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Abstract
Data-driven approaches are a promising new addi-
tion to the list of available strategies for solving
Partial Differential Equations (PDEs). One such
approach, the Principal Component Analysis-based
Neural Network PDE solver, can be used to learn a
mapping between two function spaces, correspond-
ing to a PDE. However, the practical limitations of
this approach are unclear. This paper seeks to in-
vestigate for which types of inputs and outputs this
type of solver gives useful results. Using a dataset
with inputs sampled from Gaussian Random Fields
with different parameters, and outputs for Poisson’s
equation and the Heat equation, obtained by using a
Finite Element solver, neural networks are trained,
and their performance is evaluated. The method
performs adequately for the chosen inputs, and pat-
terns are found in the resulting error, which differ
for each set of input parameters. Thus, for these
equations, it seems that this method performs dif-
ferently for different input distributions, but further
research is necessary to investigate if these patterns
will hold for other equations.

1 Introduction
Many tasks in science and engineering require one to solve
Partial Differential Equations. There are countless methods
for solving PDEs, often designed for particular types of equa-
tions, and considerable computational resources are expended
to obtain solutions. For large and complicated problems, this
usually entails the use of large (and expensive) computer clus-
ters, which many people do not have access to.

Often, it is necessary to evaluate a PDE for many similar
but slightly different inputs, and it would be convenient if we
could exploit previously solved instances of problems, solved
with similar inputs, to speed up the process of solving a new
problem. In a series of previous publications [1], [2], [3], it
was shown that one can do this.

This novel type of PDE solver, the Principal Component
Analysis-based Neural Network (PCA-NN) solver, works as
follows: One starts with a discretization, usually an image,
representing the function one wishes to use as input. One
applies PCA to this input, and provides some fixed number
of PCA components to the input layer of a Neural Network,
which attempts to predict some fixed number of PCA com-
ponents of the output. The output can then be reconstructed
from the predicted PCA components.

The network itself is trained on a set of input-output pairs,
which are obtained by using a conventional PDE solver. PCA
is applied to the training data, and a fixed number of PCA
components is chosen for the input and output layers of the
network. The network is then trained on the PCA components
of the inputs and outputs in the training set.

However, while this approach is obviously attractive, since
it is both fast and data-driven1, it is not clear what the limita-

1There is no need to specify explicitly which PDE one wishes to
solve, since this information is implicit in the training data.

tions of this approach are. In previous research [1], [2], [3],
the data has been designed to evaluate the performance of this
approach on only a few types of inputs, and has not included
inputs designed to test the limits of these methods.

The goal of the paper is to take a first step towards an-
swering the question “What are the limitations on the types
of inputs and outputs PCA-NN solvers can provide adequate
solutions for?”

In order to do this, we generate different types input data,
and use this input data to perform numerical experiments. Us-
ing the results of these experiments, we attempt to find pat-
terns in the performance of PCA-NN solvers.

Previous Work
Previous research has been done on PCA-NN solvers. One
of the first papers to be published in this area was [1], which
not only demonstrated the practical viability of this approach,
but also provided a substantial amount of theoretical elucida-
tion of how and why this method works. The approach taken
in [1] is fully data-driven, in that the solver has no explicit
knowledge of the underlying PDE. The only thing provided
is a set of inputs and outputs of the mapping to be learned.

Of course, the PCA-based approach is not the only one
available. Other methods, like the method outlined in [4],
can be used for similar purposes. This method, the Fourier
Neural Operator solver, has many of the same advantages as
the approach taken in [1]. In [5], a general description of this
type of method is provided, and a number of different Neural
Operator solvers are compared.

Another paper, which compares the performance of PCA-
NN solvers to other similar methods, is [2]. Here, PCA-NN
solvers are compared to a number of other solvers, including
Fourier Neural Operator solvers. Each method is evaluated
on four separate equations, and the training and testing error
of each method is compared.

There has been previous work in a similar direction to
the one taken here. An example of this is [3], which pro-
vides a large dataset with data for a number of different equa-
tions. This allows one to compare the performance of a given
method when varying a parameter of a PDE2. However, the
distributions of the inputs are all still quite similar, and so this
dataset, on its own, cannot be used to perform the numerical
experiments we are trying to perform.

2 Our Contribution
In previous works, the datasets are designed to evaluate the
performance of a given method [1] or compare different
methods [3], [2]. The datasets used in these papers have in-
puts drawn from Gaussian Random Fields (GRFs)3.

While these datasets enable one to evaluate if a given
method can work in principle, none of them are suitable to

2For example, the dataset contains data for the Navier-Stokes
equation, used to simulate the behaviour of fluids, with different val-
ues of viscosity.

3Gaussian Random Fields are families of random variables rep-
resenting points in space, subject to a covariance function, which
determines the joint variability of any two points of the GRF. See [6,
Chapter 7] for a more detailed introduction to random fields.



evaluate the types of input for which a given method provides
usable results. As such, we have created datasets with in-
puts drawn from GRFs with a number of different covariance
functions, and we compare the performance of our PCA-NN
solver on each of these.

Using these results, we may attempt to draw conclusions
about the suitability of PCA-NN solvers for use on a given
type of problem. If the solution of a given equation with a
given covariance function (or family of covariance functions)
is close to the reference solution, we may conclude that this
equation can be solved by a PCA-NN solver for similar input
distributions. If we do this with a large enough set of covari-
ance functions, we can try to find patterns, and start to predict
which types of input this method is suitable for in practice.

In order to enable the comparison of the results we obtain
with those obtained in earlier work, we attempt to replicate
(as closely as possible) the solvers used in [1] and [2]. We
use similarly sized inputs, and use neural networks of similar
type and size.

3 Methodology
The approach we take is essentially the same as the approach
taken in [1], the primary difference being the chosen equa-
tions, as well as the training and testing data used.

First, it is necessary to choose a set of PDEs (and boundary
conditions) to simulate using conventional methods in order
to generate the training and testing data.

Equation 1 corresponds to Poisson’s Equation4. Here, we
attempt to have the network learn the mapping from f to u.

∆u(x) = f(x) x ∈ Ω

u(x0, x1) = 1− x1 x ∈ ∂Ω
(1)

Equation 2 corresponds to the Heat Equation. Here, we
attempt to have the network learn the mapping from u0 to
u|t=1.

∂u(x, t)
∂t

−∆u(x, t) = 0 x ∈ Ω

u(x0, x1, t) = 1− x1 x ∈ ∂Ω

u(x, 0) = u0(x) x ∈ Ω

(2)

The domain Ω (in this case the unit square) and the bound-
ary conditions are the same for both equations.

We solve these equations with GRFs as inputs. We not
only solve these equations for GRFs with different covariance
functions, but we also vary two parameters, variance and cor-
relation length, of these covariance functions.

After generating the training and testing data, we apply
PCA to the input-output pairs corresponding to each set of
parameters, and use the result of this to train one network for
each. We evaluate the average error of these networks, both
for the data used for training, and for unseen testing data.

4 Experimental Setup and Results
We generate a set of input-output pairs, where the inputs are
101x101 pixel images sampled from a GRF with a given co-

4Here, as in equation 2, ∆ represents the Laplace operator, with
∆f = ∇ · ∇f .

(a) Left column:
Exponential Covariance

(b) Right column:
Gaussian Covariance

Figure 1: Inputs and Outputs for the Heat Equation (Eq. 2)
with a correlation length of 0.05 and a variance of 100

variance function, generated using the parafields library [7].
The covariance functions used are Gaussian, Exponential,
and Separable Exponential. Examples of inputs drawn from
GRFs with these covariance functions are shown in figure 2.

In order to generate the outputs, we use the FEniCS finite
element solver [8], [9], [10]. For equation 1, the input corre-
sponds to f , and the mapping we attempt to learn is f → u.
For equation 2, the input corresponds to u0, and the map-
ping we attempt to learn is u0 → u|t=1. As such, we solve
each of these equations with their given input using FEniCS,
and store 2000 input-output pairs per covariance function,

(a) Gaussian (b) Exponential (c) Sep. Exp.

Figure 2: Inputs generated with different covariance functions
with a correlation length of 0.15 and a variance of 100



Figure 3: Training and testing error when varying the
accuracy percentage for Poisson’s equation, with Gaussian
covariance, a correlation length of 0.1, and a variance of
100. In this particular case, the first output component

alone already gives an accuracy of around 60%.

and per equation. Thus, with two equations, three covariance
functions, and three values each for variance and correlation
length, we have 54 sets of 2000 input-output pairs, which we
use to train 54 different neural networks.

We divide each set of input-output pairs into a training set
and a test set of equal size, and we apply PCA to the inputs
(and outputs) of the training set, and select numbers of PCA
components such that 99% of the variance of the input and
output is accounted for5. This accuracy value was determined
by investigating the error when it is varied, and 99% was de-
termined to be sufficient in all cases that were tried. The re-
sults for one such case are shown in figure 3.

We use a network similar to the one used in [1], with input
and output layers sized according to the number of PCA com-
ponents of the input and output, five hidden layers of 1000,
1000, 2000, 1000 and 1000 neurons, and the SELU activation
function. The network is trained, using the Adam optimizer,
for 500 epochs, with a batch size of 100, an initial learning
rate of 0.001, a step size of 100 epochs, and a gamma of 0.5.

After training, we evaluate the performance of the PCA
and neural network on our unseen testing data. The results
for two different networks are displayed in figure 1, both for
the heat equation, but with different covariance functions.

The training and testing error of these experiments for
equation 1 and 2 are displayed in table 1 and 2, respectively.
The top value is the training error, whereas the bottom value
is the testing error. The variance parameter determines the
scale of the covariance function, with a larger variance re-
sulting in a larger range of output values. The correlation
length parameter determines the scale of the pattern, with a
smaller correlation length giving a more fine-grained input,
and a larger correlation length resulting in larger blobs.

5In order to allow us to compare the performance of PCA-NN on
many different distributions of inputs and outputs, it is necessary to
hold the amount of detail captured by PCA fixed.

Correlation Length

Cov. Var. 0.15 0.10 0.05

Gauss. 100 3.30× 10−3 2.46× 10−3 3.13× 10−3

4.19× 10−2 4.10× 10−2 4.85× 10−2

10 2.10× 10−3 1.44× 10−3 1.09× 10−3

1.35× 10−2 1.31× 10−2 1.51× 10−2

1 1.79× 10−3 1.31× 10−3 7.81× 10−4

4.39× 10−3 4.31× 10−3 5.01× 10−3

Exp. 100 6.71× 10−3 5.30× 10−3 4.23× 10−3

3.47× 10−1 1.71× 10−1 9.86× 10−2

10 2.21× 10−3 1.90× 10−3 1.30× 10−3

9.68× 10−2 7.63× 10−2 2.93× 10−2

1 1.10× 10−3 9.70× 10−4 8.05× 10−4

3.25× 10−2 1.93× 10−2 7.44× 10−3

Sep. 100 5.70× 10−3 4.92× 10−3 3.48× 10−3

2.55× 10−1 1.84× 10−1 5.31× 10−2

10 2.10× 10−3 1.67× 10−3 1.21× 10−3

1.05× 10−1 6.88× 10−2 2.08× 10−2

1 1.06× 10−3 9.23× 10−4 7.56× 10−4

3.12× 10−2 2.36× 10−2 5.34× 10−3

Table 1: Relative MSE for Poisson’s Equation (Eq. 1)
Top Value: Training Error, Bottom Value: Testing Error

Correlation Length

Cov. Var. 0.15 0.10 0.05

Gauss. 100 1.22× 10−2 1.15× 10−2 1.19× 10−2

1.02× 10−1 1.29× 10−1 2.59× 10−1

10 1.15× 10−2 1.25× 10−2 1.03× 10−2

1.01× 10−1 1.24× 10−1 2.23× 10−1

1 1.12× 10−2 1.05× 10−2 7.85× 10−3

8.69× 10−2 9.43× 10−2 1.26× 10−1

Exp. 100 1.09× 10−2 1.09× 10−2 1.16× 10−2

3.45× 10−1 2.32× 10−1 1.75× 10−1

10 1.05× 10−2 1.07× 10−2 1.08× 10−2

3.01× 10−1 3.12× 10−1 1.60× 10−1

1 9.80× 10−3 9.33× 10−3 8.89× 10−3

1.64× 10−1 1.29× 10−1 1.01× 10−1

Sep. 100 1.12× 10−2 1.16× 10−2 1.09× 10−2

1.93× 10−1 1.80× 10−1 2.14× 10−1

10 1.09× 10−2 1.05× 10−2 1.13× 10−2

2.87× 10−1 1.76× 10−1 1.69× 10−1

1 9.97× 10−3 8.92× 10−3 7.69× 10−3

1.54× 10−1 1.32× 10−1 9.98× 10−2

Table 2: Relative MSE for the Heat Equation (Eq. 2)
Top Value: Training Error, Bottom Value: Testing Error



Correlation Length

Covariance Function Variance 0.15 0.10 0.05

Gaussian 100 169 335 829
58 106 267

10 169 335 828
42 73 164

1 169 336 829
24 37 64

Exponential 100 971 972 976
164 206 290

10 971 972 976
87 109 151

1 971 972 976
31 38 49

Separable Exponential 100 958 965 974
166 219 315

10 958 965 974
90 116 165

1 958 965 974
33 41 52

Table 3: PCA components for Poisson’s Equation (Eq. 1)
Top Value: Input, Bottom Value: Output

Correlation Length

Covariance Function Variance 0.15 0.10 0.05

Gaussian 100 169 336 828
30 34 36

10 169 336 828
30 33 36

1 169 336 829
29 32 34

Exponential 100 971 972 976
29 31 34

10 971 972 976
29 31 34

1 971 972 976
28 30 32

Separable Exponential 100 958 965 974
30 32 35

10 958 965 974
30 32 34

1 958 965 974
29 31 33

Table 4: PCA components for the Heat Equation (Eq. 2)
Top Value: Input, Bottom Value: Output

Figure 4: Training loss for Poisson’s Equation, with
Gaussian covariance, and a variance of 1

The number of PCA components for the input and output
(i.e. the size of the input and output layers) for equation 1 and
2 are displayed in table 3 and 4, respectively. The top value
is the number of PCA components for the input, whereas the
bottom value is the number of PCA components for the out-
put, which represent an accuracy value of 0.99 in both cases.

The training loss for three networks is shown in figure 4,
where we can clearly see the effect of stepping down the
learning rate every 100 epochs.

5 Responsible Research

For the type of research performed here, there are usually a
number of ethical issues to consider, such as reproducibility,
data access, privacy, and wider societal impact.

In order to enable other researchers to reproduce our re-
sults, we have ensured that the methodology and experimen-
tal setup are adequately described. Furthermore, the most im-
portant implementation details used to acquire these particu-
lar results, such as hyperparameters, are provided as well.

Since all of the data used in this research is generated using
the parafields library [7], there is no need to upload the actual
dataset, since an equivalent dataset can simply be generated
by anyone attempting to replicate our results. For the same
reason, there are no issues with data privacy, since we are not
using any personal data at all.

As for the issue of wider societal impact, PDE solvers can
be used for many purposes, not all of which are benign. For
example, since most physical phenomena can be modeled
with PDEs, easy access to such solvers can enable one to
more easily develop weapons, since one can predict the be-
havior of a design before actually constructing it. However,
since conventional PDE solvers are already widely available
to anyone with the skills to use them, the impact of this novel
type of method (let alone this particular research), will most
likely be minimal.



6 Discussion
The results for each equation are different, and somewhat un-
expected. The results for Poisson’s equation (in table 1) seem
to indicate roughly equal performance for smaller correlation
lengths for Gaussian covariance, and better performance for
smaller correlation lengths for Exponential and Separable Ex-
ponential covariance. This is precisely the opposite of what
one would naively expect, since smaller correlation lengths
represent ”rougher” inputs, and in table 3, we see that more
PCA components are needed to capture the same amount of
detail. On the other hand, the results for variance are more or
less as expected, with smaller variance resulting in better per-
formance, presumably due to better numerical precision for
smaller inputs.

As for the performance of Poisson’s equation for a given
type of covariance function, it appears that Gaussian covari-
ance outperforms both Exponential and Separable Exponen-
tial covariance in absolute terms.

The results for the Heat equation (in table 2) are also un-
expected, with testing error increasing for smaller correlation
lengths for Gaussian covariance, and decreasing for smaller
correlation lengths for Exponential and Separable Exponen-
tial covariance. Again, the results for variance are as ex-
pected, with error decreasing with decreasing variance.

However, the Heat equation seems to be remarkably tol-
erant to different input distributions, since the performance
for each covariance functions (when holding variance and
correlation length constant) is remarkably similar across the
board, and the differences for different covariance functions
are smaller than those seen for Poisson’s equation.

The main difference between Poisson’s equation (an ellip-
tic PDE) and the Heat equation (a parabolic PDE) when com-
paring covariance functions appears to be how it responds to
GRFs with Gaussian covariance. Also, in table 4, we see
that for the output the number of PCA components needed to
reach an accuracy of 0.99 is relatively constant when varying
correlation length and variance, whereas for the outputs in
table 3 the number of PCA components varies significantly.

From this data alone, it is difficult to draw any firm conclu-
sions about the types of input PCA-NN methods can handle.
It seems that solvers for different equations do perform dif-
ferently on different inputs, and, more importantly, that the
error may increase significantly with slight variations in cer-
tain parameters (e.g. a twofold increase in correlation length
can result in a nearly fourfold increase in error), but the differ-
ences are not particularly pronounced, at least for the chosen
parameters.

However, what we can conclude with certainty is that PCA-
NN seems to perform well on all of these inputs, which serves
to give us confidence that for these equations and these types
of input, PCA-NN can learn mappings corresponding to these
equations, and provides useful solutions.

7 Conclusions and Future Work
We have attempted to discover the types of inputs and out-
puts that PCA-NN solvers are suited for. To do this, we have
generated datasets with inputs drawn from a number of dif-
ferent Gaussian Random Fields (with different parameters).

As a result, we have discovered a number of patterns in the
way PCA-NN solvers respond to different types of inputs, but
since the performance of the method is adequate for every
type of input (with the error in tables 1 and 2 never exceeding
0.35, and usually being much lower), it is not obvious how to
extrapolate from these results.

As such, we have a number of recommendations for fur-
ther research in this direction. Firstly, it would be interest-
ing to see if some of these patterns hold for other covariance
functions. Secondly, since there was a noticeable difference
between the performance of Poisson’s equation and the Heat
equation, it would be interesting to see if one could discover
similar patters for Hyperbolic equations, like the Wave equa-
tion. Thirdly, since we have only used only one Elliptic and
one Parabolic equation, it is not clear if the patterns discov-
ered here hold for Elliptic and Parabolic equations in general,
or only these specific equations. Fourthly, since the number
of PCA components was varied and the amount of detail cap-
tured was held constant, it may be useful to investigate the
same (or similar) inputs as used here, but with the number
of PCA components held constant and the amount of detail
captured varied.

Of course, there are also other possible directions for em-
pirical investigations into PCA-NN (and similar methods, like
FNO), like the performance for out-of-distribution inputs, the
performance of PCA-NN with more physically realistic in-
put distributions, and the performance of these methods when
varying the size of the neural network.
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