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Ranging Energy Optimization for Robust Sensor
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Abstract—Sensor positioning is an important task of loca-
tion-aware wireless sensor networks. In most sensor positioning
systems, sensors and beacons need to emit ranging signals to
each other. Sensor ranging energy should be low to prolong
system lifetime, but sufficiently high to fulfill prescribed accuracy
requirements. This motivates us to investigate ranging energy
optimization problems. We address ranging energy optimization
for an unsynchronized positioning system, which features robust
sensor positioning (RSP) in the sense that a specific accuracy re-
quirement is fulfilled within a prescribed service area. We assume
a line-of-sight (LOS) channel exists between the sensor and each
beacon. The positioning is implemented by time-of-arrival (TOA)
based two-way ranging between a sensor and beacons, followed
by a location estimation at a central processing unit. To establish
a dependency between positioning accuracy and ranging energy,
we assume the adopted TOA and location estimators are unbiased
and attain the associated Cramér–Rao bound. The accuracy re-
quirement has the same form as the one defined by the Federal
Communication Commission (FCC), and we present two con-
straints with linear-matrix-inequality form for the RSP. Ranging
energy optimization problems, as well as a practical algorithm
based on semidefinite programming are proposed. The effective-
ness of the algorithm is illustrated by numerical experiments.

Index Terms—Cramér–Rao bound, localization, semidefinite
programming, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) enable a rich
variety of promising applications, and therefore have

attracted intensive research interest lately [1]. Typical WSNs
consist of untethered sensors randomly deployed to collect
application-specific measurements, as well as a few fusion
centers for in-network data processing. For most WSNs, sensor
positions have to be estimated first, because they are often
indispensable to annotate sensed data. For instance, temper-
ature data produced by an environment-monitoring WSN are
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useless unless we know where they are sensed. Furthermore,
some WSN applications, e.g., target tracking, require the sensor
positions to be known a priori [2]. Especially for large-scale
WSNs, the sensor positions are required for self-organization,
such as naming [3], routing [4], as well as ciphering [5], just to
name a few. Therefore, sensor positioning has been a research
topic of particular interest over the past few years.

To support location-aware WSNs, sensor positions must be
estimated reliably with prescribed accuracy requirements ful-
filled. Perhaps the most well-known requirement is the one de-
fined by the Federal Communication Commission (FCC) [6].
More specifically, it requires the location estimation error to
have a length smaller than with probability higher than ,
where both and have a prescribed value. Although this
requirement has been introduced to regulate the localization of
mobile users, it can be considered to prescribe an accuracy re-
quirement for sensor positioning as well.

In practice, it is costly to equip each sensor with a global posi-
tioning system (GPS). Instead, a few beacons, which are sensors
or fusion centers with known positions, are encompassed in
most WSNs for locating the rest of the sensors in two steps. In
the first step, beacons and sensors are scheduled to emit ranging
signals to each other, and some signal parameters related to
sensor positions are measured. Possible parameters include
time-of-arrival (TOA), time-difference-of-arrival (TDOA), re-
ceived-signal-strength (RSS), as well as angle-of-arrival (AOA)
[7], [8]. In the second step, these measurements are trans-
formed into distance or bearing information, from which the
sensor positions are estimated by a specific algorithm with
the use of the beacons’ positions. In practice, all the above
position-dependent parameters carry information about the
sensor position, and an optimal localization algorithm should
make use of all information related to the sensor position.
However, the complexity may be too high especially when
the localization task is partly carried out by the sensor. As a
result, practical two-step algorithms usually estimate one or
several dominant position-dependent parameters in the first
step, and then estimate the sensor position in the second step.
This incurs a loss of position-related information, and therefore
practical algorithms have suboptimal performance in general.
However, they are preferred for WSNs where the reduction of
implementation complexity is a big concern.

To locate sensors with high accuracy, TOA measurements
are preferred, since TDOA measurements require multiple syn-
chronized beacons, RSS measurements need an accurate path-
loss model, and antenna arrays are necessary for AOA mea-
surements [7]. Thanks to the superior penetration and resolution
capability of ultrawideband (UWB), TOA-based ranging using
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UWB pulses has been regarded as the most promising candi-
date for WSNs. Especially for unsynchronized WSNs, TOA-
based two-way ranging (TWR) is proposed and supported by
the IEEE 802.15.4a standard [9]. Recently, a variety of work on
TOA-based ranging has been reported in [10]–[17]. Particularly,
the associated CRBs have been derived to benchmark the per-
formance of a particular algorithm [7], [18]–[21].

As for the second step, two types of positioning algorithms
have been developed. There is a rich literature on noncollabora-
tive positioning algorithms, which consider only the aforemen-
tioned ranging between the sensor and the beacons [22]–[31].
Recently, collaborative positioning algorithms, which employ
additional inter-sensor ranging for performance improvement,
have been developed [32]–[37]. The associated CRBs have been
derived in [8], [38]–[40], and [41]–[44] to benchmark the per-
formance of a noncollaborative and a collaborative algorithm,
respectively.

For the above two-step algorithms, positioning accuracy im-
proves if the ranging energy of sensors and beacons is enhanced.
In real scenarios, a beacon might have a reliable power supply
and its ranging energy can be easily increased, but the ranging
energy of an untethered sensor must be reduced in order to pro-
long system lifetime. Therefore, the positioning accuracy is ac-
tually dominated by the sensor ranging energy, which should be
small but sufficiently high to fulfill prescribed accuracy require-
ments. This motivates us to investigate the following ranging
energy optimization problem: how to allocate the ranging en-
ergy to sensors and beacons, so that the sensor ranging energy
is minimized and specific accuracy requirements are fulfilled as
well?

We will address this problem for an unsynchronized robust
sensor positioning (RSP) system, which consists of power-sup-
plied beacons connected to a central processing unit (CPU), as
well as sensors randomly deployed within a prescribed service
area. We assume a line-of-sight (LOS) channel exists between
the sensor and each beacon. The positioning is implemented by
TOA-based TWR between a sensor and the beacons, followed
by a location estimation at the CPU with a noncollaborative al-
gorithm. In particular, this system features RSP, in the sense
that a specific accuracy requirement is fulfilled within a pre-
scribed service area. To reduce the implementation complexity,
the ranging energy of both the sensor and the beacons is fixed
and determined during the system design phase. In order to es-
tablish a mathematical dependency between the positioning ac-
curacy and the ranging energy, we assume the adopted TOA esti-
mator achieves its CRB with an unbiased Gaussian distribution,
and the positioning CRB is achieved by an unbiased location
estimator. The motivation behind these assumptions is twofold.
One is that although our assumptions seem too optimistic in
practice, the associated positioning CRB has a very attractive
mathematical structure which lends the proposed problems to
be efficiently solved by semidefinite programming (SDP). The
other is that the optimal ranging energy allocation for a real sce-
nario is actually lower bounded by the result produced by SDP
for the optimistically assumed scenario. Therefore, our assump-
tions lead to useful optimization results, which can not only be
found efficiently by SDP, but also provide a sense of how much
energy should be allocated at least.

Fig. 1. An exemplary sensor positioning system, where the circular area and
the small circles represent the service area and sensors, respectively.

The rest of this paper is organized as follows. In the next
section, we will derive the performance of the considered TOA
and location estimators. Next, Section III will present the RSP
constraints when the location estimate is Gaussian distributed,
and when such statistical knowledge is unavailable. After that,
we will propose ranging energy optimization problems and a
practical algorithm based on SDP in Section IV. In Section V,
we will illustrate the effectiveness of the proposed algorithm by
numerical experiments. Finally, we will wrap up this paper by
some conclusions in Section VI.

II. SYSTEM SETUP AND PERFORMANCE ANALYSIS

In this section, we will first describe a two-dimensional (2D)
RSP system. Next, a TOA-based TWR procedure is introduced
and its performance is derived. Finally, the performance of the
adopted positioning algorithm, which is actually the positioning
CRB, is derived.

A. System Setup

We study a 2D RSP system with beacons deployed and
connected to a CPU through wired or radio links .
Beacon is at a known coordinate ,

, and we will consider locating a sensor at an unknown
coordinate within a prescribed service area .
The distance between the sensor and beacon is denoted as

, where represents the -norm oper-
ator. In addition, the clocks of the sensor and the beacons are
unsynchronized but run at the same pace. We assume that the
two-sided power spectral density (PSD) of the additive white
Gaussian noise (AWGN) at the sensor and the beacons is
and , respectively. For illustration purposes, Fig. 1 shows
an exemplary system with a circular service area and a few
sensors.

We assume a LOS channel exists between the sensor and
beacon , which incurs a propagation delay and atten-
uation . Here represents the signal propagation speed and

, where and refer to the path gain at 1 m
and the path-loss coefficient, respectively. We assume and
are both known by system designers.
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During the ranging phase, the sensor and beacon are
scheduled to broadcast respectively the ranging signals
and . In practice, a ranging signal can be the preamble
part of a communication signal between the sensor and beacon

[9]. Note that these signals are not necessarily UWB in
general. Finally, we assume the channel remains unchanged
during the ranging phase, and both the signal TOA and are
regarded as unknown deterministic parameters by the adopted
TOA and location estimators.

It has been shown in [7], [20], and [45] that the CRB of TOA
estimation depends on the root-mean-square (RMS) angular fre-
quency of the adopted ranging signals. We assume all beacon
ranging signals have the same RMS angular frequency. To fa-
cilitate the following derivations, we define the RMS angular
frequency of and respectively as

(1)

(2)

where and represent the spectrum of and
, respectively.

B. TOA-Based TWR and Performance

TOA-based TWR proceeds as follows [9]. First, the CPU
schedules the beacons to broadcast ranging signals sequentially,
so that they are separated when arriving at the sensor. Let’s say
beacon broadcasts of energy at time . At the
sensor, the LOS signal’s TOA is estimated and denoted
as . After the sensor has generated all the TOA estimates,
it broadcasts of energy at time to the beacons. At
beacon , the LOS signal’s TOA is estimated and de-
noted as . We assume hardware calibration is perfectly
accomplished by the sensor and beacon , so that and
are precisely known by the sensor and beacon , respectively.
It is important to note that and are recorded by the
sensor with its internal clock, while and are recorded
by beacon with its internal clock. Finally, all the processing

delays produced by the sensor are first trans-
mitted through data packets to the beacons, and then sent to
the CPU. Meanwhile, the total delay generated by
beacon is also transmitted to the CPU, which evaluates
as

(3)

Ideally, if and are precisely estimated, is
equal to . However, the estimation performance is degraded
by the AWGN. It is well known that the variance of any unbi-
ased estimator is lower-bounded by the CRB. We assume each
TOA estimator for the TWR achieves the CRB with an unbi-
ased Gaussian distribution. In fact, this can be asymptotically
accomplished by the maximum-likelihood (ML) estimator [10],
[18]. The CRB has been derived in [21] when the distribution
of the propagation delay and is known a priori, and in [7],

[18]–[20] for scenarios similar to the one considered here. For
self-consistency purposes, we put a brief derivation of the CRB
in Appendix A, where we show that is Gaussian dis-
tributed as , and is expressed by

(4)

Similarly, has the Gaussian distribution
, where is evaluated as

(5)

We can see that and are independent since they
are generated from independent signals. Therefore, is dis-
tributed as , where is given by

(6)

(7)

with and . In fact, repre-
sents the TOA estimation accuracy of the sensor relative to that
of beacon when ( means that the TOA esti-
mation of the sensor is more accurate).

C. Performance of the Positioning Algorithm

After TWR, a set of independent measurements
is available at the CPU for estimating . For any unbiased lo-
cation estimator, the CRB sets a lower-bound to its covari-
ance. The CRBs for similar scenarios have been derived in [8]
and [38]–[40]; however, they did not consider the presence of

as nuisance parameters, and thus the results reported
there can’t be used here. In Appendix B, we show can be
evaluated according to

(8)

where , and
. Here, can be

regarded as the effective energy that combines the joint effect
of and on . Note that , and

is an increasing function of both and .
One may assume that the location estimate follows the

Gaussian distribution . Such an assumption is attrac-
tive because the Gaussian distribution has salient mathematical
properties and therefore can ease theoretical analysis. For
instance, this assumption was adopted for localization perfor-
mance analysis in [8] and [46]. In addition, the Gaussian-dis-
tribution assumption can be justified since the CRB can be
achieved with an unbiased Gaussian distribution by the ML
estimator, provided that we have a large set of independent
and identically distributed (i.i.d.) ranging measurements [45].
Although such a large set is usually unavailable in practice, it
has been shown in [25] that the estimator based on constrained
weighted least-squares could approach the CRB if the ranging
accuracy is sufficiently high, and the distribution of the location
estimate resembles an unbiased Gaussian distribution.
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On the other hand, although the location estimators
based on approximate ML [24], [27], and multidimensional
scaling (MDS) [31] can also achieve the CRB, they do not
necessarily follow a Gaussian distribution.

Based on the above considerations, we assume is unbi-
ased and its covariance attains , while leaving the assump-
tion about the distribution of open. In the next section, we
will derive constraints for RSP when is Gaussian distributed,
as well as when the knowledge about the distribution of is
unavailable.

D. Comments

It is important to examine more closely the assumptions
we made. First, we assumed the TOA estimation CRB can
be achieved. However, it was shown in [47], [48] that this
CRB is in nature a local bound and not tight for scenarios
with low signal-to-noise ratio (SNR). Alternatively, one may
consider the improved Ziv–Zakai bound (ZZB) as a better
metric. Second, we assumed a LOS channel exists between the
sensor and each beacon, which may be too optimistic for real
scenarios. Especially in indoor or dense urban environments,
the LOS path may not exist and even if it exists, there may exist
strong multipath interference on the LOS signal. Third, we
assumed each ranging estimate is only degraded by the TOA
estimation error and thus Gaussian distributed. In practice, it
may be further degraded by the random behavior of queuing
the ranging signals at the sensor and beacons.

Our assumptions are motivated by the fact that if we take
other bounds, such as the ZZB, or more realistic assumptions,
finding the optimal ranging energy allocation for the proposed
problems is generally very difficult. Although our assumptions
seem too optimistic in practice, the associated CRB computed
from (8) has a very attractive mathematical structure which
lends the proposed problems to be efficiently solved by SDP.
Furthermore, the optimal ranging energy allocation for a real
scenario is actually lower bounded by the result produced by
SDP for the optimistically assumed scenario. Therefore, our
assumptions lead to useful optimization results, which can not
only be found efficiently by SDP, but also provide a sense of
how much energy should be allocated at least.

Note that it is very attractive to investigate the gap between
the optimal energy allocation under our assumptions and that for
real scenarios, when more knowledge is available about the sta-
tistics of the channels, the signal queuing, and the implemented
TOA and position estimation algorithms. Intuitively, this gap
should be translated from the localization performance loss due
to the impairments present in a real scenario but ignored by our
assumptions. This topic is part of our future work.

III. CONSTRAINTS FOR RSP

To support location-awareness reliably, we require the sensor
to be located with sufficiently high accuracy. To this end, we
impose an RSP requirement on the considered system using the
FCC definition. More specifically, we require that for every
within , the location estimation error falls into the
origin-centered circle of radius with probability higher than

, i.e., , . Note that and
can be prescribed according to the accuracy level expected by

location-dependent functions. We can see that a higher accuracy
level is expected by reducing and increasing .

In the following subsections, we will propose constraints for
RSP when is Gaussian distributed, as well as when the knowl-
edge about the distribution of is unavailable.

A. Gaussian Distribution of the Location Estimate

In this case, a sufficient condition to satisfy the accuracy re-
quirement at has been introduced in [8] as ,
where is the minimal eigenvalue of , and
is the threshold translated from and according to

(9)

This sufficient condition can be justified as follows. Since is
distributed as , it was shown in [46] that falls within
an ellipse expressed by

with probability . This ellipse has a major principal axis
of length . When

is satisfied, is contained within the circle
, which means that

. Therefore, is sufficient to fulfill the accu-
racy requirement at .

Note that is equivalent to the linear matrix
inequality (LMI) , where is a 2
2 identity matrix, and means that is a positive
semidefinite matrix. According to the convex optimization
theory, the set of ’s satisfying this LMI is convex [49]. With
this constraint, convex optimization methods can be used
to effectively solve the optimization problems proposed in
Section IV.

To satisfy the RSP requirement, we require the considered
system to fulfill this sufficient condition for every position
within , namely , .

B. Unknown Distribution of the Location Estimate

In this case, a sufficient condition to satisfy the accuracy re-
quirement at will be derived as . In the fol-
lowing, we will show that can be translated from and
according to

(10)

This sufficient condition can be derived according
to the Chebyshev’s inequality, which is of the form

for the considered system
[50]. Here, denotes the trace of and is equal
to the mean square error of . Note that this inequality
holds for any particular distribution of , and thus can be
used to develop a sufficient condition when the knowl-
edge about the distribution of is unavailable. As a result,

, and it is sufficient to
satisfy the accuracy requirement if , or
equivalently . Referring to (8), each
eigenvalue of is greater than , which means
that each eigenvalue of is upper bounded by .
As a result, . Therefore, a stronger
sufficient condition is , or equiv-
alently .
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Note that is a sufficient condition as
well. However, the associated set of feasible ’s forms a non-
convex set in general, and this will make it difficult to solve the
optimization problems proposed in Section IV. Therefore, we
choose the stronger condition .

To satisfy the RSP requirement, we require the considered
system to fulfill the proposed sufficient condition at every posi-
tion within , namely , .

C. Comments

The second RSP constraint is stronger than the first one, since
for any . This is because

the first one is derived with extra knowledge about the error
ellipse of a Gaussian distribution. With the second constraint,
the RSP can be achieved no matter how is distributed. This
means that using the second constraint guarantees the RSP even
though the knowledge about the distribution of is unavailable.

To facilitate the discussion in the following sections, we for-
mulate a general RSP constraint as: , ,
where if we know is Gaussian distributed, or
if we have no knowledge about the distribution of .

IV. RANGING ENERGY OPTIMIZATION

In this section, we will first formulate a few ranging energy
optimization problems of interest under the RSP constraint pro-
posed in Section III. Then, we will present a practical algorithm
to solve them based on semidefinite programming (SDP). Note
that , , are all treated as optimization variables
on which the equality constraints ,

are imposed.

A. Sensor Ranging Energy Optimization Problem

We first prove that is a nondecreasing function
of , . Suppose is increased by a positive
value . As a consequence, , and be-
come , and ,
respectively. Since is a positive semidefinite matrix,

according to Corollary 4.3.3 in [51],
which justifies our claim. Since is nondecreasing
with , the RSP constraint can be fulfilled by increasing
entries of , which in turn is accomplished by enhancing
and .

It is important to note that , where
denotes the -norm of , and the equality

holds when at least one increases to be infinity. To prolong
system life time, should be reduced as much as possible.
However, in case is reduced too much, every entry of will
be bounded by a too small to fulfill the RSP constraint. This
motivates us to find a threshold for , above which RSP
becomes possible. Mathematically, can be computed as the
optimal objective value of the following optimization problem:

(11)

We present the following theorem to compute .
Theorem 1: , where

denotes the minimal eigenvalue of
.

Proof: Let’s consider the following optimization problem:

(12)

Note that and are the only optimization variables
in (12). Alternatively, (12) can be regarded as a sim-
plification of (11) when every approaches infinity.
With the equality constraint , we can
easily find that the inequality constraint in (12) reduces to

. This means that
each feasible satisfies

. As a result, the optimal objective
value is .

We can express and alternatively as

(13)

where and are the feasible sets of for the problems
(11) and (12), respectively.

Apparently, since . Suppose now that
. This means that there exists at least one particular

that fulfills the constraints of (11) and . We can
build a vector . Obviously, each entry of

is no smaller than that of . Since is nonde-
creasing with , , and there-
fore is feasible for (12). This means is a possible
objective value of (12), but this value is smaller than , and
thus the fact that is the minimal objective value of (12) is
violated. This contradicts the assumption . Therefore,

.
We can see that is actually the minimal -norm of any
fulfilling the RSP constraint. This implies that at least one

has to be infinitely high, in case is reduced to its lowest level
. It is interesting to observe that, if is increased from

to , has to be increased by dBJ, where
. In effect, this increase can

be regarded as the extra sensor energy required to compensate
for the unavailable knowledge about the distribution of when

ideally approaches infinity.
It is also interesting to study the impact of the path loss

coefficient on . In order to facilitate the following
discussion, let’s denote and,
thus, . In fact,

where
. Suppose after increases, and

change to and , respectively. Since re-
duces and each is positive semidefinite,

holds according to Corollary 4.3.3 in [51]. Suppose
, we have

. This means that is
nonincreasing with . Therefore, the threshold sensor energy
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will not reduce, if the signal energy decays faster with respect
to the distance.

B. Sensor and Beacon Ranging Energy Optimization Problems

In real scenarios, we can not simply adopt the energy alloca-
tion , for at least one beacon, because

is usually constrained by a prescribed value due to im-
plementation difficulties, e.g., short ranging duration or limited
power due to power-amplifier nonlinearity. Note that the se-
lected must be no smaller than in order to fulfill the
RSP constraint. This is because since

and hold. Besides,
must be satisfied in order to fulfill the RSP constraint. There-
fore, must be no smaller than in order to fulfill the
RSP constraint.

The optimization problem now is to find the minimal and
the associated which meet the RSP constraint. Mathemati-
cally, this problem can be cast into the following form:

(14)

Let’s denote the optimal solution to (14) by ,
and . We present a general solution to the above problem with
the following theorem.

Theorem 2: The general solution to (14) is

(15)

(16)

where is the th entry of , which belongs to the set
.

Proof: First of all, after some simple mathematical manip-
ulations we can see that the and given above satisfy the
equality constraint in (14). Note that must be no less than

in order to fulfill the RSP constraint, and thus is non-
negative. Besides, since , and hence

is also nonnegative. Therefore, and belong to the
feasible set of (14).

Second, is the optimal value of , be-
cause once becomes smaller than that value, the RSP con-
straint can not be satisfied since . The reason for
this is that for any ,

when and , since is
increasing with and .

Third, when , . To fulfill the RSP
constraint, must be equal to and thus must belong
to . Therefore, can be found by (16).

At least one solution to (14) exists and is given by

(17)

In fact, this solution is constructed with
in . This solution is the worst one if

contains more than one element, since using any other
than , another solution with less beacon energy usage can
be constructed. For all those solutions, the optimal value of

remains fixed at . Apparently, this
value is greater than , and the gap between and
can be computed in dBJ as follows:

(18)

We can see that reduces as increases, which means
that can approach closer if increases. In practice,
(18) can be used to establish a tradeoff between and ,
which is helpful to guide ranging hardware design of beacons
and sensors. We can also see that for a fixed , increases
as increases. This means that if changes from to ,
the gap between and becomes greater.

Instead of using the solution in (17), another solution with a
more efficient use of beacon energy can be constructed by using
in (16) the obtained by solving the following problem:

(19)

where is a weighting vector. We assume
it is designed under the constraints that and

. Particularly, assigning a greater repre-
sents a stronger expectation to reduce . One special case
of interest is to set all entries of to zero except for the th
entry, i.e., and if . Using the associated
optimal for (19), the constructed ’s by (16) reduce the
ranging energy of beacon to its minimal possible value with
the RSP constraint satisfied.

In general, no closed-form solution exists for (19).
Nevertheless, is equivalent to the LMI

, and, thus, (19) actually belongs to the
class of SDP problems, which can be solved numerically with
convex optimization techniques [49].

C. A Practical Algorithm

To evaluate and solve (19), the main difficulty lies in the
fact that is in general a continuous area. A practical algorithm
is realized by replacing with a discrete grid set ,
where is the th grid point within . Then, we can evaluate

and solve (19) using numerical convex optimization soft-
ware, such as Sedumi [52].

Suppose that is generated by sampling uniformly in both
vertical and horizontal directions with a spacing . Ideally,
should approach zero as close as possible. But if is too small,
the optimization problems will go beyond the processing ability
of the optimization software, since too many LMI constraints
are produced. This motivates us to choose a reasonably small
value for . To this end, let’s consider and , which de-
note the sets of fulfilling the RSP constraint over and ,
respectively. Obviously, , and should be suffi-
ciently small such that .

To find a principle for choosing , consider a square cell
of lateral length centered at a grid point . Such a
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Fig. 2. An exemplary square cell� and its position relative to three beacons.

cell is shown in Fig. 2 for illustration purposes. Within this cell,
has the following property.

Theorem 3: is approximately a concave function
of , provided that , where

refers to the distance of to the closest
beacon. In addition, if holds at four corner
points , for every .

Proof: When , ,
and thus and

hold for every .
Therefore, can be approximated as follows:

(20)

where and .
Obviously, the function inside the last operator is an

affine function of parameterized by and , so
is approximately a pointwise minimum of this function over .
Therefore, is approximately a concave function
of [49].

In fact, is the convex hull formed by its corner points
. This means that , there exists a set

where and , such that
[49]. If holds, is satisfied
within because of the concavity of over

(21)

Based on Theorem 3, if the RSP constraint is fulfilled at all
corner points, the RSP constraint will be satisfied over the whole

. As a result, should be chosen according to

Fig. 3. System setup and subregions.

. Under this condition, using any fulfilling
the RSP constraint over , the RSP constraint is satisfied over
as well, because the RSP constraint is satisfied within each cell
formed by four adjacent points in , and those cells cover .

To use the above sampling condition, we assume that all bea-
cons lie outside . It is important to note that, if one beacon is
very close to , will be very small. In order to
reduce the size of , we can sample nonuniformly with the
following method. First, divide into subregions .
Then we sample each region uniformly with a spacing

to produce a discrete set . Finally, is pro-
duced by combining all ’s as: . Based on a
similar analysis as that for uniform sampling, we can then jus-
tify . Apparently, , so has a size no greater
than that produced by uniform sampling.

V. NUMERICAL EXPERIMENTS

For illustration purposes, numerical experiments have been
conducted using the system setup shown in Fig. 3. Suppose
is a square area centered at (0,0) with lateral length 2 m. There
are three beacons located at , ,
and , respectively. Note that the unit for all those
values is meter. The system parameters are set as: ,

, , and
. We will set in the following experi-

ments unless otherwise stated. All computations are performed
with Matlab v7.1 and Sedumi v1.1 on a laptop equipped with
an AMD Turion CPU of speed 2.2 GHz and a memory of 2 G
Bytes.

For the RSP constraint, we prescribe to be fixed at 6 cm.
As we expect a better accuracy level by increasing from 0.7
to 0.95, increases from 28.3 to 32.2 dB as shown in Fig. 4.
When changes from to , the increase of in dBJ is
equal to , which is shown in Fig. 4 as well. In
effect, this increase is the extra sensor energy required to com-
pensate for the unavailable knowledge about the distribution of
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Fig. 4. The computed results for � and � �� when � � � ��.

Fig. 5. Number of constraints and computation time.

, when attains its lowest level and at least one ap-
proaches infinity. It is shown that this extra energy is between
4.4 and 8.2 dBJ, and a higher demands a higher extra energy.
In the following experiments, we choose which cor-
responds to an extra energy of about 5.6 dBJ.

To evaluate , should be replaced with a discrete set .
Both uniform and nonuniform sampling are performed to pro-
duce . For the uniform sampling, we use a spacing
where . For the nonuniform sampling, we
divide into four subregions by and as
shown in Fig. 3, and is sampled uniformly with a spacing

where . Here, is a param-
eter for tuning the sampling spacing. During the evaluation, we
find that when the computed remains essentially
unchanged as 4.32 and 1.14 dBJ for and ,
respectively. This implies that is quite close to when
is below 1%. When the nonuniform sampling is used instead of

Fig. 6. The computed results for � �� with respect to �.

Fig. 7. The computed results for � with respect to � when � � � and
� � � , respectively.

the uniform sampling, the number of constraints and computa-
tion time is reduced by about 17% as shown in Fig. 5. Hence, we
replace by produced with the nonuniform sampling using

for the following experiments.
In order to show the effect of on , we have evaluated

when varies from 2 to 4, and the results are shown in
Fig. 6. It is shown that increases with . This means for
a fixed , will increase when signal energy decays faster
with respect to distance.

When increases from 5 to 12 dBJ, we have computed
when and , respectively. The results are

shown in Fig. 7. It is shown that as increases, reduces.
When , is significantly higher than when .
In the following experiments, we choose , which
corresponds to and 0.60 dBJ, or equivalently

and 1.75 dBJ, when and , respectively.
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Fig. 8. The computed energy allocation to � and � when� � ��� �� �� .

Fig. 9. Error ellipses � and circles � for randomly chosen points.

To find a better beacon energy allocation than ,
we construct a solution to (14) by (16) using the that solves
(19). Let’s say we want to minimize subject to the RSP con-
straint, so we prescribe the weighting vector as .
The associated problem (19) was solved with Sedumi v1.1, and
the ’s constructed with the produced are shown in Fig. 8
when and , respectively. The consumed CPU
computation time is 11.06 and 11.67 s, respectively. It is shown
that the computed is 7.11 and 9.79 dBJ, respectively, while

and are always 10 dBJ.
To show the effectiveness of the energy allocation
4.15 dBJ, 7.11 dBJ, 10 dBJ, and 10 dBJ

when , we randomly select a set of points within . We
plot the error ellipse
and the circle for each point, using
the given energy allocation. It is shown in Fig. 9 that each el-
lipse is enclosed by the associated circle, which indicates that
the RSP constraint is indeed satisfied for those randomly chosen
points. When changes from to , the energy allocation to

should be increased from 4.15 to 1.75 dBJ, and that to

should be increased from 7.11 to 9.79 dBJ. These energy
increases correspond to the extra sensor and beacon energy re-
quired to compensate for the unavailable knowledge about the
distribution of , when the energy of beacon 1 is used most
efficiently.

VI. CONCLUSION

We have addressed ranging energy optimization for an unsyn-
chronized positioning system, which features RSP in the sense
that a specific accuracy requirement is fulfilled within a pre-
scribed service area. We assume a LOS channel exists between
the sensor and each beacon. The positioning is implemented by
TOA-based TWR between a sensor and beacons, followed by
a location estimation at a CPU. To establish a dependency be-
tween positioning accuracy and ranging energy, we assume the
adopted TOA and location estimators are unbiased and attain the
associated CRB. The accuracy requirement has the same form as
that defined by the FCC, and we have presented two constraints
with LMI form for RSP. Under these constraints, ranging energy
optimization problems, as well as a practical algorithm based on
SDP have been proposed. We have illustrated the effectiveness
of the algorithm by numerical experiments. Although only a 2D
system is considered here, the proposed methods can be easily
extended to a 3D RSP system. Besides, these methods are not
just for UWB based positioning systems, but can be generally
applied to other systems as well, as long as the system models
and assumptions considered here hold for those systems.

APPENDIX A
DERIVATION OF THE CRB FOR ESTIMATING

Let’s consider the estimation of at the sensor. The re-
ceived signal can be expressed as

, where is the AWGN with PSD . Let’s stack
all unknown parameters into a vector . The
log-likelihood function of can be expressed as [10]

(22)

where keeps unchanged when changes.
The Fisher information matrix (FIM) is

, where represents the ensemble average
operator, and is the Hessian matrix of with
respect to . Under the assumptions made in Section II, can
be reduced to

(23)

where is the energy of the differential of , and thus
. The CRB can then be evaluated as

(24)

Since we assume the above CRB is achieved with an
unbiased Gaussian distribution, is distributed as

.
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APPENDIX B
DERIVATION OF THE CRB FOR THE LOCATION ESTIMATOR

Let’s consider the estimation of using . Note
that play the role of nuisance parameters. The
log-likelihood function of the unknown parameter vector

can be expressed as

The Fisher information matrix (FIM) can be evaluated as
, where is the Hessian matrix

of with respect to . By some arrangements, we can show
that the following equalities hold :

(25)

Using the above equalities, can be reduced to

(26)

where is the Hessian matrix of with respect to
, is an all-zero matrix, and is the subma-

trix at the right-bottom corner. It is shown in [45] that

(27)

where is the gradient vector of with respect to

(28)

Inserting (28) into (27), we can show that

(29)

The CRB for the location estimator is actually the 2 2 sub-
matrix at the upper-left corner of . By some rearrangement,

can be evaluated according to (8).
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