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CASPT 2015

Line planning problem in a dense High-Speed Rail
corridor

Fei Yan · Rob M.P. Goverde · Nikola
Besinovic

Abstract To satisfy the growing passenger transportation demands and im-
prove the service quality in a railway system, a high-quality line plan needs to
be designed. Line planning is an initial optimization problem in the process of
railway transportation management, which includes the origin and destination
(OD) of trains, routes, stop patterns and frequencies. Aiming to find a optimal
line plan for a dense high-speed railway corridor, this paper proposes a opti-
mization model with objectives of minimizing passenger’s total travel time and
empty-seat-hour. Considering the problem is NP-hard, we introduce a novel
matheuristic approach that combines metaheuristic and mathematical pro-
gramming technique. Genetic algorithm (GA) is developed for providing pos-
sible combination of frequencies, and integer linear program (ILP) is applied
for optimization of passenger assignment model. With integration of both, we
produce a optimal line plan with frequencies. Finally numerical experiments
of Chinese case are applied to verify the proposed model and approach.
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1 Introduction

Railway systems are highly complex systems, which consist of several planning
stages: line planning, timetabling, train platforming, rolling stock circulation,
and crew scheduling. Line planning is the initial step in the strategic planning
process, and it aims to find a set of lines or paths in the network with corre-
sponding stop schemes and operation frequencies that satisfies travel demand
in a given network. As the output of line planning is the input for timetabling,
the line plan has a huge impact to the timetable design. Therefore, determin-
ing a better line plan plays an important role on achieving a stable and robust
timetable with good service quality.

The line planning problem has been extensively studied in the literature.
There are two main conflicting objectives, minimization of operation cost-
s from operator’s perspective (cost-oriented) and minimization of generalized
travel cost from passengers’ perspective (customer-oriented). Researchers have
developed a series of integer programming models to achieve both objectives.
For a cost-oriented approach, it aims to find a line plan serving all passengers
and minimizing the costs of operators. It is always modeled concerning the
lines and corresponding frequencies, or train types and capacity presented in
Claessens et al (1998), Goossens et al (2004), and Goossens et al (2006). For the
customer-oriented approach, maximizing the number of direct travelers is pro-
posed in Bussieck (1997), and minimizing the total travel time in Schöbel and
Scholl (2005) and Borndörfer et al (2007). Branch and bound, branch-and-cut,
and column generation are used for solving these mixed integer linear program-
s. Borndörfer et al (2007) considers a novel multi-commodity flow method in
which passenger paths can be freely routed and lines are generated dynamical-
ly. Schöbel and Scholl (2005) used a change-and-go graph to model travel and
transfer times. However, for large scale instances the model tends to be com-
putationally intractable. Therefore, Borndörfer and Neumann (2010) proposed
a compact integer programming approach to deal with transfer minimization
problems even for large instances. They incorporated penalties for transfers
that are induced by “connection capacities” and compared a direct connection
capacity model with a change-and-go model. Bussieck et al (2004) proposed a
fast solution combining nonlinear techniques with integer programming, and
a game-theoretic model is introduced in Schöbel and Schwarze (2006), where
each line acts as player to minimize cost. As a huge rail network in China,
Fu et al (2015) describes a integrated hierarchical approach to optimize line
planning problem, with a classification of stations and trains, and bi-level opti-
mization model. The stop patterns are predefined by a enumeration of higher-
classified stations for higher level trains and limiting maximal number of stops
for lower level trains. And minimization of passenger’s travel time in upper
level is used to estimate passenger route; maximization of served passengers
in lower level is designed for optimization of frequencies. Schöbel (2012) gave
a review of different line planning models from a mathematical and algorithm
approach. Goerigk et al (2013) conducted a comprehensive experimental study



to evaluated the quality of line plans from four different models by travel times
and robustness.

From discussion above, we found that almost all of these researches need
a predefined set of possible lines, which is also called a line pool. Line pool
is a set of lines with defined train OD, train route and stop pattern, which
could simplify the problem due numerous combinations of stop patterns and
route choice. Meanwhile, most of these models are formulated to optimize line
plan which is specific for a cyclic timetable pattern or acyclic timetable pat-
tern. Cyclic and acyclic timetables are widely implemented in rail networks.
To correspond, we categorized line plans with a cyclic and an acyclic pattern.
The features of a line plan with a cyclic pattern are fixed stop patterns with
high frequencies which provide a regular service pattern for passenger. How-
ever, a line plan with high frequency might result in a low seat occupation,
while mixed operation of fast trains and all-stop trains might result in a low
capacity utilization of the infrastructure, both of which would increase opera-
tional costs. And existing line plans corresponding to a cyclic nature tend to
prioritize passengers transfers instead of the defining direct train lines, which
would not be convenient for passengers if the transfer conditions are not good
or for long travel distances. The acyclic line plans have flexible stop patterns
with low frequency (almost one train per day) considering the the passenger
distribution, which could use capacity effectively. But this would lead to ir-
regular timetables, which not only increase the complexity of the operator’s
management, but also brings more waiting time in stations for passengers.
Due to the advantages and disadvantages of line plans with cyclic or acyclic
nature, we propose a line planning model which optimize a integrated line plan
with both features in order to improve the efficiency of the railway system. For
big passenger OD demand, lines with high frequencies are provided, while to
small passenger demand stations, few trains with acyclic pattern is available.
This way not only reduce capacity loss but also provide frequent service for
some passengers. The remainder of this paper is organized as follows. In Sec-
tion 2, the line plan problem in a dense High-Speed Rail corridor is defined.
Section 3 describes the model with the proposed objectives and constraints in
detail. The method and algorithm to find an optimal solution are introduced
in Section 4. The results of numerical experiments are analyzed and evaluated
based on data from a Chinese railway network. Finally, conclusions and future
research work are presented.

2 Problem Description

High-speed railways are developing fast all over the world, which calls for
speed improvements. Due to the time loss and capacity loss by dwelling, ac-
celeration and deceleration, trains with too many stops are not preferred by
both passengers and operators. This holds in particular for some lines in in-
terregional corridors of the Chinese high-speed railway network, with rela-
tively shorter length of lines and station spacing. And the passenger features



are huge demand, unbalanced distributions and a big amount of commuters.
From the characteristics of lines and passengers, requirements of high speed
and high frequencies are important for both passengers and operators. Mean-
while, proper transfer facilities are not equipped in stations of China, which
means a direct service is also required for passengers of short distance due
to the time-consuming transfer. Therefore, the line planning model for such a
network is designed with objectives of empty seat-hours and passenger’s total
travel time considering both operators and passengers.

Normally, profit or cost is proposed as objective from an operator’s point.
However, because the monetary value from an train operating company is not
always that accurate and the empty seat-hours could give a direct view of
capacity loss, we choose a more straightforward way to minimize the cost.
For the second objective, waiting time and in-vehicle journey time play a
primary role when passengers select a train line for a trip. Waiting time on
a platform depends highly on the service frequency for passengers travelling
without planning their trip, see details in 4. In-vehicle travel time consists
of dwell time and running time, including acceleration time and deceleration
time. The main difference between different train lines is not only the dwell
time, but also the acceleration time and deceleration time which have even
more impact on the total journey time. Hence, we use the more precise journey
time rather than average travel time (distance divided by average speed), on
the other hand, this could also enhance the complexity of model. Nevertheless,
both empty-seat-hour and total travel time could also be transformed into
monetary value using time values if necessary.

In order to calculate objectives, passenger assignment model is embedded
inside with consideration of travel time. In passenger assignment model, each
line has a corresponding travel time of each passenger. When a line plan is
given, this model finds the best train line for each passenger with minimal of
total travel time. With this result, the value of objective function could be
obtained.

A line plan is a set of train lines with train ODs, routes, train types, stop
patterns and frequencies. Hence, the optimization model needs to be built from
networks on three levels. The first level is the railway infrastructure, which is
called the physical network, including stations and rail tracks connecting the
stations. In the second level, the train lines with stop pattern and frequency are
provided to passengers, which gives for each OD an opportunity to travel. With
the line plan scheduled, the service arcs to the passengers can be depicted. The
passengers travel choice is influenced by the total travel time over different
train lines which have the same service arc in the third level. This third level
determines how the passenger are assigned on each train, which is the network
for passenger assignment model. Figure 1 illustrates a simple network with
six stations along the corridor. One train line with train OD from A to F,
stopping at C,D and E; and the other with the same OD, stopping at B,
C and E. It can be observed that both lines have ten service arcs and they
also share some arcs with the same OD. For passengers from C to E, both
lines provide this service. Line 2 offers a direct service, and line 1 has a higher
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Fig. 1 Networks for the line planning optimization

frequency. Therefore, which train line the passenger needs to be determined by
a passenger assignment problem. For passengers from B to D, no direct service
is available, so a transfer node and connecting train needs to be selected.

3 Optimization Model

3.1 Assumptions and notation

In order to simplify the complexity of the line planning problem, we use some
basic assumptions.

(1) All passengers have a direct service to the destination without transfer.
(2) The passenger demand is symmetric from both directions and therefore

only one direction is taken into account for optimization.
(3) Only one train type is considered and all trains have the same seat capacity.

The notation of parameters and variables is summarized as follows.

Parameters:

L : Set of train lines.
lk : Train line from L with k-th stop pattern.
S : Set of stations in the corridor.
Sk : Set of stations on line lk. N(Sk) is the number of stations, and i, j

indicates the i-th or j-th station counted from the origin station.
C(lk) : Seat capacity of train line lk.
µ : Maximal seat occupancy rate in the passenger assignment model.
N : Maximal number of train lines in the line plan.
ri,i+1 : Scheduled running time between route section i to i+ 1 discarding

acceleration and deceleration.



di : Scheduled dwell time of a stop in station i.
Pij : Passenger demand between stations i and j.
λv, λw : Weights of in-vehicle time and waiting time.
ac, de : Average acceleration time and deceleration time.
T : Length of operation period per day.
Fmin : Critical frequency where waiting time is half the headway.
Taw : Average waiting time of passenger.
fmin, fmax : Lower and upper bound of frequency for each train line.
Lmin : Lower bound of total number of trains operated in this corridor. It

is the minimal service frequency when all passenger are served in
the section with the biggest accumulative passenger flow.

Lmax : Upper bound of total number of trains operated in this corridor. it
can be capacity constraint of track section and/or fleet size .

Decision Variables:

f(lk) : Frequency of train line lk.
xlkij : Binary variable, equal to 1 if line lk has stops in both station i and

j, and 0 otherwise.

Other Variables:

N(lk) : Binary variable, equal to 1 if line lk is selected in the line plan, and
0 otherwise.

qlkij : Number of passengers from station i and j assigned to line lk.
Fij : Total service frequency from station i to j.

Qlk
i,i+1 : Cumulative passenger flow assigned to line lk between two successive

stations i and i+ 1.
ylki : Binary variable, equal to 1 if line lk stops in station i, and 0 other-

wise.
T lk
ij : Generalized cost of passengers from station i to j on line lk.
tvij(lk) : In-vehicle time from i to j on line lk, including dwell times and

running time with acceleration and deceleration times.
twij(lk) : Waiting time in station i for passengers from i to j.

Note that the binary decision variable xlkij indicates whether or not line lk
offers a transport service from i to j.

3.2 Model formulation

Using the notations explained above, the mathematical model of the line plan-
ning is formulated as follows. The cumulative passenger flow can be computed
as

Qlk
i,i+1 =

i∑
m=1

N(Sk)∑
n=i+1

qlkmn, i ∈ Sk (1)



and the intermediate binary variables ylki are computed from given xlkij as

ylki =


1, if

N(Sk)∑
j=i+1

xlkij +

i−1∑
j=1

xlkji > 0

0, if

N(Sk)∑
j=i+1

xlkij +

i−1∑
j=1

xlkji = 0.

(2)

Then the line planning optimization problem is given as follows.

min
∑
lk∈L

N(Sk)−1∑
i=1

(C(lk) · f(lk)−Qlk
i,i+1) · (ri,i+1 + ac · ylki + de · ylki+1) (3)

min
∑
lk∈L

∑
i

∑
j

(λv · tvij(lk) + λw · twij(lk)) · qlkij (4)

Subject to∑
lk∈L

qlkij = Pij , ∀i, j ∈ S (5)

∑
lk∈L

µ · C(lk) · xlkij · f(lk) ≥ Pij , ∀i, j ∈ S (6)

fmin ≤ f(lk) ≤ fmax, ∀lk ∈ L (7)

Lmin ≤
∑
lk∈L

f(lk) ≤ Lmax (8)

∑
lk∈L

N(lk) ≤ N (9)

xlkij ∈ {0, 1}, ∀i, j ∈ S, lk ∈ L (10)

f(lk) ∈ N, ∀lk ∈ L (11)

qlkij ∈ N, ∀i, j ∈ S, lk ∈ L. (12)

Objective function (3) describes the maximum capacity utilization by minimiz-
ing the total empty seat-hours. The travel time of each section is influenced by
whether the line has a stop on one or both stations, in which case the acceler-
ation and/or deceleration time is added to the travel time. Objective function
(4) minimizes the passengers’ total travel time, which contains in-vehicle time
and waiting time at the origin station. For each passenger OD corresponding
to a selected line, the in-vehicle time and waiting time can be estimated as

tvij(lk) =

j−1∑
m=i

rm,m+1 +

j−1∑
m=i+1

(ylki · (dm + ac+ de)) (13)



and

twij(lk) =


T

2Fij
if Fij ≥ Fmin

Taw otherwise,

(14)

with

Fij =
∑
lk∈L

xlkij · f(lk). (15)

The average waiting time at the origin station depends highly on the frequency.
If a certain OD has a relatively high operation frequency and regular intervals
(headway), the passenger arrivals follow a uniform distribution(Furth, 2006).
Therefore, the average waiting time is half the headway. Since the timetable is
still unknown, we use half the average headway as estimated average waiting
time when the frequency is higher than Fmin. For line ODs with lower frequen-
cy, passengers tend to arrive near the scheduled departure time. Constraint
(5) specifies that each passenger OD demand needs to be satisfied and is equal
to the sum of passengers assigned to the lines. Constraint (6) makes sure that
the service frequency between each OD is sufficient to meet passenger demand.
Constraints (7) and (8) guarantee that the frequency of each train line could
only vary in a certain range. If the frequency is zero, that means this line is
not selected in line plan. The total number of trains should be lower than
the infrastructure capacity, and not be lower than minimal frequency of the
section with biggest accumulative passenger flow. As numerous stop patterns
are available, a maximum number of train lines is forced in constraint (9) in
order to get a relatively regular stop pattern, where N(lk) can be calculated
from the line frequencies as

N(lk) =

{
0, if f(lk) = 0

1, otherwise.
(16)

Finally, the variables are restricted to be binary in (10), or nonnegative integers
in (11) and (12). Note that we denote N = {0, 1, 2, . . .}.

In order to find a way to deal with both objectives, we sum up both ob-
jectives together with certain weights. Expressing the objective (3) and (4) as
f1 and f2, respectively, the combined objective becomes

min α · f1 + (1− α) · f2, (17)

with 0 ≤ α ≤ 1. As the weight has a great impact on the final decision, it needs
to be calibrated for a certain case. If a cost-oriented line plan is requested, it
is better to assign a value to α close to 1; and if a customer-oriented line plan
is required, the value is better close to 0. A direct way to calibrate α is to
vary its value between 0 to 1 and compute the corresponding objective values.
Then the objective value as function of α could help to determine which value
to choose for a certain case.



4 Genetic Algorithm

The line planning optimization problem is a multi-objective, discrete and non-
linear program, which is very difficult to solve by traditional optimization tech-
niques. It is proved also that the line planning problem is NP-hard (Bussieck,
1997). Therefore, we introduce a new matheuristic approach for solving it. In
general, matheuristics are optimization algorithms made by the interoperation
of metaheuristics and mathematical programming techniques (Boschetti et al,
2009). An essential feature is the exploitation in some part of the algorithms
of features derived from the mathematical model of the problems of interest.
For our line planning problem we develop an approach that combines a well
known metaheuristics GA (Goldberg, 1989) with an ILP formulation. The aim
of integrating metaheuristics is to construct a promising neighborhood of good
solutions. In particular, a GA is applied to give a recommendation of frequen-
cies per line. Then, the ILP for the passenger assignment model is solved for a
fixed line frequencies. After multiple iterations, better solutions are obtained.

GA is a search heuristic that mimics the process of natural selection. In a
GA, a population of candidate solutions, i.e., individuals to an optimization
problem is evolved toward better solutions. Each individual has a set of prop-
erties like a genetic representation and a fitness function. The former consists
of single genes that construct an individual, while latter defines the quality of
the individual.

For the line planning problem we define an individual as one possible solu-
tion (i,e. line plan) where a single gene defines a frequency of one line. Thus,
a gene is a nonnegative integer value between 0 and fmax. The length of an
individual equals to the number of lines in a line pool. The fitness function
of an individual is evaluated by solving the ILP formulation (3)-(12) for the
fixed frequencies defined by that individual.

Also, several operators are introduced within GA to combine and transfor-
m individual in order to produce a better ones. Namely, it includes selection,
crossover and mutation. Selection is a process where a proportion of the exist-
ing population is selected to breed a new generation. Crossover is is a process
of taking two ”parent” individuals and producing a ”child” individuals from
them. In order to preserve a genetic diversity the mutation operator is used.
Mutation alters one or more genes in an individual from its initial state. Thus,
GA may find a better solution by using mutation.

The developed matheuristics steps are as follows:
1. In the inital step, we: a) set the GA parameters like a number of in-

dividuals in the population Npop, number of generations Ng, probabilities of
crosover pc and mutations pm, as well as stopping criteria. Also, we generate
an initial population of Npop individuals randomly subject to constraints (13)
and (14).

2. Fitness function evaluation. It may happen that the fitness of an indi-
vidual results in a infeasible solution of the ILP due to nonexisting path(s)
for certain passengers (see constraint (6)). In order to keep feasible individu-
als within the population, if an individual is infeasible we subtitute it with a



new individual and recompute the fitness. We do the same with all infeasible
individuals until the population consists only of feasible ones.

3. Reproduction. An elitist strategy is used for reproduction. Individuals
with lower fitness values are more desirable; hence, the Nelite individuals with
the lowest fitness values are automatically copied to the next generation.

4. Selection operation. In the developed algorithm several selection rules are
implemented. We apply the roulette wheel selection for crossover operation to
generate Npop −Nelite −Nrand individuals.

5. Crosover operation. We use a one-point crossover to select pc of the
individuals for the new population.

6. Mutation operation. Two point mutation is implemented. The position of
a gene to be mutated is chosen based on the following rules. First, one mutation
point is chosen based on the structure of the population. We select a gene with
the most often repeated frequency value. Second, the other mutation point is
determined randomly. Third, if a value of a gene is too low, e.g., smaller than 5,
it is set to zero. Finally, the mutation operator is applied with the probability
of pm.

7. New individauls are created randomly in order to maintain the diver-
sity of the population. Therefore, the algorithm finally generates new Nrand

individuals.

8. Termination check. We introduce two stopping criteria. First, the maxi-
mal iterations or computation time is reached. Second, the successive iterations
no longer produce better results the model detects the convergence of a solu-
tion. If any of two criteria is met, terminate the algorithm. Otherwise, go to
Step 2.

5 Numerical Experiments

In this section, a numerical case from the real world is studied to verify the
effectiveness of the proposed model and algorithm. A dense high-speed rail
corridor is selected as a case study. Table 1 shows the OD matrix of the pas-
senger flow with rough estimation but satisfy the purpose of the experiments.
Observe that the distribution of passenger flow is uneven with a huge amount
between the first station and the last station, and a small amount between
intermediate stations, such as station 2 to 6. The design speed is 300 km/h
and the whole distance is around 300 km. Stations 1, 2, 3 and 8 have technical
facilities to be origin and final stations. With consideration of the existing line
plan, passenger flow and station conditions, a line pool is generated with 19
lines. For the sake of safety and a homogeneous pattern, a train line without
any stop is not recommended.

The values of the parameters are listed in Table 2. The number of pop-
ulation and generation in the genetic algorithm are chosen as 50 and 500,
respectively. It needs a relatively long time to obtain a good solution. There-
fore, only several values are chosen in this paper. The model is solved using



Table 1 OD matrix of passenger flow

OD matrix 1 2 3 4 5 6 7 8

1 0 6320 12405 9205 8128 2013 1991 14782
2 6320 0 2235 945 857 151 590 2268
3 12405 2235 0 3370 2220 582 697 4998
4 9205 945 3370 0 3376 533 857 5135
5 8128 857 2220 3376 0 739 832 3996
6 2013 151 582 533 739 0 614 879
7 1991 590 697 857 832 614 0 3208
8 14782 2268 4998 5135 3996 879 3208 0

Table 2 Input parameters of the model

Parameter Value or description of calculation
Maximal number of train lines N 13
Seat capacity C(lk) 620 seats/train-set
Seat occupancy rate µ 0.85
Dwell time di 2 min
Acceleration and deceleration time ac de 2.5 min, 1.5min respectively
Time period T 18 h with 6 h of maintenance time
Critical point of totally frequency Fmin 30 trains
Weights λv , λw 1, 2, see details in Wardman (2004)
Average waiting time Taw 30 min
Line frequency lower bound fmin 0
Line frequency upper boundfmax 18 (maximal one train a period)
Total frequency lower bound Lmin 106
Total frequency upper bound Lmax 140

MATLAB R2013b and Gurobi 604 ( GUROBI (2015))on a Dell PC with 8 GB
RAM and a four-core 3.7 GHz CPU.

Both passenger’s convenience and operator’s cost are considered in this
model. Therefore, α = 0.5 is assigned first. Table 3 depicts the optimized stop
pattern, frequency and empty-seat percentage. Most of the lines are almost
fully utilized with a seat occupancy rate of 0.85. Lines with many stops are
not that attractive, but have a comparable high frequency. The total number
of frequencies is the same as the lower bound, which means that the service
frequency just meets the demand for the most busy corridor. Figure 2 illus-
trates the convergence with the maximal iterations. For the last 100 iterations,
the objective are without too much improvement, which means it could be a
optimal solution. Figure 3 indicates the relation between service frequency
(stop times) and passenger demand of the corresponding station. As a cyclic
pattern is proposed, the service frequency of most stations are much higher
than its passenger demand except for station 1.

For α = 0, Table 4 displays the selected stop pattern with corresponding
frequency and empty-seat percentage. The frequency of most lines is relatively
higher than the previous case, and as a result the empty-seat percentage is also
high, especially for the all-stop train with 98%. But lines with less stops are
still occupied well. The total number of frequency is with 139 almost equal
to the upper bound, as the cost objective is not considered here. And Table



Table 3 Line plan with minimum total travel time and empty seat-hour

Train line Frequency Empty-seat percentage

1-2-3 4 15%
1-3-4 4 15%
1-3-4-8 17 15%
1-3-4-5-8 6 15%
1-3-4-5-7-8 8 15%
1-3-4-5-6-8 8 15%
1-2-3-4 4 18%
1-2-3-4-7-8 5 15%
1-2-3-4-5-8 2 15%
1-2-3-4-5-7-8 18 19%
1-2-3-4-5-6-8 12 43%
1-2-3-4-5-6-7-8 18 45%

0 50 100 150 200 250 300 350 400 450 500
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Fig. 2 The number of iterations for total travel time and empty-seat hour

Fig. 3 Passenger demand with corresponding service frequency



Table 4 Line plan with minimum total travel time

Train line Frequency Empty-seat percentage

1-3-4-8 20 15%
1-3-4-7-8 5 33%
1-3-4-5-8 9 16%
1-3-4-5-7-8 12 64%
1-3-4-5-6-8 4 53%
1-3-4-5-6-7-8 20 58%
1-2-3-4-8 17 21%
1-2-3-4-7-8 3 54%
1-2-3-4-6-7-8 7 37%
1-2-3-4-5-8 13 32%
1-2-3-4-5-7-8 4 45%
1-2-3-4-5-6-8 5 77%
1-2-3-4-5-6-7-8 20 98%

Table 5 Line plan with minimum empty-seat-hour

Train line Frequency Empty-seat percentage

1-2-3 4 15%
1-3-4 8 24%
1-3-4-8 18 17%
1-3-4-7-8 15 18%
1-3-4-6-8 7 28%
1-3-4-5-8 15 28%
1-3-4-5-6-7-8 3 15%
1-2-3-4-8 18 15%
1-2-3-4-7-8 2 33%
1-2-3-4-6-8 4 23%
1-2-3-4-5-8 12 55%

5 shows a line plan and seat occupancy rate when only empty-seat-hour is
considered as objective, where the empty seats are much more lower than
in Table 4. Meanwhile, the total total number of frequency is the same as
the frequency lower bound. Figure 4 depict the convergence curve of both
objectives with the maximal iteration times, which shows a relatively effective
result. From Figure 5, we could observe that both service frequency could meet
passenger demand and with much more high frequencies in some stations.
Service frequency 1 represents the optimal result of total travel time; and
service frequency 2 stands for empty-seat-hour. Even though with conflicting
objective, both service frequency curves have almost the same display, meaning
passenger demand influence a lot for the final result.

6 Conclusion and future work

From the experiments, it can be concluded that the approach is feasible to ob-
tain an integrated line plan with a cyclic and acyclic nature. Some trains with
a high frequency providing frequent service for high passenger OD demand,
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Fig. 4 Iterations of optimizing total travel time(left) and total empty-seat-hour(right)

Fig. 5 Passenger demand with corresponding service frequency

and some trains with a lower frequency serving stops with low passenger de-
mand. Trains with lots of stop always have high frequency and low capacity
utilization. This can explained by objective function (4), since waiting time has
a high dependency on frequency in (14). So train lines such as all-stop pattern
lines may not be a good travel choice, however, they play an important role for
reducing the waiting time of the average passenger. Therefore, considering the
waiting time, the passenger assignment model needs to be modified in order
to have a smaller influence in the next step. And a exact algorithm is taken
into consideration to solve the problem in the future.
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