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ABSTRACT

Cancer is a disease that one of every three people will get in The Netherlands. One of the
treatment methods for this disease is radiotherapy. Approximately half of all cancer patients
will get radiotherapy at some point of their treatment. During radiotherapy cancer cells are
destroyed with ionizing radiation, but healthy cells get destroyed too. When a patient gets
treated with radiotherapy, the goal is to find a treatment plan which will destroy all of the
cancer cells and as few healthy cells as possible. To reach this goal we want to make a unique
treatment plan for every patient, because every patient is anatomical unique.

.
We use a wish-list to generate this unique optimal treatment plan. This wish-list contains

all of the demands of the physician. All of the demands can be written into cost-functions. We
will use inverse multicriteria optimisation to find the most relevant cost-functions for every
organ and the tumour (planning target volume (PTV)). The relevance of a cost-function can
be obtained by determining the weight of a cost-function. We start with a non-linear problem
and we use the Karush-Kuhn-Tucker conditions. We did not receive the desired solutions.
Afterwards, we tried to find the optimal weights for a linear problem by writing it in the form
of an absolute duality gap minimization problem. This gave the results we were hoping for.
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PREFACE
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1
INTRODUCTION

Cancer is a disease that one of every three people will get in The Netherlands. For this disease
we have different treatment methods. Examples are chemotherapy, surgery and radiother-
apy. Approximately half of all cancer patients will get radiotherapy at some point of their
treatment. This thesis will focus only on radiotherapy.

.
During radiotherapy cancer cells are destroyed with ionizing radiation, but healthy cells

get destroyed too. When a patient gets treated with radiotherapy, the goal is to find a treat-
ment plan which will destroy all of the cancer cells and as few healthy cells as possible. To
reach this goal we want to make a unique treatment plan for every patient, because every
patient is anatomical unique.

.
We use a wish-list to generate this unique optimal treatment plan. This wish-list contains

all of the demands of the physician. For example, the maximum dose in a certain organ. All
of the demands can be written into cost-functions.

.
We will use inverse multicriteria optimisation to find the most relevant cost-functions for

every organ and the PTV. We want to find the most relevant cost-functions, because when a
patient comes in for treatment we want to generate an optimal treatment plan quickly. The
fewer cost-functions we have to test, the less time it takes to make the treatment plan. The
relevance of a cost-function can be obtained by determining the weight of a cost-function.
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Chapter 2 contains some general information about radiotherapy, treatment plans and
the Cyberknife, a treatment unit. In this chapter there is also an explanation of a method to
determine if a treatment plan is good or bad. Chapter 3 begins with the the basic principles
of optimisation and an explanation of multicritaria optimisation. Followed by an explana-
tion about the link between optimisation and treatment planning. This chapter ends with
information about, and an example of the wish-list. In Chapter 4 inverse multicriteria opti-
misation with the Karush-Kuhn-Tucker conditions is explained for a non-linear problem and
it is made insightful with an example. This chapter ends with the implementation of this
non-linear problem in MATLAB. Chapter 5 contains the results of the (inverse) multicriteria
optimisation. In chapter 6 a wish-list for a linear problem is formulated and we write the
problem such that it is in the form of an absolute duality gap minimization problem. Chap-
ter 7 contains the results of the (inverse) optimisation of the linear problem. Chapter 8 gives
an overview of the most important results. Finally, in Chapter 9 some comments and recom-
mendations are made.



2
RADIOTHERAPY

In The Netherlands there is a one in three chance that someone will get cancer in their life-
time1. This means that every year one hundred and sixty thousand people get diagnosed
with cancer in The Netherlands. There are different ways to treat cancer, mainly by surgery,
chemotherapy and radiotherapy. Often the treatment of a patient is a combination of multi-
ple treatments. Radiotherapy is used in approximately half of all treatments.

.
Radiotherapy is a method to treat cancer with ionizing radiation. The goal of radiother-

apy is to destroy as many malignent cells (tumour cells) as possible while preserving as many
healthy cells as possible. There are two ways to treat a patient with radiotherapy. Firstly, it is
possible to temporary place radioactive sources inside the patient. This is called brachyther-
apy (BT). A second method to treat a patient with radiotherapy is external beam radiation
therapy (EBRT). This means that the patient is irradiated from the outside of their body by a
device as shown in Figure 2.1. This report focuses on EBRT.

2.1. TREATMENT PLAN
Before the patient is treated with radiotherapy, a treatment plan needs to be generated. This
plan contains the settings for the treatment, such that the machine is able to deliver the de-
sired dose in the patient’s organs and tumour (planning target volume (PTV)). The treatment
plan for each patient is unique because of two reasons: every human is anatomically unique
and every tumour is different. Therefore, in order to define the correct treatment plan, the
anatomy of the patient has to be clearly defined. The exact location of the tumour and or-
gans at risk (OAR) will define the distribution of the dose.

1Incidence and survival rates: Dutch Cancer Registry, managed by IKNL © February 2018 (provisional incidence
rates from 2017) Mortality rates: CBS provisional figures from 2017
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(a)

(b)

(c)

Figure 2.1: Different positions of the Cyberknife arm
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Figure 2.2: Example of a CT-scan of the head-and-neck area of which the relevant parts are outlined ([1])

This information about the location of the tumour and OAR is obtained by making a com-
puted tomography scan (CT-scan)2 of the patient. The CT-scan (an example is given in Figure
2.2) gives the location and size of the different OAR and the PTV. For modelling, the OAR and
the PTV are discretized into small imaginary volumes called voxels. A wish-list for the treat-
ment plan is then formulated out of the CT-scan, the voxels and the maximum dose that each
OAR can handle. The concept of a wish-list will be explained further in Section 3.4. The wish-
list represents a multicriteria optimisation problem. When this problem is solved we get a
treatment plan.

2Sometimes another scan is used to identify the location of the tumour. Some alternatieves are: a magnetic reso-
nance imaging (MRI), a positron-emission tomography scan (PET-scan) or a single photon emission computed
tomography scan (SPECT-scan)
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When the treatment plan is finished, the physician will inspect the plan visually. If the
physician thinks the treatment plan is fine, the treatment plan is delivered in different frac-
tions. The treatment is spread out over different days, sometimes even up to forty days. Each
day the patient receives a fraction of the plan. The time between different radiation sessions
gives the body a chance to recover from the radiation. This reduces the damage to the OAR.

2.2. DOSE-VOLUME HISTOGRAM
When generating a treatment plan we want to get a clear vision of the effects on the OAR
and the PTV of this treatment plan. One way to analyse the effects is by inspecting the 3D
dose distribution. Another option is by generating a dose-volume histogram (DVH). This is
a histogram that shows a 2D representation of the 3D dose distribution of a given treatment
plan. In a DVH it is possible to see how much dose (in Gy) a certain percentage of an OAR or
PTV gets. An example of a DVH is shown in Figure 2.3.

Figure 2.3: Example of a DVH

Most of the OAR are well known but there are a few OAR that need some explanation.
Firstly, there are three PTV shells, all with a different distance. These shells are zones around
the PTV. The PTV Shell 5 mm, for example, is the zone from the PTV to 5 mm outside the
PTV. The shells are used to obtain a big difference between the dose delivered in the PTV
and directly next to the PTV. The goal is to reduce the dose delivered directly next to the PTV.
Secondly, the label ’patient’ means unspecified tissue, such as fat cells and muscles. Finally,
the External Ring 20 mm. This OAR is implemented to minimise the dose absorbed below the
surface of the skin ([2]).
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With a DVH we gain insight on the quality of a treatment plan. For an OAR, the goal is
to have a low dose in most of its total volume. For a PTV, the goal is to have a high dose in
a big percentage of its total volume. We are also able to compare the influence of different
treatment plans on the OAR and the PTV.

2.3. CYBERKNIFE
There are different types of treatment devices. One example is the Cyberknife, a linear ac-
celerator which is used for the treatments. The patient lies down on a table and a robotic
arm moves around the patient to deliver the radiation according to the treatment plan. The
Cyberknife moves around the patient so it can irradiate the patient from different directions.
Different positions of the robotic arm are shown in Figure 2.1. The Cyberknife irradiates sub-
sequently from different positions. Each beam may have a different intensity. These intensi-
ties are determined in the treatment plan.

REFERENCES
[1] S. Breedveld, Radiotherapy, (2013), [Online; accessed June 16, 2019].

[2] R. Van Haveren, Lexicographic Reference Point Method for Automatic Treatment Planning
in Radiation Therapy, Master’s thesis, Delft University of technology, the Netherlands
(2014).

http://sebastiaanbreedveld.nl/radiotherapy.html
http://resolver.tudelft.nl/uuid:29a7d929-fcfc-408a-9c91-e4c8007f53d6




3
MULTICRITERIA OPTIMISATION

3.1. BASIC OPTIMISATION
The idea of optimisation is to find the "best solution" for a problem. In this project we will
only use minimisation. The goal is to minimize a convex1 function f (x), which is called an
objective cost-function. So we want to find the values x ∈ RN , such that f (x) is as small as
possible. The values of the vector x are called the decision variables.

.
There are restrictions that the solution has to meet. These restrictions are given in the

form of constraints. These are m cost-functions g j (x), each with an upper bound b j ∈ R. All
of the above gives the following optimisation problem:

min
x

f (x)

subject to g1(x) ≤ b1
...
gm(x) ≤ bm

(3.1)

3.2. MULTICRITERIA OPTIMISATION
An optimisation problem is called a multicriteria problem if the problem contains more than
one objective function. Objective functions can be unevenly weighted. This is included in
the problem by multiplying each objective cost-function fi with a weight wi ∈Rn . This gives
the following optimisation problem:

min
x

n∑
i=1

wi fi (x)

subject to g1(x) ≤ b1
...
gm(x) ≤ bm

(3.2)

1A function f :Rn →Rn is called convex if: ∀x, y ∈Rn and t ∈ (0,1) : f (t x + (1− t )y) ≤ t f (x)+ (1− t ) f (y)
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The goal of this problem is to find an optimal solution. We want to find a solution vector

x such that
n∑

i=1
wi fi (x) is as small as possible while the constraints are met. In this report we

use the interior-point solver developed in the Erasmus MC ([1]).

3.3. TREATMENT PLANNING AND OPTIMISATION
When optimisation is used for treatment planning, the decision variables x contain the in-
formation about a specific beamlet of the Cyberknife. Examples of such information are the
intensity and angle of the beamlet. The objective cost-functions f1(x), . . . , fn(x) quantify the
influence of a solution x. There can be multiple cost-functions working on the same OAR or
PTV, with different priorities. For example a cost-function can have the goal to maximize the
minimum dose of a tumour. Another cost-function has for example the goal to minimize the
mean dose in an OAR.

.
The constraint cost-functions g1, . . . , gm in combination with their limits b1, . . . ,bm give

the restrictions for different OAR and the PTV. The wishlist contains all the information about
the cost-functions: the name of the OAR or PTV, priority, type and goal. See an example of a
wishlist in Table 3.1.

.
There are five different types of cost-functions. All the cost-functions except the quadratic

cost-functions use d(x) = Ax +h, with d(x) the dose in a voxel of a particular OAR or PTV in
Gy (J/kg).

.
A is the data matrix, in radiotherapy this is the pencil-beam dose matrix. This matrix A

can be different for each objective- or constraint cost-function, but for every OAR or PTV the
number of columns is the same: the number of decision variables x. The number of rows
can differ, because that equals the number of voxels (k) of the OAR or PTV. The vector h is
usually zero, only in special cases h has another value, for example if the patient already re-
ceived a certain dose (for example due to a previouos treatment). The Erasmus-iCycle solver2

supports the following commonly used cost-functions:

1. Linear: there are three different options for cost-functions of this type. The first option
is the pointwise minimum f (x) = min(d(x)). The second option is the pointwise max-
imum f (x) = max(d(x)). The last option is that the cost-function computes the mean

f (x) = 1
k

k∑
i=1

di (x).

2. Quadratic: this type of cost-function is computed by f (x) = 1
2 xT C x +qT x + r

2The method used in the Erasmus MC to generate a treatment plan for cancer patients, using the wish-list and
the CT-scan of a patient’s anatomy
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3. gEUD (generalised equivalent uniform dose): this type of cost-function is similar to the

generalized mean with the formula f (x) =
(

1
k

k∑
i=1

di (x)a
) 1

a

. The parameter a is given.

The cost-function is convex if a ≥ 1, then the function can be minimized. If a ≤ −1
then the cost-function is concave and needs to be maximized.

4. LTCP: this type of cost-function is called the logarithmic tumour control probability

and is computed as f (x) = 1
k

k∑
i=1

eα(di (x)−d p ). The parameters α and d p are given. This

type of cost-function is only used for the PTV.

5. DVH : we do not use this type of cost-function in this report.

6. Chain: the chain function is used to include formulations which contain multiple stan-
dard cost-functions. There are two different options for cost-functions of this type.
Both kinds of cost-functions are chain functions. A chain function is a function that
uses the outcome of another function of the problem.

• The first option is given by two elements (a, i ), where a is a scalar and i the index
of an other objective of the problem. In this case the cost-function is computed
as f (x) = a · gi (x) and if it has multiple rows as f (x) = a1gi1 (x)+a2gi2 (x)+ . . ..

• The second option is given by three elements (a, i , j ). In this case a and i are
defined the same as before and j gives an index number. This option results in a
constraint a · gi (x) ≤ x j .

3.4. WISH-LIST
An approach for generating a treatment plan is using a wish-list. This wish-list contains the
goals for the treatment. Basically a wish-list contains everything a physician wants for a treat-
ment. An example could be to set the minimum dose to the PTV (tumour) or the maximum
dose on OAR. There are also practical considerations. For example, it is more important to
spare nerves than unspecified tissue. The treatment plan needs to be deliverable as well. For
example, it is not possible to give a really high dose on one spot and right next to it no dose
at all. An example of a wish-list for prostate cancer is given in Table 3.1. In this example the
goal is to minimize the objectives. The limit of the constraints is a maximum dose the OAR or
PTV should receive.

.

The wish-list is the same for every patient within the same treatment protocol. The result-
ing treatment plans differ, because the data matrix A is different for every patient. This is in
its turn a result of the anatomical uniqueness of every patient. Each patient has different vox-
els and a different number of decision variables. While for one patient the data matrix A has
the same number of columns, the number of columns can be different for an other patient.
This will also have consequences for the weights for the cost-functions for each patient.
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Table 3.1: Example of a wish-list

Objectives
Priority Volume Type Goal (Gy)

1 Rectum 3 (a = 12) 30
2 Rectum 3 (a = 8) 20
3 Rectum 1 (mean) 10
4 External Ring 20 mm 1 (min) 31.20
5 PTV Shell 5 mm 1 (min) 72.54
6 Anus 1 (mean) 10
7 PTV Shell 15 mm 1 (min) 54.60
8 PTV Shell 25 mm 1 (min) 39
9 Bladder 1 (mean) 40

10 Hip (L) 1 (mean) 20
10 Hip (R) 1 (mean) 20
11 Unspecified tissue 1 (mean) 100

Constraints
Volume Type Limit (Gy)

PTV 1 (min) 81.12
PTV Shell 50 mm 1 (min) 39
PTV 4 (α= 0.80 and d p = 78) 0.50
Rectum 1 (min) 78
Hip (L) 1 (min) 40
Hip (R) 1 (min) 40
Bladder 1 (min) 78
Unspecified tissue 1 (min) 81.12
Anus 1 (min) 78

REFERENCES
[1] S. Breedveld, B. van den Berg, and B. Heijmen, An interior-point implementation devel-

oped and tuned for radiation therapy treatment planning, Computational Optimization
and Applications 68, 209 (2017).

http://dx.doi.org/10.1007/s10589-017-9919-4
http://dx.doi.org/10.1007/s10589-017-9919-4


4
INVERSE MULTICRITERIA OPTIMISATION

For multicriteria optimisation, the weights wi and the costfunctions fi (x) and g j (x) are fixed
and we want to find an optimal solution x. For inverse multicriteria optimisation (IMO) we
have the opposite: we have the optimal solution x and cost-functions. The goal is to find the
optimal weights wi . We start with Problem 4.1:

min
x

n∑
i=1

wi fi (x)

subject to g1(x) ≤ b1
...
gm(x) ≤ bm

(4.1)

We are going to rewrite this problem to a problem whit a fixed solution x (calculated
with multicriteria optimisation as described in Section 3.2). Our goal is to refind the opti-
mal weights ŵi for this problem.

4.1. INVERSE MULTICRITERIA OPTIMISATION
To find these weights, we first look at the Langrangian of Problem 4.1:

L (x, y) =
n∑

i=1
wi fi (x)+

m∑
j=1

y j (g j (x)−b j ) (4.2)

Equation 4.2 can be written in vector form as:

L (x, y) = wT f (x)+ yT (g (x)−b) (4.3)

21
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Here y is the vector of Lagrange multipliers. The Lagrangian is convex in x and concave in
y , because Problem 4.1 is convex. A mathematical solver is used ([1]) to find an optimal solu-
tion (x̂, ŷ) that minimises Problem 4.1. For such a minimum the so-called Karush–Kuhn–Tucker
conditions hold, which are:

wT ∇ f (x̂)+ ŷT ∇g (x̂) = 0 (4.4)

g (x̂) ≤ b (4.5)

ŷT (g (x̂)−b) = 0 (4.6)

Each of the conditions has a different function. Equation 4.4 ensures that the minimum
of the Lagrangian 4.3 is attained. Condition 4.5 ensures that all of the constraints are satisfied.
The complementary slackness condition (Equation 4.6) ensures that either the constraint is
active (and thus g > 0), or inactive and g = 0.

.

For inverse optimization, we want to find a solution for w given an x̂, that matches these
conditions as well as possible. Therefore, we write wT ∇ f (x̂)+ ŷT ∇g (x̂) = ε and ŷT ∇(g (x̂)−
b) = γ as conditions and we state that the goal is to minimise ε and γ by defining the function
φ(ε,γ) = ||ε||22+||γ||22 ([2]). This ensures that wT ∇ f (x̂)+ ŷT ∇g (x̂) and ŷT ∇(g (x)−b) are as close
to zero as possible. Secondly, to exclude the trivial solution, (ŵ = 0) we set the condition:

n∑
i=1

wi = 1. Finally, to ensure that none of the weights are negative, the conditions wi ≥ 0

for i ∈ {1, . . . ,n} and ŷi ≥ 0 for j ∈ {1, . . . ,m} are introduced. This gives the following inverse
optimisation problem:

min
ε,γ

φ(ε,γ) = ||ε||22 +||γ||22
subject to wT ∇ f (x̂)+ yT ∇g (x̂) = ε

yT (g (x̂)−b) = γ
n∑

i=1
wi = 1

wi ≥ 0 for i ∈ {1, . . . ,n}
yi ≥ 0 for j ∈ {1, . . . ,m}

(4.7)

In Problem 4.7 we write y instead of ŷ , because we assume that we do not know ŷ (we
do know x̂). Here f (x̂) and g (x̂) are the same as in Problem 4.1 and x̂ is the optimal solution
for the weights w . Then the inverse optimisation of Problem 4.7, using x̂, should return the
optimal weights ŵ . Because of the convexity of the problem w (the original weigths) should
be equal to the new optimal weights ŵ .

4.2. EXAMPLE
To further explain the methods described in Sections 3.2 and 4.1, we give a basic analytic
example. Let f1(x) = x2 and f2(x) = ex (both convex) be objective cost-functions, both with
weights 0.5, and assume there are no constraint cost-functions g (x). This results in:
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w = [
0.5 0.5

]
(4.8)

f (x) = [
x2 ex

]=⇒∇ f (x) = [
2x ex

]
(4.9)

g (x) = [. . .] (4.10)

b = [. . .] (4.11)

First we use Problem 3.2 to find the optimal solution x for this problem. We get:

min 0.5 · x2 +0.5 ·ex (4.12)

The optimal solution for this problem is:

0.5 ·2 · x +0.5 ·ex = 0 =⇒ x̂ =−0.35. . . (4.13)

When we combine Equations 4.9 and 4.13 we find:

∇ f (x̂) = [
2 · x̂ e x̂

]= [
2 ·−0.35 e−0.35

]= [−0.70 0.70
]

(4.14)

Now we forget about the given weights and use inverse multicriteria optimisation to find
the optimal weights ŵ . The theory gives w = ŵ . Problem 4.7 gives:

minε,γ φ(ε,γ)
subject to ε= wT ·∇ f (x̂) = [−0.70 ·w1 0.70 ·w2

]
w1 +w2 = 1
wi ≥ 0 for i ∈ {1, . . . ,n}

(4.15)

So with w1 +w2 = 1 =⇒ w1 = 1−w2:

φ(ε,γ) = ||ε||22 = ||[−0.70 ·w1 0.70 ·w2
] ||22

= (((−0.70 ·w1)2 + (0.70 ·w2)2)
1
2 )2

= 0.49 ·w1.2 +0.49 ·w2.2 (4.16)

= 0.49 · (1−w2)2 +0.49 ·w2.2

= 0.49 · (1−2w2 +w2.2)+0.49 ·w2.2

= 0.49−0.98 ·w2 +0.98 ·w2.2

The optimal solution for this problem is:

−0.98+2 ·0.98 ·w2 = 0 =⇒ 2 ·0.98 ·w2 = 0.98

=⇒ 0.98 ·w2 = 0.5 ·0.98 (4.17)

=⇒ w2 = 0.5

So ŵ = [
w1 w2

]= [
1−w2 w2

]= [
0.5 0.5

]
, which are exactly the weights of the origi-

nal problem (Problem 4.8).
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4.3. IMPLEMENTATION
For the implementation of the methods described in Sections 3.2 and 4.1 we use MATLAB.
We started by picking a suitable solver. In our case this is the solver called "quadprog" which
can be used for quadratic programming. We have to we rewrite our problem such that we can
optimise it with this solver.

.
This is the kind of problem the solver can optimise:

min
z

1
2 zT H z + vT z such that


A · z ≤ t

Aeq · z = teq
lb ≤ z ≤ ub

We rewrite Problem 4.7 into a problem that fits the solver. Firstly, in Problem 4.7 we see
that w, y,ε and γ are all decision variables. We combine these decision variables into the
decision variable z:

z =


wT

yT

ε

γ

 (4.18)

The next step is to define the matrix Aeq and the vector teq . Therefore we rewrite the
equalities, which are:

wT ∇ f (x̂)+ yT ∇g (x̂) = ε (4.19)

yT (g (x̂)−b) = γ (4.20)
n∑

i=1
wi = 1 (4.21)

Equation 4.19 is the same as:

wT ∇ f (x̂)+ yT ∇g (x̂)−ε= 0.

We write this as a matrix multiplication:

[∇ f (x̂) ∇g (x̂) −I 0
] ·


wT

yT

ε

γ

=

0
...
0

 (4.22)
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The number of rows of
[∇ f (x̂) ∇g (x̂) −I 0

]
is the same as the number of decision

variables x. The number of columns of
[∇ f (x̂)

]
is the same as the number of objective

cost-functions. The number of columns of
[∇g (x̂)

]
is the same as the number of objective

constraint-functions. I is a diagonal matrix with only ones. The number of columns of I is
equal to the number of rows, which is the number of decision variables x. The zero stands for
a matrix with only zeros. This matrix has the same number of columns as the number of con-
straint cost-functions. Concluding the number of rows of

[∇ f (x̂) ∇g (x̂) −I 0
]

is the sum
of the number of objective cost-functions, two times the number of constraint cost-functions
and the number of decision variables.

.
The next equation, Equation 4.20, is the same as:

yT (g (x̂)−b)−γ= 0.

We write this as a matrix multiplication:

[
0 g (x̂)−b 0 −I

] ·


wT

yT

ε

γ

=

0
...
0

 (4.23)

The number of rows of
[
0 g (x̂)−b 0 −I

]
is the same as the number of constraint cost-

functions. The number of columns is the same as in
[∇ f (x̂) ∇g (x̂) −I 0

]
.

.
The last equality is Equation 4.21. This equation ensures that the sum of the weights is

equal to one. In other words, we want to multiply all the weights by one. The sum of these
multiplications should equal one. We do this by creating a vector with the same amount of
columns as the two vectors above. All the entries are zeros except for the values that will
be multiplied by a weight wi . The number of entries that equal one will be the number of
cost-functions. We write this as a matrix multiplication:

[
1 . . . 1 0 . . . 0

] ·


wT

yT

ε

γ

= [
1
]

(4.24)

We combine the three matrix multiplications above:

∇ f (x̂) ∇g (x̂) −I 0
0 g (x̂)−b 0 −I

1. . .1 0 . . . 0

 ·


wT

yT

ε

γ

= Aeq · z = teq =


0
...
0
1

 (4.25)

There are no inequality constraints, but we do have a lower bound for the vector z. Every
value of z should be equal or larger than zero.

.
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The goal is to minimise ε andγ. More specific, the goal is to minimiseφ(ε,γ) = ||ε||22+||γ||22.
This is a quadratic equation, without a linear part, so vT x in the solver should be zero. This
results in the following goal function for the solver:

min
z

1
2 zT H z + vT x = min

z
1
2 zT H z +0 = min

z
1
2 zT H z

The last variable we define is H . This is a sparse matrix. In the lower right corner there is
an identity matrix. The size of this matrix is the sum of the lengths of the vectors ε and γ. The
length of the vector ε is equal to the number of decision variable x. The length of γ is equal
to the number of constraints. This results in the following goal function:

min
z

1

2
zT H z = min

z

1

2

[
wT yT ε γ

] ·


0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I

 ·


wT

yT

ε

γ

 (4.26)
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5
TREATMENT PLANNING AND INVERSE

MULTICRITERIA OPTIMISATION

Inverse multicriteria optimisation is used for automated treatment planning to determine
what the weights of the different OAR or PTV cost-functions should be. This is required to
extract useful information based on historical treatment plans.

.
We use the wish-list given in Table 3.1. Our goal is to find the optimal weights for this

problem for an optimal solution x̂, while using the wish-list and data matrix A. The patient
data that we use to get all the information is from the TROTS data set ([1]).

.
The linear type cost-functions which compute a pointwise maximum or minimum give

goal-functions on each voxel. This results in a different weight for each voxel. Solving such
functions with Problem 4.7 is possible but requires additional rewriting to express this prob-
lem in canonical form. Therefore, we simplify the case by changing all of the cost-functions of
type 1 that compute a pointwise maximum or minimum to a cost-function of type 3 (gEUD),
with parameter a equal to thirty. This gives an approximation of the maximum dose. We do
not change the linear type cost-functions that compute a mean, because this problem does
not occur in those functions. The new wish-list is given in Table 5.1.

5.1. TWO OBJECTIVE WEIGHTS 0.5
To test the method described in the previous chapter, we first try our method with only two
objectives, the PTV and one OAR. We repeat the optimisation for all twelve OAR involved.
There are no constraints, so the original weights should return (just like the example in Sec-
tion 4.2). Some of the original weights are really small, that is why we use 0.5 as the weight of
the PTV and the OAR. For this problem an optimal solution x̂ is determined with the method
described in Section 3.2. The optimal weights are determined with inverse multicriteria op-
timisation. These resulting weights are listed in Table 5.2.

27
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Table 5.1: The modified wish-list. In comparison with the original wish-list in Table 3.1 the cost-functions of type
1 that compute a pointwise maximum or minimum have been changed to a cost-function of type 3 (gEUD), with
parameter a = 30.

Objectives
Priority Volume Type Goal (Gy)

1 Rectum 3 (a = 12) 30
2 Rectum 3 (a = 8) 20
3 Rectum 1 (mean) 10
4 External Ring 20 mm 3 (a = 30) 31.20
5 PTV Shell 5 mm 3 (a = 30) 72.54
6 Anus 1 (mean) 10
7 PTV Shell 15 mm 3 (a = 30) 54.60
8 PTV Shell 25 mm 3 (a = 30) 39
9 Bladder 1 (mean) 40

10 Hip (L) 1 (mean) 20
10 Hip (R) 1 (mean) 20
11 Unspecified tissue 1 (mean) 100

Constraints
Volume Type Limit (Gy)

PTV 3 (a = 30) 81.1200
PTV Shell 50 mm 3 (a = 30) 39
PTV 4 (α= 0.8000 and d p = 78) 0.5000
Rectum 3 (a = 30) 78
Hip (L) 3 (a = 30) 40
Hip (R) 3 (a = 30) 40
Bladder 3 (a = 30) 78
Unspecified tissue 3 (a = 30) 81.1200
Anus 3 (a = 30) 78

In Table 5.2 it is shown that for most of the OAR the results are as we expected: the op-
timised weights are the same as the original weights. However, for three of the OAR this is
different: for the hips and for the external ring. For all three the new weights are 1.000 and
0.000, respectively for the OAR and the PTV. To take a closer look at these results we calcu-
lated various values (Table 5.3) and made a dose-volume histogram (DVH) (Figure 5.1) for
the weights calculated for the left hip. We do the same for the first rectum cost-function, such
that we are able to compare an unexpected result with a result we expected.

.
To evaluate this we remember the goal of our problem 4.7. Our goal is to minimize

the function φ(ε,γ) = ||ε||22 + ||γ||22. We only use objectives so we want to minimize ||ε||22 =
||wT ∇ f (x)||22. For the rectum ||ŵT ∇ f (x̂)||22 and ||wT ∇ f (x̂)||22 are the same (Table 5.3). For the
left hip the goal-function is higher with the new weights, it doubled.



5.1. TWO OBJECTIVE WEIGHTS 0.5

5

29

Table 5.2: The results of inverse multicriteria optimisation for one OAR and one PTV, with starting weights 0.5
and 0.5 (w = [0.5 0.5]). This is done separately for each OAR. For the rectum objective cost-function the number
between the brackets is the goal in Gy for that function.

Name OAR Type ŵPT V ŵO AR

Rectum (30) 3 0.5000 0.5000
Rectum (20) 3 0.5000 0.5000
Rectum (10) 1 0.5000 0.5000
External Ring 20 mm 3 0.0000 1.0000
PTV Shell 5 mm 3 0.5000 0.5000
Anus 1 0.5000 0.5000
PTV Shell 15 mm 3 0.5000 0.5000
PTV Shell 25 mm 3 0.5000 0.5000
Bladder 1 0.5000 0.5000
Hip (L) 1 0.0000 1.0000
Hip (R) 1 0.0000 1.0000
Unspecified tissue 1 0.5000 0.5000

Table 5.3: Extra information from the inverse multicriteria optimisation for one OAR and one PTV, with starting
weights 0.5 and 0.5 (w = [0.5 0.5]). There are two OAR in this table: the first rectum cost-function and the cost-
function for the left hip. w are the starting weights, ŵ the optimised weights, x̂ the optimal solution for the
starting weights w and x? the optimal solution for the new weights ŵ

Name OAR Rectum Hip (L)
Type 3 1
Objective 30 20
wPT V 0.5000 0.5000
wO AR 0.5000 0.5000
ŵPT V 0.5000 0.000
ŵO AR 0.5000 1.000
||wT ∇ f (x̂)||22 8.523E-5 6.140E-4
||ŵT ∇ f (x̂)||22 8.523E-5 1.228E-3
||ŵT ∇ f (x?)||22 8.523E-5 1.228E-3

In the DVH in Figure 5.1 we show the old plan and the new plan. The old plan is generated
with the old weights w and the corresponding optimal solution x̂. For the new plan we need
a new optimal solution for x because there are new weights. This solution x? is determined
with the method described in Section 3.2. After calculating the new optimal solution x? the
new plan is generated with the new (optimal) weights ŵ and the corresponding optimal so-
lution x?.

.
When we take a look at the DVH of the Rectum (Figure 5.1) we see that Plan 1 and Plan 2

are exactly the same. It is difficult to see, but the dotted line (Plan 2) and the continuous line
(Plan 1) are on top of each other. This is exactly what we expected.
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(a) Rectum (30) (b) Hip (L)

Figure 5.1: The dose distribution when only using two objectives (PTV and an OAR). For Plan 1 the old weights w
are used to get to an optimal solution. For Plan 2 the new weights ŵ are used to get to an optimal solution.

When we take a look at the DVH of the left hip (Figure 5.1b) we see that the new plan with
the new weights delivers a less dose to the tumor than the first plan with the original weights.
This is not what we expected. When zooming in (Figure 5.2) we see that the maximum dose
in the left hip is 0.1 Gy (in the original plan (Plan 1) and in the new optimized plan (Plan 2)).
In practice this is even smaller, but in a DVH the smallest ’step’ possible is of 0.1 Gy. This step
is only conforming that there is some dose, but that the dose is negligible. This aplies for Plan
1 and Plan 2. The reason the dose is low is probably because the hips are far from the PTV.
A lot of plans will satisfy our optimization, because in almost all plans the dose in the hips is
almost equal to zero. That is why it is impossible to get a good plan when only using use one
hip and the PTV.

(a) Hip (L) Plan 1 (b) Hip (L) Plan 2

Figure 5.2: A zoomed version of Figure 5.1b
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We conclude that our method is working the way we want it to work in most cases. It is
not working when the OAR is far from the PTV and therefore not influenced by the radiation
of the PTV. In practice there will always be OAR near a PTV. Therefore it does not matter that
the optimization is not working when there are no OAR nearby the PTV.

5.2. TWO OBJECTIVES ORIGINAL WEIGHTS
To further inspect the working of our model we repeat the same process, with other weights.
We use the original weights of the OAR ([2]). The PTV we use was originally a constraint.
We changed it to an objective cost-function. That is why the PTV does not have an original
weight. We choose to use 1 as the original weight for the PTV. To make comparing easier
we first scale the weights such that the sum of the weights equals one and we calculate the
relative error of the weights1

Table 5.4: The results of inverse multicriteria optimisation for one OAR and one PTV, with the original weights w
and as start weights and the new weights ŵ .

Name OAR wPT V wO AR ŵPT V ŵO AR rel. error weights
Rectum (30) 1.000 2.634E-12 1.000 5.431E-6 5.431E-6
Rectum (20) 1.000 3.349E-12 1.000 1.429E-5 1.429E-5
Rectum (10) 6.712E-1 3.288E-1 6.712E-1 3.288E-1 1.064E-6
External Ring 20 mm 9.859E-1 1.406E-2 0.000 1.000 9.859E-1
PTV Shell 5 mm 9.760E-1 2.398E-2 9.760E-1 2.398E-2 2.442E-7
Anus 8.540E-1 1.460E-1 8.540E-1 1.460E-1 8.417E-7
PTV Shell 15 mm 9.859E-1 1.413E-2 9.859E-1 1.413E-2 1.472E-7
PTV Shell 25 mm 9.873E-1 1.273E-2 9.873E-1 1.273E-2 1.542E-7
Bladder 1.000 5.682E-12 1.000 1.376E-5 1.376E-5
Hip (L) 9.953E-1 4.658E-3 0.000 1.000 9.953E-1
Hip (R) 9.924E-1 7.625E-3 0.000 1.000 9.924E-1
Unspecified tissue 7.932E-1 2.068E-1 7.932E-1 2.068E-1 1.789E-6

.
In Table 5.4 we see that we get the same kind of results as in the case where we used 0.5

for the weights. In Table 5.5 we see that although the change of the weights is small the goal
function (φ(ε,γ)) can change a lot. For example, for the first rectum OAR the relative error of
the weights is only 5.431 ·10−6, but the goal function is more than 6 ·107 times as large. This
indicates that although we can optimise the weights pretty well, there is too much noise, due
to the finite precision of real numbers used in computing, to arrive at the exact answer we are
looking for.

1relative error of the weights =
n∑

i=1

wi−ŵi
n (with n the number of objective cost-functions)
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Table 5.5: The relative error of the weights of inverse multicriteria optimisation for one OAR and one PTV, and the
goal function φ(ε,γ) = ||wT ∇ f (x)||22. With the original weights w and optimal solution x̂, with the new weights ŵ
and the old optimal solution x̂ and with the new weights ŵ and the new optimal solution x?

Name OAR rel. error weights ||wT ∇ f (x̂)||22 ||ŵT ∇ f (x̂)||22 ||ŵT ∇ f (x?)||22
Rectum (30) 5.431E-6 4.522E-16 2.709E-8 9.284E-10
Rectum (20) 1.429E-5 8.137E-16 6.213E-8 3.466E-9
Rectum (10) 1.064E-6 6.599E-4 6.599E-4 6.599E-4
External Ring 20 mm 9.859E-1 3.775E-5 2.685E-3 3.429E-3
PTV Shell 5 mm 2.442E-7 1.964E-05 1.964E-5 1.964E-5
Anus 8.417E-7 4.505E-4 4.505E-4 4.505E-4
PTV Shell 15 mm 1.472E-7 9.335E-6 9.335E-6 9.335E-6
PTV Shell 25 mm 1.542E-7 5.841E-6 5.841E-6 5.841E-6
Bladder 1.376E-5 7.503E-15 3.644E-8 1.822E-8
Hip (L) 9.953E-1 5.721E-6 1.228E-3 1.228E-3
Hip (R) 9.924E-1 9.464E-6 1.241E-3 1.241E-3
Unspecified tissue 1.789E-6 3.201E-5 3.201E-5 3.201E-5

To take a look at the dose distribution we calculate the new optimal solution x? for the
new weights ŵ . Plan 1 is the optimal dose distribution for the old weights w and Plan 2 is
the optimal dose distribution for the new weights ŵ . We compare two different situations
in Figure 5.3. Firstly, we want to see the influence of the small weight change for the first
rectum cost-function. That is why we make a DVH for the optimisation with the PTV cost-
function and the first rectum cost-function. Secondly, we want to compare this unexpected
result with a result we did expect. We expected the goal functions to be equal, such as for the
optimisation with the Anus and the PTV cost-functions. This is the second situation we look
at.

(a) Rectum (30) (b) Anus

Figure 5.3: The dose distribution when only using two objectives. For Plan 1 the old weights w are used to get to
an optimal solution, Plan 2 is the plan the new weights ŵ are used to get to an optimal solution.
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Despite only a small difference between the old weights and the new weights for the rec-
tum (30) and PTV cost-function, the dose distribution for the plans containing the rectum
(30) cost-function and the PTV cost-function is visibly different. With the information from
Section 2.2 we take a better look at Figure 5.3. We see a small improvement for the OAR (the
rectum (30)). A smaller part of the rectum gets a higher dose. But there is also a downside to
the new plan: a smaller part of the PTV gets a high dose. There is a larger difference for the
PTV and that difference is negative so Plan 1 (the original plan) seems to be better than Plan
2 (the new plan).

.
For the Anus there is no difference between the two plans. This is exactly what we ex-

pected, because the goal function is the same for the old and new weights. When we look at
the relative error of the weights the error is only 6.5 times larger for the rectum (30). This is
quite a small difference but it influences the solution a lot, looking at Figure 5.3. Again this
indicates that although we can optimise the weights pretty good, there is too much noise to
arrive at the exact treatment plan that we are looking for.

5.3. MULTIPLE OBJECTIVES
In reality there is more than one OAR. We are going to add one OAR at a time. We start with
only one OAR (the first rectum objective function) and the PTV. Then, we add the second
OAR (the second rectum objective function), and so on. The weights we use are the original
weights of the problem and for the PTV we set the weight to one.

.

Table 5.6: The relative error of the weights of inverse multicriteria optimisation for the OAR above, the newly
added OAR and the PTV. With the original weights w as starting weights and the new weights ŵ . The goal function
is φ(ε,γ) = ||ε||22 = ||wT ∇ f (x)||22, with the original weights w and optimal solution x̂, with the new weights ŵ and
the old optimal solution x̂ and with the new weights ŵ and the new optimal solution x?.

Added OAR # OAR rel. error weights ||wT ∇ f (x̂)||22 ||ŵT ∇ f (x̂)||22 ||ŵT ∇ f (x?)||22
Rectum (30) 1 5.431E-6 4.521E-16 2.709E-8 9.284E-10
Rectum (20) 2 4.826E-6 1.277E-15 3.372E-8 1.517E-9
Rectum (10) 3 8.044E-3 6.599E-4 6.567E-4 6.245E-4
Ext. Ring 20 mm 4 2.657E-1 1.838E-2 2.116E-3 1.585E+7
PTV Shell 5 mm 5 7.059E-2 6.080E-4 4.541E-4 5.183E-4
Anus 6 8.098E-2 7.259E-4 5.281E-4 9.198E-4
PTV Shell 15 mm 7 6.762E-2 7.122E-4 5.235E-4 8.851E-4
PTV Shell 25 mm 8 4.962E-2 6.997E-4 5.133E-4 8.708E-4
Bladder 9 4.889E-2 6.997E-4 4.855E-4 8.212E-4
Hip (L) 10 5.850E-2 6.963E-4 4.806E-4 1.141E-3
Hip (R) 11 5.484E-2 6.912E-4 4.798E-4 4.849E-4
Unspecified tissue 12 6.252E-2 6.036E-4 3.589E-4 1.820E-4
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The new weights ŵ and the old weights w can be found in Appendix A.

.

In Table 5.6 we see that for the first two problems ||wT ∇ f (x̂)||22 is less than ||ŵT ∇ f (x̂)||22.
This means that for our problems with one or two objective cost-functions and the PTV the
old weights w give a better outcome. By a better outcome we mean that we are closer to
the goal of our optimisation problem. In Section 4.1 we stated that our goal is to minimise
φ(ε,γ) = ||ε||22 = ||wT ∇ f (x)||22.

.

For the other problems we see something different in Table 5.6. ||wT ∇ f (x̂)||22 is larger
than ||ŵT ∇ f (x̂)||22. This means that for the problems with more than three objective cost-
functions and the PTV the new weights ŵ give a better outcome.

.

For the problems with four, five, six, seven, eight or nine OAR there is something else that
stands out. After finding the new weights ŵ we try to find the new optimal solution x? for
the new weights ŵ . This new solution x? gives a worse result for our goal function than the
optimal solution x̂ for our old weights w . Again, with a better outcome we mean that our goal
function is minimised as well as possible. The problem with four OAR and the PTV gives the
worst result: |||ŵT ∇ f (x?)||22 is much larger than all of the other results.

.

When we take a closer look at the optimisation process we see that the solver has difficul-
ties finding an optimal solution for these problems. After two hundred iterations (which is
the maximum number of iterations we allowed) the optimisation stops and delivers an ’op-
timal’ solution x?. This is the best solution the solver could find in the number of iterations
we allowed, but it does not give a solution that meets our demands.

.

To take a closer look at our unexpected results we look at the DVHs for the problems
in the Figures 5.4 and 5.5. Firstly, it stands out that the DVH for the PTV with all three of
the objective cost-functions for the rectum gives exactly the same plan. This is not what we
expected because our goal function is significantly less well minimised.

.

Secondly, we see a trend. For different OAR a bigger part of the OAR gets a relatively small
dose, but the percentage of OAR that gets a relatively high dose is larger. It seems like we
minimise more on the maximum dose than on the average dose, but this was not our goal.

.

Thirdly, it stands out that when all the OAR are added, in the last situation with twelve
OAR, we see that the dose distribution for the PTV is almost the same in Plan 1 and Plan 2.
However, the dose distribution for the OAR differs.

.

We conclude that using inverse multicriteria optimisation for treatment planning gives a
good result for the dose distribution for the PTV. However, the dose distribution for the OAR
gets worse. This is not what we expected and hoped for as an outcome.
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(a) PTV and one OAR (b) PTV and two OAR

(c) PTV and three OAR (d) PTV and four OAR

(e) PTV and five OAR (f) PTV and six OAR

Figure 5.4: The dose distribution when using the PTV and one or more OAR. Just like in Table 5.6. For Plan 1 the
old weights w are used to get to an optimal solution, Plan 2 is the plan the new weights ŵ are used to get to an
optimal solution. Part 1.
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(a) PTV and seven OAR (b) PTV and eight OAR

(c) PTV and nine OAR (d) PTV and ten OAR

(e) PTV and eleven OAR (f) PTV and twelve OAR

Figure 5.5: The dose distribution when using the PTV and one or more OAR. Just like in Table 5.6. For Plan 1 the
old weights w are used to get to an optimal solution, Plan 2 is the plan the new weights ŵ are used to get to an
optimal solution. Part 2.
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6
LINEAR INVERSE MULTICRITERIA

OPTIMISATION

The results for the non-linear problems behave unexpectedly, and the errors are larger than
what we hoped for. That is why we take a look at a more simple problem, a linear problem.

6.1. WISHLIST
The linear problem we are going to analyse is a wish-list (Table 6.1) for a tumour (clinical
target volume (CTV)) in the head-and-neck area. For this study, we use a simplified wish-list,
where only the minimum and maximum dose to the tumour are constrained.

Table 6.1: Wish-list linear problem

Objectives
Priority Volume Type

3 Parotid (L) 1 (min mean)
3 Parotid (R) 1 (min mean)
4 SMG (L) 1 (min mean)
4 SMG (R) 1 (min mean)
6 SCM 1 (min mean)
6 MCM 1 (min mean)
6 MCI 1 (min mean)
6 MCP 1 (min mean)
7 Larynx 1 (min mean)
8 Oral Cavity 1 (min mean)

Constraints
Volume Type Limit (Gy)

CTV 1 (min) 64.68
CTV 1 (max) 69.96
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Some of the OAR are well known such as the larynx and the oral cavity. The other OAR
need some explanation.

• Parotids are the salivary glands in front of the ears, also known as the large salivary
glands.

• Submandibular glands (SMGs) are the salivary glands located in the bottom of the
mouth, also known as the small salivary glands.

• Four muscles that are used to swallow: musculus constrictor superior (MCS), muscu-
lus constrictor medius (MCM), musculus constrictor inferior (MCI) and the musculus
constrictor cricopharyngeus (MCP).

6.2. OPTIMISATION PROBLEM
Our goal is still the same: we want to find the optimal weights for the problem ([1]). Again
we will look at an convex problem. Therefore, we expect the starting weights to be equal to
the weights we find after optimising the problem. We will use multicriteria optimisation and
inverse multicriteria optimisation, but this time we do not use the Lagrangian. We start with
our linear problem (Problem 6.1). In section 6.3 we will explain how the optimal solution x̂
can be determined.

minx wT C x
subject to Ax ≥ b

x ≥ 0
(6.1)

There are multiple variables in this problem. Firstly, C (m ×n matrix) contains the ob-
jective functions. Secondly, w ∈ Rm this vector contains the weights for all of the objective
functions, similar to the weights wi in Problem 3.2. Thus, m is the number of OAR. Thirdly,
x ∈ Rn our decision variables, similar to the decision variables x in Problem 3.2. This vector
contains all information about the a specific beamlet of the treatment device, for example the
intensity and angle of the beamlet. Thus, n is the number of decision variables. Fourthly A (a
k ×n matrix) is the data matrix. This data matrix contains the data about the tumour, which
is different from the data matrix described in Section 3.3. Finally b ∈ Rk , contains the lower
and upper bound for the dose delivered in the tumour.

.
In short the problem can be divided into three parts. Firstly, wT C x, where C x is a m ×1

vector which contains the mean dose for each OAR. Therefore, when minimising wT C x we
minimise the weighted sum of the mean dose in every OAR. Secondly, Ax ≥ b gives a lower
and upper bound for the dose delivered in the tumour. Thirdly, x ≥ 0 gives that the decision
variables should all be non-negative.

.
To find our optimal weights ŵ for our optimal solution x̂ we need to formulate an inverse

optimisation problem. Firstly, we determine the dual of Problem 6.1: this is Problem 6.2 (with
y the duality vector, corresponding with Ax ≤ b).
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maxy bT y
subject to C T w ≥ AT y

y ≥ 0
(6.2)

We get our inverse optimisation problem (Problem 6.3) when we write Problem 6.2 in the
form of an absolute duality gap minimization problem.

miny,w wT C x̂ −bT y
subject to C T w ≥ AT y

y ≥ 0
w ≥ 0

(6.3)

Now the optimal weights ŵ can be determined, this will be explained in Section 6.3.

6.3. IMPLEMENTATION
For the implementation of the methods described in Section 6.2 we use MATLAB. This time
we did not use the "quadprog" solver. Because of the linearity of the problems in Section 6.2
we used a solver called "linprog". This solver is suited for linear programming. We have to
rewrite our problem such that we can optimise it with this solver.

.
This the kind of problem the solver can optimise:

min
z

f T z such that


V · z ≤ t

V eq · z = teq
lb ≤ z ≤ ub

We start with the implementation of Problem 6.1. The vector of decision variables x will
be the z in the implementation. f is equal to (wT C )T , because this gives the goal function we
want:

min
z

f T z = ((wT C )T )T x = wT C x

In Problem 6.1 we have: Ax ≥ b. Multiplying this with -1 gives: −Ax ≤ −b. This is the
formulation that is asked for by the solver and this results in: V =−A and t =−b. We do not
have an "equal to" constraint, so V eq and teq will be empty vectors. There is no upper bound
for our decision variables x, but there is a lower bound, namely zero. This gives us everything
to get our optimal solution x̂ using the "linprog" solver.

.
For the implementation of Problem 6.3 we also have to make some modifications, such

that our problem is in the format of the solver. Again, we start with defining the decision
variable z:

z =


w
y
ε

γ

 (6.4)
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Secondly we define V eq and teq these will form the equality conditions. We want ε to
equal C x̂ and γ equal to −bT y . This is achieved by using the equations C x̂−ε= 0 and −bT y−
γ = 0. We add one more equality to avoid the trivial solution sum(w) = 0, we set the sum of
w equal to one.

C x̂T 0. . .0 −1 0
0. . .0 bT 0 −1
1. . .1 0. . .0 0 0

 ·


w
y
ε

γ

=V eq · z = teq =


0
...
0
1

 (6.5)

Thirdly, we define V and t these will form the inequality conditions. Problem 6.3 gives
C T w ≥ AT y . To make the inequality fit the solver we subtract AT y on both sides of the in-
equality and we multiplying the inequality with minus one: −C T w + AT y ≤ 0.

[−C T AT 0 0
] ·


w
y
ε

γ

=V · z ≤ t =

0
...
0

 (6.6)
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7
TREATMENT PLANNING AND LINEAR

INVERSE MULTICRITERIA OPTIMISATION

Similar as in Chapter 5 we use inverse multicriteria optimisation to determine the optimal
weights ŵ for the different OAR and PTV cost-functions for an optimal solution x̂. The differ-
ence is that we will look at a completely linear problem. Therefore, we will use the wish-list
given in Table 6.1. All the cost-functions that are used to optimise a treatment plan for this
wish-list are linear functions that compute a mean dose.

7.1. EQUAL WEIGHTS
To test the method described in the previous chapter, we start with equal weights for every
cost-function. We use these weights, our wish-list (Table 6.1) (for this patient the swallowing
muscle MCP is not on the wish-list) and the implementation of our problem (Section 6.3)
to get an optimal solution x̂ for our problem. After that we optimise the weights to get the
optimal weights ŵ for our optimal solution x̂.

.
We analyse there sults by looking at the goal function, wT C x̂−bT y , and the DVH. To gen-

erate a DVH we need a new optimal solution x?. We get that solution by finding the optimal
solution for the problem with the new weights ŵ .

Table 7.1: The goal function of our problem described in Section 7.1. With x̂ the optimal solution for the problem
with the old weights w and x? the optimal solution for the problem with the new weights ŵ .

Goal function Result
wT C x̂ −bT y 2.851E-13
ŵT C x̂ −bT ŷ 0

ŵT C x?−bT ŷ 0

In Table 7.1 it stands out that the goal functions with the new weights ŵ are exactly equal
to zero. Normally this would not happen when we optimise a problem, because zero is too
specific. We get really close but not to zero exactly.
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(a) Plan 1 (b) Plan 2

(c) A comparison of the two plans.

Figure 7.1: The dose distribution for the problem described in Section 7.1. For Plan 1 the old weights w are used
to get to an optimal solution x̂. For Plan 2 the new weights ŵ are used to get to an optimal solution x?.

In Figure 7.1 we see that Plan 1 (the old weights w are used to get to an optimal solution
x̂) differs a lot from Plan 2 (the new weights ŵ are used to get to an optimal solution x?). To
investigate these results and the unexpected results of the goal-functions we take a look at
C x̂, C x?, the old weights w and the new weights w (Table 7.2).
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Table 7.2: C x̂, C x?, the old weights w and the new weights w for the problem described in Section 7.1. With x̂
the optimal solution for the problem with the old weights w and x? the optimal solution for the problem with
the new weights ŵ .

OAR C x̂ C x? w ŵ
Parotid (L) 0.000 0.000 0.111 1
Parotid (R) 1.972 1.381E+1 0.111 0

SMG (L) 2.793 1.682E+1 0.111 0
SMG(R) 2.053E+1 3.335E+1 0.111 0

SCM 2.613E+1 3.967E+1 0.111 0
MCM 4.430E-1 5.641 0.111 0
MCI 0.000 3.857E-2 0.111 0

Larynx 4.122E-1 3.192 0.111 0
Oral Cavity 1.447E+1 1.624E+1 0.111 0

The reason for the differences between the plans comes to light. Some of the values of
C x̂ (and also C x?) are zero. This implies that some OAR are so far removed from the tumour
that they do not receive any dose at all. If we try to find the optimal weights ŵ , the total
weight shifts to one of the cost-functions equal to zero. This gives a good result because our
goal function will be equal to zero. This does not give us the kind of plan we are looking
for, because when we try to find a new optimal solution x? all other cost-functions are not
included in the optimisation because their weights are equal to zero. That is why we conclude
that the OAR for which C x̂ is equal to zero are irrelevant for our optimisation.

7.2. EQUAL WEIGHTS WITHOUT IRRELEVANT OAR
To solve this problem we calculate C x̂. If C x̂ is zero for a certain OAR, we do not take this OAR
into account when we calculate the optimal weights ŵ . After calculating the optimal weights
ŵ we add zeros as the weights for the OAR cost-functions for which C x̂ was equal to zero.
It does not matter what the weights are that we assign to these cost-functions, because they
won’t receive any dose.

.
After the adjustments we optimise the problem for nineteen different patients. For the

nineteen patients we take a look at a part of the data obtained:

• The relative error between the decision variables x̂ and x?.

• The relative error between the weights w and ŵ .

• The goal function wT C x̂ −bT y . For three different combinations: the start weights w
and it’s optimal solution x̂, the new weights w and the optimal solution x̂ and the new
weights w and it’s optimal solution x?.

• The minimum value of C x̂ (the vector which contains the mean dose for each OAR).

The data is shown in Table 7.3.
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Table 7.3: Data obtained of 19 optimisation problems which are as described above. We used equal weights for
the OAR as starting weights.

patient rel. error x rel. error w wT C x̂ −bT y ŵT C x̂ −bT ŷ ŵT C x?−bT ŷ min(C x̂)

1 3.585E-1 9.856E-3 2.119 7.105E-14 -5.684E-14 0.000
2 9.161E+1 2.000E-2 -1.266E-9 -1.436E-9 -2.132E-12 1.973E-22
3 1.735E+1 1.011E-4 -1.926E-12 1.375E-12 -2.629E-13 1.299E-2
4 9.687E-2 3.333E-2 1.481 8.260E-14 9.948E-14 0.000
5 1.143E+2 2.222E-2 1.425 -3.759E-12 -2.835E-12 0.000
6 2.591E+1 7.929E-4 2.533 -2.270E-12 -3.369E-10 0.000
7 8.252E+1 8.497E-4 1.900 9.557E-13 -7.674E-13 0.000
8 1.348 1.009E-1 1.167 5.240E-14 1.776E-14 0.000
9 9.595E+1 2.379E-4 3.553E-13 1.279E-13 -5.255E-10 6.577E-1

10 4.260E+1 3.217E-4 2.445 -5.455E-7 -5.590E-7 0.000
11 2.501E+1 1.688E-3 1.220 -5.915E-13 -9.432E-13 0.000
12 4.556 1.068E-3 2.650 -3.880E-9 -1.341E-8 0.000
13 1.516E+2 2.255E-4 -2.963E-9 -2.978E-9 7.937E-12 1.897
14 1.234E-1 8.439E-4 2.602 -1.456E-9 -3.700E-10 0.000
15 5.956E-1 1.272E-3 1.338 -1.300E-12 -6.839E-13 0.000
16 5.156E-1 7.844E-3 1.351 1.318E-12 7.141E-13 0.000
17 1.787 2.803E-3 1.075E-13 -3.610E-12 -1.118E-10 2.113E-2
18 4.852E+1 2.778E-2 1.247 -2.416E-13 -5.347E-13 0.000
19 2.356E+1 1.152E-2 1.675 7.105E-14 -7.816E-14 0.000

For most of the problems our goal functions are minimised and although some values of
C x̂ are very low the optimisation seems to have succeeded for almost all of our problems.
There are a few problems for which the data stands out:

• Problem 2 has a really small value in the vector C x. Maybe this will result in what we
saw before: the total weight shifts to this OAR.

• For problem 8 we get a larger relative error for w than for the other problems.

• For problem 13 we get a larger relative error for x than for the other problems.

We take a closer look at the DVHs of the problems mentioned above. We compare these DVHs
with the DVH of a problem for which the data looks like it will give a similar DVH for x̂ and x?.
This means that we see nothing outstanding in the data for this problem. We choose problem
1. These DVHs are shown in Figure 7.2.

.
When we take a look at Figures 7.2 we see that Plan 1 and Plan 2 are exactly the same. It is

difficult to see, but the dotted line (Plan 2) and the continuous line (Plan 1) are on top of each
other.
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(a) Patient 1 (b) Patient 2

(c) Patient 8 (d) Patient 13

Figure 7.2: The dose distribution for different patients from Table 7.3. For Plan 1 the old weights w are used to get
to an optimal solution x̂. For Plan 2 the new weights ŵ are used to get to an optimal solution x?.

From the DVHs we conclude that although sometimes the new weights solution differ a
lot from the old weights (the relative error is not always small), the combination of the old
weights with its optimal solution gives the same dose distribution as the new weights with
its optimal solution. This can be explained because the new optimal solution x? and the old
optimal solution x̂ also differ a lot sometimes.

.
We remember that every x contains the information about a specific beamlet of the Cy-

berknife, such as the intensity and angle of the beamlet. For example, if the change in angle
or intensity of one beamlet results in 10 Gy less dose in 50 percent of the OAR and the change
in another beamlet results in 10 Gy more dose in 50 precent of the OAR there is not an dif-
ference in the dose distribution. The same percentage of an OAR receives the same amount
of dose. The only difference is the beamlet that irradiates the dose. This does not make a
difference for the quality of our generated treatment plan.

.
It also stands out that the small value in the vector C x̂ of problem 2 did not cause any

differences between Plan 1 and Plan 2 .
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We conclude that for all of our problems inverse multicriteria optimisation was success-
ful. We learned that only if our goal-function is zero, something went wrong. Thus, that can
be a test to see if the optimisation succeeded. This will take less time then generating all of
the DVHs.

7.3. ORIGINAL WEIGHTS
To test if it also works for more realistic weights we change our starting weights. We start with
our original weights. The reason this could fail is that those weights can be really small or
large. This could lead to the same kind of situations as the small value of C x̂ for an OAR.

.
From Section 7.1 we learned that we only have to check the results of our goal-functions.

In Table 7.4 we see that none of the goal-functions is equal to zero. So there is no problem
where one OAR got the total weight. To test this we look at the DVHs for all of the patients
in Figures 7.3, 7.4 and 7.5. We see that Plan 1, for which the old weights w are used to get to
an optimal solution, and Plan 2, for which the new weights ŵ are used to get to an optimal
solution, are exactly the same.

.
We conclude that our conclusion at the end of Section 7.2 is still correct. For all of our

linear problems inverse multicriteria optimisation was successful. Only if our goal-function
is zero something went wrong. Thus, that can be a test to see if the optimisation succeeded.
This will take less time then generating all of the DVHs.
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Table 7.4: Obtained data of 19 optimisation problems which are as described above. We used the original weights
of the OAR as start weights.

patient wT C x̂ −bT y ŵT C x̂ −bT ŷ ŵT C x?−bT ŷ
1 1.793 1.955E-12 3.997E-15
2 1.369E+1 -7.251E-11 -1.343E-9
3 3.635 -6.138E-7 -6.378E-7
4 1.054 1.660E-14 -2.637E-15
5 7.970 -2.593E-13 -2.949E-13
6 9.526 -7.217E-8 -8.552E-8
7 4.855 -5.457E-7 -7.257E-7
8 2.392 9.059E-14 4.574E-14
9 5.436 -3.582E-11 -1.995E-9

10 1.093E+1 -1.172E-12 -2.736E-12
11 3.799 2.327E-13 1.092E-13
12 1.178E+1 -1.830E-13 -2.238E-13
13 1.327E+1 -7.645E-12 1.402E-11
14 2.653 6.573E-14 -1.861E-10
15 3.704 1.242E-12 -3.961E-13
16 3.373 1.759E-13 -4.068E-13
17 3.874 2.345E-13 -1.972E-13
18 9.109E-1 -1.927E-13 -5.596E-14
19 3.622 1.399E-14 -9.104E-14
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

(e) Patient 5 (f) Patient 6

(g) Patient 7 (h) Patient 8

Figure 7.3: The dose distribution for different patients from Table 7.4. For Plan 1 the old weights w are used to get
to an optimal solution x̂. For Plan 2 the new weights ŵ are used to get to an optimal solution x?. Part 1.
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(a) Patient 9 (b) Patient 10

(c) Patient 11 (d) Patient 12

(e) Patient 13 (f) Patient 14

(g) Patient 15 (h) Patient 16

Figure 7.4: The dose distribution for different patients from Table 7.4. For Plan 1 the old weights w are used to get
to an optimal solution x̂. For Plan 2 the new weights ŵ are used to get to an optimal solution x?. Part 2.
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(a) Patient 17 (b) Patient 18

(c) Patient 19

Figure 7.5: The dose distribution for different patients from Table 7.4. For Plan 1 the old weights w are used to get
to an optimal solution x̂. For Plan 2 the new weights ŵ are used to get to an optimal solution x?. Part 3.
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CONCLUSION

The goal of this thesis was to identify the most relevant cost-functions for radiotherapy treat-
ment planning with multicriteria optimisation.

.
Before we were able to identify the most relevant cost-functions, we had to find a method

which could give us the most relevant cost-functions. We did this by assigning weights to the
cost-functions. Before we could add new possible cost-functions we had to make it work for
the cost-functions we already had with weights we already knew.

.
Unfortunately we could not get those weights back for non linear treatment plans, be-

cause there is too much noise to arrive at the exact treatment plan that we are looking for.
This caused the new treatment plans to be worse than the old treatment plans, instead of the
same or better.

.
For linear treatment plans we did get good results. We were able to obtain the same dose

distribution as which we started with. To get this result we had to determine the dual of the
optimisation problem and write in the form of an absolute duality gap minimization prob-
lem.
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DISCUSSION & RECOMMENDATIONS

Firstly, we want to point out that the data that we used in Chapter 5 was of only one patient.
We did look at the results for different patients, but that led to the same kind of results. That
is why those results are not included in the report.

.
Secondly, the optimisation seems to work for almost all of the linear problems (Chapter

7). It went wrong if one OAR got the total weight. It could be a solution to remove this OAR
from the problem when calculating the optimal weights ŵ . After optimising the weights, add
the OAR again and give it weight zero. This is the same approach as we used for the case that
C x̂ had a value equal to zero.

.
Thirdly, the optimization works for the linear problems. Non-linear problems still can

not be optimised, because for a non-linear problem there is too much noise to arrive at the
exact treatment plan that we are looking for (Chapter 5). In practice not all of the automated
treatment plans are linear. That is why for now we can not use this. I recommend to do more
research to hopefully expand the possibilities to non-linear plans as well.

.
Fourthly, the end goal is to find the cost-functions for each OAR and the PTV that give

the best plan. The best plan is a plan with for the OAR the goal to have a low dose in most
of its total volume. For a PTV the best plan is a plan with a high dose in a big percentage of
its total volume. When there is a method that finds the weights of non-linear functions, this
method can be used to find the best cost-functions, by determining the weights of different
cost-functions working on the same OAR or PTV.
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A
WEIGHTS PTV AND ONE OR MORE OAR

Table A.1: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
one OAR.

w ŵ
PTV 1.000 9.999E-1

Rectum (30) 2.634E-12 1.205E-4

Table A.2: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
two OAR.

w ŵ
PTV 1.000 9.999E-1

Rectum (30) 2.634E-12 5.385E-6
Rectum (20) 3.349E-12 1.258E-4

Table A.3: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
three OAR.

w ŵ
PTV 6.712E-01 6.722E-01

Rectum (30) 1.768E-12 1.505E-2
Rectum (20) 2.248E-12 8.589E-11
Rectum (10) 3.288E-1 3.127E-1
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Table A.4: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
four OAR.

w ŵ
PTV 6.648E-01 4.720E-04

Rectum (30) 1.751E-12 1.283E-10
Rectum (20) 2.227E-12 1.363E-12
Rectum (10) 3.257E-1 6.684E-1

External Ring 20 mm 9.482E-3 3.312E-1

Table A.5: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
five OAR.

w ŵ
PTV 6.541E-1 5.823E-1

Rectum (30) 1.723E-12 1.479E-3
Rectum (20) 2.191E-12 7.642E-3
Rectum (10) 3.205E-1 1.805E-1

External Ring 20 mm 9.329E-3 1.688E-1
PTV Shell 5 mm 1.607E-2 5.921E-2

Table A.6: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and six
OAR.

w ŵ
PTV 5.883E-1 4.908E-1

Rectum (30) 1.549E-12 6.688E-16
Rectum (20) 1.970E-12 1.309E-2
Rectum (10) 2.882E-1 1.432E-1

External Ring 20 mm 8.391E-3 2.337E-1
PTV Shell 5 mm 1.445E-2 5.951E-2

Anus 1.006E-1 5.973E-2

Table A.7: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
seven OAR.

w ŵ
PTV 5.834E-01 4.916E-01

Rectum (30) 1.536E-12 3.640E-19
Rectum (20) 1.954E-12 1.682E-2
Rectum (10) 2.858E-1 1.447E-1

External Ring 20 mm 8.321E-03 2.255E-1
PTV Shell 5 mm 1.433E-2 5.082E-2

Anus 9.977E-2 6.490E-2
PTV Shell 15 mm 8.361E-3 5.730E-3
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Table A.8: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
eight OAR.

w ŵ
PTV 5.791E-1 5.238E-1

Rectum (30) 1.525E-12 1.808E-16
Rectum (20) 1.939E-12 1.898E-2
Rectum (10) 2.837E-1 1.598E-1

External Ring 20 mm 8.258E-03 1.779E-1
PTV Shell 5 mm 1.423E-2 4.893E-2

Anus 9.902E-2 7.062E-2
PTV Shell 15 mm 8.299E-3 6.845E-16
PTV Shell 25 mm 7.468E-3 9.807E-6

Table A.9: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
nine OAR.

w ŵ
PTV 5.791E-1 5.223E-1

Rectum (30) 1.525E-12 4.877E-12
Rectum (20) 1.939E-12 4.207E-2
Rectum (10) 2.837E-1 1.261E-1

External Ring 20 mm 8.258E-3 1.741E-1
PTV Shell 5 mm 1.423E-2 2.958E-2

Anus 9.902E-2 7.159E-2
PTV Shell 15 mm 8.299E-3 5.692E-3
PTV Shell 25 mm 7.468E-3 8.446E-3

Bladder 3.290E-12 2.016E-2

Table A.10: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
ten OAR.

w ŵ
PTV 5.775E-1 4.731E-1

Rectum (30) 1.521E-12 1.050E-13
Rectum (20) 1.934E-12 3.562E-2
Rectum (10) 2.829E-1 1.132E-1

External Ring 20 mm 8.236E-3 1.957E-1
PTV Shell 5 mm 1.419E-2 2.760E-2

Anus 9.875E-2 6.685E-2
PTV Shell 15 mm 8.276E-3 1.859E-13
PTV Shell 25 mm 7.448E-3 4.209E-13

Bladder 3.282E-12 1.778E-2
Hip (L) 2.703E-3 7.018E-2
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Table A.11: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
eleven OAR.

w ŵ
PTV 5.749E-1 4.629E-1

Rectum (30) 1.514E-12 3.196E-12
Rectum (20) 1.926E-12 3.514E-2
Rectum (10) 2.817E-1 1.110E-1

External Ring 20 mm 8.200E-3 1.631E-1
PTV Shell 5 mm 1.412E-2 2.726E-2

Anus 9.832E-2 6.768E-2
PTV Shell 15 mm 8.240E-3 1.105E-12
PTV Shell 25 mm 7.415E-3 6.645E-13

Bladder 3.267E-12 1.609E-2
Hip (L) 2.691E-3 6.357E-2
Hip (R) 4.417E-3 5.331E-2

Table A.12: The old weights w and the new weigths ŵ (after inverse multicriteria optimisation) for the PTV and
twelve OAR.

w ŵ
PTV 5.000E-1 3.758E-1

Rectum (30) 1.317E-12 1.678E-19
Rectum (20) 1.675E-12 3.531E-2
Rectum (10) 2.449E-1 4.113E-2

External Ring 20 mm 7.131E-3 1.059E-2
PTV Shell 5 mm 1.228E-2 1.217E-19

Anus 8.550E-02 3.303E-2
PTV Shell 15 mm 7.166E-3 2.436E-19
PTV Shell 25 mm 6.449E-3 2.360E-19

Bladder 2.841E-12 1.254E-19
Hip (L) 2.340E-3 1.581E-2
Hip (R) 3.842E-3 7.963E-3
Patient 1.303E-1 4.804E-1
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B.1. NON-LINEAR PROBLEM

1 function [ problem , data , solution ] = make_EUD( problem , data )
2 %Changes the l i n e a r type cost−functions which compute maximum or minimum

into a type 3 (gEUD) with parameter alpha equal to 30.
3

4 %Change a l l of the l i n e a r type cost−functions which compute maximum or
minimum into a type 3 (gEUD) with parameter alpha equal to 30.

5 for k =1: length ( problem )
6 i f problem ( k ) . Type == 1 && s i z e ( data . matrix ( problem ( k ) . dataID ) . A, 1 )

~= 1 && ~strcmp ( problem ( k ) .Name, ’ Smoothing Linear ’ )
7 problem ( k ) . Type = 3 ;
8 problem ( k ) . Parameters = 30;
9 end

10 end
11

12 %Finds the new optimal solution
13 solution = primaldual ( data . misc . size , data , problem , [ ] ) ;
14 end

61
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1 function active_OAR_and_PTV ( i _array )
2 %Converts the PTV to an objective function . Lets only the PTV and one

OAR be active , with both weight 0.5
3

4 %Load a problem (problem_EUD) , i t s data matrix ( data ) and optimal
solution ( x )

5 load /home/erasmusmc . nl /044469/ yartos / data /Report/Prostate_VMAT_101_EUD
6

7 %Let a l l of the constraints and object ives be not act ive
8 for k =1: length (problem_EUD)
9 problem_EUD( k ) . Active = 0 ;

10 end
11

12 %Convert the PTV to an objective cost−function with weight 0.5 and l e t
i t be act ive

13 problem_EUD( 3 ) . IsConstraint = 0 ;
14 problem_EUD( 3 ) . Active = 1 ;
15 problem_EUD( 3 ) . Weight = 0 . 5 ;
16

17 %Let one OAR be act ive with weight 0.5
18 problem_EUD( i_array ) . Weight = 0 . 5 ;
19 problem_EUD( i_array ) . Active = 1 ;
20

21 %Define a new name for t h i s problem
22 problem_EUD_new = problem_EUD ;
23

24 %Save the new problem (problem_EUD_new) , the data matrix ( data ) and the
optimal solution ( x )

25 s = [ ’ /home/erasmusmc . nl /044469/ yartos / data /Report /2/ ’ num2str ( i_array )
’ /b/Prostate_VMAT_101_EUD_new ’ ] ;

26 save ( s , ’problem_EUD_new ’ , ’ x ’ , ’ data ’ ) ;
27 end
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1 function multiple_active_OAR_and_PTV ( i_array )
2 %Converts the PTV to an objective function . Lets only the PTV and

i_array −10 OAR be active , with weight 0.5
3

4 %Load a problem (problem_EUD) , i t s data matrix ( data ) and optimal
solution ( x )

5 load /home/erasmusmc . nl /044469/ yartos / data /Report/Prostate_VMAT_101_EUD
6

7 %Let a l l of the constraints and object ives be not act ive
8 for k =1: length (problem_EUD)
9 problem_EUD( k ) . Active = 0 ;

10 end
11

12 %Convert the PTV to an objective cost−function with weight 0.5 and l e t
i t be act ive

13 problem_EUD( 3 ) . IsConstraint = 0 ;
14 problem_EUD( 3 ) . Active = 1 ;
15 problem_EUD( 3 ) . Weight = 0 . 5 ;
16

17 %Let i_array − 10 OAR be act ive with weight 0.5
18 for i = 10: i_array
19 problem_EUD( i ) . Weight = 0 . 5 ;
20 problem_EUD( i ) . Active = 1 ;
21 end
22

23 %Define a new name for t h i s problem
24 problem_EUD_new = problem_EUD ;
25

26 %Save the new problem (problem_EUD_new) , the data matrix ( data ) and the
optimal solution ( x )

27 s = [ ’ /home/erasmusmc . nl /044469/ yartos / data /Report/ All_add / ’ num2str (
i_array ) ’ /b/Prostate_VMAT_101_EUD_new ’ ] ;

28 save ( s , ’problem_EUD_new ’ , ’ x ’ , ’ data ’ ) ;
29 end
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1 function main_non_linear ( i_array )
2 %Finds the optimal weights and corresponding optimal solution of a

problem . Also ca l cu l a t e s some extra information such as : the
r e l a t i v e error of the weights , the r e l a t i v e error of the optimal
solution and the goal function | | w^T* f ( x ) | | ^ 2 _2 in d i f f e r e n t
s i t u a t i o n s .

3

4 %Load a problem (problem_EUD_new) , i t s data matrix ( data ) and optimal
solution ( x )

5 l = [ ’ /home/erasmusmc . nl /044469/ yartos / data /Report /2/ ’ num2str ( i _array )
’ /a/Prostate_VMAT_101_EUD_new ’ ] ;

6 load ( l )
7

8 %Makes sure that the sum of the act ive object ives i s equal to 1
9 problem_sum_weights = sum_weights (problem_EUD_new) ;

10

11 %Finds the new solution for the adjusted problem
12 options .OCond = 1e−8;
13 options . UseMatterhorn = 0 ;
14 x_new = primaldual ( data . misc . size , data , problem_sum_weights , options ) ;
15

16 %Finds new weights ( inverse optimization )
17 [ problem_new , weights_new , weights_old , sol , M] = find_weights (

problem_sum_weights , data , x_new , 1) ;
18

19 %Calculates the r e l a t i v e error between the old and new weigths
20 rel_error_w = sum( abs ( weights_new−weights_old ) ) / s i z e ( weights_new , 1 ) ;
21

22 %Finds the new solution for the new weights
23 x_new_weights = primaldual ( data . misc . size , data , problem_new , options ) ;
24

25 %Gives the new gradient matrix M with the new x
26 [M_new, ~] = find_M ( problem_new , data , x_new_weights ) ;
27

28 %Calculates the r e l a t i v e error between x and x_new_weights
29 r e l _ e r r o r _ x = sum( abs (x_new−x_new_weights ) ) / s i z e (x_new , 1 ) ;
30

31 %Calculates | | epsilon | |
32 M_old_W_old = norm(M* weights_old , 2 ) ;
33 M_old_W_new = norm(M* weights_new , 2 ) ;
34 M_new_W_new = norm(M_new* weights_new , 2 ) ;
35

36 %Saves the information found
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37 s =[ ’ /home/erasmusmc . nl /044469/ yartos / data /Report /2/ ’ num2str ( i_array ) ’ /
a/ r e s u l t . mat ’ ] ;

38 save ( s , ’ problem_sum_weights ’ , ’x_new ’ , ’problem_new ’ , ’ weights_new ’ , ’
weights_old ’ , ’ sol ’ , ’M’ , ’M_new ’ , ’M_old_W_new ’ , ’ rel_error_w ’ , ’
x_new_weights ’ , ’ r e l _ e r r o r _ x ’ , ’ data ’ , ’M_old_W_old ’ , ’M_new_W_new ’ )

39 end

1 function [ problem ] = sum_weights ( problem )
2 %This function equals the sum of the weights of the act ive object ives to

one
3

4 %The array where the weights of the act ive object ives w i l l be placed in
5 weights = [ ] ;
6

7 %Finds the weights of the act ive object ives
8 for k =1: length ( problem )
9 i f problem ( k ) . Active == 1

10 weights = [ weights , problem ( k ) . Weight ] ;
11 end
12 end
13

14 %Equals the sum of the weights of the act ive object ives to one
15 weights = weights /sum( weights ) ;
16

17 %Fives the problem the new weights
18 for k =1: length ( problem )
19 i f problem ( k ) . Active == 1
20 problem ( k ) . Weight = weights ( 1 ) ;
21 weights = weights ( 2 : end) ;
22 end
23 end
24

25 end
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1 function [ problem , weigths_obj , weights_old , sol ,M ] = find_weights (
problem , data , solution ,sum_w)

2 %Optimizes the lagrangian : L ( x , y ) = w^T* f ( x ) + y^T* ( g ( x )−b) with f the
object ives of a problem and g the constraints of the problem . The w’
s are the weights assigned to each of the object ives . The function
returns the problem with the new weights and the new weights .

3

4 for j =1: length ( data . matrix )
5 data . matrix ( j ) . numvox = s i z e ( data . matrix ( j ) . A , 1) ;
6 data . matrix ( j ) . A = singl e ( f u l l ( data . matrix ( j ) . A) ) ;
7 end
8

9 %The matrix where a l the gradients of the object ives and constraints
w i l l be saved

10 M = [ ] ;
11

12 %Counts the amount of gradients
13 grad_count = [ ] ;
14

15 %Gets the gradients of a l l object ives and saves them in M.
16 for k =1: length ( problem )
17 i f problem ( k ) . IsConstraint == 0 && problem ( k ) . Active == 1
18 i f problem ( k ) . Type == 1
19 [~ , grad ] = obj_l inear ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
20 e l s e i f problem ( k ) . Type == 2
21 [~ , grad ] = obj_quadratic ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
22 e l s e i f problem ( k ) . Type == 3
23 [~ , grad ] = obj_eud ( solution , data . matrix ( problem ( k ) . dataID )

, problem ( k ) ) ;
24 e l s e i f problem ( k ) . Type == 4
25 [~ , grad ] = obj_ltcp ( solution , data . matrix ( problem ( k ) . dataID

) , problem ( k ) ) ;
26 end
27 M = [M, f u l l ( grad ) ] ;
28 grad_count= [ grad_count ; s i z e ( grad , 2 ) ] ;
29 end
30 end
31

32 %Amount of object ives
33 amt_w = length ( grad_count ) ;
34
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35 %Length of a vector of gradients
36 amt_val = s i z e (M, 1 ) ;
37

38 %The matrix where a l l the values g ( x ) w i l l be saved
39 g_val = [ ] ;
40

41 %Gets the gradients of a l l constraints and saves them in M.
42 for k =1: length ( problem )
43 i f problem ( k ) . IsConstraint == 1 && problem ( k ) . Active == 1
44 i f problem ( k ) . Type == 1
45 [ val , grad ] = obj_l inear ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
46 e l s e i f problem ( k ) . Type == 2
47 [ val , grad ] = obj_quadratic ( solution , data . matrix ( problem ( k )

. dataID ) , problem ( k ) ) ;
48 e l s e i f problem ( k ) . Type == 3
49 [ val , grad ] = obj_eud ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
50 e l s e i f problem ( k ) . Type == 4
51 [ val , grad ] = obj_ltcp ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
52 end
53 M = [M, f u l l ( grad ) ] ;
54 grad_count= [ grad_count ; s i z e ( grad , 2 ) ] ;
55 g_val = [ g_val , val ’−problem ( k ) . Objective ] ;
56 end
57 end
58

59

60 %amount of constraints
61 amt_l = length ( g_val ) ;
62

63 %t o t a l amount of gradients ( object ives and constraints )
64 amt_grad = s i z e (M, 2 ) ;
65

66 %Ensures y^T* ( g ( x )−b) i s small ( as close to zero as possible )
67 Aeq2 = [ sparse ( zeros ( amt_l , amt_w) ) , sparse ( double ( diag ( g_val ) ) ) , sparse (

zeros ( amt_l , amt_val ) ) ,−speye ( amt_l ) ] ;
68

69 %Ensures w^T* grad ( f ( x ) ) + y^T* grad ( g ( x ) ) i s small ( as close to zero as
possible )

70 Aeq1= [ sparse ( double (M) ) ,−speye ( amt_val ) , sparse ( zeros ( amt_val , amt_l ) ) ] ;
71 sz_Aeq = s i z e ( Aeq1 , 2 ) ;
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72

73 %Ensures that the sum of the weights of the object ives i s equal to one
74 Aeq3 = [ ones ( 1 ,amt_w) zeros ( 1 , sz_Aeq − amt_w) ] ;
75

76

77 %Constructs the matrix that takes our wishes into acount ( see the above )
78 Aeq=[Aeq1 ; Aeq2 ; Aeq3 ] ;
79

80 %Constructs the matrix with the most perfect outcomes for our wishes
81 Beq=sparse ( zeros ( s i z e (Aeq , 1 ) −1 ,1) ) ;
82 Beq=[Beq ;sum_w ] ;
83

84 %The matrix indicates what we want to minimalise
85 H = sparse ( amt_grad +1: sz_Aeq , amt_grad +1: sz_Aeq , ones ( 1 , amt_val+amt_l ) ,

sz_Aeq , sz_Aeq ) ;
86

87 %The leftbound of our solution (we want a l l the decision variables to be
l a r g e r than zero )

88 LB = sparse ( zeros ( sz_Aeq , 1 ) ) ;
89

90 f =sparse ( zeros ( 1 , sz_Aeq ) ) ;
91

92 %Gives the optimal weights for our problem
93 opts=optimoptions ( ’ quadprog ’ , ’ Algorithm ’ , ’ i n t e r i o r−point−convex ’ , ’

Display ’ , ’ i t e r ’ , ’ OptimalityTolerance ’ , 1e−18) ;
94 [ sol , ~ , ~ , ~ , ~]=quadprog (H, f , [ ] , [ ] , Aeq , Beq , LB , [ ] , [ ] , opts ) ;
95

96 %The new weights for the object ives
97 weigths_obj = sol ( 1 : amt_w) ;
98

99 %Saves the old weights
100 weights_old = [ ] ;
101

102 %Assigns the new weights to the problem
103 count = 1 ;
104 for k =1: length ( problem )
105 i f problem ( k ) . IsConstraint == 0 && problem ( k ) . Active == 1
106 weights_old ( count , 1 ) = problem ( k ) . Weight ;
107 problem ( k ) . Weight = weigths_obj ( count ) ;
108 count = count + 1 ;
109 end
110 end
111 end
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1 function [M, weights ] = find_M ( problem , data , solution )
2 %Finds the weights and the matrix M ( the matrix with a l l of the

gradients of the object ives and constraints )
3

4 for j =1: length ( data . matrix )
5 data . matrix ( j ) . numvox = s i z e ( data . matrix ( j ) . A , 1) ;
6 data . matrix ( j ) . A = singl e ( f u l l ( data . matrix ( j ) . A) ) ;
7 end
8

9 %The matrix where a l the gradients of the object ives and constraints
w i l l be saved

10 M = [ ] ;
11 weights= [ ] ;
12 %Counts the amount of gradients
13 grad_count = [ ] ;
14

15 %Gets the gradients of a l l object ives and saves them in M.
16 for k =1: length ( problem )
17 i f problem ( k ) . IsConstraint == 0 && problem ( k ) . Active == 1
18 i f problem ( k ) . Type == 1
19 [~ , grad ] = obj_l inear ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
20 e l s e i f problem ( k ) . Type == 2
21 [~ , grad ] = obj_quadratic ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
22 e l s e i f problem ( k ) . Type == 3
23 [~ , grad ] = obj_eud ( solution , data . matrix ( problem ( k ) . dataID )

, problem ( k ) ) ;
24 e l s e i f problem ( k ) . Type == 4
25 [~ , grad ] = obj_ltcp ( solution , data . matrix ( problem ( k ) . dataID

) , problem ( k ) ) ;
26 end
27 M = [M, f u l l ( grad ) ] ;
28 grad_count= [ grad_count ; s i z e ( grad , 2 ) ] ;
29 weights = [ weights ; problem ( k ) . Weight ] ;
30 end
31 end
32

33 %Amount of object ives
34 amt_w = length ( grad_count ) ;
35

36 %Length of a vector of gradients
37 amt_val = s i z e (M, 1 ) ;
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38

39 %The matrix where a l l the values g ( x ) w i l l be saved
40 g_val = [ ] ;
41

42 %Gets the gradients of a l l constraints and saves them in M.
43 for k =1: length ( problem )
44 i f problem ( k ) . IsConstraint == 1 && problem ( k ) . Active == 1
45 i f problem ( k ) . Type == 1
46 [ val , grad ] = obj_l inear ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
47 e l s e i f problem ( k ) . Type == 2
48 [ val , grad ] = obj_quadratic ( solution , data . matrix ( problem ( k )

. dataID ) , problem ( k ) ) ;
49 e l s e i f problem ( k ) . Type == 3
50 [ val , grad ] = obj_eud ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
51 e l s e i f problem ( k ) . Type == 4
52 [ val , grad ] = obj_ltcp ( solution , data . matrix ( problem ( k ) .

dataID ) , problem ( k ) ) ;
53 end
54 M = [M, f u l l ( grad ) ] ;
55 grad_count= [ grad_count ; s i z e ( grad , 2 ) ] ;
56 g_val = [ g_val , val ’−problem ( k ) . Objective ] ;
57 weights = problem ( k ) . Weight ;
58 end
59 end
60 end
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1 function main_linear ( i_array )
2 %Finds the optimal weights ( alpha ) and corresponding optimal solution ( x

) of a problem .
3

4 l = [ ’ /home/erasmusmc . nl /044469/ yartos / data /Report/Proton/Data/ Protons_
’ num2str ( i_array ) ’ . mat ’ ] ;

5 load ( l )
6

7 %Find the optimal solution for the problem , part one .
8 [ CMatrix , b , A , Objectives , alpha ] = linear_problem_one ( problem , data ) ;
9

10 % Define alpha equal to 1 for every objective . Or do not define alpha
here , then the vector alpha contains the o r i g i n a l weights .

11 alpha = [ ones ( 1 , s i z e ( CMatrix , 1 ) ) ] ’ ;
12 alpha=alpha/sum( alpha ) ;
13

14 %Find the optimal solution for the problem , part two .
15 [ CMatrix , x , b , alpha , A , Objectives , p] = linear_problem_two ( alpha ,

CMatrix , b , A , Objectives ) ;
16

17 %Create a new problem that i s the old problem without the constraints
for which Cx ( CMatrix * x ) i s equal to zero . Leave out to see what
happens i f we keep these constraints .

18 t e s t = CMatrix * x ;
19 CMatrix_nz = [ ] ;
20 Objectives_nz = [ ] ;
21 for i =1: s i z e ( CMatrix , 1 )
22 i f t e s t ( i ) ~= 0
23 CMatrix_nz = [ CMatrix_nz ; CMatrix ( i , : ) ] ;
24 Objectives_nz = [ Objectives_nz , Objectives ( i ) ] ;
25 end
26 end
27

28 %find the optimal weights alpha
29 [ alpha_new , p_new ] = find_alpha ( CMatrix_nz , x , b , A) ;
30

31 %Copy the problem to a new problem
32 problem_new = problem ;
33

34 %Assign the new weights to the corresponding object ives of the problem
35 for i = 1 : length ( Objectives_nz )
36 problem_new ( Objectives_nz ( i ) ) . Weight = alpha_new ( i ) ;
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37 end
38

39 %I f Cx ( CMatrix * x ) i s equal to zero for a constraint the weight of the
constraint i s zero

40 for i =1: s i z e ( CMatrix , 1 )
41 i f t e s t ( i ) == 0
42 alpha ( i ) = 0 ;
43 alpha_new = [ alpha_new ( 1 : i −1) ; 0 ; alpha_new ( i : end) ] ;
44 end
45 end
46

47 %This function equals the sum of the weights of the object ives to one
48 alpha=alpha/sum( alpha ) ;
49

50 %Find the new optimal solution
51 [ ~ , x_new , ~ , ~ ,~ ,~] = linear_problem ( problem_new , data , alpha_new ) ;
52

53 %Let a l l of the constraints and object ives be not act ive
54 for i =1: length ( problem_new )
55 problem_new ( i ) . Active =0;
56 end
57

58 %Let a l l of the constraints of our o r i g i n a l problem be act ive
59 for i = 1 : length ( Objectives )
60 problem_new ( Objectives ( i ) ) . Active = 1 ;
61 end
62

63 %Calculate r e l a t i v e errors
64 r e l _ e r r o r _ x = sum( abs ( x−x_new) ) / s i z e (x_new , 1 ) ;
65 rel_error_alpha = sum( abs ( alpha−alpha_new ) ) / s i z e ( alpha , 1 ) ;
66

67 %Calculate our goal−function
68 opt_x_alpha = alpha . ’ * CMatrix * x − b . ’ * p ;
69 opt_x_alpha_new = alpha_new . ’ * CMatrix * x − b . ’ * p_new ;
70 opt_x_new_alpha_new = alpha_new . ’ * CMatrix *x_new − b . ’ * p_new ;
71

72 %Saves the information found
73 s =[ ’ /home/erasmusmc . nl /044469/ yartos / data /Report/Proton/ Results / Protons_

’ num2str ( i_array ) ’ _ r e s u l t . mat ’ ] ;
74 save ( s , ’ problem ’ , ’ data ’ , ’ CMatrix ’ , ’p ’ , ’ opt_x_alpha ’ , ’ opt_x_alpha_new ’

, ’ opt_x_new_alpha_new ’ , ’ x ’ , ’b ’ , ’ alpha ’ , ’A ’ , ’p_new ’ , ’ alpha_new ’ ,
’problem_new ’ , ’x_new ’ , ’ CMatrix_nz ’ , ’ Objectives ’ , ’ Objectives_nz ’ ,
’ r e l _ e r r o r _ x ’ , ’ rel_error_alpha ’ )
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75 end

1 function [ CMatrix , x , b , alpha , A , Objectives ] = linear_problem ( problem ,
data , alpha )

2 % Constructs a l i n e a r radiotherapy problem with i t s weights ( alpha ) and
3 % finds i t s optimal solution ( x )
4

5 % New optimization problem
6

7 % Constrain dose to CTV High between 64.68 and 69.96
8 CTVHighMatrix = data . matrix ( 1 ) . A ;
9

10 % Objectives : minimise mean Parotids , SMGs SCM, MCM, MCI, MCP
11 % Since these plans are optimised robustly , only take the 1 s t row
12 Objectives = [ ] ;
13 CMatrix = [ ] ;
14 for j =1: length ( problem )
15 i f problem ( j ) . Active && ~problem ( j ) . IsConstraint
16 i f strmatch ( problem ( j ) .Name, { ’ Parotid ( L ) (mean) ’ , ’ Parotid (R)

(mean) ’ , ’SMG ( L ) (mean) ’ , ’SMG (R) (mean) ’ , ’SCM (mean) ’ ,
’MCM (mean) ’ , ’MCI (mean) ’ , ’MCP (mean) ’ , ’ Larynx (mean) ’ , ’
Oral Cavity (mean) ’ } )

17 Objectives = [ Objectives j ] ;
18 ObjIdx = length ( Objectives ) ;
19 f p r i n t f ( ’Matched %s as objective %d\n ’ , problem ( j ) .Name,

ObjIdx ) ;
20 CMatrix ( ObjIdx , : ) = data . matrix ( problem ( j ) . dataID ) . A( 1 , : ) ;
21 end
22 end
23 end
24

25 % Finding the optimal solution
26

27 % We define Ax>b with −Ax<−b
28 A = [ CTVHighMatrix ; . . .
29 −CTVHighMatrix ] ;
30 b = [ ones ( s i z e ( CTVHighMatrix , 1) , 1) * 6 4 . 6 8 ; . . .
31 −ones ( s i z e ( CTVHighMatrix , 1) , 1) * 6 9 . 9 6 ] ;
32

33 %Defines weights ’ times Cx
34 f = alpha ’ * CMatrix ;
35

36 NumEl = s i z e (A , 2) ;
37
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38 %Finds the optimal solution :
39 options = optimoptions ( ’ l inprog ’ , ’ OptimalityTolerance ’ ,1e−10) ;
40 [ x , ~ , ~ , ~ ,temp] = linprog ( f , −A , −b , [ ] , [ ] , zeros (NumEl, 1) , [ ] , options )

;
41

42 %Makes sure that there are no negative x ’ s . I f there are negative x ’ s we
43 %change i t in zero
44 for i =1: length ( x )
45 i f x ( i ) < 0
46 x ( i ) = 0 ;
47 end
48 end
49

50

51 %Saves the dual solution
52 p = temp . ineqlin ;
53

54 end

1 function [ CMatrix , b , A , Objectives , alpha ] = linear_problem_one ( problem ,
data )

2 % I f we want to define the weights alpha ourselves , we need to s p l i t the
3 % linear_problem function into two parts . This i s the f i r s t part .
4

5 % New optimization problem
6

7 % Constrain dose to CTV High between 64.68 and 69.96
8 CTVHighMatrix = data . matrix ( 1 ) . A ;
9

10 % Objectives : minimise mean Parotids , SMGs SCM, MCM, MCI, MCP
11 % Since these plans are optimised robustly , only take the 1 s t row
12 Objectives = [ ] ;
13 CMatrix = [ ] ;
14 alpha = [ ] ;
15 for j =1: length ( problem )
16 i f problem ( j ) . Active && ~problem ( j ) . IsConstraint
17 i f strmatch ( problem ( j ) .Name, { ’ Parotid ( L ) (mean) ’ , ’ Parotid (R)

(mean) ’ , ’SMG ( L ) (mean) ’ , ’SMG (R) (mean) ’ , ’SCM (mean) ’ ,
’MCM (mean) ’ , ’MCI (mean) ’ , ’MCP (mean) ’ , ’ Larynx (mean) ’ , ’
Oral Cavity (mean) ’ } )

18 Objectives = [ Objectives j ] ;
19 alpha = [ alpha ; problem ( j ) . Weight ] ;
20 ObjIdx = length ( Objectives ) ;
21 f p r i n t f ( ’Matched %s as objective %d\n ’ , problem ( j ) .Name,
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ObjIdx ) ;
22 CMatrix ( ObjIdx , : ) = data . matrix ( problem ( j ) . dataID ) . A( 1 , : ) ;
23 end
24 end
25 end
26

27

28 % Finding the optimal solution
29

30 % We define Ax>b with −Ax<−b
31 A = [ CTVHighMatrix ; . . .
32 −CTVHighMatrix ] ;
33 b = [ ones ( s i z e ( CTVHighMatrix , 1) , 1) * 6 4 . 6 8 ; . . .
34 −ones ( s i z e ( CTVHighMatrix , 1) , 1) * 6 9 . 9 6 ] ;
35

36 end

1 function [ CMatrix , x , b , alpha , A , Objectives , p] = linear_problem_two (
alpha , CMatrix , b , A , Objectives )

2 % I f we want to define the weights alpha ourselves , we need to s p l i t the
3 % linear_problem function into two parts . This i s the second part .
4

5 %Define weights ’ times Cx
6 f = alpha ’ * CMatrix ;
7

8 NumEl = s i z e (A , 2) ;
9

10 %Finds the optimal solution :
11 options = optimoptions ( ’ l inprog ’ , ’ OptimalityTolerance ’ ,1e−10) ;
12 [ x , ~ , ~ , ~ ,temp] = linprog ( f , −A , −b , [ ] , [ ] , zeros (NumEl, 1) , [ ] , options )

;
13

14 %Makes sure that there are no negative x ’ s . I f there are negative x ’ s we
15 %change i t in zero .
16 for i =1: length ( x )
17 i f x ( i ) < 0
18 x ( i ) = 0 ;
19 end
20 end
21

22 %Saves the dual solution
23 p = temp . ineqlin ;
24 end
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1 function [ alpha_new , p_new ] = find_alpha ( CMatrix , x , b , A )
2 %Finds the optimal weigths ( alpha ) for the problem CMatrix .
3

4 %alpha ’ *C*x−eps = 0
5 Aeq1 = [ ( CMatrix * x ) ’ , zeros ( 1 , s i z e (b , 1 ) ) , −1 ,0];
6

7 %b ’ * p + gamma = 0
8 Aeq2 = [ zeros ( 1 , s i z e ( CMatrix *x , 1 ) ) , −b’ , 0 , −1 ] ;
9

10 %sum ( alpha ) = 1
11 Aeq3 = [ ones ( 1 , s i z e ( CMatrix *x , 1 ) ) , zeros ( 1 , s i z e (b , 1 ) ) , 0 , 0 ] ;
12

13 Aeq = [ Aeq1 ; Aeq2 ; Aeq3 ] ;
14 beq = [ zeros ( s i z e (Aeq , 1 ) −1 ,1) ; 1 ] ;
15

16 %−C’ alpha + A’ p < 0
17 MA =[−CMatrix ’ , A’ , zeros ( s i z e (A, 2 ) , 2 ) ] ;
18 Mb = zeros ( s i z e (MA, 1 ) , 1 ) ;
19

20 %gamma + epsilon
21 getey = [ zeros ( 1 , s i z e (Aeq , 2 ) −2) , 1 , 1 ] ’ ;
22

23 %The weights can not be smaller than zero
24 lb = [ zeros ( 1 , s i z e (Aeq , 2)−2) −Inf −Inf ] ;
25

26 %Calculate the optimal solution
27 options = optimoptions ( ’ l inprog ’ , ’ Algorithm ’ , ’ dual−simplex ’ , ’ Display ’ ,

’ i t e r ’ , ’ OptimalityTolerance ’ , 1e−9, ’ ConstraintTolerance ’ , 1e−9) ;
28 temp=linprog ( getey , MA, Mb, Aeq , beq , lb , [ ] , options ) ;
29

30 %Gets the new optimal solution and the new dual solution
31 alpha_new = temp ( 1 : s i z e ( CMatrix *x , 1 ) ) /sum(temp ( 1 : s i z e ( CMatrix *x , 1 ) ) ) ;
32 p_new = temp( s i z e ( CMatrix *x , 1 ) +1: s i z e ( CMatrix *x , 1 ) + s i z e (b , 1 ) ) ;
33 end
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