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Executive summary

The increasing presence of vehicle automation is transforming freeways into environments
of mixed traffic, where vehicles of varying autonomy levels interact. Before all vehicles
become fully autonomous, a transition will be made that causes a high mix of those
autonomy levels. Therefore, this thesis researches the impact of different levels of vehicle
automation on traffic performance and safety on a multi-lane freeway with an on-ramp.
Microscopic simulation is utilised to explore how varying levels of vehicle automation,
while taking human driving factors into account, affect traffic flow, speed, density and
dangerous car-following interactions.

Currently, the majority of vehicles are defined as level 0 vehicles. This does not mean
that these vehicles have no automated features at all but the Advanced Driver-Assistance
Systems (ADAS) only provide temporary support such as an emergency brake. This is
different for level 1 vehicles where the car-following driving tasks are automated and for
level 2 vehicles both the car-following and lane-changing tasks are automated to support
the driver. Level 3 vehicles are conditionally autonomous where all driving tasks are
automated. The study aims to fill the knowledge gap in understanding the impact of
these mixed traffic conditions on overall traffic dynamics.

To simulate the varying levels of automation, the study utilizes OpenTrafficSim (OTS),
a microscopic traffic simulation software that incorporates a mental model to realistically
represent human driving behaviour. This allows the simulation to account for human
factors such as reaction time, perception, cognitive workload, and distractions, which are
crucial in differentiating human drivers from automated vehicles. Four automation levels
(0, 1, 2, and 3) defined by the Society of Automotive Engineers are modelled for specific
driving characteristics within the freeway environment. Model parameters are adjusted
for each level based on literature findings and practical considerations.

Simulation results indicate that the introduction of level 1 and level 2 vehicles, charac-
terised by larger headway values, can negatively impact traffic performance but also result
in less dangerous car-following behaviour. The increased headway leads to disruptions in
traffic flow and an earlier onset of congestion. However, as the penetration rate of level
3 vehicles increases, traffic conditions significantly improve, with higher mean speeds,
reduced travel times, and increased traffic flow observed. These findings highlight the
potential benefits of higher levels of automation in enhancing traffic performance and
safety.

The study also examines the impact of driver distraction on traffic performance and safety.
By simulating both in-vehicle and roadside distractions, the research demonstrates that
higher cognitive workloads can lead to more disruptive driving behaviour. As automation
levels increase, the negative effects of distraction are mitigated.

Overall, this research provides valuable insights into the complexities of mixed traffic
with varying automation levels. It demonstrates that while the transition phase may
present challenges, higher levels of vehicle automation can significantly improve both
traffic performance and safety on multi-lane freeways. Special emphasis is given to accu-
rately simulating human driver behaviour and suggestions are made for future research,
including the need for a dual-perception framework for more accurate modelling of level
1 vehicles and further investigation into the impact of different distraction types.
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1 Introduction

1.1 Background

Vehicle automation can help the European Union (EU) to achieve climate goals. Climate
change represents a grand challenge, driving society to search for innovative approaches
in various sectors to mitigate global warming. This also includes the transportation
sector which needs to lower its greenhouse gas emissions (European Environment Agency,
2023). Research indicates that Autonomous Vehicles (AVs) could offer enhanced fuel
or energy efficiency, potentially leading to a substantial reduction of emissions in the
transport sector (Vahidi and Sciarretta, 2018). This efficiency is mostly improved when
Connected Autonomous Vehicles (CAVs), sometimes called Cooperative Autonomous
Vehicles, communicate to optimise their driving path, optimise driving speed, and plan
road interactions (Turri et al., 2017). Such coordinated activities require a fleet of fully
automated vehicles, all equipped with the corresponding features. However, the current
operating vehicle fleet is not equipped with these automation features. Even the newest
available consumer vehicles today are not fully autonomous but are provided with new
Advanced driver-assistance systems (ADASs). ADAS only automate specific tasks to
support the driver but is not responsible for decision-making while driving (Lu et al.,
2005). The extent of ADAS varies for different brands and models, meaning that the
level of automation varies within the current vehicle fleet. These automation features
to support the driver are currently designed to ensure more safety, especially at less
engaging driving tasks such as keeping distance on a freeway or maintaining the current
lane. Because these ADASs are not autonomous, their use cases are limited and thus
mostly used while driving on main roads.

New and more sophisticated automation features are integrated into ADAS. The au-
tomotive industry is undergoing technical advances regarding artificial intelligence (AI),
big data, and digitalisation enhancing vehicle automation. The European Parliament
acknowledges how this automation leads to progression in vehicle safety. Therefore, they
are updating motor vehicle type approval requirements for 2026 by adding more ADAS
features (Regulation 2019/2144).

The drive to more efficient and more safe vehicles will increase automation within traffic.
Given the varying levels of vehicle automation and the economic reality that not all
road users can afford the latest vehicle models, the road will be subject to a highly
mixed fleet where Human Driven Vehicles (HDVs), vehicles equipped with different ADAS
configurations, AVs, and CAVs coexist. Traffic with a heterogeneous mix of vehicle
automation levels will be referred to as mixed traffic.

To define the differences between the mentioned automated vehicles (HDV and AV),
automation levels of the Society of Automotive Engineers (SAE) can be used. Figure 1
shows the different definitions for six vehicle automation levels (from 0 to 5). HDVs with
limited ADAS features such as visual or auditory warnings and emergence braking are
considered level 0. When HDVs have more advanced ADAS features to support up to
one driving task, it is considered level 1. These more advanced ADAS features consist
of driver support for vehicle handling in longitudinal or lateral directions. Longitudinal
control is called car-following and support in lateral control is lane-keeping. HDVs become
level 2 when the vehicle’s ADAS is capable of supporting the driver in both car-following
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and lane-keeping. Some level 2 vehicles are even capable of supporting the driver in lane-
change actions. From level 3 onwards the vehicle is not considered as a HDV anymore.
In level 3 the vehicle does not support but controls car-following, lane-keeping and lane-
changing decisions. However, the decision-making is still limited, so the AV can only
operate under specific conditions. Therefore, the driver in a level 3 AV is only monitoring
the vehicle and should take over control when necessary. From level 4 onwards, the AV
does not require any monitoring anymore and in level 5 the AV can operate under all
conditions.

Figure 1: Vehicle autonomy level descriptions by SAE. Retrieved from SAE, 2021.

However, vehicles can also be equipped with communication features to retrieve informa-
tion from surroundings and thus increase the situational awareness of human drivers or
autonomous vehicles. HDVs equipped with features to communicate Vehicle-to-Vehicle
(V2V) or Vehicle-to-Infrastructure (V2I) will be called connected vehicles (Talebpour and
Mahmassani, 2016). AVs equipped with these communication features become CAVs.
Unfortunately, the SAE automation levels do not account for vehicle communication
configurations, thus these levels are not affected.

New driving behaviour and vehicle interactions will emerge from mixed traffic. As dis-
cussed, vehicle automation levels and communication configurations come in a wide va-
riety, as do the corresponding driving styles. HDVs will remain subject to human errors,
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higher-level automation HDVs will show different decision-making because of human-
interface interactions, and AVs are fully dependent on their control functions. Au-
tonomous control also changes the social interactions that are familiar to road users.
Additionally, vehicles will be developed by different manufacturers in a competitive au-
tomotive market. This will amplify the differences in the vehicles’ driving behaviour.

These new vehicle behaviours and interactions could have consequences for the transport
system. Currently, the road network is prone to congestion. On freeways, HDVs drive in
strings on their lane following the vehicle ahead. Unfortunately, these HDVs have varying
speeds due to human errors and/or ignorance towards the speed limit. These variations
cause disruptions in their string and thus the stable flow of traffic on the freeway is dis-
rupted. Furthermore, multiple lanes, road connections and other infrastructure designs
allow HDVs to change lanes, change acceleration and merge causing more disruptions.
These disruptions cause a shock wave through the string of vehicles. Each vehicle will re-
act slightly differently to this string disruption thereby amplifying the shock wave. When
vehicles decelerate to maintain an acceptable headway and finally come to a standstill,
congestion occurs. Adding more different driving styles into the string will cause more
variations and could thus exacerbate congestion in the road network. However, by adding
more automation to traffic, fewer human errors will be the cause for disruptions. Also,
for AVs, the preferred headway can be constant. That could mean that mixed traffic will
have fewer disruptions. Therefore, this research seeks to understand the effects of the
transition between (mostly) human driving and fully automated vehicles by analysing the
traffic performance of mixed traffic.

1.2 Research questions

To investigate the effects of new behaviour in mixed traffic, micro-simulation will be used
to simulate traffic scenarios. Simulation output will be used to analyse these effects and
draw conclusions about future traffic performance and safety.

Research questions are developed to outline the research and support the development of
a valid mixed traffic simulation. Therefore the main research question is:

” How do different levels of vehicle automation accounting for human driving behaviour
impact traffic performance and safety on a multi-lane freeway? ”

Three separate sub-questions are formulated:

1. How can driving behaviours and automation-specific features across different au-
tomation levels be modelled for a multi-lane freeway environment?

2. How do car-following and lane-changing interactions change across different levels
of automation?

3. How do vehicle automation levels in mixed traffic affect traffic Key Performance
Indicators (KPIs)?

The multi-lane freeway, as discussed in the main research question, will feature an on-
ramp to allow vehicles to merge into the main lanes. The inclusion of an on-ramp is
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essential as it introduces an additional flow of vehicles that must be managed by the
post-merge freeway lanes. Ru et al. (2024) show that the vehicle flow from the on-ramp
disrupts freeway traffic and significantly impacts overall traffic flow. Further details about
the freeway layout are described in Chapter 3.

1.3 Report outline

The following chapters will provide more information about the topic and conducted
research. At first, a literature review is performed in Chapter 2 to present the cur-
rently available literature about mixed traffic simulation regarding traffic performance.
A knowledge gap in the literature is identified and the research approach together with
the corresponding methodology is presented in Chapter 3. Chapter 4 will then present
the designed vehicle models to represent the different automation levels. Chapter 5 will
discuss the results from the freeway traffic simulation and present the impact on driving
behaviour and traffic performance and safety. At last, the conclusions are presented and
discussed in Chapter 6 with successive implications and recommendations.
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2 Literature review

A literature review is conducted to understand the established research fields involved
with mixed traffic and its implications. Firstly, a search strategy is outlined to collect
relevant studies focusing on mixed traffic and its effects on traffic behaviour and perfor-
mance. Secondly, the traffic performance of mixed traffic is discussed. Thirdly, safety
aspects and take-over vehicle control situations are reviewed. Thirdly, social influences
on road interactions are discussed. Lastly, the literature review findings will identify a
knowledge gap and be the foundation for the research questions.

2.1 Search strategy

The Scopus search engine is used to search within a comprehensive database of peer-
reviewed studies. To ensure a broad search strategy the search terms are divided into
three parts.

1. This research is mainly about vehicle automation within traffic and its effects on
driving behaviour. Therefore, papers are firstly selected by the search terms: ”traf-
fic”, ”automation”, and ”behaviour”.

2. Then these papers have to include one of the following search terms: ”mixed traffic”,
”autonomous”, ”self-driving”, or ”Advanced driver-assistance system”. This is done
to account for the different types and names of vehicle automation.

3. The resulting papers are then selected once more to include papers about simula-
tion, policy implications, uncertainties within vehicle automation or overall effects.
Therefore they have to match one of the following search terms: ”uncertainty”,
”simulation”, ”policy”, or ”effects”.

The search strategy results in this specific search query: ( TITLE-ABS-KEY ( traf-
fic AND automation AND behaviour ) AND TITLE-ABS-KEY ( ”mixed traffic” OR
autonomous OR self-driving OR ”Advanced driver-assistance system” ) AND TITLE-
ABS-KEY ( uncertainty OR simulation OR policy OR effects ) )

This search resulted in 296 papers. However, not all papers were suitable for this research.
First of all, papers had to be available in English and need at least 10 citations within the
Scopus database to be considered relevant papers for their research field. Secondly, papers
about the design or optimisation of new vehicle or fleet controllers, machine learning
approaches for AV controllers, new methods to gather vehicle or traffic data, analyses
on transport mode demand, and fuel consumption analyses are left out of the resulting
papers because these are outside this research’s scope. This means that 48 papers are
suitable for the literature review.

2.2 Traffic performance of mixed traffic

Already in 1999, researchers expected changes in traffic because of vehicle automation.
At that time higher automation-level vehicles were not available yet. However, the first
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ADAS-equipped vehicles did enter the road. Therefore, Arnab and Petros performed a
microscopic simulation of level 1 HDVs and level 0 HDVs in mixed traffic to analyse the so-
called slinky effect, another name for the phenomenon of a wave due to string disruptions
(Arnab and Petros, 1999). They found that level 1 HDVs had smooth accelerations and
thus did not contribute to the slinky effect.

Changes in driving behaviour are also expected in research of Talebpour and Mahmassani
(2016). Talebpour and Mahmassani think that human drivers can sustain a more stable
driving style since humans will base their decision-making on multiple vehicles in front. In
their research, they implement AVs and CVs to allow human drivers to receive more traffic
information and thus improve their perception which could lead to lower human reaction
times. Despite the already low AV reaction time, AVs can only make decisions based on
their direct surroundings, and it is this sensor limitation that Talebpour and Mahmassani
think the driving behaviour would be different. However, this is not what they find in
their one-lane microscopic simulation. Results show that an increasing penetration rate
of CVs and AVs will increase the stability of traffic flow, where AVs seem crucial to lower
string shock waves. Also, traffic throughput is increased up to 50% because of AVs and
CVs, where AVs show more influence than CVs.

Results showing that AVs can cause a more stable traffic flow are in line with the overall
consensus that HDVs are subject to human errors and thus will disrupt their lane. Cum-
mins et al. (2021) analyse stabilisation by AVs on a multi-lane freeway. Previous studies
simulated one-lane roads and observed high stabilisation because of AVs. Cummins et al.
find that the stabilisation effect is lower than previously thought because lane changing
causes more disruptions within traffic. Despite the lower effects, they still find stability
improvements because of AVs. Stability improvements make simulation data more in line
with traffic theory. Yao et al. (2019) find that simulation data does not correctly comply
with the theoretical curve of the fundamental diagram, but traffic flow stabilisation allows
simulations to approach the theoretical curve.

Other research focuses on the effects of CAVs. Liu and Fan (2020) simulate CAVs among
HDVs on a four-lane freeway. They expect that freeway capacity will be increased by
lower reaction times of CAVs. The results show that a penetration rate of 10-20% lowers
the freeway capacity, but sees significant increases from 20% onwards. Also, Liu and
Fan find that next to CAV penetration rate, the speed limit is an important factor in
increasing freeway capacity.

Similar effects are found for simulations including HDVs, AVs, and CAVs. Olia et al.
(2017) perform a micro-simulation to simulate HDVs, AVs and CAVs in mixed traffic.
They also find that lane capacity increases when the penetration rate of AVs and CAVs
increases. CAVs have a bigger effect than AVs since the V2V communication allows them
to drive with even smaller headways. However, these effects are minimal at low penetra-
tion rates. Therefore, Olia et al. recommend including AV clustering or dedicated lanes
to allow (C)AVs to drive together to benefit from the smaller headways. Additionally,
Makridis et al. (2020) show that driving behaviour homogenisation is the most influential
factor in stable traffic flows, explaining why traffic performance improvements are seen
at higher penetration rates.

Next to micro-simulations, other methods can be used to analyse mixed traffic. Zheng
et al. (2020) create a stochastic model to simulate AVs and HDVs. Their model produces
similar results, meaning that they find a significant increase in traffic flow stability for
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5-50% AV penetration rates.

Also Jiang et al. (2021) and Vranken et al. (2021) choose for another simulation method.
They create a cellular automata model to simulate mixed traffic. Jiang et al. accounts
for HDVs, AVs vehicles and CAVs on a one-lane road. Their results show similar traffic
performance effects because of increasing CAV penetration rates as observed in previous
literature, but they also include congestion reduction. According to Jiang et al., a rate
of 80% of CAVs can reduce congestion by 63%.

Effects on traffic performance can also be analysed analytically and by numerical sim-
ulation. Chen et al. (2020) use these methods to get insights into vehicle interactions
regarding accelerations and car-following. They find that heterogeneous traffic is more
subject to flow disruptions than homogeneous traffic because of differences in vehicle ac-
celeration. This is even amplified by the different car-following characteristics of different
vehicle types.

As seen in the previous studies, researchers create multiple vehicle models by using differ-
ent perceptions and different car-following and lane-change models to account for varying
characteristics of different vehicle automation levels. However, HDVs are still solely based
on the car-following and lane-change models. Calvert and van Arem (2020) state that
therefore most traffic simulations simulate AVs more accurately than HDVs. AVs are
more suitable to be modelled by preset logic, while this logic lacks human heterogene-
ity for accurate HDV models. To incorporate human aspects in driving models, Calvert
and van Arem include the human cognitive ability to influence driving behaviour. Their
framework involves driving tasks with specific workloads that saturate the driver’s cog-
nitive capacity. The amount of cognitive capacity left will influence the driver’s reaction
time and the extent of the driver’s situational awareness. Pariota et al. (2016) try to
analyse human factors by analysing real-life car-following data. Driving style is not ac-
counted for, but they find that vehicle headway increases as the speed increases. Also,
drivers tend to leave more space ahead when following heavy vehicles, such as trucks,
than following other passenger cars.

2.3 Safety in mixed traffic

Automation within traffic is associated with increased safety. However, wrong decision-
making by ADAS or autonomous vehicles can lead to dangerous road situations. Espe-
cially, when level 1, 2 and 3 vehicles are not sufficiently monitored by the human driver.
Therefore, Lengyel et al. (2020) research the behaviour of car-following and lane-changing
systems. They define two critical situations where infrastructure influences the decision-
making of automated vehicles (could be both ADAS-equipped or autonomous). Situation
one depicts an automated vehicle approaching a road section with a lower speed limit.
The lower speed limit causes the automated vehicle to decelerate immediately, while the
following HDV would not decelerate yet, resulting in a situation of possible collision.
In the second situation, an automated vehicle follows an HDV. This HDV will change
lanes, but during this change, the HDV occupies both lanes. Human drivers following
this HDV would just steer out of the way of the lane-changing HDV, but automated
vehicles will detect an incoming vehicle in your lane and thus start decelerating because
of brake assistance causing other following cars to get into a dangerous collision situa-
tion. In both scenarios, higher driving speed was the most important factor resulting
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in collisions. Better reaction times of fully automated vehicles only had limited safety
improvements. Lengyel et al. therefore state that automated features designed on cur-
rent infrastructure are not sufficient and recommend that infrastructure is adapted to
accommodate automated vehicles.

Other research does find safety gains because of automation. Morando and Truong (2017)
and Morando et al. (2018) simulate HDVs and AVs (defined as SAE level 4) on a round-
about and an intersection. They find that potential collisions decrease as AV penetration
rates are high (more than 25% or more than 50%). However, an increase in potential
collisions is seen at lower penetration rates. The increase in collisions at lower penetra-
tion rates is not seen for the simulation of a broader selection of automated vehicle levels.
Miqdady et al. (2023) analyse automation levels 1 to 4 on a freeway for increasing pene-
tration rates and find that conflicts are reduced at both low and high penetration rates.
Arvin et al. (2020) account for safety by two safety indicators, the number of longitudinal
conflicts and driving volatility. They also perform a microscopic simulation to analyse
car-following safety of (cooperative) Adaptive Cruise Control (ACC). Arvin et al. show
that a penetration rate of 40% or more of level 2 and 3 vehicles made large improvements
in driving volatility. Arvin et al. (2020) sees the same results, but adds that CAVs will
lead to a larger improvement in safety because of the broader perception.

In addition to simulation, real-life test incident reports can be analysed. Biever et al.
(2020) assess AV testing incidents in California. From the 115 assessed reports, no reports
state that the AV caused an accident. Incidents involved AVs impacted from the rear
while AVs performed braking, turning or gap acceptance manoeuvres and the side during
lane-keeping. Therefore, Biever et al. think that the difference between HDV and AV
driving styles could cause incidents.

Automation does not only affect safety during operation, but the custom of driving
with automation features could change how people drive in traffic. Therefore, Louw et
al. (2021) conduct an urban simulator experiment to analyse how drivers change their
behaviour after becoming familiar with AV features. While driving AVs or HDVs with
ACC features, the driver is not responsible for keeping the headway. The automated
car-following function will determine the headway for the driver, which is often lower
than the headway maintained in HDVs. Louw et al. find in their experiment that drivers
will maintain lower headways in HDVs because they get used to the smaller headways
from AVs.

Automation seems to have a significant impact on road safety. But how do other road
users perceive this safety with AVs in mixed traffic? Liu et al. (2019) provided respondents
with information on road traffic injuries and deaths and gave them a risk situation of
HDVs or AVs. The respondents had to assign whether and how much they would accept
the risk within the situation. The questionnaire results show that an acceptable risk of
driving an AV has to be at least four times safer than for an HDV.

2.4 Take-over vehicle control situations

Human drivers are still monitoring AV decisions because current consumer vehicles do not
exceed level 3 automation. However, when the driving conditions become too complex
for the AV, the human driver has to regain control. This shift in vehicle control from
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the automated features to the human driver is called a take-over manoeuvre, which
should not be confused with overtaking, where one vehicle passes another. Gold et
al. (2016) use a driving simulator to emulate take-over situations. In the simulator,
participants drive an AV and are involved in non-driving tasks by answering questions.
During the simulation, the AV gets into a situation of operational limits, specified in
the vehicle’s operational design domain, and thus the driver has to take over control
to perform an evasive action. While the non-driving task did not significantly impact
take-over performance, the number of surrounding vehicles in traffic (traffic density) did
decrease take-over performance (Gold et al., 2016). The results show that placing hands
on the steering wheel is mostly rule or skill-based, but performing the evasive manoeuvre
took more time because of the complexity of higher traffic densities. Calvi et al. (2020)
perform a similar simulator experiment, but the participants have to watch a movie whilst
driving in an AV. This requires higher cognitive demand and takes all road attention away
from the driver. The results show that this higher cognitive load results in more dangerous
take-over manoeuvres compared to HDVs.

Next to traffic situations and the human driver aspects, the take-over performance could
be affected by the automation level of the vehicle (McDonald et al., 2019). McDonald
et al. find conflicting studies on take-over performance in AVs, but the contradictory
findings could be the cause of varying automation levels in these studies and different
vehicle parameters. Still, it seems that high-level AVs with short headways result in less
safe take-over situations.

2.5 Social effects of automation

Changes in driving behaviour because of automation do affect both traffic safety and
performance. This means that road users will also encounter different behaviour on the
road. Cascetta et al. (2022) researches the ability of road users to identify the differences
between automated features and HDV driving behaviour. Cascetta et al. find that for
level 2 HDVs, car-following behaviour is perceived as very human-like, while road users
did observe less strict lane-keeping. This does not mean that other road users are not
affected by automated car-following. Soni et al. (2022) perform a real-life field test to
analyse HDV driving behaviour while driving among AVs. They take three behavioural
aspects into account: gap acceptance, car-following, and overtaking. They observe that
HDVs keep a smaller headway towards AVs than other HDVs for gap acceptance, car-
following, and after overtaking an AV. Also, Soni et al. show that knowledge about AV
technology affects the perceived risks of human drivers and results in higher trust during
interactions with AVs. When AVs do impact HDV’s driving behaviour, marking AVs is a
method to inform road users about the surrounding vehicles. However, Fuest et al. (2020)
show that drivers do not perceive an ahead vehicle differently whether it is marked as an
AV or not.

Despite road users not always being able to differentiate between human drivers and
automated features, research does show that HDV behaviour changes due to AV presence.
Gouy et al. (2014) tested how short AV headways impact surrounding HDV behaviour.
The driving simulator experiment results show that HDVs lower their mean and minimum
headway because of driving next to AV platoons. Also, HDVs spend more time under
the headway safety threshold of one second, meaning that more critical situations can
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occur because of the presence of AVs in mixed traffic. Ma and Zhang (2024) use a
web-based simulator to analyse how driving style (defensive, moderate, or aggressive)
influences HDV-AV interactions in comparison to HDV-HDV interactions. They find
that moderate and aggressive drivers are less comfortable in HDV-AV interactions and
adopt a more aggressive driving style. The more aggressive the driving style, the more
likely that drivers will take advantage of the AV’s more defensive driving style. This is
also seen in a real-life analysis. Knoop et al. (2019) analyse the performance of level
2 HDVs in a real-life test. Their test shows that current SAE level 2 vehicles are not
capable of creating platoons larger than three or four vehicles because of car-following
instabilities. They observed that the headway of ACCs is larger than humans desire,
resulting in other vehicles merging into the platoons. However, a larger penetration rate
of level 2 vehicles would result in less aggressive driving vehicles and thus fewer HDV-AV
interactions.

Schwarting et al. (2019) research driver’s selfishness in non-cooperative game theory.
Human drivers are able to observe other drivers and estimate the other driver’s actions
based on their driving style. Schwarting et al. states that this is more difficult for AVs in
HDV-AV interactions. Therefore, AVs have to receive a selfish score from the other vehicle
to adjust their decisions accordingly. In this research, they found that incorporating such
a score can reduce prediction errors in human trajectories by 25%.

AVs will also interact with pedestrians in urban areas. Simulator research is conducted
to analyse how pedestrians will behave towards AVs. Rad et al. find that the pedestrian’s
behaviour at crossings depends mostly on their age and knowledge of AV technology. In
this situation, AVs signal their lights when they will stop for the pedestrian. Pedestrians
with an age below 40 cross the street twice as much as older pedestrians (Rad et al., 2020).
Jayaraman et al. (2018) also see a link between knowledge of AV technology and crosswalk
behaviour. However, in their research, the driving style of the AV varies in experiments.
The results show that aggressive driving AVs prevent more pedestrians from crossing the
street at non-signalised crosswalks. This behaviour is not seen at signalised crosswalks.

2.6 Knowledge gap

The literature review shows that the introduction of automation into traffic has and will
result in increased traffic performance and safety. A variety of vehicle configurations in
mixed traffic have been analysed numerically, in driving simulators, but mostly in micro-
scopic simulation. However, in some cases, the differences between HDV and AVs become
blurry because conditional car-following functionality, such as ACC, is considered fully
autonomous in freeway situations. At lower penetration rates there is no improvement of
traffic performance or even a reduction in traffic performance is found. However, Miqdady
et al. find that simulation of SAE level 1 to 4 vehicles shows a reduction in traffic conflicts
for both low and high penetration rates. This could mean that the smaller increments of
automation in the vehicle configurations could reduce the differences in driving behaviour
and thus lower traffic disruptions.

Also, the use of ACC is not always autonomous. The conditional car-following feature as
well as any lateral movements need human monitoring until level 3 automation. Literature
shows that these take-over situations are not always safe and McDonald et al. find that
short headways cause less safe take-over situations. Especially short headways are one of
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the important aspects of improving road capacity and thus traffic performance.

In most mixed traffic studies, human factors are not taken into account. Calvert and
van Arem therefore state that AVs are simulated more accurately than HDV, which will
impact simulation results. The importance of human factors is emphasised by findings
that driving style influences social road interactions. If AVs show a defensive driving
style, HDVs will try to gain from them. While on the other hand, an aggressive AV is
perceived as more dangerous.

These aspects indicate that existing studies lack detailed modelling to capture nuanced
differences between automation levels and, particularly regarding conditional automation
features and human factors in mixed traffic environments. This limitation contributes
to inconsistent and sometimes conflicting outcomes for traffic performance and safety.
Therefore, a more refined modelling approach is required to account for human driving
behaviour, vehicle interactions, and incremental levels of automation.

2.7 Research scope

These findings emphasise why the research question is relevant and that indeed the driving
behaviour should be analysed within mixed traffic. Therefore, this research will use
microscopic simulation to simulate vehicles with automation increments in mixed traffic
to gain insights into traffic performance and safety for different penetration rates. These
vehicle configurations will account for conditional ADAS and autonomous features and
take human factors into account. Also, to allow for sufficient road interactions, the
simulation will be based on a multi-lane road.

As the knowledge gap states that the differences in driving behaviour are most impor-
tant for mixed traffic performance, this research will focus on the implementation of
human factors into driving models and not research all different car-following and lane-
changing models existing for traffic simulation. Also, take-over control situations, where
autonomous features shift back control to the human driver, are important for traffic
safety but first require the implementation of human factors. When both human and
autonomous simulation are defined accurately, a framework could be constructed for how
such a take-over control manoeuvre would be built into the vehicle model. This will be
discussed in the recommendations in Chapter 6.5, however, it will not be part of this
scope.

To quantify traffic performance and traffic safety, metrics used by the reviewed literature
are selected to form the traffic KPIs. Traffic performance will be assessed by accounting
for traffic flow, speed, density and travel time. Traffic safety is assessed by accounting for
car-following conflicts. Miqdady et al. (2023) shows that these conflicts can be identified
by calculating the time-to-collision for vehicles.
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3 Methodology

This chapter provides a comprehensive overview of the methodologies used in this re-
search, aimed at analysing the impact of varying levels of vehicle automation, consid-
ering human factors, on traffic performance and safety on a multi-lane freeway with an
on-ramp. Building upon insights from the literature review, this chapter will present the
approach taken to address the discussed knowledge gap. This includes a focus on human
factors, as current traffic simulations offer only limited representations of human driving
behaviour. Additionally, small increments in vehicle automation will be used to analyse
the effect of current and near-future available ADAS features and AVs. Differences and
similarities between automation levels will be discussed explicitly.

To address these research gaps, this chapter outlines the methodologies designed to answer
each research question in a structured and targeted manner. Chapter 3.1 will present how
human factors and automated driving features are incorporated into the vehicle models
and discuss different microscopic simulation software packages. Chapter 3.2 discusses the
vehicle interactions on multi-lane freeways with an on-ramp and presents the experiment
setup to analyse those interactions. The effects of automation levels of vehicles on traffic
KPIs are then discussed in 3.3, where the experiment setup is discussed.

3.1 Sub-question 1

To answer the research question ”How can driving behaviours and automation-specific
features across different automation levels be modelled for a multi-lane freeway environ-
ment?”, the different automation levels that apply to the freeway scenario need to be
identified. While the SAE provides a framework for vehicle automation levels, the cor-
responding driving behaviour is not specified. Therefore, best practices in simulation as
well as distinct vehicle characteristics are explored. These findings determine how the
vehicle models used in the traffic simulation will be configured.

3.1.1 Simulation of autonomous vehicles

AV driving behaviour remains relatively unknown since AV features are subject to con-
tinuous development and can have different designs, which results in varying model pa-
rameters. Additionally, since higher automation-level AVs have not entered the market
or have done so only in limited numbers, there is insufficient traffic data to determine
model parameters or validate simulation outcomes accurately.

Vehicle driving behaviour in traffic simulations is determined by underlying car-following
and lane-changing models. Sadid and Antoniou (2023) state that it would be important
to calibrate such driving models with real-world data, however, the currently available
field data is limited. Therefore, they research what factors within car-following models are
important to simulate AVs. Sadid and Antoniou take the following factors into account
to simulate AVs:

• Headway: AVs will maintain different headway distances than human drivers. For
example, advanced AVs, such as CAVs, can maintain a smaller headway compared
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to human drivers due to precise control of the vehicle and understanding of its
environment.

• Reaction time: AVs have a negligible reaction time compared to human drivers.

• Perfect driving: The controller has precise control of the vehicle’s driving be-
haviour.

• Driving style: AVs can exhibit different driving styles from cautious to more
aggressive driving styles.

These factors can be incorporated into already existing car-following models. Adjusting
existing behavioural model parameters is one of the most frequently used methods to
incorporate AV behaviour in vehicle models (Sadid and Antoniou, 2023 and Olstam et
al., 2020). As Olstam et al. note, this approach has the advantage of allowing simulation
of unverified AV behaviour by adjusting parameters relative to human driving behaviour.
Thus, details of AV decision-making processes are not necessary to achieve AV-like driving
behaviour in simulations. Therefore, this research uses findings on driving behaviour in
mixed traffic to design vehicle models. For AVs, this will include the four listed factors
from Sadid and Antoniou (2023). Chapter 3.1.4 will present how these factors are applied
to reflect the different automation levels.

3.1.2 Simulation of human drivers

Car-following and lane-changing models are designed to recreate real-life traffic dynam-
ics and decision-making. The earliest car-following model is the Gazis-Herman-Rothery
(GHR) model, which determines the vehicle’s acceleration based on its relative speed to
its leader and the headway distance (Ahmed et al., 2021). Since car-following and lane-
changing models are algorithmic, they are inherently closer to the nature of AVs than
HDVs. Therefore, AVs are simulated more accurately than HDVs (Calvert and van Arem,
2020). Furthermore, models created from an engineering perspective make bold assump-
tions that are not suitable for human driving behaviour. For example, Saifuzzaman and
Zheng (2014) state that such car-following models focus on physical driver signals rather
than psychological reactions, model driver actions based on optimised traffic performance,
model driver perception with inputs they cannot fully perceive. Consequently, mathemat-
ical and logic-based models provide an overly simplistic representation of human driver
decision-making.

To make car-following models more human-like, it is important to consider several key
aspects. Saifuzzaman and Zheng (2014) present a list of human factors that are crucial
for human driving behaviour. An explanatory overview of these factors is presented here.

• Personal characteristics and driving style: Human drivers show different driv-
ing behaviours based on socioeconomic characteristics and driving experience.

• Driving needs: Driving behaviour is influenced by the purpose of the trip.

• Reaction time: Reaction time affects driving behaviour and human drivers have
different reaction times in different situations.
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• Estimation errors: Humans rely on estimations to perceive the traffic situation,
this process can be prone to errors.

• Perception thresholds: Because humans rely on estimations, small changes in
stimuli will not be noticeable by the driver.

• Imperfect driving: Human drivers can make unintended vehicle control errors
that do not reflect their intentions.

• Temporal anticipation: Human drivers can estimate future traffic situations.

• Spatial anticipation: Human drivers take the direct follower vehicle and more
vehicles ahead into consideration.

• Distraction: Attentiveness of drivers affects driving performance.

• Desired speed, spacing and time headway: Human drivers exhibit driving
behaviour that corresponds to their preferred levels for speed, following distance,
and time headway.

Models such as the Wiedemann model try to incorporate human aspects. TheWiedemann
model is a psychophysical model that incorporates human factors by adjusting driver
attentiveness for the relative speed and the headway distance (Ahmed et al., 2021).
Also, the Wiedemann model incorporates different driving capabilities by using normal
distributions for its parameters.

Saifuzzaman and Zheng also show that existing car-following models (including the
Wiedemann model) try to incorporate human factors by accounting for:

• Driver perception cannot perceive very small input changes.

• Include attentive zones based on headway distance.

• Drivers estimate time-to-collision based on visual angles rather than longitudinal
distances.

• Include risk-taking behaviour.

• Include human driver errors and distractions.

These efforts show that it is possible to include key aspects from the human factors list
in vehicle models to account for human driving behaviour. So, to allow this research to
simulate human drivers more realistic, personal characteristics, reaction time, distraction,
desired speed, and desired headway are taken into account.

Simulation of mixed traffic should account for behaviour in HDV-AV traffic interactions.
Raju and Farah (2020) say that current micro-simulations do not adjust driving behaviour
based on vehicle types in the traffic situation. However, they see this as an important
limitation towards realistic simulation of vehicle automation types in mixed traffic.

The literature study shows conflicting findings for human driving behaviour among AVs.
Soni et al. (2022) and Gouy et al. (2014) show that HDV headway decreases while driving

15



Master Thesis J. Poland

in mixed traffic among AVs with short headways. Fuest et al. (2020) show that human
drivers do not recognize AVs easily and when an AV is marked as one, no changes are seen
in car-following behaviour. Fuest et al. do think that humans will change this behaviour
over time as they get more familiar with driving in mixed traffic.

This research does include human driving behaviour adaptations due to the presence of
level 3 vehicles. Another research from de Zwart et al. (2023) shows that HDVs indeed
adopt AV behaviour when penetration rates increase. Human drivers show adaptations
for smaller headways and smaller speed variations in cruising scenarios. The AVs used in
this research are AVs with very small time headway settings that do not reflect nowadays
ACC systems, but rather represent level 3 vehicles or CAVs. Because it is understandable
that vehicles with significantly different behaviour will cause human drivers to adapt, this
research will account for adaptation in vehicle interactions regarding time headway. It is
assumed that the smaller variety in speed will be achieved automatically by increasing the
penetration rate of level 3 vehicles since human drivers will need to follow these vehicles.

Additionally, aggressive HDVs will try to gain an advantage over defensive AVs. As seen
in the literature study, the driving style of HDVs highly influences HDV-AV interactions.
This is logical since the road is a social space where HDVs try to communicate by their
driving actions. Personality influences people’s interactions and so does it on the road.
AVs observe their surroundings but do not understand the intentions of other road users
(Brown and Laurier, 2017). Therefore, AVs do not participate in road interactions in the
same way HDVs do. Also, AV manoeuvres are perceived differently by human drivers.
More aggressive drivers perceive these actions as more aggressive and unsafe, while de-
fensive human drivers are more likely to perceive positive interactions (X. Li et al., 2023).
This perception of aggressive human drivers towards AVs leads to HDVs taking advantage
of traffic situations (Ma and Zhang, 2024).

3.1.3 Automation features

The previous paragraphs were aimed at the simulation of HDVs and AVs. However, the
different levels of automation are not covered. Therefore, the automation features in
automation levels are discussed here, based on the clearly described levels from the SAE.

Since this research simulates mixed traffic on a freeway, the only automation levels to
distinguish are level 0, 1, 2 and 3 vehicles. The differences between level 3, 4 and 5
vehicles lie more in their operational design domain, which describes in what specific
situations the automation features are in control of the vehicle. Now the freeway is
considered a suitable situation for a level 3 vehicle, so this means that a vehicle will
become autonomous from level 3 onwards. This is not completely true when take-over
control requests are taken into account which could technically still occur for level 3
vehicles. However, these take-over control situations are not simulated in this research.
Furthermore, level 4 and 5 vehicles are considered more advanced than level 3 vehicles,
which could have implications for specific model parameters, however, the differences
in autonomy are just too small to create significant differences between the higher level
automation vehicles in this freeway scenario. That is why no distinction is made between
automation level 3, 4 and 5 vehicles.

While the level definitions from SAE are great for showing the boundaries of the au-
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tomation levels, specific automation features are chosen to provide a practical basis for
the automation levels in this research. Dutch research from the Rijkswaterstaat institute
shows that many ADAS features are already used (MuConsult in opdracht van RWS,
2023). Applicable features, divided into categories of temporary, longitudinal and lateral
assistance, for a freeway scenario are:

• Temporary assistance

– Emergency braking system

– Forward collision warning

– Lane departure warning

– Blind spot warning

• Longitudinal assistance

– Cruise Control (CC)

– ACC

• Lateral assistance

– Lane keep assist

Additionally, newer vehicles enter the market with more ADAS features. Huang et al.
(2018) research supports features of level 2 vehicles, which contain active lane change
assistance to perform a lane change manoeuvre. The active lane change assist will perform
a safe lane change manoeuvre when the driver requests one. However, a level 3 vehicle is
capable of planning lane changes by itself and thus becomes fully autonomous within its
operational design domain (Oh et al., 2021).

3.1.4 Automation level configurations

The previous paragraphs have discussed key elements in simulating human- and au-
tonomous driving behaviour. Also, the different automation features for automation
levels are discussed. Now, these findings are used to explain how the vehicle model for
each automation level will be built. A summary of all vehicle model concepts is shown
in Table 1.

Level 0 automation states that a vehicle only provides temporary support by ADAS
features such as forward collision warning, emergency braking, and blind-spot warning.
The driving tasks for car-following and lane-changing are performed by the human driver
and are affected by the current task load. This task load also influences the driver’s
perception and reaction time. Reaction time is defined by maximum and minimum values
and driving traits such as driving style and speed adherence are set by distributions. Also,
minimum and maximum headway settings are set by values found in the literature. This
allows the level 0 vehicle to include personal characteristics, reaction time, distractions,
desired speed, and desired headway into account for human factors.

For a level 1 vehicle, additional ADAS is present to support the car-following task. This
feature will be equivalent to nowadays (A)CC systems. This automated car-following

17



Master Thesis J. Poland

affects the response time, headway and acceleration of the vehicle. While take-over control
manoeuvres are not simulated, the driver is still responsible for lane-changing behaviour
and can adjust ACC settings. Therefore, a distribution is added to the vehicle’s speed.
Because the driver is supported for car-following tasks, the driving task is lower. Also,
the car-following task will now become defensive which means that social pressure is not
taken into account anymore. This configuration allows the level 1 vehicle to perform
automated car-following but still account for human factors for lane-changing decisions.

A level 2 vehicle is supported for both car-following and lane-changing tasks. Support in
lane-changing allows the human driver to request a lane change and the active lane change
assist system will perform the manoeuvre. Therefore, the driving task load decreases more
and the driving style becomes defensive. At level 2 the driver is still responsible, so a
distribution is added to its speed to account for human comfort settings. At this level,
only the driving speed is subject to human personality traits. Other human aspects such
as distraction are excluded. Also, the desired headway and reaction time are set to values
that represent the (A)CC car-following system.

At level 3, both car-following and lane-changing are controlled by the automated features
and thus the driving load disappears for the human driver. Additionally, because the
freeway scenario falls within the operational design domain of level 3 vehicles, no human
control is expected. This means that the variability in speed adherence will be lower.
No other distributions are used to set parameter values for a level 3 vehicle. This makes
level 3 even more AV-like because it will use parameters to represent AV behaviour for
headway, reaction time, and driving settings. No human factors are included anymore.

Table 1: Concepts of vehicle model configurations.

To account for changes in human driving behaviour due to surrounding traffic, interactions
between vehicle types are included. Table 2 shows how driving behaviour changes for the
following vehicles when they interact with other automation levels. Since HDVs show
smaller headways when they drive among AVs, the headway becomes smaller for level
0 vehicles when they drive in between level 3 vehicles. This is only applied for level 3
vehicles since level 3 is the only automation level with a lower minimum headway than
level 0 vehicles, see Chapter 4.6. Furthermore, human drivers are in charge of lane-
changing for level 0 and level 1 automation, so they will be less cooperative towards level
3 vehicles where the level 0 and level 1 drivers can observe that the level 3 vehicle is not
controlled by the human driver.
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Table 2: Matrix for changes in driving behaviour due to vehicle type interactions.

The described configurations have direct implications for the vehicle models used in the
simulation. The precise description of the designed vehicle models is further discussed
and researched in Chapter 4.

3.2 Sub-question 2

The vehicle automation level configurations from Chapter 3.1 will be used to create vehicle
models for traffic simulation to analyse their driving behaviour and answer the second
research question: ”How do car-following and lane-changing interactions change across
different levels of automation?”

3.2.1 Freeway layout

The simulation will explore a multi-lane road network with a (merging) on-ramp. The
main research question specifies the situation of a multi-lane freeway which allows vehi-
cles to perform lateral movements. These lateral movements will show emerging vehicle
interactions and prevent the simulation of a single string of vehicles. To increase the num-
ber of interactions and make the situation more complex, an on-ramp is added, resulting
in the road network displayed in Figure 2. This on-ramp adds a new flow of vehicles to
the freeway flow, causing a higher traffic flow for downstream lanes. The on-ramp forces
vehicles to perform lateral movements, causing turbulence in the merging influence area.
This should disturb car-following planning and increase the task load for human drivers.
It is this combination of the effects on traffic demand, car-following, lane-changing, and
human factors that make this situation suitable for analysing mixed traffic interactions.
The total length of the freeway is 2,000 meters. This allows the traffic stream to widely
show free-flow behaviour before and after the on-ramp and analyse merging behaviour in
the merging influence area, or turbulence area. The lengths of the on-ramp and influence
area are determined by Rijkswaterstaat (2022).
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Figure 2: Road network layout for a two-lane freeway with a merging ramp. Including
lengths of pre-ramp link AB, merging ramp link BC, and post-ramp link CD. The merging
ramp influence area is depicted as an orange area. Developed by the author.

The multi-lane freeway is chosen over an intersection road network. An intersection
situation could introduce more complexity and thus more complex behaviours affected
by the automation level. However, the current ADAS equipped in the Dutch vehicle
fleet is aimed at short-term warnings, car-following support and lane-keeping support
(MuConsult in opdracht van RWS, 2023). These ADAS features cannot be used or are
less used in intersection scenarios. So, for research aiming to understand the differences
and effects of all automation levels on traffic, the intersection scenario is less suitable.

3.2.2 Scenarios

A selection of scenarios is required to test the mixed-traffic simulation for the main
research question. To investigate the different behaviours of the vehicle models, each
vehicle model is simulated for a 100% penetration rate. While these scenarios can clearly
show the differences between automation levels, a mixed traffic scenario is included of
25% per automation level to ensure that their driving behaviour is sampled for the same
traffic conditions. Additionally, a scenario is simulated for 50% level 0 and 50% level 3
vehicles to analyse how human adaptations from Table 2 impact the driving behaviour
of both the human drivers and the level 3 vehicles. Therefore, the following scenarios are
listed in Table 3:

Table 3: Scenarios with varying vehicle automation penetration rates for the analysis of
driving behaviour.

Scenario Vehicle Models
Level 0 Level 1 Level 2 Level 3

100-0-0-0 100%

0-100-0-0 100%

0-0-100-0 100%

0-0-0-100 100%

25-25-25-25 25% 25% 25% 25%

50-0-0-50 50% 50%

However, the designed freeway can be subject to very different situations because of
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traffic demand. Whenever the road is quiet, vehicles will maintain their lane and continue
their journey without much interaction with other vehicles. Relevant situations can be
identified by searching for the critical road capacity. The literature seems to show that
high level AVs, in this research represented by level 3 vehicles, are capable of increasing
road capacity because of lower headways and less variation in speed. Congestion occurs at
the critical capacity and is disastrous for traffic performance. Also, bottlenecks, such as a
merging area, bring more variance in vehicle speeds, which can result in more congestion.

The critical capacity is dependent on two variables: Critical density, and critical speed.
This can also be expressed as traffic density and flow as shown in Figure 3. The left
side of the curve, called the free flow, is the situation where traffic performs well. The
fundamental diagram seems to show a gradual decrease in flow when congestion starts.
However, in real life, an immediate decrease of 5-25% in flow (road capacity) occurs at
the second congestion appears (van Lint, 2019). This is caused by the increase in the
driver’s preferred follow-distance and causes the driver to lower its speed. It would be
ideal when automation features could shift the critical capacity up and thus extend the
free flow part of the curve to improve traffic performance for higher demands. Therefore,
it is interesting to simulate the scenarios for a traffic demand where the critical capacity
is reached. The base scenario of 100% level 0 vehicles will be explored in Appendix III:
Exploratory analysis to determine suitable traffic demand values for the main freeway
lanes and the on-ramp.

Figure 3: Fundamental diagram for traffic density and flow. Retrieved from Majid et al.,
2014.

3.2.3 Vehicle interactions

To be able to analyse changes in vehicle interactions for different automation levels, the
specific interactions need to be identified. The automation levels have different driving
behaviour for both the car-following and lane-changing models. Therefore, the following
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driving behaviour will be analysed:

• Vehicle car-following acceleration [m/s2];

• Vehicle following headway [s];

• Vehicle headway during lane changes [s];

• Number of lane changes;

• Number of switches in leader vehicles;

These variables will be analysed for the main lanes of the freeway and the on-ramp.
Vehicle grouping is the phenomenon where vehicles will start driving in a convoy and
leave no space between the vehicles that could be taken by others. This is an extra
variable that can help to explain merging behaviour.

3.3 Sub-question 3

The same simulation setup from Chapter 3.2 is used to answer: ”How do vehicle automa-
tion levels in mixed traffic affect traffic KPIs”. The analysis is also based on different
automation levels. However, other penetration rates are used and other variables are
analysed to get insights into traffic performance and safety.

3.3.1 Scenarios

Vehicle driving behaviour is analysed for scenarios of 100% penetration rates per automa-
tion level (scenarios 100-0-0-0, 0-100-0-0, 0-0-100-0, and 0-0-0-100), a scenario with equal
penetration rates across automation levels (scenario 25-25-25-25). As we have stated in
the introduction as well as in the literature review, the vehicles with higher automation
levels are introduced to the road gradually resulting in mixed-traffic situations. The tran-
sition of the vehicle fleet from human drivers to AVs is very uncertain (Olstam et al.,
2020)). Therefore, seven other scenarios are designed to account for intermediate pen-
etration rates. While penetration rates are hard to predict, Tillema et al. (2020) have
broad qualitative forecasts based on different technology development and acceptance
scenarios. However, rigid penetration rate values are required for mixed traffic simula-
tions, like Miqdady et al. (2023) has done. Therefore, this research assumes that when
higher automation level vehicles are introduced to the vehicle fleet, lower automation
vehicles will gradually fade out based on the diffusion of innovation. This is also what
the European Road Transport Research Advisory Council expects to happen in their
development path for automated driving (European Road Transport Research Advisory
Council, 2017). This results in the following list of penetration rates in Table 4.
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Table 4: Scenarios with varying vehicle automation penetration rates for the analysis of
traffic performance and safety.

Scenario Vehicle Models
Level 0 Level 1 Level 2 Level 3

100-0-0-0 100%

80-20-0-0 80% 20%

60-20-20-0 60% 20% 20%

40-20-20-20 40% 20% 20% 20%

25-25-25-25 25% 25% 25% 25%

0-33-33-33 33% 33% 33%

0-0-50-50 50% 50%

0-0-20-80 20% 80%

0-0-0-100 100%

To analyse what impact the higher automation features have on traffic each scenario
is compared incrementally. So, scenario 80-20-0-0 will be compared to scenario 100-0-
0-0 with a lower penetration rate for automation. This stepwise approach allows for
observing the gradual effects of higher automation penetration. The scenario of only
level 0 vehicles (scenario 100-0-0-0) is considered the baseline scenario since no higher
automation features are present.

Additionally, the effect of human factors is tested by introducing driver distractions. The
literature review has shown that situational awareness changes when the driver’s attention
is divided. Since this research seeks to simulate human drivers and is also aimed at traffic
safety, traffic implications for distracted drivers are taken into account in two ways:

1. In-vehicle distraction;

2. Static roadside distraction.

Bamney et al. (2022) find that distractions involving cognitive, visual and manual en-
gagement lead to the highest risk in near-crash situations. These types of distractions
correspond to in-vehicle distractions, which simulate distractions such as incoming calls,
navigation prompts, and other secondary tasks. The high required engagement will there-
fore result in a high workload affecting the driver’s mental model. The in-vehicle distrac-
tions can occur randomly throughout a car ride, so the simulation will randomly select
GTUs that will experience a higher workload due to secondary tasks as depicted in Figure
4.
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Figure 4: Scenario of randomly applied in-car distractions for drivers. Developed by the
author.

Secondary tasks are a major subject in driver workload research and occur all the time in
real-world car rides. Because this is so common for human drivers, in-vehicle distractions
are considered part of the vehicle model and thus are always present in the listed scenarios.

A static roadside distraction, such as a crash on the other side of the road, is not always
present. Roadside distractions may require less engagement because the driver is not
manually involved. However, it will affect many drivers at the same time and place. The
so-called ”rubbernecking” phenomenon is observed when drivers are visually distracted
by events or objects alongside the road and lower their speed (Reina, 2021). Furthermore,
Divekar et al. (2012) state that external distractions increase due to video billboards and
message signs. Therefore, including scenarios with static roadside distractions will be
helpful to get safety insights.

To simulate a static roadside distraction, GTUs that perceive this distraction will expe-
rience an extra workload. This workload will imitate the diverted attention to the object
alongside the road. Figure 5 presents the setup of the fixed environmental distraction
and which GTUs are affected. The distraction point is set to the start of the merging
area. Because of this placement, distracted drivers will experience a higher workload in
an already demanding situation. Therefore, it is expected that this higher workload will
show clear effects on driving behaviour.

Unfortunately, no research has been found on the specific distances before and after a dis-
traction point where human drivers become distracted. Still, it is known that distraction
effects are not only during the distraction, but driver anticipation skills remain weakened
after a distraction (Borowsky et al., 2016). Additionally, a visual distraction such as a
crash can also be seen from the vehicle’s rear-view mirror. Therefore, it is assumed that
drivers will be visually distracted within their perception range. This range is set by the
look-forward and look-back distances of the driver.

Figure 5: Scenario of an external distraction affecting nearby drivers. The distraction
balloons show the distraction level (blue: low, yellow: medium, red: high). Developed
by author.
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The addition of a roadside distraction has introduced a new variant for the penetration
rate scenarios. Because all scenarios are simulated both with and without a static road-
side distraction, the resulting number of simulation runs is set to 18 runs. These will
provide the data used for analysing the impact of increasing automation levels on traffic
performance and safety.

3.3.2 Key performance indicators

To determine the effects of vehicle automation levels on traffic, KPIs are designed. The
main research question already shows that this paper focuses on traffic performance and
safety. Variables are identified to measure the KPIs. The following variables are used:

Traffic performance:

• Vehicle speed [m/s];

• Vehicle travel time [s].

• Traffic flow [vehicles/s];

• Traffic density [vehicles/s];

Traffic safety:

• Number of critical time-to-collision measurements.

In this case, a time-to-collision (TTC) is considered critical whenever it is lower than
the vehicle’s response time. However, since automated features have no reaction time
in this research, a value of 0.5 s is considered the threshold. Literature shows that
many different values can be chosen for this threshold (Miqdady et al., 2023). However,
when the emergency brake and low reaction times are taken into account and the lowest
headway parameters are set just above 0.5 s, this seems the most suitable threshold. The
time-to-collision is calculated while taking the speed difference between the vehicle and
its leader into account. It does not exist when the leader vehicle drives faster because a
collision can only occur when the preceding vehicle approaches the leader vehicle. Thus,
time-to-collision is determined as follows:

TTC =
headway distance

vehicle speed− leader vehicle speed
(1)

The shown variables are not only used internally to measure KPIs but will also be pre-
sented in the analysis of simulation output. For this analysis, the variables will be ex-
pressed in different units since the internal units do not match commonly used units
in real-world driving applications. For example, people are more likely to understand
the magnitude of speed when it is expressed in [km/h] rather than in [m/s]. Therefore,
analytical graphs shown in Chapter 5 will display other units for these variables.
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4 Vehicle models in OTS

As discussed in Chapter 3.1, SAE defines six levels of vehicle automation, from which
four levels can be differentiated in freeway situations, and each level comes with its own
characteristics. These characteristics are incorporated in driver behaviour models to bring
the different levels of automation to the traffic simulation. This chapter will research
which simulation packages are capable of modelling these different vehicle models in
Chapter 4.1. How car-following and lane-changing behaviour models should be configured
in Chapter 4.2 and 4.3. Furthermore, the mental model is discussed to see how driving
task workloads affect human drivers in Chapter 4.4 and how distractions play a role in
Chapter 4.5. Finally, Chapter 4.6 uses the insights gained from OpenTrafficSim (OTS)
behaviour models to determine what parameter values are selected to represent the level
0, 1, 2, and 3 vehicles.

4.1 Software package for traffic simulation

The research reviewed in the literature review has been conducted with different software
packages to run traffic flow simulations. The simulation package Vissim seems to be
the most used software package for traffic simulations. Vissim is a commercial simula-
tion software package but other researchers use open-source simulation packages such as
SUMO, Aimsun or OTS.

All four packages are capable of microscopic traffic simulations. It is possible to build a
road network and specify demand data, whether this is build in an integrated editor, in
code or by the means of importing files. Also, various road users such as pedestrians or
specific vehicle types can be defined in the simulation packages. For this research, the
applicable differences between those packages lie in the availability of driving models.

Table 5 is constructed to provide a clear overview of the available models in Vissim
(Zeidler et al., 2019 and Saifuzzaman and Zheng, 2014), SUMO (Barceló et al., 2010),
Aimsun (Barceló et al., 2010 and Saifuzzaman and Zheng, 2014), and OTS (Schakel et al.,
2010, Schakel et al., 2012 and van Lint and Calvert, 2018). Be aware that the driving
behaviour is dependent on core driving models such as car-following and lane-changing
models. However, OTS is unique among these packages in its inclusion of a mental
model that simulates human cognitive processes. This model affects how perception is
integrated into both car-following and lane-changing behaviours, enabling a more realistic
representation of human driving behaviour.
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Table 5: Overview of simulation package driving models.

Simulation package Driving behaviour models Model features

Vissim Car-following: Wiedemann 74 / 99 models - Perception thresholds

Lane-changing: Sparmann model - Speed incentive

SUMO Car-following: Krauss model - Imperfect driving

Lane-chaning: SUMO lane-changing model - Route incentive

Aimsun Car-following: Gipps model - Desired speed
- Desired acceleration
- Reaction time

Lane-changing: Gipps model - Speed incentive
- Route incentive

OpenTrafficSim Car-following: IDM+ - Desired headway
- Desired speed
- Social pressure

Lane-chaning: LMRS - Speed incentive
- Route incentive
- Hindering incentive

Mental model: Fuller - Driver capability
- Dynamic reaction time
- Dynamic workload
- Car-following adaptations

It is possible to extend the existing models in these packages and adjust various parame-
ters or processes to achieve human driver or AV behaviour. However, this research is not
aimed at the design of new frameworks, so a simulation package is chosen because of its
out-of-the-box functionalities.

When considering human factors, OTS is the most suitable simulation package due to
its mental model, which allows the simulation to differentiate vehicle models based on
their autonomy. While autonomous vehicles are controlled by algorithms, human drivers
rely on cognitive processes, which is incorporated by the mental model. This model
manages the perception of the driver and adjusts its reaction time and car-following
behaviour accordingly (van Lint and Calvert, 2018). Additionally, the car-following model
simulates social pressure, enabling the simulation of tailgating, and the lane-changing
model contains a social incentive. These social aspects further differentiate human drivers
from automated driving controllers.

In comparison, Vissim accounts for human perception only through perception thresholds,
lacking other cognitive factors that affect driving behaviour. Aimsun provides basic
parameters like desired speed and acceleration factors, and SUMO introduces human
factors solely by adding variability to the desired speed. Thus, OTS is preferred over
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Vissim and SUMO and Aimsun do not include any human perception features, so neither
are suitable for this research.

These considerations are fully aimed at the capability of simulating human drivers. How-
ever, this research also includes automated driving features to simulate level 1, 2 and 3
vehicles. As discussed earlier in this chapter, automated driving features will be modelled
by adjusting existing driving models. Thus, when the parameters for the car-following
and lane-changing models in OTS are adjusted for automation levels and the mental
model does not affect their behaviour, also the level 1, 2 and 3 vehicles can be simulated
in OTS.

4.2 Car-following model

In OTS, the car-following behaviour is based on the IDM+ model. The IDM+ model is
designed by Schakel et al. (2010) to show realistic shock-wave patterns and to accommo-
date higher capacity levels than the original IDM model. The IDM+ model determines
whether the vehicle is in a free traffic stream or following another vehicle. Based on
this state, the model determines the appropriate acceleration according to input vari-
ables such as comfortable deceleration, maximum acceleration, acceleration flattening,
and speed adherence. The logic from the IDM+ model is explained by Schakel et al.
and is available in the OTS code. However, a block diagram in Figure 6 is created to
provide a practical overview of the vehicle’s decision-making regarding the car-following
acceleration.

To account for interactions between level 0 and level 3 vehicles, headway settings are
adjusted when a level 0 vehicle is positioned between level 3 vehicles. Therefore, the
following and leading vehicles around a human driver are tracked. If both surrounding
vehicles have level 3 automation, the human driver adjusts its minimum time headway
parameter (Tmin) to approach the time headway of a level 3 vehicle. This adjustment
is made proportionally, based on the human driver’s social speed sensitivity parameter
(socio).
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Figure 6: Block diagram of GTU acceleration selection by IDM+ model in OTS. Devel-
oped by the author.

4.3 Lane-changing model

Lane changes are managed by the LMRS model. The LMRS model is designed to ac-
company existing car-following models and shows realistic lane-changing decision-making
(Schakel et al., 2012). To incorporate realistic lane change behaviour, LMRS does not
only take lane change incentives into account but also accounts for the desire to change
lanes. The model divides the desire to change lanes into four stages: no lane change,
change lanes when free, match acceleration with the other lane to change lanes (syn-
chronisation), and provide space for other vehicles to change lanes (cooperation). By
accounting for different desires to change lanes, realistic lane-changing interactions ap-
pear within the simulation. In addition to the presented LMRS model by Schakel et al.,
a block diagram is created in Figure 7 to show the lane-changing process for the vehicle.
This block diagram for the LMRS model is derived from both Schakel et al. and the OTS
LMRS code.

The block diagram of the LMRS model shows that the lane change desire is based on
the combination of the driver’s perception and the intended route. These are required
to determine which incentives are applicable and how much they contribute to the lane
change desire. The following lane change incentives are included:

• Route incentive: Contribute to lane change desire based on the required lane
changes to follow the intended driving route.

• Speed incentive: Contribute to lane change desire by considering gains in speed.
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• Lane-keeping incentive: Contribute to lane change desire by compliance to free-
way rules to keep right or left.

• Socio-speed incentive: Contribute to lane change desire based on hindering other
traffic.

The route, speed and lane-keeping incentives will also apply for automated lane-changing
since an AV controller will be designed to drive its route as best as possible and adhere
to local laws. However, since AVs are not communicating, they have no understanding of
the traffic conditions past their direct environment. Therefore, the socio-speed incentive
will not be applicable as it is for human drivers who have a more complete perception
to understand traffic conditions. The difference will be made by providing a social lane-
changing sensitivity parameter for human drivers, while this sensitivity parameter will
be zero for AVs.

Additionally, in interactions with level 0 and level 3 vehicles, aggressive human drivers
will try to gain an advantage over the level 3 vehicles. Therefore, it is assumed that
level 0 vehicles will have varying behaviour in lane-changing cooperation. To simulate
this adaptation, the Dcoop threshold to start lane change cooperation is increased by the
social lane-changing parameter (sociolane). The social parameter is only added to the
default Dcoop threshold when the cooperation is for a level 3 vehicle.
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Figure 7: Block diagram of lane change decision-making by the LMRS model in OTS.
Developed by the author.

4.4 Mental model

As can be seen in the block diagrams of both the IDM+ and LRMS models, perception
is required to determine valid accelerations for the GTU and check whether lane changes
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are possible. This perception consists of multiple layers of perception to control what
the GTU is capable of perceiving. To get an understanding of its environment the GTU
uses DirectEgoPerception to keep track of its own dimensions, speed and acceleration,
DirectInfrastructurePerception to perceive lanes and speed limits, DirectNeighborsPer-
ception to account for surrounding vehicles, AnticipationTrafficPerception to anticipate
the speed of surrounding vehicles, and DirectIntersectionPerception to perceive inter-
section conflicts. This information is stored to provide an understanding of the GTU’s
environment for the behavioural models.

In real life, it is the human driver who must perceive all this information while executing
driving tasks. This creates a high mental workload, which can at times exceed the driver’s
capacity to process and respond effectively. Therefore, the Fuller model is applied to
manage the balance between task demand and task capacity. This is a task-capability
interface described by Fuller (2000), where the risk of driving contains two aspects: The
difficulty of the driving tasks and the driver’s competence in handling them. Whenever
the difficulty exceeds the capability threshold of the driver, the driver is not in control and
becomes a risk for other road users who have to compensate by adjusting their behaviour
to avoid collisions.

Fuller tracks the task demand of driving and determines how much the task capacity
is saturated. Whenever the task capacity is critically saturated, the workload of the
driving tasks becomes uncomfortable for the driver, so the driver will adjust its headway
and speed to lower the workload of the driving tasks. Additionally, task saturation
influences the situational awareness of the human driver and thus increases its reaction
time, meaning that the GTU will receive a less up-to-date perception. How much the
reaction time is increased is dependent on the current task saturation TS and the critical
task saturation TScritical. These relations are described by van Lint and Calvert (2018)
and show how this is implemented in OTS. Again, a block diagram of the Fuller model
is presented in Figure 8 to clarify its process, which is derived from the Fuller and task
manager code available in OTS.

An implementation of driver distraction is added to the task-capability interface to ac-
count for increased workloads whenever drivers get distracted. This is an addition to the
original Fuller design, highlighted red in Figure 8, and adopts van Lint and Calvert (2018)
their framework of increased task saturations because of driver distractions. Chapter 4.5
explains how this distraction is handled within the Fuller model.

33



Master Thesis J. Poland

Figure 8: Block diagram of Fuller model in OTS. Developed by the author.

The task load of driving tasks is not present, or only limited, for automated driving tasks.
This means that an automation level 1 vehicle will have no task load for car-following,
and no task load is present for car-following and lane-changing from level 2 onwards. This
is because the capability of automated features is assumed to be high enough to never
lose control. An AV has sensors that will always perceive its surroundings in the same
way, and no psychological processes will alter the AV’s decision-making.

On the other hand, level 0 and level 1 vehicles not only deal with their driving tasks but
also engage with the in-car ADAS. Research seems to show that ADAS could cause both
an increase or decrease in workload depending on the situation. Ruscio et al. (2017) and
Birrell and Young (2011) show through simulator tests that ADAS will help to improve
the driver’s performance. This is confirmed in a real-life scenario where police officers
showed better driving performance while using ADAS in normal circumstances. However,
ADAS did not provide the same gains in more complex situations. Also Ruscio et al. finds
that outside predictable situations ADAS can increase cognitive workload, especially for
incorrect warnings. In these cases, they see that the additional stimuli do increase the
cognitive workload of the driver. Because ADAS has in general a positive effect on the
driver’s performance, no additional task loads are introduced for the presence of ADAS in
the vehicle models. Additional task loads will only deteriorate the situational awareness
of drivers, which does not match the general use of ADAS.
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Despite the benefits of ADAS, Strayer (2015) shows that voice-based in-car prompts are
related to high cognitive loads.

4.5 Distraction

As described in the methodology, the freeway scenario with vehicle automation levels also
runs for distraction scenarios. Unlike automated driving tasks, human drivers experience
a cognitive workload while driving. While the utilisation of the Fuller model is already
discussed, only the workload of car-following and lane-changing is accounted for. These
are not the only activities that influence the human driver’s cognitive workload. Often
human drivers are distracted by in-vehicle or external factors. Examples of these dis-
traction factors can vary from navigation prompts and mobile phone usage to a crashed
car on the side of the road. Both in-vehicle and external distractions affect the driver’s
situational awareness (Bamney et al., 2022 and Divekar et al., 2012). Therefore, both of
these distractions are included in this research.

Varying numbers are found on secondary task engagement. Sagberg et al. (2019) utilise
both on-road observations and roadside interviews to estimate the prevalence of secondary
tasks. Their research indicates that self-reported engagement in secondary tasks in the
interviews is higher than the observed engagement on the motorway. However, they
think that participants were likely overestimating the duration of secondary tasks. For
example, participants reported driving time for passenger interaction, while their actual
interaction time would be lower. Also, the interview included mental states that could
not be observed in the on-road observations. Combining the findings of observations and
interviews, they find that 24% of driving time involves secondary task engagement. the
most secondary task was talking on the phone, both handheld and hands-free, followed by
eating and drinking, and passenger interaction. When Metz et al. (2014) analysed natu-
ralistic driving data of in-vehicle recordings, similar results were found. The combination
of video recordings and vehicle data shows that drivers without passengers spend around
25% on secondary tasks. Most of the time was spent talking on the phone, followed by
vehicle console inputs and handling the mobile phone. However, because of video record-
ings, Metz et al. can analyse passenger interactions more precisely. With passengers,
drivers spent 40% of their driving time in secondary tasks, of which 35% of driving time
is spent on passenger interactions and 5% on other secondary tasks. The presence of a
passenger decreases the variability of secondary tasks and could even be beneficial for the
driver’s attentiveness because passengers can take over certain secondary tasks.

Because passengers seem to have different effects on driver attentiveness, this research
does not include passenger support or distraction. So, secondary task data without pas-
sengers is considered. From this, it is assumed that 25% of the vehicles in the simulation
are distracted. While most secondary tasks take less than 10 seconds, handling a phone
has a significantly longer duration (Metz et al., 2014). In this simulation, it is interesting
to see how varying in-vehicle distractions influence driving behaviour. Thus, the duration
of secondary tasks is set to 10 seconds to account for both short and longer distractions.
To prevent that more than 25% of the vehicles will be distracted for a simulation time
step, the activation formula for the distraction will account for the fraction of distracted
vehicles, the task duration, and the time step. By dividing the fraction of distracted
vehicles by the task duration, and dividing the task duration by the time step, a suitable
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threshold is created to ensure that only 25% of the vehicles will be distracted at once,
even when vehicles evaluate at each time step for the potential to become distracted, after
which they remain distracted for the duration of the task. This results in the following
activation formula for in-vehicle distractions:

distractionstate =

[
Random(0, 1) ≤

(
distractionfraction

taskduration/dt

)]
(2)

Where distractionstate is the boolean indicating whether a driver is distracted by in-
vehicle distractions, distractionfraction is the fraction that represents the percentage of
distracted drivers, taskduration the duration of the distraction, and dt the time step that
the GTU uses in the simulation.

The workload of secondary tasks can be measured with various methods. Tarabay and
Abou-Zeid (2018) use physiological indices such as heart rate and skin conductance level
because these are objective measurements linked to mental workload. While the study
shows increased measurements for drivers involved in secondary tasks and that drivers
will mitigate higher cognitive loads by adapting their driving behaviour, no workload
value can be determined from these measurements. Also, analysing brain activity does
not identify a specific quantification for secondary task workload (Xu et al., 2017).

Since estimating the cognitive workload itself is difficult, the impact on driver perfor-
mance is assessed. Research shows that driver performance is highly affected by higher
workloads. For example, Collet et al. (2009) show that reaction times can increase by
20% due to secondary tasks. For external distractions, researchers analyse human gaze
directions to indicate driver attentiveness to the road. Divekar et al. (2012) find that both
novice and experienced drivers take long glances towards external distractions at the ex-
pense of the ability to identify road hazards. This shows that the situational awareness
of drivers decreases when they are distracted by external stimuli. Results from Divekar
et al. show that drivers recognise moving hazards poorly while being distracted by a
roadside object. Therefore, a driver is considered distracted by roadside distractions as
long as the distraction is in their perception range.

A driver distraction occurs when a portion of the driver’s attention is diverted to non-
primary driving tasks. Since research shows that driving performance deteriorates while
the driver is distracted, the reduced mental capacity limits the driver to perform primary
driving tasks. In OTS, situational awareness deteriorates whenever the workload is larger
than the critical task saturation of the driver. Therefore, whenever a human driver is
distracted by either an in-vehicle (secondary driving task) distraction or a static roadside
distraction, the distraction will add a task demand to the Fuller model to exceed the
critical task saturation. The formula in Equation 3 is used to determine the distraction
task demand. To always exceed the critical task saturation, the formula ensures that
the distraction task demand is 1.1 times the remaining non-critical task capacity (critical
task saturation minus current task saturation). The chosen value of 1.1 is an assumption
and only ensures that the threshold of the critical task saturation is exceeded. Adjusting
this value by increasing or decreasing the value will affect the deterioration of situational
awareness because of the higher or lower total driving workload. However, since no
quantitative studies are available for distraction levels in traffic, the amount of situational
awareness deterioration is still unknown and thus can only be assumed. Additionally, a
distraction cannot lower the driver’s driving workload when the current car-following
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and lane-changing task saturation already exceeds the critical task saturation. So, the
distraction task demand will always have a minimum value of 0.

distraction task demand = Max
[
0, (TScritical − TS) ∗ 1.1

]
(3)

Where TScritical is the critical task saturation and TS is the current task saturation.

4.6 Vehicle model parameters

Here, the parameters are presented that are used to configure the driving models. How-
ever, code modifications were required to enable different vehicle interactions between
automation levels and control model parameters. Therefore, Appendix I: Modified OTS
classes explains which classes are modified. The OTS vehicle models can now be config-
ured using multiple parameters. Appendix II: Vehicle model parameters discusses these
parameters and substantiates why certain values are chosen. An overview of all parameter
values is presented in Table 6.

Some values are based on a range of values, such as the speed adherence factor. This
means that a triangular distribution is used to vary the value given to each vehicle in the
simulation. The bounded triangular distributions are preferred over normal distributions
because some model parameters must be between specific ranges to prevent simulation
errors. The triangular distribution will be defined as follows:
TriangularDist(lower value, mean, highest value).
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Table 6: Parameter values for GTU behavioural models.

Parameter Symbol Level 0 Level 1 Level 2 Level 3 Units

Minimum
reaction time RTmin 0.17 0.0 0.0 0.0 s

Maximum
reaction time RTmax 2.0 0.0 0.0 0.0 s

Look-ahead lookahead 295.0 140.0 250.0 300.0 m

Look-back lookback 200.0 200.0 200.0 200.0 m

IDM+ specific parameters

Minimal
headway time Tmin 0.58 0.8 0.8 0.522 s

Maximum
headway time Tmax 1.84 1.5 1.5 1.104 s

Maximum desired
car-following

acceleration a 1.25 1.17 1.17 1.12 m/s2

Maximum
comfortable
car-following

deceleration b 2.09 1.95 1.95 1.87 m/s2

Maximum
critical

deceleration bcrit 3.5 3.5 3.5 3.5 m/s2

Maximum
adjustment

deceleration b0 0.5 0.5 0.5 0.5 m/s2

Speed
adherence factor fspeed (0.8 - 1.2) (0.9 - 1.1) (0.9 - 1.1) (0.95 - 1.05) -

Socio-
car-following
sensitivity sociocf (0.0 - 1.0) 0.0 0.0 0.0 -

LMRS specific parameters

Socio-speed
sensitivity socio (0.0 - 1.0) (0.0 - 1.0) 0.0 0.0 -

Anticipation speed
for full desire vgain 69.6 69.6 69.6 69.6 km/h

Fuller specific parameters

Task capacity TC (0.9 - 1.1) N/A N/A N/A -

Critical
task saturation TScritical 0.8 N/A N/A N/A -
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5 Simulation results

The created OTS simulation runs for the road setup and scenarios discussed in Chapter
3. Before discussing the simulation results, some preliminary analyses are discussed in
Chapter 5.1 to explain traffic demand parameters and the chosen simulation warm-up and
sampling time. These settings are used to run the traffic simulation. Vehicle behaviour
from the automation levels is discussed in Chapter 5.2. Then, Chapter 5.3 will discuss the
results regarding traffic performance and safety, and Chapter 5.4 will look at the effects
of roadside distractions.

5.1 Simulation setup

The base scenario, scenario 0 which contains 100% level-0 vehicles, is analysed first to
determine the traffic demand for the main road and the on-ramp. This scenario is chosen
because the successive scenarios of increased automation will be compared to the human-
only scenario to observe what effects the automation levels have on traffic. Analysis of
the main road and on-ramp traffic demand in Appendix III: Exploratory analysis shows
that the following simulation settings are used to simulate traffic states near the critical
traffic density:

• Main road demand: 2800 - 4000 veh/h;

• On-ramp demand: 200 - 450 veh/h.

Furthermore, a warm-up time is specified to ensure that data will only be collected when
the simulation is in a quasi-stable state. When the simulation starts, the first generated
GTUs will have no leader vehicles, which means that the start of the simulation does not
represent the near-critical traffic density scenario. The simulation will not reach a truly
stable state due to the chaotic nature of traffic dynamics and frequent disruptions from
the on-ramp. Also, vehicles generated on the on-ramp need some time to reach the merge
area. Gurupackiam et al. (2011) use the stabilisation of simulation output variables such
as road capacity, flow, and travel time to determine when the simulation has reached its
stable state. This method is also applied in Appendix III: Exploratory analysis. The
analysis shows that a warm-up time of 500 seconds is required.

After the warm-up time, data is sampled for 1200 seconds. The exploratory analysis
shows that most vehicles travel through the freeway network in less than 100 seconds.
However, congestion highly affects this travel time and these dynamics should be included
to analyse whether higher automation levels have different capabilities to prevent this
heavy congestion. To include vehicles with longer travel times, the sample time is based
on three times a travel time of 400 seconds.

5.2 Vehicle behaviour

Vehicle behaviour is analysed by assessing overall driving indicators from Chapter 3.2.
Appendix V: Simulation of pure scenarios shows that separate simulations with 100%
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penetration rates per automation level show very different traffic conditions. Level 1 and
level 2 vehicles are prone to congestion. The traffic conditions for these scenarios become
congested very fast and vehicles show low mean speed measurements for a large amount of
the simulation. Level 0 and level 3 vehicles are more capable of dealing with disruptions
from the on-ramp and are able to maintain higher speeds throughout the simulations.
However, because of these differences, these ”pure” scenarios cannot be used to compare
driving behaviour.

As a result, a scenario is simulated for 25% of each automation level (scenario 8). This
will ensure that the measured data is sampled within the same traffic conditions for all
automation levels. The observations are discussed in this chapter. First, the driving
behaviour is observed as discussed in Chapter 3.2. Also, the effects of the introduced
human adaptation toward level 3 vehicles are discussed.

5.2.1 Overall driving behaviour

Figure 9 shows how speed levels differ between levels within the same traffic conditions in
scenario 25-25-25-25. As the figure shows, the automation levels seem to have a similar
speed distribution. However, level 1 and level 2 vehicles have the highest frequency for
low-speed measurements between 0 and 5 km/h.

Figure 9: Speed distribution for automation levels in scenario 25-25-25-25.

Very small differences in acceleration are seen between the levels. Figure 10 depicts a
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boxplot for acceleration without outliers measured in the simulation runs from scenario
25-25-25-25. The simulation shows many outliers regarding acceleration since low speeds
cause high decelerations when the vehicle comes to a stop. However, the simulation
also contains vehicles at higher speeds with very high decelerations. These are enabled
to simulate the use of the emergency braking system that is present in all automation
levels. However, these outliers do not reflect the acceleration behaviour of the vehicle
level. Therefore, the outliers are excluded. The boxplots show that variation indeed
becomes smaller when car-following is automated. However, this difference is small and
no significant decrease in variability is seen from level 2 to level 3 vehicles.

Figure 10: Acceleration boxplot for automation levels in scenario 25-25-25-25.

Vehicle headway data is also analysed for scenario 25-25-25-25. To observe the differ-
ences in time headway during car-following, only headway values under four seconds are
included. This is done to prevent high headways, where the vehicle is not performing any
car-following, to interfere with the actual car-following behaviour. As Figure 11 shows,
human drivers in level 0 vehicles maintain the lowest time headway. Level 1 and level
2 vehicles show a significantly higher time headway which corresponds to their ADAS
functionality.

Level 3 vehicles do show a lower time headway which corresponds to the assumption that
level 3 vehicles are capable of maintaining shorter headways because of technological
advancements over level 2 vehicles. However, the maximum time headway parameter
for level 3 vehicles was also lower than for level 0 vehicles. Still, more larger headway
times are observed for level 3 vehicles than level 0 vehicles. This could be explained by

41



Master Thesis J. Poland

the smaller acceleration range. Figure 10 did show that differences were small but these
differences can be enough to limit level 3 vehicles from following leader vehicles more
closely.

Figure 11: Headway boxplot for automation levels in scenario 25-25-25-25.

The larger headway observed for level 1 and level 2 vehicles does not mean that other
vehicles gain from these gaps and merge more easily. Figure 12 shows that level 1 ve-
hicles are subject to many switches in their leader vehicle, while the other levels have
approximately the same number of leader switches per hour. So, the magnitude of time
headway does not necessarily lead to more vehicles taking advantage of this gap.
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Figure 12: Switches in leader vehicles for automation levels in scenario 25-25-25-25.

The large number of leader vehicle switches for level 1 vehicles can be explained by
its lane-changing behaviour. A switch in the leader vehicle is also detected when the
vehicle itself performs a lane change. Figure 13 shows that level 1 vehicles have many
lane changes before the on-ramp and the most lane changes at the merging area. These
are the road sections with the most lane changes and thus explain why level 1 vehicles
have much more leader switches than level 2 vehicles while they have similar headway
distances.

Furthermore, simulation of scenario 25-25-25-25 identifies different lane change behaviour
for the automation levels. Because lane-changing is automated for level 2 and level 3
vehicles and not for level 0 and level 1, it is expected that these vehicle levels show
similar lane-changing behaviour. However, large differences are seen for level 0 and level
1 at sections AB and BC. These differences are hard to explain since level 0 and level
1 vehicles share the same lane-changing incentives and level 1 and level 2 vehicles have
the same car-following settings. Also, level 1, level 2, and level 3 vehicles have the same
reaction time.
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Figure 13: Lane changes per freeway section in scenario 25-25-25-25.

When analysing the headway during these lane changes, Figure 14 shows that car-
following behaviour during a lane change is significantly different between vehicles. It
shows that vehicles will accelerate during their lane-changing manoeuvre because the
headway distance increases but the time headway decreases. Especially, level 3 vehicles
stand out because the time headway increases a lot during the lane change manoeuvre.

Figure 14: Headway during the lane change process in scenario 25-25-25-25.

Level 0 vehicles have a stable time headway during their lane changes. The larger range
in comfortable car-following acceleration allows the vehicle to follow leader vehicles more
strictly even during lane changes. Level 1 vehicles seem to speed up the most during their
lane change. It is noticeable that level 1 vehicles have the lowest mean headway distance
during lane changes, which can indicate that level 1 vehicles perform more lane changes
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because the vehicle can significantly increase its speed in the other lane. However, this
behaviour is not seen for level 0, which shows that level 3 vehicles end up in significantly
different interactions. Level 2 vehicles show lane change behaviour that is similar to level
0 vehicles but has a less stable time headway. Level 3 vehicles show a very different time
headway progress during a lane change. The mean time headway during the lane change
is much higher but at the end of the lane change the time headway is approximately
back to the time headway of the start of the manoeuvre. This shows that the smaller
car-following acceleration range limits the ability to keep a certain time headway during
the lane change manoeuvre.

5.2.2 Human adaptations

Modifications to perception, explained in Appendix I: Modified OTS classes, enable level
0 vehicles to adjust driving behaviour for road interactions with level 3 vehicles. To
analyse this, a scenario is simulated for 50% level 0 and 50% level 3 vehicles.

The data is split into groups of level 0 vehicles that are located between level 3 vehicles
and the rest of level 0 vehicles. Analysis on their headway in Figure 15, shows that the
temporary decrease in minimum car-following time headway does not result in an actual
decrease in the effective time headway.

Figure 15: Headway distribution of level 0 vehicles with and without adaptations toward
level 3 vehicles in scenario 50-0-0-50.

Analysis of lane-changing data shows no differences in the number of lane changes. Figure
16 shows that in the scenario of 50% level 0 and 50% level 3 vehicles, level 3 vehicles per-
form more lane changes than in a scenario of 100% level 3 vehicles. Therefore, the human
adaptations of performing less cooperation towards level 3 vehicles do not necessarily
prevent level 3 vehicles from changing lanes.
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Figure 16: Comparison of lane changes for human adaptations towards level 3 vehicles
in scenario 50-0-0-50 compared to scenario 0-0-0-100.

Figure 17 does show that the behaviour during lane changes is different between scenario
50-0-0-50 and scenario 0-0-0-100. Level 3 vehicles experience a lower headway while
interacting with level 0 vehicles. Also, level 3 vehicles have to increase the headway time
during the lane change, while this is not required when level 3 vehicles change lanes
among themselves.

Figure 17: Comparison of headway during lane changes for human adaptations towards
level 3 vehicles in scenario 50-0-0-50 compared to scenario 0-0-0-100.

These findings show that the introduced headway adaptation does not result in a lower
headway for level 0 vehicles. However, because of human adaptations that increase the
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cooperation threshold for lane-changing, level 3 vehicles have to perform lane-change
manoeuvres with a lower headway and have to increase the time headway during their
manoeuvre. Indicating that the lack of cooperation from level 0 vehicles does provide
less space for lane changes.

5.2.3 Summary of driving behaviour

The different parameter values for time headway and acceleration ranges indeed lead to
different driving behaviour. Level 0 vehicles can maintain a small time headway during
both car-following and lane-changing, however, this does come with a higher variation in
measured accelerations. Level 1 vehicles keep a larger headway and have a slightly lower
variation in acceleration. Level 1 vehicles stand out because of the many lane changes in
mixed traffic. The changes in headway distance and time during the lane change indicate
that level 1 vehicles have much speed to gain when changing lanes. Level 2 vehicles
keep the same time headway as level 1 vehicles but do not change lanes as much. Level
3 vehicles show a lower variation in acceleration and their time headway is similar to
that of level 0 vehicles. However, the smaller range in acceleration causes the level 3
vehicle to also keep a higher time headway. This also causes a higher mean time headway
during lane change manoeuvres. This higher mean time headway is not present in lane
change interactions with level 0 vehicles. The human adaptations towards level 3 vehicles
cause a lower time headway for level 3 vehicles during lane changes. Also, the mixed
traffic scenario with 50% level 0 and 50% level 3 vehicles, had higher mean speed. So,
the difficulty of maintaining a short time headway is more difficult at lower speed levels
seen in the scenario of 25% penetration rates for all automation levels. Another human
adaptation, the temporary lower time headway while the level 0 vehicle is in between level
3 vehicles, is not effective in the simulation. No differences in measured time headway
are seen for these level 0 vehicles.

5.3 Traffic performance and safety

A thorough analysis is performed in Appendix VI: Analysis of traffic performance and
safety to identify the impact of vehicle automation levels on traffic performance and
safety. This chapter will present and support the main findings by including speed level,
fundamental diagram, and critical time-to-collision comparisons between scenarios.

5.3.1 Mean speed levels on the freeway

Figure 18 shows the transition in speed levels on the freeway throughout the simulation
of different scenarios. The speed heatmap shows that vehicles decelerate before and
in the on-ramp section (BC) and then accelerate again to reach speed levels of more
than 100 km/h in the post-on-ramp section (CD). The figure clearly shows that the
introduction of level 1 vehicles for scenario 80-20-0-0 shifts the acceleration in the on-
ramp section downstream. This indicates that the higher time headway settings for level
1 vehicles and the increased number of lane changes do make merging more difficult. So,
vehicles have to maintain a lower speed level for longer.
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Figure 18: Comparison of speed levels along the freeway for all penetration rate scenarios.

The introduction of level 2 vehicles further increases automation on the freeway. Speed
levels see a significant drop in scenario 60-20-20-0 compared to scenario 80-20-0-0. The
fraction of human drivers that maintain a smaller headway relative to level 1 and 2
vehicles reduces to 60% which means that merging becomes even more difficult. The
position of acceleration on the freeway does not change.

The speed heatmap does not identify significant changes from scenario 60-20-20-0 to
scenario 0-33-33-33. The acceleration position remains the same. Only slightly higher
speed levels are seen for scenarios 40-20-20-20 and 25-25-25-25 which can be explained
by the sum of level 0 and level 3 vehicles. Level 0 and level 3 vehicles are both capable
of maintaining smaller headways. So when their penetration rate together is high, the
speed at which vehicles merge increases. This is also observed when scenario 0-0-20-
80 is compared to scenario 0-0-50-50, where the increase in level 3 vehicles significantly
increases speed levels.

Whenever 80% of the vehicles are level 3, the mean speed on the freeway increases signif-
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icantly. Speed levels remain above 75 km/h before the merge area (AB) while previous
scenarios could not achieve this. Also, the acceleration position on the on-ramp section
(BC) shifts upstream showing that vehicles are capable of merging earlier and start ac-
celerating. The high speed levels in the pre-on-ramp section (AB) do drop a little when
the scenario has 100% level 3 vehicles. However, this does not change the position of
acceleration.

5.3.2 Fundamental diagrams of the freeway

Appendix VI: Analysis of traffic performance and safety shows that vehicle automation
affects the disruption in traffic flow at the on-ramp section (BC). Differences are also
observed for the other freeway sections, however, these are caused by the disruption in
the on-ramp section. Therefore, the fundamental diagrams of only the freeway section
BC are presented in this chapter. Figure 19 shows how the introduction of automation
levels impacts the maximum traffic flow measured on the freeway for scenarios 100-0-0-0,
80-20-0-0, 60-20-20-0, 40-20-20-20, and 25-25-25-25.

Figure 19: Comparison of fundamental diagrams for freeway section BC for scenarios
100-0-0-0, 80-20-0-0, 60-20-20-0, 40-20-20-20, and 25-25-25-25.
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The introduction of 20% level 1 vehicles lowers the maximum traffic flow from 4856 to
4823veh/h. Also, the drop in traffic flow after reaching the maximum value increases. For
scenario 100-0-0-0 a drop in flow is observed of 24.2%, while scenario 80-20-0-0 has a drop
in flow of 29.7%. Additionally, Figure 19 shows that not only the drop in flow is larger,
but it also occurs at a lower density level. This results in a loss in traffic performance
and matches the previous speed heatmap observations.

It is noticeable that the maximum traffic flow decreases for scenario 60-20-20-0 compared
to scenario 80-20-0-0. The maximum flow decreases from 4823 to 4728 veh/h. However,
significant changes are observed for scenario 40-20-20-20 where the introduction of level
3 vehicles increases the maximum traffic flow from 4728 to 5008 veh/h. Unfortunately,
this scenario of highly mixed traffic also shows a drop in traffic flow of 49.5%. Scenario
25-25-25-25 shows that an equal penetration rate for vehicle levels damps the traffic flow
drop. The drop in traffic flow is for scenario 25-25-25-25 34.9% and occurs more gradually
than in scenario 40-20-20-20.

Figure 20 shows that from scenario 0-33-33-33 onwards, the increase of level 3 vehicles
results in an increase in maximum flow values. However, the drop in traffic flow remains
significant. Scenario 0-33-33-33 has a maximum flow of 5002veh/h and the drop in traffic
flow due to merging vehicles is 42.7%. Scenario 0-0-50-50 improves the traffic performance
with a maximum flow of 5187 veh/h and a drop in flow of 44.3%. This trend continues
for scenario 0-0-20-80 where the maximum traffic flow is 5363 veh/h and the drop in flow
is 43.1%.

Scenario 0-0-0-100 does increase the maximum traffic flow to 5487 veh/h and a drop in
flow is observed of 39.7%. However, Figure 20 shows that the drop in traffic flow does
occur earlier for scenario 0-0-0-100 than for scenario 0-0-20-80. Therefore, a penetration
rate of 100% level 3 vehicles is not necessarily better but does allow for a higher maximum
traffic flow.
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Figure 20: Comparison of fundamental diagrams for freeway section BC for scenarios
25-25-25-25, 0-33-33-33, 0-0-50-50, 0-0-20-80, and 0-0-0-100.

5.3.3 Safety on the freeway

To analyse traffic safety, the critical time-to-collision headways are observed. A dangerous
vehicle headway is determined each time step within the simulation. Whenever the
headway becomes dangerous as described in Chapter 3.3, the headway is counted as a
critical time-to-collision. Appendix VI: Analysis of traffic performance and safety shows
that the number of critical time-to-collisions decreases when automation levels on the
freeway increase. Table 7 presents the number of critical time-to-collision measurements
for each scenario. As the table shows, human drivers tend to cause dangerous headway
distances. The number of critical time-to-collision headways is just a fraction of all
measured headway values, however, it does show that automated car-following decreases
the number of dangerous headway distances.
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Table 7: Number of critical time-to-collision measurements per scenario.

Scenario
Critical time-to-collision count
Level 0 Level 1 Level 2 Level 3

100-0-0-0 502

80-20-0-0 152 0

60-20-20-0 39 0 0

40-20-20-20 15 0 0 0

25-25-25-25 11 0 2 0

0-33-33-33 0 0 0

0-0-50-50 0 0

0-0-20-80 0 0

0-0-0-100 0

5.4 Traffic performance and safety with roadside distraction

Previous results have shown that automation levels affect traffic performance in both a
positive and negative way. Low penetration rates of level 1 and level 2 vehicles cause
more disruptions while merging, while the introduction of level 3 vehicles increases the
maximum traffic flow. Additionally, levels 1, 2, and 3 vehicles are less prone to dangerous
headway distances. Now, this is also tested in scenarios with a roadside distraction.
The roadside distraction causes all nearby drivers to become distracted and thus the
assumption is made that this will have a significant impact on traffic performance and
safety. Figure 21 shows that the roadside distraction causes a large increase in mean task
saturation. At the on-ramp section (BC) the mean task saturation decreases to 0.51 in
scenario 100-0-0-0, however, with a roadside distraction this increases to 0.84.
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Figure 21: Mean task saturation distribution on the freeway for scenario 100-0-0-0.

The increase in task saturation does not show remarkable differences regarding mean
speed levels or travel times. However, Appendix VI: Analysis of traffic performance and
safety shows that it does affect fundamental diagrams and the number of critical-time-
to-collision measurements. Therefore, both the fundamental diagrams and the critical
time-to-collision count per vehicle level are presented in this chapter.

Figure 22 shows that the drop in traffic flow increases for both scenarios and occurs at
lower density levels. The roadside distraction in scenario 100-0-0-0 lowers the maximum
traffic flow by 0.5% (from 4856 to 4831 veh/h) and increases the drop in traffic flow from
24.2% to 37.1%. For scenario 80-20-0-0 the impact of the roadside distraction causes the
maximum traffic flow to decrease by 2.3% (from 4823 to 4710 veh/h) and the drop in
traffic flow increases from 29.7% to 36.2%.
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Figure 22: Fundamental diagram of freeway section BC for scenarios 100-0-0-0 and 80-
20-0-0 with roadside distraction.

The impact of roadside distraction on traffic safety is presented in Table 8. The table
shows the number of critical time-to-collisions counted for each scenario with and without
roadside distraction. It clearly shows that less critical time-to-collision headways are seen
for human drivers with the roadside distraction. However, this is only true for scenarios
100-0-0-0 and 80-20-0-0. For scenarios with higher penetration rates for level 1, level 2
and level 3 vehicles the number of critical time-to-collisions measured for human drivers
increases.

Table 8: Comparison for number of critical time-to-collision measurements between sce-
narios with and without roadside distraction.

Scenario
Critical time-to-collision count
Level 0 Level 1 Level 2 Level 3

100-0-0-0 502

100-0-0-0 distracted 442

80-20-0-0 152 0

80-20-0-0 distracted 99 0

60-20-20-0 39 0 0

60-20-20-0 distracted 51 0 0

40-20-20-20 15 0 0 0

40-20-20-20 distracted 34 0 0 0

25-25-25-25 11 0 2 0

25-25-25-25 distracted 12 0 0 0

This shows that the higher reaction times and human adaptations to cope with this
higher reaction time are problematic in mixed traffic scenarios. When 100% or 80% of

54



Master Thesis J. Poland

vehicles are human, the larger headway as a result of human adaptations increases safety.
However, when traffic becomes more heterogeneous, and only 60% of vehicles are human,
the higher reaction times result in more dangerous car-following behaviour.
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6 Conclusions and discussion

Autonomous Vehicles (AVs) promise efficiency and traffic performance improvements.
However, current available vehicle automation cannot and should not be called AVs.
These vehicles only have automated features to support the driver in certain driving
tasks, while AVs suggest that the vehicle is driving by itself. The Society of Automotive
Engineers (SAE) has defined six levels of vehicle automation. The Advanced driver-
assistance systems (ADASs) in currently available vehicles corresponds to an automation
level of 1 where car-following or lane-changing tasks are supported, or level 2 where both
car-following and lane-changing tasks are supported. Also, level 0 vehicles are equipped
with ADAS but these features only support the driver temporarily such as an emergency
brake. This mix of automation levels already results in mixed traffic where these different
automation levels interact with each other on the freeway.

Additionally, more advanced vehicles are researched and developed to actually take over
driving tasks from the human driver. These vehicles can be considered to be AVs, how-
ever, they can be divided into level 3, level 4 and level 5 vehicles. The difference between
those levels is the complexity of the technology. Level 3 vehicles can drive mostly au-
tonomously on freeway sections until the situation exceeds the operational design domain
of the vehicle. Level 4 has a more broad operational design domain and thus is capable
of driving autonomously in more situations. Vehicles can drive fully autonomously in
automation level 5.

However, the literature study shows that current research lack the detailed modelling
of incremental automation levels to include conditional automation features and human
factors to simulate mixed traffic more realistic. Therefore the following main research
question is formulated:

” How do different levels of vehicle automation accounting for human driving behaviour
impact traffic performance and safety on a multi-lane freeway? ”

To answer the main research question, three sub-research questions are defined. The first
sub-question will be discussed in Chapter 6.1, the second sub-research question in Chapter
6.2, and the third sub-research question in Chapter 6.3. Then, an overall conclusion is
provided in Chapter 6.4 and the resulting implications and recommendations are discussed
in Chapter 6.5.

6.1 Sub-question 1

6.1.1 SQ1 findings

”How can driving behaviours and automation-specific features across different automation
levels be modelled for a multi-lane freeway environment?”

This research question aims to investigate the characteristics of SAE automation levels
by reviewing current literature and considering practical applications. The automation
levels by SAE perfectly describe the boundaries of automation levels. Since take-over
control situations are not accounted for, level 3 vehicles can drive autonomously in freeway
scenarios. Therefore, only level 0, 1, 2, and 3 vehicles are included in this research.
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A key finding is that AVs can be modelled by tuning existing driving models (Olstam
et al., 2020). The car-following and lane-changing models that define driving behaviour
are algorithms and thus are inherently closer to the decision-making of AV controllers
than human drivers. It is the accurate simulation of human drivers that defines the
difference between human and automated driving. The car-following and lane-changing
models used in previous research prioritise optimised routes and traffic performance but
lack the cognitive processes that underlie human decision-making within traffic. Some
models can account for driver profiles to incorporate different driving styles for human
drivers but this does not change the over-simplified decision-making process of the driver.

To overcome this limitation, this research utilises the perception framework from van
Lint and Calvert (2018), which incorporates the task-capability interface model of the
driving process designed by Fuller (2000). This framework integrates mental processes
in the driving models and thus enables a more realistic simulation of human drivers.
OpenTrafficSim (OTS) is a simulation package that contains this mental model out-
of-the-box. Also, other human factors such as tailgating, social pressure and taking
hindering of follower vehicles into account are available in OTS to integrate even more
human factors into the simulation.

Since ADAS is present in all automation levels, the nowadays available ADAS features
are used to define vehicle models. This resulted in configurations where level 0 vehicles
only have temporary support such as emergency braking. Level 1 vehicles are equipped
with Adaptive Cruise Control (ACC) to support the human driver in car-following tasks.
Level 2 vehicles are equipped with both ACC and active lane change assist to support
the driver in car-following and lane-changing tasks. Level 3 has the same functionalities
as level 2 vehicles but will be configured so that the technological advancement is more
complex than level 2 vehicles since level 3 vehicles have to fully control the vehicle on
their own without human supervision.

Next to the ADAS functions, the driving behaviour of humans is affected by the driving
styles of surrounding vehicles. It is found that human drivers tend to gain from defensive
AVs and adapt lower headways from AV. Since level 3 vehicles are considered AVs in
this research, these adaptations are included in the level 0 vehicle models.

The IDM+ car-following model in OTS can be tuned to reflect the configurations of
automation levels. Minimum and maximum reaction time, the perception range, mini-
mum and maximum car-following headways, minimum and maximum acceleration, speed
adherence, and a social car-following parameter can be adjusted to define the different
driving behaviour across automation levels. Level 0 vehicles are mainly characterised by
relative short time headway values, a large acceleration range, high variability in speed
adherence, and varying social parameter values for social pressure and tailgating. Addi-
tionally, level 0 vehicles will adopt level 3 headways, dependent on their social parameter,
whenever they are located between level 3 vehicles to account for human behavioural
adaptations. Level 1 and level 2 vehicles have due to their ACC system no reaction
time, larger headway values, lower variability in acceleration and speed adherence, and
do not account for the car-following social parameter. Level 3 vehicles are assumed to be
more advanced and thus better equipped to deal with lower headways but also lower the
variability in acceleration and speed adherence.

OTS comes with the LMRS model to determine lane-changing behaviour. The LMRS
model adds up different incentives to determine whether a lane change is desired. This in-
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cludes the socio-speed incentive that considers whether this vehicle is hindering followers.
To differentiate between human and automated lane-changing, the socio-speed parameter
that influences how much hindering of following traffic is considered has a varying value
for human drivers but is zero for level 2 and level 3 vehicles.

Now the perception used for these car-following and lane-changing models is affected
by the task-capability interface from the Fuller mental model. The Fuller model takes
driving tasks into account and calculates the corresponding task demand. Whenever the
task demand exceeds the capacity of the human driver, the cognitive workload becomes
too high and thus deteriorates its situational awareness resulting in higher reaction times.
To introduce different driver skills, varying values are provided for the task capacity
parameter. The inclusion of workload and limited mental capacity allows the modelling
of distraction. Distractions can differentiate human drivers even further from AVs since
the situational awareness is also influences by the attentiveness of the driver while AVs
always have the same perception due to their sensors. 25% of all drivers are engaged
in secondary driving tasks which deteriorates their driving performance. Therefore, the
level 0 vehicles also contain in-vehicle distractions that can become active during the
simulation randomly.

6.1.2 SQ1 discussion

The scope of this research does not include the take-over of control situations where hu-
man drivers have to gain back control from the automated driving features when prompted
to do so. This is excluded because the operational design domain of the different automa-
tion levels is not precisely documented and would need its own detailed investigation.
Modelling the take-over situations would introduce unique complexities where vehicles
have to switch between driving models and the corresponding parameters. Additionally,
the take-over control situations can only be simulated when the simulation of automa-
tion levels is achieved. Therefore, this research can be used as a basis to extend on for
future research on take-over control simulations, which is explained further in Chapter
6.5. However, the literature study shows that the take-over control situations are crucial
in assessing driving safety for automation levels (Gold et al., 2016, Calvi et al., 2020 and
McDonald et al., 2019). Calvi et al. also finds that the cognitive workload of human
drivers increases from secondary tasks while they are driving an AV, showing that the
mental model is crucial for the simulation of the different automation levels. This means
that the current automation levels do not include important aspects for human and AV
interaction within the vehicle. Still, this research does focus on the documented driv-
ing behaviour with ADAS features where these kinds of dynamics are already included.
So while it is not directly simulated, the effects of human interactions with automated
features on driving performance are part of the vehicle models.

The approach of modelling automated driving functions by adjusting existing car-following
and lane-changing models is an oversimplification of the true driving behaviour of automa-
tion levels. While the approach does allow to simulate automation levels by explicitly
defining the differences between them, it does not reflect the actual process of the AV
or ADAS controllers that are used in real-life vehicles. Where current efforts in this re-
search are aimed at simulating human drivers as realistically as possible, this approach
could also be used for the simulation of automated driving models. Olstam et al. (2020)
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therefore describes a nanoscopic approach where the automated model will incorporate
vehicle dynamics, sensors, and for example the gearbox to define driving behaviour based
on the most detailed level of the vehicle. These detailed aspects of automated driving are
not incorporated in the designed vehicle models, which means that the emerging driving
behaviour does not reflect their real-life behaviour.

While the simulation of automated features is oversimplified, it is the simulation of hu-
man drivers that has limited previous research of simulating mixed traffic more realistic
(Calvert and van Arem, 2020). Therefore, this research aims to simulate the differences
between human and AV driving behaviour by simulating human drivers more realistic
and defining precise boundaries for each automation level. The current vehicle models
for level 1, level 2 and level 3 vehicles comply with state-of-the-art simulation because
of their negligible reaction time and perfect driving. However, the headway configura-
tions are different. Sadid and Antoniou (2023) state that headway values for AVs should
be lower. While this can be true for Connected Autonomous Vehicles (CAVs), non-
cooperative automated features that are currently available in ADAS show to have larger
headway values than humans would normally maintain. Therefore, this research uses
larger headway ranges for level 1 and level 2 vehicles, while it is assumed that level 3
vehicles can achieve lower headway ranges because of near-future technological advance-
ments without any cooperative features. Also, specific driving styles are not included
since the IDM+ car-following model already dynamically set time headway values based
on the traffic situation. Also, level 1, level 2, and level 3 vehicles have no true under-
standing of the traffic situation and thereby will always be cautious during their driving
manoeuvres.

The modelling aspects for human drivers are based on the list of human factors from
Saifuzzaman and Zheng (2014). Simulation package OTS has most of the human factors
incorporated in its car-following, lane-changing, and mental models. However, distrac-
tion, perception thresholds, and imperfect driving are not included. While these are
limitations, driving needs, and imperfect driving factors have less impact on the vehi-
cle models than the human aspects that are included. Desired parameters, anticipation,
estimation errors and personal characteristics touch the fundamental elements of human-
driving decision-making. Furthermore, the perception thresholds are not directly imple-
mented but a whole mental model is used to model human decision-making. Fortunately,
the mental model can easily be expanded on. So, distraction was added to the mental
model to incorporate this factor and test how varying cognitive workloads impact traffic.
The distraction and workload of car-following and lane-changing tasks dynamically set
the reaction time and thus dynamically affect the determined acceleration and headway.
Therefore, it is chosen to vary the task capability parameter for human drivers and not
use distributions for the acceleration, headway and reaction time parameters. This re-
search aimed to incorporate different driving behaviours by utilising the mental model to
its full extent which also makes configuring the vehicle models easier. Distributions were
used to set the varying task capability parameter, and also the speed adherence factor
and social parameters receive values from a distribution. These parameters are not set
dynamically and thus require varying values to account for different driver characteristics.

Unfortunately, simulation of high reaction times for human drivers leads to many colli-
sions. So many collisions that it does not provide a realistic picture of traffic dynamics.
The cause of the collisions was the highly delayed perceptions of human drivers that could
not account for its leader vehicle. This is not realistic since drivers will be cautious in
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dangerous situations and thus most of the time respond to the actions of leader vehicles.
To prevent these collisions a small reaction time range is chosen and the minimum reac-
tion time is set to 0.17s, which is found to be the lowest reaction time for human drivers.
This allows the mental model to vary human reaction times but limits the occurrences of
high reaction times that become problematic.

While the accessible mental model makes it possible to extend on, this also introduces
more modelling choices into the research. Calvert et al. (2020) show that the Fuller model
in OTS is a framework which can be extended immensely. This means that the current
HDV models can be extended to incorporate more internal and psychological processes
to match human driving behaviour. The model could incorporate more driving tasks,
include more complex task demand processes, and make the driver capability dynamic
for different situations (Calvert et al., 2020). Despite these possibilities, the current
HDV models use the existing OTS Fuller model as it is, limiting realistic human driving
behaviour.

Most of the default values used in OTS are calibrated. Parameters used in the LMRS
model are calibrated on a Dutch freeway while being incorporated with the IDM+ model
(Schakel et al., 2012). However, the addition of the mental model changes driver per-
ceptions and triggers adaptations for reaction time, desired speed, and desired headway,
changing driving dynamics for the IDM+ and LMRS models. Therefore, the new com-
position of driving models should be calibrated to verify the model parameters. This is
not performed in this research and thus the exact values chosen for these vehicle models
not be considered as realistic. The current parameter values mainly represent differences
between automation levels. Literature is used to find parameter values that reflect human
driving behaviour for level 0 vehicles, ACC functionality for level 1 and level 2 vehicles,
and adjusted parameter values for level 3 vehicles to reflect technical advancements.

The technical advancements for level 3 vehicles result in assumed parameters for the
vehicle model. However, these parameters are not verified and no further sensitivity
analysis is performed. Sensitivity for level 0 vehicles already showed that larger headway
values will lead to unrealistic large mean time headway values and other parameters
such as acceleration and deceleration has small effects. Even when a thorough sensitivity
analysis was performed for level 3 parameters, these results could not be compared since
other studies are mostly aimed at CAVs. Therefore, parameter values are chosen that are
similar to human drivers and also bring improvements from level 1 and level 2 vehicles.

Unfortunately, the perception class in OTS is nested within the core of the vehicle model.
While this allows the incorporation of the Fuller model, it limits the adjustments that
can be made for vehicle perceptions. Vehicles with an automation level of 1 should have
automated car-following which indicates that the headway is larger, the acceleration
range is smaller, and the reaction time is 0 seconds. However, the lane-changing model,
which is controlled by the human driver for level 1 vehicles, uses the same perception and
thus makes lane-changing decisions instantly. This is of course not realistic and forms a
significant limitation for the level 1 vehicle model. However, car-following reaction time is
considered more important since car-following reaction time directly affects traffic safety
because it can lead to crashes. Also, the car-following behaviour of ACC is researched
a lot, so parameter values could be set by literature. Lane-changing behaviour is less
documented and no research on differences between human drivers and ADAS features
or AV controllers could be found.
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Because level 1 vehicles have a reaction time of 0 seconds and lane-changing behaviour
differences between human drivers and automated features are unknown, the differences
between the level 1 and level 2 vehicles are small. Currently, the only difference is
the social incentive for lane changes. The social parameter for this incentive varies to
represent different human characteristics for level 0 and level 1 vehicles but is 0 for level
2 and level 3 vehicles. This limits the differences in vehicle models that this research is
aiming for, so future work should investigate the lane-changing behaviour of automation
levels.

6.1.3 SQ1 conclusion

This study demonstrates that the fundamental and practical differences across automa-
tion levels can be modelled by the use of simplified automated driving models and more
complex human driver models that increase the realism of human decision-making. By
integrating cognitive processes and social factors, the human vehicle models developed in
this research provide a nuanced representation of human decision-making, which is often
under-represented in existing mixed traffic simulations. Although certain features, such
as take-over control situations and detailed AV dynamics, are beyond the scope of this
study, the approach effectively differentiates between automation levels in freeway envi-
ronments. Future work can build on this foundation by incorporating more detailed AV
controller behaviours, recalibrating model parameters, and investigating lane-changing
behaviour, further advancing the accuracy and applicability of mixed traffic simulation
for traffic performance and safety analyses.

6.2 Sub-question 2

6.2.1 SQ2 findings

”How do car-following and lane-changing interactions change across different levels of
automation?”

To answer this question, microscopic simulation in OTS is performed. The designed
vehicle models are put in a freeway scenario with specific penetration rates per automation
level. Since the research question focuses on car-following and lane-changing interactions,
a scenario has to be created where vehicles are forced to act on changes in traffic conditions
and thus interact with other vehicles. To do this, an on-ramp is added to the freeway
that disrupts the traffic flow of the main freeway lanes and forces vehicles to deal with
an additional flow of vehicles merging into the main lanes.

Different scenarios are defined by varying penetration rates for automation levels. How-
ever, the pure scenarios where only one automation level is present for a penetration
rate of 100%, result in such different traffic conditions that those scenarios could not be
compared to analyse driving behaviour. So, also a scenario is simulated where all au-
tomation levels are present equally (scenario 25-25-25-25). Vehicle interactions are then
analysed by assessing their car-following headway, number of switches in leader vehicles,
lane change frequency and headway during lane change manoeuvres.

Additionally, because human drivers show driving adaptations towards AVs, the be-
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haviour of these vehicle model adaptations are analysed for a scenario where 50% of
vehicles is level 0 and 50% is level 3. This scenario simulates enough level 0 vehicles that
are surrounded by level 3 vehicles to analyse but also includes many level 0 vehicles that
are not surrounded by level 3 vehicles and thus will not show any adaptations, which are
the basis of this comparison.

The ”pure” 100% scenarios show that the vehicle models have different driving behaviour
across the automation levels. Level 0 and level 3 vehicles are able to maintain a higher
mean speed on the freeway than level 1 and level 2 vehicles could. However, these
differences in speed lead to different traffic conditions where level 1 and level 2 vehicles
are subject to more congestion. Therefore, these scenarios can not be used to compare
driving behaviour.

For the equal penetration rate scenario, the mean speed on the freeway is similar for the
different automation levels. This simulation shows that level 0 vehicles have the largest
variability in acceleration where accelerations are measured (without outliers) between
−0.75 and 1.25m/s2. Level 0 vehicles also had the lowest mean time headway where time
headway values are measured (without outliers) between 0.75 and 2.4 s. Also, low time
headway values are seen during the lane change manoeuvre where the level 0 vehicle is
able to maintain a stable time headway.

Level 1 vehicles show a slightly lower variation in acceleration but also a larger time
headway for car-following and lane-changing interactions. The car-following headway is
significantly higher with a mean that is 0.3s higher than for level 0 vehicles. What stands
out for level 1 vehicles is the large increase in switches in leader vehicles. The switches in
leader vehicles help to identify whether other vehicles can gain from the larger headway
of level 1 and level 2 vehicles. However, the increase in leader switches is caused by
lane changes from the vehicle itself in busy lane-changing areas of the freeway. So, no
advantage from other vehicles over level 1 vehicles was observed. The headway details
during lane-changing do identify that level 1 vehicles gain much speed during their lane
changes. This would indicate that level 1 vehicles tend to be in slower traffic and is
able to find ways to gain speed by switching lanes. This behaviour is not seen for other
automation levels. Level 2 vehicles show similar behaviour as level 1 vehicles for car-
following acceleration and headway. However, level 2 vehicles do not change lanes as
much and show a more stable mean headway during lane change manoeuvres.

Level 3 vehicles show to be able to maintain a low headway. However, the smaller
acceleration range of level 3 vehicles limit the vehicle to keep these close headways.
Therefore, also higher headways are measured, which means that level 3 vehicles do not
necessarily maintain a lower headway than human drivers. Furthermore, a significant
increase in headway during lane changing is observed. Also, this observation can be
explained due to the smaller acceleration range. While other vehicles gain speed during
the lane change manoeuvre, the level 3 vehicles cannot follow the leader in the new
lane closely. Simulation of level 3 vehicles with 50% level 0 vehicles confirms that the
acceleration limit is problematic since this lane-changing behaviour is not observed at a
higher mean speed where accelerations are lower.

Analysis of human adaptations shows that the current design of headway adaptations
is not effective. While level 0 vehicles will adjust their desired headway downwards to
headway values of level 3 vehicles dependent on their car-following social parameter,
this does not result in lower headway values for level 0 vehicles. Results do show that
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cooperation adaptations do make lane changing more difficult for level 3 vehicles. Human
drivers provide less space for lane-changing level 3 vehicles, thus level 3 vehicles have to
slow down themselves to increase the headway to a comfortable level. However, this does
not have a high effect on the mean number of lane changes since level 3 vehicles change
lanes almost as much in interactions with level 1 vehicles as without level 0 vehicles.

6.2.2 SQ2 discussion

Scenarios of 100% penetration rates for each automation level are designed to expose the
distinct driving behaviour across automation levels. However, the differences in driving
behaviour resulted in such different traffic conditions that no comparisons on specific
driving factors such as acceleration and headway could be made. The scenario of equal
penetration rates ensures that the measurements are performed in the same traffic con-
ditions for all automation levels. However, because this scenario already has a highly
mixed composition of different vehicle levels, the found behaviour could possibly only
apply in this very specific scenario. When the high frequency of level 1 lane-changing
is observed, this could possibly be caused by the behaviour of other automation levels
that cannot be identified in the current analysis. Therefore, future work could analyse at
which traffic demand values different penetration rate scenarios show free-flow, saturated,
and congested traffic. This will help in designing a more detailed decisive analysis setup
for driving behaviour.

The high frequency of lane changes for level 1 vehicles cannot directly be explained by
the vehicle model parameters. Level 1 vehicles have the same car-following settings as
level 2 vehicles and the same lane-changing settings as level 0 vehicles. Both of these
automation levels do not show as much lane changes in the pre-on-ramp and merging
section of the freeway. It could be that the human factor of the socio-speed incentive in
combination with the larger headway settings from the ACC results in more lane changes.
However, since lane-changing behaviour is not studied well in combination with vehicle
automation in existing literature, it cannot be verified in this study. Investigation and
calibration of the lane-changing model is required to get a deeper understanding of the
lane-changing model.

The decreasing variability of acceleration follows the parameter values used for the vehicle
models. However, these are not as significant as the findings from Schakel et al. (Schakel
et al., 2017). This indicates that the vehicle parameters should be calibrated for the
current composition of driving models to reflect human and ACC acceleration behaviour.
The same can be said about the human adaptations. The current implementation of
headway adaptation shows to be not effective and thus is not simulated in the current
simulation setup. As Raju and Farah (2020) have stated, the exclusion of human and
AV behavioural adaptations limit the realism of mixed traffic interactions. While this
limits realism, level 0 vehicles still maintain a low time headway, so the behaviour in this
simulation still represents human driving behaviour, just the detailed interaction between
level 0 and level 3 vehicles is affected.

The overall trend of changes in headway values across automation levels does reflect the
parameters set for the vehicle models. Level 1 and level 2 vehicles show a significant
increase in headway values compared to level 0 vehicles. However, the mean headway
values in this analysis are higher than for other found research. Schakel et al. (2017)
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shows that the mean value for human time headway is 0.98 s which increases to 1.2 s for
ACC equipped vehicles. This is lower than the found 1.7 s and 2.0 s for the level 0 and
level 1 and 2 vehicles in this research respectively. Still, the trend among level 0, level
1, level 2 and level 3 vehicles show that ACC equipped vehicles have larger headways
and level 3 vehicles will show more human like headways because of its technological
advancements.

However, the limited acceleration range of level 3 vehicles may not result in the most
realistic lane-changing behaviour. The findings show that level 3 vehicles are not able
to follow leader vehicles closely for the highly mixed traffic scenario. This could occur
whenever level 3 vehicles are designed to limit their acceleration variability. Still, it is
more likely that future level 3 vehicle controllers will be designed to perform well in
traffic. The large headway gaps that currently occur therefore seem to be unrealistic.
Fortunately, the overall headway values are similar to level 0 vehicles which was the
intention of the level 3 vehicle model.

6.2.3 SQ2 conclusion

Car-following and lane-changing interactions vary significantly across automation lev-
els, reflecting their differences in driving behaviour. Automated car-following vehicles
equipped with ACC show less variability in acceleration and maintain larger time head-
ways than human drivers. The larger headway values show that level 1 and level 2 vehicles
have a more cautious driving style but this does lead to lower speed levels at the freeway.

For level 3 vehicles, headway values are closer to human drivers and can even maintain
lower headways. This reflects the more advanced automation technology aimed to show
more human-like driving behaviour compared to the level 1 and level 2 vehicles. However,
the lower acceleration variability that is associated with level 3 vehicles limits the vehicle
in maintaining low headway distances. Therefore, the variability in time headway of level
3 vehicles is higher than human drivers and results in large gaps during lane changes.
This might not align with near future level 3 vehicles in real-world applications.

The high lane-changing frequency observed in level 1 vehicles, likely influenced by ACC
settings combined with socio-speed incentives, highlights a potential need for further
model calibration, as this behaviour diverges from typical lane-changing patterns at other
levels of automation. Additionally, behavioural adaptations from human drivers towards
level 3 vehicles is not completely effective. Human drivers do show less cooperation but do
not lower their headway values while surrounded by level 3 vehicles. Nonetheless, human
drivers do maintain low time headway values compared to other automation levels so the
differences in car-following behaviour are clear.

These findings underscore that, while each automation level shows distinct car-following
and lane-changing characteristics, current simulation models may still oversimplify some
interactions. Future research should focus on refining lane-changing behaviours and cal-
ibrating acceleration parameters to improve the realism of automated driving models,
especially in mixed traffic settings.
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6.3 Sub-question 3

6.3.1 SQ3 findings

”How do vehicle automation levels in mixed traffic affect traffic KPIs?”

An important aspect of mixed traffic is the composition automation levels. However,
the expected composition of future traffic is uncertain because the introduction of higher
automation levels is dependent on technological advancements and the willingness of
road users to adopt certain vehicle automations. Therefore, an incremental approach for
penetration rates is adopted. Nine scenarios are defined to reflect the transition of only
human drivers to only AVs.

To further investigate how the integrated mental model of human drivers affects traffic,
two types of distractions are simulated. In-vehicle distraction, also called secondary
driving tasks, and static roadside distractions. These will expose human drivers to driving
task demands that exceed their capability. This is included to further improve the realism
of the human driver. However, the in-vehicle distractions are inherently part of level 0
vehicles and thus are embedded in the vehicle model. It is the roadside distraction that
introduces new scenarios for the analyses of the impact of automation levels on traffic.
The roadside distraction will be simulated for all scenarios where human drivers are
present.

Effects on traffic can only be analysed when traffic Key Performance Indicators (KPIs)
are identified. To analyse traffic performance, speed, flow, density and travel time are
observed. These variables will help to identify what traffic conditions are simulated and
identify how the penetration rate of automation levels affects it. To also account for safety,
time-to-collision is observed. Whenever a vehicle’s time-to-collision becomes critical, this
situation of the vehicle is considered unsafe.

Simulation of these scenarios for the specific penetration rates shows that traffic perfor-
mance is affected significantly by the different driving styles of automation levels. The
base scenario of 100% level 0 vehicles shows that vehicles have to slow down before the
merging section to safely interact with the vehicles from the on-ramp and vehicles that
switch lanes on the main lanes. When vehicles approach the end of the merging area,
vehicles can speed up again and continue their travel. Travel times are mostly under
200s. However, vehicles that have to merge from the on-ramp to the main lanes can take
up to 700 seconds. This shows that the freeway becomes congested and hinders vehicles
on the on-ramp. The fundamental diagrams also show that the pre-on-ramp section of
the freeway has free-flow conditions until 4500 veh/h and then has a small drop in traffic
flow due to disruptions from the downstream on-ramp. However, the real disruptions
take place at the merging area where the freeway cannot handle more than 4800 veh/h.
The resulting outflow on the post-on-ramp section does not exceed a flow of 4300 veh/h.

Whenever automated driving functionalities are introduced to the freeway, vehicles slow
down more when they approach the merging section and travel times increase. The
corresponding fundamental diagrams show that the disruptions on the merging section
become larger and more congestion occurs. The introduction of level 1 vehicles does not
benefit the traffic performance at all. It does not only lead to larger drops in traffic flow
but they also occur at lower density values. However, further increases in level 1 and level
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2 vehicles lead to similar traffic conditions until a penetration rate of 25% per automation
level (scenario 25-25-25-25). This scenario shows that the highly mixed traffic damps the
drop in traffic flow. Travel times are still rising but the disruptions in traffic become
smaller. The subsequent scenario has 33% of level 1, 2 and 3 vehicles. This means that
the share of vehicles with low headway values decreases when compared to the scenario
with 25% per vehicle level and thus the maximum flows decrease. However, from here
on the traffic conditions improve and also travel times reduce when the share of level
3 vehicles increases from 50% to 100%. this leads to higher mean speed levels on the
freeway and the maximum traffic flows easily exceed the base scenario with 5500 veh/h.
Nonetheless, when level 3 vehicles reach a penetration rate of 100% the drop in traffic
flow does occur slightly earlier but the drop decreases from 43.1% to 39.7%.

Regarding critical time-to-collision counts, the number of critical time-to-collisions re-
duces significantly throughout the introduction of automation levels. Human drivers start
with a critical time-to-collision count of 500 during the full simulation time of all runs.
However, this is already reduced to 40 when just 60% of vehicles is a level 0 vehicle. The
occurrences of critical time-to-collisions disappear when no human drivers are present
anymore. This does not mean that higher automation levels do not show any critical
time-to-collisions at all. Also level 2 vehicles have shown 2 critical time-to-collisions.

The higher cognitive workload for human drivers by simulating a roadside distraction
next to the merging section of the freeway exceeds the critical task saturation and thus
deteriorates the driver’s perception. However, this does not lead to changes in mean speed
levels. Also, the travel time remains similar for most vehicles. The higher workload does
strongly affect the drop in traffic flow on the merging section and this effect smooths
out as fewer human drivers are present. From 60% level 0 vehicles and less, the traffic
conditions in the fundamental diagrams show similar patterns as the scenarios without
the roadside distraction.

The effect of higher cognitive workloads on critical time-to-collisions does not follow a
specific trend. At first, scenarios with a roadside distraction show less critical time-to-
collision numbers. However, when the penetration rate reaches 60% for level 0 vehicles
the roadside distraction causes more critical time-to-collision numbers until the human
drivers are phased out from the penetration rates.

6.3.2 SQ3 discussion

The travel times throughout the different scenarios show that vehicles from the on-ramp
are subject to much congestion. While congestion is inevitable when traffic disruptions
are severe and traffic demand is continuously high, this can limit the number of vehicles
that merge into the main lanes. This limits the current research in the observation of how
automation levels might solve the congested traffic and how easily vehicles can merge into
main lanes. Currently, congestion on the on-ramp further limits vehicles from merging
because of speed differences. However, to analyse the improvements that automation
levels can cause, high traffic demand is required to see at which point the traffic flow
becomes too much. Also, in this research, it is the drop in traffic flow that can provide
an indication of how large the disruptions are.

The base scenario of 100% human drivers shows that a maximum traffic outflow of
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4300 veh/h is achieved at the post-on-ramp section. This is significantly lower than
the standard of 4945 veh/h that is used for Dutch two-lane freeways with an on-ramp
(J.W. Goemans, 2015). Increasing the penetration rate of level 0 vehicles does show
that the larger headway settings result in lower speed levels and thus deteriorate traffic
flow. This does follow the consensus of existing research that states that lower headway
values enable higher traffic densities and thus higher traffic performance (Liu and Fan,
2020 and Olia et al., 2017). However, the increments of automation levels expose that
the introduction of level 2 vehicles and more level 1 vehicles does not have a worse effect
on traffic. More level 1 and level 2 vehicles even seem to damp the drop in traffic flow.
This indicates that human drivers are so different from level 1 and level 2 vehicles, that
even a small percentage will impact traffic performance. However, further introduction of
automation levels makes the traffic composition less diverse and thus more stable. This
explains the dampening of the drop in traffic flow and aligns with findings from Makridis
et al. (2020) who state that homogenisation of traffic will increase traffic performance.

Level 3 bring traffic performance improvements to the freeway from a penetration rate of
50%. It brings back the lower headway values that were also present for human drivers
but also comes with less variety in driving behaviour since human drivers were subject to
personal characteristics and deteriorating perception. While this aligns with Liu and Fan
(2020) and Olia et al. (2017), they find improvements from 20% and 30% respectively.
This can be explained by the configuration of the level 3 vehicle in this research. Liu
and Fan and Olia et al. find these improvements for CAVs. These have a significant
technology advantage because of communication features. These are not present in level
3 automation vehicles and thus have less impact on the traffic performance.

The findings regarding safety show that dangerous headways, defined by critical time-
to-collisions, strongly reduce whenever the share of level 0 vehicles decreases. This is
an expected outcome since human drivers with deteriorating perceptions will encounter
more dangerous situations. This is also in line with findings from Miqdady et al. (2023).
However, Miqdady et al. does observe critical time-to-collisions for higher automation
levels. In this research critical time-to-collisions are quite rare when the numbers are
compared to the number of vehicles simulated throughout all the different simulations.
Additionally, human reaction times are simulated between 0.17 s and 0.6 s which are low
in comparison to existing studies. Together with a low critical time-to-collision threshold,
the rare occurrences for human drivers and the negligible occurrences for higher automa-
tion levels do not present a realistic number of dangerous situations. However, it does
provide insights in automation level safety since even for very low thresholds, human
drivers do encounter these dangerous situations.

The simulation of human distraction is currently based on the assumption that a dis-
traction always exceeds the critical task saturation of drivers. This approach is chosen
because studies on driving tasks try to observe these higher workloads through eye move-
ments, body characteristics or deteriorating driving performance. However, studies do
not quantify the impact of distractions on human mental capacity. However, studies show
that driving performance does deteriorate (Collet et al., 2009). This is achieved by always
exceeding the driver’s critical task saturation. Therefore, no distinction is made between
in-vehicle distractions and roadside distractions. This might not be representable for
driver distractions in real-life since in-vehicle and roadside distractions provoke a differ-
ent kind of engagement from the driver. Where roadside distractions cause a visual and
mental distraction, in-vehicle distraction often requires manual attention from the driver.
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This shows that further research on driver distraction can increase the complexity of
distractions in the mental model.

The effect of the roadside shows expected results where the decrease in human drivers
results in a decrease in distraction effects. However, since human drivers have behavioural
adaptations to deal with high cognitive workloads, such as lowering speed and increasing
the desired headway, it is expected that the speed levels will drop. This is not seen
and thus indicates that human drivers already slow down a lot when approaching the
merging section of the freeway and thus focus more on maintaining a higher headway.
This does explain the large drop in traffic flow that occurs for a 100% penetration rate
of human drivers. On the other hand, the decrease in critical time-to-collision numbers
is unexpected since higher reaction times can get dangerous. However, it does show
that human drivers indeed maintain larger headways when distracted. Unfortunately,
this is not always the case. For penetration rates of 60% and lower, human drivers
experience more dangerous car-following situations when distracted. This can be caused
by the increasingly different perceptions when level 1 and level 2 vehicles are introduced,
while in scenarios with mostly human drivers, every driver is subject to deteriorating
perceptions which homogenises reaction times for distracted human drivers.

6.3.3 SQ3 conclusion

The study for this research question demonstrates that vehicle automation levels in mixed
traffic significantly affect traffic KPIs. The traffic performance is observed by including
traffic flow, density, speed and travel time and safety aspects are taken into account by
observing critical time-to-collision numbers. Lower levels of automation, such as level 1
and level 2 vehicles, contribute to lower speed levels, reduced flow rates and larger drops
in traffic flow due to large headway settings. Resulting in less smooth driving behaviour
at the merging section and thus larger disruptions in traffic. However, when the share
of level 1 and level 2 vehicles increase these disruptions become smaller because of more
homogenous traffic.

It is the high penetration rate of level 3 vehicles that significantly improves traffic perfor-
mance. From a penetration rate of 50%, traffic flow increases and higher speed levels are
maintained. Improving traffic performance when compared to all other scenarios. This
improvement in performance aligns with findings in the literature, suggesting that higher
automation leads to smoother, more homogeneous traffic flows, ultimately enhancing
traffic efficiency.

In terms of safety, as measured critical time-to-collision numbers, higher automation
levels substantially reduce dangerous car-following interactions. Critical time-to-collision
incidents are rare for the current vehicle model configurations but it shows that level 1,
level 2 and level 3 vehicles improve traffic safety.

However, several limitations impact the interpretation of these findings. For example,
the modelled human distraction assumes that all distractions exceed the critical task
saturation, a simplified approach that may not capture the realistic effects of different
distraction types on driver behaviour. Real-life distractions differ in engagement, and
future studies should model these nuances to improve the realism of human driver re-
sponses.
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In summary, vehicle automation levels in mixed traffic impact traffic KPIs by enhancing
both performance and safety as automation levels increase, particularly when level 3
vehicles constitute the majority of traffic. However, small penetration rates of level 1 and
level 2 vehicles will impact traffic performance negatively. Future research should focus
on refining the reaction time settings and differentiating distraction types.

6.4 Overall conclusion

To answer the main research question of how automation levels that account for human
simulation factors and driving behaviour impact traffic performance and safety for a multi-
lane freeway situation, the previous discussions on vehicle models, driving behaviour and
traffic implications are summarised.

The findings demonstrate that automation levels can be modelled in OTS by using sim-
plified driving models for AVs and more complex HDV driving models that account for
human perception by modelling the mental workload of driving tasks and social factors.
Level 0 vehicles are therefore modelled more detailed than in existing mixed traffic studies
and effects of distraction can be studied because the mental model influences how the
car-following and lane-changing models behave. Level 1 and level 2 vehicles are mod-
elled more conservative, which means that the vehicle will maintain larger headways and
smaller variability in acceleration. This represents the current available ACC systems.
Level 3 vehicles are assumed to be more technological advanced and thus are capable
of maintaining lower headway values and show low variability in acceleration. However,
these vehicle models are subject to limitations. The current configurations do not take
take-over control situations into account while literature shows that this introduce high
safety risks for automation levels (Gold et al., 2016 and Calvi et al., 2020). Also, the
current implementation of perception in OTS prevents the simulation of both human and
automated decision-making in one vehicle model. Still, the current models show to be
effective in differentiating the different driving characteristics of the automation levels.
To make the simulation more realistic, calibration on model parameters is recommended.

Car-following and lane-changing behaviours differ significantly across automation levels.
Level 1 and level 2 vehicles generally maintain larger headways and show reduced ac-
celeration variability compared to human drivers. Level 3 vehicles show closer headway
values but are constraint by the smaller acceleration range impacting the maintained
headway and especially causes large gaps during lane change manoeuvres. This leads to
potential unrealistic driving behaviour for level 3 vehicles. Additionally, human drivers
only demonstrate limited behavioural adaptation toward level 3 vehicles, which requires
additional research to improve modelling of behavioural adaptations due to surrounding
AVs.

Traffic performance KPIs, including flow, density, speed, and travel time, show significant
improvements as automation levels increase, especially when level 3 vehicles represent at
least 50% of traffic. Other studies show that traffic performance gains are achievable for
lower penetration rates of AVs. However, the currently designed vehicle model for level 3
is less advanced than most AVs in current literature, and the restricted acceleration range
does limit the level 3 vehicle to maintain lower headways. Higher levels of automation
reduce drops in traffic flow and increase mean speed levels, which is consistent with the
overall consensus that homogenous traffic results in better traffic performance. Safety
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metrics, defined by critical time-to-collision numbers, also improve when automation
levels increase. Higher automation levels such as level 1, level 2 and level 3 vehicles
are shown to be less prone to dangerous car-following interactions. However, simplified
assumptions regarding reaction times and critical time-to-collision thresholds lead to the
need for future research to take traffic safety into account in more detail. This also holds
for the simulated distractions that show that distractions do impact traffic performance
and safety. However, more research into distractions is needed to include more nuance
between different types of distractions and their effect on the human driver.

6.5 Recommendations

The findings on traffic performance show that the introduction of level 1 vehicles dete-
riorates traffic performance on a freeway with an on-ramp. Further increases of vehicle
automation by means of level 1 and level 2 vehicles will damp these negative effects.
However, it does only really improve when level 3 vehicles enter the vehicle fleet. This
implicates that the current situation on Dutch freeways, where many vehicles are equipped
with ACC systems and newer level 2 vehicles are entering the market, was already sub-
ject to deteriorating traffic performance. Meaning that the introduction of level 3 vehicles
will bring significant traffic performance improvements regarding speed levels at merg-
ing sections and traffic flows. Let alone, what further improvements CAVs could bring.
Therefore, these findings support the goals of the European Parliament that incorporate
ADAS features in the motor vehicle type approval requirements (Regulation 2019/2144,
n.d.). It is even recommended that these requirements are frequently updated to incor-
porate the latest, and of course thoroughly tested, automation features to ensure vehicle
innovation finds its way to the freeway.

One of the biggest limitations left for the designed vehicle models is the precise simulation
of level 1 vehicles. As discussed earlier, OTS uses one perception for each vehicle model
which is intertwined with fundamental behaviour models underneath the car-following
and lane-changing models. This means that both car-following and lane-changing decisons
are performed for a reaction time of 0.0 s, while only car-following is automated. To
enable the simulation of different reaction times, the vehicle model must be able to base
its decision-making on at least two different perceptions. This could be achieved by
providing two perceptions for each vehicle model (dual-perception factory) and specify in
the driving models which perception to use. This would not only enable the simulation
of two different reaction times, one for automated car-following and the other for human
lane-changing, but would also create a foundation for switching between vehicle control for
take-over control situations. However, this could introduce more complex decision-making
because vehicles have to combine all considerations into one car-following acceleration
and lane-changing decisions. Therefore, future work is recommended on modelling level
1 vehicles and/or take-over control situations for automation levels.

Additionally, it is recommended to calibrate the new driving models combination of the
IDM+ model, LMRS model, and the mental Fuller model. This would clarify what
values have to be used for specific parameters. Reducing the uncertainty around model
parameters and providing a starting point for the design of vehicle models. Also, the
behavioural adaptations due to HDV-AV interactions should be researched more deeply
since the current headway adaptation proves to be ineffective in the current level 0 model.
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A significant limitation in the simulation of driver distractions is the unknown quan-
tification of driver distraction. Currently, driver distraction is defined as exceeding the
critical task saturation. However, in this research, the distraction is always the same. No
distinction is made between high-engagement and low-engagement secondary tasks. This
results in a high percentage of human drivers that are effectively distracted. However,
not all distractions have to result in a deterioration of driving performance. Therefore,
further research is required to determine how different levels of distraction can be incor-
porated and what framework is suitable to quantify these distraction levels for simulation
purposes.
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Appendices

Appendix I: Modified OTS classes

Some classes from the OTS Java code have been modified to allow the simulation of
automation levels and enable adaptations regarding interactions between automation
levels. The traffic simulation project is available on GitHub: https://github.com/J-
Poland/GraduationOTS. However, some modifications will be explained here to clarify
how the different levels and interactions are implemented.

Car-following modifications

Tailgating in OTS is managed in the Tailgating class. However, a CustomTailgating class
is introduced to only apply tailgating on level 0 vehicles. This is necessary to prevent
automated car-following from levels 1, 2 and 3 vehicles to adapt to followers.

The automation levels have different configurations for their car-following and lane-
changing behaviour. Where level 0 vehicles have a human driver that controls both
car-following and lane-changing actions, level 1 vehicles have automated car-following.
This also means that social factors for car-following interactions should be ignored or at
least adjusted for automated features. To allow level 0 vehicles to have different social
parameters regarding car-following and lane-changing, an additional social parameter is
implemented. The socio-speed sensitivity parameter (socio) was already used in OTS,
now the socio-car-following sensitivity parameter (sociocf ) is introduced. The new pa-
rameter is used in the SocioDesiredSpeed class to make the desired speed dependent on
social pressure.

Also, it lets human drivers adapt to their surroundings in mixed traffic. The Adap-
tationHeadway class is replaced by a CustomAdaptationHeadway class. The class is
responsible for determining the minimum time headway dependent on the task satura-
tion of the driver but now also considers the follower and leader vehicle. Whenever a
level 0 vehicle is positioned between two level 3 vehicles, the level 0 vehicle will adapt to
the minimal time headway of level 3 vehicles based on the driver’s car-following social
parameter. The applied minimum time headway is thus calculated as follows:

Tmin = Tmin level0 ∗ (1− sociocf ) + Tmin level3 ∗ sociocf (4)

Lane-changing modifications

The Cooperation class in OTS enables vehicles to decide whether they will create space
for merging vehicles. The threshold for cooperation (Dcoop) is calibrated by Schakel et al.
(2012). However, this is a social decision and thus for human drivers depends on their
social parameter and surrounding vehicle levels. To make cooperation dependent on the
socio-car-following sensitivity parameter (sociocf ) for interactions between level 0 and
level 3 vehicles, the CustomCooperation class is created where the cooperation threshold
(Dcoop) is determined as follows:
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Dcoop = Dcoop min + (Dcoop max −Dcoop min) ∗ (1− socialcf ) (5)

Where Dcoop min and Dcoop max are set based on ±10% of the default Dcoop.

Mental model modifications

In previous paragraphs, it is stated that distractions are distractions because they af-
fect the driving behaviour of human drivers. In OTS this only happens when the task
saturation exceeds the critical task capacity. In order to let distractions exceed the crit-
ical task capacity, the remaining (un-saturated) task capacity is calculated. Whenever
drivers become distracted by either in-vehicle distractions or roadside distractions, an
extra workload is applied to exceed the critical task saturation, see Equation 3. This is
handled in the TaskManagerAr class.

The AdaptationSituationalAwareness class adjusts the driver’s reaction time based on
situational awareness. However, to control the minimum and maximum values for reaction
times for human drivers, a CustomAdaptationSituationalAwareness class is created. The
new formula to calculate the reaction time (RT ) is:

RT = RTmin + (RTmax −RTmin) ∗ (SAmax − SA) (6)

Where RTmin is the minimum reaction time, RTmax is the maximum reaction time, SAmax

is the maximum situational awareness, and SA is the current situational awareness.

Unfortunately, the reaction time values are only applicable for level 0 vehicles. Human
drivers are still in control of lane-changing in level 1 vehicles. However, the single per-
ception in OTS does not allow different reaction times within one vehicle.

The new CustomAdaptationHeadway class also includes a statement to check whether
the vehicle is a level 0 vehicle. This is checked because only human drivers can adapt
their headway because of high task workloads. The same holds for speed adaptations. A
CustomAdaptationSpeed class is implemented only to apply speed adaptations for level
0 vehicles.
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Appendix II: Vehicle model parameters

This appendix will explain exactly what parameters are used for vehicle models to repre-
sent their automation level. The available research is discussed and the chosen parameter
values are presented.

Reaction times

Driver reaction times are crucial in traffic. Human drivers base their desired headway
on comfortable following distances. When the time headway becomes lower than their
reaction time, human drivers tend to decelerate to increase the time headway. This is also
incorporated into behaviour adaptations in OTS. Whenever the situational awareness of
the driver decreases, the reaction time increases and the desired speed and headway are
adjusted to mitigate the mental workload.

The increase in reaction time to match the driver’s situational awareness is determined
by:

RT = RTmax ∗ (SAmax − SA) (7)

The reaction time (RT ) is determined by scaling the maximum reaction time (RTmax)
according to the difference between maximum situational awareness (SAmax) and the
current situational awareness level (SA). As situational awareness decreases, reaction
time increases proportionally, reflecting slower responses under reduced awareness.

The default maximum reaction time is set to RTmax = 2.0 s. By default, this means that
the reaction time is between 0.0 and 2.0 seconds. While a reaction time of 0.0 seconds
does not correspond with real-life reaction times, it does reflect the quick responsiveness
of emergency braking systems that are available in all vehicle automation levels.

Automated car-following behaviour has a low reaction time because the processing time
of sensor data by computers is quicker than human reaction times. Still, Makridis et al.
(2019) claims that available ACC controllers have high reaction times. This is observed
in car-following data because the response time depends on comfort settings and does not
reflect the reaction time of data processing. When a vehicle encounters a dangerous sit-
uation, the system ignores comfort settings, enabling a faster, more immediate response.
Additionally, the reaction time only increases whenever the driver’s situational awareness
deteriorates because of the mental workload. This does not occur for automated driving
tasks. Therefore, the maximum reaction time of automated car-following is assumed to
be RTmax = 0.0 s to simulate their fast data processing and prevent performance de-
terioration by situational awareness. The comfort settings will still affect the vehicle’s
acceleration and headway parameters.

For human drivers, determining reaction time is more complicated. Humans could have
to undergo decision-making without the latest information, which is highly dependent
on their attentiveness. Research from Mehmood and Easa (2009) for braking scenarios
and Fu et al. (2019) for car-following scenarios show that human reaction times go up
to 2.0 seconds. Therefore, level 0 vehicles will use the default maximum reaction time of
RTmax = 2.0s. Their attentiveness is then taken into account by increasing their reaction
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time up to this maximum reaction time based on their situational awareness as shown in
Equation 7.

Acceleration

For human drivers in OTS, the default values for acceleration variables are:

• Maximum desired car-following acceleration a = 1.25m/s2.
This acceleration value is found for passenger cars during calibration of the LMRS
model in combination with the IDM+ model (Schakel et al., 2012).

• Maximum comfortable car-following deceleration b = 2.09m/s2.
This deceleration value is found for passenger cars during calibration of the LMRS
model in combination with the IDM+ model (Schakel et al., 2012).

• Maximum critical deceleration bcrit = 3.50m/s2.

• Maximum adjustment deceleration b0 = 0.50m/s2.

The default values are calibrated for human traffic on a Dutch highway, so these values
are used for level 0 vehicles. However, for higher automation level vehicles these values
will be different.

Observed data from vehicles equipped with ACC show that car-following support lowers
the variability of acceleration while driving. Schakel et al. (2017) find that enabling ACC
will result in a 13.1% and 31.5% decrease in the mean standard deviation of acceleration
while in free and saturated traffic respectively. However, in congestion, they observed
only a decrease of 4.5% which is not statistically significant. This shows that the ACC
will have a more smooth driving style than human drivers in faster driving situations. Ad-
ditionally, T. Li et al. (2021) observe that the ACC’s acceleration magnitude is decreased
due to comfort settings. Therefore, for ACC both the maximum desired car-following
acceleration and maximum comfortable car-following deceleration are lowered.

Since the experiments in this research are simulated near critical road capacity, traffic will
mostly be saturated. Therefore, the 13.1% reduction in acceleration variability should be
realised. To achieve this, the maximum desired car-following acceleration is set to a =
1.17m/s2 and the maximum comfortable car-following deceleration is set to b = 1.95m/s2.
These are determined by calculating the reduction factor based on the standard deviation:

reduction factor =
√
1− variance reduction (8)

ACC acceleration value = reduction factor ∗ human acceleration value (9)

When congested, the ACC is still able to perform the same decelerations as humans
because the maximum critical deceleration is not changed. Also, the maximum adjust-
ment deceleration is not adjusted since the maximum adjustment deceleration will only
be effective in a free traffic flow which will not be simulated much.

For level 3 AVs it is assumed that similar acceleration ranges will be applicable. How-
ever, since the level 3 AV will be more optimised, it is assumed that the variability for
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acceleration values will be lower. As the ACC had a reduction of 13.1% in variability, it
is assumed that a level 3 AV will achieve a 20% reduction in variability.

This leads to the following selection of acceleration parameters:

• Level 0: a = 1.25m/s2, b = 2.09m/s2, bcrit = 3.50m/s2, and b0 = 0.50m/s2;

• Level 1: a = 1.17m/s2, b = 1.95m/s2, bcrit = 3.50m/s2, and b0 = 0.50m/s2;

• Level 2: a = 1.17m/s2, b = 1.95m/s2, bcrit = 3.50m/s2, and b0 = 0.50m/s2;

• Level 3: a = 1.12m/s2, b = 1.87m/s2, bcrit = 3.50m/s2, and b0 = 0.50m/s2.

Relaxation

The LMRS model also includes relaxation. In addition to lane change, synchronisation,
and cooperation actions, the LMRS model also smooths out changes in acceleration. It
gradually increases the vehicle’s headway toward the maximum, preventing abrupt or fre-
quent large changes in acceleration. The headway time will be between the minimum and
maximum headway time. The relaxation ratio timestep

τ
influences how fast the headway

adjusts. Since the time step is already set, the relaxation time parameter (τ) controls
the adjustment speed. Since the acceleration parameters are already adjusted to account
for the low variability in ACC acceleration, the relaxation time parameter is kept at the
default value (τ = 25s). This value is calibrated for the LMRS model on data collected
from a Dutch freeway (Schakel et al., 2012).

Maximum and minimum headway

The default maximum and minimum time headway settings in OTS are as follows:

• Maximum time headway Tmax = 1.2 s.
This maximum time headway value is found for passenger cars during calibration
of the LMRS model in combination with the IDM+ model (Schakel et al., 2012).

• Minimum time headway Tmin = 0.56 s.
This minimum time headway value is found for passenger cars during calibration
of the LMRS model in combination with the IDM+ model (Schakel et al., 2012).

While AVs have low reaction times, level 1 and level 2 vehicles do not seem to lower
the vehicle’s headway. The literature review showed that automated car-following would
improve road capacity because of lower headways. However, research on the use of ACC,
which corresponds to the car-following features of level 1 and level 2 vehicles, shows that
larger headways are observed (Kummetha et al., 2018). Without ACC the headways were
20.5% smaller. This is also seen by Schakel et al. (2017) during their driving study. They
observe a mean human time headway of 0.98 seconds (with a standard deviation of 0.4
seconds) and with ACC a mean time headway of 1.2 seconds (with a standard deviation
of 0.3 seconds) in saturated traffic.
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For level 3 automation vehicles it is often assumed that they can maintain very small
headways. However, the literature review shows that this assumption is only tested in
scenarios for CAVs. Without communication between vehicles the level 3 AV needs to be
more careful in its decision-making to ensure a safe driving style. However, this research
does assume that the technology within the level 3 AV is sophisticated enough to handle
complex traffic situations better than current ACC systems. The low reaction time of
the AV would then allow the vehicle to maintain slightly lower headways than human
drivers could. Also, the variability in time headway values will be smaller. Therefore, it
is assumed for level 3 AVs that the minimum time headway is 10% lower than for human
drivers and the maximum time headway is 20% lower than for human drivers.

The simulation does simulate tailgating in traffic. Vehicles can feel the social pressure of
their following vehicle and increase their desired speed. This will lead to smaller headways
and thus the default maximum time headway value of 1.2 seconds is multiplied by 11

3
to

maintain its effective time headway of 1.2 seconds while experiencing tailgating. This is
also performed for the level 0 maximum time headway.

When including time headway ranges for one standard deviation from Schakel et al.,
accounting for tailgating effects for level 0 vehicles, and assuming level 3 automation
values, the following values are set:

• Level 0: Tmin = 0.58 s and Tmax = 1.84 s;

• Level 1: Tmin = 0.8 s and Tmax = 1.5 s;

• Level 2: Tmin = 0.8 s and Tmax = 1.5 s;

• Level 3: Tmin = 0.522 s and Tmax = 1.104 s.

Now, the human time headway settings in level 0 vehicles are not drawn from a distri-
bution which means that all human drivers have the same minimum and maximum time
headway parameters. While variability in time headway is seen in data, the variability
is mostly caused by traffic conditions. Qin et al. (2023) find that drivers do not have a
static driver profile. The driver could exhibit an aggressive driving style in one moment
and behave more calmly in another. They state that the traffic condition is leading to
the behaviour of the driver. Since the desired time headway is already dynamically de-
termined in OTS by taking traffic conditions into account, no further distributions are
used for the time headway parameters.

Speed limit adherence factor

Automated vehicles will comply with freeway speed limits more strictly than human
drivers do. Vollrath et al. (2011) and Kummetha et al. (2018) research the effect of CC
and ACC on driving behaviour. This research shows that human drivers have a speed
variability of 5-20%, while utilisation of (A)CC lowers this variability. With (A)CC, the
mean speed is decreased by 5-10% and less time is spent above the speed limit by at least
20%. These studies are used to set the speed adherence factor for the vehicle models.
The speed adherence factor for level 3 vehicles will be even lower since the driving tasks
are completely controlled by its AV features, so the human passenger will not necessarily
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set the vehicle’s speed. A level 3 AV can still exceed the speed limit slightly whenever
lane-changing is required but the variability in speed will be lower.

For human drivers, speed adherence depends on personal characteristics. To incorporate
these characteristics, a triangular distribution is used to set the speed adherence factor
for each vehicle. Additionally, levels 1, 2, and 3 will use an adherence factor drawn from
a triangular distribution, as human drivers influence the precise driving speed in level 1
and level 2 vehicles, and different algorithms are applied in automated features across
specific car brands.

Thus, the following speed adherence factor values are chosen:

• Level 0: fspeed = TriangularDistribution(0.8, 1.0, 1.2);

• Level 1: fspeed = TriangularDistribution(0.9, 1.0, 1.1);

• Level 2: fspeed = TriangularDistribution(0.9, 1.0, 1.1);

• Level 3: fspeed = TriangularDistribution(0.95, 1.0, 1.05).

Social parameters

Vehicles experience social pressure from their follower that can cause tailgating and an
increased desired speed. A social pressure (ρ) for the following vehicle is set dynamically
based on the speed difference compared to the leader vehicle. The leader vehicle then
calculates a desired speed while taking the social pressure of the following vehicle into
account:

desired speed = desired speed+ ρ ∗ sociocf ∗ vgain (10)

As can be seen, next to social pressure (ρ), also a social car-following sensitivity (sociocf )
and anticipation speed for full lane change desire (vgain) is required to determine the
desired speed based on social pressure.

The social car-following sensitivity parameter determines whether a driver will increase
its speed because of the speed of followers. While humans could feel rushed by following
vehicles, automated car-following features will maintain their speed. AVs are designed to
safely execute car-following and lane-changing manoeuvres and maintain a legal speed.
Adjusting their speed to please other, more aggressive, drivers is not a priority. Therefore,
the human social car-following sensitivity is set by a triangular distribution and for levels
1, 2 and 3 the sensitivity is set to 0.

The anticipation speed for full lane change desire is normally used to determine the lane
change desire whenever drivers can increase their driving speed by going to another lane.
However, in this context, the parameter affects the response to tailgating by taking the
desire to increase speed into account. The default value is set to vgain = 69.6 km/h
calibrated for a Dutch freeway (Schakel et al., 2012). Because this parameter affects
both lane-changing and tailgating, it is kept at the default value. So, the difference in
tailgating response between automation levels is solely set by the social speed sensitivity.
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Next to the desired speed, a social speed sensitivity parameter socio is used to set how
thoughtful the driver is about going out of the way of other vehicles or refraining from
changing lanes when it can improve the traffic flow. The default value is socio = 1.0,
but commonly a distribution from 0 to 1 is used to account for less and more sensitive
drivers. These are driving aspects that cannot be considered by level 2 vehicles. Also,
level 3 vehicles will not show social lane-changing behaviour since they will prioritise
their own route and safety considerations. However, for level 0 and 1 vehicles, the human
driver is still fully engaged in lane-changing tasks, so they can also make social decisions
for lane changes. This parameter will have a distribution from 0 to 1 for level 0 and 1
automation.

The resulting settings are:

• Level 0:

sociocf = TriangularDistribution(0.0, 0.5, 1.0),

socio = TriangularDistribution(0.0, 0.5, 1.0) and

vgain = 69.6 km/h;

• Level 1:

sociocf = 0.0,

socio = TriangularDistribution(0.0, 0.5, 1.0) and

vgain = 69.6 km/h;

• Level 2:

sociocf = 0.0,

socio = 0.0 and

vgain = 69.6 km/h;

• Level 3:

sociocf = 0.0,

socio = 0.0 and

vgain = 69.6 km/h.

Look-ahead and look-back

In OTS the vehicles have look-ahead and look-back parameters to control the perception
range of drivers. Default values for human drivers are:

• lookahead = 295.0m;

• lookback = 200.0m.
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Regarding automatic car-following’s range of perception, Jeong et al. (2012) states that
long-range radars are used to provide ACC with ranges from 70 to 250 meters, while
short-range radars cover the lower ranges. Current vehicles have a variety of ranges for
their car-following control. Renault claims that their vehicle front radars have a range of
130 to 140 meters (Renault, n.d.). Available premium Bosch front radars already have
up to around 300 meters (Bosch Mobility, n.d.). Additionally, Tesla utilises computer
vision for their autopilot with a 360-degree perception up to 250 meters (Tesla, n.d.).
Therefore, it is acceptable to assume that current level 1 vehicles have a perception of
up to 140 meters. More automated vehicles are better equipped and level 3 vehicles will
be the newest vehicles on the road, so an increase in technology and thus an increase in
vehicle perception is expected.

The vehicle’s perception is not only aimed forward. Also, rear sensors are available for
automated vehicles. Current ADAS are often equipped with rear radars that detect
objects within 20 meters (Jeong et al., 2012). When taking Tesla’s computer vision into
account, their backward camera has a range of up to 50 meters. However, the 360-degree
coverage ensures that objects can be detected within a range of 100 meters. The higher
the automation level, the better the perception coverage. Therefore, it is assumed that
level 1 vehicles have a look-back of 20 meters, which increases for each automation level
as it does for the look-ahead parameter.

These findings suggest significant differences between perception ranges for different au-
tomation levels. Research on human perception does not state a specific range for look-
ahead and look-back parameters. The default values ensure that level 0 vehicles have
the highest range of perception, and higher automation levels get an increasingly larger
perception range. This fits the development of technology and also shows the limitations
of AVs as long as they are not connected such as CAVs. Therefore, the default values are
kept for level 0 vehicles.

However, the short look-back parameters for level 1 and 2 vehicles are problematic for safe
lane changes in OTS. It is not possible to brake-off a lane change. So when a lane change
is initialised, the vehicle will complete this lane change no matter how fast followers in
the new lane approach. Because a short look-back parameter does not provide the vehicle
with information about potential followers, it results in many collisions in the simulation.
This does not reflect real-world lane changes since in real life the driver or AV controller
can check the surroundings continuously and brake off a lane change when the manoeuvre
is not considered safe anymore. Thus, the default look-back value is kept for all vehicle
types to ensure realistic lane-changing behaviour.

The resulting look-ahead and look-back values are:

• Level 0: lookahead = 295.0m and lookback = 200.0m;

• Level 1: lookahead = 140.0m and lookback = 200.0m;

• Level 2: lookahead = 250.0m and lookback = 200.0m;

• Level 3: lookahead = 300.0m and lookback = 200.0m.
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Task capacity of the human driver

The task saturation determines whether a human driver experiences limited situational
awareness. Equation 11 from van Lint and Calvert (2018) shows that the task saturation
TS is directly dependent on the task capacity TC. This means that drivers can handle
different levels of mental workload before it affects their driving behaviour.

TS =
total task demand

TC
(11)

The paper from van Lint and Calvert do not show a method to determine a driver’s
task capacity. To account for different experience levels among human drivers, the task
capacity is varied by ±10% from its default value of 1.0. This adjustment does not affect
higher automation level vehicles, as no take-over control situations are simulated and the
perception of level 1 vehicles is based on a maximum reaction time of 0. Therefore the
following values are used:

• Level 0: TC = TriangularDistribution(0.9, 1.0, 1.1);

• Level 1: N/A;

• Level 2: N/A;

• Level 3: N/A.

Parameters overview

The last paragraphs have explained which values are chosen for which parameters. To
provide an overview of these assumed parameters, Table 9 is shown here. The assumed
values are substantiated, however, Appendix IV: Sensitivity analysis checks these values
and presents an overview of the final selected parameters.
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Table 9: Assumed parameter values for GTU behavioural models.

Parameter Symbol Level 0 Level 1 Level 2 Level 3 Units

Minimum
reaction time RTmin 0.17 0.0 0.0 0.0 s

Maximum
reaction time RTmax 2.0 0.0 0.0 0.0 s

Look-ahead lookahead 295.0 140.0 250.0 300.0 m

Look-back lookback 200.0 200.0 200.0 200.0 m

IDM+ specific parameters

Minimal
headway time Tmin 0.58 0.8 0.8 0.522 s

Maximum
headway time Tmax 1.84 1.5 1.5 1.104 s

Maximum desired
car-following

acceleration a 1.25 1.17 1.17 1.12 m/s2

Maximum
comfortable
car-following

deceleration b 2.09 1.95 1.95 1.87 m/s2

Maximum
critical

deceleration bcrit 3.5 3.5 3.5 3.5 m/s2

Maximum
adjustment

deceleration b0 0.5 0.5 0.5 0.5 m/s2

Speed
adherence factor fspeed (0.8 - 1.2) (0.9 - 1.1) (0.9 - 1.1) (0.95 - 1.05) -

Socio-
car-following
sensitivity sociocf (0.0 - 1.0) 0.0 0.0 0.0 -

LMRS specific parameters

Socio-speed
sensitivity socio (0.0 - 1.0) (0.0 - 1.0) 0.0 0.0 -

Anticipation speed
for full desire vgain 69.6 69.6 69.6 69.6 km/h

Fuller specific parameters

Task capacity TC (0.9 - 1.1) N/A N/A N/A -

Critical
task saturation TScritical 0.8 N/A N/A N/A -
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Appendix III: Exploratory analysis

This appendix contains the exploratory analysis to determine basic simulation settings
such as the warm-up time, traffic demand, and the sampling time based on travel times
observed in the traffic simulation. For each section, the method is discussed and graphs
from the exploratory notebooks are selected to explain why certain simulation settings
are chosen. The complete analyses are available on GitHub.

The simulation runs for exploratory analysis have vehicle configurations from the assumed
parameter values in Table 9 from Appendix II: Vehicle model parameters. The base
scenario of 100% human drivers is chosen to find the near-road capacity scenarios for
human drivers which can be compared to the introduction of automation levels. To
analyse a broad range of traffic conditions, the following input parameters were used:

• Seeds: [0, 1, 2, 3];

• Warm-up time: 0 seconds;

• Sample time: 1800 seconds;

• Main demand: 1000 - 5000 veh/h;

• Ramp demand: 200 - 1000 veh/h;

• Level 0 fraction: 1.0;

• Level 1 fraction: 0.0;

• Level 2 fraction: 0.0;

• Level 3 fraction: 0.0;

• In vehicle distraction: True;

• Roadside distraction: False;

Warm-up time

Traffic simulations require a warm-up time to fill the road network with vehicles. The
first vehicles to enter the road have no other vehicles in their surroundings, resulting in
unrealistic behaviour and measurements for traffic conditions and dynamics. The warm-
up time will ensure that sampled data is based on traffic conditions and dynamics that
correspond to the provided traffic demand settings.

The progress of vehicle count is shown in Figure 23. The graph clearly shows the initial
phase where the simulation is filling the road network. However, some simulation runs
show a quicker stabilisation than others. This can be explained by the broad demand
settings that are used to explore the traffic simulation. Additionally, while stabilisation
behaviour is observed, the vehicle count does not actually get stable. The freeway with
an on-ramp scenario will be subject to disruptions based on the demand for on-ramp
traffic. This is clearly visible in the graph where low runs with vehicle count show less
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variation than higher vehicle count runs. Despite these differences, no significant changes
are observed after 500 seconds in the simulation.

Figure 23: Progress of simulation vehicle count.

The warm-up time is often determined by analysing the stabilisation of traffic characteris-
tics such as traffic flow, density, and speed. Therefore, the progress of these characteristics
is analysed for the post-on-ramp lanes (section CD) in Figure 24 and for the on-ramp in
Figure 25.

The speed, density, and flow progress observations throughout the simulation for section
BC look similar to the progress of the vehicle count. The runs show different variabilities
for speed, density and flow measures but need a maximum of 500 seconds to reach a
quasi-stable state.

Figure 24: Progress of fundamental diagram variables for the main lanes.

On the on-ramp, no distinct point in time can be identified where all simulation runs
seem to reach a quasi-stable state. The speed, density and flow characteristics indicate
that the on-ramp becomes congested at different points in time. This also means that
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the observations will be dependent on the combination of main lanes and on-ramp traffic
demand.

Figure 25: Progress of fundamental diagram variables for the on-ramp.

However, the development of traffic on the on-ramp is of interest to show how well
vehicles can merge into the main lanes. This means that the warm-up time should not
be determined based on the on-ramp.

Based on these observations, the warm-up time of the simulation is set at 500 seconds.
This duration allows the simulation to fill the road network for both low and high-traffic
demand settings and allows the vehicle outflow of merging lanes to reach a quasi-stable
state.

Traffic demand

Ranges of freeway traffic demand for the main lanes and the on-ramp have to be deter-
mined. This analysis will seek to identify traffic demand ranges that simulate near-critical
road capacity conditions as much as possible. This near-critical road capacity scenario
can be identified by using the fundamental diagram that depicts the relation between
traffic flow and traffic density. Each section of the freeway has different traffic conditions.
Therefore, Figure 26 shows the fundamental diagram for the pre-on-ramp section (AB),
merging section (BC), post-on-ramp section (CD), and the on-ramp lane (E2B) through-
out the simulation. The variables speed, density and flow are measured every 30 seconds
to show short-time traffic developments but not too detailed that the variability becomes
too high.

The pre-on-ramp section clearly shows the distinct traffic conditions. A linear increase
in flow can be observed for low-density values. This is the free-flow condition where the
road capacity can easily handle traffic demand. However, as demand keeps increasing,
vehicles have to share the road length with more vehicles. The limited space will slow
down vehicles and thus end the linear increase in flow. Figure 26 shows that for density
values between 20 - 35 veh/km traffic gets saturated and transforms into congestion. Ad-
ditionally, the graph shows that changes in traffic conditions occur throughout the whole
simulation. Because data points are coloured based on the simulation time. Whereas
free-flow conditions are more common at the start of the simulation and congestion more
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common at the end of the simulation, changes between those conditions occur throughout
the simulation.

The merging section also depicts distinct free-flow and congestion conditions. However,
the transition from free-flow to congestion is different. The merging section shows a
capacity drop at a density of 25 veh/km. This can be explained by the disruptive nature
of the on-ramp. Vehicles can merge into the main lanes as long as there is available space.
However, when the demand from the on-ramp is too high or there is limited space on the
main lanes, fewer vehicles are able to merge.

Another trend is observed for the post-on-ramp fundamental diagram. This section has
to handle vehicle outflow from the merging section. Since the merging section is highly
subject to disruptions, the outflow is decreased and thus are the two available lanes of
the post-on-ramp section able to handle this traffic flow.

The on-ramp lane also shows a clear free-flow relationship. However, the congestion
condition is more difficult to identify. High flow measures are observed, even for density
values higher than 35 veh/km. This could be explained by varying combinations of main
lane traffic demand and on-ramp traffic demand. Whenever the main lane demand is
low, there is enough merging space for a high flow of on-ramp traffic. However, it is not
possible to achieve a flow of 2000 veh/h for the current on-ramp demand settings. These
values are measured because of the stochastic nature of the vehicle generator in OTS.
Fundamental diagram variables such as speed, density and flow are measured every 30
seconds. Whenever many vehicles are generated on the on-ramp right after each other,
which can also happen in real-life scenarios, the flow for that measure interval is high. If
the main lane traffic flow is low for that interval, all vehicles can enter the merging area
and thus do not cause any disruptions.

Figure 26: Fundamental diagram for all simulation runs.

The discussed fundamental diagram insights show that many free-flow and congestion
conditions are simulated. Therefore, the demand ranges are reduced to focus more closely
on the saturated traffic conditions. First, it is important to not only simulate congestion
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conditions for the on-ramp. High density values for the on-ramp will significantly slow
vehicles down which will further complicate merging because of speed differences. Ad-
ditionally, it is important to lower the amount of free-flow and congestion on the main
lanes.

To achieve this, the simulation runs are filtered on minimum and maximum demand
values. The following demand settings were found:

• Main demand: 2800 - 4000 veh/h;

• Ramp demand: 250 - 400 veh/h.

By applying these ranges new fundamental diagrams are created for each road section in
Figure 27. The data points that remain in the fundamental diagrams show less congestion
on both the on-ramp and the main lanes. Also, the lowest flow data points are excluded.

Figure 27: Fundamental diagram for selected simulation runs.

Sampling time

The simulation duration is dependent on both the warm-up time and sampling time.
Now that the demand ranges are chosen and the warm-up time is known. These insights
are used to select the appropriate sampling time.

As a rule of thumb, the sampling time for traffic simulations should be at least three times
the travel time of vehicles. Figure 28 shows that the majority of vehicles have a travel
time of less than 100 seconds. However, vehicles that are generated on the on-ramp show
many outliers that can have a travel time of up to approximately 900 seconds. These
vehicles have been stuck in congestion on the on-ramp and only can merge into the main
lanes when preceding vehicles are able to feed in. The dynamics of congested vehicles
on the on-ramp lane are not within the scope of this research. So, not all congested
on-ramp vehicles have to be included within the simulation time. However, the ability to
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absorb disruptions or merge more easily of higher automation levels could be interesting.
Therefore, a part of the congested travel times is included in the sampling time to allow
analysis of this ability. By taking this into account a sampling time of 1200 seconds is
selected. This means that many non-congested vehicles will be sampled, this sample time
is significantly higher than three times the travel time, and a large portion of congested
vehicles are sampled.

Figure 28: Travel time observed for selected simulation runs.
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Appendix IV: Sensitivity analysis

Parameter values are based on default OTS settings and research for automation levels
and mixed traffic. However, some parameters are still uncertain. This uncertainty is
caused by conflicting findings in literature or dynamical processes in OTS driving models.
Therefore, sensitivity analysis is performed to analyse how the parameter affects the
driving behaviour. The assumed values, based on the previous paragraphs, are presented
in Table 9. These values are the base values on which the sensitivity analysis is performed.
However, insights from the analysis will be used to determine a resulting parameter value.
These resulting parameter values will be used in the scenario runs of this research and
will be presented in Table 10.

Human reaction time

Varying human reaction times where found in Mehmood and Easa (2009) and Fu et al.
(2019). Additionally, reaction times are determined dynamically in the Fuller model.
The workload experienced by the human driver is decisive in determining the effective
reaction time. To see how reaction time varies for different maximum reaction time
settings, sensitivity analysis is performed for a maximum reaction time of 2.0 seconds,
which is approximately the mean reaction time found by Fu et al. and the default value
in OTS, to a maximum reaction time of 4 seconds, which includes the 3.32 seconds that
was the maximum reaction time in research from Fu et al. To perform the sensitivity
analysis, the Latin Hypercube sampler within the EMA Workbench will select a value
within this range for each run.

This maximum reaction time is only applicable for human drivers in level 0 vehicles,
therefore the base scenario of 100% level 0 vehicles is used. The scenario runs 10 times
for 6 seeds. The following simulation settings are used:

• Seeds: [0, 1, 2, 3, 4, 5];

• Warm-up time: 500 seconds;

• Sample time: 1200 seconds;

• Main demand: 3400 veh/h;

• Ramp demand: 325 veh/h;

• In vehicle distraction: True;

• Roadside distraction: False;

• Level 0 maximum reaction time: 2.0 - 4.0 seconds.

Results are plotted in Figure 29. This plot shows that the mean reaction time does not
change significantly whenever the max reaction time increases. Most human drivers do
not experience a deteriorating situational awareness and thus have a reaction time of 0.17
seconds. However, the maximum observed reaction times do increase significantly.
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Figure 29: Effect of maximum reaction time on human reaction time.

When the influence of the maximum reaction time is analysed for human drivers that
experience deterioration of their situational awareness, the mean reaction time does in-
crease slightly (Figure 30). Therefore, the maximum observed reaction time is chosen
to be the determinant for the selection of a maximum reaction time value. Because this
simulation requires lower reaction times than real-life human drivers, otherwise an unre-
alistic number of collisions occur, a maximum reaction time of 2.0 seconds is chosen. This
enables the simulation to differentiate between human drivers and automated features for
car-following behaviour and does not introduce too large reaction times. A reaction time
of 0.6 seconds is just above the time step of the simulation but does not cause many
collisions since it does not occur often.
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Figure 30: Effect of maximum reaction time on human reaction time for deteriorated
situational awareness.

Maximum headway

The maximum headway is based on research from Schakel et al. (2017). They measure
headway time with and without an ACC system. The found mean headway time and the
standard deviation are used to set minimum and maximum time headway parameters for
level 0, 1, and 2 vehicles. For level 0 vehicles, this would mean that the maximum time
headway is Tmax = 1.38 s. However, because of tailgating the maximum time headway
parameter should be increased. In the example code from OTS, the maximum time
headway is multiplied by 11

3
to maintain an effective time headway of 1.2 seconds. A

sensitivity analysis was performed to identify the maximum time headway value required
to have an effective time headway of 1.38 seconds for level 0 vehicles. The maximum time
headway value will range from 1.2 to 2.0.

Because this analysis is based on human drivers in level 0 vehicles, the base scenario of
100% level 0 vehicles is used. The scenario runs 10 times for 8 seeds. The following
simulation settings are used:

• Seeds: [0, 1, 2, 3, 4, 5];

• Warm-up time: 500 seconds;

• Sample time: 1200 seconds;

• Main demand: 3400 veh/h;

• Ramp demand: 325 veh/h;
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• In vehicle distraction: True;

• Roadside distraction: False;

• Level 0 maximum time headway: 1.2 - 2.0 seconds.

The time headway is observed during the sensitivity analysis. Boxplots in Figure 31 show
how the time headway of level 0 vehicles changes for varying maximum time headway
values. The minimum and maximum time headway range becomes effective whenever the
vehicle experiences a headway within this range. Therefore, the effective time headway
values are only analysed for the applied ranges.

Figure 31: Effect of maximum time headway on the mean time headway.

The figure shows that the mean time headway increases for an increasing maximum time
headway. The larger the maximum time headway, the larger the distance to the mean.
It was found that the mean time headway of human drivers was 0.98 seconds and with
one standard deviation distance 1.38 seconds. As the boxplots show, this is not observed
in the simulation data. However, this concludes that lower maximum time headway
values better represent human drivers, thus the assumed maximum time headway value
is replaced by a maximum value of 1.38 seconds based on findings in the literature.

Also, many outliers are observed. This shows that the vehicle is likely to maintain its
headway in the upper area of the time headway range. However, the larger the range, the
more small headways become common. This could be explained because a large range
also means more variations in the desired headway, which could lead to overshooting.
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Maximum critical deceleration

The maximum critical deceleration is not covered in the reviewed research on human
drivers and automated driving features. The assumed values are the default values in
OTS. However, sensitivity analysis is performed to see how the maximum critical decel-
eration parameter affects traffic. To include a broad range of values, the range is based
on ±20% of the default value.

The maximum critical deceleration parameter applies for all vehicle levels, therefore sce-
nario 25-25-25-25 is used to simulate all levels for a penetration rate of 25%. The scenario
runs 10 times for 6 seeds. The following simulation settings are used:

• Seeds: [0, 1, 2, 3, 4, 5];

• Warm-up time: 500 seconds;

• Sample time: 1200 seconds;

• Main demand: 3400 veh/h;

• Ramp demand: 325 veh/h;

• In vehicle distraction: True;

• Roadside distraction: False;

• Level 0 maximum critical deceleration: 2.8 - 4.2 seconds.

The sensitivity analysis shows the same patterns for different automation levels. So the
rest of this analysis does not differentiate between them. A plot of vehicle acceleration
shows that increasing the maximum critical deceleration causes the mean acceleration
to decrease. However, this trend does not continue. This pattern is hard to explain,
therefore also the rate of acceleration change is considered.

Figure 32: Effect of maximum critical deceleration on acceleration.

The rate of change in acceleration is shown in Figure 33. The overall trend shows that
a higher maximum critical deceleration will increase the rate of change of acceleration.
This can be explained because higher decelerations may overshoot and force the vehicle to
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accelerate again. However, the change in the trend may be caused by dynamics between
the car-following model and the specific following conditions.

Figure 33: Effect of maximum critical deceleration on change in deceleration.

The default value of 3.5m/s2 is selected because of the assumption that all automation
levels have the same braking capacity. Also, variance in acceleration is achieved by
adjusting the maximum desired car-following acceleration and maximum comfortable
car-following deceleration, and no convincing reason was identified to alter the default
value.

Maximum adjustment deceleration

Like the maximum critical deceleration parameter, also the maximum adjustment de-
celeration is only based on the default value in OTS. The adjustment deceleration is
responsible for the upper bound for deceleration for adjustments to slow down. Where
critical deceleration is used in critical situations, the adjustment deceleration is applica-
ble when the vehicle has to slow down but does not necessarily use the brake. When the
adjustment deceleration is too high, it means that people do use their brakes for small
changes in speed. Of course, this is not preferred but could also happen in the real world.
Therefore, sensitivity analysis will help to get further insights into this parameter. Also,
this parameter is applicable for all vehicle levels, so scenario 25-25-25-25 is used for 10
simulation runs for 6 different seeds. A range of ±20% is taken from the default value,
resulting in the following simulation settings:

• Seeds: [0, 1, 2, 3, 4, 5];

• Warm-up time: 500 seconds;

• Sample time: 1200 seconds;

• Main demand: 3400 veh/h;

• Ramp demand: 325 veh/h;

• In vehicle distraction: True;

• Roadside distraction: False;
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• Maximum critical deceleration: 0.4 - 0.6 seconds;

The maximum adjustment deceleration is the deceleration applied for small changes in
speed. Figure 34 shows that the mean acceleration does decrease when the maximum
adjustment deceleration increases. However, like the maximum critical deceleration pa-
rameter, this trend does not continue completely, indicating that accelerations are highly
dependent on other simulation dynamics.

Figure 34: Effect of maximum adjustment deceleration on acceleration.

Because the maximum adjustment deceleration is aimed at adjusting the vehicle’s speed,
also the influence on the mean speed is observed. Figure 35 shows that the speed is
indeed affected by the maximum adjustment deceleration parameter. However, also here
no distinct trend is observed.

Figure 35: Effect of maximum critical deceleration on change in deceleration.

The default value of 0.5 m/s2 for the maximum adjustment deceleration achieves the
highest speed and corresponds to the lowest mean acceleration. This could indicate that
the default value in OTS was selected carefully. Therefore, no change is made for this
value.
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Table 10: Resulting parameter values for GTU behavioural models.

Parameter Symbol Level 0 Level 1 Level 2 Level 3 Units

Minimum
reaction time RTmin 0.17 0.0 0.0 0.0 s

Maximum
reaction time RTmax 2.0 0.0 0.0 0.0 s

Look-ahead lookahead 295.0 140.0 250.0 300.0 m

Look-back lookback 200.0 200.0 200.0 200.0 m

IDM+ specific parameters

Minimal
headway time Tmin 0.58 0.8 0.8 0.522 s

Maximum
headway time Tmax 1.84 1.5 1.5 1.104 s

Maximum desired
car-following

acceleration a 1.25 1.17 1.17 1.12 m/s2

Maximum
comfortable
car-following

deceleration b 2.09 1.95 1.95 1.87 m/s2

Maximum
critical

deceleration bcrit 3.5 3.5 3.5 3.5 m/s2

Maximum
adjustment

deceleration b0 0.5 0.5 0.5 0.5 m/s2

Speed
adherence factor fspeed (0.8 - 1.2) (0.9 - 1.1) (0.9 - 1.1) (0.95 - 1.05) -

Socio-
car-following
sensitivity sociocf (0.0 - 1.0) 0.0 0.0 0.0 -

LMRS specific parameters

Socio-speed
sensitivity socio (0.0 - 1.0) (0.0 - 1.0) 0.0 0.0 -

Anticipation speed
for full desire vgain 69.6 69.6 69.6 69.6 km/h

Fuller specific parameters

Task capacity TC (0.9 - 1.1) N/A N/A N/A -

Critical
task saturation TScritical 0.8 N/A N/A N/A -
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Appendix V: Simulation of pure scenarios

This appendix contains the data analysis of simulation output aimed at understanding
the behaviour of level 0, 1, 2, and 3 vehicles in the 100% penetration rate scenarios
per automation level. Each automation level is analysed based on speed, headway and
acceleration data.

Overall driving behaviour

Speed is analysed to get an understanding of the traffic situation wherein the behaviour
of the automation levels is observed. Figure 36 shows the frequency of speed levels. It
clearly shows that level 3 vehicles are able to maintain a higher speed relative to the
other levels. This means that the behaviour of level 3 vehicles is often at high-speed
levels which should correspond to larger headway distances than in slower situations. On
the other hand, level 1 and level 2 vehicles experience mostly low-speed levels. Level 0
vehicles have a more equal distribution in terms of speed levels.

Figure 36: Speed distribution for automation levels in scenarios with penetration rates
of 100%.

The automation levels have different settings for their maximum and minimum car-
following time headway. The boxplot for headway time in Figure 37 shows that the
headway does differ between automation levels. Only headways lower than four seconds
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are included. This is done to observe how small headways differ between automation
levels. Higher headways do not reflect car-following behaviour. Level 0 vehicles show the
lowest time headway with a relatively small variability. Level 1 and 2 vehicles have a
generally higher time headway which corresponds to their parameters. However, level 2
vehicles do show a lower variability.

Level 3 vehicles do show a similar mean time headway as the level 0 vehicles. However, it
is likely that the smaller comfortable acceleration range does prevent the level 3 vehicle
of maintaining smaller headways more strictly. Another reason for larger headways is the
higher speed levels associated with the simulation runs of 100% level 3 vehicles.

Figure 37: Distribution of time headway for different automation levels in scenarios with
penetration rates of 100%.

Figure 38 shows the distribution of vehicle acceleration. The simulation simulates decel-
erations up to 8m/s2. These large decelerations happen often because of acceleration at
very low speeds. Also, the disruptions of merging vehicles occasionally require followers
to brake significantly. Because of the emergency brake of the vehicles these decelera-
tions are achievable. However, because these are observed equally for all levels, the very
high decelerations do not reflect characteristic behaviour for the different vehicle levels.
Therefore, outliers are not included in this boxplot.

The figure shows that automated car-following does lower the variability in acceleration.
However, the smaller maximum and minimum car-following acceleration settings range
does not to result in a lower variability for level 3 vehicles. Level 3 vehicles show a slightly
larger variability than level 1 and 2 vehicles.
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Figure 38: Boxplot for automation level acceleration for scenarios with penetration rates
of 100%.

Also, differences are seen in the rate of change of acceleration. Figure 39 shows that
level 3 vehicles have a smaller variability for the rate of change of acceleration. This is
likely because of the higher speed levels in their simulation runs. However, this could
also indicate that the smaller comfortable car-following acceleration parameters limit the
vehicle in responding to quick adjustments in the desired acceleration.

108



Master Thesis J. Poland

Figure 39: Boxplot for automation level rate of change of acceleration for scenarios with
penetration rates of 100%.

This analysis, based on simulations of automation levels for pure scenarios (100% pen-
etration rate for each automation level), does show that the penetration rates result in
different traffic conditions. The speed levels differ across the simulations and these effects
are seen in the observed driving behaviour. This comparison of driving behaviour across
automation levels primarily reflects the influence of traffic conditions on the observed
data, rather than capturing the true differences in how automation levels handle traffic
situations. Therefore, these simulation runs cannot be used for the driving behaviour
analysis. Simulation of mixed traffic where all automation levels are present, such as in
scenario 25-25-25-25, is required to compare driving behaviour across automation levels
for equal traffic conditions.
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Appendix VI: Analysis of traffic performance and safety

Traffic performance and safety

The effects of different penetration rates for automation levels in mixed traffic will be
analysed in this chapter. Different scenarios from Chapter 3.3 with increasing vehicle
automations are explored. The analysis will include comparisons between penetration
rates for speed levels, travel times, traffic density, traffic flow and critical time-to-collision
headways measured on the freeway.

Base scenario 100-0-0-0

To start the analysis of traffic performance, the base scenario of 100% human drivers is
observed. This means that no car-following or lane-changing automation is present, only
temporary ADAS features and all vehicles are subject to deterioration of perception with
corresponding reaction times.

Figure 40 shows the mean speed distributed on the main lanes of the freeway. As the
distribution shows, vehicles have to slow down a lot to manage the disruption of the
additional traffic flow of the on-ramp. The lowest speeds are observed in the middle of
the merging section (BC) and vehicles can speed up again from the post-on-ramp section
(CD) onwards.

Figure 40: Speed heatmap on freeway main lanes for scenario 100-0-0-0.

The travel times for this scenario from Figure 41 show that many vehicles are subject to
congestion and vehicles spend a lot of time on the on-ramp.
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Figure 41: Travel time boxplots for scenario 100-0-0-0.

The fundamental diagrams in Figure 42 show the maximum flow simulated for each
density. This plot is designed like this to visualise the road capacity for the freeway
and analyse the capacity drop. As the figure shows, the pre-on-ramp section (AB) has a
free-flow until 4500 veh/h. At the critical density, a capacity drop is seen whereafter the
congested traffic continues to decrease in flow.

A higher capacity drop is observed for the merging section (BC) and also the congested
part of the fundamental diagram has a steep decrease in traffic flow. The resulting outflow
reaches a maximum flow of 4300 veh/h. When considering the access road or on-ramp
towards the merging area (E2B.ONRAMP), it shows that a flow of 900 veh/h could be
reached, but is mostly in a state of congestion.

Furthermore, 502 critical time-to-collision headways are measured throughout all simu-
lation runs. While this is only a fraction of the total headway measurements, it indicates
that human drivers sometimes maintain a dangerous small headway which could lead to
collisions.
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Figure 42: Fundamental diagram for freeway sections for scenario 100-0-0-0.

An expected reduction in speed is observed when vehicles approach the merging section.
While many vehicles have a travel time of less than 200 seconds, the freeway is subject
to a large amount of congestion and this makes merging more difficult for vehicles on the
on-ramp. The fundamental diagrams per freeway section clearly show the conditions for
free-flow and congestion. As well as the capacity drop during saturated traffic conditions.
This results in a maximum outflow of 4300 veh/h on the post-on-ramp section, which
is lower than the 4945 veh/h that is considered a standard traffic flow for this freeway
layout (two main lanes and one on-ramp) for traffic of passenger cars (J.W. Goemans,
2015). Also, the critical time-to-collisions show that vehicles can maintain dangerous
small headway distances.

Scenario 80-20-0-0

Now automation will slowly be introduced to the vehicle fleet. Level 1 vehicles are
equipped with ADAS to support car-following and people are slowly utilising these fea-
tures. Therefore, scenario 80-20-0-0 is compared to scenario 100-0-0-0 to see what effects
the introduction of this automation level has. Level 1 behaviour shows that it maintains
a longer time headway and has a higher frequency of changing lanes. Therefore, it is ex-
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pected that the introduction of level 1 vehicles will disrupt the traffic flow. The following
penetration rates are analysed here:

• Previous scenario: 100% level 0;

• Current scenario: 80% level 0, 20% level 1.

The speed heatmap in Figure 43 shows that this new penetration rate with level 1 vehicles
shows similar speeds for the pre-on-ramp section (AB). However, vehicles seem to speed
up less quickly at the end of the merging area.

Figure 43: Speed heatmap on freeway main lanes for scenario 80-20-0-0.

Also, Figure 44 shows that the introduction of level 1 vehicles causes longer travel times
for vehicles on the main lanes and for vehicles on the on-ramp.

Figure 44: Travel time boxplots for scenario 80-20-0-0.

The lower speeds observed in the merging area and the longer travel times cause traffic to
be more disrupted. This is also seen in the fundamental diagrams from Figure 45. With
a penetration rate of 20% for level 1 vehicles, similar results are seen for the pre-on-ramp
section (AB). However, a larger capacity drop is observed for the merging area (BC).
This results in a slightly lower maximum traffic flow for the post-on-ramp section (CD).
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Figure 45: Fundamental diagram for freeway sections for scenario 80-20-0-0.

Figure 46 shows that while only 20% of human drivers are replaced by level 1 vehicles,
the number of measured critical time-to-collisions is reduced significantly from 502 to
152. Also, it shows that no critical time-to-collision measurements are available for level
1 vehicles, showing that they keep a safer headway distance.
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Figure 46: Number of measured critical time-to-collision headways for scenario 80-20-0-0.

The introduction of level 1 vehicles has already affected the traffic performance with a
penetration rate of 20%. It mostly affected the traffic flow in the merging area, which
complies with the expectancy of more disruptions due to their time headway and lane
change frequency, causing a larger disruption. Also, safety has improved since the number
of critical time-to-collisions has been reduced.

Scenario 60-20-20-0

More ADAS features are entering the market, so vehicles can now support drivers in their
car-following and lane-changing tasks. This means that level 0, level 1 and level 2 vehicles
are all present in the same scenario. Level 2 vehicles also have a high time headway, so
the share of vehicles with a higher time headway increases. The following penetration
rates are simulated:

• Previous scenario: 80% level 0, 20% level 1;

• Current scenario: 60% level 0, 20% level 1, 20% level 2.

The further increase in vehicle automation does not seem to affect the speed of vehicles
on the freeway significantly. Figure 47 shows that similar speed distributions on the main
lanes are observed. However, the mean speed is decreased a bit for sections AC and BC.

Figure 47: Speed heatmap on freeway main lanes for scenario 60-20-20-0.
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Figure 48 shows the boxplot of travel times which indicates that the lower speed causes
travel times to increase even further. Long travel times become more common indicating
that more congestion is taking place.

Figure 48: Travel time boxplots for scenario 60-20-20-0.

The fundamental diagrams in Figure 49 reflect the increase in congestion by showing
higher densities for even lower traffic flows. The free-flow condition of traffic remains the
same for the pre-on-ramp section (AC). However, the capacity drop occurs at a lower
density level and the maximum traffic flow just past the capacity drop is lower than
previously.
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Figure 49: Fundamental diagram for freeway sections for scenario 60-20-20-0.

The trend of reductions in critical time-to-collisions by introducing automation levels
continues. Figure 50 shows that the number of critical time-to-collision measurements
reduces from more than 152 to just 39.
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Figure 50: Number of measured critical time-to-collision headways for scenario 60-20-20-
0.

The increase of level 1 vehicles and the introduction of level 2 vehicles seem to increase
the congestion of the freeway while other aspects of the fundamental diagrams remain
similar. The increase in vehicles with a large time headway clearly introduces more
disruptions at the merging section. Despite the increase in disruption, the number of
critical time-to-collisions is again reduced.

Scenario 40-20-20-20

Level 3 vehicles are finally available for customer use and thus make their way into the
vehicle fleet. This is a major technological advancement since earlier vehicle automations
were only considered level 2 vehicles. These level 3 vehicles have a lower variability in
acceleration and can maintain a lower time headway than level 1 and level 2 vehicles.
However, this low time headway increases much during lane changes in mixed traffic. So,
the effects on traffic performance are still unclear. This results in the following penetration
rates:

• Previous scenario: 60% level 0, 20% level 1, 20% level 2;

• Current scenario: 40% level 0, 20% level 1, 20% level 2, 20% level 3.

Figure 51 shows that the decrease in human drivers and the increase in level 3 vehicles
does affect the mean speed positively. The mean speed is slightly higher than before.
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Figure 51: Speed heatmap on freeway main lanes for scenario 40-20-20-20.

Also, the difference in travel time is negligible. Figure 52 shows that the boxplots are
almost similar so the new penetration rate has no further implications on travel time.

Figure 52: Travel time boxplots for scenario 40-20-20-20.

While the travel time and speed heatmap did not show any differences, Figure 53 shows
some differences in the fundamental diagrams. The fundamental diagrams have similar
shapes for the different freeway sections. However, a higher maximum flow is observed
for this scenario in the merging area (BC) and also the outflow to section CD is higher.
Furthermore, Figure 54 shows that the decrease in level 0 vehicles still reduces the number
of critical time-to-collision measured in the simulation.
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Figure 53: Fundamental diagram for freeway sections for scenario 40-20-20-20.
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Figure 54: Number of measured critical time-to-collision headways for scenario 40-20-20-
20.

Further progress in vehicle automation has introduced level 3 vehicles to the freeway.
This does not have much effect on the speed and travel time, however, the traffic flow
improved. Despite the decrease in level 0 vehicles and the large headway values for level
3 vehicles during lane changes, the further increase of automation levels has shown to
be helpful. This also holds for the safety aspect of traffic where critical time-to-collision
counts are reduced.

Scenario 25-25-25-25

Penetration rates of the different automation levels have reached equal fractions of the
vehicle fleet. This means that the majority of car-following is automated and half of the
vehicles have automated lane-changing. The following penetration rates are simulated:

• Previous scenario: 40% level 0, 20% level 1, 20% level 2, 20% level 3;

• Current scenario: 25% level 0, 25% level 1, 25% level 2, 25% level 3.

Some change in mean speed is observed in Figure 55. A slightly lower mean speed is seen
at the start of the merging area. Also, the travel time boxplots in Figure 56 do show
another increase in travel time for both the main lanes and vehicles on the on-ramp.
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Figure 55: Speed heatmap on freeway main lanes for scenario 25-25-25-25.

Figure 56: Travel time boxplots for scenario 25-25-25-25.

While the increase in travel time indicates more congestion on the freeway, the fun-
damental diagrams show that the new composition of the vehicle fleet allows traffic to
dampen the capacity drop. No other changes in the free-flow or congestion conditions
are observed.
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Figure 57: Fundamental diagram for freeway sections for scenario 25-25-25-25.

In previous scenarios the number of critical time-to-collisions in the simulation has been
reducing significantly. However Figure 58 shows that this decrease in counted critical
time-to-collisions does not continue for this scenario. Human drivers have a 15% lower
penetration rate but the total count of critical time-to-collisions is not lowered as much as
in previous scenarios. Also, this is the first scenario where level 2 vehicles have maintained
a dangerously close headway distance. However, the occurrence of two time-to-collisions
is negligible compared to a main lane traffic demand of at least 2800 veh/h.

123



Master Thesis J. Poland

Figure 58: Number of measured critical time-to-collision headways for scenario 25-25-25-
25.

The highly mixed composition of the vehicle fleet does increase travel time. However,
the capacity drop is dampened showing that the vehicles are better equipped to handle
disruptions. Nonetheless, this does still end up in similar congestion conditions as seen
in the previous scenario. However, less improvements are seen for the counted critical
time-to-collisions. However, the current count can be considered negligible.

Scenario 0-33-33-33

Level 0 vehicles are phasing out of the vehicle fleet. This means that all vehicles are
now equipped with car-following support. Level 1, level 2 and level 3 vehicles are now
simulated for penetration rates of:

• Previous scenario: 25% level 1, 25% level 2, 25% level 3;

• Current scenario: 33% level 1, 33% level 2, 33% level 3.

Figure 59 shows that the mean speed at the merging area (BC) drops slightly again, but
also a higher mean speed is measured at the end of the post-on-ramp section (CD).

Figure 59: Speed heatmap on freeway main lanes for scenario 0-33-33-33.
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Boxplots for travel time in Figure 60 show that most vehicles have similar travel times as
in the last scenario. However, outliers for longer travel times are observed and also the
time that vehicles spend on the on-ramp is increased.

Figure 60: Travel time boxplots for scenario 0-33-33-33.

The lower mean speed and longer travel times are also reflected by the fundamental
diagrams in Figure 61. These graphs show that lower maximum traffic flows are measured
for the pre-on-ramp (AB) and merging sections (AB). However, the outflow towards the
post-on-ramp section (CD) seems to be higher which also reflects the higher mean speed at
the end of the section. Regarding traffic safety, no critical time-to-collisions are observed
anymore in Figure 62.
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Figure 61: Fundamental diagram for freeway sections for scenario 0-33-33-33.
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Figure 62: Number of measured critical time-to-collision headways for scenario 0-33-33-
33.

The phase-out of level 0 vehicles did increase vehicle automation in the vehicle fleet but
did not improve traffic performance. The mean speed at the merging section became
lower, travel times are mostly similar and lower maximum traffic flows are observed. The
new composition of only automated car-following did remove any critical time-to-collision
headway distances from the simulation.

Scenario 0-0-50-50

In this scenario, level 2 vehicles become the standard and level 3 vehicles are widely
accepted by road users. Level 0 and level 1 vehicles are both retired by now, which
means that both car-following and lane-changing tasks are supported or controlled by
automated features. The following penetration rates are simulated:

• Previous scenario: 33% level 1, 33% level 2, 33% level 3;

• Current scenario: 50% level 2, 50% level 3.

The phase-out of level 1 vehicles results in a significant improvement in mean speed.
Figure 63 shows that vehicles keep a higher speed at until the merge section and are able
to increase their speed more quickly.
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Figure 63: Speed heatmap on freeway main lanes for scenario 0-0-50-50.

Figure 64 shows that the travel time changes from scenario 0-33-33-33 to scenario 0-0-50-
50. Travel times for both main lanes and vehicles on the on-ramp are improved, especially
the travel time on the on-ramp decreases significantly.

Figure 64: Travel time boxplots for scenario 0-0-50-50.

These improvements are also observed in the fundamental diagrams in Figure 65. Higher
maximum vehicle flows are measured for all freeway sections. Also, the capacity drop
decreases more gradually but is still subject to a large drop.
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Figure 65: Fundamental diagram for freeway sections for scenario 0-0-50-50.

The mix of level 2 and level 3 vehicles is an improvement compared to the previous
scenario with level 1 vehicles. The traffic flow is extended on all freeway sections which
also translates to better travel times and a higher mean speed. Also, no changes regarding
critical time-to-collisions were seen for this scenario.

Scenario 0-0-20-80

More road users are able to afford level 3 vehicles and the demand for level 2 vehicles
is declining. This means that the majority does have fully automated car-following and
lane-changing functionality on the freeway, resulting in the following penetration rates:

• Previous scenario: 50% level 2, 50% level 3;

• Current scenario: 20% level 2, 80% level 3.

The progress of even more level 3 vehicles results in higher mean speeds for all sections
on the freeway in Figure 66. Vehicles have to lower their speed less drastically and can
maintain a higher speed throughout the merging area (BC). This also allows the vehicles
to reach a higher speed in the post-on-ramp section (CD).
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Figure 66: Speed heatmap on freeway main lanes for scenario 0-0-20-80.

The large speed improvement is also seen for travel times in boxplots from Figure 67.
Travel time on the main lanes is reduced. However, an outstanding decrease in travel
time for on-ramp vehicles is observed. There is still congestion but most vehicles seem to
merge into the main lanes more easily.

Figure 67: Travel time boxplots for scenario 0-0-20-80.

Fundamental diagrams also show improvements in traffic performance (Figure 68). The
higher speed on the pre-on-ramp section (AB) results in a prolonged maximum traffic flow
at saturated traffic and higher maximum flows are observed at the merging area (BC).
Again the higher speed also shows higher traffic flows for the post-on-ramp section (CD)
but the access road to the on-ramp (E2B.ONRAMP) does not show a large increase in
flow. The travel time does indicate that vehicles merge more easily into the main lanes,
but the flow of vehicles is not increased much.
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Figure 68: Fundamental diagram for freeway sections for scenario 0-0-20-80.

The previous scenario already shows improvements because of level 3 vehicles. Now
for scenario 0-0-20-80, the higher penetration rate of level 3 vehicles affects the traffic
performance again. Big improvements regarding speed and travel time are observed.
Also, the fundamental diagram shows a higher traffic flow. No critical time-to-collisions
are observed for this scenario.

Scenario 0-0-0-100

Previous scenarios have studied different compositions of automation levels in the vehicle
fleet. However, the transition from human drivers to autonomous vehicles is finalising in
this scenario where 100% of the vehicles are defined as automation level 3 vehicles.

Where previous increases in level 3 vehicles have resulted in speed improvements, the
scenario of 100% level 3 vehicles shows lower speeds at the pre-on-ramp lanes (AB).
Other than that, the speed distribution on the merging section (BC) is similar and an
increase in mean speed is measured at the end of the post-on-ramp section (CD).
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Figure 69: Speed heatmap on freeway main lanes for scenario 0-0-0-100.

Travel times in Figure 70 show that the majority of vehicles on the main lanes have
similar travel times. However, the travel time on the on-ramp is increased.

The deterioration of on-ramp travel times could indicate that the low penetration rate of
level 2 vehicles from the last scenario provided more merging space because of their larger
headways. However, this was not observed for a combination of human drivers and level
1 vehicles, which, of course, have different dynamics than level 2 and level 3 vehicles.

Figure 70: Travel time boxplots for scenario 0-0-0-100.

The fundamental diagrams in Figure 71 show that the fundamental diagrams are similar.
However, the merging area (BC) is subject to an earlier and steeper capacity drop than
before. This shows that more disruptions are present at the merge area.
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Figure 71: Fundamental diagram for freeway sections for scenario 0-0-0-100.

While the increase in level 3 vehicles has caused many improvements in earlier scenarios,
this scenario shows that 100% of level 3 vehicles do not improve traffic performance
much. It even worsens the mean speed at the pre-on-ramp section (AB), travel time for
the on-ramp and the capacity drop at the emerging area (BC). While level 3 vehicles can
maintain low headway distances, no critical time-to-collisions were observed.

Summary of traffic performance

The introduction of level 1 and level 2 vehicles shows that the larger time headway to-
gether with the higher lane change frequency of level 1 vehicles do enlarge the disruptions
in traffic due to the on-ramp. While free-flow conditions remain similar, the capacity drop
occurs at a lower density and becomes larger. Also, congestion seems to occur more often
and higher densities are observed during the simulation. However, the capacity drop is
damped in scenario 25-25-25-25 when all automation levels are equally present.

From there on, the introduction of more level 3 vehicles reduces the capacity drop and
higher maximum flows become possible. This shows that the more human like headway
parameters from the level 3 vehicles enable them to better deal with the additional traffic
flow from the on-ramp. This results in higher mean speed levels on the freeway and
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thereby also the observed higher traffic flow. The congestion curve stays similar, so
the different driving behaviour across automation levels mostly effect the free-flow and
saturated traffic conditions.

Driver distraction

The analysis of traffic performance shows that the introduction of level 1 and level 2
vehicles deteriorates traffic performance. However, level 1 and level 2 vehicles do have
the advantage of supporting the driver in car-following and/or lane-changing tasks. To
understand what improvement this can bring to distracted drivers, a roadside distraction
is placed next to the road as described in Chapter 3.3.

Scenario 100-0-0-0 with roadside distraction

The roadside distraction increases the cognitive workload of the human driver. This will
have other implications than the secondary driving tasks (in-vehicle distraction) since
the roadside distraction affects all vehicles within a specific region. Figure 72 shows that
roadside distraction increases the task saturation of the human driver.

Figure 72: Mean task saturation distribution on the freeway for scenario 100-0-0-0.

Since 100% of vehicles are considered level 0 in this scenario, it is expected that the higher
task saturation has significant effects on the traffic conditions. However, this effect is not
seen in the mean speed heatmap of the freeway. Figure 73 shows that the reduction
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in speed at and before the merging area (BC), as well as the increase in speed at the
post-on-ramp section (CD) are similar.

Figure 73: Speed heatmap on freeway main lanes for scenario 100-0-0-0 with roadside
distraction.

The increased task load does have an effect on the travel times. Figure 74 shows that
more outliers are observed for high travel times. Indicating that the simulation is subject
to more severe congestion.

Figure 74: Travel time boxplots for scenario 100-0-0-0 with roadside distraction.

The higher workload for human drivers causes them to adapt their speed and headway to
deal with the higher workload. However, this seems to positively impact the fundamental
diagram for the pre-on-ramp section (AB) where the capacity drop becomes less notice-
able. However, Figure 75 shows a large increase of the capacity drop at the emerging area
(BC). This shows that the disruption of the additional on-ramp traffic flow has a more
severe impact on traffic performance while human drivers are distracted by a roadside
distraction.

Also, while distracted drivers are expected to be more prone to critical time-to-collision
headway distances. Figure 76 shows that actually the number of time-to-collisions is
lower when simulated with a road side distraction.
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Figure 75: Fundamental diagram for freeway sections for scenario 100-0-0-0 with roadside
distraction.
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Figure 76: Number of measured critical time-to-collision headways for scenario 100-0-0-0
with roadside distraction.

Scenario 80-20-0-0 with roadside distraction

Now that 20% of the vehicles have supported car-following in level 1 vehicles, fewer
vehicles will have a higher reaction time because of deterioration of situational awareness.
Figure 77 shows that the impact of the roadside distraction in this scenario is negligible
for the measured travel times.

Figure 77: Travel time boxplots for scenario 80-20-0-0 with roadside distraction.

Figure 78 shows the differences for the fundamental diagrams. The differences between
the scenario with and without roadside distraction become smaller but the roadside dis-
traction does cause the capacity drop to start at a lower density. Also, the magnitude of
the capacity drop is still larger. Regarding safety, a decrease in critical time-to-collisions
is observed in Figure 79.
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Figure 78: Fundamental diagram for freeway sections for scenario 80-20-0-0 with roadside
distraction.
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Figure 79: Number of measured critical time-to-collision headways for scenario 80-20-0-0
with roadside distraction.

By introducing automation by the means of level 1 vehicles, the impact of roadside
distraction is already lower because travel times remain similar. However, the effects of
the capacity drop are still relevant, causing an earlier and larger capacity drop. Also,
the presence of the roadside distraction does lower critical time-to-collision counts in the
simulations.

Scenario 60-20-20-0 with roadside distraction

The share of human drivers without ADAS support decreases even further to 60% of
the vehicle fleet. This is also noticeable in the fundamental diagrams of Figure 80. The
diagrams show similar maximum flow values for all sections of the freeway. A spike is
observed at a density of 35 veh/km for the distracted scenario on section BC. However,
this could be a rare exception during a traffic measurement interval of 30 seconds. Not
only are the maximum flow values similar, also the capacity drop has become similar.
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Figure 80: Fundamental diagram for freeway sections for scenario 60-20-20-0 with road-
side distraction.

While previous scenarios show improvements in safety, in other words, reduce the number
of critical time-to-collision occurrences for vehicles in the simulation. However, for this
scenario level 0 vehicles tend to be more prone to an unsafe headway distance while
distracted by a roadside distraction. The count of 39 critical time-to-collision headways
increases to 51.
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Figure 81: Number of measured critical time-to-collision headways for scenario 60-20-20-
0 with roadside distraction.

This shows that the introduction of automation levels can greatly reduce the effect of
roadside distractions on traffic performance. This time the roadside distraction also
makes the number of critical time-to-collision increase which indicates more dangerous
car-following behaviour.

Scenario 40-20-20-20 with roadside distraction

The effects already became minimal for a penetration rate of 60% for level 0 vehicles.
For the current scenario, only 40% of the vehicles are level 1. Figure 82 shows that
the fundamental diagrams for the freeway remain similar between the scenario with and
without roadside distraction. However, Figure 83 shows that again more critical time-to-
collisions are counted for the scenario with the roadside distraction.
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Figure 82: Fundamental diagram for freeway sections for scenario 40-20-20-20 with road-
side distraction.
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Figure 83: Number of measured critical time-to-collision headways for scenario 40-20-20-
20 with roadside distraction.

Scenario 25-25-25-25 with roadside distraction

In this scenario, only 25% of all vehicles are considered a level 0 vehicle. Previous scenarios
have already shown that the negative effects of the roadside scenario are reduced by
higher automation levels. Now that the penetration rate of unsupported human drivers
is even lower. Again, the fundamental diagrams show similar traffic conditions (Figure
84). However, for this particular scenario, it is observed that the maximum flow values
at the pre-on-ramp section (AB) are slightly lower for the scenario with the roadside
distraction. Also, a downward curve starts to develop for the congestion condition in the
post-on-ramp section (CD). This would indicate that some congestion is present at this
section.

Additionally, while previous scenarios have shown improvements or deterioration of of
safe headway distances for vehicles. Figure 85 shows that the roadside distractions make
human drivers more prone to dangerous headway distances. This can be said because
the occurrence of critical time-to-collisions increases slightly. Also, the critical time-to-
collision headway of level 2 vehicles is not observed anymore. This cannot be caused by the
roadside distraction directly since distraction is not simulated for automated driving tasks
from level 2 vehicles. So, this must have changed because of changing traffic dynamics.
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Figure 84: Fundamental diagram for freeway sections for scenario 25-25-25-25 with road-
side distraction.
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Figure 85: Number of measured critical time-to-collision headways for scenario 25-25-25-
25 with roadside distraction.

Summary of driver distraction

The effect of many distracted human drivers approaching and entering the merging area
on traffic performance and safety is analysed. The roadside distraction causes higher
workloads for human drivers and thus influences their driving behaviour and reaction
time. The analysis shows that no significant change is observed in the mean speed on the
freeway. Furthermore, the roadside distraction leads to more outliers for travel time plots.
However, no large changes are observed for congestion conditions in the fundamental
diagrams. However, the fundamental diagrams do show that for 100% level 0 vehicles,
the capacity drop becomes larger and appears at a lower density. This means that the
higher workload does result in more disruptive lane changes in the merging section of the
freeway. As automation levels increase, the capacity drop becomes less significant and
the fundamental diagrams become similar. This already happens at a penetration rate
of 60% level 0 vehicles.

However, for high level 0 penetration rates (more than 60%) the roadside distraction
lowers the number of critical time-to-collision headway distances. While no speed drops
are observed, the higher reaction times associated with high cognitive workloads result in
larger headway distances and thus less critical time-to-collisions. When the level 0 vehicle
penetration rate becomes lower than 60%, the roadside distractions increase. This shows
that the share of level 0 vehicles is important for the overall effects on traffic safety.
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