
 
 

Delft University of Technology

Supporting Columnar In-memory Formats on FPGA
The Hardware Design of Fletcher for Apache Arrow
Peltenburg, Johan; van Straten, Jeroen; Brobbel, Matthijs; Hofstee, H. Peter; Al-Ars, Zaid

DOI
10.1007/978-3-030-17227-5_3
Publication date
2019
Document Version
Final published version
Published in
Applied Reconfigurable Computing

Citation (APA)
Peltenburg, J., van Straten, J., Brobbel, M., Hofstee, H. P., & Al-Ars, Z. (2019). Supporting Columnar In-
memory Formats on FPGA: The Hardware Design of Fletcher for Apache Arrow. In C. Hochberger, A. Koch,
P. Diniz, R. Woods, & B. Nelson (Eds.), Applied Reconfigurable Computing: 15th International Symposium,
ARC 2019, Proceedings (pp. 32-47). (Lecture Notes in Computer Science; Vol. 11444 LNCS). Springer.
https://doi.org/10.1007/978-3-030-17227-5_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-17227-5_3
https://doi.org/10.1007/978-3-030-17227-5_3


Supporting Columnar In-memory
Formats on FPGA: The Hardware Design

of Fletcher for Apache Arrow

Johan Peltenburg1(B), Jeroen van Straten1, Matthijs Brobbel1,
H. Peter Hofstee2, and Zaid Al-Ars1

1 Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
j.w.peltenburg@tudelft.nl

2 IBM Research, 11500 Burnet Road, Austin, TX 78758, USA

Abstract. As a columnar in-memory format, Apache Arrow has seen
increased interest from the data analytics community. Fletcher is a frame-
work that generates hardware interfaces based on this format, to be used
in FPGA accelerators. This allows efficient integration of FPGA accel-
erators with various high-level software languages, while providing an
easy-to-use hardware interface for the FPGA developer. The abstract
descriptions of data sets stored in the Arrow format, that form the input
of the interface generation step, can be complex. To generate efficient
interfaces from it is challenging. In this paper, we introduce the hard-
ware components of Fletcher that help solve this challenge. These compo-
nents allow FPGA developers to express access to complex Arrow data
records through row indices of tabular data sets, rather than through
byte addresses. The data records are delivered as streams of the same
abstract types as found in the data set, rather than as memory bus
words. The generated interfaces allow for full system bandwidth to be
utilized and have a low area profile. All components are open sourced and
available for other researchers and developers to use in their projects.

Keywords: FPGA · Apache Arrow · Fletcher

1 Introduction

The domain of data analytics is becoming increasingly mature. Various solutions
for e.g. scalable computing on large distributed data sets, easy to use data struc-
turing interfaces, storage and visualization exist (e.g. respectively Spark [12],
Pandas [3], Parquet [10], etc.). At the same time, the demand to process this
data in a more efficient manner increases as well. To overcome limitations with
serialization bottlenecks for heterogeneous software systems, an Apache project
named Arrow [9] was launched to provide a common in-memory format for big

This work has been supported by the Fitoptivis European ECSEL project no.
ECSEL2017-1-737451.

c© Springer Nature Switzerland AG 2019
C. Hochberger et al. (Eds.): ARC 2019, LNCS 11444, pp. 32–47, 2019.
https://doi.org/10.1007/978-3-030-17227-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17227-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-17227-5_3


Supporting Columnar In-memory Formats on FPGA 33

data. The project provides libraries for (at the time of writing) 11 different lan-
guages to consume or produce data sets in the common in-memory format. This
alleviates the need to serialize data stored as language-native run-time objects
when performing inter-process communication between application components
running in different language run-times. Zero-copy inter-process communication
is made possible through the common data layer that is offered by Arrow.

FPGA accelerators may also benefit from this format. The no-serialization
advantage has been exploited in an open-source, hardware-agnostic FPGA accel-
eration framework called Fletcher [6]. The goal of the project is to generate
interfaces based on Arrow meta-data called schemas that provide an abstract
description of the type of data in a tabular data set. Because the in-memory rep-
resentation follows from the schema, an interface can be generated based on the
schema that fetches the data based on a table index rather than a byte address,
delivering exactly the data object expressed through the schema, rather than a
bus word. This increases the programmability for the hardware developer - they
can focus on the accelerator implementation rather than spending time on the
platform specific interface and host-side software to shape data into a format
useful for the accelerator.

In this paper we describe the internals of the hardware solution of Fletcher
to support a set of common Arrow data types. This is challenging because on
the one hand, schemas can widely vary, and on the other hand, platform specific
interfaces can widely vary. Section 2 introduces the background. Next, we list
some requirements for the hardware components of Fletcher in Sect. 3. The main
contributions of this work can be found in Sects. 4 and 5. A vendor-agnostic
hardware library that is used in Fletcher is introduced in Sect. 4. Section 5 shows
how the components from the library are combined into designs that can read
from Arrow data sets through a host-memory interface and reshape the data
into a format desired by the schema. Functionality and performance for a large
variety of schemas are verified in Sect. 6.

Related work not discussed throughout the paper is discussed in Sect. 7. We
conclude this paper in Sect. 8.

2 Background

2.1 Problem Definition

To explain why the use of Arrow with FPGA accelerators is relevant, consider an
example use-case of matching regular expressions to a column of UTF8-strings
(a common operation performed on strings that are stored in databases or event
logs). Evaluating regular expressions in hardware is known to be efficient and
streamable with state-of-the-art work shows a throughput of 25.6 GB/s [7]. This
significantly exceeds the available interface bandwidth (e.g. 8 GB/s for PCIe
Gen3 x8).

However, to attach such an FPGA accelerator to a high-level language, lan-
guage native strings need to be serialized to a usable format. The throughput
of serializing approximately 1 GiB data set of language native strings in C++,



34 J. Peltenburg et al.

Table 1. Serialization throughput of various language run-times of 1 GiB of strings

Throughput (GB/s) Language

C++ (gcc) Java (OpenJDK) Python (CPython 3.6)

Xeon E5-2686 0.55 0.83 0.27

POWER9 Lagrange 0.81 0.81 0.16

Java and Python in software on an Intel Xeon machine and an IBM POWER9
machine are shown in Table 1. From this table, it can be seen that the serializa-
tion throughput of language-native string objects to a usable format in FPGA
is not in the same order of magnitude as host-to-accelerator bandwidth.

Using Fletcher framework for FPGAs allows exploiting the more efficient in-
memory format of Arrow and allows large data sets to be streamed-in at system
bandwidth. Fletcher is operational on two major FPGA platforms meant for
data-center and cloud applications; the OpenPOWER CAPI [8] SNAP frame-
work [4] and the Amazon Web Services (AWS) EC2 F1 instances [1].

2.2 Apache Arrow

Arrow data sets are typically tabular and stored in an abstraction called a
RecordBatch. A RecordBatch contains several columns for each field of a record,
that are in Arrow called arrays. These arrays can hold all sorts of data types,
from strings to lists of integers, to lists of lists of time-stamps, and others. Arrays
consist of several Arrow contiguous buffers, that are related, to store the data
of a specific type. There are several types of buffers. In this work we consider
validity buffers, value buffers and offset buffers.

Validity buffers store a single bit to signify if a record (or deeper nested)
element is valid or null (i.e. there is no data). Value buffers store actual values
of fixed-width types, similar to C arrays. Offset buffers store offsets of variable

(a) Schema:

Field A:
Float (nullable)
Field B:
List(Char)
Field C:
Struct(E: Int16, F: Double)

(b) RecordBatch:

A B C
0.5f "fpga" (42, 0.125)
0.25f "fun" (1337, 0.0)

∅ "!" (13, 2.7)

(c) Arrow buffers:

Buffers for:
Field A Field B Field C

Index Validity
(bit)

Values
(float)

Offsets
(int32)

Values
(char)

Values E
(int16)

Values F
(double)

0 1 0.5f 0 f 42 0.125
1 1 0.25f 4 p 1337 0.0
2 0 × 7 g 13 2.7
3 8 a
4 f
5 u
6 n
7 !

Fig. 1. An example schema (a) of a RecordBatch (b) and resulting Arrow buffers (c).



Supporting Columnar In-memory Formats on FPGA 35

length types, such as strings (which are lists of characters), where an offset at
some index points to where a variable-length item starts in another buffer.

A RecordBatch contains specific meta-data called a schema that expresses
the types of the fields in the records, therefore defining the types of the arrays,
in turn defining which buffers are present. When a user wants to obtain (a
subset of) a record from the RecordBatch, through the schema, we may find out
what buffers to load data from to obtain the records of interest. An example
of a schema, a corresponding RecordBatch (with three arrays and the resulting
buffers are seen in Fig. 1.

Normally, an FPGA developer designs an accelerator that has to interface
with a memory bus to get to the data set. That means the accelerator must
typically request a bus word from a specific byte address. However, in the case
of a tabular data set stored in the Arrow format, it is more convenient to express
access to the data by supplying a table index, or a range of table indices, and
receiving streams of the data of interest in the form of the types expressed
through the schema, rather than as a bus word.

Because schemas can express a virtually infinite number of type combinations
an implementation of the mechanisms must meet a challenging set of require-
ments. In the next section, we first describe the requirements of such an interface.

3 Requirements

Consider an accelerator to be the data sink in case an Arrow RecordBatch is
being read. From the description in the previous section, a set of requirements
for the generated interface can be constructed.

1. Row indexing: The data sink is able to request table elements by using
Arrow table row indices as a reference. In turn, the data sink will receive the
requested elements only.

2. Streaming: The elements will be received by the sink in an ordered stream.
3. Throughput: The interface can be configured to supply an arbitrary number

of elements in a valid transfer.
4. Bus interface: The host-memory side of the interface can be connected to

a bus interface of arbitrary power-of-two width.

The first requirement allows developers to work with row indices rather
than having to perform the tedious work of figuring out the byte addresses of
data (including potentially deeply nested schemas with multiple layers of offset
buffers). Furthermore, it implies that elements are received in the actual binary
form of their type, and not, e.g., as a few bytes in the middle of a host memory
bus word (that are often 512 bits wide for contemporary systems). This allows
the developer to not have to worry about reordering, serializing or parallelizing
the data contained in one or multiple bus words.

The second requirement maps naturally to hardware designs that often
involve data paths with streams of data flowing between functional units.



36 J. Peltenburg et al.

The third requirement allows multiple elements of a specific data type to
arrive per clock cycle. For example, when a column contains elements of a small
type (say a Boolean), it is likely the accelerator can process more than one
element in parallel. This differs from Requirement 2 in the sense that the ele-
ments that will be delivered in parallel are part of the same request mentioned
in Requirement 1. Furthermore, it can be that the top level element is a list of
small primitive elements. Thus, one might want to absorb multiple of the nested
elements within a clock cycle.

The last requirements allows the interface to be connected to different plat-
forms that might have different memory bus widths. In the discussions of this
work, we will generally assume that this width is set to 512 bits, since the plat-
forms that Fletcher currently supports both provide memory bus interfaces of
this size. However, Fletcher can also operate on wider or narrower bus interfaces.

4 Vendor-Agnostic Hardware Libary

Fletcher aims to be vendor-agnostic in order to thrive in an open-source set-
ting. All designs are based on data streams. This requires custom streaming
primitives that can perform the basic operations on streams. Commercial tools
contain IP cores to support some (but not all) of these operations as well. How-
ever, to engage with an open-source oriented community, it is important to not
force designs to use vendor-specific solutions. This causes the need for a custom
streaming operations library that is maintained alongside Fletcher.

The most important streaming components are discussed in this subsection.
The most basic primitives on which all other components are built, are as follows:

Slice A component to break up any combinatorial paths in a stream, typ-
ically using registers.

FIFO A component to buffer stream contents, typically using RAM.
Sync A component to synchronize between an arbitrary number of input

and output streams.

The throughput requirement mentioned in the previous section dictates that
streams must be able to deliver multiple elements per cycle (MEPC). To support
this, and other operations, the previously mentioned primitives are extended by
the set of following stream operators:

Barrel A pipelined component to barrel rotate or shift MEPC streams at
the element level.

Reshaper A component that absorbs an arbitrary number of valid elements
of an MEPC stream and outputs another arbitrary number of ele-
ments. This element is useful for serializing wide streams into nar-
row streams (or vice versa, parallelizing narrow streams into wide
streams). The element can also be used to reduce elements per cycle
in a single stream handshake or to increase (e.g. maximize) them.
The implementation of the Reshaper uses the Barrel component.



Supporting Columnar In-memory Formats on FPGA 37

Arbiter A component to arbitrate multiple streams onto a single stream.
Buffer An abstraction over a FIFO and a sync with a variable depth.

On top of the streaming components (especially the Arbiter and Buffer),
a light-weight bus infrastructure has been developed to allow multiple masters
to use the same memory interface. This bus infrastracture is similar to (and
includes wrappers for) AXI-4, supporting independent read/write request and
data channels and bursts.

Read/Write Arbiter Arbitrates multiple masters onto a single slave.
Read/Write Buffer Allows buffering of at least a full maximum sized burst

to relieve the arbiter of any back-pressure.

5 Components to Match Arrow Abstractions

5.1 Implementation Alternatives

Designing an interface to Arrow data could follow different approaches. A flexible
approach would have a small customized soft processor generate the requests
based on a schema or some bytecode that is compiled on the host. In this way,
any schema (reasonably limited in size) could be requested, and schemas can be
changed during run-time.

However, this approach would have several drawbacks. First of all, it would
introduce more latency as it takes multiple instructions to calculate addresses
and generate requests. Moreover, as developers can create schemas with fixed-
width types of arbitrary length, allocating streams for the “widest” case is
impractical. If one would supply the implementation with support for some very
wide fixed-width type (effectively limiting the schemas that can be expressed
already), it would cause a relatively large amount of area overhead for schemas
with narrow primitives. For example, consider a hard-coded 1024-bit stream
of which some schema only uses one bit. As schema data can be of many vari-
eties, the streams would require run-time reordering of the elements coming from
bus words. This involves relatively expensive parametrizations of the Stream
Reshaper to support all possible cases of aligning arbitrary elements. Elements
themselves must be restricted to be smaller than 1024 bits and only a fraction
of RAM spent on FIFOs in the data paths is effectively used.

The aggregate of these drawbacks causes the proposed interface generation
framework to completely configure the generated interface during compile-time.
For this purpose, we introduce highly configurable components that correspond
to abstractions seen in the Arrow software-language specific counterparts.

5.2 Buffers

Readers. As explained in Sect. 2, Arrow buffers hold C-like arrays of fixed-
width data. We implement a component called a BufferReader (BR). The BR
is a highly configurable component to support turning host memory bus burst
requests and responses into fixed-width type MEPC streams. It performs the
following functions:



38 J. Peltenburg et al.

– Based on the properties of the bus interface and the data type, perform the
pointer arithmetic to locate elements of interest in the Arrow buffer.

– Perform all the bus requests desired to obtain a range of elements.
– Align received bus words.
– Reshape aligned words into MEPC streams with fixed-width data types.

An architectural overview of the proposed implementation of two BRs (in
combination providing a setup to read variable-length types) is shown in Fig. 2.

Fig. 2. A BufferReader for an offsets buffer (left) and a values buffer (right)

The top-level of a buffer reader contains the following interfaces, that are all
pipelined streams:

Command (in) Used to request a range of items to be obtained from
host memory by the BR. Also contains the Arrow
buffer address and a special tag.

Unlock (out) Used to signal the completion of a command, hand-
shaking back the command’s original tag.

Bus read request (out) Used to request data from memory.
Bus read data (in) Used to receive data words from memory.
Data (out) A MEPC stream of data corresponding to an Arrow

data type.

Reading from a values buffer, and reading from validity bitmap buffers (by
instantiating a BR with element size one) is supported by the rightmost config-
uration of the BR as shown in Fig. 2.



Supporting Columnar In-memory Formats on FPGA 39

Here, a command stream is absorbed by two units: a bus request generation
unit and an alignment and count controller. The bus request generator performs
all pointer arithmetic and generates bus burst requests. The alignment and count
controller calculates, based on the width of the bus and the type of elements,
how much a bus word must be shifted (especially for the first bus word received),
since some first index in the command stream might point to any element in a
buffer. It also generates a count of valid items in the MEPC stream resulting
from alignment. This is also useful when last bus words in a range contain less
elements than requested.

Even though first and last bus words might not be aligned or do not contain
all requested elements, after aligning and augmenting the stream with a count,
the reshaper unit will shape a non-full MEPC stream into a full MEPC stream.

Furthermore, when the last bus word has been streamed to the aligner, an
unlock stream handshake is generated to notify the accelerator that the com-
mand has been completed in terms of requests on the bus.

Offset buffers require the consumer of the data stream to turn an offset
into a length. In this way, the consumer (typically the accelerator core logic)
can know the size of a variable length item in a column. Therefore, for offset
BRs, two consecutive offsets are subtracted to generate a length. Furthermore,
BRs support the generation of an output command stream for a second BR. To
generate this command stream, rather than generating a command for the child
buffer for each variable length item, the BR requests both the last offset and the
first offset in the range of the command first, before requesting all offsets in a
large burst. The first and last offset can then be sent as a single command to the
child BR, allowing it to request the data in the values buffer using large bursts.

Command (out) Used to generate commands for other buffers. This
is useful when this BR reads from an Arrow offsets
buffer.

Writers. Complementary to BRs, we also implement BufferWriters (BW) that,
given some index range can write to memory in the Arrow format. They contain
the same interface streams as BR, except the data flow is inverted. An architec-
tural overview of the proposed implementation of two BW is observed in Fig. 3.
Writing to a validity bitmap buffer or a values buffers requires the buffer writer
to operate as follows (as seen on the right side of the figure).

When a command is given to the BW, the MEPC input stream is delivered
to a unit that pre- and post-pads the stream to force the stream to be aligned
with a minimum bus burst length parameter. Furthermore, it generates appro-
priate write strobes (only asserting strobes for valid elements). The elements
and strobes are then reshaped to fit into a full bus word and sent to a bus
write buffer. Note that sometimes it is unknown how long an input stream will
be when the command is given. Therefore the command to the BW supports
both no range or with range commands. At the same time this requires counting
accepted bus words into the BusBuffer. A bus request generation unit uses this
count to generate bus requests preferably when full bursts are ready, but if the



40 J. Peltenburg et al.

Fig. 3. A BufferWriter for an offsets buffer (left) and a values buffer (right)

input stream has ended, bus words are bursted out with minimum burst steps
until the buffer is empty.

If the BW writes to an offsets buffer, it can be configured to generate offsets
from a length input stream. This length input stream can optionally be used
to generate commands for a child buffer. To achieve maximum throughput, the
child command generation may be disabled, otherwise the child buffer writer
will generate padding after the ending of every list in an Arrow Array containing
variable length types.

5.3 Arrays

To support Arrow arrays, that combine multiple buffers to deliver any field type
that may be found in an Arrow schema, we implement special components called
ColumnReaders and Writers.

These ColumnReaders- and Writers instantiate the BRs and BW resulting
from a schema field. They furthermore support:

– Attaching command outputs of offsets buffers to values or validity bitmap
buffers.

– Arbitration of multiple buffer bus masters onto a single slave.
– Synchronization of unlock streams of all buffers in use.
– Recursive instantiations of themselves. This, in turn, supports:

• Nested types, such as Lists<List<Type>>.
• Adding an Arrow validity bit to the output stream.
• Support Arrow structs, such as Struct<List<Int16>, Float>.

The ColumnReaders and ColumnWriters are supplied with a configuration
string that conveys the same information as an Arrow schema. By parsing the



Supporting Columnar In-memory Formats on FPGA 41

Fig. 4. Resulting ColumnReader configuration from the Schema in Fig. 1

configuration string, the components are recursively instantiated according to
the top level type of the field in a schema. An example for the schema from
Fig. 1 is shown in Fig. 4. Reading from the example RecordBatch (corresponding
to the schema) will require three ColumnReaders. The manner in which they are
recursively instantiated is shown in the figure. Here one can discern four types
of ColumnReader configurations:

Default A default ColumnReader only instantiates a specific ColumnReader
of the top-level type of the corresponding schema field, but provides
a bus arbiter to share the memory interface amongst all BRs that are
instantiated in all child ColumnReaders.

Prim A ColumnReader instantiating a BR for fixed-width (primitive) types.
Null Used to add a validity (non-null) bitmap buffer and synchronize with

the output streams of a child ColumnReader to append the validity bit.
List Used to add an offsets buffer that generates a length stream and provides

a first and last index for the command stream of a child ColumnReader.
Struct Used to instantiate multiple ColumnReaders, synchronizing their output

streams to couple the delivery of separate fields inside a struct into a
single stream.

Through the List and Struct type ColumnReaders, nested schemas may be
supported. On the top level all streams that interface with the accelerator core
are concatenated. A software tool named Fletchgen generates top levels for var-
ious platforms (including AWS EC2 F1 and OpenPOWER CAPI SNAP) that
wraps around the ColumnReaders and ColumnWriters and splits the streams
that are concatenated onto single signals vectors into something readable (using
the same field names as defined in the schema) for the developer. A discussion
of the inner workings of Fletchgen and the support for these platforms is outside
the scope of this paper but the implementation may be found in the repository
online [6]. The complement (in terms of data flow) of this structure is imple-
mented for ColumnWriters. One additional challenge to ColumnWriters is that
they require dynamically resizable Arrow Buffers in host memory, because it



42 J. Peltenburg et al.

cannot always be assumed that the size of the resulting Arrow Buffers is known
at the start of some input stream. This is an interesting challenge for future
work.

5.4 Continuous Integration

All parts of Fletcher are open sourced. This allows all interested parties to sub-
mit changes to the hardware design. Part of improving the maintainability of the
project includes bootstrapping of the build and test process in a continuous inte-
gration framework, where the simulator used is also an open-source project [2].
By using fully open-sourced tools in the collaborative development process, the
threshold to get started with FPGA accelerators and Fletcher is lowered.

6 Results

6.1 Functional Validation

Because the number of schema field type combinations is virtually infinite (due
to nesting), it is not trivial to validate the functionality of the framework. To
obtain good coverage in simulation, a Python script is used to generate random
schemas with supported types. The types decrease in complexity the deeper their
nesting level, such that at some point the nesting ends with a primitive type.
The resulting buffers are deduced from the schema, random content is gener-
ated and a host memory interface is mimicked. Random indices are requested
from the simulated ColumnReaders, and their output streams are compared to
the expected output. In this way, the correct functioning of over ten thousand
different generated structures was validated.

32 64 12
8

25
6

51
2
10
24

20
48

40
96

81
92
16
38
4
32
76
8

40

60

80

100

Element size
8
16
32
64

128
256
512

(a) Near-optimal output stream utilization

32 64 12
8

25
6

51
2
10
24

20
48

40
96

81
92
16
38
4
32
76
8

40

60

80

100

(b) Memory bus pressure

Fig. 5. Utilization for a ColumnReader for various fixed-width types versus command
range (each line represents a different fixed-width type).



Supporting Columnar In-memory Formats on FPGA 43

32 64 12
8

25
6

51
2
10
24

20
48

40
96

81
92
16
38
4
32
76
8

40

60

80

100

Element size
8
16
32
64

128
256
512

(a) Near-optimal output stream utilization

32 64 12
8

25
6

51
2
10
24

20
48

40
96

81
92
16
38
4
32
76
8

40

60

80

100

(b) Memory bus pressure

Fig. 6. Utilization for a ColumnWriter for various fixed-width types versus command
range.

6.2 Throughput

ColumnReaders/Writers for Fixed-Width Types. The main goal of the
hardware components of Fletcher is to provide the output streams with the same
bandwidth as the system bandwidth, if the accelerator core can consume it. In
other words, the generated interfaces should not throttle the system bandwidth
because of a sub-optimal design choice (like a sub-optimal in-memory format or
a sub-optimal hardware component).

We simulate the throughput of ColumnReaders and ColumnWriters, assum-
ing that we have a perfect bus interconnect, i.e. the bus delivers/accepts the
requested bursts immediately and at every clock cycle a valid bus word can
be produced. We measure the bus utilization and stream output utilization (in
handshakes per cycle during the processing of a command) for different fixed-
width types, as a function of the range of Arrow array entries requested through
the command stream. We furthermore assume the accelerator core can hand-
shake the ColumnReader output or ColumnWriter input stream every cycle. The
results of this simulation for a data bus width of 512 bits (as both platforms,
AWS EC2 F1 and OpenPOWER CAPI SNAP, that Fletcher currently supports
use this memory bus width) are shown in Fig. 5a and b, where the bus utiliza-
tion and output stream utilization is shown, respectively, for various fixed-width
types. Similar measurements for the ColumnWriters are seen in Fig. 6.

Initialization overhead and latency of both the ColumnReader and Colum-
nWriter is present when the command only requests a short range of entries.
However, once the range grows larger (a likely scenario in most big data use
cases where massively parallel operators on data sets such as maps, reductions
and filters are applied), the stream utilization becomes near optimal. As long
as the element width is smaller than the bus width, maximum stream through-
put is achieved, and as long as the element width is equal to the bus width,
maximum bus bandwidth is achieved. We may conclude that a ColumnReader
for fixed-width types does not create a bottleneck if the accelerator core can



44 J. Peltenburg et al.

absorb data at the system bandwidth rate. A developer using a ColumnReader
can now express access to an Arrow Array in terms of RecordBatch indices and
will receive the exact data type as specified through the schema on the stream,
without degradation of the system bandwidth.

ColumnReaders/Writers for Variable-Length Types. We simulate
throughput of a ColumnReader/Writer for an Arrow Array where the items
in the Array are lists of primitive types. We choose the type to be a character
(8 bits). We generate random lists between length 1 and 1024 and, in Fig. 7,
plot the utilization of the bus and the input/output streams as function of the
elements-per-cycle parameter of this ColumnReader/Writer. From these figures,
we may observe that the value stream utilization is near-optimal, independent
of the number of elements per cycle that it is configured for; as long as the
memory bus can deliver the throughput, the accelerator core is fed at maximum
throughput.

4 8 16 32 64

40

60

80

100

Element size
Bus
Length stream
Value stream

(a) ColumnReader

4 8 16 32 64

40

60

80

100

Element size
Bus
Length stream
Value stream

(b) ColumnWriter

Fig. 7. Bus and input/output stream utilization for an increasing elements-per-cycle
parameter demonstrating utilization near 100%.

6.3 Area Utilization

For the same memory bus width as the supported platforms (512 bits), we
synthesize ColumnReaders and ColumnWriters for various fixed-width types
(W = 8, 16, . . . , 512) and for various variable-length types (W = 8 with EPC = 64,
W = 16 with EPC = 32, etc.) for a Xilinx XCVU9P device (that used in AWS
EC2 F1 instances). The area utilization statistics are shown in Table 2.

The ColumnReaders/Writers require little area. Most configurations utilize
less than one percent of the resources. Interestingly, ColumnReaders/Writers for
small elements require more LUTs than wider elements on a wide bus. This
is due to the reshaper and aligner units discussed in Sect. 5, requiring aligning
and reshaping more MEPC stream element count combinations, increasing mux



Supporting Columnar In-memory Formats on FPGA 45

Table 2. Area utilization statistics for a Xilinx XCVU9P device

Type Resource W=8 W=16 W=32 W=64 W=128 W=256 W=512

Column

Reader

Prim(W)

CLB LUTs 0.30% 0.28% 0.26% 0.24% 0.22% 0.20% 0.21%

CLB Registers 0.20% 0.20% 0.20% 0.20% 0.22% 0.24% 0.26%

Block RAM (B36) 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65%

Block RAM (B18) 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Column

Reader

List of

Prim(W)

CLB LUTs 2.34% 1.81% 1.46% 1.32% 1.03% 1.04% 0.78%

CLB Registers 1.01% 1.01% 1.01% 1.01% 1.00% 1.00% 1.00%

Block RAM (B36) 1.30% 1.30% 1.30% 1.30% 1.30% 1.30% 1.30%

Block RAM (B18) 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%

Column

Writer

Prim(W)

CLB LUTs 0.20% 0.19% 0.19% 0.20% 0.20% 0.22% 0.23%

CLB Registers 0.28% 0.28% 0.28% 0.28% 0.29% 0.31% 0.33%

Block RAM (B36) 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 0.37%

Block RAM (B18) 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Column

Writer

List of

Prim(W)

CLB LUTs 1.03% 0.97% 0.91% 0.87% 0.80% 0.78% 0.52%

CLB Registers 1.18% 1.12% 1.11% 1.11% 1.06% 1.06% 0.73%

Block RAM (B36) 1.11% 1.11% 1.06% 1.06% 1.06% 1.06% 0.74%

Block RAM (B18) 0.07% 0.05% 0.07% 0.07% 0.07% 0.07% 0.05%

sizes. Designers may chose to reduce this number in the ColumnReaders and
Writers themselves, but this requires an asymmetric connection to the memory
bus interconnect, effectively moving the alignment functionality to the intercon-
nect. Register usage increases when element size increases, since register slices
on the path to the accelerator core match the width of the elements. Block RAM
usage is the same for all configurations, because this depends on the maximum
burst length that has been fixed to 32 beats for all configurations.

7 Related Work

While Arrow is not the only framework following the trend of in-memory compu-
tation for big data frameworks (an overview can be found in [13]), it is a frame-
work that is especially focused on providing efficient interoperability between
different tools/languages. This allows the 11 languages supported by Arrow to
quickly and efficiently transfer data to the FPGA accelerator using Fletcher.

Several solutions to abstract away memory bus interfaces are commercially
available and integrated into HLS tools (such as Xilinx’ SDAccel and Intel’s
FPGA SDK for OpenCL). However, they have no inherent support for nested
types that Arrow schemas can represent, and usually work well only with simple,
C-like primitive types and arrays. Loading data from nested structures involves
pointer traversal and arithmetic which HLS tools do not deal with efficiently [11].
At the same time, after Fletcher generates an interface that delivers streams
which HLS tools can operate on very well.

State-of-the-art frameworks to integrate FPGA accelerators with specific
databases exist [5], although interface generation specific to the schema data
type and serialization overhead are not discussed.



46 J. Peltenburg et al.

8 Conclusion

The goal of the Fletcher framework is to ease integration of FPGA accelerators
with data analytics frameworks. To this end, Fletcher uses the Apache Arrow
in-memory format to leverage the advantages of the Arrow project, including
no serialization overhead and interfaces to 11 different high-level languages. To
support the wide variety of data set types that Arrow can represent, and to
convert these data sets into hardware streams that are desirable by an FPGA
developer, this work has presented a bottom-up view of a library of vendor-
agnostic and open-source components. These components allow reading from
tabular Arrow data set columns, by providing a range of table indices, rather
than byte addresses, to refer to records stored in the tables. Fletcher is effective
at generating these interfaces without compromising performance. It takes very
little area to create an interface that provides an accelerator core with system
bandwidth for any configuration of the Arrow data set. Fletcher significantly
simplifies the process of effectively designing FPGA-based solutions for data
analytics tools based on Arrow.

References

1. Amazon Web Services: AWS EC2 FPGA Hardware and Software Development
Kits (2018). https://github.com/aws/aws-fpga

2. Gingold, T.: GHDL VHDL 2008/93/87 simulator (2018). https://github.com/
ghdl/ghdl

3. McKinney, W.: Python for Data Analysis: Data Wrangling with Pandas, NumPy,
and IPython. O’Reilly Media Inc., Newton (2012)

4. OpenPOWER foundation: CAPI SNAP Framework Hardware and Software
(2018). https://github.com/open-power/snap

5. Owaida, M., Sidler, D., Kara, K., Alonso, G.: Centaur: a framework for hybrid
CPU-FPGA databases. In: 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 211–218, April
2017

6. Peltenburg, J., van Straten, J.: Fletcher: a framework to integrate Apache Arrow
with FPGA accelerators (2018). https://github.com/johanpel/fletcher

7. Sidler, D., István, Z., Owaida, M., Alonso, G.: Accelerating pattern matching
queries in hybrid CPU-FPGA architectures. In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD 2017, pp. 403–415.
ACM, New York (2017)

8. Stuecheli, J., Blaner, B., Johns, C., Siegel, M.: CAPI: a coherent accelerator pro-
cessor interface. IBM J. Res. Dev. 59(1), 7:1–7:7 (2015)

9. The Apache Software Foundation: Apache Arrow (2018). https://arrow.apache.
org/

10. The Apache Software Foundation: Apache Parquet (2018). https://parquet.apache.
org/

11. Winterstein, F., Bayliss, S., Constantinides, G.A.: High-level synthesis of dynamic
data structures: a case study using Vivado HLS. In: 2013 International Conference
on Field-Programmable Technology (FPT), pp. 362–365, December 2013

https://github.com/aws/aws-fpga
https://github.com/ghdl/ghdl
https://github.com/ghdl/ghdl
https://github.com/open-power/snap
https://github.com/johanpel/fletcher
https://arrow.apache.org/
https://arrow.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/


Supporting Columnar In-memory Formats on FPGA 47

12. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

13. Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M.: In-memory big data man-
agement and processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948
(2015)


	Supporting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher for Apache Arrow
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Apache Arrow

	3 Requirements
	4 Vendor-Agnostic Hardware Libary
	5 Components to Match Arrow Abstractions
	5.1 Implementation Alternatives
	5.2 Buffers
	5.3 Arrays
	5.4 Continuous Integration

	6 Results
	6.1 Functional Validation
	6.2 Throughput
	6.3 Area Utilization

	7 Related Work
	8 Conclusion
	References




