and traditional non-model-based neural
networks.

INDEX TERMS Signal processing over higher-order networks, simplicial convolutional filters, topological
signal processing.

I. INTRODUCTION
Reconstructing signals from noisy or partial measurements
is a long-lasting challenge in signal processing. This task
requires exploiting a particular signal behavior w.r.t. the
underlying medium, which typically resorts to framing a
structure-based regularized problem [1], [2], [3]. Regularizers
introduce a bias between the solution and the actual value, and
they possess distinct characteristics. For example, in graph
signal processing (GSP) [4], where the data is defined on the
nodes of a graph, the Tikhonov regularizer is used to recover
the graph signal based on the assumption that connected nodes
have similar values [5], [6]. When the signal is piece-wise
smooth, graph trend filtering with an �1 norm regularizer is
more effective as it promotes sparsity in the signal difference
of connected nodes [7], [8].

In many applications, we are interested in signals defined
on the edges of a network such as in transportation, water,
or power networks. Therefore, data defined on higher-order
networks have been studied recently [9], [10]. One effective
way to represent the structure of these flow data is via sim-
plicial complexes [10] which is an algebraic tool to capture
multi-way relationships where edge flows can be seen as
data over one-simplices [11]. Such oberved edge flows are
in practice noisy or have missing values, thus we need to
reconstruct them by means of simplicial-based regularized
problems. Prior information or physical constraints about the
flow behaviour could be used to frame regularized problems
so as to estimate the true signal. The papers [12] and [13]
respectively solve the edge flow denoising and interpolation
task in simplicial complexes based on Tikhonov principles.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/186 VOLUME 5, 2024

https://orcid.org/0000-0003-0420-9867
https://orcid.org/0000-0001-8288-867X
https://orcid.org/0000-0002-1919-260X
mailto:c.liu-35@student.tudelft.nl

However, they only penalize the flow divergence compo-
nent but not their curl component. This makes them subop-
timal as edge flows are often not only divergence-free, but
also curl-free which means the net flows circulating along all
the triangles are zero, such as currency exchange flows [13].
Secondly, Tikhonov regularizers can only smoothen the di-
vergence and curl components but are unsuitable when the
signals present sudden jumps, which commonly occurs in the
case of local (i.e., only in a few close-by edges) divergence-
free and curl-free flows [8]. Therefore, this paper proposes a
simplicial ElasticNet that combines the Tikhonov regularizer
with the �1 regularizer to solve the reconstruction task. The
simplicial ElasticNet has a broader range of applications. It
is a convex problem and can be solved by various standard
iterative algorithms, such as the alternating direction method
of multipliers (ADMM) [14], [15].

The regularizers are determined based on the prior knowl-
edge which can often be challenging to obtain [16]. Therefore,
it is a viable scheme to learn the prior, which is typically
done via model-based neural networks. One such method
is the unrolling technique which maps each iteration of the
optimization algorithm into a neural network layer [16]. It
has been successfully applied in medical imaging [17], power
grids [18], remote sensing [19] and graph signal denois-
ing [20]. Compared with unrolling networks, standard neural
network models have a black-box nature and are entirely
data-driven. Since they are not tailored to the reconstruction
task, they need more training data as their function spaces are
larger. When the training data is limited, the unrolling network
is advantageous because it restricts effectively the function
search space by leveraging the priors in the optimization prob-
lem and the iterative solutions.

We build unrolling networks for the simplicial ElasticNet
via its ADMM block structure. We replace the fixed parame-
ters with learnable simplicial convolutional filters to aggregate
information from the neighbors of the edge flow [21]. Con-
sequently, we improve the expressive ability of the unrolling
network. Therefore, we make the following contributions:
� We propose an ElasticNet problem for the simplicial

edge flow reconstruction task. The regularizer is based
on both the �1 and �2 norm. It generalizes existing regu-
larization approaches and reconstructs both global and
local divergence-free and/or curl-free edge flows. We
solve this convex problem by the multi-block ADMM
algorithm and provide conditions on its convergence.

� We build the corresponding unrolling network for sim-
plicial ElasticNet (USEN). It is based on the ADMM
equations and on simplicial convolutional filters which
aggregate information from the neighbors of the edge
flow. This also provides a new perspective on simplicial
edge flow reconstruction tasks.

We conduct numerical experiments on synthetic and real
datasets to corroborate the proposed methods and show their
superior performance compared to state-of-the-art simplicial-
based regularizers and neural network solutions.

FIGURE 1. Decomposition of the edge flow. The simplicial complex
contains seven nodes, nine edges, and two (filled) triangles. The edge
signals can be decomposed into three different components fG, fC and fH :
fG is the gradient component; fC is the curl component; and fH is the
harmonic component.

This paper is organized as follows. Section II illustrates
some preliminary concepts. In Section III, we propose our
simplicial ElasticNet and the corresponding ADMM solution
with the convergence analysis. In Section IV, we propose the
simplicial unrolling network based on the ADMM steps of
the simplicial ElasticNet. Section V shows some experimental
results. Finally, Section VI concludes the paper. All proofs are
collected in the appendix.

II. PRELIMINARY
In this section, we introduce some concepts related to simpli-
cial complexes and signals.

A. SIMPLICIAL COMPLEXES
Given a finite set of vertices V , a k-simplex Sk is a subset
of V with cardinality k + 1. A simplicial complex of order K,
XK , is a finite collection of k-simplices Sk for k = 0, 1, . . ., K
satisfying the inclusion property: for any Sk ∈ XK , all of
its subsets Sk−1 ⊂ Sk satisfy Sk−1 ∈ XK . The number of
k-simplices in a simplicial complex is denoted by Nk . For
example, a node is a 0-simplex, an edge is a 1-simplex, and
a (filled) triangle is a 2-simplex, as shown in Fig. 1. A graph
is therefore a simplicial complex of order K = 1.

We can represent the adjacencies between different sim-
plices via the incidence matrices Bk ∈ R

Nk−1×Nk which
capture the relationship between (k-1)-simplices and k-
simplices [10]. Matrix B1 is the node-to-edge incidence
matrix, B2 is the edge-to-triangle incidence matrix, and so
on. The whole simplicial complex structure can then be repre-
sented by the Hodge Laplacian matrices

L0 = B1B�
1

Lk = B�
k Bk + Bk+1B�

k+1, k = 1, . . . , K − 1

LK = B�
K BK . (1)

VOLUME 5, 2024 187

LIU ET AL.: UNROLLING OF SIMPLICIAL ELASTICNET FOR EDGE FLOW SIGNAL RECONSTRUCTION

Except for L0 and LK , all other matrices can be decomposed
into the sum of two terms: the lower Laplacian Lk,� = B�

k Bk

and the upper Laplacian Lk,u = Bk+1B�
k+1. The lower Lapla-

cian represents the lower adjacencies of k-simplices (e.g., how
two edges are adjacent via a common node), while the upper
Laplacian represents the upper adjacencies (e.g., how two
edges are adjacent by being the faces of the same triangle).

B. SIMPLICIAL SIGNALS
A k−simplicial signal, for short k−signal, is a mapping from
the k−simplex to the set of real numbers. We collect the
k−signal into the vector sk = [sk

1, . . . , sk
Nk

]� ∈ R
Nk where en-

try sk
i corresponds to the ith k-simplex [10]. In this paper,

we are interested in processing edge flows; hence, we will
deal with simplicial complexes of order K = 2. Thus, we
denote the 0-signal as v := s0 = [v1, . . . , vN0]� ∈ R

N0 , the
1-signal as f := s1 = [f1, . . . , fN1]� ∈ R

N1 , and the 2-signal
as t := s2 = [t1, . . . , tN2]� ∈ R

N2 . A simplex can have two
orientations. The orientations of the edges in the graph are
set based on the labeling of vertices. If the value of the edge
signal is positive, the set orientations are consistent with the
real situation. If it is negative, the set orientations are oppo-
site. For processing purposes, we define an arbitrary reference
orientation of each simplex and follow for simplicity the lexi-
cographical ordering of the vertices.

The space of the simplicial edge flow signal RN1 can be
decomposed into three orthogonal subspaces

R
N1 ≡ im

(
B�

1

) ⊕ ker (L1) ⊕ im (B2) (2)

where im(·) and ker(·) are the image and kernel spaces of a
matrix and ⊕ is the direct sum. That is, for any edge flow
signal f , there exist three simplicial signals of orders 0, 1, and
2 so that we can decompose the edge flow as

f = B�
1 v + fH + B2t. (3)

This Hodge decomposition expresses the relationship be-
tween different orders of simplicial signals [10]. It implies
that the edge flow can be written as a sum of three flows
f = fG + fC + fH (see also Fig. 1) with the explanation:
� Gradient component: fG = B�

1 v ∈ im(B�
1) is an edge

flow induced by taking the difference between the two
node signals at the extremities of the edge. Operator B�

1
is the gradient operator and the space im (B�

1) is the
gradient space.

� Curl component: fC = B2t ∈ im(B2) is a curl flow lo-
cally circulating along the edges of triangles induced by
a triangle signal t. Operator B2 is the curl adjoint and the
space im (B2) is the curl space.

� Harmonic component: fH ∈ ker(L1) is the part of the
edge flow that satisfies L1fH = 0. The space ker (L1) is
called the harmonic space.

For future reference, we define the following two operators:
� Curl operator: curl(f) = B�

2 f which yields a triangle
signal that measures the curl of an edge flow. The ith
element corresponds to the sum of the flow of each edge

forming the ith triangle. If the curl of an edge flow is
zero at each triangle, it is curl-free. The gradient compo-
nent fG and the harmonic component fH are curl-free by
definition [10].

� Divergence operator: div(f) = B1f which yields a node
signal and measures the divergence of an edge flow. The
ith element corresponds to the flow passing through the
ith node. If the divergence of an edge flow is zero at
each node, it is divergence-free. The curl component fC
and the harmonic component fH are divergence-free by
definition [10].

Real edge flows tend to be divergence-free or curl-free. For
example, the traffic flow entering into a junction in a road
network is equal to the traffic flow out going that junction,
which means it is divergence-free. Another example is the
principle of non-arbitrage in the foreign exchange market,
which implies that the conversion between exchange rates
should be curl-free [13].

III. SIMPLICIAL ELASTICNET
Consider the edge flow reconstruction task from noisy or
partial measurements y. The goal is to estimate an edge flow
signal f̂ by leveraging a particular prior of the edge flows
such as curl-free or divergence-free. This can be framed as
a regularized optimization problem

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 +

n∑
i=1

ri(f̂,S1) (4)

where ‖P(f̂ − y)‖2
2 is the data-fitting term. The terms

ri(f̂,S1) represent the regularizers, which are monotone non-
decreasing functions that penalize a particular behavior of
the edge flows w.r.t. the 1-simplex S1. We consider problem
(4) as a unified formulation for two particular settings: i)
signal denoising when all edge flows are observed but the
measurements are noisy; ii) signal reconstruction, when the
edge flows are observed on a subset of the edges. When
P = I and y = f0 + n is a noisy edge flow, the optimization
problem corresponds to the denoising task. Here, f0 is the
real edge flow and n is the additive Gaussian noise. When
P ∈ {0, 1}M×N1 is a sampling matrix with M ≤ N1 sampled
values, the optimization problem corresponds to the interpo-
lation task.

A. SIMPLICIAL ELASTICNET PROBLEM
To regularize problem (4) with a simplicial prior, we consider
the ElasticNet [22] principle w.r.t. the three signal components
in (3) which contains both �1 and �2 norm regularizers

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 + α1‖B1 f̂‖1 + α2‖B1 f̂‖2

2 + β1‖B�
2 f̂‖1

+ β2‖B�
2 f̂‖2

2 + γ1‖f̂‖1 + γ2‖f̂‖2
2 (5)

where α1, α2, β1, β2, γ1, γ2 are all positive constants. There
are three regularization pairs in (5) that are reminiscent of the
Hodge decomposition in (3):

188 VOLUME 5, 2024

� The first pair α1‖B1 f̂‖1 + α2‖B1 f̂‖2
2 regularizes the di-

vergence component of the edge flows by promoting the
divergence to be sparse via the �1 norm and low-energy
via the �2 norm.

� The second pair β1‖B�
2 f̂‖1 + β2‖B�

2 f̂‖2
2 regularizes the

curl component of the edge flows. The �1 norm promotes
the sparsity of the curl on the triangles while the �2 norm
reduces the total curl of the recovered signal globally.

� The last pair γ1‖f̂‖1 + γ2‖f̂‖2
2 contains the additional

regularizers that guarantee the completes of the opti-
mization problem; that is, having an overall signal that
is either sparse or of low energy. In most tasks, these
two terms are redundant, hence, γ1 and γ2 can be set to
zero.

Scalars α1, α2, β1, β2, γ1, and γ2 control the trade-off
between the fidelity, the divergence, and the curl of the recov-
ered signal. Problem (5) generalizes two existing edge flow
reconstruction problems.

Tikhonov regularizer [12], [13]: When the parameters
α1 = β1 = γ1 = γ2 = 0, a common optimization problem for
the edge flow recovery becomes

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 + α2‖B1 f̂‖2

2 + β2‖B�
2 f̂‖2

2 (6)

where the regularizers force the recovered signal to have low
divergence and curl.

Simplicial trend filtering [23]1 When we consider only the
sparsity of the divergence and curl of the edge flow, the �1

norm regularizer should be considered. Setting α2 = β2 =
γ1 = γ2 = 0, the simplicial ElasticNet reduces to the simpli-
cial trend filtering problem

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 + α1‖B1 f̂‖1 + β1‖B�

2 f̂‖1 (7)

When the prior knowledge (curl-free or divergence-free) is
explicit, simplicial trend filtering is more advantageous com-
pared to Tikhonov regularization. The properties of the �2

norm regularizers are suboptimal for some tasks because they
can only reduce the divergence and curl of the reconstructed
signal globally but cannot reconstruct the divergence-free and
curl-free edge flow exactly.

The ElasticNet benefits from both regularizers and it is
of interest when: (i) the data are approximately curl-free or
divergence-free; (ii) the noise level is comparable to that of
the clean signal; and (iii) excessive flows are missing. The
reason is that the ElasticNet makes a trade-off between the �1

norm and �2 norm.

B. ADMM SOLUTION FOR SIMPLICIAL ELASTICNET
The optimization problem in (5) is a convex problem and there
are several blocks in its objective function. It can be solved by

1This can be considered as a preliminary version of this paper presented at
Asilomar. The previous work contains only �1 terms. Therefore, this approach
is an extension of this previous work, which contains both the �1 and �2
terms to promote the sparsity and keep the low energy, respectively. The work
in [23] does not focus on the unrolling technique as we do here.

a multi-block ADMM algorithm [24]. Consider the auxiliary
variables z1 = B1f̂ , z2 = B�

2 f̂ and z3 = f̂ for the regularizers
so that problem (5) reformulates as

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 + α1‖z1‖1 + α2‖z1‖2

2 + β1‖z2‖1

+ β2‖z2‖2
2 + γ1‖z3‖1 + γ2‖z3‖2

2

subject to B1f̂ = z1, B�
2 f̂ = z2, f̂ = z3. (8)

The corresponding augmented Lagrangian is

L = ‖P(f̂ − y)‖2
2 + α1‖z1‖1 + α2‖z1‖2

2 + β1‖z2‖1

+ β2‖z2‖2
2 + γ1‖z3‖1 + γ2‖z3‖2

2 − λ�
1 (B1f̂ − z1)

− λ�
2 (B�

2 f̂ − z2) − λ�
3 (f̂ − z3) + ρ

2
‖B1 f̂ − z1‖2

2

+ ρ

2
‖B�

2 f̂ − z2‖2
2 + ρ

2
‖f̂ − z3‖2

2 (9)

where λ1 ∈ R
N0 , λ2 ∈ R

N2 and λ3 ∈ R
N1 are the Lagrangian

multipliers and ρ is the penalty parameter. There are four
blocks in this problem: ‖P(f̂ − y)‖2

2; α1‖z1‖1 + α2‖z1‖2
2;

β1‖z2‖1 + β2‖z2‖2
2 and γ1‖z3‖1 + γ2‖z3‖2

2. The iterative
steps of the related four-block ADMM comprise⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂ (k+1) = (2P�P + ρB�
1 B1 + ρB2B�

2 + ρI)−1

(2P�Py + B�
1 λ

(k)
1 + B2λ

(k)
2 + λ

(k)
3

+ρB�
1 z(k)

1 + ρB2z(k)
2 + ρz(k)

3)

z(k+1)
1 = S α1

2α2+ρ

(
1

2α2+ρ
(ρB1 f̂ (k+1) − λ

(k)
1)

)
z(k+1)

2 = S β1
2β2+ρ

(
1

2β2+ρ
(ρB�

2 f̂ (k+1) − λ
(k)
2)

)
z(k+1)

3 = S γ1
2γ2+ρ

(
1

2γ2+ρ
(ρ f̂ (k+1) − λ

(k)
3)

)
λ

(k+1)
1 = λ

(k)
1 − ρ(B1 f̂ (k+1) − z(k+1)

1)

λ
(k+1)
2 = λ

(k)
2 − ρ(B�

2 f̂ (k+1) − z(k+1)
2)

λ
(k+1)
3 = λ

(k)
3 − ρ(f̂ (k+1) − z(k+1)

3)

(10)

where Sδ (·) is the element-wise soft-thresholding function
with threshold δ. The following proposition provides a suf-
ficient condition for the convergence of the ADMM.

Proposition 1. (convergence): Assume that P�P is a pos-
itive definite matrix and there exists a constant μ1 > 0
satisfying P�P 	 μ1I. Each regularization block in the cost
function is a strongly convex function with modulus μi [24]
satisfying μ2 = 2α2, μ3 = 2β2, μ4 = 2γ2. Consider also the
matrices Ai related to the equality constraints of (8) defined as

A1 = [
B1, B�

2 , I
] ∈ R

(N0+N1+N2)×N1 (11a)

A2 = [−I, 0, 0] ∈ R
(N0+N1+N2)×N0 (11b)

A3 = [0, −I, 0] ∈ R
(N0+N1+N2)×N2 (11c)

A4 = [0, 0, −I] ∈ R
(N0+N1+N2)×N1 . (11d)

If the penalty parameter ρ satisfies

0 < ρ < min
1≤i≤4

{
2μi

9‖Ai‖2
2

}
, (12)

VOLUME 5, 2024 189

LIU ET AL.: UNROLLING OF SIMPLICIAL ELASTICNET FOR EDGE FLOW SIGNAL RECONSTRUCTION

Algorithm 1: Learning Framework of the USEN.

the four-block ADMM iterative steps converge to the optimal
solution of the problem (5).

Proof: See Appendix A.
When we specify (5) as the reconstruction task, this propo-

sition only works for the denoising task as P�P is positive
semidefinite in the interpolation task.

IV. SIMPLICIAL UNROLLING NETWORKS
Choosing appropriate regularization coefficients is critical to
achieve a satisfactory performance by solving problem (5).
However, such a prior knowledge may be unavailable or un-
clear to be framed as an explicit regularizer. In these cases,
the regularization coefficients need to be selected empirically
which often leads to a gap between the obtained and opti-
mal solutions. This problem can be avoided by exploiting
the learning ability of an unrolling network. The unrolling
network maps each iteration of the iterative algorithm into
one neural network layer and replaces the fixed parameters
with learnable ones [16]. Therefore, it leads to an architecture
that is tailored to the problem at hand. The unrolling network
restricts the degrees of freedom by using such an iteration as
inductive bias, ultimately, demanding less training data.

One of the most straightforward ways to construct an un-
rolling network is to use the iterative step in (10) and learn
the scalars in it. However, this involves an inverse operation,
which increases the computational complexity. Instead, we
want to avoid it and use simplicial convolutional filters to learn
the propagation rule in the f̂-update. The corresponding lth
layer of the unrolling network for the simplicial ElasticNet
(USEN) can then be computed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂ (l+1) = H1P�Py + H2B�
1 λ

(l)
1 + H3B2λ

(l)
2 + H4λ

(l)
3

+H5B�
1 z(l)

1 + H6B2z(l)
2 + H7z(k)

3

z(l+1)
1 = S a1

2a2+r1

(
1

2a2+r1
(r1B1 f̂ (l+1) − λ

(l)
1)

)
z(l+1)

2 = S b1
2b2+r2

(
1

2b2+r2
(r2B�

2 f̂ (l+1) − λ
(l)
2)

)
z(l+1)

3 = S c1
2c2+r3

(
1

2c2+r3
(r3f̂ (l+1) − λ

(l)
3)

)
λ

(l+1)
1 = λ

(l)
1 − r1(B1f̂ (l+1) − z(l+1)

1)

λ
(l+1)
2 = λ

(l)
2 − r2(B�

2 f̂ (l+1) − z(l+1)
2)

λ
(l+1)
3 = λ

(l)
3 − r3(f̂ (l+1) − z(l+1)

3)
(13)

where the Hi := H(L1,l , L1,u) are simplicial convolutional
filters defined as follows. Given a simplicial edge flow f and
Laplacians L1,� and L1,u, the simplicial convolutional filtering
operation is defined as

y =
⎛
⎝ L1∑

l1=0

αl1 Ll1
1,�

+
L2∑

l2=0

βl2 Ll2
1,u

⎞
⎠ f (14)

where y is the filter output, L1 and L2 are the convolution
orders, and αl1 , βl2 are the coefficients. A simplicial convo-
lutional filter is thus defined as

H :=
⎛
⎝ L1∑

l1=0

αl1 Ll1
1,�

+
L2∑

l2=0

βl2 Ll2
1,u

⎞
⎠ (15)

which allows writing (15) as y = Hf . This convolution oper-
ator propagates the edge flow signal f via upper and lower
neighbors, weighs differently each shift, and sums all the
shifted signals. Specifically, operations

∑L1
l1=0 αl1 Ll1

1,�
and∑L2

l2=0 βl2 Ll2
1,u gather the information from the lower- and

the upper-adjacencies up to L1 and L2 hops away, respec-
tively [21]. The learning framework of the USEN is shown
in Algorithm 1 where P is the sampling matrix, y collects the
measurement, f0 is the clean signal, and L is the number of
layers.

This USEN replaces the update step of f̂ with trainable sim-
plicial convolutional filters. This allows learning the influence
of the multi-hop edge flow neightbors into reconstructing the
signal by acting on the respective Hodge decomposition spec-
trum. The USEN also replaces ρ at different positions with
three different trainable parameters r1, r2 and r3. The fixed pa-
rameters αi, βi and γi in ADMM are replaced by the trainable
weights ai, bi and ci. Each convolutional filter has 1 + L1 + L2

parameters. Thus, each layer has 19 + 7L1 + 7L2 parameters
in total. These parameters ensure that USEN is flexible and ex-
pressive. The major complexity comes from the computation
of convolutional filters, which is a weighted linear combina-
tion of different shifts of edge flow signals. Therefore, the
complexity of one layer of the USEN is O((L1 + L2)D) where
D is the dimension of the input data. This complexity grows
L times with the depth. The unrolling network based on trend
filtering is shown in Appendix B.

V. EXPERIMENTAL RESULTS
This section evaluates the proposed approaches on the edge
flow recovery task.

A. DATASETS
In this section we give an overview of the datasets that are
considered. The properties are summarized in Table 1.

Foreign Currency Exchange (Forex) [13]: We consider
pairwise currency exchanges between 25 different currencies.
This can be modeled as a network where the edge flow is the
logarithm of the exchange rate. This exchange rate value must
guarantee the no-arbitrage condition, i.e., an income cannot be

190 VOLUME 5, 2024

TABLE 1. Properties of the Datasets

obtained through repeated exchange between currency pairs.
For currencies A and B, the exchange rate is rA/B and the
no-arbitrage condition implies rA/BrB/C = rA/C. If we use
the logarithm to describe the edge flow, we obtain f[A,B] =
log(rA/B) and the no-arbitrage condition means that the edge
flow is curl-free. Therefore, an arbitrage-free exchange setting
satisfies ‖B�

2 f‖1 = 0 or ‖B�
2 f‖2

2 = 0. We model the dataset
as a simplicial complex with 25 nodes, 300 edges, and 2300
triangles. Our task is to recover the exchange rates under the
arbitrary free condition which is relevant in noisy fluctuation
settings or when anomalies may be present.

Lastfm [13]: The Lastfm dataset records the process of
users switching artists while playing music. Each distinct
artist can be modeled as a node and an edge models the switch
between two adjacent artists. When the user switches from
artist A to B, we add a unit on the edge flow from A to
B. Edge flows modeled in this way should be approximately
divergence-free. Only the nodes where the user starts and ends
have nonzero divergence whereas the rest of the nodes are
divergence-free. Therefore, we can constrain the edge flow
to satisfy ‖B1f‖1 = 0 or ‖B1f‖2

2 = 0. The Lastfam dataset
can be modeled as a simplicial complex with 657 nodes,
1997 edges, and 1276 triangles. We generate a synthetic
(divergence-free) curl component based on this topology by
B2t where t is a random triangle signal. The task consists
of recovering edge flows from noisy or partial measurements
which are typical when the information of users is inaccurate.

Chicago road network [21]: This is the road network of
the city of Chicago and contains 546 nodes, 1088 edges and
112 triangles. Junctions are modeled as nodes, roads as edges
and the area enclosed by three roads as triangles. We generate
divergence-free edge flows. Specifically, we perform random
walks on the topology and record the number of walks on each
edge to simulate the flow on the traffic road. The edge flow
constructed in this way is roughly divergence-free. Gaussian
noise or sampling is then considered to corrupt the original
edge-flow signal. The task here consists of estimating the edge
flows from noisy and partial measurements which is relevant
for traffic monitoring from a few sensors.

B. EXPERIMENTAL SETUP
We compare different iterative models including:
� ADMM-SEN: ADMM for simplicial ElasticNet in (12).
� ADMM-STF [23]: ADMM for simplicial trend filtering

in (18). This acts as a baseline for the proposed ADMM-
SEN and has shown a superior performance than the
Tikhonov counterpart (6).

� USEN: Simplicial unrolling network for ElasticNet (15).

TABLE 2. NMSE of Denoising Task. The SNR Ranges From 0 dB to 10 dB

� USTF: Simplicial unrolling network for trend filtering in
(19). This model unrolls the ADMM-STF and has fewer
trainable weights than USEN.

� MLP [25]: Multilayer perceptrons are fully connected
neural networks which act as a baseline that ignores any
signal structure.

� SNN [26]: Simplicial neural networks developed for pro-
cessing simplicial signals which are non-model-based
neural networks.

� SCNN [27]: Simplicial convolutional neural networks.
Differently from [26], it puts different weights on the
lower and upper edge flow propagations. Together with
the SNN it acts as a baseline to highlight the importance
of a model-based approach over simplices.

� GUTF [20]: Graph unrolling network for trend filtering.
We build a line graph [12] where edges become nodes
and viceversa and consider the edge flows as node sig-
nals. Then we deploy the approach of [20] to show the
reconstruction performance.

The ratio of training, validation, and testing samples is
1:1:10. Hyperparameters such as the number of layers and
learning rate lr are shown in Tables 2 and 3. The number of
layers is searched from 1 to 6, and the learning rate lr ranges
from 0.001 to 0.1. The batch size is 1 for all experiments.
The number of layers in the MLP is 5, and the number of
neurons in each layer is 16, 128, 128, 16, 1. The number of
layers of SNN and SCNN is 3, and the number of features
output from each layer is 2, 2, 1, respectively. The order of
the filters in SNN is k = 1 and in SCNN are L1 = L2 = 1. K
is the number of iterations in ADMM. The Adam optimizer
is used in all experiments to update the learnable weights. All
neural networks are trained using one-shot learning (i.e., with
a single training point). We ran all methods until convergence
and the convergence criterion is the maximum number of
iterations K .

VOLUME 5, 2024 191

LIU ET AL.: UNROLLING OF SIMPLICIAL ELASTICNET FOR EDGE FLOW SIGNAL RECONSTRUCTION

FIGURE 2. Reconstruction performance of different parametric strategies on the Lastfm dataset. SNR for denoising task is ranging from 0 dB to 10 dB.
Sampling rate for interpolation task is ranging from 20% to 90%. USEN and USTF are unrolling networks containing simplicial convolutional filters, while
USEN without convolution and USTF without convolution are unrolling networks employing scalar weights. The left figures corresponds to the result of
the denoising task and the right to the interpolation task.

TABLE 3. Pearson Correlation Coefficient of Interpolation Task

FIGURE 3. Convergence property of multi-block ADMM and unrolling
network. The figures on the top show the convergence performance of
4-block ADMM. As ρ changes from small to large, the ADMM algorithm is
converging. The figures on the bottom are convergence performance of the
simplicial unrolling network. We can observe that the network converges
as it becomes deeper.

We add zero mean Gaussian noise with SNRs ranging from
0 dB to 10 dB. For the interpolation task, we sample the edge
flows randomly with a sampling rate from 20% to 90%. We
evaluate the denoising performance via the normalized mean
squared error (NMSE) and the interpolation performance via
the Pearson correlation coefficient between the recovered and
clean true signal as in [13]. In denoising tasks, the NMSE
measures the difference between the denoised signal and the
real signal. The Pearson correlation coefficient measures the
degree of correlation between the reconstructed signal and
the real signal. We test the performance of the models on ten
different noisy realizations and report the average values.

C. PERFORMANCE COMPARISON
Table 2 shows the NMSE of the edge flow denoising task.
Table 3 shows the Pearson correlation coefficients for the
edge flow interpolation. Overall, ADMM-SEN achieves close
or slightly better results than ADMM-STF. This is because
ADMM-SEN adds regularizers based on the �2 norm, which
makes the recovered signal have a lower divergence or curl.
It is worth noting that ADMM-SEN requires fewer iterations
to converge for the Forex dataset. The proposed unrolling
networks USEN and USTF achieve a significantly better per-
formance than the non-model-based neural networks. The
need for substantial amounts of labeled data makes it chal-
lenging for standard neural networks to achieve satisfactory
results. The unrolling networks are designed based on the
mathematical models that are tailored to specific inverse prob-
lems on simplices. This indicates that unrolling networks will
search a much smaller function space than other neural net-
works. Compared with the iterative algorithms, the unrolling
network works better when the prior is inaccurate. The advan-
tage of the unrolling network is more apparent when the SNR
is close to zero or sampling rate is close to 20% because it can
capture the patterns in the signal more accurately even with a
significant noise or low sampling rate.

We note that the two ADMM iterative algorithms perform
significantly better on the Forex dataset than the others. The
reason is that the curl-free property of the Forex dataset

192 VOLUME 5, 2024

provides more practical information than the divergence-free
property of the Lastfm and Chicago dataset. Curl-free is de-
fined for triangles; thus, when there are more triangles in
simplicial complexes, the curl-free property provides more
information. Furthermore, the topology of the Forex dataset is
a complete simplicial complex, meaning a filled triangle exists
among any three nodes. Therefore, the curl-free property is a
solid prior for it.

GUTF transforms the edge flow signals into node signals in
the corresponding line graph and is a graph unrolling network
based on the trend filtering to complete the edge flow recon-
struction task. It achieves unsatisfactory results because the
underlying optimization problem does not use the topology of
simplicial complexes. Graph trend filtering forces the differ-
ences of the recovered graph signals between connected nodes
to be sparse, which implies that the reconstructed neighboring
edge flows are close, which is not realistic. Real-world edge
flows tend to be curl- or divergence-free; hence, advocating
simplicial-based alternatives.

D. EFFECT OF SIMPLICIAL CONVOLUTIONAL FILTERS
We verify the contribution of adding trainable simplicial con-
volutional filters in the unrolling network. Fig. 2 shows the
effect of trainable filters in the denoising and interpolation
tasks, respectively. We take the results on the Lastfm dataset
as an example because the difference between its curves is
the most obvious and more noticeable compared to the Forex
and Chicago datasets. When the filters are removed, the recon-
struction becomes worse because the simplicial convolutional
filters improve the learning ability as they aggregate the in-
formation of the edge flow and its neighbors at each layer.
The gap is larger for the USTF, especially for low SNR or
low sampling rates which indicates that USEN can capture
the patterns in the signal more accurately than USTF even in
a more challenging setting.

E. CONVERGENCE
We check the convergence of the multi-block ADMM algo-
rithm with the penalty parameter ρ varying from 0.1 to 0.4.
The experimental results are shown in Fig. 3 (top), where
the multi-block ADMM algorithm is always guaranteed to
converge as ρ varies. The larger ρ, the faster the convergence.
As for USEN, we conduct experiments on all the datasets.
We check the output of each layer and the number of layers
is gradually increased. The convergence results of USEN are
shown in Fig. 3 (bottom). The NMSE and the Pearson cor-
relation coefficients of the recovered edge flow generated by
USEN converge gradually as the number of layers is gradu-
ally increased. The convergence property of USEN has some
similarities with the ADMM because it is constructed based
on its iterative steps.

VI. CONCLUSION
We propose the simplicial ElasticNet for the edge flow recon-
struction task. It contains both the �1 and �2 norm regularizers

which promote sparsity and keep low energy, respectively.
We solve the simplicial ElasticNet and trend filtering prob-
lem by multi-block ADMM iteratively. Then, we design the
corresponding unrolling networks USEN and USTF based on
their ADMM steps. The core idea is mapping each iteration
into a layer of the neural network. Simplicial convolutional
filters are considered in the unrolling networks to collect in-
formation from the neighbors of the edge flows and we learn
the filter parameters to improve the learning capabilities of
the network. Numerical experiments show that the simplicial
unrolling network can achieve better reconstruction results
than non-model-based neural networks and other unrolling
algorithms with limited training data. In practice, when the
prior knowledge is unclear, the learning ability of an unrolling
network can be beneficial. Traditional iterative algorithms still
have advantages when there is no data to learn from. In future
research, an unrolling network can be developed for different
iterative algorithms.

APPENDIX
A PROOF OF PROPOSITION 1
Before the proof, we recall this useful lemma from [24].

Lemma 1: If all the blocks in the multi-block ADMM al-
gorithm are strongly convex functions, the convergence of
multi-block ADMM is guaranteed if the penalty parameter ρ

in the augmented Lagrangian function satisfies the condition

0 < ρ < min
1≤i≤m

{
2μi

3(m − 1)‖Ai‖2
2

}
(16)

where μi is the strongly convex modulus of each block [24],
m is the number blocks and Ai is the coefficient matrix related
to the ith equality constraint. Optimization problem (8) can be
written as

argmin
f̂∈RN1

‖P(f̂ − y)‖2
2 + α1‖z1‖1 + α2‖z1‖2

2 + β1‖z2‖1

+ β2‖z2‖2
2 + γ1‖z3‖1 + γ2‖z3‖2

2

subject to A1f̂ + A2z1 + A3z2 + A4z3 = 0 (17)

where the Ai are defined in (11a)–(11d). There are four differ-
ent blocks for multi-block ADMM: ‖P(f̂ − y)‖2

2; α1‖z1‖1 +
α2‖z1‖2

2; β1‖z2‖1 + β2‖z2‖2
2 and γ1‖z3‖1 + γ2‖z3‖2

2. Con-
sidering the condition P�P 	 μ1I, we have ∇2‖P(f̂ − y)‖2

2 =
2P�P 	 2μ1I. Therefore, the first block is a strongly con-
vex function with modulu μ1. The other three components
are all strongly convex functions and their moduli are μ2 =
2α2, μ3 = 2β2, μ4 = 2γ2. This brings us under the setting of
Lemma 1, which under the conditions in (16) completes the
proof.

VOLUME 5, 2024 193

LIU ET AL.: UNROLLING OF SIMPLICIAL ELASTICNET FOR EDGE FLOW SIGNAL RECONSTRUCTION

B UNROLLING NETWORK FOR TREND FILTERING
The iteration steps of the three-block ADMM related to the
reconstruction task can be described as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂ (k+1) = (2P�P + ρB�
1 B1 + ρB2B�

2)−1

(2P�Py + B�
1 λ

(k)
1 + B2λ

(k)
2

+ρB�
1 z(k)

1 + ρB2z(k)
2)

z(k+1)
1 = S α1

αρ
(1
ρ

(ρB1 f̂ (k+1) − λ
(k)
1))

z(k+1)
2 = S β1

αρ

(1
ρ

(ρB�
2 f̂ (k+1) − λ

(k)
2))

λ
(k+1)
1 = λ

(k)
1 − ρ(B1 f̂ (k+1) − z(k+1)

1)

λ
(k+1)
2 = λ

(k)
2 − ρ(B�

2 f̂ (k+1) − z(k+1)
2)

(18)

To construct a simplicial unrolling network for trend filtering
(USTF), certain iterative parameters should also be substituted
with trainable parameters. By substituting the fixed parame-
ters with simplicial convolutional filters, the lth layer of USTF
can be represented as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂ (l+1) = H1P�Py + H2B�
1 λ

(l)
1 + H3B2λ

(l)
2

+H4B�
1 z(l)

1 + H5B2z(l)
2

z(l+1)
1 = S a1

r1
(1

r1
(r1B1 f̂ (l) − λ

(l)
1))

z(l+1)
2 = S b1

r2

(1
r2

(r2B�
2 f̂ (l) − λ

(l)
2))

λ
(l+1)
1 = λ

(l)
1 − r1(B1f̂ (l+1) − z(l+1)

1)

λ
(l+1)
2 = λ

(l)
2 − r2(B�

2 f̂ (l+1) − z(l+1)
2)

(19)

where the Hi are simplicial convolutional filters which contain
some trainable parameters. Unlike USEN, USTF has fewer
learnable parameters and only constrains the curl and di-
vergence, but not the regularizers that constrain the signal’s
sparsity.

REFERENCES
[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based

noise removal algorithms,” Physica D, Nonlinear Phenomena, vol. 60,
no. 1/4, pp. 259–268, 1992.

[2] R. G. Gavaskar and K. N. Chaudhury, “Regularization using denoising:
Exact and robust signal recovery,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2022, pp. 5533–5537.

[3] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal recov-
ery on graphs: Variation minimization,” IEEE Trans. Signal Process.,
vol. 63, no. 17, pp. 4609–4624, Sep. 2015.

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs,” IEEE
Signal Proc. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[6] M. Yang, M. Coutino, G. Leus, and E. Isufi, “Node-adaptive regular-
ization for graph signal reconstruction,” IEEE Open J. Signal Process.,
vol. 2, pp. 85–98, 2021.

[7] R. Varma, H. Lee, J. Kovačević, and Y. Chi, “Vector-valued graph trend
filtering with non-convex penalties,” IEEE Trans. Signal Inf. Process.
Over Netw., vol. 6, pp. 48–62, 2020.

[8] Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering
on graphs,” in Proc. Artif. Intell. Statist., 2015, pp. 1042–1050.

[9] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’on the edge... and
beyond,” Signal Process., vol. 187, 2021, Art. no. 108149.

[10] S. Barbarossa and S. Sardellitti, “Topological signal processing
over simplicial complexes,” IEEE Trans. Signal Process., vol. 68,
pp. 2992–3007, 2020.

[11] R. Money, J. Krishnan, B. Beferull-Lozano, and E. Isufi, “Online edge
flow imputation on networks,” IEEE Signal Process. Lett., vol. 30,
pp. 115–119, 2023.

[12] M. T. Schaub and S. Segarra, “Flow smoothing and denoising: Graph
signal processing in the edge-space,” in Proc. IEEE Glob. Conf. Signal
Inf. Process., 2018, pp. 735–739.

[13] J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, “Graph-
based semi-supervised & active learning for edge flows,” in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2019,
pp. 761–771.

[14] D.-R. Han, “A survey on some recent developments of alternating di-
rection method of multipliers,” J. Operations Res. Soc. China, vol. 10,
pp. 1–52, 2022.

[15] J. Eckstein and W. Yao, “Understanding the convergence of the
alternating direction method of multipliers: Theoretical and compu-
tational perspectives,” Pac. J. Optim., vol. 11, no. 4, pp. 619–644,
2015.

[16] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.

[17] O. Solomon et al., “Deep unfolded robust PCA with application to
clutter suppression in ultrasound,” IEEE Trans. Med. Imag., vol. 39,
no. 4, pp. 1051–1063, Apr. 2020.

[18] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power sys-
tem state estimation and forecasting via deep unrolled neural net-
works,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077,
Aug. 2019.

[19] S. Lohit, D. Liu, H. Mansour, and P. T. Boufounos, “Unrolled projected
gradient descent for multi-spectral image fusion,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., 2019, pp. 7725–7729.

[20] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: In-
terpretable neural networks for graph signal denoising,” IEEE Trans.
Signal Process., vol. 69, pp. 3699–3713, 2021.

[21] M. Yang, E. Isufi, M. T. Schaub, and G. Leus, “Simplicial convolutional
filters,” IEEE Trans. Signal Process., vol. 70, pp. 4633–4648, 2022.

[22] C. De Mol, E. De Vito, and L. Rosasco, “Elastic-net regularization in
learning theory,” J. Complexity, vol. 25, no. 2, pp. 201–230, 2009.

[23] M. Yang and E. Isufi, “Simplicial trend filtering,” in Proc. IEEE 56th
Asilomar Conf. Signals Syst. Comput., 2022, pp. 930–934.

[24] D. Han and X. Yuan, “A note on the alternating direction method
of multipliers,” J. Optim. Theory Appl., vol. 155, no. 1, pp. 227–238,
2012.

[25] M. Riedmiller and A. Lernen, “Multi layer perceptron,” in Machine
Learning Lab Special Lecture. Breisgau, Germany: University of
Freiburg, 2014, pp. 7–24.

[26] S. Ebli, M. Defferrard, and G. Spreemann, “Simplicial neural net-
works,” in TDA and Beyond. 2020.

[27] M. Yang, E. Isufi, and G. Leus, “Simplicial convolutional neural net-
works,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2022,
pp. 8847–8851.

194 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

