The Energy and Comfort Performance of a Lightweight Translucent Adaptable Trombe Wall in Different Buildings and Climates

A numerical study

Delft University of Technology

J.A. van Unen

Master's thesis Faculty of Civil Engineering & Geosciences January 2019 Source: Double Face 2.0 Project

Challenge the future

The energy and Comfort Performance of a Lightweight Translucent Adaptable Trombe Wall in Different Buildings and Climates: A numerical study

by

Jeroen van Unen

In partial fulfilment of the requirements for the degree of

Master of Science In Civil Engineering At the Delft University of Technology

To be defended publicly on January 15, 2019 at 16:00h

An electronic version of this thesis is available at http://repository.tudelft.nl/

Student number: 4233026

Thesis committee: Prof. Ir. R. Nijsse (Chair) Dr. Ir. M.J. Tenpierik (Daily supervisor) Dr. Ir. W.H. van der Spoel Dr. Ir. H.R. Schipper

Faculty of Civil Engineering Faculty of Architecture and the Built Environment Faculty of Architecture and the Built Environment Faculty of Civil Engineering

PREFACE

This thesis is the result of the study I conducted at Delft University of Technology and concludes the degree: Master of Science in Civil Engineering (Building Engineering). During my studies, I have learned a lot about all kinds of subjects within the field of civil engineering, and with this thesis, I finish with the subject that interested me most. I am proud of the work presented in this thesis and I could not have done this without the help of many people.

First of all, I would like to express my gratitude to the members of my thesis committee. Thank you Prof. Nijsse for being a clear, critical and kind chairman, making the formal meetings within my graduation project as friendly and helpful as possible. Thank you Mr. Schipper for your critical view during our meetings and your help and teaching throughout my entire Bachelor and Master programme. Thank you very much Mr. van der Spoel for being a very helpful mentor by always being there for me when I encountered difficulties with the development of the simulation model. My initial knowledge of working with a thermal simulation model was often inadequate for solving various issues, but has grown enormously thanks to your help and insights. Whenever I encountered problems, you were always there to help me. Finally, thanks a lot Mr. Tenpierik for being a very helpful, daily mentor, who was always available for answering the many questions I had. For me, you were a listening ear, a person with inspiring ideas and someone who has given me confidence and reassurance.

Besides the people from my thesis committee, I would like to thank the researchers of the Double Face project team. Thanks to them, I have been allowed to be part of the project and I am always provided with useful information. Furthermore, I would like to thank my friends for inspiring me and keeping me motivated to get as much out of this project as possible. Last but not least, I owe many thanks to my family, who supported me both emotionally and financially throughout my studies.

Jeroen van Unen Delft, January 2019

SUMMARY

A traditional Trombe wall is known as a high thermal-mass wall, situated behind a window of a room and separated by an air cavity. The idea behind using a Trombe wall is that heat, ventilation and comfort can be passively generated by using the 'free' energy of the sun. The surface of the wall absorbs solar radiation when the sun shines, stores the energy and releases the heat at night to the room, when the occupants need it (Saadatian, Lim, Sopian, & Salleh, 2013). In addition, a Trombe wall can be used as natural ventilation system, of which its power is generated by the buoyancy effect in the cavity. Because a traditional Trombe wall is heavy, blocks daylight and cannot be adjusted to changing environmental conditions and seasonal differences, a new and innovative version was devised by the Double Face research team (4TU). The innovative version is called a lightweight translucent adaptable Trombe wall (LTATW) and is about five times lighter than a traditional Trombe wall. In addition, the wall is translucent and can rotate around its axes. The lower weight and translucent character are achieved by applying a phase change material in combination with aerogel, instead of stone or bricks. Phase change materials can store a large amount of (latent) heat during the change from solid to liquid state and thus, increase the thermal inertia of the system. The translucent elements are located in front of a glass façade and act as a thermal buffer in both winter and summer by rotating the elements towards the source of incoming heat or towards the sink for heat release (4TU.Bouw, 2014). In the winter, the layer of PCM is oriented towards the outdoor environment at daytime and is thermally charged by the low winter sun. At night, the system rotates and releases the accumulated heat to the interior. In the summer, the LTATW is oriented towards the interior at daytime to store the interior heat loads and during the night, it rotates again and releases the heat to the outside environment by means of (passive) night ventilation (4TU.Bouw, 2014).

In this thesis, the results of a numerical spin-off study of the Double Face research project are shown, in which the influence of eight parameters (climate, building function, orientation, age, building method, room size, window size and type of glazing) on the energy and comfort performance of the innovative Trombe wall has been studied. First, an initial simulation model was developed in Matlab/Simulink, which was subsequently validated using a cross-comparison with results from DesignBuilder. After validation, the initial model has been extended to a suitable and reliable final version, with which more than 6000 different situations were simulated. The results of the simulations are values for the reduction or increase in energy demand for heating and cooling, expressed in percentages or in kWh. All results are processed in multiple designer tables, which interested designers can consult to assess whether installing the Trombe wall is useful for his or her situation, or not. In addition to the development of designer tables, the influence of each individual parameter on the performance of the Trombe wall was investigated using modeFRONTIER.

It was found that in case of heating only a cold and temperate climate support a proper operation of the Trombe wall, since no heating is required in the other climate types. From the analysis, it was concluded that in relative sense (%), the Trombe wall performs best in a temperate climate, and that in absolute sense (kWh), the Trombe wall performs best in a cold climate. In case of cooling, the system performs best in a temperate climate and in a dry climate. Because the LTATW is designed to be both a passive cooling system in the summer and passive heating system in the winter, it has clearly been proven that only the temperate climate equals 36.1% (or 181.3 kWh per year) and the average reduction of the cooling function, has shown that in case of heating the function is not of great influence. The system performs well in both an office and a residence. In case of cooling, higher reductions of the energy demand are achieved in residences. Thirdly, the influence of the orientation of the Trombe wall was investigated and it was found that the best performance in case of heating occurs on a southern orientation. In case of cooling, the orientation is of less importance.

The study shows that the age of a building does not have a major influence on the performance of the Trombe wall. Only in case of cooling, a slight preference can be expressed for new buildings. Studying the influence of the construction method on the performance of the wall has shown that this parameter has the least influence of all studied parameters. In both light-weight, medium-weight and heavy-weight buildings, a good performance can be achieved. For the size of the room, it was found that both room sizes

perform equally well. It could be concluded that a Trombe wall can be installed in both small rooms and big rooms, but that when a room is too big, the capacity of the Trombe wall will no longer be useful to reduce a large amount of the initial energy demand. The same applies to cooling. Research has shown that for heating purposes, a room with a smaller window is more often preferred and for cooling purposes, a large window. Because the innovative Trombe wall will have to serve as both a passive heating and cooling device, an average size window will therefore probably be the most suitable. Finally, the influence of type of glazing was studied. It became clear that in relative terms the largest reductions of the heating energy demand are achieved with clear glazing. In case of cooling, the type of glazing is of less influence.

Multiple sensitivity analyses were carried out to study the influence on the results of conditions that are easily affected by building occupants, and finally, a side-study was carried out into the influence of the Trombe wall on the energy demand for artificial lighting. It was found that even under slightly different circumstances the same conclusions can be drawn with regard to the influence of the parameters. The influence of the Trombe wall on the energy demand for artificial lighting is not negligible and should be carefully considered too.

TABLE OF CONTENTS

Preface	I I
Summary	П
List of Figures	VIII
List of Tables	XII
List of Symbols	xıv
Acknowledgements	XVI

PART I - INTRODUCTION

1.	Intro	roduction	
	1.1.	. Background information	
	1.2.	. Motivation	
	1.3.	Research description	
		1.3.1. Problem definition	
		1.3.2. Research questions	
		1.3.3. Objectives	5
		1.3.4. Methodology and resources	5
	1.4.	Project approach	6
	1.5.	. Outline	

PART II – LITERATURE REVIEW

2.	Pass	sive solar building design	
	2.1.	Definition	8
	2.2.	Passive management of solar heat	9
	2.3.	Design strategies	10
3.	Tron	nbe walls	
	3.1.	Working principle	13
	3.2.	History	14
	3.3.	Configurations	14
4.	Phas	se change materials	
	4.1.	Introduction	19
		4.1.1. Sensible heat storage	20
		4.1.2. Latent heat storage	20
	4.2.	Working principle	20
	4.3.	Classification	21
	4.4.	Optimal phase change temperature in buildings	25
	4.5.	Building applications and research	
5.	Tron	nbe walls with phase change material	
	5.1.	Working principle	28
	5.2.	Research review	28
6.	Light	tweight translucent adaptable Trombe wall	
	6.1.	Working principle	30
	6.2.	Research review	32
		6.2.1. Double Face 1.0	32
		6.2.2. Double Face 2.0	33
		6.2.3. Future Development	35
		6.2.4. Summary of results Double Face 2.0	36
7.	Clim	nate classification	
	7.1.	Definition	
	7.2.	Classification	39
	7.3.	Representative cities	41
	7.4.	Climate versus thermal comfort standards in buildings	
8.	Cone	clusion part II	

PART III - CREATION AND DEVELOPMENT OF SIMULATION MODEL

9.	Theo	ory of thermal energy balances	
	9.1.	Flows of energy	
		9.1.1. Transmission	
		9.1.2. Ventilation and infiltration	
		9.1.3. Solar gains	
		9.1.4. Internal heat gains	
	9.2.	Stationary heat balances	
	9.3.	Non-stationary heat balances	53
		9.3.1. Principle	
		9.3.2. One-node room model	
		9.3.3. Two-node room model	
	9.4.	Non-stationary multi-node heat conduction	
	9.5.	Non-stationary multi-node heat balances	
		9.5.1 Setting up the mass matrix	59
		9.5.2 Setting up the stiffness matrix	59
		9.5.2. Setting up the load vector	60
		9.5.4. Solution procedure in Simulink	
10	Initi	ial simulation model	
10.	10.1	A Simulation model	C1
	10.1	10.1.1. Schematization of room and LTATW	
		10.1.1. Schematization of room and LIATW	
		10.1.2. Node definitions	
		10.1.3. Modes of heat transfer	
		10.1.4. Mass matrix	
		10.1.4.1. Sensible part	65
		10.1.4.2. Latent part	66
		10.1.5. Stiffness matrix	67
	10.2	2. Model components and capabilities	68
		10.2.1. Simulation time	
		10.2.2. Initial node temperature	
		10.2.3. Occupation	68
		10.2.4. Ventilation	68
		10.2.5. Thermostat set-points and heating control	
		10.2.6. Construction properties	
		10.2.7. Shading	
		10.2.8. LTATW characteristics	
		10.2.9. Weather data	
	10.3	3. Important Simulink components.	
		10.3.1 Heat loads	72
		10.3.2 Shading and internal solar loads	73
		10.3.3 Ventilation	73
		10.3.4 Rotation schedule	74
		10.3.5. Solution procedure	
		10.3.5. Solution procedure	
		10.3.7. Cooling load	
11	Valia	10.5.7. Cooling lodu	
11.	vall(uation and Vernication	
	11.1		
		11.1.1. IVIODEI VERITICATION	
	11.2	2. Ierminology framework	
	11.3	3. Validation and verification procedure	
	11.4	1. Simulation conditions	
	11.5	5. Comparison of results	
	11.6	5. Modifications of simulation model	
	11.7	7. Final results	

12. Extended simulation model

	12.1. Infiltration	87
	12.2. PCM hysteresis	88
	12.3. Rotation schedule	.89
	12.3.1. Winter mode and summer mode	. 90
	12.3.2. Day-time and night-time	90
	12.3.3. Implementation in Matlab/Simulink	.91
	12.4. Air exchange between cavity and exterior	. 93
	12.4.1. Principle	93
	12.4.2. Ideal size of façade inlet and outlet	. 94
	12.4.3. Implementation in Matlab/Simulink	. 98
	12.5. Air exchange between cavity and room	.99
	12.5.1. Principle	99
	12.5.2. Amount of openings in the LTATW	. 100
	12.5.3. Influence of amount of openings on air exchange	100
	12.5.4. Implementation in Matlab/Simulink	. 104
	12.6. Validation of components	. 104
13.	Conclusion part III	. 113

PART IV – SIMULATION RESULTS AND ANALYSIS

14.	Simulation conditions	
	14.1. Variable parameters	116
	14.2. Constant parameters	. 119
	14.3. Simulation settings	120
	14.4. Procedure	. 120
15.	Simulation results and analysis	
	15.1. Simulation results	. 121
	15.1.1. Distribution charts	. 121
	15.1.1.1 Distribution in a cold climate	. 122
	15.1.1.2 Distribution in a temperate climate	123
	15.1.1.3 Distribution in a dry climate	. 124
	15.1.1.4 Distribution in a tropical climate	125
	15.1.2. Configurations charts	. 126
	15.1.3. Correlation charts	. 130
	15.2. Analysis of individual parameter influence	.133
	15.2.1. Influence of climate	. 133
	15.2.2. Influence of building function	.135
	15.2.3. Influence of orientation	. 136
	15.2.4. Influence of age	138
	15.2.5. Influence of building method	139
	15.2.6. Influence of room size	141
	15.2.7. Influence of window size	. 143
	15.2.8. Influence of type of glazing	. 145
	15.3. Sensitivity analysis	.147
	15.3.1. Heating thermostat set-point	. 148
	15.3.2. Cooling thermostat set-point	. 150
	15.3.3. Shading	. 151
	15.3.4. Type of PCM	. 151
16.	Artificial lighting	
	16.1. Simulation models	155
	16.2. Lighting schedules	. 157
	16.3. Luminaire type and lighting control	. 157
	16.4. Simulation results	. 158
	16.5. Sensitivity analysis	159

17.	Designer	tables
-----	----------	--------

	17.1. Explanatory notes	161
	17.2. Table 1: Relative change in heating energy demand	162
	17.3. Table 2: Absolute reduction of heating energy demand	163
	17.4. Table 3: Relative change in cooling energy demand	164
	17.5. Table 4: Absolute reduction of cooling energy demand	.165
	17.6. Table 5: Relative change in energy demand for artificial lighting	166
	17.7. Table 6: Absolute increase in energy demand for artificial lighting	166
18.	Conclusion part IV	167

PART V – WRAP-UP

19.	Discussion	
	19.1. Interpretation of findings	
	19.2. Limitations	173
	19.3. Future directions	
20.	Final conclusion and recommendation	175
Ref	References	
App	pendices	

Α.	Results of comparative study Matlab/Simulink – DesignBuilder	183
В.	Simulink configuration settings	203
C.	Additional designer tables - Energy demand without LTATW	
	C.1. Table 7: Heating	204
	C.2. Table 8: Cooling	205
	C.3. Table 9: Artificial lighting	206
D.	Additional designer tables - Energy demand per square meter	
	D.1. Table 10: Heating	207
	D.2. Table 11: Cooling	208
	D.3. Table 12: Artificial lighting	209
	D.4. Table 13: Heating without LTATW	210
	D.5. Table 14: Cooling without LTATW	211

LIST OF FIGURES

1.1 1.2 1.3 1.4	Final energy consumption in the residential sector Final energy consumption in the commercial/public sector Control space with position of PCM panel 3D scheme and dimensions of control volume	2 2 4 4
1.5	Project approach	6
2.1	Types of passive solar concepts	9
2.2	Example of direct and indirect solar gain	9
2.3	Ratio between inner volume and external surface area of a building	10
3.1	Configuration of a classical Trombe wall	13
3.2	Three sub-configurations of a traditional Trombe wall: (a) without ventilation; (b) winter- mode with air circulation: (c) summer-mode with cross ventilation	14
3.3	Sketch of a water Trombe wall	15
3.4	A zigzag Trombe wall	15
3.5	Details of a trans-wall	16
3.6	A composite Trombe wall	16
3.7	A solar hybrid wall	17
3.8	A fluidised Trombe wall	17
3.9	A PV Trombe wall with fan	18
4.1	Sensible heat storage and latent heat storage	20
4.2	Temperature change during heating and cooling of a PCM with supercooling effect	21
4.3	Classification of PCM's	22
4.4	Melting temperature and melting enthalpy for different groups of PCM's	23
4.5	Energy demand for heating (left) and cooling (right) as a function of average PCM transition temperature for different thermostat set-points	25
6.1	Architectural rendering of lightweight translucent adaptable Trombe wall	30
6.2	Impression of LTATW configuration	31
6.3	Impression of single PCM elements	31
6.4	Winter and summer mode of the innovative Trombe wall	31
6.5	Simulated energy demand of a standard residential room with innovative Trombe	
	wall in the Netherlands	32
6.6	3D scheme and dimensions of cubic room	32
6.7	Impression of Trombe wall concept	33
6.8	Impression of Jacobs ladder concept	33
6.9	Principle of Jacobs ladder movement	33
6.10	Simulation result from COMSOL. Left: January 9, 12:00h – the wall is 'charging'. Right:	
~	January 10, 00:00h – the wall releases heat to the room	34
6.11	Room temperature due to Jacobs ladder concept from Jan 1 – Jan 21; no heating; room unoccupied	35
6.12	PCM or concrete temperature due to Jacobs ladder concept from Jan 1 – Jan 21	35
7.1	World map of the Köppen-Geiger climate classification	40
9.1	Transmission losses through walls, window, floor and roof (left) and their relationship	
	with convection, radiation and conduction	50
9.2	The main types of ventilation systems in buildings	51
9.3	Process of absorption of solar radiation into parts of the construction	52
9.4 0.5	Une-node room model	54
9.5	Une-node room model	55

9.6	Two-node model of two adjacent rooms	56
9.7	Schematization of one-dimensional heat conduction in a solid	57
9.8	Schematization of 1-D heat conduction at a transition between two different materials	57
10.1	Schematization of room/control space with position of PCM panel/LTATW and defined	
-	walls and orientations	62
10.2	Position of room model nodes	63
10.3	Definition of room model nodes	63
10.0	Position and definition of nodes in the LTATW	63
10.5	Scenario 1: LTATW faces interior	64
10.5	Scenario 2: LTATW faces exterior	64
10.0	Modes of heat transfer for nodes in/at wall at orien?	64
10.7	Modes of heat transfer for nodes in/at UTATW	65
10.0	Simuliak component of all heat loads on room	05 72
10.5	Simulink component of subsystem of shading and calculation of internal solar loads	72
10.10	Simulink component of subsystem of shading and calculation of internal solar loads	75
10.11	Simulink component of subsystem 'power open window	75
10.12	Simulink component of subsystem power ventilation	74
10.13	Simulink component of colution mechanism of LTATW orientation	74
10.14	Simulink component of solution procedure	75
10.15	Simulink component of heating load	75
10.16	Simulink component of cooling load	76
11.1	Framework with set of terminology regarding model validation and verification	78
11.2	Programming based modelling (Matlab/Simulink)	79
11.3	Modelling with a graphical user interface (DesignBuilder)	79
11.4	The three situations tested. Left: without panel, middle: panel towards outside, right:	
	panel towards room	81
11.5	3D schematization of room model with LTATW in DesignBuilder (small room)	82
11.6	Total energy demand (kWh) per winter week (left) and summer week (right) of model 7,	
	calculated by Matlab/Simulink and DesignBuilder in first phase	83
11.7	Increase or decrease in energy demand per week (%) of model 7 when applying a LTATW	
	(facing cavity or room) (first phase)	84
11.8	Total energy demand (kWh) per winter week (left) and summer week (right) of model 7,	
	calculated by Matlab/Simulink and DesignBuilder in final phase	85
11.9	Increase or decrease in energy demand per week (%) of model 7 when applying a LTATW	
	(facing cavity or room) (final phase)	85
		00
12.1	Simulink component of infiltration heat losses/gains	87
12.2	Heat load from infiltration added to other heat loads	88
12.3	Enthalpy curve of Rubitherm's SP25E2	88
12.4	Subsystem 'PCM effective mass'	89
12.5	Specific heat capacity of a PCM as a function of its temperature	89
12.6	Simulink component that determines whether the LTATW is in winter mode or in	
	summer model	91
12.7	Simulink component that determines whether the LTATW is in day-time mode or in	
	night-time mode	92
12.8	Times of sunrise and sunset throughout the year, idealised by a sine wave	92
12.9	Simulink component that determines whether the LTATW faces the interior or the exterior	93
12.10	Principle of passive stack ventilation	94
12.11	Heat flows to and from cavity space	94
12.12	Once versus opening percentage of inlet or outlet	97
12 13	T _c versus opening percentage of inlet or outlet	97
12 14	Simulink component of night ventilation system	92
12 15	Principle of air exchange between room and cavity	ga
12.15	Configuration of openings in DesignBuilder simulation model	100
12.10	Airflow through one of the five holes of laver 1 (top laver) on Mednesday 2 July 2002	101
12.17 17.19	Airflow through one of the five holes of laver 2 on Wednesday 2 July 2002	101
12.10	Almow through one of the rive holes of layer 2 on weathersday 5 July 2002	101

12.19	Airflow through one of the five holes of layer 3 on Wednesday 3 July 2002	101
12.20	Airflow through one of the five holes of layer 4 on Wednesday 3 July 2002	101
12.21	Airflow through one of the five holes of layer 5 on Wednesday 3 July 2002	101
12.22	Airflow through one of the five holes of layer 6 on Wednesday 3 July 2002	102
12.23	Airflow through one of the five holes of layer 7 on Wednesday 3 July 2002	102
12.24	Airflow through one of the five holes of layer 8 on Wednesday 3 July 2002	102
12.25	Airflow through one of the five holes of layer 9 on Wednesday 3 July 2002	102
12.26	Airflow through one of the five holes of layer 10 (bottom layer) on Wednesday 3 July 2002	102
12.27	Analysis of values for $\dot{V}_{flow,total}$ (only layer 1 and layer 5 showed), T _c and T _{room} (bottom graph) at 06:00 AM, 12:00 PM and 06:00 PM	103
12.28	Relation between total airflow rate and temperature difference between cavity and room	104
12.29	Simulink component of air exchange between cavity and room	104
12.30	Heat load due to infiltration on old building in Stockholm	105
12.31	Heat load due to infiltration on new building in Stockholm	105
12.32	Heat load due to infiltration on old building in Singapore	105
12.33	Results variant 1	107
12.34	Results variant 2	107
12.35	Results variant 3	108
12.36	Results variant 4	108
12.37	Results variant 5	108
12.38	Results variant 6	108
12.39	Results variant 7	108
12.40	Results variant 8	108
12.41	vw_summer_mode in an annual simulation of a room in a cold climate (Stockholm)	109
12.42	vw summer mode in an annual simulation of a room in a mild climate (Milan)	109
12.43	vw_summer_mode in an annual simulation of a room in a dry climate (Cairo)	109
12.44	vw summer mode in an annual simulation of a room in a tropical climate (Singapore)	109
12.45	vw_davtime on the last days in December of a room in a cold climate (Stockholm).	109
12.46	vw davtime on the last days in December of a room in a tropical climate (Singapore)	110
12.47	vw pcm roomside on the last days in December of a room in a cold climate (Stockholm)	110
12.48	vw_pcm_roomside on the last days in December of a room in a tropical climate (Singapore)	110
12.49	Power of night ventilation system in annual simulation of a room in a cold climate (Stockholm)	110
12.50	Power of night ventilation system in annual simulation of a room in a temperate climate (Milan)	111
12.51	Heat loads from air exchange room-cavity in annual simulation of a room in a cold	
	climate (Stockholm)	111
12.52	Heat loads from air exchange room-cavity in annual simulation of a room in a temperate	
	climate (Milan)	111
12.53	Heat loads from air exchange room-cavity in annual simulation of a room in a cold	
	climate (Stockholm). Two zoom-ins to show: heat flow from cavity to room due to solar	
	radiation and heat flow from room to cavity due to night ventilation	112
14.1	Schematization of room in building	120
15.1	Probability density distribution of values of relative change in heating energy demand	122
15.2	Probability density distribution of values of difference in heating energy demand	122
15.3	Probability density of values for relative change in cooling energy demand	122
15.4	Probability density of value for difference in cooling energy demand	122
15.5	Probability density distribution of values of relative change in heating energy demand in	
	a cold climate	123
15.6	Probability density distribution of values of difference in heating energy demand in a cold	
	climate	123
15.7	Probability density of values for relative change in cooling energy demand in a cold climate	123
15.8	Probability density of values for difference in cooling energy demand in a cold climate	123
15.9	Probability density distribution of values of relative change in heating energy demand	
	in a temperate climate	124
15.10	Probability density distribution of values of difference in heating energy demand in a	
	temperate climate	124

15.11	Probability density of values for relative change in cooling energy demand in a	
	temperate climate	124
15.12	Probability density of values for difference in cooling energy demand in a temperate climate	124
15.13	Probability density distribution of values of relative change in heating energy demand in	
	a dry climate	125
15.14	Probability density distribution of values of difference in heating energy demand in a dry	
	climate	125
15.15	Probability density of values for relative change in cooling energy demand in a dry climate	125
15.16	Probability density of values for difference in cooling energy demand in a dry climate	125
15.17	Probability density distribution of values of relative change in heating energy demand in a	
	tropical climate	125
15.18	Probability density distribution of values of difference in heating energy demand in a	
	tropical climate	125
15.19	Probability density of values for relative change in cooling energy demand in a dry climate	126
15.20	Probability density of values for difference in cooling energy demand in a dry climate	126
15.21	Absolute versus relative reduction in neating energy demand after installing a LTATW	127
15.22	Absolute and relative reduction in heating energy demand after installing a LIATW –	407
45.22	four different chart areas	127
15.23	Heating energy demand without LIATW versus absolute energy reduction with LIATW	128
15.24	Heating energy demand without LIAIW versus relative energy reduction with LIAIW	128
15.25	Absolute and relative reduction in cooling energy demand after installing a LTATW	128
15.26	Absolute and relative reduction in cooling energy demand after installing a LIATW –	120
15 27	four different chart areas	129
15.27	Cooling energy demand without LIATW versus absolute energy reduction with LIATW	129
15.28	Cooling energy demand without LIATW versus relative energy reduction with LIATW	129
15.29	Correlation matrix	130
15.30	Effect size of variable parameters on fielding energy demand without LTATW	131
15.51	Effect size of variable parameters on cooling energy demand without LTATW	121
15.32	Effect size of variable parameters on difference in heating energy demand	121
15.55	Effect size of variable parameters on relative change in cooling energy demand	121
15.34	Effect size of variable parameters on difference in cooling energy demand	132
15.35	Die charts of effect sizes of variable parameters	132
15.30	Relative change versus difference in heating energy demand with indication of climate types	132
15 38	Relative change versus difference in cooling energy demand with indication of climate types	133
15 39	Absolute change in cooling energy demand versus absolute change in heating energy demand	104
10.00	with indication of climate types	134
15 40	Relative change versus difference in heating energy demand with indication of building	10.
10.40	functions	135
15.41	Relative change versus difference in cooling energy demand, with indication of building	200
10.11	functions	135
15.42	Absolute change in cooling energy demand versus absolute change in heating energy demand.	100
	with indication of building functions	136
15.43	Relative change versus difference in heating energy demand with indication of LTATW	200
201.0	orientations. Green arrows indicate the path of a data-point of the same situation.	
	moving from a north/east/west data-point to a data-point with southern orientation	137
15.44	Relative change versus difference in cooling energy demand with indication of LTATW	-
-	orientations. Green circles indicate the location on the chart of four of the same room	
	configurations with varying orientation	137
15.45	Absolute change in cooling energy demand versus absolute change in heating energy demand,	
	with indication of LTATW orientations	138
15.46	Relative change versus difference in heating energy demand with indication of building ages	138
15.47	Relative change versus difference in heating energy demand with indication of building ages	139
15.48	Absolute change in cooling energy demand versus absolute change in heating energy demand.	
-	with indication of building ages	139
15.49	Relative change versus difference in heating energy demand with indication of building	
	methods	140

15.50	Relative change versus difference in cooling energy demand with indication of building methods	140
15.51	Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of building methods.	141
15 52	Relative change versus difference in heating energy demand with indication of room sizes	1/1
15.52	Relative change versus difference in heating energy demand with indication of room	141
	sizes (per square meter)	142
15.54 15.55	Relative change versus difference in cooling energy demand with indication of room sizes Relative change versus difference in cooling energy demand with indication of room	142
15.56	sizes (per square meter) Absolute change in cooling energy demand versus absolute change in heating energy	143
	demand, with indication of room sizes	143
15.57 15.58	Relative change versus difference in heating energy demand with indication of window sizes Relative change versus difference in heating energy demand with indication of the two	144
	nossible LI-values of all four glazing types	144
15.59	Relative change versus difference in cooling energy demand with indication of window sizes	145
15.60	Absolute change in cooling energy demand versus absolute change in heating energy demand with indication of window cizos	145
15 61	Relative change versus difference in heating energy demand with indication of glazing types	145
15.01	Relative change versus difference in cooling energy demand with indication of glazing types	140
15.62	Absolute change in cooling energy demand versus absolute change in heating energy	140
	demand, with indication of glazing types	147
15.64	Analyzed room configurations and their configuration number (heating energy demand)	148
15.65	Analyzed room configurations and their configuration number (cooling energy demand)	148
15.00	Effect of heating thermostat set-point temperature on reduction of heating energy demand	140
15 67	Effect of changing the heating thermostat set-point temperature from 16 °C to 27 °C and	149
15.07	nath of the four data points	149
15.68	Effect of cooling thermostat set-point temperature on reduction of cooling energy demand	145
	by the LTATW	150
15.69	Effect of changing the cooling thermostat set-point temperature from 22 °C to 29 °C and path of the four data points	150
15.70	Effect of 'minimal shading temperature' on reduction of cooling energy demand by the	
	LTATW	151
15.71	Effect of 'minimal shading temperature' and path of the four data points	151
15.72	Effect of PCM type on reduction of heating energy demand by the LTATW	152
15.73	Effect of PCM type and path of the four data points	152
15.74	Effect of PCM type on reduction of cooling energy demand by the LTATW	153
15.75	Effect of PCM type and path of the four data points	154
16.1	Small room with and without LTATW	156
16.2	Big room with and without LTATW	156
16.3	Small room of a residence with the LTATW in solid state	157
16.4	Luminaire types	158
16.5	Linear lighting control	158
16.6	Effect size of variable parameters on electrical energy demand for artificial lighting,	
467		158
16.7	Effect size of variable parameters on the percentage increase in electrical energy	450
10.0	demand for artificial lighting	159
10.8	Effect size of variable parameters on the difference in electrical energy demand for	450
46.0	artificial lighting	159
16.9	Probability density of values for relative change in energy demand for artificial lighting	159
16.10	Probability density of values for difference in energy demand for artificial lighting	159
16.11	Effect of times of liquid state of PCM on increase in electrical energy demand for	
	artificial lighting	160

LIST OF TABLES

 4.1 Main selection criteria of PCI 4.2 Advantages and disadvantage 6.1 Different configurations in Configurations in Configuration of symbols which 7.1 Description of symbols which 7.2 Candidate locations that rep 7.3 Categories of design of mech 7.4 Pacamandad design values 	M's es of different PCM types OMSOL simulations n are used in in Köppen-Geiger climate classification resent the five main climatic regions of the world nanical heated and cooled buildings s of thermostat set-points of buildings and HVAC systems	22 24 34 41 42 43 43
 6.1 Different configurations in C 7.1 Description of symbols which 7.2 Candidate locations that rep 7.3 Categories of design of mech 7.4 Passempended design values 	OMSOL simulations n are used in in Köppen-Geiger climate classification resent the five main climatic regions of the world nanical heated and cooled buildings s of thermostat set-points of buildings and HVAC systems s	34 41 42 43 43
 7.1 Description of symbols which 7.2 Candidate locations that rep 7.3 Categories of design of mech 7.4 Pacommonded design values 	n are used in in Köppen-Geiger climate classification resent the five main climatic regions of the world nanical heated and cooled buildings s of thermostat set-points of buildings and HVAC systems s	41 42 43 43
7.4 Recommended design Values	s s	
11.1 Overview of tested situation11.2 Overview of constant simula11.3 Overview of variable simulat	tion conditions ion conditions	80 82 82
 12.1 Times of earliest and latest 12.2 Times of earliest and latest 12.3 Values of A, B and φ per loc 12.4 Values of A, B and φ per loc 12.5 Stockholm monthly temperature 12.6 Milan monthly temperature 12.7 Cairo monthly temperature 12.8 Singapore monthly temperature 12.9 Cooling period per location 12.10 Ideal opening percentage o 12.11 Increase or decrease of Q_{pcr} 12.12 Value of variable for each v 	sunrise for each of the four representative cities sunset for each of the four representative cities ation of sunrise sine wave ation of sunset sine wave atures 2015-2018 es 2015-2018 s 2015-2018 atures 2015-2018 and corresponding mean night temperatures f inlet or outlet in façade for different circumstances m when applying average opening percentage from Table 12.10 ariant	91 93 93 95 95 96 96 96 97 98 106
 14.1 Variable parameters, their s 14.2 Variable parameter 'buildin 14.3 Material properties 14.4 Source of parameter values 14.5 Values of constant parameter 	subdivisions and values g method' and its subdivisions and values ers	117 118 118 119 119
15.1 Classification of variables15.2 Reduction of heating energy15.3 Reduction of cooling energy	y demand with different Trombe wall layer characteristics / demand with different Trombe wall layer characteristics	130 153 154
16.1 LT-values of all layers in Des16.2 Lighting schedule of offices	signBuilder model and residences and associated state of PCM	156 157
DESIGNER TABLES		
 Relative change in heating e Absolute reduction of heati Relative change in cooling e Absolute reduction of coolin Relative change in energy d 	energy demand ng energy demand energy demand ng energy demand emand for artificial lighting	162 163 164 165 166

6 Absolute increase in energy demand for artificial lighting 167

LIST OF SYMBOLS

Symbol	Unit	Description
Δh	m	Height difference between inlet and outlet opening
Δр	Ра	Pressure drop across Trombe wall opening
ΔΤ	К	Temperature change
А	h	Amplitude
А	m ²	Surface area
ACH	h⁻¹	Infiltration rate
A _{PCM}	m ²	Surface area of PCM panel
В	h	Bias
b	m	Room width
C1	-	Flow coefficient
Cd	-	Discharge coefficient
C _{i,j}	W/K	Coupling factor between nodes i and j
Cn	-	Flow exponent
Cn	J/kgK	Specific heat capacity of component n
Cp	J/kgK	Sensible specific heat capacity
d	m	Thickness of construction layer
Eı	J	Quantity of absorbed or released latent heat
Es	J	Quantity of absorbed or released sensible heat
g	m/s ²	Gravitational constant
h	m	Room height
h	W/m²K	Average heat transmission coefficient between room and wall
h _{rb}	W/m²K	Black body radiative heat transfer coefficient
h _{sf}	J/kg	Latent heat of fusion
H _{tot}	W/m²K	Total heat transfer coefficient
L	m	Length
LT	-	Light transmittance
Μ	J/K	Thermal mass
m	kg	Mass
ṁ _{inf}	kg/s	Mass flow rate of infiltration air
mn	kg	Mass of component n
m _{vent}	kg/s	Mass flow rate of ventilation air
n _{people}	-	Number of people present
O(t)	h	Hour of sunrise or sunset
Р	S	Period
Po	Ра	Atmospheric pressure at sea level
Pabs,tot	W	Absorbed solar heat
pcavity	Ра	Pressure at cavity side of Trombe wall opening
Pr	W	Transmitted solar radiation
Pr,in	W	Radiation heat transfer rate from indoor heat sources
p _{room}	Ра	Pressure at room side of Trombe wall opening
Q_{added}	W	Added heating or cooling
$\mathbf{Q}_{airflow;room-cavity}$	W	Heat loss or gain due to air exchange between cavity and room
q app	W/m ²	Electrical power of all appliances (lighting excluded)
Qbridge	W	Heat loss or gain due to linear thermal bridge
Q _{I,j}	W	Heat transfer between nodes i and j
Qinf	W	Infiltration heat loss or gain
Q _{int}	W	Internal heat gain
qlight	W/m²	Electrical power of lighting devices
QM	W	Heat production per person
Qpcm	W	Energy released by PCM wall
Q _{sol}	W	Solar heat gain

q sol,w	W/m ²	Incoming solar radiation
Qstack	W	Heat loss or gain resulting from passive stack ventilation
Qtrans	W	Transmission heat loss or gain
Qvent	W	Ventilation heat loss or gain
R	J/kgK	Gas constant
R _c	m²K/W	Façade insulation value
SHGC	-	Solar heat gain coefficient
Tc	°C	Cavity temperature
T _{c,set}	°C	Cooling thermostat set-point temperature
Td	°C	Room temperature at day-time
t _d	S	Charging time (day)
Te	К	Outdoor temperature
T _{h,set}	°C	Heating thermostat set-point temperature
Ti	К	Indoor temperature
Tn	°C	Room temperature at night-time
tn	S	Charging time (night)
T _{PCM,opt}	°C	Optimal phase-change temperature of a PCM
Tr	°C	Average room temperature
Troom, mean (24h)	°C	Average room temperature over the last 24 hours
t _{stor}	S	Diurnal storage cycle
Tyear	S	Period of one year
U	W/m²K	Overall heat transfer coefficient of a construction
U _{gl}	W/m²K	Glazing insulation value
V	m³/s	Volume flow rate of air
V _{flow}	m³/s	Volume flow rate of air through Trombe wall opening(s)
V _{room}	m³	Room volume
\dot{V}_{stack}	m³/s	Volume flow rate of stack ventilation air
WWR	-	Window-to-wall ratio
х	m	Distance
αc	W/m²K	Convection heat transfer coefficient
αi	W/m²K	Heat transfer coefficient for convection and radiation (inside)
αο	W/m²K	Heat transfer coefficient for convection and radiation (outside)
β _{floor}	-	Fraction of lit floor surface
3	-	Emissivity
λ	W/mK	Thermal conductivity
μ	-	Heat recovery efficiency
$\xi_{light,vent}$	-	Fraction of power released to the room
ρ	kg/m ³	Density
τ	S	Time
ф	rad	Phase
Ψ	W/mK	Linear thermal transmittance of a thermal bridge
ψ _{i,j}	-	Exchange coefficient between nodes i and j
ω	rad/s	Frequency

ACKNOWLEDGEMENTS

The study described in this thesis concerns a spin-off study of the Double Face research project. The Double Face research project is an initiative from the four technical universities in the Netherlands, also known as the 4TU Federation. All information shown in this report and which is related to the research project is obtained thanks to the group of researchers of the project. So far, the Double Face research project consists of two sub-projects: Double Face 1.0 and Double Face 2.0. Double Face 1.0 is financed by the 4TU Federation and the universities involved were Delft University of Technology and Eindhoven University of Technology. The Double Face 1.0 project team consisted of the following people:

DELFT UNIVERSITY OF TECHNOLOGY

Dr. Arch. Michela Turrin Dr. Ir. Martin Tenpierik Dr. Ir. Willem van der Spoel Ir. Winfried Meijer Carlos Alfredo Chang Lara Ir. Paul de Ruiter

EINDHOVEN UNVIERSITY OF TECHNOLOGY

Prof. Dr.-Ing. Patrick Teuffel Dipl.-Ing. Florian Heinzelmann Ing. Wout van Bommel

The Double Face 2.0 project is part of the research programme: 'Research through Design' (project number 14574) and is (partly) financed by the SIA and NWO (Netherlands Organisation for Scientific Research and Taskforce for Applied Research). The Double Face 2.0 project only consists of people from Delft University of Technology:

Dr. Arch. Michela Turrin Dr. Ir. Martin Tenpierik **Tudor Cosmatu** Ir. Yvonne Wattez Stavroula Tsafou

The project is supported by the following partners from industry:

SHAU Architecture and Urbanism Rubitherm GmbH GlassX AG ARUP Esteco SpA

UNIVERSITY OF TWENTE.

PART I INTRODUCTION

1. INTRODUCTION

In this chapter, the main subject of this thesis is introduced and a description of the research is given. Section 1.1 provides a brief introduction to the technology that has been studied in this project and section 1.2 describes the motivation of the author. This motivation describes why the project has been started and with which incentives the project has been completed. The research description, consisting of a problem definition, research questions, objectives, methodology and resources is given in section 1.3. This chapter ends with sections 1.4 and 1.5, which give an overview of the chronology of the steps taken in this project and an overview of the structure of this thesis.

1.1. BACKGROUND INFORMATION

In addition to the transport sector, one of the most energy-consuming sectors in the world are the residential sector and the sector for commercial and public services (on average 32% of the worldwide energy consumption). Therefore, the built environment is responsible for a substantial part of the depletion of national resources and the emission of pollutant emissions (van Bueren, van Bohemen & Visscher, 2012). As can be seen from Figure 1.1 and 1.2, space heating and energy for warm water cover a very high share of the final total energy consumption¹ (almost 70% in the residential sector and about 60% in the commercial/public sector). It is therefore clear that the built environment uses too much energy. By using fossil fuels, this energy consumption causes several environmental impacts and leads to the depletion of abiotic resources.

Figure 1.1 and 1.2: Final energy consumption in the residential sector (left) and final energy consumption in the commercial/public sector (right) (van Bueren et al., 2012).

¹ The two diagrams shown in Figure 1.1 and 1.2 show an average and large differences exist between different types of climates.

A group of initiators who want to fight this problem is the Double Face research team. The Double Face research team develops a new, innovative type of Trombe wall that should reduce the energy demand of buildings considerably.

A traditional Trombe wall is known as a high thermal-mass wall situated behind a window of a room, separated by an air cavity. The idea behind using a Trombe wall is that heat, ventilation and comfort can be passively generated by using the 'free' energy of the sun. The surface of the wall absorbs solar radiation when the sun shines, stores the energy and releases the heat at night to the room, when the occupants need it (Saadatian, Lim, Sopian, & Salleh, 2013). In addition, a Trombe wall can be used as natural ventilation system, of which its power is generated by the buoyancy effect in the cavity. Because this wall is heavy, blocks daylight and cannot be adjusted to changing environmental conditions and seasonal differences, a new and innovative version was devised by the Double Face research team (4TU). The innovative version is called a lightweight translucent adaptable Trombe wall (LTATW) and is about five times lighter than a traditional Trombe wall. In addition, the wall is not opaque but translucent and can rotate around its axes. The lower weight and translucent character is achieved by applying a phase change material in combination with aerogel, instead of stone or bricks. Phase change materials can store a large amount of (latent) heat during the change from solid to liquid state and thus, increase the thermal inertia of the system. The translucent elements are located in front of a glass façade and act as a thermal buffer in both winter and summer by rotating the elements towards the source of incoming heat or towards the sink for heat release (4TU.Bouw, 2014). In the winter, the layer of PCM is oriented towards the outdoor environment at daytime and is thermally charged by the low winter sun. At night, the system rotates 180 degrees and releases the accumulated heat to the interior. In the summer, the LTATW is oriented towards the interior at daytime to store the interior heat loads and during the night, the LTATW rotates again and releases the heat to the outside environment by means of (passive) night ventilation (4TU.Bouw, 2014).

This section only provides a brief introduction to the technology addressed in this thesis. A more detailed description about the lightweight translucent adaptable Trombe wall is given in the first chapters of this thesis (part II).

1.2. MOTIVATION

During the Bachelor programme of Civil Engineering at Delft University of Technology, I have learned a lot about all aspects in the field of civil engineering. Subjects in the field of water, geosciences and transport have been treated with great interest, but the most interest was always involved in topics regarding the building sector. A logical choice was therefore to apply for the Master: Building Engineering. Within this Master I was most interested in the field of building physics and facades and therefore, many courses were followed in the field of building technology, climate design, energy and comfort, sustainability, glass and other construction materials. The wish was therefore present to find a subject for my thesis that brings all these topics together.

It seems that I could not have found a more appropriate subject for my thesis than the technology of the lightweight translucent adaptable Trombe wall. With this subject, my knowledge about energy, comfort, glass and building physics could be applied to make a good contribution to a research that is in full swing. Because the Double Face research project is a fairly new project, there were still many aspects of the LTATW to explore and my study would make a major significant contribution to the project.

1.3. RESEARCH DESCRIPTION

The research description provides information about why the study in this Master's thesis project is conducted, what the research questions are, what needs to be achieved, how the study will be carried out and what the resources will be. All this is divided into a problem definition (section 1.3.1), a list of research questions (section 1.3.2), an overview of the aims and objectives (section 1.3.3) and a description of the methodology and resources (section 1.3.4).

1.3.1. PROBLEM DEFINITION

Until now, a lot of research has been carried out by the Double Face research team and several studies have been completed. The objective of one of the first studies in the project was to gain global insight into the energy savings of a room in a winter season as a result of having a lightweight translucent adaptable Trombe wall. This study was performed using a simulation model in Matlab/Simulink, in which a small, basic room (control space) with adiabatic surfaces for the ceiling, floor and inner walls was modelled (see Figure 1.3 and 1.4). The developed Matlab/Simulink model is a full energy performance model and takes into account presence of users, ventilation characteristics, internal heat gains, solar gains, infiltration losses, transmission, heat storage in walls, etc (Cosmatu, Turrin, Wattez, & Tenpierik, 2017).

Figure 1.3 and 1.4: Control space with position of PCM panel (left) (Lara, Tenpierik, Turrin, & Van der Spoel, 2015) and 3D scheme and dimensions of control volume (right) (Wattez, 2018).

The results of the energy simulations were promising. It was found that an energy reduction of around 30% could be achieved by using the innovative Trombe wall with 1 cm of phase change material. However, it must be mentioned that this simulation has only been carried out for a 'typical' residential room in the Netherlands. No results were obtained of the energy and comfort performance of the innovative Trombe wall in other building configurations and climates and it is therefore not known how the Trombe wall performs under other (more or less favorable) conditions.

Problem statement (conclusion):

The energy performance simulation in MATLAB/Simulink of the PCM panel has only been carried out for a 'typical' residential room in the Netherlands. It is not known how the innovative Trombe wall performs in other climates and rooms of other type of buildings.

1.3.2. RESEARCH QUESTIONS

The primary objective of this study is to gain knowledge about the influence of various building parameters and climate on the energy and comfort performance of a lightweight, translucent and adaptable Trombe wall. In order to fulfil this objective, one main research question, nine sub-questions and five background questions were formulated:

Main research question:

How do building parameters and climate influence the energy and comfort performance of a lightweight translucent adaptable Trombe wall?

Sub-questions:

- 1. How does climate influence the performance of a LTATW?
- 2. How do building parameters influence the performance of a LTATW?
 - 2.1. How does the function of a building influence the performance of a LTATW?
 - 2.2. How does the orientation influence the performance of a LTATW?
 - 2.3. How does the age of a building influence the performance of a LTATW?
 - 2.4. How does the building method influence the performance of a LTATW?
 - 2.5. How does room size influence the performance of a LTATW?
 - 2.6. How does window size influence the performance of a LTATW?
 - 2.7. How does type of glazing influence the performance of a LTATW?

Background questions (relating with sub-question 1):

- 1.1. What climates need to be studied?
- 1.2. Does climate influence the selection of a PCM?
- 1.3. Do climate and building function influence the thermostat set-points of a building?
- 1.4. What types of PCM are suitable for application in buildings?
- 1.5. What is the optimal phase change temperature of a PCM in buildings?

1.3.3. OBJECTIVES

The overall objective of this Master's thesis project is to study the influence of different building parameters and climate on the energy and comfort performance of a lightweight translucent adaptable Trombe wall. With the knowledge gained from this study, a well-founded advice can be given to future interested designers about the usefulness of applying the innovative Trombe wall in his/her building. In addition to being able to view this final report with findings, advice is also given by means of multiple 'designer tables', in which colours and values indicate which situations (combination of variables) are favourable and which situations are unfavourable. The designer tables include the most representative climates of the world and different building characteristics of both office buildings and residences. In this way, the designer tables can be used in many buildings all over the world. The studied building parameters are:

- Climate
- Building function
- Orientation
- Age
- Building method
- Room size
- Window size
- Type of glazing

To prevent the tables from becoming too large, only 'typical' and relevant situations are presented. A total of six main tables are developed: two tables indicating the annual reductions of the heating energy demand (both in percentage as in kWh), two tables indicating the annual reductions of the cooling energy demand and two tables indicating the annual increase in energy demand for artificial lighting. There are also eight additional designer tables attached in the appendix, that show for each type of energy demand, the initial energy demand of the room (i.e. without LTATW) and the normalized values of all designer tables.

1.3.4. METHODOLOGY AND RESOURCES

A small part of the study in this project concerns a literature study and the main part concerns running thermal energy simulations. Because the execution of experiments with a prototype is not yet possible, the parameter study is carried out with a computerized simulation model. The software which is used to run the simulations and obtain the data is Simulink. Simulink offers a graphical programming environment, which makes it possible to model and simulate the dynamical system of a LTATW in different room configurations and climates. The Simulink model is assisted and driven by a script written in Matlab, in which all model conditions are specified. Because a 'basic' (and un-validated) simulation model has already been developed in the Double Face 1.0 project, this will also be used in this research. A thorough acquaintance with the model is of importance to see what is missing from the model and thus, what needs to be added, adjusted or removed. To assess the results of the simulation model as reliable (validation and verification), a cross comparison is carried out by comparing results from Matlab/Simulink with results from DesignBuilder. Just like Matlab/Simulink, DesignBuilder is a software package which is capable of simulating a dynamical room system with LTATW. With the knowledge obtained from this validation procedure, the Matlab/Simulink model will be further fine-tuned to a more detailed and advanced simulation model, which is fully capable of obtaining the desired, reliable results for this study.

The extended simulation model will be able to calculate the heating and cooling energy demand over a whole year, for a situation with and without LTATW. In this way, the energy savings can be calculated hereafter. After a data analysis, recommendations can be given about the effectiveness of installing a lightweight translucent adaptable Trombe wall for many different room configurations. With the aid of

multiple sensitivity studies, the sensitivity of the results is examined. The sensitivity study will provide insight into the influence of parameters that users can influence themselves, such as applying shading and changing the operative temperature, on the values given in the designer tables. Because the innovative Trombe wall also influences the energy demand for artificial lighting, another side-study is carried out in DesignBuilder with the aim to investigate this influence.

All background questions (1.1 to 1.5) will be answered with a literature study. After having answered the background questions, the main question and sub-questions can be answered by means of numerical simulations.

1.4. PROJECT APPROACH

The approach for this thesis is visualised in Figure 1.5.

Figure 1.5: Project approach.

1.5. OUTLINE

This thesis contains the following chapters:

Chapter 1:	In which the research subject is introduced and a research description is given
Chapter 2:	In which the principle and literature of passive solar building design are discussed
Chapter 3:	In which the principle and literature of Trombe walls are discussed
Chapter 4:	In which the principle and literature of phase change materials are discussed
Chapter 5:	In which the principle and literature of Trombe walls with PCM are discussed
Chapter 6:	In which the principle and literature of the LTATW are discussed
Chapter 7:	In which the principle of climate classification is described
Chapter 8:	In which a conclusion is given of part II
Chapter 9:	In which the theory of thermal energy balances is explained
Chapter 10:	In which the initial simulation model is described
Chapter 11:	In which is described how the initial simulation model is validated and verified
Chapter 12:	In which the extended simulation model is described
Chapter 13:	In which a conclusion is given of part III
Chapter 14:	In which the simulation conditions are listed
Chapter 15:	In which the simulation results and analysis are shown
Chapter 16:	In which the study into the influence of the LTATW on artificial lighting is described
Chapter 17:	In which the designer tables are shown
Chapter 18:	In which a conclusion is given of part IV
Chapter 19:	In which a discussion is provided
Chapter 20:	in which the final conclusions and recommendations are described

All background questions are answered in chapter 8 and all sub-questions are answered in chapter 18. The Main research question is answered in chapter 20.

PART II LITERATURE REVIEW

2. PASSIVE SOLAR BUILDING DESIGN

An umbrella term for the main addressed subject in this thesis is 'passive solar building design'. Passive solar building design is a broad subject that is explained in more detail in this chapter by reviewing theory and examples from literature. The first section of this chapter describes the definition of passive solar building design and mentions the advantages of it. Section 2.2 describes the ways in which solar heat is passively managed and section 2.3 lists the most common examples of passive solar design strategies.

2.1. DEFINITION

The main objective in passive solar building design is to reduce the energy consumption in buildings by making optimal use of solar energy. More specifically, a passive solar system aims to establish thermal comfort in buildings, without (a great) need for electrical or mechanical equipment. In the philosophy of passive solar building design, buildings and its components are interpreted as solar systems and the most efficient system is obtained when the most 'optimal' building is designed (Schittich, 2003). In the summer, solar heat needs to be rejected and in the winter, heat needs to be gained as much as possible. The integration of passive solar design strategies are the most successful when they are considered in the conceptual design phase (Stevanović, 2013). At this stage, adapting a design strategy (like for example a building its orientation) results in a reduced energy use against hardly any additional cost (Gupta & Tiwari, 2016).

A list of advantages of passive solar building design is given by the U.S. Department of Energy (2000):

- Improved energy performance: passive solar building strategies result in lower energy bills.
- Attractive living environment: passive solar building strategies are generally accompanied by large windows and view, open floor plans and sunny interiors.
- Comfort: passive solar building strategies create a warmer interior climate in winter and a cooler climate in summer. Passive solar systems are quiet and its construction is solid.
- Improved value: Owners of buildings with passive solar strategies are more satisfied and experience high resale value.
- Low maintenance: strategies are durable and operation and repair is rarely needed.
- Investment: pay-back time of passive solar systems is generally short. Systems are independent from future rise in fuel costs.
- Environmentally friendly: passive solar designs don't use any fossil fuels but make use of renewable energy sources.

Passive solar building construction itself is often not experienced as difficult or expensive, but a scientific design requires a thorough study. Lessons can be learned from successful previous passive solar designs, but also from detailed computer simulations (Shingare, Singh, & Sharma, 1986).

2.2. PASSIVE MANAGEMENT OF SOLAR HEAT

'Solar' buildings manage the energy flows from solar radiation through an absorber, a collector (aperture), a distributor, a thermal mass and a control mechanism (Gencoglu & Turkoglu, 2004). These five elements are incorporated in three basic types of passive solar design: direct gain, indirect gain and isolated gain (Figure 2.1).

Figure 2.1: Types of passive solar concepts (Gupta & Tiwari, 2016).

Figure 2.2 (left) illustrates a situation where the five elements are shown in a direct gain situation (U.S. Department of Energy (DOE), 2001). In this situation, the absorber is most commonly known as the hard, darkened element like a wall, floor or partition, but can also be an interior element like a piece of furniture. The sunlight is in direct path of the absorber and the energy is stored as heat into the material. At night, when the temperature of the room drops below the temperature of the absorber, the heat is released back into the room by means of convection and radiation. The collector or aperture in this system is the window surface through which sunlight enters the building. The distributor is known as the method by which solar heat is distributed to different areas in a building. In a complete passive design, only the natural heat transfer modes: conduction, convection and radiation arrange these transfers. In many cases however, the distribution of heat through a building is supported by fans, ducts and/or blowers (U.S. Department of Energy (DOE), 2001). The thermal mass represents the materials that store heat, produced by solar radiation. The difference between thermal mass and the absorber is that the absorber represents a surface and the thermal mass represents the material behind that surface. Finally, the control mechanism in this system is the roof overhang, which can be used as a shading system during summer period. Other possible control mechanisms include for example: operable vents, sensing devices, low-emissivity blinds, awnings and dampers (U.S. Department of Energy (DOE), 2001).

Figure 2.2: Example of direct (left) and indirect (right) solar gain (Gencoglu & Turkoglu, 2004).

An example of a passive solar design with indirect gain is shown on the right in Figure 2.2. Figure 2.2 shows a system where a thermal storage volume between south-facing windows and living spaces is situated. A

Trombe wall is the most common application of such an indirect solar gain system (Gencoglu & Turkoglu, 2004). A Trombe wall system consists of a thick wall (usually masonry or concrete), a cavity and a layer of glass. Solar heat penetrates through the glazing and the cavity, and is absorbed by the wall, which radiates the heat back into the living space when the occupants need it (Saadatian, Sopian, Lim, Asim, & Sulaiman, 2012).

A solarium (or a sunspace) is an example of a solar passive system with isolated solar gain. Sunspaces are made of a large amount of glazed elements without overhead and therefore, experience high heat gains and losses. The resulting temperature variations can be moderated by for example low-emissivity windows and thermal mass. Heat which is captured by the sunspace can be distributed to the main building through vents, doors, windows or fans (U.S. Department of Energy (DOE), 2001).

2.3. DESIGN STRATEGIES

Some of the most common passive solar design strategies that offer a direct, indirect or isolated gain situation are described in section 2.3.1. to 2.3.8.

2.3.1. LOCATION AND MICROCLIMATE

The position of a building on the site has a significant influence on its energy balance. Of course, the global climate plays a major role, but the microclimate has a big influence as well. Each microclimate has its own characteristics determined by topography, surrounding buildings, trees, plants, location near open bodies of water, etc. (Schittich, 2003). Thus, When designing a building, the microclimate must be well considered. For example: constructing a building on a vegetated site with surrounding water bodies enhances the humidity and provision of shade. By embedding a building in the ground, heat losses are diminished because of the insulation of the soil.

2.3.2. SHAPE AND SIZE

An optimized building form takes the microclimate and other environmental concerns into serious consideration. Stevanović (2013) reviewed a study concerning heat flow with respect to the building envelope and revealed that a reduction in heating up to 12% per total building volume can be achieved with an optimized building form. Aldawoud (2013) investigated different geometries of an atrium and discovered that a square-shaped atrium has the best performance in terms of energy savings. Depecker et al. (2001) carried out research into the relation between the shape coefficient and the heating load on buildings. They defined a coefficient as the ratio between the inner volume of a building and the external surface area (Figure 2.3). The thermal performance of 14 different building shapes, positioned in two different climates (cold and temperate Mediterranean) have been investigated and the results show that the heating load in cold climates is almost proportional to the shape coefficient. In temperate climates, no correlation between the shape coefficient and the heating load in cold climates of energy performance and have been developed and improved over many centuries (Schittich, 2003). In very cold climates, the envelope surfaces are kept to a minimum and buildings are compact. This is less applied in warmer climates.

Figure 2.3: ratio between inner volume and external surface area of a building (Gratia & Herde, 2003).

2.3.3. ORIENTATION AND ZONING

It is important to understand the motion of the sun in relation to the block selection and the building design. In the summer, the sun is higher in the sky. By designing a building correctly, it can be made sure that the building is properly shaded in summer by shading devices. Smart positioning of windows also contributes to a better energy performance. For example, by having more windows on the north side of your building, the need for artificial lightning remains low and a building remains cool on summer days (Hollo, 2011). In the winter, the sun is lower in the sky. This means that the sun can penetrate through the glazing to the interior of the home, creating heat gain and reducing the demand for artificial heating. In Central Europe, windows are commonly positioned at the south façade. On the other hand, in hot regions protection from the sun is more important and a southern orientation is not desired. Nowadays, orientation can be quickly evaluated by solar altitude diagrams and advanced computer programs (Schittich, 2003).

Another strategy which is closely related to the orientation of the building is the zoning of rooms inside a building. Zoning is based on the fact that rooms have different thermal requirements regarding their use and indoor climate (especially in residences). Temperature requirements for bedrooms and working spaces are obviously different than those for a living room (Schittich, 2003). Zoning with regard to passive solar design begins by orientating the building to the south (Northern hemisphere). Rooms with the greatest heat requirements are then positioned across the Southern façades and are surrounded by rooms with lower thermal requirements (Hollo, 2011).

2.3.4. SHADING

Once a correct block selection and building orientation has been determined, it is important to shade correctly, so that in winter heat can be gained from the sun and in summer the building is shielded from the sun. A simple way to accomplish this is to ensure that the building has a shading strategy. Shading strategies generally fall into three categories: roof overhangs, landscaping and exterior/interior shading devices (U.S. Department of Energy, 2000). Trees that function as shading are a well-known example of a landscaping strategy. Roof overhangs must be designed in a way that an undesired summer sun is blocked and a desired winter sun is not. When considering exterior and interior shading devices, exterior devices are the most effective, as these devices stop solar gain before the sun is able to hit the building (U.S. Department of Energy, 2000). A wide range of products like canvas, roll-down blinds and louvres are used for this. A disadvantage of strategies like roll-down blinds is that they have to be operated by a building user and thus, are not completely passive.

2.3.5. BUILDING ENVELOPE

The building envelope of a passive solar building should be built tight and should ensure proper ventilation. Infiltration should be minimized with air locks, draught sealing and quality construction of doors and windows (Gupta & Tiwari, 2016). The opaque façade parts should use the appropriate amount and type of insulation and include for example radiant barriers to minimize seasonal excessive heat gains or losses (Shingare et al., 1986). There is little sense in capturing the solar energy if it cannot be effectively stored in the interior (Schittich, 2003). Insulation materials that do not match the desired modes of heat transfer (convective, conductive or radiant) are therefore not a good idea.

As mentioned before, most of the transparent parts of a building are located at the South wall (in colder climates). it is important to not have an oversized amount of windows, so that overheating is prevented. Double or triple glazing with low-e coating is advised to maximize incoming heat while minimizing heat losses (Manual, 2012). On the North wall, windows should be small to reduce heat losses (colder climates).

Another strategy to integrate in the building envelope is the use of transparent or translucent insulating materials (TIM). Glazing systems with translucent material embedded between the glass panes now function as both light-transmitting and insulating material. TIM can also perform as light-scattering glass. In this way, light is evenly transmitted into the interior and is often desired in rooms with great depth (Schittich, 2003). Switchable glazing is another technology that has been developed due to the rapid progress in glass technology. Switchable glass is charged with gases and transformed into different states.

This transformation can cause for example a change from transparent to translucent and might therefore also provide shading (Schittich, 2003).

2.3.6. THERMAL STORAGE

Materials within a building that are able to store heat are referred to as thermal mass. These materials soak up heat when solar energy is transmitted into the material and slowly radiate the heat back at night-time (Manual, 2012). Heat storage materials are present in every building, but in passive solar designs, more thermal mass is required. This thermal mass can be achieved by clever positioning of walls and clever material choices. For direct gain, the thermal mass must be within the rooms that receive sunlight. Common materials are concrete and brick, but also phase change materials can be used to store the energy from the sun (U.S. Department of Energy, 2000). These materials have a thermal storage capacity of around ten times of that of concrete. Another option to increase the thermal storage capacity of a building is to use liquid storage components (like water). However, this requires very large storage volumes and almost always require additional components like pumps (Schittich, 2003). Finally, suspended ceilings and hollow core floor slabs reduce the storage capacity of a building (Schittich, 2003).

2.3.7. GLAZED BUFFER ZONES

A passive solar building strategy which is based on isolated gain is designing glazed buffer zones. Glazed buffer zones like sunspaces are spaces that are not intended for everyday use and are thus, often unheated. A glazed buffer zone consists of large glazed surfaces with preferable single glazing, to collect as much solar heat as possible to distribute it throughout a building by means of gravitational ventilation. In addition to the most obvious choice for designing a glass volume, sliding balcony doors also contribute to the energy-related advantage effect of sunspaces (Schittich, 2003).

2.3.8. LIGHT-DIRECTING ELEMENTS

In addition of making optimal use of solar heat, the use of solar light should also not be forgotten. Lightdirecting elements can guide daylight into rooms that are positioned deeper in a building and result in a reduction in the need for artificial lighting. Light-directing elements come in the form of light shelves, lightscattering panes or prisms, reflecting louvres and holographic-optical elements. The elements should be designed in such a way that optimal use of the light is achieved, but not too much heat is gained from the incident solar rays (Schittich, 2003).

3. TROMBE WALLS

In this project, a novel type of Trombe wall has been investigated. Therefore, in the continuation of this literature review, the focus is shifted from all passive solar design strategies to the strategy based on indirect gain only: the Trombe wall. Before doing research, knowledge must be gained about the working principle of a Trombe wall and about (recent) developments in the field of Trombe wall technology. The working principle of a Trombe wall is explained in section 3.1 and a look at history is done in section 3.2. Different configurations of Trombe walls are shown in section 3.3. For some configurations, a recent development in the field of research is highlighted as well.

3.1. WORKING PRINCIPLE

A classical Trombe wall is a high thermal-mass wall situated behind an exterior glazing and separated by an air cavity (Figure 3.1). The wall surface, which is often dark-coloured, absorbs direct and diffused solar radiation when the sun shines. By absorbing the solar energy, the temperature of the wall increases and the air in the cavity is heated consequently (Kolaitis, Garay Martinez, & Founti, 2015). To maximise the incident solar radiation, the wall is most often oriented towards the South (Northern hemisphere). One part of the solar energy is released into the indoor room space through the wall by conduction (Chan, Riffat, & Zhu, 2010) and another part is transferred upwards through the cavity due to the buoyancy effect. The lower temperature air enters the cavity between the glazing and the wall via the lower vent and returns to the room through the upper vent of the wall. The idea behind using a Trombe wall is that heat, ventilation and comfort can be passively generated by using the 'free' energy of the sun. A Trombe wall is able to store energy during peak-use periods and can supply it again when building's occupants need it (Saadatian, Lim, Sopian, & Salleh, 2013).

Figure 3.1: Configuration of a classical Trombe wall (Chan et al., 2010).

3.2. HISTORY

Throughout history, mankind has worked to harness energy from the sun in order to save energy and to create comfortable living spaces. Passive solar energy strategies have been used and studied for centuries and have developed over time. This also applies to the Trombe wall.

Since ancient times, massive walls of stone or adobe have been used by people to capture and store the energy of the sun. These walls were intended to store a high amount of thermal energy at daytime, which can be released at night (Torcellini & Pless, 2004). A more improved strategy of thermal energy storage in walls was invented and patented by the American E.L. Morse in 1881. Morse was the first to describe the Trombe wall concept, but it never really got off the ground. It was not until 1972 that the idea of Morse was popularized and re-patented by the French inventor Felix Trombe and the architect Jacques Michel (Ellis, 2003). As a result of their collaboration, the Trombe wall is now also known as the Trombe-Michel wall. The original configuration of a Trombe wall includes vents, but nowadays also unvented variants of Trombe walls are known.

3.3. CONFIGURATIONS

In this section, nine different Trombe walls are discussed: a traditional Trombe wall; a water Trombe wall; a zigzag Trombe wall; a solar trans-wall; a composite Trombe wall; a solar hybrid wall; a fluidised Trombe wall; a photovoltaic Trombe wall and finally a Trombe wall with phase-change material.

3.3.1. TRADITIONAL TROMBE WALL

The principle of a traditional Trombe wall is already explained in section 3.1. A traditional Trombe wall can be divided into three sub-configurations, which are shown in Figure 3.2. In configuration a, no vents are present. A part of the heat from the sunlight passing through the glazing is absorbed by the dark surface, stored as sensible heat in the wall, and conducted slowly inwards through the stone-like material. In the evening and at night this heat is radiated into the space from the back of the wall. In configuration b and c, the Trombe wall is equipped with vents. In this way, the lower temperature air from the room enters the cavity through the lower vent of the wall, heats up by the wall and flows upward due to buoyancy effect (Liu et al., 2017). The heated air then returns to the room space through the upper vent of the wall. This mode is preferred in the winter season. In configuration c, a summer mode of the Trombe wall is shown. By closing the upper vent, the warm air can't air the room and is discharged to the outside environment.

Figure 3.2: Three sub-configurations of a traditional Trombe wall: (a) without ventilation; (b) winter-mode with air circulation; (c) summer-mode with cross ventilation (Stazi, Mastrucci, & di Perna, 2011).

3.3.2. WATER TROMBE WALL

A water Trombe wall works on the same principle as a traditional Trombe wall. However, the difference between the two systems is that a water Trombe wall uses water instead of stone-like materials (Saadatian et al., 2013). In a water Trombe wall, water is stored in containers that are stacked on top of each other (Figure 3.3). Just like a traditional Trombe wall, the high thermal-mass materials are situated behind a glazing to enable the sun's rays to pass through. The water in the containers distribute the heat by convection and releases the heat to the room through radiation (Agrawal & Tiwari, 2011). By replacing masonry/stone with water, a number of advantages arise: one of them is that water performs better in

controlling its surface temperature and as a result, less heat is reflected back through the window (Hordeski, 2011). In addition, the specific heat of water is higher than the specific heat of bricks, adobe, concrete and stone and is therefore able to store more heat. Despite these benefits, there are far fewer water walls in use than classical Trombe walls. This has to do with the fact that water containers are less easy to implement, too much space is needed and a high chance of leakages exist (Saadatian et al., 2013). Adams, Becker, Krauss, & Gilman (2010) investigated the effects of the thickness of a solar Trombe wall on its efficiency. The study, which was performed in a controlled environment in Oregon, tested a 3 inch, 6 inch and 9 inch water wall. It was found that a 6 and 9 inch wall were more efficient than a 3 inch wall and that a cooler interior temperature is provided during hot weather. Also, a warmer interior temperature is provided during cold weather.

Figure 3.3: Sketch of a water Trombe wall (Saadatian et al., 2013).

3.3.3. ZIGZAG TROMBE WALL

A zigzag Trombe wall is designed to minimize the negative aspects of the sun. A zigzag Trombe wall consists of three sections: one section faces South, while the other two sections are angled inwards, forming a V-shaped wall (Hordeski, 2011). By having this particular shape (see Figure 3.4), a reduction in glare and excessive heat gain during sunny days is accomplished. The South-East facing section has a window that provides light and heat in the morning. The other sections have the same configuration as a traditional Trombe wall and are therefore able to store heat and block undesired incoming light. A zigzag Trombe wall is often incorporated with an exterior overhang to prevent from overheating during hot summer days (Saadatian et al., 2013). A recent prototype (2011) of a zigzag Trombe wall can be observed at the visitors centre of NREL and North Carolina (United States of America) (Sokol, 2008).

Figure 3.4: A zigzag Trombe wall (Saadatian et al., 2013).

3.3.4. SOLAR TRANS-WALL

A solar trans-wall is a transparent modular water wall that, in addition to providing thermal gain from solar radiation, is still able to provide visual access into a building (Prakash & Garg, 2000). The trans-wall is built on a metal frame that carries a container of water constructed from glass walls and a semi-transparent glass plate (see Figure 3.5). The semi-transparent glass plate absorbs a large part of the solar radiation and

transmits the remaining part to the interior. Therefore, both direct and indirect gain systems are combined. Applying the wall in locations where daytime temperatures are relatively high is the most convenient (Saadatian et al., 2013). Due to the convective heat transfer in a trans-wall the efficiency is relatively low, but installing transparent baffles overcomes this. To improve the performance of a solar trans-wall, a high viscosity of water and prevention of microorganisms from growing into the water is desired (Saadatian et al., 2013).

Figure 3.5: Details of a trans-wall (Saadatian et al., 2013)

3.3.5. COMPOSITE TROMBE WALL

A composite Trombe wall is another type of Trombe wall, which comprises several different layers. These layers include a mass heating wall, a transparent cover, a ventilated air cavity, a closed cavity and an insulating panel (see Figure 3.6). The advantage of a composite Trombe wall compared to a traditional Trombe wall is that a composite Trombe wall performs better in reducing the heat loss during cloudy winter days. In addition, it minimizes the undesired heat inputs during hot weather (Zhai, Song, & Wang, 2011). The composite Trombe wall operates as follows: the transparent cover (glazing) distributes the incoming solar beams through the non-ventilated air layer to the storage wall. This storage wall absorbs the solar energy and heats up. The stored heat is partly transmitted into the building's interior by convection through the ventilated air layer. In addition, a small part of the stored energy is transmitted by conduction into the room (Saadatian et al., 2013).

The advantages of a composite Trombe wall are: (1) an extremely high thermal resistance because of an insulated wall and ventilated channel. (2) Users are able to control the rate of heating by regulating the airflow into the ventilated air layer. A disadvantage of a composite Trombe wall is that a mechanism is required to prevent reverse thermo-circulation, which happens when the temperature of the storage wall drops below the temperature of the ambient air in the room (Zalewski, Joulin, Lassue, Dutil, & Rousse, 2012). One of the many studies on the performance of a composite Trombe wall was carried out by a group of scholars in France. They compared the traditional Trombe wall with the composite wall using experimental testing and the software TRNSYS to analyse the efficiency of the wall. The results demonstrated that a composite Trombe wall performs better than a traditional Trombe wall in cold or cloudy climates (Saadatian et al., 2013).

Figure 3.6: A composite Trombe wall (Saadatian et al., 2013)
3.3.6. SOLAR HYBRID WALL

The traditional Trombe wall is designed for cold climates and is known for its positive heating effects during winter. However, some types of Trombe walls are also suitable to serve as cooling device in the summer. One of them is the solar hybrid wall (Figure 3.7), which is presented by Spanish scholars. The solar hybrid wall is also known as a ceramic evaporative cooling wall and functions as a traditional Trombe wall during winter and provides cooling in the summer (Melero, Morgado, Neila, & Acha, 2011).

The solar hybrid wall performs in a similar way as the traditional Trombe wall, but employs an external thermal insulation blind to avoid undesired direct solar gain in the summer (Melero et al., 2011). Also, a high porous type of ceramic is used in the storage wall, which absorbs a large amount of water. In times of hot weather, the ceramic wall is wetted by a water sprinkler installed at the roof, between the glass and the wall. This causes the space to serve as a cooling cell due to the evaporative cooling phenomenon (Melero et al., 2011).

Figure 3.7: A solar hybrid wall (Melero et al., 2011).

3.3.7. FLUIDISED TROMBE WALL

In a fluidised Trombe wall, the gap between the storage wall and the glazing is fluidized by using a lowdensity, highly absorbent fluid (Tunç & Uysal, 1991). In a fluidization process, a bed of solid particles transforms into a fluid-like state by being brought into contact with air. The air flows slowly upwards by percolating through the voids of a bed of solid particles (see Figure 3.8). A fan at the bottom of the wall transfers the solar energy gained by the fluid into the room. The fluidised particles are prevented from moving into the room by two filters, which are located at the bottom and top of the air channel (Sadineni, Madala, & Boehm, 2011). A group of Turkish scholars, who carried out a study to compare a traditional Trombe wall with a fluidised Trombe wall, claim that a fluidised Trombe wall is far more efficient than a traditional Trombe wall, because the heat-transfer fluid is in direct contact with the solid particles (Tunç & Uysal, 1991).

Figure 3.8: A fluidised Trombe wall (Tunç & Uysal, 1991).

3.3.8. PHOTOVOLTAIC TROMBE WALL

In a PV-Trombe wall, the front side of the glazing is composed of photovoltaic panels. The dark blue solar cells cover a large part of the glazed surface and contribute to an aesthetically pleasing design (Sun, Ji, Luo, & He, 2011). In a PV-Trombe wall, the lower temperature air from the room is drawn into the lower vent and absorbs the heat from the PV panels. The air becomes hot and travels to the room through the upper vent. Because the PV panels block the penetration of solar rays into the air gap between the glazing and the walls, the efficiency of the wall is lower than the efficiency of a traditional Trombe wall (in terms of heat gain) (Dehra, 2009). However, this type of Trombe wall is able to generate electricity. To find out how much the difference in efficiency between the two types of walls is, Sun et al. (2011) carried out both a computer simulation and experiment to measure the internal temperature of a building. The building was equipped with a PV panel installed on a Trombe wall and all of the building components where simulated in a dynamic numerical model. The study revealed that the thermal performance of the wall was reduced by 17% due to the obstructed penetration of the solar rays into the storage wall. Another study has been conducted by a group of scholars, who investigated the optimal wall width and area of winter air vents. Additionally, they also studied the influence of insulation and a shading curtain on summer cooling and winter heating. The study revealed that an increased indoor temperature of 2.36 °C in cold weather and decrease of 2.47 °C in hot weather is achieved by adding insulation, and that a decrease of 2.00 °C in hot weather is achieved by a adding a shading curtain (Ji, Yi, He, & Pei, 2007).

Figure 3.9: A PV Trombe wall with fan (Wei Sun, Ji, Luo, & He, 2011).

3.3.9. TROMBE WALL WITH PHASE CHANGE MATERIAL

One of the most recent configurations of a Trombe wall is the Trombe wall with phase-change material. This type of Trombe wall uses latent heat storage materials instead of sensible heat storage materials to enhance its efficiency. The thick, massive stone-like wall which is often considered a problem by structural engineers is replaced by lightweight storage materials like phase eutectic salts or salt hydrates (Tyagi & Buddhi, 2007). Moreover, The phase-change materials are able to store more energy in a much smaller volume. A more detailed explanation of the functioning of a Trombe wall with phase change material, examples of existing variants and a research review is described in chapter 5.

4. PHASE CHANGE MATERIALS

Before further discussing Trombe walls with phase change material, this chapter discusses one of the most important components of it: the phase change material (PCM). A literature study was carried out to find out how phase change materials work, what the advantages and disadvantages of different types of PCM are and how, when and where they are applied. In section 4.1 an introduction to phase materials and an explanation of two different storage principles is given. In section 4.2 the general working principle of phase change material is explained and a classification based on physical properties, advantages and disadvantages is shown in section 4.3. A literature study into the optimal PCM melting temperature in buildings has been reported in section 4.4 and the chapter ends with a review of a large number of examples of current building applications that incorporate phase change materials.

4.1. INTRODUCTION

An important group of materials known for their large heat capacity are phase change materials (PCM's). Phase change materials are increasingly integrated in buildings and have the ability to stabilize the indoor temperature and shift peak-hour cooling and heating loads. In contrast to usual building storage materials like concrete or brick, PCM's are much lighter and use a lot less space. Phase change materials have the ability to change their phase (most often from solid to liquid and vice versa) at room temperature, whereby chemical bonds are fixed or broken and heat can be absorbed or released, when the material is heated or cooled (Fokaides, Kylili, & Kalogirou, 2015). PCM's that are recommended for thermal storage in buildings have melting temperatures between 20 and 32 degrees Celsius and are typically used for both passive storage and active solar storage for heating and cooling purposes (Tyagi & Buddhi, 2007). The phase change of a phase change material is an endothermic process, which means that heat is absorbed when the ambient temperature is higher than the temperature of the material. As a result, it melts. When the ambient temperature drops again, the PCM returns to a solid state and gives off the absorbed (latent) heat to the environment (Baetens, Jelle, & Gustavsen, 2010).

Phase change materials are not sensible heat storage materials (like conventional building materials) but latent heat storage materials. The difference between both storage principles is explained in sections 4.1.1 and 4.1.2.

4.1.1. SENSIBLE HEAT STORAGE

Sensible energy storage takes place in materials that experience no phase change in the temperature range of the storage process (Fernandez, Martnez, Segarra, Martorell, & Cabeza, 2010). The quantity of energy stored is proportional to the specific heat capacity of the material, the temperature rise and the mass of the material (Ataer, 2006) (Figure 4.1). Sensible storage is the most common method of thermal energy storage and occurs in buildings especially in the form of heavy construction materials such as stone, concrete and bricks. The main advantages of sensible heat storage materials are long working stability and low costs. Indoor temperature swings are suppressed by the heat storage effect of building components as they contribute to the thermal stability of the indoor environment during hot days. However, sensible heat storage is the least effective mode of heat storage, since less energy is involved in increasing the temperature of a substance than in breaking chemical bonds or melting a crystalline composition (Ostry & Charvat, 2013). When a material changes in temperature, the amount of absorbed or released sensible heat is given by equation 4.1.

$$E_s = m C_p \Delta T \tag{4.1}$$

In which E_s is the quantity of sensible heat (J), m the mass of the substance (kg), C_p the sensible specific heat capacity of the substance (J/kgK) and ΔT the temperature change (K).

4.1.2. LATENT HEAT STORAGE

In latent heat storage, the energy is stored through a reversible change of state (phase change) of a storage medium (Ostry & Charvat, 2013). The advantage of latent heat storage systems is that it uses the sensible heat capacity of a material during the increase of temperature. During the transition of one phase to another, a latent heat storage material absorbs all the energy needed for this purpose, while no increase in temperature or sensible heat occurs (Kienzl, 1999) (Figure 4.1). The energy required or released during the phase change is referred to as latent heat. The latent heat storage capacity of a material is described as enthalpy of vaporization or enthalpy of fusion [kJ/kg] and is unique because of the high amount of energy that can be absorbed (Kienzl, 1999). Because of negligible volume changes of the material, the stored amount of heat during the phase transition from solid to liquid (and vice versa) is equal to the change in enthalpy (equation 4.2).

$$E_{l} = m h_{sf} \tag{4.2}$$

In which E_I is the quantity of stored heat (J), m the mass of the substance (kg) and h_{sf} is the specific enthalpy or latent heat of fusion (J/kg).

Figure 4.1: Sensible heat storage (left) and latent heat storage (right) (Alexiou, 2017).

4.2. WORKING PRINCIPLE

When a solid piece of PCM is heated, its temperature rises until it starts to melt. During this process, the PCM stores heat in a sensible way. When the melting temperature has been reached, the addition of heat does not longer lead to an increase in temperature (see right graph in Figure 4.1) and the added heat is responsible for the phase change to happen. The added, stored heat is referred to as latent heat. After the whole substance has molten, adding heat leads to a rise in temperature again, at which point the substance

again stores heat in a sensible way (Alexiou, 2017). When the PCM solidifies at its freezing temperature again, the absorbed latent heat (energy) is released. This is explained by the fact that the liquid state of a PCM has a higher state of energy than the solid state of a PCM. Therefore, more energy is stored in the liquid that is fully dissipated during the solidification (Alexiou, 2017). When a PCM is integrated in a façade system, the incoming solar radiation is absorbed by the PCM and its temperature starts to rise, until it melts. This melting process lasts a few hours, during which the phase change material remains at melting temperature. When the PCM is in full liquid state, it behaves like a sensible heat storage material and when the temperature decreases up to the freezing temperature in the evening, the PCM begins to crystallise. The energy set free by the freezing process increases the PCM temperature again to melting temperature, after which it takes several hours for the PCM to discharge. During this process, the system not only compensates heat losses, but also helps to reduce the heating demand. Thermal comfort is also improved because of the high surface temperatures of the system (Weinläder, Beck, & Fricke, 2005).

In Figure 4.1 it can be seen that the melting trajectory of a PCM is slightly different from the solidification trajectory of a PCM. This has to do with the hysteresis phenomenon, which means that the melting temperature of a PCM is different from the solidification temperature (Frei, 2016). When a PCM is in solid state and is being heated, the upper trajectory of Figure 4.1 is followed. As the material passes the liquifying temperature, it becomes fully liquid. When the PCM is subsequently cooled in the liquid state, the lower trajectory is followed and the material remains liquid at temperatures below melting temperature. Once the solidification temperature is reached, the PCM becomes completely solid. If the PCM is then heated again, it will follow the upper trajectory, and so on. In the fully molten or fully solid state, the two curves overlap. The latent heat (energy) of phase change is equal to the jump in these curves (Frei, 2016).

One of the phenomena that is experienced as a disadvantage of phase change materials is the effect of supercooling. Supercooling (or subcooling) is the effect that a significant lower temperature than the melting temperature has to be reached, before a PCM solidifies and starts to release heat (Figure 4.2). If this temperature is not reached, the phase change material will not harden at all and will therefore only store sensible heat (Günther, Hiebler, & Mehling, 2015). A common approach to overcome the effect of supercooling is to add special additives (nucleators) to the material to cause heterogeneous nucleation. The additives have been developed for most of the PCM types and are able to reduce supercooling typically to a few kelvin. Most of the nucleators are similar crystal compounds as solid phase change materials to allow the solid state of PCM to grow on the surface of the additives (Alexiou, 2017).

Figure 4.2: Temperature change during heating and cooling of a PCM with supercooling effect (Kolacek, Charvatova, & Sehnalek, 2017).

4.3. CLASSIFICATION

Phase change materials used in thermal energy storage (TES) systems should have a melting and freezing temperature in the range of application and must contain a high thermal conductivity and high latent heat of fusion. Moreover, suitable PCM's should have desirable chemical, thermophysical, economic, kinetic and environmental properties (Soares, Costa, Gaspar, & Santos, 2013). The main criteria for PCM selection are summarized by Soares et al. (2013) in Table 4.1.

Chemical properties	 Completely reversible melting/solidification cycles Long term chemical stability and no degradation after a large number of melting/solidification cycles 		
	- No corrosiveness and capability with construction materials		
	- Non-toxic, non-flammable and non-explosive		
Thermal and physical properties	 Suitable phase-change temperature in desired operating temperature range 		
	- High thermal conductivity, high specific heat and high density		
	- High latent heat of phase transition per unit mass		
	- Congruent melting and long term thermal stability		
	- Favourable phase change equilibrium and no segregation		
	- Small volume variation of phase-change		
	- Small vapour pressure at operating temperature		
Economic properties	- Abundant and available		
	- Cost-effective		
Kinetic properties	- High nucleation rate and little or no supercooling of the liquid phase		
	- High rate of crystallization		
Environmental properties	- Low embodied energy		
	- Separation facility from the other materials and recycling potential		
	- Low environmental impact and non-polluting		

 Table 4.1: Main selection criteria of PCM's (Soares et al., 2013, p. 86).

Based on phase-change state, PCM's can be divided into three groups: solid-solid PCM's, liquid-gas PCM's and solid-liquid PCM's. Among these, the solid-liquid PCM's are the most useful ones for thermal energy storage (Zhou, Zhao, & Tian, 2012). The solid-liquid PCM's can again be divided into three other groups: organic compounds, inorganic compounds and eutectics (Figure 4.3).

Organic compounds are non-toxic, non-corrosive, do not suffer from supercooling, have a high latent heat of fusion and are chemically stable in general. Organic compounds are subdivided into two groups: paraffins and non-paraffins (fatty acids). Paraffins, which are simple hydrocarbons, are the most applied PCM's in the building industry, because of their high latent heat of fusion (120-266 kJ/kg), their cost effectiveness and melting temperatures between 20 and 112 °C. Disadvantages however are their low thermal conductivity and their susceptibility to leaking (Baetens et al., 2010). Leaking can occur when significant volume changes happen during the melting and solidification process and when the paraffins are combined with other building materials such as plasterboard. To overcome this problem, paraffins are often encapsulated in small modules with a small buffer space inside. Organic PCM's are often flammable but can be made more fire-save by using fire retardant treatments (Cabeza, Castell, Barreneche, De Gracia, & Fernández, 2011).

Figure 4.3: Classification of PCM's (Memon, 2014)

Non-paraffins are composed by various organic materials like alcohols, glycols, esters and fatty acids and generally have excellent freezing and melting properties. They are, however, three times more expensive compared to paraffins. The most applied materials in non-paraffins are fatty acids, as they have a high latent heat of fusion, have low-range melting points, undergo small changes in volume during phase change and do not experience the effect of supercooling. Fatty acids have a melting point range between 19 °C and 26 °C and are less prone to leakage (Hasnain, 1998).

Inorganic phase change materials can be subdivided into salt hydrates and metallics. From this subdivision, salt hydrates are the most widely studied. The studies show that salt hydrates lack good thermal stability due to supercooling and phase separation that they undergo after each of the many cycles of heating and cooling. The thermal stability can however be improved by adding thickened or gelled mixtures and suitable nucleating substances. Inorganic compounds are usually more dense than organic compounds and are also more conductive. Their phase change thermal capacity varies between 200 and 400 kJ/kg and the specific heat capacity is in similar range as organic compounds (Alexiou, 2017).

Eutectics are melting compositions of two or more components, each of which freezes and melts congruently, resulting in a mixture of component crystals during crystallization. As a result, none of the phases can sink down due to the difference in densities. Eutectics almost always freeze and melt without segregation because an intimate mixture of crystals is created. This leaves the opportunity for the components to separate. Eutectics have a good storage density and show good melting temperature ranges. Eutectic salt-water solutions have melting temperatures below 0 °C, as the addition of salt reduces the melting temperature. The thermal conductivity of salt-water eutectics is similar to that of water (Alexiou, 2017). An overview of all advantages and disadvantages per type of PCM is shown in Table 4.2.

The phase change enthalpy and melting temperature of existing PCM's are shown in Figure 4.4. As melting temperature is one of the most governing criteria in building applications, it can be seen that for latent heat storage, the potential PCM's are paraffins, fatty acids (non-paraffins), salt hydrates and eutectic mixtures.

In order to investigate the thermal properties of PCM's, a proper measuring method is important. The most commonly used measurement techniques are differential scanning calorimetry (DSC), differential thermal analysis (DTA) and the T-history method (Zhou et al., 2012). In a DSC test, a sample and a reference sample (with known thermal properties) are held at almost the same temperature throughout a measurement process. By measuring the difference between added heat between both samples, many thermal properties can be obtained, such as heat capacity, heat of fusion and solidification/melting temperature. In a differential thermal analysis (DTA), also two samples (with one reference sample) are used. The heat applied to both samples is same and by measuring the temperature difference between both samples the thermal properties can be obtained. The newest method is the method put forward by Yinping, Yi, & Yi (1999), who analysed the limitations of the two previous mentioned methods. They conducted measurements of some PCM's through the Tohistory method and found a good agreement between experimental data from literature and their test results.

Figure 4.4: Melting temperature and melting enthalpy for different groups of PCM's (Baetens et al., 2010)

Classification	Advantages	Disadvantages	
Organic compounds	 Availability in a large temperature range High latent heat of fusion (fatty acids have high heat of fusion values comparable to 	 Low thermal conductivity Lower volumetric latent heat storage 	
	- Solidification with little or no subcooling	- Lower density	
	- Congruent phase-change	 Flammable (possible to use fire-retardant additives) 	
	- Self-nucleation properties	 Non-compatibility with plastic containers More expensive (commercial paraffins are cheaper and more available than pure paraffins and fatty acids are 2-2.5 times more expensive than technical grade 	
	 No segregation and good nucleation rate Predictable and thermally and chemically stable, i.e. good stability of material properties during repeated thermal cycles 	paraffins) - Relatively large volume change (however some fatty acids could undergo small volume changes)	
	 Low vapour pressure in the melted form Not dangerous, non-reactive and non- corrosive (fatty acids could be mildly corrosive) Compatibility with conventional 		
	Regulable		
	- Higher volumetric latent heat storage	- Poor nucleating properties and subcooling	
Inorganic compounds	capacity, i.e. higher melting enthalpy	problemsIncongruent melting and dehydration in the	
	- Higher latent heat of fusion	process of thermal cycling - Phase segregation during transition and	
	- Low cost and readily available	thermal stability problems - Their application could require the use of	
	- Sharper phase-change	some nucleating and thickening agents	
	- Higher thermal conductivity	 Decomposition and phase separation Non-compatible with some construction materials 	
	- Lower volume changes	- Corrosive to most metals and slightly toxic	
	 Compatible with plastics It is better to use salt-hydrates than paraffins to reduce the manufacturing/disposal environmental impact 		
Eutectics	 Sharp melting temperature (could be used to deliver the desired melting temperature required) 	 Limited data are available on their thermophysical properties Some fatty eutectics have quite strong 	
	 Volumetric thermal storage density slightly above organic compounds no segregation and congruent phase- change 	odour and therefore they are not recommended for use in PCM-wallboards	

Table 4.2: Advantages and disadvantages of different types of PCM (Soares et al., 2013, p. 87).

4.4. OPTIMAL PHASE CHANGE TEMPERATURE IN BUILDINGS

For passive application in buildings, phase change materials with a solid-liquid phase-change temperature range between 18 °C and 30 °C are most commonly applied (van der Spoel & Cauberg, 2006). As this temperature range is still quite broad, studies have been carried out into the optimal melting and solidification temperature of phase change materials in different types of buildings. Picking a PCM with a phase change temperature outside the practical and operational storage temperature range may make a PCM integrated building component completely ineffective, as the temperature may never reach the point of melting.

One of the studies was conducted by Drake & Ridge (1987) and Peippo, Kauranen & Lund (1991), who investigated the optimal phase-change temperature of PCM's in wallboards. They developed a formula, based on standard stud walls, with all regular conditions imposed on it. The optimal phase-change temperature $T_{PCM,opt}$ is approximated based on the quantity of flux during the day and the quantity of flux during the night (equation 4.3). A different behaviour can however be expected for different weather conditions, different thermal resistance of the wall and the distinction between internal and external walls (Baetens et al., 2010).

$$T_{PCM,opt} = T_r + \frac{P_{abs,tot}}{ht_{stor}} \qquad \text{where} \qquad T_r = \frac{t_d T_d + t_n T_n}{t_d + t_n}$$
(4.3)

In which $T_{PCM,opt}$ is the optimal phase change temperature (°C), $P_{abs,tot}$ is the absorbed (solar) heat (W) by unit area of the room surface, h the average heat transmission coefficient between the room and the wall (W/m²K), T_r the average room temperature (°C), T the temperature (°C) and t the time (s). The subscripts d and n represent day and night-time respectively. The equation shows a strong dependency of $T_{PCM,opt}$ on the quantity of direct solar energy absorbed by the wallboard in case of an exterior wall (Baetens et al., 2010). With equation 4.3, Peippo et al. (1991) calculated the optimal transition temperature for utilization of solar heat for a large space with south-oriented window for the Madison, Wisconsin, USA and Helsinki, Finland weather. They found an optimal transition temperature at 1 °C – 3 °C above the average room temperature (van der Spoel & Cauberg, 2006).

Xu, Zhang, Lin, Di, & Yang (2005) studied the thermal performance of a SSPCM floor and found that the optimal transition temperature was more or less equal to the average room temperature of sunny winter days. Neeper (2000) also found that with an optimal transition temperature equal to the mean room temperature, a maximum diurnal energy storage can be achieved. Van der Spoel & Cauberg (2006) conducted a parametric study that provided insight into the effect of the PCM transition temperature on the seasonal heating and cooling demand. They simulated a room with PCM layer containing walls in a Dutch climate and found that a minimal heating energy demand is achieved when the phase transition temperature is just above thermostat set-point temperature: $T_{PCM,opt} = T_{set,h} + 1.5$ °C. This satisfies the expectations, as in that case, excess heat is most optimally stored in the construction. As the potential energy savings mainly depend on the difference between set-point temperature and PCM transition temperature, it is not desirable that users change the set-point, because the efficiency of the PCM will be sub-optimal in many cases. In case of cooling, a minimum energy demand is achieved when the phase transition temperature is just below the cooling thermostat set-point: $T_{PCM,opt} = T_{set,c} - 1.5$ °C. With this transition temperature, excess coolth is optimally stored in the construction.

Figure 4.5: Energy demand for heating (left) and cooling (right) as a function of average PCM transition temperature for different thermostat set-points (van der Spoel & Cauberg, 2006).

Just as Peippo et al. (1991), Xiao, Wang, & Zhang (2018) concluded that the optimal transition temperature not only depends on the room temperature, but also on the solar radiation absorbed by the PCM component. The formula they derived slightly differs from equation 4.1 and is shown as equation 4.4.

$$T_{PCM,opt} = T_r + \frac{\int (P_r + P_{r,in})d\tau}{h P A_{PCM}}$$
(4.4)

Where $T_{PCM,opt}$ is the optimal phase change temperature (°C), T_r the average indoor temperature (°C) based on a periodic function, P_r the transmitted solar radiation on the surface (W), $P_{r,in}$ the radiation heat transfer rate from indoor heat sources (W), τ the time (s), h the heat transfer of the interior surface (W/m²K), P the period (s) and A the area of the PCM panel (m²). Equation 4.2 indicates that when the absorbed solar radiation is zero, the optimal transition temperature equals the average room temperature. This is again consistent with Neeper's (2000) conclusion.

4.5. BUILDING APPLICATIONS AND RESEARCH

Since the introduction of PCM's in the building sector, they have been considered as a promising solution to obtain light weight construction elements with both low mass and high heat capacity. There are many new building installations and building technologies that make use of PCM's and there are also many investigations in possible new PCM building technologies. An overview of the existing applications of PCM's in buildings and some recent investigations that prove the advantage of using PCM in buildings is given below.

PCM WALLBOARDS

Wallboards are often used in buildings and are known for their low costs and variety in use (Tyagi & Buddhi, 2007). Furthermore, wallboards are able to store PCM encapsulations. Shapiro (1989) showed that several PCM's are suitable for introduction into gypsum wallboards (in a Florida climate). Feldman, Banu, Hawes, & Ghanbari (1991) carried out research on the use of PCM's for latent heat storage in wallboards. They found that this application results in a comfortable indoor temperature range in buildings and an increase in thermal storage capacity in the range of 10-130%. Neeper (1986) concluded in his study that PCM wallboards are a good alternative to traditional wallboards. He found that the thermal storage provided by the system would be sufficient to enable a large solar heating portion with direct gain.

PCM WALLS

Evers, Medina, & Fang (2010) investigated the performance of PCM's in frame walls. The frame walls were simulated with a dynamic wall simulator on a typical summer day. The results demonstrated that the PCM enhanced frame walls reduced the average peak heat flux up to 9,2% and reduced the average total daily heat flow up to 1,2%. Medina, King, & Zhang (2008) investigated a new structural insulated panel with PCM's and concluded that the system leads to a significant reduction in wall heat fluxes during peak times. It is also able to produce a rather constant indoor air temperature and wall surface temperature.

PCM SHUTTERS

PCM shutters are movable exterior elements attached to windows in façades. Soares, Samagaio, Vicente, & Costa (2011) investigated a southward PCM shutters system that takes advantage of solar thermal energy for winter night time indoor heating in Coimbra. Weinlaeder, Koerner, & Heidenfelder (2011) investigated an interior sun protection system consisting of vertical slats filled with PCM. The system was monitored from winter 2008 until summer 2010 and showed a significant potential for cooling in summer and some advantages in winter, compared to a traditional shading system.

PCM BUILDING BLOCKS

Various building materials can be impregnated with PCM's. Collier & Grimmer (1979) showed that bricks impregnated with PCM contribute to a significant increase in the energy performance of a room/building. Hadjieva, Stoykov, & Filipova (2000) investigated the structural stability and heat storage capacity of concrete blocks containing PCM. They concluded that certain PCM's improve the its structure stability during thermal cycling and that the heat capacity increases.

AIR-BASED HEATING SYSTEMS WITH PCM

Morrison & Khalik (1978) investigated the performance of an air-based solar heating system. The system uses PCM in a storage unit. Two of their conclusions was that the heating system with PCM requires roughly one-half the storage volume of a water tank and one-fourth the storage volume of a rock bed. Ghonein & Klein (1989) investigated the heat storage system of an air- and water-based solar heating system and found almost the same results as Morrision & Khalik.

PCM FLOORS AND CEILINGS

PCM's can be integrated in floors and ceilings. Athienitis & Chen (2000) investigated the heat transfer in floor heating systems. They concluded that the solar radiation stored in the floor was found to reduce heating energy consumption considerably (30% or more). Bruno & Saman (2002) developed a roof system that stored coolness in PCM and releases it when occupants need it. Kondo & Ibamoto (2003) also proposed a PCM roof system that reduces the peak load of an air conditioning system.

PCM MORTARS

Cabeza et al. (2011) investigated a novel type of concrete with PCM. The goal was to introduce PCM in concrete, but to avoid affecting the mechanical strength of it. They found that the thermal capacity of the concrete was improved and that an adequate strength could be reached.

PCM GLAZING

One of the most recent investigations of PCM in building materials is the investigation of PCM's in transparent envelope components. Grynning, Goia, Rognvik & Time (2013) performed measurements on commercially available windows that integrate PCM by using a large scale climate simulator. The glazing consist of a four-pane glazing with the innermost cavity filled with PCM. It was found that for almost all climates the potential latent heat storage capacity of the PCM was fully activated. Liu et al. (2017) investigated the performance of a PCM-filled double glazing unit. Their results show that the interior surface temperature of the glazing increases by 158.7% and the transmitted solar energy has decreased by 86.1%.

PCM CURTAINS

In some studies, PCM curtains are investigated. The curtain is situated inside a window system. Wang & Zhao (2015) proposed a promising technique which showed that the average heat transfer rate into the room during working hours can be reduced by 30,9% on the hottest summer days in Shanghai. Ismail & Henriquez (2001) also investigated composite glass samples filled with air or PCM. The result of their study was that heat gain and losses are reduced and most of the energy transferred is absorbed during phase change of the PCM.

PCM FACADES

PCM's can also be integrated into a façade. Diarce et al. (2013) investigated and evaluated the thermal performance of a novel type of ventilated active façade that includes PCM in the outer layer. The research, which was carried out in Spain showed that overheating of the façade was better prevented. The simulation showed that the thermal inertia of the façade was improved. Elarga, Goia, Zarrella, Dal, & Benini (2016) investigated the performance of a system that integrated a PV layer and a PCM layer in a double skin façade. The PCM layer in combination with the PV layer leads to a reduction in the monthly cooling energy demand by 20-30% (hot climates).

PCM TROMBE WALLS

The final example of a building application with phase change materials are PCM Trombe walls. As a followup to chapter 3 (Trombe walls) and chapter 4 (phase change materials), the following chapter discusses the combination between the two: Trombe walls with phase change material. Examples of different configurations of this type of Trombe wall and associated studies are therefore also described in chapter 5.

5. TROMBE WALLS WITH PHASE CHANGE MATERIAL

This chapter focuses on the combination of the technologies discussed in the two previous chapters: Trombe walls and phase change materials. The final part of the previous chapter already revealed that one of the newest developments in the area of PCM's in buildings is the Trombe wall with phase change material. In order to understand the working principle of a Trombe wall with phase change material, an explanation is given in section 5.1. A literature review of leading researches and their results is described in section 5.2. With the knowledge gained from this chapter, a final step can be made towards the main topic of this thesis: the lightweight, translucent and adaptable Trombe wall.

5.1. WORKING PRINCIPLE

When a traditional Trombe wall is enhanced with phase change material, the thermal mass of the system is increased. Furthermore, by replacing the heavy stony materials with the lower-weight phase change material, the overall volume of the wall can be reduced, resulting in significant advantages in terms of lower dead load (Kolaitis et al., 2015). There are two main configurations of PCM-enhanced Trombe walls: a wall which is partly replaced by PCM, and a wall where all stony materials have been replaced by PCM. In the first case, the two above mentioned benefits (higher thermal mass and lower dead load) are experienced. In the second case, an extra advantage shows up: due to the translucent property of PCM, the wall is no longer a complete obstruction for incoming sunlight and view to the outside environment. In both cases, the system is based on the same working principle as a conventional Trombe wall. When the sun shines, the wall absorbs direct and diffused solar radiation and releases it into the room at evening and at night. Also in this type of Trombe wall, a cavity often exists through which a part of the heat is transferred upwards due to the buoyancy effect.

5.2. RESEARCH REVIEW

One of the first investigations into the effectiveness of a Trombe wall with phase change material was done by Bourdeau (1980). He found that a 15 cm concrete wall can be replaced by a 3.5 cm wall of PCM and perform similarly. Stritih & Novak (1996) presented a solar wall with paraffin wax, that was intended for building ventilation. The solar energy absorbed by the PCM (efficiency of 79%) was used for heating the ventilation air of the house. A simulation showed that a thickness of 50 mm and a melting point a few degrees above room temperature is optimal. Buddhi & Sharma (1999) measured the transmittance of solar radiation through a wall with stearic acid (phase change material) at different thickness and temperatures. Their findings were that the transmittance of the PCM was more than the glass for the same thickness. They suggested phase change materials as a new application in walls/windows as a transparent insulating material.

Another study of Onishi, Soeda, & Mizuno (2001) concluded that the use of phase-change materials in Trombe walls is beneficial for reducing energy consumption in buildings. They undertook many simulations of the thermal performance of a room with PCM Trombe walls. Khalifa & Abbas (2009) found that an 8 cm thick hydrated salt storage wall is more efficient than a thick concrete wall of 20 cm. They carried out a numerical study in Baghdad, Iraq, for a south-facing Trombe wall including different storage materials. They examined concrete, paraffin waxes and encapsulated hydrated salts in copper capsules and found that an 8 cm thick hydrated salt storage wall performs better at maintaining a certain temperature than a 5 cm thick paraffin wax wall.

Zalewski et al. (2012) conducted an experiment with a small-scale Trombe wall in France. A concrete wall was replaced by a wall with both concrete and PCM (hydrated salt) in order to measure the efficiency of the novel system. The results demonstrated that heat can be released with a time lag of two hours and 40 minutes. Fiorito (2012) carried out a research for assessing the thermal performance of Trombe walls with phase change materials in light-weight buildings. He found that the integration of PCM in lightweight buildings is highly beneficial and able to minimize temperature fluctuations. A parametrical assessment was done for five different Australian cities, representative of five different climatic areas. In all climatic areas, the use of PCM's in Trombe walls contributes to restoring the thermal inertia of light-weight constructions.

A simulation study performed by Rabani, Kalantar, Faghih, Rabani & Rabani (2013) showed that a Trombe wall made of paraffin wax could provide more thermal comfort in comparison with other materials. Li & Liu (2014) investigated the solar chimney feature of a PCM Trombe wall. They found that the application of PCM extends the utilization duration of the solar chimney (particularly at night-time). Kolaitis et al. (2015) investigated the thermal behaviour of a solar wall enhanced with PCM by using numerical and experimental simulation techniques. The results of both techniques showed good levels of agreement and indicated that the potential monthly net output of thermal energy of the system may be as high as 4 kWh/m². Berthou et al. (2015) investigated a translucent passive solar wall with silica aerogel and glass bricks filled with a eutectic phase change material. Results show that the heat loss through the system is low, while the heat and light gains are high. Guarino, Athienitis, Cellura & Bastien (2017) investigated the use of a thermal storage wall with phase change materials opposing a highly glazed, south oriented, façade. Both experimental an numerical studies show that the storage system is effective in a cold climate during the whole year. The storage system is able to release the absorbed solar radiation after 6-8 hours and therefore has a positive effect on the heating demand and the reduction of daily temperature swings.

Leang, Tittelein, Zalewski, & Lassue (2017) investigated a composite Trombe wall with integrated PCM. They compared a classic Trombe wall (with only concrete) with a Trombe wall incorporating PCM in the mortar. Their results showed that a large capacity of heat is recovered by the Trombe wall with PCM. Furthermore, results show that a 4 cm PCM Trombe wall shows a time delay which is 4 times greater than with a 15 cm storage wall.

During the project 'Double Face', an adjustable and translucent Trombe wall has been developed. The new type of Trombe wall consists of a combination of PCM and insulating aerogel and first simulations of the system showed that the prototype reduces the heating energy demand of a Dutch household by 25-30% (Wattez, Cosmatu, Tenpierik, & Turrin, 2017). Much more information about this 'research through design' project is given in chapter 6.

6. LIGHTWEIGHT TRANSLUCENT ADAPTABLE TROMBE WALL

This chapter continues where the previous chapter ended and describes the lightweight, translucent and adaptable Trombe wall, which is the system that is being studied in this Master's thesis. The LTATW is a technology developed by the 'Double Face' project and has been put into operation by the 4TU Federation (a federation of the four technical universities in the Netherlands) in 2014. The project, which is still in progress, consists of multiple stages, each with their own important findings. In order to understand the working principle of a LTATW, an explanation is given in section 6.1. A literature review of the studies conducted in this project and their results are described in section 6.2. With the knowledge gained from this chapter, the concept is made clear and the findings can be used as input for the research in this Master's thesis project.

6.1. WORKING PRINCIPLE

A lightweight translucent adaptable Trombe wall (Figure 6.1) is based on an innovative approach to the thermal principles of a traditional Trombe wall, but does not entail the three main disadvantages of it. Strictly speaking, the system is not as heavy as a traditional Trombe wall, does not block daylight and can be adapted to the changing environmental conditions and seasonal differences. The lower weight and translucent character are achieved by applying containers made of a layer of phase change material and a layer of aerogel (Figure 6.3), instead of opaque and heavy materials like concrete or brick. The containers are placed on top and next to each other so that a complete wall of PCM and aerogel is created, which is in total five times lighter than a traditional Trombe wall (4TU.Bouw, 2014).

Figure 6.1: Architectural rendering of lightweight translucent adaptable Trombe wall (Turrin et al., 2014)

The LTATW combines the translucent character of PCM and its technical properties to create an aesthetically pleasing interior design, which also improves indoor comfort and reduces the energy use in buildings. By replacing the stony materials with PCM, the thermal inertia of the room is significantly improved as phase change materials provide an improved (latent) heat storage capacity. In case of passive heating, the innovative Trombe wall delays the moment at which the solar heat enters the room to the moment occupants need this (because they are at home in the evening and at night) (Tenpierik, 2017).

Figure 6.2 and 6.3: Impression of LTATW configuration (left) and their single PCM elements (right) (4TU.Bouw, 2014)

The translucent elements are located in front of a glass façade (Figure 6.2) and act as a thermal buffer in both winter and summer. In each season, this happens by rotating the elements towards the source of incoming heat or towards the sink for heat release (4TU.Bouw, 2014). In the winter, the layer of PCM is oriented towards the outdoor environment at daytime and is thermally charged by the low winter sun. At night, the system rotates 180 degrees and releases the accumulated heat to the interior (Figure 6.4). In the summer, the LTATW is oriented towards the interior at daytime to store the interior heat loads and during the night, the LTATW rotates again and releases the heat to the outside environment by means of (passive) night ventilation (4TU.Bouw, 2014). Within both processes, the insulating layer or aerogel ensures that the heat is transported in the right direction.

The heat transfer to and from the PCM occurs via (short wave) solar radiation, via (long wave) infrared radiation and via convection. This means that the ideal surface of the Trombe wall considers all these three modes of heat transfer (Tenpierik, 2017). When the sun heats up the PCM wall, it slowly changes from solid to liquid, which results in a colour change from whitish opaque to translucent. In the evening, this is reversed and the material changes from translucent to opaque again (Tenpierik, 2017). To prevent the Trombe wall from obstructing the view to outside, openings are realized in the design as well (Wattez et al., 2017).

Figure 6.4: Winter and summer mode of the innovative Trombe wall (Tenpierik, 2017).

The innovative Trombe wall is shape-optimised to reach optimal energy performance and is created with advanced rapid prototyping techniques like (robotic) FDM printing (Tenpierik, 2017). FDM printing enhances a large freedom in design and allows to design complex patterns and surface textures that are optimised for many different objectives.

6.2. RESEARCH REVIEW

So far, the 'research through design' project has gone through two consecutive stages: the Double Face 1.0 stage and the Double Face 2.0 stage. In the first stage, a preliminary demonstrator has been produced (Wattez et al., 2017). In the second stage a further development and refinement was the main focus. The project has developed a workflow to simulate the cooperation between technical aspects from building physics and integration of the engineering performances into the design of the product. This is done through an iterative form-finding approach. More specifically, the process aims to harmonize hard parameters with soft parameters. Hard parameters are such as technical performances for thermal behaviour and daylight transmittance. Soft parameters are such as overall appearance and aesthetic values. The workflow is being used for different design concepts, some of which will be prototyped and tested (Wattez et al., 2017). In section 6.2.1 the first stage (DF1.0) is discussed further. Section 6.2.2 deals with the second stage (DF2.0) in more detail.

6.2.1. DOUBLE FACE 1.0

The Double Face 1.0 research project started with a wide inventory of existing phase change materials (4TU.Bouw, 2014). In this inventory, an analysis of their properties was done and a short-list of possible materials was set up. For each of the PCM's in this short-list, digital simulations were performed to analyse their thermal behaviour. They were tested in different layer configuration, thickness etc. The samples were made for all the selected PCM products and were tested in Eindhoven for their thermal behaviour and in Delft for their light transmitting behaviour. The analysis of measurements made it possible to narrow down the list of selected PCM's as well as for finetuning the dimensions. As a result, a first adjustable, translucent Trombe wall has been developed with elements of 4 cm PCM type RT25E2 (Wattez et al., 2017). The chosen PCM has a latent heat storage capacity of 180 kJ/kg and a transition temperature for freezing and melting around 25 °C. Besides a layer of PCM, the LTATW in DF1.0 also consists of 1 cm of translucent Lumira aerogel insulation layer. Both the materials are encased in containers as is shown in Figure 6.3 and together form a 3D undulated pentagonal tiling pattern (Wattez et al., 2017). To prevent the innovative Trombe wall from obstructing the view to the exterior, openings in the wall were designed as well. Using the measured and determined properties as input, additional thermal simulations of a standard room with LTATW were run in DesignBuilder (v3.4) to investigate several variations including percentage of holes in the wall, PCM layer thickness, aerogel layer thickness and extra cavities. The simulations showed that the best trade-off between heat storage capacity and unobstructed view would lead to an opening percentage of roughly 10%. An increased opening percentage results in an increased heat transfer between room and cavity, which reduces the time lag advantage of the Trombe wall (Wattez et al., 2017). Because DesignBuilder is not able to include a rotation during a simulation, a Matlab/Simulink model was developed to simulate a flat 2D Trombe wall that revolves twice per day. This simulation model is a full energy performance model for a cubic room with a window including transmission losses, ventilation and infiltration losses, solar gains, internal gains, heat storage in walls, temperature set-points, sun-blinds, etc.

Figure 6.5 and **6.6**: Simulated energy demand of a standard residential room with innovative Trombe wall in the Netherlands (left) (Tenpierik, 2017) and 3D scheme and dimensions of cubic room (right) (Wattez, 2018).

The results of the simulations in Matlab/Simulink are shown in Figure 6.5, which gives an overview of the heating energy demand of the room during one winter period with different wall configurations. Without

Trombe wall, the energy demand equals 4.78 GJ and when a Trombe wall with 4 cm PCM is added, the energy demand is reduced to 3.71 GJ. When a lightweight, translucent and adaptable Trombe wall is added, the required energy drops to 3.18 GJ, which is a reduction of 33%. It can also be seen that the optimal PCM thickness lies at 1-2 cm with a decrease of 30-32% (Wattez et al., 2017). With all insights from the Double Face 1.0 project, new design concepts have been developed during the Double Face 2.0 project.

6.2.2. DOUBLE FACE 2.0

In the Double Face 2.0 project, more complex geometries of a lightweight translucent adaptable Trombe wall have been tested and developed. The different design concepts have been studied with advanced computational means and advanced digital manufacturing techniques (Cosmatu et al., 2017) and their thermal performances have been measured. Two of the concepts are the 'Trombe panel' and the 'Jacobs ladder'.

The Trombe panel design integrates optical, structural and thermal properties in one aesthetically designed panel. The design is based on a wall with brain coral pattern, that needs to be rotated an electro-motor or by hand. In the pattern, some parts are filled with PCM (transition temperature of 25 °C) and some parts stay open to allow for view to outside. The thickness of the wall varies at different positions, but the total volume remains the same as for a flat panel with a 2 cm PCM thickness. The annual energy savings resulting from having this Trombe wall is similar to the energy savings calculated with Matlab/Simulink (previous section) (Wattez et al., 2017). An impression of the Trombe wall concept is shown in Figure 6.7.

Figure 6.7: Impression of Trombe wall concept (Wattez et al., 2017).

The Jacobs ladder concept is based on the movement principle of a toy. If the ladder is held at one side, blocks seem to cascade down the strings. This impression is a visual illusion and the result of one block after another flipping over. A composition of intertwined ribbons allows a suggestion that each block is hinged to the next one at one of the two ends. An impression of the Jacobs ladder concept is shown in Figure 6.8. The black vertical lines demonstrate the strings of the ladder (Wattez et al., 2017).

Figure 6.8 and 6.9 Impression of Jacobs ladder concept (left) and principle of Jacobs ladder movement (right) (Wattez et al., 2017).

For different variations of the Jacobs ladder concept, a detailed simulation model in COMSOL (v5.2) was made. COMSOL allows to import geometries, simulate 2D and 3D models over long time periods, simulate moving elements, simulate with real weather data and use the same simulation model for detailed CFD (Computational Fluid Dynamics) simulations as well. The simulation results of the innovative Trombe wall with 2 cm of PCM and 1 cm of insulation aerogel is shown in Figure 6.10. The walls, floor and ceiling (all adiabatic surfaces) are made of concrete and heat transfer takes place through the South façade via conduction and radiation through glazing and Trombe wall. In this model, no heating system is active, no people are present and no sun-shades are used. The LTATW rotates around its centres at fixed times (08:00h and 18:00h).

Figure 6.10: Simulation result from COMSOL. Left: January 9, 12:00h – the wall is 'charging'. Right: January 10, 00:00h – the wall releases heat to the room (Tenpierik, 2017).

Figure 6.10 shows the temperatures on 9 January when the PCM layer faces the outdoor environment and the temperatures on 10 January when the PCM layer faces the indoor environment. It can be clearly noticed that the solar radiation heats up the PCM (and the cavity) during the day and that a small part of the heat passes through the openings in the wall (orange dots in the bottom right corner of left figure). At night, when the PCM layer faces the room, it radiates the captured heat into the room. The circles around the wall segments are not part of the design and are only necessary to simulate the rotating mesh (Wattez et al., 2017).

Another set of COMSOL simulations has been performed to understand the effect of material thicknesses and types in the Jacobs ladder concept. In these simulations, different variations (see Table 6.1) of the basic model have been modelled and the results are shown in figure 6.11 and 6.12. Figure 6.11 shows the average room temperature per configuration and Figure 6.12 shows the average temperature of the thermal mass components (concrete or PCM). The effect of solar radiation is clearly visible and the PCM heats up quickly in the configurations with a 2 cm layer of PCM. The heat release takes a long time. A configuration with a 7 cm layer of PCM gives a more stable room temperature and a lower PCM temperature, as can be seen from the purple line. The red line in Figure 6.11 shows the positive effect of a rotating PCM-panel on the room temperature, as it is higher and more stable than when both a configuration without Trombe wall and Trombe-wall with non-rotating panels is applied. The rotating PCM-panel is capable of maintaining a comfortable indoor room temperature for many days after a day of moderate sunshine without requiring an additional heating system (Wattez et al., 2017).

Table 6.1: Different configurations in COMSOL simulations (Wattez et al., 2017).

name	description	material 1	material 2	rotate
No_Trombe	no trombe			
Concrete_30	classical 30 cm	concrete 30 cm		no
Concrete_15	classical 15cm	concrete 15 cm		no
1P_7cm	pcm 7cm	pcm 7 cm		no
1P_2cm	pcm 2 cm	pcm 2 cm		no
1P_ins_window	pcm to window, 2 cm, insulated	pcm 2 cm	aerogel 1 cm	no
1P_ins_room	pcm to room, 2 cm, insulated	pcm 2 cm	aerogel 1 cm	no
3P_rotate	3panels pcm rotate	pcm 2 cm	aerogel 1 cm	yes
3P_room	3panels no rotate pcm to room	pcm 2 cm	aerogel 1 cm	no
3P_window	3panels no rotate pcm to window	pcm 2 cm	aerogel 1 cm	no

Figure 6.11: Room temperature due to Jacobs ladder concept from Jan 1 – Jan 21; no heating; room unoccupied (Cosmatu et al., 2017).

Figure 6.12: PCM or concrete temperature due to Jacobs ladder concept from Jan 1 – Jan 21 (Cosmatu et al., 2017).

From the graphs, it can also be noticed that phase change material is more advantageous than concrete. Where a concrete Trombe wall extracts heat from the room, the PCM-wall uses the radiation of the sun to heat and stabilizes the room temperature. When the PCM temperature is between the transition range of melting and freezing (shown by 'PCM_trans' in Fig. 6.12), the indoor room temperature is stable. This is the case for a Trombe wall with a layer of 2 cm of PCM facing the room and a layer of 1 cm of aerogel facing the cavity (1P_ins_room). The layer of PCM is hardly heated up by the sun because of the insulating layer, so the temperature remains between the transition range. However, this configuration does not use the entering solar radiation for heating the room optimally and therefore, the PCM needs to face the cavity (Wattez et al., 2017).

6.2.3. FUTURE DEVELOPMENT

Based on the results of Double Face 2.0, the highest scoring concepts are being analysed again in order to obtain either information which might be useful for other concepts or which will inform the development of the existing concepts (Cosmatu et al., 2017). All individual concepts will be further optimized towards structural performance, visibility, thermal performance and light transmittance. Additional simulations regarding airflow and temperature changes will be investigated with COMSOL and simulations regarding radiation values, sunlight exposure and desired transparency percentages will be carried out with the use of Grasshopper (and relevant plugins such as Honeybee and Ladybug). The obtained simulation data will be examined and visualized within ModeFrontier through a Grasshopper integration node. Finally, more detailed CFD simulations will be performed on the selected designs. The simulation results will be quantified and applied on the Trombe wall designs in an iterative manner (Cosmatu et al., 2017).

6.2.4. SUMMARY OF RESULTS DOUBLE FACE 2.0

In this section, a summary of all important results² of the Double Face 2.0 project is given. With the aid of this summary, an improved insight is gained into the performance of the innovative Trombe wall and specific values from results will be used as input for the research in this Master's thesis project.

Selection of PCM transition temperature

The transition temperature of a PCM defines at what temperature the PCM starts storing energy. Based on literature research and physical insight, Rubitherm's³ SP25E was chosen. This type of PCM has a melting temperature of 23-26 degrees Celsius and a freezing temperature of 22-24 degrees Celsius. The particular melting temperature has been selected based on the fact that the PCM is placed in a cavity with direct solar radiation. The particular freezing temperature has been selected based on the fact that cooling mode should be activated when the room temperature varies between 22 and 25 degrees Celsius.

PCM layer thickness

Thermal storage capacity and received solar energy play an important role when optimizing the thickness of the PCM layer. A thicker layer is able to store more energy, but when it is too thick, it does not fully melt and remains partly opaque. In addition, a thicker layer results in a heavier system. Calculations based on solar radiation values and phase change times, the advised layer thickness for best thermal behaviour equals 2.5 cm.

Aerogel layer thickness

The aerogel layer is used to direct heat in the desired direction. To find out what the most optimal layer thickness is, calculations based on two layers of PET (a plastic), one layer of aerogel and the surface resistance are done. A minimum U-value was set and calculations showed that the U-value was reached with an aerogel layer thickness of 1 cm.

1	
1	

Effect of adjustability

In order to understand the effect of adjustability (or rotatability), different configurations of the basic room model were simulated in Comsol. The results show a positive effect of a rotating system on the room temperature because a higher and more stable room temperature are found (red line in figure 6.11). The rotating PCM-panel is capable of maintaining a comfortable indoor room temperature for many days after a day of moderate sunshine without requiring an additional heating system. An adjustable Trombe wall is therefore more effective than a non-adjustable one.

Cavity width

The cavity in front of the LTATW functions like a greenhouse. Due to the incoming solar radiation, it heats up and consequently heats up the LTATW. In summer, the cavity captures the unwanted heat and ventilates it back to the outdoor environment. The effect of the cavity width with a closed LTATW is investigated in Comsol and simulation results show that the effect on cavity temperatures is very small. By keeping the width small, the occupied floor area is made smaller and self-shading draw-backs are minimized. However, the system should be able to rotate around its axes in order to direct the PCM to the cavity or to the room. Therefore, the minimal cavity width is defined by the amount of space needed for adjustability: 4.7 cm.

Internal air movement

The airflow in the cavity is generated by a temperature difference between top and bottom. When air flows over the surface of the LTATW, convective heat transfer increases and a more effective Trombe wall is reached. An experimental set-up at the faculty of Architecture and the Built Environment on the TU Delft was made to measure cavity temperatures, outdoor temperatures and room temperatures over a period of several

² All results obtained from research report of Wattez (2018).

³ Manufacturer of phase change materials.

days. A 3D-printed bone-like structure consisting of several vertical tubes with openings at top and bottom was placed in the cavity and results show that the airflow through these tubes was too small to measure. This means that an increased heat transfer caused by air travelling through the structure was not found and air channels should not be implemented in the Trombe wall design for passive natural air flow.

Effect of shape on room temperature

To study the effect of shape on the room temperature in the winter, different simulation set-ups with different Trombe wall configurations were made (different shape, layer thicknesses, opening percentages, etc.). Some clear findings are that thinner layers of PCM (2-5 cm) tend to overheat after the phase change process has finished and when orienting the elements of the Trombe wall towards the sun, the PCM heats up faster and captures more heat. Self-shading shapes are a good solution to prevent overheating but are able to store less energy. Finally, the less the opening percentage, the better the stabilizing effect of the LTATW.

1

Physical openings

Openings in the LTATW improve the interaction between room and the outside environment but also allow air to move between the room and the cavity, which decreases the performance of the Trombe wall. The effect of the opening percentage is studied in a set of Comsol simulations and in a set of Matlab simulations. It was found that openings up to 5 cm in height are allowed, but smaller heights result in an even better performance. The less the opening percentage, the better, but differences between 8% openings and 20% openings are not too large: maximum of circa 0.7 degrees Celsius over a period of around 6 hours. A system with a low percentage of openings becomes part of the insulating barrier of the façade, which results in lower heating needs. Simulations in Matlab show that a LTATW with 10% physical openings result in the highest energy savings in both winter and summer. 10% is also the minimum value for sufficient see through.

Optimization for heat transfer

It is considered plausible that convective heat transfer between the air in the cavity and the Trombe wall is increased with a certain surface treatment. To validate this, different shaped sample boxes were modelled in Comsol. Although convective heat transfer is a slow process, the simulation results show that shaping of the surface has a positive effect on it. The advice is to design a smooth (corrugated) 3D surface structure with a fineness higher than 10 cm as it performs best in improving the heat transfer via convection.

Prevention of PCM overheating

Large volumes of PCM have high internal temperature differences. To prevent from overheating, horizontal subdivisions with a maximum height of 2 cm should be designed. An alternative could be to use a PCM with a higher melting temperature in the top of the system and a lower melting temperature in the bottom of the system or to use automatic rotation.

Translucency

The level of translucency of the LTATW depends on the following aspects: layering, material thickness, production techniques and the phase of the PCM. Different experiments were conducted and results logically show that a smaller thickness results in a better light transmittance. Furthermore, a robotic printing technique (PET-G) instead of FDM printing (PET) is preferred. In a liquid state, a 2.5 cm layer of PCM and 1 cm layer of aerogel transmit 24.2% of the incoming light and 0.2% in a solid state.

PCM phase change

Different types of PCM have different melting and freezing behaviour. During the research project, many samples have been tested on visual properties, light transmitting properties, mixing behaviour, melting behaviour and crystallization behaviour. Important conclusions were that mixing of different PCM's is not recommended as it breaks the composition and

is not able to freeze and melt again. Another conclusion is that dividing the PCM volume into different parts prevents the crystals from dropping to the bottom.

Lightweight vs heavyweight building

An investigation was done to study the effect of the mass of the building on the performance of the LTATW. Measurements and simulations show that an LTATW performs better in a lightweight building with highly fluctuating room temperatures, instead of a heavyweight building.

Validation

In order to investigate the reliability of the digital simulations, the measurement results of the melting of a printed sample box were compared to the measurement results of a comparable setup in Comsol. A 3D printed sample box with solid state PCM (SP25E) is placed in front of a halogen lamp for 1 hour and 15 minutes and the results show comparable PCM and room temperatures during the process of melting.

7. CLIMATE CLASSIFICATION

In the previous chapters of part II, the concepts of passive solar building design, phase change materials and different types of Trombe walls have been explained. With the knowledge obtained from these chapters, three of the five background questions can be answered (see chapter 8). For the remaining two background questions, a literature study into climate classification was required, and is reported in this chapter.

7.1. DEFINITION

Climate is generally defined as "a complete statistical description of weather over a sufficiently long period of time (usually 30 years)" (Chen & Chen, 2013, p. 70) and varies at a broad range of time scales. A climate is based on external forcings (solar radiation) and internal dynamics of a climatic system, which are oceanic and atmospheric circulations and earth surface-atmosphere interactions (Chen & Chen, 2013). The internal dynamics are related to the atmospheric modes of circulation with a time scale of up to about two years and the oceanic-atmospheric modes relate with time scales from weeks to several decades (like the El-Nino phenomenon). These modes together produce climate variations in addition to the long term changes which are generally associated with different long term forcings (Chen & Chen, 2013).

7.2. CLASSIFICATION

Climate is measured by assessing the behavior of variation in temperature, precipitation, humidity, atmospheric pressure, radiation, wind and other meteorological variables in a certain region over a long period of time. There are several ways to classify climates into similar systems, and the most commonly used classification scheme in the world is the scheme of Köppen (1900). Other schemes like the classification of 'Thornthwaite' and the "Bergeron and Spatial Synoptic Classification system" are also consulted, but less quickly. Based on empirical observations, the biologist Vladimir Köppen (1900) developed a climate classification system that used monthly weather data to define boundaries of different climate types around the world (Chen & Chen, 2013). Over the years, the classification scheme of Köppen has been further developed. When the German climatologist Geiger applied a number of refinements, the Köppen-Geiger system was born (Stern, De Hoedt, & Ernst, 2000) and was widely used by climatologists and geographers around the world. The Köppen-Geiger system owes its popularity to its simplicity and the power of linking climate and natural vegetation (Bailey, 2009). Despite the efforts of many German scientists to find

alternative ways to classify climates, the system of Koppen remains one of the most widely used systems in the world (Domroes, 2003).

Depending on the data used, mappings of the geographic distribution of the world's climate may have different qualities and details for such a stationary description of the world's climate. Many applications of the classification system of Köppen-Geiger are concerned with mapping with the help of a long term climate dataset (Chen & Chen, 2013). Kottek, Grieser, Beck, Rudolf, & Rubel (2006) developed a well documented and easily accesible update of the climate classification in the world, using gridded climate data during 1951 and 2000. The classification is shown in Figure 7.1.

Figure 7.1: World map of the Köppen-Geiger climate classification (Kottek et al., 2006)

The classification system of Köppen-Geiger consists of five major types or climate classes: A (tropical), B (arid), C (temperate), D (cold) and E (polar). Each of these classes have their own sub-classes. Based on a major climate class, a more detailed group is designated by a two- or three-letter combination completely (Sohani, Sayyaadi, & Mohammadhosseini, 2018). An overview of all symbols and their meaning are given in Table 7.1. All the major climate groups except B are determined by temperature only, while the sub-groups (except sub-types under E) are assigned based on the combined criteria relating to seasonal precipitation and temperature (Chen & Chen, 2013).

A tropical climate is a non-arid climate in which all months of the year have average temperatures of at least 18 degree Celsius. Tropical climates, which are usually found along the equator, are frost-free and variations in the solar angle are relatively small. The temperature in tropical climates remains fairly constant throughout the year and the amount of precipitation is high (Linacre & Geerts, 1997). An arid climate is defined by very little precipitation. In this climate, summers are very hot and rainfall is rare. The level of solar radiation is intense and big temperature differences between day and night are observed (Laity, 2009). Temperate climates are those without extreme temperatures or precipitation. Temperate climates are generally positioned in the middle latitudes (between the polar and tropical regions) and are characterized by wider temperature ranges throughout the year (Linacre & Geerts, 1997). Average temperatures in cold climates range from below -3 degree Celsius in cold months to 10 degree Celsius in their warmest months. In cold climates, precipitation is quite moderate and more concentrated in the warmer months. A part of the annual precipitation falls as snowfall and is likely to remain on the ground for more than a month. The summer weather in cold climates is more stable than its winter weather (Buchdahl & Hare, 2010). Lastly, a polar climate is characterized by an average temperature of less than 10 degree Celsius in every month of the year. Regions with a polar climate are usually far from the equator, the sun shines for long hours in the summer and for many fewer hours in the winter (McKnight, 2000).

Symbol and place in the name		Meaning	
1st	2nd	3rd	
A			Tropical
	f		Rainforest
	m		Monsoon
	w		Savannah
В			Arid
	W		Desert
	S		Steppe
		h	Hot
		k	Cold
С			Temperate
	S		Dry summer
	w		Dry winter
	f		Without dry season
		а	Hot summer
		b	Warm summer
		С	Cold summer
D			Cold
	S		Dry summer
	w		Dry winter
	f		Without dry season
		а	Hot summer
		b	Warm summer
		С	Cold summer
		d	Very cold summer
E			Polar
	Т		Tundra
	F		Frost

Table 7.1: Description of symbols which are used in in Köppen-Geiger climate classification (Sohani et al., 2018, p. 332)

7.3. REPRESENTATIVE CITIES

When studying the influence of different types of climates on a certain system, hourly weather data of representative cities are generally consulted. Of each of the Köppen-Geiger climates, a city can be selected, which is the best representative of its climate. The selection of a representative city for each of the climates can be done with the help of the study of Mansy (2006). Mansy made an initial selection of international cities based on the two major factors that determine local climate, i.e. outdoor temperature and solar radiation. These two factors are the main sources of building facade loads when regarding thermal performance. In the initial location selection phase, the objective was to choose candidate locations that cover a wide range of these factors from all over the world. In his study, Mansy makes a distinction between five climatic regions of the world, which are: tropical, sub-tropical, temperate, sub-polar and polar. These climatic regions fit relatively well with other climate classifications, like the Köppen-Geiger classification (Mansy, 2006).

Initially, three locations per climate zone in the Northern Hemisphere were selected. These locations are selected on 15 degrees spacing in latitude angles, starting from the Equator. A value of 15 degrees has been chosen, so that the intervals coincide with latitudes of climate belts parallel to the equator and that the influence of atmosphere thickness is taken into account as well. The atmosphere thickness gradually decreases from Equator to Pole and has a large influence on the solar intensities at sea level due to the filtrating behavior of the atmosphere (Szokolay & Docherty, 1999). The candidate locations for each climatic region are shown in Table 7.2. Locations close to latitude 15° are excluded since they are still within the tropical belt. The suggested cities represent a gradual drop in solar radiation intensity from the Equator to the North Pole. Besides, the selected locations cover the whole range of the need for heating and cooling. In Singapore, there is generally no need for heating and in Resolute, there is generally no need for cooling.

The translation from the climate classification used in the study of Mansy to the Koppen-Geiger classification is as follows: the representative locations for a tropical and temperate climate are in both classifications the

same, and the location for a sub-tropical area is similar to the location in an arid climate. Finally, the cities of a sub-polar climate can be seen as cities of a cold climate, except for Ft. Smith, which lies in a polar climate according to the Köppen-Geiger system.

Region & Location	Continent	LAT*	ELEV*
Tropical			
Singapore	Asia	1.37	15
Belem	S. America	1.43	24
Nairobi	Africa	1.32	1625
Sub-tropical			
Cairo	Africa	30.13	74
Phoenix	N. America	33.43	339
Tucson	N. America	32.13	788
Temperate			
Burlington	N. America	44.47	101
Milan	Europe	45.43	107
Lyon	Europe	45.73	248
Sub-Polar			
Ft. Smith	N. America	60.02	203
Stockholm	Europe	59.65	16
Oslo	Europe	59.9	61
Polar			
Resolute	N. America	74.72	67

Table 7.2: Candidate locations that represent the five main climatic regions of the world (Mansy, 2006, p. 2).

*All latitudes are North latitudes. Elevation is given in meters above sea level.

As a final step, Mansy eliminated all cities that may be affected by the intensity of solar radiation and/or the typical temperature fluctuations. For each main climate, one city remained. The elimination is based on elevation and proximity to large bodies of water or mountains. As can be seen from Table 7.2, some cities are located on a high altitude, and are often accompanied by a unique meso-climate, that is not indigenous to the surrounding region. Based on the altitude criterion, the following cities were eliminated: Nairobi, Phoenix, Tucson and Lyon. A city which lies close to large bodies of water or close to mountainous areas is susceptible to large temperature fluctuations and varying wind patterns. Based on this criterion, the following cities were eliminated: Belem, Burlington, Oslo and Stockholm (Mansy, 2006).

To conclude, the following cities remain: Singapore, Cairo, Milan, Ft. Smith and Resolute.

7.4. CLIMATE VERSUS THERMAL COMFORT STANDARDS IN BUILDINGS

In every building designed for human use, one of the main goals is to create an indoor climate that every individual finds comfortable (HTI, 2005). In accordance with the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) standards, the thermal comfort of a person is defined as a certain state of mind, that satisfy with the thermal conditions. The indoor climate of a room is a result of the interaction between the outdoor climate, the thermal state of the room itself and the heating and/or cooling system. The most important factors that influence the thermal comfort of individuals are: the air temperature, the average radiation temperature, the air speed, the humidity, the activity level of a person (metabolism) and the heat resistance of the clothing. For the assessment of thermal comfort, a number of scales, equations and models exist, such as the 'Predicted Mean Vote' (PMV), the 'Predicted percentage of dissatisfied' (PPD) and the adaptive comfort model (HTI, 2005). For mechanically heated and/or cooled buildings, it is recommended to apply the PMV and the PPD indices and for buildings without mechanical cooling (naturally ventilated buildings) it is recommended to use the adaptive comfort model (EN15251, 2007). Because in this thesis, research is done with room models that are not only naturally ventilated, only the PMV and PPD indices are considered here.

The European standard EN15251: 'Indoor environmental input parameters for design and assessment of energy performance of building addressing indoor air quality, thermal environment, lighting and acoustics' provides a table of categories for design of mechanical heated and cooled buildings. Assuming different criteria for the PMV-values and PPD-values, different categories of the indoor environment are organized (see Table 7.3). The recommended category (category 2) is indicated with a bold font. Based on a specific category, a recommended design value of the thermostat set-points in buildings is given.

Category	Thermal state of the body as a whole		
	PPD (%) PMV		
I	<6	-0.2 < PMV < +0.2	
II	< 10	-0.5 < PMV < +0.5	
III	< 15	-0.7 < PMV < +0.7	
IV	> 15	PMV < -0.7 or +0.7 < PMV	

Table 7.3: Categories of design of mechanical heated and cooled buildings (EN15251, 2007).

The 'Hoger technisch instituut' (HTI) reviewed an experiment with persons from the United States, Denmark and several tropical areas and revealed that no significant differences exist between the three groups that influence comfort in buildings. Possible differences in ambient temperature, which people prefer, are probably only a function of clothing habits. When the clothing-value is chosen in accordance, the comfort equations are valid all over the world (HTI, 2005). This means, that also the category and the corresponding recommended thermostat set-points apply to buildings all over the world. The recommended thermostat set-points for office buildings and residences are shown in Table 7.4.

Type of building/space	Category	Minimum heating thermostat-setpoint	Maximum cooling thermostat-setpoint
Residential huilding: living spaces (hed			
rooms, drawing rooms, kitchen, etc.)	I	21.0	25.5
	Ш	20.0	26.0
	111	18.0	27.0
Residential building: other spaces (storages,			
halls, etc.)	I	18.0	
	П	16.0	
	111	14.0	
Single office (cellular office)	I	21.0	25.5
	П	20.0	26.0
	Ш	19.0	27.0
Landscaped office (open plan office)	I	21.0	25.5
	П	20.0	26.0
	111	19.0	27.0

Table 7.4: Recommended design values of thermostat set-points of buildings and HVAC systems (EN15251, 2007).

8. CONCLUSION PART II

This chapter is the final chapter of part II and gives an overall conclusion of the knowledge obtained from literature research. In the past five chapters, a literature review has been conducted starting from the overarching subject (passive solar building design), towards the focus on the lightweight, translucent and adaptable Trombe wall. For each topic, a conclusion is described in this chapter, in which all of the background questions are answered as well.

CHAPTER 2: PASSIVE SOLAR BUILDING DESIGN

Chapter 2 has given a global insight into the field of passive solar building design and its common applied strategies. There are three basic types of passive solar design: direct gain, indirect gain and isolated gain, of which the lightweight translucent adaptable Trombe wall can be counted as a system relying on indirect gain. In this system of indirect gain, the absorber is known as the surface area of the Trombe wall, the collector is known as the window through which sunlight enters the building, the distributor is known as the three transfer modes conduction, convection and radiation and the thermal mass is known as the total volume of PCM in the Trombe wall. Finally, the control mechanisms in the system are the external/internal shading devices, the solar heat gain coefficient of the glazing, operable vents and the adaptability of the Trombe wall.

Chapter 2 reveals that by applying a LTATW in a room/building, a number of advantages are experienced. First, when the system performs properly, it results in lower energy bills. Also, the innovative Trombe wall is able to create a warmer interior climate in winter and a cooler interior climate in summer. In addition, the system is silent and owners of buildings with a LTATW will be more satisfied and will experience a higher resale value than without LTATW. Finally, maintenance is most likely less needed for a LTATW than for mechanical equipment and the use of fossil fuels is avoided.

Finally, eight common applied strategies of passive solar building design were mentioned, among which the use of thermal storage materials. Whereas the other strategies often dominated, the strategy with thermal storage has become a much more interesting option since the introduction and development of phase change materials.

CHAPTER 3: TROMBE WALLS

Chapter 3 firstly described the general working principle of a classical Trombe wall. In short, a classical Trombe wall is a massive wall behind a layer of glazing, directed to the South, which improves thermal comfort in building in particularly cold climates. Because the disadvantages of such a Trombe wall still outweigh the advantages, the classical variant is still little applied in buildings and a lot of research has been done with the aim to improve the original concept.

In chapter 3, nine different variations of a traditional Trombe wall are described and developments in the field of new research were given. A water Trombe wall proves to perform at least as well in terms of providing thermal comfort as a traditional Trombe wall, but it also appears that the difficult implementation, the large use of space and the risk of leakage negatively affect the further development of this configuration. A zigzag Trombe wall differs in particular in geometry of a classical Trombe-wall, because two of the three parts together form a V-shaped structure instead of a flat one. Literature describes that the zigzag Trombe-wall would be an improvement of the original variant, but a reason why the system is also not widely used could be that the V-shape is (aesthetically) undesired for many buildings. A solar trans-wall is also a water-based Trombe-wall, and distinguishes itself through its greater transparency compared to a water Trombe-wall. However, this type of wall also entails the disadvantages of water: more use of space, the chance of presence of micro-organisms and the risk of leakage.

A composite Trombe wall appears to be an improvement of a traditional Trombe wall, in particular through the addition of an insulating panel. Research has shown that the composite Trombe wall performs better in terms of providing thermal comfort in cold and cloudy climates. A solar hybrid wall offers an important advantage over the traditional Trombe wall: it is able to provide heat in the winter and cooling in the summer. However, the system cannot be assumed entirely passive, because water sprinklers are incorporated. This also applied to a fluidised Trombe wall, where the transportation of a liquid is driven by a fan at the bottom of the wall. Literature revealed that a photovoltaic Trombe wall is less efficient than a traditional Trombe wall (in terms of heat gain), but is able to generate electricity. Whether generating electrical energy is desirable depends on the type of building.

The Trombe wall with phase change material is a relatively new designed configuration and was originated because the other mentioned configurations often do not offer a suitable or high performance solution for many situations. All configurations with water or another liquid included entail the disadvantages: large use of space, micro-organisms, chance of leakage and in some cases a not entirely passive design. As large use of space and transparency issues also play a role in the other configurations, the more lightweight Trombe wall with phase change material seems to be a good alternative.

CHAPTER 4: PHASE CHANGE MATERIALS

Chapter 4 introduced an important group of materials in this thesis: phase change materials. Phase change materials are known for their large heat capacity and can be used for both passive storage for heating and cooling purposes. As phase change material store energy in a latent way instead of a sensible way, the difference between sensible and latent heat storage was explained. Hereafter, all classification criteria were mentioned. In wanting to integrate phase change material into Trombe walls, the following criteria must be taken into account: the phase change material should have a melting and freezing temperature in the range of application, the material must have high thermal conductivity and the material must have a high latent heat of fusion. In addition, the phase change material should have the desirable chemical, thermophysical, economic, kinetic and environmental properties, as listed in Table 4.1.

Table 4.2 gave an overview of the advantages and disadvantages of different types of PCM. From the table it can be concluded that the most benefits appear with organic PCM's and the least with eutectics. When looking at the disadvantages, it can be seen that organic and inorganic PCMs entail approximately the same amount of disadvantages. A few important disadvantages of organic PCM's however are the higher costs, lower conductivity, flammability and higher volume changes. Literature research revealed that organic solid-liquid paraffins are most applied in building industry, because they are non-corrosive, non-toxic, do not suffer from supercooling, have a high latent heat of fusion, have suitable melting temperatures and are chemically stable in general. Besides organic paraffins, inorganic salt hydrates are also often used. In

contrast to organic paraffins, their thermal stability is lower, but can be improved by adding certain mixtures and substances. It can therefore be concluded that both organic paraffins and inorganic salt hydrates are the most suitable for integration in building applications, and that a final choice between both materials has to be made based on the type of application and the effect of local conditions. With this knowledge, background question 1.4 (*What types of PCM are suitable for application in buildings?*) is answered.

Research has shown that the optimal phase change temperature mainly depends on the absorbed solar heat and the thermostat set-points in buildings. For heating purposes, the phase change temperature should be just above heating set-point temperature and for cooling purposes, the phase-change temperature should be just below the cooling set-point temperature. When a PCM is in contact with solar radiation, a slightly higher melting temperature is desired. With this knowledge, background question 1.5 ('What is the optimal phase change temperature of a PCM in buildings?') is answered. When looking at background question 1.2: 'Does climate influence the selection of a PCM?', it can now be concluded that not climate, but thermostat set-points are the main influencing variables. Climate, however, also plays an important role, because climate largely determines the amount of incoming solar radiation. In addition, thermostat set-points are often based on climatical conditions (lower heating set-points in cold climates, higher cooling set-points in warm climates). If background question 1.2 has to be answered with only taking the LTATW system in a temperature controlled building in mind, the conclusion is clearer. Namely, when assuming that the thermostat set-points of all buildings equal 20 °C for heating and 26 °C cooling, the phase change temperature of a PCM always approaches the average of the heating and cooling thermostat setpoints. As solar radiation plays a role too, the transition temperature lies closer to the cooling set-point than the heating set-point.

Chapter 4 ended with a review of common building applications. The review showed that PCM's are widely being studied and used in many building applications, and that in all cases the PCM has a positive influence on the thermal performance of a room or building. Nowadays, still many more buildings without PCM exist than with, but the literature review gives the suspicion that this may be different in the future.

CHAPTER 5: TROMBE WALLS WITH PHASE CHANGE MATERIAL

Chapter 5 discussed the working principle of a PCM Trombe wall and gave a literature review of research that has been done over the years. Every study proves that replacing the solid, stony Trombe wall with PCM or adding PCM to the wall increases the thermal performance of it. By adding phase change material to a stony Trombe wall, the heat capacity is increased and at the same time, weight can be reduced. When the storage material a traditional Trombe wall is fully replaced by phase change material, the wall is no longer a complete obstruction for incoming sunlight and view to the outside environment. As all studies show that integrating PCM into a Trombe wall leads to a better performance in terms of providing thermal comfort, the system is interesting for further research. Future research will have to show whether the reduction in energy demand and the improvement of thermal comfort will outweigh the (investment) costs of adding PCM to the system.

CHAPTER 6: LIGHTWEIGHT TRANSLUCENT ADAPTABLE TROMBE WALL

Chapter 6 introduced the lightweight translucent adaptable Trombe wall. This new type of Trombe wall is not as heavy as a traditional Trombe wall, does not block daylight and can be adapted to the changing environmental conditions and seasonal differences throughout the year. It therefore seems to avoid all the major drawbacks of a traditional Trombe wall. Literature review has shown the progress of the Double Face research project and its most important results. Compared to all other Trombe-wall configurations discussed in chapter 3, this type of Trombe wall can be used in both summer and winter, is translucent and does not involve space-consuming materials like water and thick pieces of stony materials.

Research has proven that the specific new features such as rotation really pay-off and that a significant reduction in energy demand can be achieved. It also showed that the PCM-panel is capable of maintaining a more stable and comfortable indoor room temperature for many days after a day of moderate sunshine without requiring an additional heating system.

In the end, an overview of the most optimal characteristics of a LTATW was given. A PCM with a melting temperature of 23-26 °C and a freezing temperature of 22-24 °C was chosen, which corresponds well with the knowledge obtained from literature research about most optimal phase change temperature. The melting temperature of the PCM is higher than the heating set-point temperature and the solidification temperature of the PCM is slightly lower than the cooling set-point temperature. Because the PCM-wall is in direct contact with solar radiation, the average of the melting and solidification temperatures lies closer to the cooling set-point than to the heating set-point. The selected PCM (SP25E2) is an inorganic salt hydrate that has been preferred over an organic PCM, especially because of lower costs, compatibility with plastic containers, non-flammability, lower volume changes and higher latent heat of fusion. Most optimal material layer thicknesses and other specifications like cavity width were determined and will also be used in this Master's thesis project.

CHAPTER 7: CLIMATE CLASSIFICATION

In chapter 7, a climate classification according to the Köppen-Geiger system was described. It was revealed that the five major climate types are: a tropical climate, a dry climate, a temperate climate, a cold climate and a polar climate. Three representative cities were selected for each of these climates, after which one best representative city remained after a final elimination step. With this knowledge, background question 1.1 (*'What climates need to be studied'*) can be answered. To limit the scope of the research, it was intended to study only the major climate types. Now that we know that there are five major climate types, the answer should be: a tropical climate, a dry climate, a temperate climate, a cold climate and a polar climate. However, because the polar climate is almost uninhibited, there is no point in researching when knowing that the gained knowledge from this research will not or hardly be applied. Therefore, the polar climate will be disregarded and the four remaining climate types were further investigated during this project.

The second part of chapter 7 described which cities best represent the major climates. It was concluded that the selected cities were: Singapore, Cairo, Milan, Ft. Smith and Resolute. Unfortunately, however, the latter two cities are located in a polar climate according to the Köppen-Geiger classification system. Therefore, another representative city must be chosen for a cold climate. It has been decided to choose Stockholm, because according to the classification system of Mansy, it represents the cold climate as second best. To conclude, the climate data used in this study are from to the cities: Singapore, Cairo, Milan and Stockholm.

The final part of chapter 7 described the influence of climate on the thermal comfort standards in buildings. This literature study was done to answer background question 1.5 ('*Do climate and building function influence the thermostat set-points of a building?*'). From the literature study, it was found that thermal comfort can be measured with comfort indexes such as the PMV and the PPD and that the study of HTI showed that the value of these indices is not necessarily dependant on the location on the world. Therefore, for further research, it can be assumed that the recommended thermostat-setpoints in buildings are approximately the same at every location in the world. In this research project, two buildings functions are studied: offices and residences. From Table 7.4 can be seen that the recommended minimal heating thermostat-setpoint in residences equals 20 °C and the recommended maximum cooling thermostat setpoint equals 26 °C. For offices, this is the same.

PARTIII CREATION AND DEVELOPMENT OF SIMULATION MODEL

9. THEORY OF THERMAL ENERGY BALANCES

To determine how much energy a room or building demands to maintain a required level of health and comfort, it is necessary to make an inventory of all building-related flows of energy. If the sum of these energy flows is negative, too little heat is received by the building and heating is needed. When the sum of the energy flows is positive, cooling is required. The process of making an inventory of all energy flows is called an energy balance and is based on a thermodynamical law: the amount of energy entering an isolated system, kept at constant temperature, is equal to the amount of energy leaving the system (van der Spoel, 2016). There are different ways to draw up an energy balance for a building, and one is more detailed than the other. In this chapter, the basic principles of different approaches of heat balances are explained. First, all main parameters that appear in the balance are highlighted one by one. Then, the principle of a simple (stationary) heat balance is explained. The chapter ends with the most advanced version of a heat balance: the non-stationary multi-node heat balance, which is used in the numerical simulations in this project.

9.1. FLOWS OF ENERGY

Heat transfer mainly takes place as a result of conduction, convection or radiation. In a building, these heat transfer mechanisms are combined into four main energy flows (Van Bueren, van Bohemen & Visscher, 2012):

- Transmission
- Ventilation and infiltration
- Solar gains
- Internal heat gains

9.1.1. TRANSMISSION

As a result of the temperature difference between the indoor and outdoor air, heat will flow through the building envelope. A heat flow can take place through walls, glazing, roofs and floors and is a combination of conduction, convection and radiation (see Figure 9.1).

Figure 9.1: transmission losses through walls, window, floor and roof (left) and their relationship with convection, conduction and radiation (right) (Van Bueren et al., 2012).

The transmission through a construction can be calculated using equation 9.1 and 9.2:

$$Q_{trans,s} = U A (T_e - T_i)$$
(9.1)

where
$$U = \frac{1}{\frac{1}{\alpha_i} + R_c + \frac{1}{\alpha_o}}$$
 (9.2)

In the above equations, $Q_{trans,s}$ represents the transmission heat loss (or gain) in W, T_e represents the outdoor temperature (K), T_i the indoor temperature (K), U the overall heat transfer coefficient of the construction in W/m²K and A the surface area (m²) of the construction wall. The U-value is calculated with the R_c-value (m²K/W) and the combined heat transfer coefficients for convection and radiation (α_0 and α_i). For α_i a value of 7.8 is often assumed (when the air speed in buildings is relatively low) and for α_0 the value strongly depends on the wind speed, but a yearly average value of 25 W/m²K is often applied (Van Bueren et al., 2012). If a construction wall is composed of multiple layers (three shown in equation 9.3), the thermal resistance is calculated as follows:

$$R_{c,tot} = R_{c,1} + R_{c,2} + R_{c,3} = \frac{d_1}{\lambda_1} + \frac{d_2}{\lambda_2} + \frac{d_3}{\lambda_3}$$
(9.3)

In equation 9.3, d represents the thickness of the construction layer (m) and λ the thermal conductivity of the material (W/mK). To find out how much energy is being transported due to transmission, the transmission through windows, walls, roofs and ground should be added together. When the outdoor temperature is lower than the indoor temperature, heat is transferred from inside to the outside environment. When the outdoor temperature is higher than the indoor temperature, this is the opposite. For windows, the U-value of the total window construction is generally used and for the ground, the transmission medium is the soil instead of the ambient air. In addition to transmission through the envelope, there is also a possibility of transmission due to the presence of thermal bridges. Cold bridges (heat leakages) occur when insulation is not positioned in an optimal way or arise on the spot of a balcony or column/beam that runs from the outdoor climate to the indoor climate. Heat loss due to a linear thermal bridge (W) is calculated with equation 9.4:

$$Q_{\text{bridge}} = \Psi L (T_e - T_i)$$
(9.4)

In this equation, L is the length of the thermal bridge (m) and Ψ linear thermal transmittance of the thermal bridge in W/mK. The total heat transfer as result of transmission (W) can now be calculated using equation 9.5:

$$Q_{\text{trans}} = Q_{\text{trans,s}} + Q_{\text{bridge}}$$
(9.5)

In the continuation of this study, heat losses due to thermal bridges are ignored, as a cubic room in the middle of a building, without the presence of many junctions and balconies is studied.

9.1.2. VENTILATION AND INFILTRATION

Air from outside ('fresh' air) flows into and out of a building through openings in the façade (windows, grilles, pipes, etc.). This flow of air can be experienced as desired (ventilation) or as undesired (infiltration).

Infiltration takes place uncontrollably, depends on the technical quality of a building and mainly takes place through cracks and seams in the construction (especially when connecting window frames against walls and roofs against walls). Infiltration is difficult to model in detail and is often calculated using practical rules of thumb (Van Bueren et al., 2012). Ventilation is of great importance to ensure health and comfort in a building, as fresh air is necessary for the supply of oxygen, the removal of waste materials, odors and moisture, keeping the building at a desired temperature and, for example, to provide certain rooms with an overpressure in case of fire. The amount of ventilation air that a person requires depends on his or her metabolism and therefore his or her level of physical activity. In smaller buildings with lower occupancy rates (such as residences), the amount of air entering the building through infiltration and opening windows is often enough to ensure a healthy amount of fresh air (not always found enough by building regulations, however). In general, an airtight envelope is found in new buildings and extra measures for ventilation are needed as result (Van Bueren et al., 2012).

Heat losses (or gains) due to infiltration (W) are approximated with equation 9.6:

$$Q_{inf} = \dot{m}_{inf} C_{p,air} (T_e - T_i)$$
(9.6)

Here, \dot{m}_{inf} is the mass flow rate of air (kg/s) and $C_{p,air}$ is the heat capacity of dry air in J/kgK. The heat capacity is equal to 1000 J/kgK (at ambient temperature) and stands for the amount of heat that one kilogram of air can absorb at a temperature change of 1 K. To convert a volume flow rate in a mass flow rate of air (kg/s), one can use the following equation:

$$\dot{m}_{inf} = \frac{\rho_{air} V_{hour}}{3600} = \frac{\rho_{air} V_{room} ACH}{3600}$$
(9.7)

The density of air varies with temperature, but an average value of 1.2 kg/m³ is often assumed. \dot{V}_{hour} represents the volume flow rate of air in m³/h. Due to the dependence on the size of cracks, seams and openings in the façades and local pressure differences around the structural parts, the determination of the mass flow rate is not easy. In general, the mass flow rate is based on the infiltration rate (ACH), which indicates how often the building volume is changed per hour. A ventilation rate between 0.1 and 0.2 applies for large, air-tight new buildings and a value between 0.2 and 0.3 for small new buildings. For old buildings, an infiltration rate between 0.5 and 1 generally applies (Van Bueren et al., 2012). The three basic types for ventilation are shown in Figure 9.2.

Figure 9.2: The main types of ventilation systems in buildings (Van Bueren et al., 2012).

- Natural ventilation through windows and grilles. No fan required.
- Ventilation via mechanical supply or discharge. One fan required.
- Balanced ventilation with heat recovery. Two fans (and a heat recovery system) required.

In case of balanced ventilation, a heat recovery system is almost always added. In the cooling season, warm outside air is freely cooled by using the colder inside air. In the heating season the cold outside air is heated with the relatively warm indoor air. The heat loss (W) due to ventilation (for all three systems) can be calculated with equation 9.8:

$$Q_{vent} = (1-\mu) \dot{m}_{vent} C_{p,air} (T_e-T_i)$$
(9.8)

In case of natural ventilation or ventilation with mechanical supply or discharge, the value of μ equals 0. In case of balanced ventilation with heat recovery, the value of μ varies between 0.60 and 0.95 (Van Bueren et al., 2012).

9.1.3. SOLAR GAINS

Solar radiation penetrates a building through the windows and is largely absorbed by the surface of walls, floors and roofs, which experience an increase in temperature. When the surface temperature exceeds the indoor temperature, the absorbed heat will flow back into the room via conduction and convection (see Figure 9.3).

Figure 9.3: Process of absorption of solar radiation into parts of the construction (Van Bueren et al., 2012).

In buildings with a high thermal mass, this process is slower than in a building with low thermal mass. The accumulated quantity of heat is therefore determined by the total thermal mass of a building and the heat capacity of the materials used. A concrete floor, for example, absorbs heat much better than a wooden floor and a floor covered with furniture absorbs much less heat than an uncovered floor. In addition to the thermal mass of a building, the incoming heat due to solar irradiation is highly dependent on the orientation, surface and physical properties of windows (Van Bueren et al., 2012). The percentage of total solar radiation transmitted through a glazed surface is translated into the SHGC value. In addition to the SHGC value of the glazing, the SHGC value of external shading is important to consider as well. A rough estimate of the incoming energy due to solar radiation (W) can be made with equation 9.9:

$$Q_{sol} = \sum_{i} SHGC_{glass}^{i} \cdot A_{window}^{i} \cdot SHGC_{shade}^{i} \cdot q_{sol,w}^{i}$$
(9.9)

In this case, for each facade with orientation i the SHGC_{glass} value (-) is equal to the combined SHGC value for both the glass and the window frame. $q_{sol,w}$ is the total solar radiation in W/m² and A is the surface area of the window in m². As mentioned, the use of equation 9.9 leads to a rough estimate of reality. A more detailed calculation requires advanced software (Van Bueren et al., 2012).

9.1.4. INTERNAL HEAT GAINS

Internal heat gains are the result of the energy produced by people and by electrical appliances such as computers, refrigerators, washing machines, printers and lighting. The human body produces heat that is transferred to the environment to maintain a normal body temperature. Heat is propagated through exhaled air, sweat and convection at the closer area of the skin. The amount of heat released depends on the level of activity, the amount of clothes that are worn and the temperature and moisture content of the surrounding air (Höppe, 1993). The internal heat production (W) due to the presence of people is calculated with equation 9.10:

$$Q_{int,people} = n_{people} \cdot Q_{M}$$
(9.10)

Here, n is equal to the number of people present and Q_M equals the heat production per person in W. Only a very small part of the energy needed to make lighting possible is converted into light. The largest part comes as free heat in a room through radiation and convection. The light itself is absorbed by walls, floors and furniture and is finally converted into heat and released to the room. As a result, it can be assumed that all installed lighting power is finally released as heat. The internal heat gains coming from artificial lighting (W) can be calculated using equation 9.11:

$$Q_{int,lighting} = \xi_{light,vent} \cdot \beta_{floor} \cdot A_{floor} \cdot q_{light}$$
(9.11)
Herein, A is the relevant floor area in m², q_{light} the electrical power of the lighting in W/m² and $\xi_{light, vent}$ the fraction of the power that is released to the room. $\xi_{light, vent}$ is equal to 1 (-) when the luminaires are not ventilated and $\xi_{light, vent}$ is 0.2-0.6 if they are ventilated. β_{floor} is equal to the percentage of the floor surface that is lit at the relevant time. For estimates, a value of 1 is generally assumed (Van Bueren et al., 2012). For electrical devices such as printers, televisions, computers, servers, refrigerators and freezers, a large part of the power is converted into heat. This heat (W) is transferred to the room and can be calculated with equation 9.12:

$$Q_{int,app} = A_{floor} \cdot q_{app}$$
(9.12)

Here, q_{app} is the total heat production of all appliances (excluding lighting) in W/m². The total internal heat production in W can be calculated with equation 9.13:

$$Q_{int} = Q_{int,people} + Q_{int,lighting} + Q_{int,app}$$
(9.13)

9.2. STATIONARY HEAT BALANCES

The first type of heat balance that is discussed in this chapter is the stationary heat balance. When considering problems of stationary heat transfer, temperatures and heat fluxes are constant in time. In a stationary system, the energy conservation law is the starting point and states that the sum of heat flows coming from the interior and exterior must add to zero (van der Spoel, 2016). The conservation law can be applied to a one-dimensional system (line), a two-dimensional system (surface) and a three-dimensional system. When regarding a room or a complete building (three-dimensional), the interior is generally called the 'control volume'. In a stationary heat balance, thermal energy storage is not taken into account.

In all types of heat balances, the incoming heat flows obtain a positive sign in the balance and outgoing heat flows obtain a negative sign. The stationary heat balance is shown in equation 9.15:

$$\Sigma Q = 0 \qquad Q_{\text{trans}} + Q_{\text{inf}} + Q_{\text{vent}} + Q_{\text{sol}} + Q_{\text{int}} + Q_{\text{added}} = 0 \qquad (9.15)$$

In this balance, all quantities are shown as positive, but energy flows leaving the control volume must enter the balance with a negative sign. Before setting up a stationary heat balance, it is important to properly define the boundaries of the control volume. Only then, the heat flow through the boundaries can be easily determined (van der Spoel, 2016). If the sum of these energy flows is negative, too little heat is received by the building and heating is needed. When the sum of the energy flows is positive, cooling is required:

If $Q_{added} < 0$:	$Q_{added} = Q_{cooling}$
If $Q_{added} = 0$:	no heating or cooling required.
If $Q_{added} > 0$:	$Q_{added} = Q_{heating}$

9.3. NON-STATIONARY HEAT BALANCES

A more realistic calculation of the energy demand of (rooms in) buildings is not based on a stationary heat balance, but on a non-stationary heat balance. Non-stationary means that heat fluxes and temperatures vary with time (van der Spoel, 2016). A non-stationary heat balance therefore, represents a much more realistic outcome than a stationary heat balance as temperatures and heat fluxes in and around buildings regularly change and thermal storage should not be neglected. Because of the complex nature of non-stationary heat balance calculations, computer models are often used. In this section, the numerical principle of these computer calculations is explained. The principles of the modelling approach will first be clarified based on a simplified one-node model for a room. After that, also an example of a multi-node room is shown.

9.3.1. PRINCIPLE

The principle of a non-stationary heat balance is first explained based on a simplified one-node room model with schematization shown in Figure 9.4. The model consists of a basic, rectangular room with one thermal node, which represents the heat storage in the room air, ceilings, walls, floors and furniture. The

temperature of the thermal node is assumed to be the same as the operative room temperature and only incoming solar radiation and transmission through the exterior wall are considered.

Figure 9.4: one-node room model (van der Spoel, 2016).

The heat balance for this room at time t is shown in equation 9.16:

$$+Q_{sol}(t) + Q_{trans}(t) - M \frac{dT_{i}(t)}{dt} = 0$$
 [J/s = W] (9.16)

Where
$$Q_{trans}(t) = H_e(T_e(t) - T_i(t))$$
 and $H_e = \sum U_e A_e$

In which M represents the total thermal mass (J/K) being the sum of component n with specific heat capacity c_n and mass m_n :

$$M = \sum_{n} (m_{n}c_{n}) \tag{9.17}$$

By assuming that both heat flows are stationary during the time-step from t to t+ Δ t, the temperature change Δ T_i(t) can be calculated with equation 9.18:

$$M \frac{\Delta T_i(t)}{\Delta t} = Q_{sol}(t) + Q_{trans}(t)$$
(9.18)

Since $\Delta T_i(t) = T_i(t+\Delta t) - T_i(t)$, the temperature at time t+ Δt can be calculated with equation 9.19:

$$M \frac{T_{i}(t+\Delta t) - T_{i}(t)}{\Delta t} = Q_{sol}(t) + Q_{trans}(t) \qquad \longleftrightarrow \qquad T_{i}(t+\Delta t) = T_{i}(t) + \frac{\Delta t}{M} \left(Q_{sol}(t) + Q_{trans}(t) \right)$$
(9.19)

Equation 9.19 is a so-called fully explicit expression for the time differentiation, which means that the temperature at t+ Δ t is written as a function of the heat flows and temperature that occurred before time t+ Δ t (van der Spoel, 2016). Equation 9.19 can also be written in an implicit scheme (temperature change is written in terms of the unknown heat flows at time t+ Δ t), in an intermediate scheme (combination of explicit and implicit) and in a semi-analytical scheme (based on an analytical expression). Every scheme has its own advantages and disadvantages regarding accuracy and instability issues. By using the Matlab/Simulink software (with even more advanced numerical methods) in this research project, accuracy is provided and instability issues are relatively easy to avoid. Therefore, in this chapter, the heat balances are only shown in an explicit way and stability and accuracy criteria are not discussed.

Because climatic data files are generally used to obtain $Q_{sol}(t)$, equation 9.19 should be written in a slight different way. A given solar load $Q_{sol}(t)$ at time t may refer to the average load occurring between time t- Δt and time t. Since the interval Δt is usually not less than one hour and we want to calculate ΔT_i from time t to t+ Δt , it is better to use $Q_{sol}(t+\Delta t)$ (van der Spoel, 2016). The temperature at time t+ Δt is then calculated with equation 9.20:

$$T_{i}(t+\Delta t) = T_{i}(t) + \frac{\Delta t}{M} \left(Q_{sol}(t+\Delta t) + Q_{trans}(t) \right)$$
(9.20)

9.3.2. ONE-NODE ROOM MODEL

To better understand the working principle of a non-stationary heat balance, an example with one thermal node with more heat flows is discussed in this section. In this rectangular room (shown in Figure 9.5), thermal mass, incoming solar radiation, ventilation and transmission through an exterior wall are considered. The situation is simplified by excluding the energy flows from infiltration.

Figure 9.5: one-node room model (van der Spoel, 2016).

The heat balance for this room at time t is shown in equation 9.21. Note that some parameters shown in Fig. 9.5 have been translated into the same, but differently formulated parameters, as used in this thesis $(q_{vr}\rho = \dot{m}_{vent})$.

$$SHGC_{glass}A_{window}q_{sol,w}(t) + Q_{int}(t) + \sum A_e U_e \cdot (T_e(t) - T_i(t)) + \dot{m}_{vent}C_p(T_e(t) - T_i(t)) - M \frac{dT_i(t)}{dt} = 0$$
(9.21)

Or more concisely:

$$\begin{split} Q_{\text{int,tot}}(t) + Q_{\text{trans}}(t) - M & \frac{dT_i(t)}{dt} = 0 \end{split} \tag{9.22} \\ \text{where} \quad Q_{\text{int,tot}}(t) = Q_{\text{sol}}(t) + Q_{\text{int}}(t) \\ \quad Q_{\text{trans+vent}}(t) = H_{\text{tot}}(T_e(t) - T_i(t)) \\ \quad H_{\text{tot}} = \sum A_e U_e + \dot{m}_{\text{vent}}C_p \end{split}$$

Following Eq. (9.20), the explicit expression for the temperature reads:

$$T_{i}(t+\Delta t) = T_{i}(t) + \frac{\Delta t}{M} (Q_{int,tot}(t+\Delta t) + Q_{trans}(t))$$
(9.23)

To calculate the indoor room temperature as a function of time, an Excel spreadsheet can be used.

9.3.3. TWO-NODE ROOM MODEL

Now, two one-node room models are combined into a two-node room model by simply placing them next to each other. A schematization of the two-node model can be seen in Figure 9.6. Note that in addition to the energy flows by solar radiation, ventilation and transmission, the internal air flows are included as well. For each of the rooms, subscripts '1' and '2' are used to indicate the position of the flows. With t' as a continuous time variable and heat gains, losses and storage as constants, the heat balance for room 1 is shown in equation 9.24:

$$Q_{1,sol} + Q_{1,int} - \sum A_{1,e} U_{1,e} \cdot (T_1(t') - T_e(t')) - \sum A_{1,2} U_{1,2} \cdot (T_1(t') - T_2(t')) - (\dot{m}_{vent,1 \to e} + \dot{m}_{vent,1 \to 2}) C_p T_1(t') + \dot{m}_{vent,e \to 1} C_p T_e(t') + \dot{m}_{vent,2 \to 1} C_p T_2(t') - M_1 \frac{dT_1(t')}{dt'} = 0$$
(9.24)

Page 55 of 231

Figure 9.6: two-node model of two adjacent rooms (van der Spoel, 2016).

The heat balance for room 2 is shown in equation 9.25:

$$\begin{aligned} Q_{2,sol} + Q_{2,int} - \sum A_{2,e} U_{2,e} \cdot (T_2(t') - T_e(t')) + \sum A_{1,2} U_{1,2} \cdot (T_1(t') - T_2(t')) - \\ (\dot{m}_{vent,2 \to e} + \dot{m}_{vent,2 \to 1}) C_p T_2(t') + \dot{m}_{vent,e \to 2} C_p T_e(t') + \dot{m}_{vent,1 \to 2} C_p T_1(t') - M_2 \frac{dT_2(t')}{dt'} = 0 \end{aligned}$$
(9.25)

Equation 9.24 and 9.25 may also be written as:

$$Q_{1,tot} - S_{1,e}T_e(t') - S_{1,1}T_1(t') - S_{1,2}T_2(t') - M_1 \frac{dT_1(t')}{dt'} = 0$$
(9.26)

$$Q_{2,tot} - S_{2,e}T_e(t') - S_{2,1}T_1(t') - S_{2,2}T_2(t') - M_2 \frac{dT_2(t')}{dt'} = 0$$
(9.27)

Following equation 9.23, the explicit expressions for the temperature read:

$$T_{1}(t+\Delta t) = T_{1}(t) + \frac{\Delta t}{M_{1}} (Q_{int,tot}(t+\Delta t) - S_{1,e}T_{e}(t) - S_{1,1}T_{1}(t) - S_{1,2}T_{2}(t))$$
(9.28)

$$T_{2}(t+\Delta t) = T_{2}(t) + \frac{\Delta t}{M_{2}} (Q_{int,tot}(t+\Delta t) - S_{2,e}T_{e}(t) - S_{2,2}T_{2}(t) - S_{2,1}T_{1}(t))$$
(9.29)

9.4. NON-STATIONARY MULTI-NODE HEAT CONDUCTION

Before being able to explain the principle of a non-stationary multi-node heat balance, this section first clarifies the principles of non-stationary multi-node heat conduction. The multi-node time-dependant approach of one-dimensional heat conduction is a mathematical approach which is identical to the approach of convection and radiation, but only has different input values (van der Spoel, 2016). When the principle of multi-node heat conduction is understood, the final step can be made towards a non-stationary multi-node heat balance, in which all forms of heat transfer are included.

As mentioned before, heat flows through a control volume in a non-stationary heat balance need not necessarily add up to zero. When the sum of energy flows result in a negative outcome, a temperature decrease will be the result. Vice versa, a temperature increase will happen when the sum of energy flows result in a positive outcome (equation 9.30). The rate of change of this temperature depends on the thermal capacity M of the control volume, which is calculated by multiplying the control volume, the material's mass density (assumed to be homogenous) and its specific heat capacity (equation 9.31). In equation 9.30, the partial derivative is taken, because the temperature is in fact a function of position and time (more than one variable).

$$\sum Q = M \frac{\partial T}{\partial t}$$
(9.30)

The principle of multi-node heat conduction is explained by considering a problem of one-dimensional heat conduction in a (homogeneous) material with thickness d (see Figure 9.7).

Figure 9.7: Schematization of one-dimensional heat conduction in a solid (van der Spoel, 2016).

The distance from the left boundary to the middle of the material is indicated as x_i and a surface area A represents a surface in perpendicular direction of the figure. For setting up a heat balance equation, the problem domain is subdivided into multiple control volumes which are numbered using index i. So, the first control volume has a subscript '1' and the second volume a subscript '2'. There are N control volumes in total. Each control volume has a certain thickness $d_{x,i}$ and the temperature in the control volume is denoted as $T_{x,i}$. The time-dependent heat balance for heat conduction of the orange control volume is shown in equation 9.32.

$$\frac{-\lambda A}{x_{i}-x_{i-1}} \left(\mathsf{T}_{x_{i}}-\mathsf{T}_{x_{i-1}} \right) - \frac{-\lambda A}{x_{i+1}-x_{i}} \left(\mathsf{T}_{x_{i+1}}-\mathsf{T}_{x_{i}} \right) = \rho c A \Delta x_{i} \frac{\partial \mathsf{T}_{x_{i}}}{\partial t}$$
(9.32)

When materials with different properties are considered, extra care must be taken to model the correct heat flux between the adjoining control volumes (van der Spoel, 2016). Figure 9.8 shows a schematization of two adjoining control volumes and the heat flux between both volumes can be written as:

$$\frac{-A(T_{x_{i+1}}-T_{x_i})}{\frac{\Delta x_i}{2\lambda_i}+\frac{\Delta x_{i+1}}{2\lambda_{i+1}}}$$

The nodal points are situated in the centre of the control volumes, so that the distance between the interface and the nodal point equals half the control volume width (van der Spoel, 2016).

Figure 9.8: Schematization of 1-D heat conduction at a transition between two different materials (van der Spoel, 2016).

The heat balance of one control volume now reads:

$$\frac{-A(T_{x_i} T_{x_{i-1}})}{\frac{\Delta x_i}{2\lambda_i} + \frac{\Delta x_{i-1}}{2\lambda_i}} - \frac{-A(T_{x_{i+1}} T_{x_i})}{\frac{\Delta x_i}{2\lambda_i} + \frac{\Delta x_{i+1}}{2\lambda_i}} = \rho_i c_i A \Delta x_i \frac{\partial T_{x_i}}{\partial t}$$
(9.33)

9.5. NON-STATIONARY MULTI-NODE HEAT BALANCES

Where the non-stationary multi-node heat conduction problem shown in the previous chapter could still be solved with a spreadsheet, most problems in practice involve more than just one-dimensional heat conduction (van der Spoel, 2016). To solve these more advanced problems, a non-stationary multi-node heat balance should be drawn up, that can be solved with more advanced software, such as Matlab/Simulink. One example of a multi-node heat balance has already been treated in the previous section, namely: a two-node heat balance. Two heat balance equations were derived:

$$Q_{1,tot} - S_{1,e}T_{e}(t) - S_{1,1}T_{1}(t) - S_{1,2}T_{2}(t) - M_{1}\frac{dT_{1}(t)}{dt'} = 0$$
(9.26)

$$Q_{2,tot} - S_{2,e}T_e(t) - S_{2,1}T_1(t) - S_{2,2}T_2(t) - M_2 \frac{dT_2(t)}{dt'} = 0$$
(9.27)

By using a matrix notation, the equations can be written down in a more concise manner:

$$\begin{pmatrix} Q_{1,tot} \\ Q_{2,tot} \end{pmatrix} - \begin{pmatrix} S_{1,e} \\ S_{2,e} \end{pmatrix} T_e(t) - \begin{pmatrix} S_{1,1} & S_{1,2} \\ S_{2,1} & S_{2,2} \end{pmatrix} \begin{pmatrix} T_1(t) \\ T_2(t) \end{pmatrix} - \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix} \begin{pmatrix} \dot{T}_1(t) \\ \dot{T}_2(t) \end{pmatrix} = 0$$
(9.34)

An even shorter notation is:

Where **M** is the so-called mass matrix, **S** the stiffness matrix, $\underline{\mathbf{Q}}$ the load vector and $\underline{\mathbf{T}}$ the vector with the time-dependent variables. When considering a problem with N nodes, N equations will arise and the following matrices can be formed:

According to the modelling approach in this thesis, the mass matrix only contains positive values at the diagonal. The number of control volumes does not influence the solution T(t), but does only yield different matrices. Once the user has defined the matrices **M**, **S** and **Q**, Matlab/Simulink is able to solve equation 9.35 with by using in-built functions and calculates the temperatures as a function of time (van der Spoel, 2016).

In order to create a simulation model of a room, a clear schematization of the heat transfer problem needs to be made. The schematization includes the following steps, described by van der Spoel (2016):

- 1. Determine the position of the control volumes and thermal nodes. Figure 9.7 and 9.8 already gave some insight how to do this.
- 2. Assign a node (or multiple nodes) to a known or bound temperature, such as the outside air temperature.
- 3. Number each node. From a programming point of view, it is convenient to number the nodes with a bound/known temperature as the last ones.
- 4. Determine which process(es) of heat transfer occur between each pair of nodes.
- 5. Determine where the heat loads occur.
- 6. Populate the mass matrix by assigning the specific thermal mass to each node, except for the bound nodes.
- 7. Populate the stiffness matrix by formulating each heat transfer process between nodes.
- 8. Populate the load vector.
- 9. Separate the free nodes from the **M** and **S** matrix from the bound nodes of the matrices.
- 10. Transfer the terms of the S matrix with bound nodes to the right-hand side of the equation system.

9.5.1. SETTING UP THE MASS MATRIX

The mass matrix **M** is formed based on the size and location of the control volumes, the position of the thermal nodes and the mass properties of the material. In the method used in this thesis, only the diagonal of the mass matrix contains values and each value on the diagonal represents the thermal capacity (J/K) of the corresponding control volume. The thermal capacity is calculated as shown in equation 9.37:

$$M_{i} = \rho_{i} c_{i} A \Delta x_{i}$$
(9.37)

9.5.2. SETTING UP THE STIFFNESS MATRIX

Heat transfers from one node to another, generated by conduction, radiation or convection. Each of these heat transfer processes are characterized by its own, typical coupling factor. In case of conduction, the heat transfer rate between two nodes is governed by the distance Δx between the nodes, the heat conduction coefficient λ of the material in between and the surface area A through which the transfer takes place. The coupling factor, which denotes the heat transfer rate (W) between node i and j at temperature difference of 1 kelvin, is defined as follows:

$$C_{i,j} = \frac{\lambda A}{\Delta x}$$
(9.38)

In case of radiation, the (linearized) heat transfer rate between two nodes is governed by the surface emissivity ε , the surface area A, the exchange coefficient ψ and the black-body radiative heat transfer coefficient h_{rb}. The heat transfer due to radiation can be calculated with equation 9.39:

$$Q_{ij} = \varepsilon_i \varepsilon_j A_i \psi_{ij} h_{rb} (T_i - T_j)$$
(9.39)

Therefore, the coupling factor is written as shown in equation 9.40:

$$C_{i,j} = \epsilon_i \epsilon_j A_i \psi_{ij} h_{rb}$$
(9.40)

In case of convection, the heat transfer rate between two nodes is governed by a convection coefficient α_c and the surface area A. The heat transfer due to convection can be calculated with equation 9.41:

$$Q_{ij} = \alpha_{c,i,j} A(T_i - T_j)$$
(9.41)

Page 59 of 231

The coupling factor is written as shown in equation 9.42:

$$C_{i,j} = \alpha_{c,i,j} A \tag{9.42}$$

9.5.3. SETTING UP THE LOAD VECTOR

The components of load vector \mathbf{Q} contains all heat loads (W) occurring on the thermal nodes. A positive value is called a heat source, which means that heat is being added. A negative value is called a heat sink, which means that heat is being removed (van der Spoel, 2016).

9.5.4. SOLUTION PROCEDURE IN SIMULINK

By following steps 9 and 10 of the schematization procedure described in section 9.5, equation 9.35 should be re-written as follows:

$$\mathbf{M}\underline{\mathbf{T}} + \mathbf{S}\underline{\mathbf{T}} = \underline{\mathbf{Q}} - \mathbf{S}_{bound} \underline{\mathbf{T}}_{bound}$$
(9.43)

By multiplying both sides of the equation with **M**⁻¹, the following expression is obtained:

$$\underline{\dot{\mathbf{T}}} = \mathbf{M}^{-1} (\underline{\mathbf{Q}} - \mathbf{S} \underline{\mathbf{T}} - \mathbf{S}_{\text{bound}} \underline{\mathbf{T}}_{\text{bound}})$$
(9.44)

Or by time-integration:

$$\underline{\mathbf{T}}(\mathbf{t}) = \int_{0}^{t} \mathbf{M}^{-1} \left(\underline{\mathbf{Q}} - \mathbf{S} \underline{\mathbf{T}} - \mathbf{S}_{bound} \underline{\mathbf{T}}_{bound} \right) d\mathbf{t}$$
(9.45)

Equation 9.45 is basically the equation being solved in Simulink. How the equations and matrices shown in this chapter are implemented in Matlab/Simulink is shown in the next chapter.

10. INITIAL SIMULATION MODEL

Now that the theory behind thermal energy balances has been made clear, the next step towards the implementation of a dynamic room system with a lightweight translucent adaptable Trombe wall in Matlab/Simulink can be made. As stated in the previous chapter, the room model with which the study is conducted is entirely based on a non-stationary multi-node heat balance. For each problem or system, the schematization with geometries, control volumes, thermal nodes and simulation conditions is different, but every system is based on the same mathematical principle. In this chapter, all features of the initial simulation model, which was developed in the Double Face 1.0 project, are extensively described. The model schematization is described in section 10.1, all model components and capabilities are described in section 10.2 and the most important Simulink components are described in section 10.3.

10.1. MODEL SCHEMATIZATION

As mentioned before, a simulation model was developed in DF1.0, and was used to get a first idea of the energy savings that could be achieved in a 'basic' residential room. In this section, the schematization of the room and the LTATW is described, node definitions are shown, modes of heat transfer are elucidated and the corresponding mass matrix and stiffness matrix are presented.

10.1.1. SCHEMATIZATION OF ROOM AND LTATW

The initial simulation model consists of a cubic room, which walls are named: orien1, orien2, orien3 and orien4. The LTATW is set to always be behind the orien1 wall (with glazing) (see Figure 10.1) (Lara et al., 2015). In Matlab, the orientation of the LTATW is determined by the following command:

orientation = 180;

In DF1.0, all simulations were carried out for a situation with a south-facing LTATW and therefore, the orientation was set at 180. To select another orientation, the following overview can be used:

Figure 10.1: Schematization of room/control space with position of PCM panel/LTATW and defined walls and orientations (Lara et al., 2015).

Orientation = 0:	LTATW faces north
Orientation = 90:	LTATW faces east
Orientation = 180:	LTATW faces south
Orientation = 270:	LTATW faces west.

The room dimensions are determined with the following commands:

```
room.depth = 5.4; % in this case in orien1-orien3 direction
room.width = 3.6; % in this case in orien2-orien4 direction
room.height = 2.7;
room.volume = room.depth*room.width*room.height; % air volume room [m3]
room.area = room.depth*room.width;
```

The position and size of windows are determined with the following commands:

```
A_gl_orien1 = 0.8*room.width*room.height; % surface area glass orien1 (m<sup>2</sup>)
A_gl_orien2 = 0; % surface area glass orien2 (m<sup>2</sup>)
A_gl_orien3 = 0; % surface area glass orien3 (m<sup>2</sup>)
A_gl_orien4 = 0; % surface area glass orien4 (m<sup>2</sup>)
```

The (total) surface area of the external constructions is determined with the following commands:

```
el_constr_A = room.width*room.height-A_gl_orien1;
e2_constr_A = room.depth*room.height-A_gl_orien2;
e3_constr_A = room.depth*room.height-A_gl_orien3;
e4_constr_A = room.depth*room.height-A_gl_orien4;
e5_constr_A = room.width*room.depth; % roof
e6_constr_A = room.width*room.depth; % floor
A_total =
e1_constr_A+e2_constr_A+e3_constr_A+e4_constr_A+e5_constr_A+e6_constr_A;
```

The presence of the LTATW and the cavity width are determined with the following commands:

```
panel_present = 1; % 1 = yes, 0 = no
d_cavity = 0.2; % width of cavity between panel and wall orien1 (m)
```

10.1.2. NODE DEFINITIONS

The nodes in the model are distributed across the construction envelopes and the LTATW. The first 25 nodes are bound/fixed nodes and are part of the control space interior air and the construction envelope. Each construction wall is set to be made up of three different layers, so: a node is placed at the interior and exterior surface, and at each layer interface, making a total of four nodes per wall (see Figure 10.2). The node numbering starts from the interior to the exterior layer, and moves from wall orien1 to wall orien2, then from wall orien3 to wall orien4 and finally from roof to floor surface (see Figure 10.3). In total, 24 nodes (six walls with four nodes each) are placed in the envelopes and one node (node 25) was set to be the node of the interior air (Lara et al., 2015).

Figure 10.2 and 10.3: Position and definition of room model nodes (Lara et al., 2015).

The number of nodes in the LTATW is determined by the number of control volume layers of the PCM and the number of control volume layers of the insulation. Just like in the construction envelopes, one node was placed at each interface between the control volume layers of the LTATW (see Figure 10.4).

Figure 10.4: Position and definition of nodes in the LTATW (Lara et al., 2015).

The amount of PCM volume control layers and insulation volume control layers is determined by the following commands:

nl_pcm = 3; nl_ins = 1;

For all simulations carried out during DF1.0, nl_pcm was set at three and nl_ins was set at one. Therefore, the LTATW has a total of five nodes. After defining nodes for the room envelopes, interior air and LTATW, a node was defined to represent the volume in the air cavity. Finally, a last node was defined to represent the outside air (Lara et al., 2015). In the continuation of this report, a further explanation is based on the above set-up for simplicity purposes. However, it must be kept on mind that the node numbering after node 25 changes when the number of control volumes is set differently. Since the behaviour of the LTATW is not isotropic, nodes were set for two possible scenarios: one scenario where the PCM layer faces the interior (Figure 10.5) and one scenario where the PCM layer faces the exterior (Figure 10.6).

Figure 10.5: Scenario 1: LTATW faces interior (Lara et al., 2015).

Figure 10.6: Scenario 2: LTATW faces exterior (Lara et al., 2015).

10.1.3. MODES OF HEAT TRANSFER

In this section, the interaction between each node is shown in a graphical manner. The interaction is shown as a coloured line, which represents a transfer of heat due to conduction, convection or radiation. The modes of heat transfer occurring in and at nodes of wall orien2 are shown in Figure 10.7. Note that the modes of transfer are similar for each of the other six room surfaces.

Figure 10.7: Modes of heat transfer for nodes in/at wall at orien2 (Lara et al., 2015).

The modes of heat transfer occurring in and at nodes of the LTATW are shown in Figure 10.8.

Figure 10.8: Modes of heat transfer for nodes in/at LTATW (Lara et al., 2015).

10.1.4. MASS MATRIX

In this dynamic system, two mass matrices exist: one matrix containing the mass properties of the sensible heat storage materials, and one matrix containing the mass properties of the latent heat storage materials (PCM). The sensible part is shown in section 10.1.4.1. and the latent part is shown in section 10.1.4.2.

10.1.4.1. SENSIBLE PART

The mass matrix for the sensible heat storing part of the room is shown below. As the definition is too long in a number of cases, it is written on the next line. This is obviously not the case in the Matlab script itself.

```
0.5* el constr(1).d*el constr(1).rho*el constr(1).c*el constr A;
M r s(1, 1) =
              0.5*(el_constr(1).d*el_constr(1).rho*el_constr(1).c*el_constr_A +
M r s(2,2) =
              e1_constr(2).d*e1_constr(2).rho*e1_constr(2).c*e1_constr_A);
              0.5*(e1_constr(2).d*e1_constr(2).rho*e1_constr(2).c*e1_constr_A +
M_r_s(3,3) =
              e1_constr(3).d*e1_constr(3).rho*e1_constr(3).c*e1_constr_A);
              0.5* el_constr(3).d*el_constr(3).rho*el_constr(3).c*el_constr_A;
M r s(4,4) =
              0.5* e2_constr(1).d*e2_constr(1).rho*e2_constr(1).c*e2_constr_A;
M r s(5, 5) =
              0.5*(e2 constr(1).d*e2 constr(1).rho*e2 constr(1).c*e2 constr A +
M r s(6,6)=
              e2_constr(2).d*e2_constr(2).rho*e2_constr(2).c*e2_constr_A);
M r s(7,7) =
              0.5*(e2 constr(2).d*e2 constr(2).rho*e2 constr(2).c*e2 constr A +
              e2 constr(3).d*e2 constr(3).rho*e2 constr(3).c*e2 constr A);
              0.5* e2 constr(3).d*e2 constr(3).rho*e2 constr(3).c*e2 constr A;
M_r_s(8,8) =
              0.5* e3 constr(1).d*e3 constr(1).rho*e3 constr(1).c*e3 constr A;
M r s(9, 9) =
M_r_s(10,10) = 0.5*(e3_constr(1).d*e3_constr(1).rho*e3_constr(1).c*e3_constr_A +
              e3_constr(2).d*e3_constr(2).rho*e3_constr(2).c*e3_constr_A);
M r s(11,11)=0.5*(e3 constr(2).d*e3 constr(2).rho*e3 constr(2).c*e3 constr A +
              e3_constr(3).d*e3_constr(3).rho*e3_constr(3).c*e3_constr_A);
M r s(12,12)=0.5* e3 constr(3).d*e3 constr(3).rho*e3 constr(3).c*e3 constr A;
M r s(13,13)=0.5* e4 constr(1).d*e4 constr(1).rho*e4 constr(1).c*e4 constr A;
M_r_s(14,14)=0.5*(e4_constr(1).d*e4_constr(1).rho*e4_constr(1).c*e4_constr_A +
              e4_constr(2).d*e4_constr(2).rho*e4_constr(2).c*e4_constr_A);
M_r_s(15,15)=0.5*(e4_constr(2).d*e4_constr(2).rho*e4_constr(2).c*e4_constr_A +
              e4_constr(3).d*e4_constr(3).rho*e4_constr(3).c*e4_constr_A);
M r s(16,16)=0.5* e4 constr(3).d*e4 constr(3).rho*e4 constr(3).c*e4 constr A;
M r s(17,17) = 0.5* e5_constr(1).d*e5_constr(1).rho*e5_constr(1).c*e5_constr_A;
M_r_s(18,18)=0.5*(e5_constr(1).d*e5_constr(1).rho*e5_constr(1).c*e5_constr_A +
e5_constr(2).d*e5_constr(2).rho*e5_constr(2).c*e5_constr_A);
M_r_s(19,19)=0.5*(e5_constr(2).d*e5_constr(2).rho*e5_constr(2).c*e5_constr_A +
              e5 constr(3).d*e5 constr(3).rho*e5 constr(3).c*e5 constr A);
```

The left hand part of the equations defines the matrix positions to be filled and as explained in chapter 9, values only appear on the diagonal of the matrix. The right hand part of the equations equals the outcome of equation 9.37. In this matrix, the thickness of the (first) material layer is defined as el_constr(1).d, the density as el_constr(1).rho, the heat capacity as el_constr(1).c and the surface area as el_constr_A. Node number 25 represents the air volume of the room and is defined by the same heat storage equation, shown in a different form and multiplied by four, to include furniture. The last node number (31) represents the air volume of the cavity:

M r s(31,31) = d cavity*room.width*room.height*1200;

10.1.4.2. LATENT PART

The mass matrix for the latent heat storing part of the room is shown below. Based on the choice of amount of control volumes, some altered definitions for thicknesses and surface area appear. These are based on logical functions and are not shown here. Again, some of the definitions are too long to fit on this page and are therefore set on the next line. To view the complete script, reference is made to the Matlab-file.

```
if nl pcm == 1
    M_r_1(nnr_r+1,nnr_r+1) =
                                 0.5*panel pcm.dx*panel pcm.rho*
                                 panel A*panel pcm.h/(Tl pcm-Ts pcm);
                                  0.5*panel_pcm.dx*panel_pcm.rho*
   M r l(nnr r+2,nnr r+2) =
                                 panel A*panel_pcm.h/(Tl_pcm-Ts_pcm);
else
    M r l(nnr r+1, nnr r+1) =
                                 0.5*panel pcm.dx*panel pcm.rho*
                                 panel_A*panel_pcm.h/(Tl_pcm-Ts_pcm);
    for i = 2:nl pcm
       M_r_l(nnr_r+i,nnr_r+i) = panel_pcm.dx*panel_pcm.rho*
                                 panel A*panel pcm.h/(Tl pcm-Ts pcm);
    end
    M_r_l(nnr_r+nl_pcm+1,nnr_r+nl_pcm+1) = 0.5*panel_pcm.dx*panel_pcm.rho*
                                        panel A*panel pcm.h/(Tl pcm-Ts pcm);
```

end

Now, the right hand part of the equations are derived from equation 4.2 and again, the left hand part of the equations defines the matrix positions to be filled. For latent heat storage, the same principle of equation 9.37 holds, but c is replaced by the specific enthalpy, dived by the difference in melting and solidification temperature of the phase change material.

10.1.5. STIFFNESS MATRIX

The simulation model contains three stiffness matrices: a matrix that determines that the Trombe wall faces the room, a matrix that describes that the Trombe wall faces the cavity and a matrix that assumes a situation without Trombe wall. For convenience, only the first matrix is shown below. To view the other matrices, reference is made to Matlab-file.

```
Y r1(1,2)
                       = e1 constr(1).la*e1 constr A/e1 constr(1).d;
                                                                                                                % conduction
                  = e1_constr(2).la*e1_constr_A/e1_constr(2).d;
= e1_constr(3).la*e1_constr_A/e1_constr(3).d;
= e2_constr(1).la*e2_constr_A/e2_constr(1).d;
Y_r1(2,3)
                                                                                                                  % conduction
Y_r1(3,4)
                                                                                                                  % conduction
Y_r1(5,6) = e2_constr(1).la*e2_constr_A/e2_constr(1).d;
Y_r1(6,7) = e2_constr(2).la*e2_constr_A/e2_constr(2).d;
Y_r1(7,8) = e2_constr(3).la*e2_constr_A/e2_constr(3).d;
Y_r1(9,10) = e3_constr(1).la*e3_constr_A/e3_constr(1).d;
Y_r1(10,11) = e3_constr(2).la*e3_constr_A/e3_constr(2).d;
Y r1(5,6)
                                                                                                                  % conduction
                                                                                                                 % conduction
                                                                                                                % conduction
                                                                                                                 % conduction
Y_r1(10,11) = e3_constr(2).la*e3_constr_A/e3_constr(2).d;
                                                                                                                  % conduction
```

```
Y r1(11,12) = e3 constr(3).la*e3 constr A/e3 constr(3).d;
                                                                           % conduction
              = e4 constr(1).la*e4 constr A/e4 constr(1).d;
Y r1(13,14)
                                                                           % conduction
Y_r1(14,15) = e4_constr(2).la*e4_constr_A/e4_constr(2).d;
                                                                           % conduction
                                                                           % conduction
Y_r1(15,16) = e4_constr(3).la*e4_constr_A/e4_constr(3).d;
Y_r1(17,18) = e5_constr(1).la*e5_constr_A/e5_constr(1).d;
Y_r1(18,19) = e5_constr(2).la*e5_constr_A/e5_constr(2).d;
Y_r1(19,20) = e5_constr(3).la*e5_constr_A/e5_constr(3).d;
                                                                           % conduction
                                                                          % conduction
                                                                          % conduction
Y_r1(21,22) = e6_constr(1).la*e6_constr_A/e6_constr(1).d;
                                                                           % conduction
Y r1(22,23) = e6_constr(2).la*e6_constr A/e6_constr(2).d; % conduction
Y r1(23,24) = e6_constr(3).la*e6_constr A/e6_constr(3).d; % conduction
Y_r1(23,24) = e6_constr(3).la*e6_constr_A/e6_constr(3).d;
Y_r1(4,nnr_out) = e1_alpha_e*e1_constr_A; % convection air-outer surf constr 1
Y_r1(8,nnr_out) = e2_alpha_e*e2_constr_A; % convection air-outer surf constr 2
Y r1(12,nnr out) = e3 alpha e*e3 constr A; % convection air-outer surf constr 3
Y_r1(16,nnr_out) = e4_alpha_e*e4_constr_A; % convection air-outer surf constr 4
Y_r1(20,nnr_out) = e5_alpha_e*e5_constr_A; % convection air-outer surf constr 5
Y_r1(24,nnr_out) = e6_alpha_e*e6_constr_A; % convection air-outer surf constr 6
              = e2 alpha i*e2 constr A; % convection air-inner surface constr 2
Y r1(5,25)
Y r1(9,25) = e3 alpha i*e3 constr A; % convection air-inner surface constr 3
Y r1(13,25) = e4 alpha i*e4 constr A; % convection air-inner surface constr 4
Y_r1(17,25) = e5_alpha_i*e5_constr_A; % convection air-inner surface constr 5
Y_r1(21,25) = e6_alpha_i*e6_constr_A; % convection air-inner surface constr 6
Y_r1(21,25) = e6_alpha_i*e6_constr_A; % convection air-inner surface constr 6
Y_r1(5,9) = 5*e3_constr_A/(A_total-e2_constr_A)*e2_constr_A; %radiation exchange
Y_r1(5,13) = 5*e4_constr_A/(A_total-e2_constr_A)*e2_constr_A; %radiation exchange
Y r1(5,17) = 5*e5 constr A/(A total-e2 constr A)*e2 constr A; %radiation exchange
Y_r1(5,21)= 5*e6_constr_A/(A_total-e2_constr_A)*e2_constr_A; %radiation exchange
Y_r1(9,13) = 5*e4_constr_A/(A_total-e3_constr_A)*e3_constr_A; %radiation exchange
Y_r1(9,17)= 5*e5_constr_A/(A_total-e3_constr_A)*e3_constr_A; %radiation exchange
Y_r1(9,21)= 5*e6_constr_A/(A_total-e3_constr_A)*e3_constr_A; %radiation exchange
Y r1(13,17)=5*e5 constr A/(A total-e4 constr A)*e4 constr A; %radiation exchange
Y r1(13,21)=5*e6 constr A/(A total-e4 constr A)*e4 constr A; %radiation exchange
Y_r1(17,21)=5*e6_constr_A/(A_total-e5_constr_A)*e5_constr_A; %radiation exchange
 Y_r1(25,nnr_p_pcm) = p_alpha_i*panel_A; % convection between room air and inner
                                                    surface PCM side of panel
Y r1(5,nnr p pcm) = 5*e2 constr A/(A total-panel A)*panel A; %radiation exchange
Y r1(9,nnr p pcm) = 5*e3 constr A/(A total-panel A) *panel A; %radiation exchange
Y_r1(13,nnr_p_pcm) = 5*e4_constr_A/(A_total-panel_A)*panel_A; %radiation exchange
Y_r1(17,nnr_p_pcm)= 5*e5_constr_A/(A_total-panel_A)*panel_A; %radiation exchange
Y r1(21,nnr p pcm)= 5*e6 constr A/(A total-panel A)*panel A; %radiation exchange
for i = nnr_p_pcm:nnr_p_pcm+nl_pcm-1
     Y_r1(i,i+1)
                   = panel pcm.la*panel A/panel pcm.dx;
                                                                     % conduction
end
for i = nnr_p_pcm+nl_pcm:nnr_p_pcm+nl_pcm+nl_ins-1
    Y_r1(i,i+1) = panel_ins.la*panel_A/panel ins.dx;
                                                                           % conduction
end
Y r1(nnr p ins,nnr cav) = p alpha cav*panel A; %convection between cavity air and
                                                       surface insulation side of panel
```

The left hand part of the equations defines between which two nodes the heat transfer occurs. The right hand side of the equations define the coupling factors, which are different for conduction, convection and radiation. It can be seen that for conduction, equation 9.38 has been applied. For convection, equation 9.42 has been applied and for radiation, equation 9.40 has been applied. After populating the stiffness matrices, a script was developed to distinguish fixed/bound node matrix values from free node matrix values.

10.2. MODEL COMPONENTS AND CAPABILITIES

The simulation model developed in DF1.0 is a realistic room model which takes into account multiple components/mechanisms such as shading, ventilation and presence of people. By having these components, the simulation model is capable of estimating the energy demand of different room configurations that represent realistic situations. In this section, a description of all model capabilities and its implementation in Matlab is given. Later in this chapter, the implementation of the most important components in Simulink is described.

10.2.1. SIMULATION TIME

To determine the simulation time, the following two commands were defined:

```
start_time = 0*86400;
stop_time = 365*86400;
```

The values are expressed in seconds. When the start time equals zero, the simulation starts at 1 January. When the first term of the stop time equals 365, the simulation stops at the end of 31 December.

10.2.2. INITIAL NODE TEMPERATURE

The initial temperature condition is set by the following command:

TinIC = 23;

The initial temperature is set at 23 °C by default and is the average temperature of the heating and cooling thermostat set-point temperatures. When simulating long periods (like a season or a year), the influence of the initial node temperature on the resulting energy demand becomes negligible. When simulating short periods (like a day or a week), the initial conditions of the room must be better studied beforehand.

10.2.3. OCCUPATION

The occupation conditions for an office room are defined with the commands shown below. With the commands, the amount of working days (i.e. days when people are present), the times on a day when people are present and the total sensible heat production (W/m^2) can be defined:

10.2.4. VENTILATION

The simulation model considers two types of ventilation: natural ventilation and balanced mechanical (night) ventilation with heat recovery. Natural ventilation takes place when the room air temperature is higher than 24 °C, causing the windows to be opened.

ThresholdWindowOpen	=	24;	%	Room	air	temp	above	which	the	windows	are	opened
ThresholdWindowClosed	=	22;	90	Room	air	temp	below	which	the	windows	are	closed
			(a	rela	у ар	plies	betwe	en bot	h th	reshold	setp	oints)
VentRateOpenWindow	=	2/360	0;	* % A	ddit	ional	venti	lation	rat	e with w	indo	WS
				ope	n[pe	r hou	r]. Si	mple t	уре	of model	ling	

Mechanical ventilation constantly takes place when people are present. In the script shown here, the heat recovery efficiency of the mechanical ventilation air equals 0.9. The heat recovery system is bypassed when the operative room air temperature is both higher than 24 °C and higher than the outside air temperature. Mechanical night ventilation only takes place at night when the operative room air temperature is both higher than 24 °C and higher than the outside air temperature.

10.2.5. THERMOSTAT SET-POINTS AND HEATING CONTROL

In the Matlab-file, the heating and cooling thermostat set-points are defined as shown below. The other commands provide an adequate response from the heating and cooling system. With the input shown below (also used in DF1.0), no fluctuations and oversupply occur, and desired temperature levels are reached relatively fast.

```
heating_setpoint = 20; % only applies when people are present (°C)
heating_proportional = 2000; % proportional part of PI-controller (W/K)
heating_integral = 0.1; % integral part of PI-controller (W/Ks)
heating_max_power = 10000; % maximum power heating (W)
cooling_setpoint = 26; % only applies when people are present (°C)
cooling_proportional = 2000; % proportional part of PI-controller (W/K)
cooling_integral = 0.1; % integral part of PI-controller (W/Ks)
cooling_max_power = 10000; % maximum power heating (W)
```

10.2.6. CONSTRUCTION PROPERTIES

In the Matlab-file, many commands are written that specify the material properties of walls, floor, ceiling and glazing. The U-value and SHGC-value of the glazing are defined as follows:

```
U_gl_orien1 = 1.65;
U_gl_orien2 = 1.65;
U_gl_orien3 = 1.65;
U_gl_orien4 = 1.65;
SHGC_orien1 = 0.6;
SHGC_orien2 = 0.6;
SHGC_orien3 = 0.6;
SHGC_orien4 = 0.6;
```

The material properties of walls, floor and ceiling are defined as shown below. The same principle holds for walls of orien2, orien3, orien4 and for the floor and ceiling.

```
% orien1, external construction 1 layer 1
% Rc=3 m2K/W, virtually no mass
el_constr(1).d = 0.01; % thickness, inside layer
e1_constr(1).rho = 10; % density
e1_constr(1).c = 840; % spec. heat capacity
e1_constr(1).la = 0.01; % heat conduction coefficient
% external construction 1 layer 2
e1_constr(2).d = 0.01; % thickness, middle layer
                                   % density
e1_constr(2).rho = 10;
e1_constr(2).c = 840; % spec. heat capacity
e1_constr(2).la = 0.01; % heat conduction coefficient
% external construction 1 layer 3
e1_constr(3).d = 0.01; % thickness, outside layer
                                % density
el constr(3).rho = 10;
e1_constr(3).c = 840;
                                   % spec. heat capacity
                                 % heat conduction coefficient
e1 constr(3).la = 0.01;
```

Because thermal simulations are carried out in this study, a lot of heat transfer and absorption coefficients exist. The first coefficient relates to the convection factor of solar radiation entering the room. The fraction shown below is given off to the room air node, while the remainder is given off to the floor surface.

CFsol = 0.2;

The surface heat transfer coefficients are defined as shown below. A total surface heat transfer coefficient of zero means that the surface is modelled as adiabatic surface.

e1_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	1
		(also appl	ies in ca	avity	where PC	M_panel	is pres	ent)	
e2_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	2
e3_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	3
e4_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	4
e5_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	5
e6_alpha_i	= 2.7; %	convective	surface	heat	transfer	coeff.	inside	constr.	6
el alpha e	= 25;	% total	surface	heat	transfer	coeff.	outside	constr.	1
e2_alpha_e	= 0;	% total	surface	heat	transfer	coeff.	outside	constr.	2
e3_alpha_e	= 0;	% total	surface	heat	transfer	coeff.	outside	constr.	3
e4_alpha_e	= 0;	% total	surface	heat	transfer	coeff.	outside	constr.	4
e5_alpha_e	= 0;	% total	surface	heat	transfer	coeff.	outside	constr.	5
e6_alpha_e	= 0;	% total	surface	heat	transfer	coeff.	outside	constr.	6

The solar absorption coefficients are defined as shown below. A solar absorption coefficient of zero means that the surface is modelled as adiabatic surface (so, no solar influence).

= 0.5	5; %	solar	absorption	coeff.	outside	surface	construction	1
= 0;	00	solar	absorption	coeff.	outside	surface	construction	2
= 0;	00	solar	absorption	coeff.	outside	surface	construction	3
= 0;	90	solar	absorption	coeff.	outside	surface	construction	4
= 0;	00	solar	absorption	coeff.	outside	surface	construction	5
	= 0 . 5 = 0; = 0; = 0; = 0;	= 0.5; % = 0; % = 0; % = 0; % = 0; %	= 0.5; % solar = 0; % solar = 0; % solar = 0; % solar = 0; % solar	<pre>= 0.5; % solar absorption = 0; % solar absorption = 0; % solar absorption = 0; % solar absorption = 0; % solar absorption</pre>	<pre>= 0.5; % solar absorption coeff. = 0; % solar absorption coeff.</pre>	<pre>= 0.5; % solar absorption coeff. outside = 0; % solar absorption coeff. outside</pre>	<pre>= 0.5; % solar absorption coeff. outside surface = 0; % solar absorption coeff. outside surface</pre>	<pre>= 0.5; % solar absorption coeff. outside surface construction = 0; % solar absorption coeff. outside surface construction</pre>

10.2.7. SHADING

The initial simulation model is equipped with a shading mechanism, which is activated after certain threshold-values are exceeded. The shading mechanism is a relatively 'simple' component and nothing more than a reduction of the SHGC-coefficient of the glazing:

```
% Solar heat gain coefficient glass with sunblinds
SHGC_orien1_SB = SHGC_orien1*0.25;
SHGC_orien2_SB = SHGC_orien2*0.25;
SHGC_orien3_SB = SHGC_orien4*0.25;
SHGC_orien4_SB = SHGC_orien4*0.25;
```

In the script below, the shading mechanism is turned on when the operative room temperature exceeds 24 °C and when simultaneously the incoming solar radiative power exceeds a value of 100 W.

10.2.8. LTATW CHARACTERISTICS

The liquifying temperature and the solidification temperature of the phase change material are defined in Matlab as follows:

Ts_pcm	=	23;	00	temperature	below	which	PCM	is	solid	[°C]
Tl_pcm	=	26;	8	temperature	above	which	PCM	is	liquid	[°C]

When a Trombe wall is present, solar energy is absorbed by the panel. Different absorption factors apply for different orientation and material state (solid or liquid). The values are determined in DF1.0 and are different for each type of PCM and insulation material. In this project, one specific type of PCM and aerogel is investigated, which means that the values shown below are dealt with as constants.

a_sol1_pcm_s = 0.91*0.97; % part of incident solar energy on panel absorbed by the PCM layer, solid state, when PCM faces room

a_sol1_pcm_l = 0.91*0	.63; % part of incident solar energy on panel absorbed by
a_sol1_ins_s = 0.09;	% part of incident solar energy on panel absorbed by the insulation layer, solid state, when PCM faces room
a_sol1_ins_1 = 0.09;	<pre>% part of incident solar energy on panel absorbed by the insulation layer, liquid state, when PCM faces room</pre>
	% linear interpolation between solid and liquid state based on volume-averaged PCM temperature
a_sol2_pcm_s = 0.97;	<pre>% part of incident solar energy on panel absorbed by the PCM layer, solid state, when PCM faces cavity</pre>
a_sol2_pcm_l = 0.63;	<pre>% part of incident solar energy on panel absorbed by the PCM layer, liquid state, when PCM faces cavity</pre>
a_sol2_ins_s = 0.03*0	.09; % part of incident solar energy on panel absorbed by the insulation layer, solid state,when PCM faces room
a_sol2_ins_l = 0.37*0	.09; % part of incident solar energy on panel absorbed by the insulation layer,liquid state,when PCM faces room % linear interpolation between solid and liquid state based on volume-averaged PCM temperature

The percentage of openings in the LTATW is defined as follows:

The material properties of the PCM and insulation layer are defined as follows:

<pre>panel_pcm.d =</pre>	0.025;	% thickness of PCM layer
<pre>panel_ins.d =</pre>	0.01;	% thickness of insulation layer
panel_pcm.c	= 2000;	% sensible specific heat capacity of PCM [J/(kg K)], assumed equal for solid and liquid state
panel_pcm.rho	= 1450;	% mass density of PCM [kg/m3]
panel_pcm.la	= 0.6;	% heat conduction coefficient of PCM [W/(m K)], assumed equal for solid and liquid state
panel pcm.h	= 1.8e5;	<pre>% latent heat of PCM (J/kg)</pre>
panel_ins.c	= 1440;	<pre>% sensible specific heat capacity of insulation [J/(kgK)]</pre>
panel ins.rho	= 75;	<pre>% mass density of nsulation [kg/m3]</pre>
panel_ins.la	= 0.012;	% heat conduction coefficient of insulation [W/(m K)]
p_alpha_i p_alpha_cav	= 2.7; % con = 2.7; % con	v. surface heat transfer coeff. room side of panel v. surface heat transfer coeff. cavity side of panel

Due to the existence of openings in the LTATW and a temperature difference between cavity and room, air flows from cavity to the room, or vice versa. In the initial simulation model, this air flow is assumed to be constant:

Q_room_cavity = 0.01; % air flow rate between cavity and room air in m3/s.

10.2.9. WEATHER DATA

The weather data used for simulation contains two variables: the outside temperature over time $T_e(t)$ and the solar irradiance values over time $q_{sol}(t)$. The solar data file 'qsol_NEN5060B2_1p_double' shown below contains the hourly global (direct and diffuse) incoming solar radiation in W/m² on the horizontal plane and on each of the four orientations. The temperature data file contains the hourly outside temperature in °C. The weather files are loaded into the Matlab-file and are defined as shown below. In the example below, a weather file of the Netherlands is used.

```
load('Te_NEN5060B2_1p_double');
load('qsol_NEN5060B2_1p_double');
Te = Te_NEN5060B2_1p_double;
qtemp = qsol NEN5060B2_1p_double;
```

10.3. IMPORTANT SIMULINK COMPONENTS

As mentioned before, the simulation environment of the simulation model consists of a textual programming part in Matlab and a graphical programming part in Simulink. With the textual programming part from Matlab (with definitions of parameters, matrices, etc.) a graphical model is developed to simulate and analyse the behaviour of the dynamic system. The Simulink model is built up of many components with block diagrams which are connected in such a way, that the right mathematical solving procedure is enhanced. Of course, each individual component or mechanism in Simulink is important to obtain the desired and reliable results. However, to keep the size of this thesis in limitation, only the most important components are shown in this section. It is important to mention that the Simulink components shown in this section are obtained from the initial simulation model (from DF1.0). During this Master's thesis project, components have been slightly modified in some cases. However, the principles remain the same.

The Simulink component that incorporates all heat loads is shown in section 10.3.1. The component with the shading and internal solar load mechanism is shown in section 10.3.2, the ventilation component is shown in section 10.3.3 and the rotation schedule mechanism is shown in section 10.3.4. Finally, the solution procedure is shown in section 10.3.5 and the mechanism for calculation of heating and cooling energy demand is shown in section 10.3.6 and 10.3.7, respectively.

10.3.1. HEAT LOADS

The initial simulation model contains heat loads resulting from incoming solar radiation, ventilation losses, internal heat production and added heating or cooling. From Figure 10.9 can be seen that multiple solar energy flows are taken into account: radiation absorbed by the outer surfaces (north, east, south, west and horizontal), incoming solar radiation falling directly on the inner floor surface (Psol_rad) and solar energy given off as heat to the room air (Psol_con). All heat loads together are assigned in the heat load factor 'Qroom'.

Figure 10.9: Simulink component of all heat loads on room.

10.3.2. SHADING AND INTERNAL SOLAR LOADS

The incoming solar radiation falling directly on the inner floor surface (Psol_rad) and the solar energy given off as heat to the room air (Psol_con) are calculated according to the subsystem 'internal solar load' (see Figure 10.9). When opening this subsystem, the mechanism shown in Figure 10.10 is displayed. From Figure 10.10 can be seen that the solar radiation is multiplied (triangular block with denotation '-K-') by one of the two different SHGC-coefficients, depending on the conditions mentioned in section 10.2.7 (shading principle). After multiplication of the remainder by the surface area of the glazing, the intensities are enumerated and multiplied by a utilization factor and by CFsol.

Figure 10.10: Simulink component of subsystem of shading and calculation of internal solar loads.

10.3.3. VENTILATION

The initial simulation model takes into account two types of ventilation: natural ventilation and mechanical ventilation. From Figure 10.9 can be seen that the heat loss due to natural ventilation is called 'power open window' and is calculated as shown in Figure 10.11. Only when the Boolean condition 'vw_open_windows' is met (return value of 1), a heat flow is generated. The size of the heat flow (W) is calculated by multiplying the temperature difference with the ventilation flow, the density of air and the heat capacity of the air (see also equation 9.6 and 9.7). In Figure 10.11, the ventilation flow is defined as 'Q_vent_direct' (V_{room} x ACH/3600) and the product of the density and heat capacity of air is shown as a block containing a value of $1.2 \times 1000 = 1200 \text{ J/m}^3\text{K}$.

Figure 10.11: Simulink component of subsystem 'power open window'

From Figure 10.9 can be seen that the heat loss due to mechanical ventilation is called 'power ventilation' and is calculated as shown in Figure 10.12. When one of the conditions 'vw_day_operation_vent' and/or vw_night_ventilation' is met (return value > 0), a heat flow is generated, calculated according to the same principle as shown in Figure 10.11. When the condition 'vw_bypass' is met (see section 10.2.4), the heat

recovery is bypassed (return value of 1) and when the condition is not met, the heat recovery is not bypassed, and a reduction of the heat loss of $(1-\mu)$ is taken into account (see equation 9.8).

Figure 10.12: Simulink component of subsystem 'power ventilation'.

10.3.4. ROTATION SCHEDULE

One of the capabilities of the simulation model is simulating the adaptability of the LTATW. The orientation of the LTATW (oriented towards the interior or towards the cavity/exterior) is determined, depending on the most favourable situation with regard to energy and comfort performance. The initial simulation model was only used for a winter period simulation and therefore, the LTATW always faced the outdoor environment at daytime (heat is absorbed by the LTATW) and always faced the room interior at night-time (heat is released to the room). The control mechanism that determines the orientation of the LTATW is shown in Figure 10.13. The two blocks with a sine-icon represent the times of sunrise (upper block) and sunset (lower block). When the simulation time is between these two times, the LTATW faces the exterior (a 'NOT' block is included). When the simulation time is outside these two times, the LTATW faces the indoor environment.

Figure 10.13: Simulink component of control mechanism of LTATW orientation.

10.3.5. SOLUTION PROCEDURE

In chapter 9, the mathematical solution procedure of a room model with thermal nodes was explained. The room balance equations were showed and a final expression to calculate the unknown variable $\dot{\underline{T}}$ was given:

$$\underline{\mathbf{T}}(\mathbf{t}) = \int_{0}^{t} \mathbf{M}^{-1} \left(\underline{\mathbf{Q}} - \mathbf{S} \underline{\mathbf{T}} - \mathbf{S}_{bound} \underline{\mathbf{T}}_{bound} \right) d\mathbf{t}$$
(9.45)

In Simulink, equation 9.45 is solved as shown in Figure 10.14.

Figure 10.14: Simulink component of solution procedure.

From the left bottom part of Figure 10.14 can be seen that the stiffness matrix with free nodes -**S** is multiplied by the room temperature \underline{T} and that the stiffness matrix with fixed nodes -**S**_{bound} is multiplied by the outside temperature \underline{T}_{bound} . The result of both multiplications are added together. Depending on whether the LTATW is directed towards the room or towards the outside environment, the 'bound' and 'free' temperatures are multiplied by a different stiffness matrix: -**S**_{r1,bound} or -**S**_{r2,bound}. Then, the heat load vector \underline{Q} is added to the result and multiplied by M^{-1} . To calculate the room air temperature at time t, an integrator block is placed after it. From the right hand part of Figure 10.14 can be seen that the operative room temperature is calculated by taking the average of the air temperature and the radiant temperature.

From Figure 10.13 can be seen that **M**⁻¹ is the sum of the sensible mass matrix and the latent mass matrix (called 'PCM effective mass'). In the subsystem 'PCM effective mass', a control mechanism is implemented that determines between which temperatures the heat capacity of the PCM is increased. A more detailed description of how this subsystem works can be seen in section 12.2.

10.3.6. HEATING LOAD

Figure 10.15: Simulink component of heating load.

First, the operative room temperature is subtracted from the heating thermostat set-point temperature. When the signal outcome is higher than zero, heating is required. The block called 'PI(s)' is a PID-controller, which determines the heating power characteristics of the heating system. After the PID-controller, the signal passes some 'scope' blocks to view the heating power over time, and an integrator, which integrates the value of power to energy.

10.3.7. COOLING LOAD

The Simulink mechanism that calculates the cooling load is shown in Figure 10.16.

Figure 10.16: Simulink component of cooling load.

First, the cooling thermostat set-point temperature is subtracted from the operative room temperature. When the signal outcome is higher than zero, cooling is required. The PID-controller again determines the cooling power characteristics of the cooling system and an integrator integrates the value of power to energy.

11. VALIDATION AND VERIFICATION

Performance measures extracted from a computer simulation model can only be correctly interpreted and used if the model is a good representation of the real system. Whether or not a model is judged as 'good' is subjective, but from a performance modelling point of view there are certain criteria for judging the goodness of models (Hillston, 2003). This chapter is all about: How accurately do the measures extracted from the initial simulation model correspond to the measures which would be obtained from the representative real system? Or more concisely: how reliable and accurate is the simulation model that was developed in the Double Face 1.0 project? The chapter starts with an introduction in which the terms validation and verification are explained. After this, a framework is provided to contribute to a good understanding of the terminology used. In section 11.3 and 11.4, the validation and verification procedure and its simulation conditions is described and in section 11.5, the results are shown. After the first validation and verifications and final results are described in sections 11.6 and 11.7.

11.1. INTRODUCTION

Simulation models in general are more abstract than the system it represents. When building a simulation model, assumptions are made to eliminate unnecessary details and to create a better focus on the elements within the system which are the most important (Hillston, 2003). As a result, inaccuracy is introduced. This inaccuracy may be necessary to make the simulation model more manageable and efficient, but effort needs to be made to find out if the model is (still) a good, representative simulation model. There are two steps to assess how good a model is with regard to the system. It has to be checked whether the model correctly implements the assumptions (model verification) and whether the assumptions made are reasonable in relation to the real system (model validation) (Hillston, 2003).

11.1.1. MODEL VERIFICATION

Verification of a simulation model is intended to ensure that the model does what it is made for. It is the process of confirming that implementation is correctly done with respect to the conceptual model and that it matches the assumptions and specifications agreed-upon (Carson, 2002). As simulation models are often large computer programs, the chance of (small) emerging modelling flaws is high. Verification is like debugging: tracing the errors. There are many techniques to verify a simulation model. The technique used in this study is described later in this chapter.

11.1.2. MODEL VALIDATION

Validation is the task of proving that the simulation model is a reasonable representation of the actual system and that it reproduces the system behavior with sufficient reliability to satisfy analysis objectives (Hillston, 2003). Validation is an iterative process and a test to establish the validity of a simulation model of a system that sometimes does not yet exist. Hillston (2003) and Van der Spoel (2016) together mention the following validation techniques:

- Theoretical results/analytical validation: The model may be compared to analytical solutions that are well-known. This method is generally used for relatively simple cases for which analytical solutions are known.
- Empirical validation: Also known as real system measurements. The model is being compared to
 obtained data from measurements in real buildings, a laboratory or controlled test cells. This
 method often brings relatively high complexity and costs due to the need for high-quality data sets.
- **Expert intuition:** The examination of the model is led by an 'expert' who has great knowledge about the system under investigation. This expert is responsible of a careful inspection of the model behavior and its output.
- Comparative testing: The simulation model is compared to other, more complex and validated models. These comparisons can be done at many levels of complexity and are relatively inexpensive. A disadvantage of this technique is that, partly due to difficulties in equivalencing both model inputs, it can be more time-consuming.

11.2. TERMINOLOGY FRAMEWORK

Verification does not imply validation, nor validation imply verification. However, in practice, verification is often combined with validation, especially when measurement data is already available for the system being modelled. If in this case, the comparison of the model results and the results from system measurements show proper similarities, then the simulation model is assumed to be both a valid representation of the system and a verified implementation of the assumptions (Hillston, 2003).

To facilitate a more efficient communication between the builder of a simulation model and its potential user about validation and verification, a framework can be helpful. In this framework (Figure 11.1) a standard set of terminology is used. The framework shown divides the simulation environment into three basic elements: reality, conceptual model and computerized model (Schlesinger, 1979).

Figure 11.1: Framework with set of terminology regarding model validation and verification (Schlesinger, 1979).

The 'reality' element represents a system which has been selected for analysis (in this project, the system presented in chapter 6). The conceptual model is a set of verbal descriptions, equations, relationships or natural laws that aim to describe this reality (in this project, the equations in chapter 9). Lastly, the computerized model is an operational computer program that has implemented the conceptual model (as was done in chapter 10). The inner arrows between the three basic elements correspond to the processes that occur between them and the outer arrows refer to the procedures that evaluate the credibility of these processes (Schlesinger, 1979).

11.3. VALIDATION AND VERIFICATION PROCEDURE

In this study, the energy and comfort performance of a lightweight, translucent, adaptable Trombe wall has been investigated. This type of Trombe wall does not exist yet and therefore, fewer options were available to validate the model. Now, for example, it was not possible to validate the simulation model by real system measurements. In addition, consulting an expert was not an obvious choice, as we are dealing with a new, advanced and unknown technology to many. Two options remained: comparing the simulation results to analytical solutions and validation by means of comparative testing. As mentioned earlier in this chapter, the idea of theoretical/analytical validation is to compare the results of model to analytical solutions that are well known and that this method is used for simple cases in general. In case of this study, where a LTATW in a certain, specified room is being investigated, we're dealing with a very complex system. The behavior of such a complex system is highly difficult to model due to the many relationships, dependencies and other types of interactions between their elements. Therefore, the decision was made to study the credibility of the Matlab/Simulink model through comparative testing.

In the process of comparative testing, the output of two of the same models, which are modelled in two different types of software is compared. The computerized model made in Matlab/Simulink, was created by means of (textual and graphical) programming. This means that all instructions needed for the program/model to work are written (or composed) by the modeler itself. The instructions are given in the programming language of Matlab (writing lines of codes) and by using the graphical programming options offered by Simulink (Figure 11.2). The advantage of creating a computerized model in the Matlab/Simulink environment is that the created models allow for a high degree of flexibility and features can be easily removed, changed or added, so that the model functions as desired. The major disadvantages of this type of modelling, however, are that writing the code can be very time-consuming and mistakes are made quickly. In addition, a lot of knowledge is required about the working principles and algorithms behind the system modelled.

The software that is used to compare the simulation results of Matlab/Simulink is DesignBuilder. In DesignBuilder, the same specified model is not created by programming, but by graphical modelling. DesignBuilder uses a graphical user interface that allows users to specify a system via visual indicators and graphical icons (Figure 11.3). Unlike a command line operation system such as the Matlab/Simulink environment, DesignBuilder is much easier to learn due to the user-friendly interface and as less knowledge behind the calculations is needed (DesignBuilder, 2018).

Figure 11.3: Modelling with a graphical user interface (DesignBuilder)

Table 11.1: Overview of tested situations.

In this study, the Matlab/Simulink model is used to calculate the energy and comfort performance of the LTATW in a large number of different 'situations'. These situations arise by combining all sorts of subdivisions within the following parameters:

- Climate
- Building function
- Orientation
- Age
- Building method
- Room size
- Window size
- Type of glazing

As it is almost impossible (within an accepted amount of time) and unnecessary to validate and verify all possible different situations, only a small percentage of it will be tested. This smaller part has been selected in a thoughtful way, to make sure that every component of the simulation model is tested. In the comparative study, all functions, climates, ages, room sizes and orientations have been tested. Within the parameters: building method and type of glazing, only the two outer subdivisions have been evaluated. When only evaluating these parameters, a size-reduced table (Table 11.1) remained. In this matrix, 20 situations are randomly picked in such a way, that in the end, every parameter is tested equally. This means that ten configurations with a new building, ten configurations with an old building, five configurations in a tropical climate, five configurations in an arid climate, etc. are being evaluated. As a result, a detailed insight was gained about the accuracy and reliability of all components and capabilities of the Matlab/Simulink simulation model.

By using two types of software that obtain data in a fairly short period of time, validation and verification of the Matlab/Simulink simulation model have been combined in one technique. 20 different simulation models were implemented in both Matlab/Simulink and DesignBuilder, and were simulated hereafter. It is assumed that when the comparison of the results of both types of software show proper similarities in all 20 models, implementation of every aspect of the conceptual model was done correctly. It could now also be assumed that the computerized model does what it is made for and that it is fully debugged. Besides the fact that the model is therefore verified, the model has also been validated. When two models made in two different types of software predict approximately the same energy demand in all 20 models, it is not plausible that this outcome does not approximate reality.

11.4. SIMULATION CONDITIONS

Because in DesignBuilder it is not possible to simulate the time-dependent rotation of the Trombe wall, three simulations were run per situation: a simulation without Trombe wall, a simulation in which the PCM layer of the Trombe wall is constantly directed to the outside environment, and a simulation in which the PCM layer of the Trombe wall is constantly directed towards the room (see Figure 11.4).

Figure 11.4: The three situations tested. Left: without panel, middle: panel towards outside, right: panel towards room.

For all situations, seven winter weeks and seven summer weeks were simulated. The most complicated task was to set all properties and conditions of the model of Matlab/Simulink exactly the same as the model of DesignBuilder. In both cases, all simulation conditions must be exactly the same, in order to be able to detect errors.

Figure 11.5: 3D schematization of room model with LTATW in DesignBuilder (small room).

A 3D schematization of a (small) room model modelled in DesignBuilder can be seen in Figure 11.5. The cubic room consists of a small window at orien3 and a large window at orien1, behind which is the Trombe wall. The LTATW is modelled as a vertical plate with openings homogeneously distributed over the total surface area. During comparative testing, the sidewalls (orien2 and orien4), floor and ceiling were assumed to be adiabatic in both the Matlab models and the DesignBuilder models. All other simulation conditions are listed in Table 11.2 (constants) and Table 11.3 (variables).

Table 11.2: Overview of constant simulation co	conditions.
--	-------------

Parameter	Simulation condition(s)
Simulation time	Winter weeks: November 22 nd until January 9 th Summer weeks: July 3 rd until August 20 th
Window size	Orien1: WWR = 80% Orien3: WWR = 40%
Shading	No shading
Thermostat set-points	Heating: 20 °C Cooling: 24 °C
LTATW characteristics	Cavity width: 0.2 m PCM layer thickness: 2.5 cm Aerogel layer thickness: 1 cm
Type of PCM	Rubitherm SP25E2
Percentage of openings in LTATW	10%
Heat transfer coefficients	α_i = 2.7 W/m ² K ; α_e = 25.0 W/m ² K
Airflow through LTATW	$Q_{r-c} = 0.1 \text{ m}^3/\text{s}$

Parameter	Simulation condition(s)
Climate / weather data ⁴	Cold: SWE_Stockholm.Arlanda.024600_IWEC Temperate climate: ITA_Milano-Linate.160800_IGDG Arid: EGY_Cairo.Intl.Airport.623660_ETMY Tropical: SGP_Singapore.486980_IWEC
Orientation	North, east, south and west
Internal gains	Offices: 25 W/m² Residences: 6 W/m²
Occupancy	Offices: people present from 08:00-18:00 (Monday-Friday) Residences: people present from 18:00 – 08:00 (Monday-Sunday)
Infiltration	New buildings: ACH = 0.2 Old buildings: ACH = 0.8

Table 11.3: Overview of variable simulation conditions.

⁴ Obtained from: https://energyplus.net/weather.

Natural ventilation	No natural ventilation						
Mechanical ventilation	Offices: ventilation rate = 2.0 h^{-1} (only when people present) Residences: ventilation rate = 1.0 h^{-1} (only when people present)						
	Heat recovery efficiency: 0.9 (no bypass)						
Construction material/composition	Light-weight: Heavy-weight:	Non-adiabatic walls: hardboard-insulation-metal cladding Adiabatic walls: timber (5 cm) Non-adiabatic walls: concrete-insulation-brickwork Adiabatic walls: concrete (15 cm)					
Insulation value of façades	Old buildings: R New buildings:	$_{c}$ = 2.0 m ² K/W R _c = 3.0 m ² K/W (does not represent reality)					
Glazing properties	Single clear glazing: U = 3.0 W/m ² K; SHGC=0.17 Triple coated glazing: U = 0.8 W/m ² K; SHGC=0.80						
Room size	Small room: width x depth x height = 3.6 m x 5.4 m x 2.7 m Big room: width x depth x height = 7.2 m x 10.8 m x 3.0 m						

11.5. COMPARISON OF RESULTS

In this section, an overall impression of the results from the first phase of the comparative study are shown. The results include ten graphs per model: six graphs showing the total energy demand (kWh) per week for a situation without Trombe wall, a situation with a Trombe wall facing the interior and a situation with a Trombe wall facing the exterior. Three of the six graphs show the results for a winter season simulation (left) and the other three graphs show the results for a summer season simulation (right). Finally, the last four graphs show the relative change (%) between the energy demand in a situation without Trombe wall and a situation with Trombe wall. The appearance of a red line means that heating is required and the appearance of a blue line means that cooling is required. Finally, a dashed line represents the results from DesignBuilder and a continuous line represents the results from Matlab/Simulink.

The results giving the best impression of all first-phase results come from model seven and are shown in Figure 11.6 and 11.7. Model seven represents a big office room, with southern orientation and single clear glazing. It has a new, lightweight structure and is located in a cold climate (Stockholm).

Figure 11.6: Total energy demand (kWh) per winter week (left) and summer week (right) of model 7, calculated by Matlab/Simulink and DesignBuilder in first phase.

Figure 11.7: Increase or decrease in energy demand per week (%) of model 7 when applying a LTATW (facing cavity or room) (first phase).

From figures 11.6 and 11.7 it can be seen that significant differences exist between the first-phase results from Matlab/Simulink and the first-phase results from DesignBuilder. In the winter, Matlab/Simulink estimates an energy demand which is, in many weeks, twice as high as the energy demand calculated by DesignBuilder. In summer, this is the other way around: the energy demand calculated by DesignBuilder is significantly higher than the energy demand calculated by Matlab/Simulink. When looking at Figure 11.7, it can be seen that for the winter weeks, DesignBuilder calculates a higher reduction in energy demand due to the presence of a LTATW. In the summer, this is the other way around. The same ratio between calculated values of both software is not always the same in the results of the other 19 models, but differences in absolute values are often in the order of magnitude as shown in Figure 11.6 and 11.7.

11.6. MODIFICATIONS OF SIMULATION MODEL

Because the results of the first phase(s) of the comparison study were poor, research was conducted into the origin of these differences. When the results from the previous section were analyzed, it could be concluded that there were not only errors in the Matlab models, but also in the DesignBuilder models.

Based on logical reasoning and trial-and-error, modifications were made in both simulation models, until the similarities between Matlab/Simulink and DesignBuilder were assessed as 'good' (iterative process). The results of the comparison in the first phase(s) of the research were moderate to poor, but the procedure with an adapted, reliable model, showed good similarities (shown in the next section) between Matlab/Simulink and DesignBuilder. The most important modifications of the Matlab/Simulink simulation model are listed below:

- Adjusting simulation settings in Simulink: running a simulation file that was created in an older version of Simulink (with other simulation settings) caused errors. Simulation settings have been adjusted so that the correct and reliable results can be obtained.
- Adjusting PID-controller settings: Simulation settings have been adjusted so that the correct and reliable results can be obtained.
- Clearing programming errors: small programming errors were found in expressions regarding occupant behavior, orientation of windows and calculation of long-wave radiation through windows.
- Adding a Simulink component to reduce the influence of the initial room temperature (TinIC): when a certain period in DesignBuilder is simulated, a realistic start value of TinIC is taken into account (a small simulation of the model precedes the period). In contrast to DesignBuilder,

Matlab/Simulink calculated with an estimated (often wrong) starting value, which turned out to be of great influence. The influence of this has been reduced by adding a smarter module.

- Adding a Simulink component that incorporates the angle-dependent transmission of incoming solar radiation: calculations in DesignBuilder take into account the angle-dependent transmission of the incoming solar radiation. Less solar energy is transmitted through the glazing when the angle with the sun is small. When the incoming solar radiation is perpendicular to the façade (angle of 180°) the transmittance is at its highest. The same principle is added to the Matlab/Simulink model.
- Modifying the heat transmission through windows: In cases where the radiative room temperature deviated considerably from the room air temperature and when the U-value of the glazing is high, heat transmission through the glazing was not correctly calculated.

11.7. FINAL RESULTS

After making all the adjustments mentioned in the previous section, all 20 models have been simulated again. In this section, again, the final results of model seven are shown in Figure 11.8 and 11.9.

Figure 11.8: Total energy demand (kWh) per winter week (left) and summer week (right) of model 7, calculated by Matlab/Simulink and DesignBuilder in final phase.

Figure 11.9: Increase or decrease in energy demand per week (%) of model 7 when applying a LTATW (facing cavity or room) (final phase).

The final results of all 20 models can be found in Appendix A. The results are assessed as 'good' in 17 out of 20 cases (models 1 to 8 and 12 to 20) and in 3 out of 20 cases the results are 'moderate' to 'good' (models 9 to 11). Based on the results obtained, it was decided to continue with the (now validated) simulation model in the further course of the project.

12. EXTENDED SIMULATION MODEL

After successfully testing the reliability of the modified, initial simulation model, the next step was to expand the model to a model that can meet the objectives of this research. To be able to meet the objectives, the following components had to be added: a component that calculates the energy losses due to infiltration, a component that takes into account the hysteresis phenomenon of the PCM, a component that determines the orientation of the LTATW throughout the whole year instead of just one season, a component that models a more realistic behavior of the air flow through the LTATW and a component that supports simulating a room with a night ventilation system. In this chapter, the description, implementation and validation of the added components is explained in detail in section 12.1 until 12.6.

12.1. INFILTRATION

To investigate the influence of the age of a building, infiltration had to be included. The difference between a new and existing construction is determined, among other things, by the amount of infiltration in a building and therefore needs to be implemented as a variable in the simulation model. The thermal losses (or gains) due to infiltration (W) can be calculated using equation 9.6:

$$Q_{inf} = \dot{m}_{inf} C_p (T_e - T_i) = \frac{\rho V_{room} A C H}{3600} C_p (T_e - T_i)$$
(9.6)

The simulation mechanism for infiltration is modeled in Simulink as shown in Figure 12.1:

Figure 12.1: Simulink component of infiltration heat losses/gains.

The 'infiltration_rate' is defined in Matlab as follows:

infiltration rate = 0.2/3600;

The heat load from infiltration has been added to other heat loads as shown in Figure 12.2:

Figure 12.2: Heat load from infiltration added to other heat loads.

12.2. PCM HYSTERESIS

An aspect that has not been tested in the comparative study with DesignBuilder is the modeling of the hysteresis behavior of the PCM. A material with thermal hysteresis exhibits a melting temperature that is different from the solidification temperature (Frei, 2016). When the enthalpy of the PCM (SP25E2) is plotted against the temperature, two curves as shown in Figure 12.3 can be seen. When the PCM is in solid state and is being heated, the enthalpy is determined by the bottom (red) curve or path. As the PCM passes the melting temperature, it completely liquifies. When the liquid PCM is subsequently cooled, it will follow the upper curve, thus the material remains liquid at temperatures below the melting temperature. Once the solidification temperature is reached, the PCM becomes completely solid. If the PCM is then heated back up, the bottom curve will be followed, and so on (Frei, 2016).

Figure 12.3: Enthalpy curve of Rubitherm's SP25E2 (made by the author).

One of the first versions of the simulation model already contained a component that takes into account this hysteresis effect, but it has been changed after several analyses. The final module is modeled in Simulink as shown in Figure 12.4 and determines that when the temperature of the PCM is between the melting and solidification temperature, an extra heat capacity is added to the PCM.

Figure 12.4: Subsystem 'PCM effective mass' (see Figure 10.14).

For the PCM product 'SP25E2', the value for 'dead_band_pcm' equals 2.0 °C and is defined in the Matlabfile as follows:

dead band pcm = 2.0; % PCM dead band due to hysteresis [K]

The principle of increasing the heat capacity between the solidification and melting temperature is shown in figure 12.5, in which a PCM with a melting temperature of 18.5 °C and a solidification temperature of 21.5 °C is considered. In Figure 12.5, h_{sf} represents the specific enthalpy (or latent heat of fusion) and ΔT_{pc} represents the difference between melting temperature and solidification temperature.

Figure 12.5: specific heat capacity of a PCM as a function of its temperature (Thiele, Sant, & Pilon, 2015).

12.3. ROTATION SCHEDULE

One of the main advantages of a lightweight translucent adaptable Trombe wall, is that it possesses a rotation mechanism. This mechanism makes it possible to adjust its orientation to the most favorable one, in terms of comfort and energy savings. In climate areas where there is clearly a difference in temperature between winter and summer (such as in a cold or temperate climate), the system is thermally charged by facing the outdoor environment in the winter, at daytime. At night, the system rotates 180 degrees and releases the accumulated heat to the interior. In summer, the LTATW faces the interior at daytime to store the heat loads from within the building and at night, the system reverses again and releases the heat to the outside environment by means of night ventilation.

In climate areas where the average summer temperatures do not differ much from the average winter temperatures (such as in a tropical or arid climate), the system does not always work as in the abovementioned schedule. Since the rotation characteristics differ per climate and season, a rotation mechanism was developed in Simulink. This rotation mechanism generates the right rotation schedule for each climate, based on times of sunrise and sunset, and conditions that determine whether the system should be active in 'winter mode' or in 'summer mode'. The difference between winter mode and summer mode is explained in section 12.3.1. The influence of varying times for sunrise and sunset of the different climates is explained in section 12.3.2. Finally, the implementation of all modes and times in Simulink is explained in section 12.3.3.

12.3.1. WINTER MODE AND SUMMER MODE

There are two possible modes on which the LTATW bases its orientation: winter mode and summer mode. In a winter mode, the PCM layer of the innovative Trombe wall faces the outdoor environment at daytime and must capture the energy from the sun. Winter mode is activated when the average room temperature over the last 24 hours is lower than the average of the two (heating and cooling) thermostat set-points. In a summer mode, the PCM layer of the innovative Trombe wall faces the indoor environment at daytime and must capture the energy from internal sources. Summer mode is activated when the average room temperature of the last 24 hours is higher than the average of the two setpoint temperatures:

Winter mode:
$$T_{room,mean(24h)} \le T_{h,set} + \frac{T_{c,set}-T_{h,set}}{2}$$
Summer mode: $T_{room,mean(24h)} \ge T_{h,set} + \frac{T_{c,set}-T_{h,set}}{2}$

As the setpoint temperatures for heating and cooling (20 °C and 26 °C) are assumed to be the same in all climates, winter mode and summer mode are described as follows:

Winter mode:	$T_{room,mean(24h)} \leq 23 \ ^{\circ}C$
Summer mode:	Troom,mean(24h) ≥ 23 °C

12.3.2. DAY-TIME AND NIGHT-TIME

In both a winter mode and a summer mode, the LTATW rotates twice a day: once when the sun comes up and once when the sun goes down. The LTATW faces the outdoor environment at daytime in a winter mode, and faces the indoor environment at daytime in a summer mode. There are different times for sunrise and sunset for each climate, and vary throughout the year as well.

In this Master thesis, a city has been chosen for each climate that is representative of the weather conditions of the climate in question. In order to determine the rotation times per climate, also the times of sunrise and sunset of the representative cities were chosen as the starting point. As all representative cities (all located on the Northern hemisphere) were selected on 15 degrees increments in latitude angles (which determine times of sunset and sunrise), a proper subdivision was also made for this issue. The four cities used in this study (Stockholm, Milan, Cairo and Singapore) are all located on the Northern hemisphere. In the Northern hemisphere, the longest day happens in summer and the shortest day in winter. The longest period of daylight occurs at summer solstice (also known as June solstice), when the sun has a maximum tilt towards the Earth's poles and when it reaches its highest position in the sky (Browning, 1961). Around this moment of time there is continuous daylight at the pole. For all locations on the Northern hemisphere, the summer solstice occurs around 21 December, depending on the shift of the calendar. As the earth orbits the sun in an ellipse, the dates of the longest day and shortest day vary by a few days from the dates of the earliest sunrise and latest sunsets (Browning, 1961). The exact times⁵ of the earliest sunrise and sunset and the latest sunrise and sunset for each city are as listed in Table 12.1 and 12.2. The times shown are times according to the 'standard' time system (winter time).

From Table 12.1 and 12.2 can be deduced that the biggest difference between earliest and latest sunset/sunrise time occurs at the location closest to the pole (Stockholm). The smallest differences occur in Singapore, which is almost exactly located on the Equator. For that reason, the dates of the earliest and latest sunset/sunrise are the least similar to the dates of the summer and winter solstices (21 Dec and 21 June). Locations with latitudes similar to Singapore show no clear summer and winter solstices and the times of earliest and latest sunset/sunrise hardly differ from each other.

⁵ Retrieved from: www.timeanddate.com

Table 12.1: Times of earliest and latest sunrise for each of the four representative cities

	Earliest s	unrise	Latest sunrise			
	Time	Date	Time	Date		
Stockholm	2:30	19-Jun	8:45	27-Dec		
Milan	4:34	16-Jun	8:03	2-Jan		
Cairo	4:53	12-Jun	6:52	10-Jan		
Singapore	6:46	2-Nov	7:16	1-Feb		

Table 12.2: Times of earliest and latest sunset for each of the four representative cities

	Earliest s	unset	Latest sunset			
	Time	Date	Time	Date		
Stockholm	14:46	16-Dec	21:08	23-Jun		
Milan	16:39	10-Dec	20:15	26-Jun		
Cairo	16:54	2-Dec	19:00	30-Jun		
Singapore	18:50	4-Nov	19:20	13-Feb		

12.3.3. IMPLEMENTATION IN MATLAB/SIMULINK

Using the data from section 12.3.1 and 12.3.2, multiple mechanisms have been developed that describe whether the LTATW orientates itself to the outdoor or indoor environment. The first mechanism is shown in Figure 12.6 and determines whether the LTATW is in winter mode or in summer mode:

Figure 12.6: Simulink component that determines whether the LTATW is in winter mode or in summer mode.

In section 12.3.1 is stated that the LTATW operates in summer mode when the average room temperature of the last 24 hours is higher than 23 °C and that the system operates in winter mode when average room temperature of the last 24 hours is lower than 23 °C. To prevent the system from rotating too often, a relay of 0.5 °C has been modelled. This relay generates a positive outcome when the 24 hour moving average of the room temperature exceeds 23.5 °C (summer mode is turned on) and remains in summer mode, even when the temperature drops between 23.5 and 22.5 °C again. When the average temperature drops below 22.5 °C, winter mode is turned on and stays on, until the threshold value of 23.5 °C is reached again.

The second mechanism, which determines whether the LTATW should operate in day-time or night-time mode, is shown in figure 12.7. In this mechanism, the times of sunrise and sunset are described using two sine waves. The first sine wave (upper block) describes the times of sunrise throughout the year (for a specific climate) and the second sine wave (bottom block) describes the times of sunset throughout the year. When the time in a simulation is between the times of sunrise and sunset, the system operates in daytime mode. Although the dates of the solstices are not exactly the same as the dates of the earliest and

Figure 12.7: Simulink component that determines whether the LTATW is in day-time mode or in night-time mode.

latest sunsets/sunrises, they are being programmed like that. From this point of view it means that the maximum and minimum points of the sine function represent the two solstices of the year and that the corresponding times for sunrise and sunset on these maximums are equal to the times shown in table 12.1 and 12.2.

The sine waves are specified by equation 12.1.

$$O(t) = B + A \cdot \sin(\omega t + \phi)$$
(12.1)

In this formula, O(t) represents the outcome and B represents the bias. The bias is the equilibrium position around which the sine function moves. This bias is therefore the average between the earliest and latest time of sunrise or sunset. The amplitude A represents the height of the peaks and valleys in this function, the frequency ω (rad/s) is the number of cycles that occur each second of time and the phase shift φ (rad) specifies where in its cycle the oscillation is at t = 0. For both the sine functions of sunset time and sunrise time, ω is the same:

$$\omega = \frac{2\pi}{T_{\text{year}}} = \frac{2\pi}{365 \cdot 86400}$$
(12.2)

The value of φ does not differ per climate, but does differ per sine wave. In case of sunrise, the graph its minimum should be exactly located at t = 21 June (day 172) and the graph its maximum should be exactly located at t = 21 December (day 355). In case of sunset this is exactly the opposite (see Figure 12.8). For the sine wave of sunrise this means that φ = 1.75 rad and for the sine wave of sunset this means that φ = 4.9 rad (= 1.75 + π).

Figure 12.8: times of sunrise (left) and sunset (right) throughout the year, idealised by a sine wave.

The values of A and B differ per climate, as different times of sunrise and sunset apply. An overview of the values are shown in Table 12.3 and 12.4.

A third mechanism in Simulink finally determines whether the LTATW faces the outdoor environment or the indoor (room) environment. The condition is based on conditions of summer mode, winter mode, daytime and night time (see Figure 12.9). The LTATW faces the room environment if two combinations occur: it is

Table 12.3: Values of A, B and ϕ per location of sunrise sine wave							
Amplitude Bias Phase							
Stockholm	3.2	5.625	1.75				
Milan	1.8	6.31	1.75				
Cairo	1	5.88	1.75				
Singapore	0.25	7.02	1.75				

Table 12.4: Values of A, B and ϕ per location of sunset sine wave

	Amplitude	Bias	Phase	
Stockholm	3.2	17.95	4.9	
Milan	1.8	18.45	4.9	
Cairo	1	17.95	4.9	
Singapore	0.25	19.08	4.9	

daytime and the system is in summer mode (capturing heat from internal gains), and when it's night time and the system is in winter mode (releasing the captured heat from the sun to the room at night-time). In all other (opposite) cases, the system faces the cavity.

Figure 12.9: Simulink component that determines whether the LTATW faces the interior or the exterior.

12.4. AIR EXCHANGE BETWEEN CAVITY AND EXTERIOR

The fourth component that was not present in the initial simulation model was the modeling of the air exchange between the cavity and the outdoor environment (night ventilation). This air exchange only takes place at night and in summer mode (when the captured heat at day-time has to be released to the outside air at night). How the night ventilation process is added to the Matlab and Simulink model is explained in this section. The principle of the natural night ventilation system is explained in section 12.4.1 and in section 12.4.2 a parameter has been investigated that has a major influence on the performance of the system: the size of openings in the façade. The implementation of the system in Matlab and Simulink is described in section 12.4.3.

12.4.1. PRINCIPLE

There are multiple types of night ventilation, such as mechanical night ventilation, passive cross ventilation and passive stack ventilation (Blondeau & Spe, 1997). In the initial simulation model, only mechanical night ventilation was modelled. In the extended simulation model, also passive stack ventilation was added. In passive stack ventilation, the extraction is imposed by the stack effect. It relies on the buoyancy of warm air that rises in the cavity space and leaves through openings in the façade at ceiling height. The air in the cavity is replaced by cooler outside air that enters the cavity through inlets located near the floor (see Figure 12.10).

When the resistance to airflow in the cavity is neglected and the airflow through inlets and outlets is assumed to be non-viscous, the flow rate produced by the stack effect can be calculated with equation 12.3 and 12.4. (van der Spoel, 2018).

Figure 12.10: Principle of passive stack ventilation (made by the author).

$$\dot{V}_{stack} = C_d \cdot A_{eff} \cdot \sqrt{\frac{2g\Delta h P_0}{R} (\frac{1}{T_e} - \frac{1}{T_c})}$$
(12.3)

$$\frac{1}{A_{\text{eff}}^2} = \frac{1}{A_i^2} + \frac{1}{A_e^2}$$
(12.4)

In which \dot{V}_{stack} is the air flow rate in m³/s, C_d a discharge coefficient (-), A_{eff} the effective surface area of the openings in the façade in m², A_i the surface area of the inlet opening in m², A_e the surface area of the outlet opening in m², g the gravitational constant (m/s²), Δ h the height difference between both openings (m), P₀ the atmospheric pressure at sea level (=101325 Pa), R the gas constant (=287 J/kgK) and T_e and T_c the temperature (°C) of outside and cavity, respectively.

12.4.2. IDEAL SIZE OF FAÇADE INLET AND OUTLET

A key parameter that has a major influence on the airflow rate in the cavity are the sizes of the inlets and outlets of the façade. When the façade openings are large, the air flow induced by the stack effect will also be large. When the openings in the façade are relatively small, a much smaller rate is induced. When night ventilation is to be applied, an 'ideal' amount of heat removal is desired. Openings must not be too small, so that not enough heat can be dissipated. Too large openings, on the other hand, are also not desirable, as not too much energy may be lost. In the simulation model made in this Master thesis project, one single value for the opening size in the façade that fits the innovative Trombe wall system, was assumed (allowed by the findings in this section). This is done so that the amount of variables is reduced and clear conclusions can be drawn from a system with the same specific configuration, tested under different conditions (different climates, different types of glazing, window sizes, etc.).

In order to find the most ideal size of the inlet and outlet, a study was carried out. In this study, a balance equation has been drawn up in which all the relevant heat flows are included. A schematization of the problem is shown in Figure 12.11. In Figure 12.11 a vertical cross section of a room with LTATW is sketched. When the side walls of the room are assumed adiabatic, the problem can be simplified to a situation with

Figure 12.11: Heat flows to and from cavity space (made by the author).

three different spaces: room, cavity and outside environment. Each room has its own average temperature and the heat exchange is determined by three energy flows: heat generated by the Trombe wall, an air flow from the outside environment through the cavity and a transmission loss through the glazing. The energy balance in which the three energy flows are included is as follows:

$$Q_{\text{stack}} - Q_{\text{trans}} + Q_{\text{pcm}} = 0 \tag{12.5}$$

 Q_{stack} is the energy flow in W resulting from natural ventilation in the cavity, generated by the chimney effect. Q_{trans} is the energy flow in W through the glazing and Q_{pcm} is the energy flow in W from the LTATW. All heat flows can be calculated with the following equations:

$$Q_{stack} = \rho c \cdot \dot{V}_{stack} \cdot (T_e - T_c)$$
(12.6)

$$Q_{trans} = bh \cdot U_{gl} \cdot (T_c - T_e)$$
(12.7)

$$Q_{pcm} = bh \cdot h_c \cdot (T_{pcm} - T_c)$$
(12.8)

In which pc is the product of the density and the heat capacity of dry air (=1200 J/m³K), b the width of the room in m, h the height of the room in m, U_{gl} the insulation value of the glazing (W/m²K), h_c the convective heat transfer coefficient (W/m²K) and T_{pcm} the temperature of the PCM in the LTATW (°C).

During night ventilation, the warm air in the cavity is replaced by fresh, cooler outside air and always applies that $T_e < T_c$, so that:

$$Q_{pcm} = Q_{stack} + Q_{trans}$$
(12.9)

By solving equation 12.9, the ideal opening size of the openings in the facade can be found. A disadvantage is that all variables in the equation contain the variable T_c , which makes it an implicit expression that must be solved with an iterative method.

The study has been carried out taking into account all possible circumstances that are dealt with in the main research of this project. This study made it possible to determine whether simulations can be performed with one specific opening size, or whether the size must be a variable, depending on the configuration. The conditions that influence the energy balance are: climate (determines the average value of T_e), type of glazing (determines U-value of the glazing) and window size (determines vertical distance between inlet and outlet, Δ h).

The annual values of the average night temperatures per location/climate⁶ are shown in Table 12.5 to 12.8.

Table 12.5: Stockholm monthly temperatures 2015-2018.

			/									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Day-time												
temperature	0 °C	1 °C	4 °C	8 °C	16 °C	19 °C	21 °C	21 °C	17 °C	10 °C	6 °C	4 °C
Night-time												
temperature	-5 °C	-5 °C	-3 °C	0 °C	6 °C	10 °C	13 °C	12 °C	10 °C	5 °C	1 °C	-1 °C
Table 12.6: Ⅳ	lilan moi	nthly ten	nperatur	es 2015-	2018.							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Day-time												

18 °C temperature 9 °C 8 °C 14 °C 19 °C 22 °C 28 °C 31 °C 29 °C 24 °C 12 °C 9 °C Night-time 4 °C 9°C 11 °C 17 °C 20 °C 19 °C 14 °C 9 °C 3°C 0°C temperature -1 °C 2°C

⁶ Retrieved from: www.climate-data.org

Table 12.7: Cairo monthly temperatures 2015-2018.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Day-time temperature	22°C	25 °C	28°C	33°C	36 °C	38 °C	37 °C	37 °C	35 °C	31 °C	26 °C	24 °C
Night-time temperature	7 °C	7 °C	11°C	13°C	16 °C	20 °C	21 °C	22 °C	20 °C	17 °C	12 °C	9 °C

Table 12.8: Singapore monthly temperatures 2015-2018.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Day-time temperature	31°C	30°C	32°C	32°C	32 °C	31 °C	31 °C	31 °C	31 °C	31°C	31 °C	31 °C
Night-time temperature	25°C	25 °C	25°C	26°C	27 °C	27 °C	26 °C	26 °C	26 °C	26°C	26 °C	25 °C

Based on the average day temperatures, the following cooling periods with corresponding average night temperature are defined:

 Table 12.9: Cooling period per location and corresponding mean night temperatures.

	Cooling period	Mean night temperature (°C)
Stockholm	May - Sept	10
Milan	Apr - Oct	14
Cairo	Jan - Dec	15
Singapore	Jan - Dec	26

In addition to climate, the influence of the different types of glazing and window size is also taken into account. In this project, four glazing types with two different insulation values (double glazing and triple glazing) are studied: $U = 1.6 \text{ W/m}^2\text{K}$ and $U = 0.7 \text{ W/m}^2\text{K}$. Two window sizes are studied: A window with a window-to-wall ratio of 0.25 (small window) and a window with a window-to-wall ratio 0.75 (big window). These ratios result in a value for Δ h of 0.8 and 2.2 respectively (where a window is assumed in which the distance between the bottom of the window frame and the floor is equal to the distance between the side of the window frame and the side wall. The center points of the openings are each 5 cm from the bottom and top).

All combinations were studied using an iterative calculation in Excel. In this calculation, the following values were assumed:

 $\begin{array}{lll} C_d = & 0.8 \\ \rho c = & 1200 \ J/m^3 K \\ g = & 9.81 \ m/s^2 \\ h_c = & 5 \ W/m^2 K \\ T_{\rho cm} = & 298 \ K \ (25^\circ C) \end{array}$

In Excel, the values for the opening percentage in the façade were plotted against the values of Q_{pcm} . To calculate the value of Q_{pcm} , an estimate was made for the value of T_c . When the estimation results in a difference between Q_{pcm} and $Q_{stack} + Q_{trans}$ (according to energy balance they should be equal to each other), a new estimate was made for the value of T_c by means of the difference (divided by a factor of 1000) until the difference was minimal. This principle has been done for a large number of opening percentages and the results for Q_{pcm} show, under each circumstance, a type of curve as shown in Figure 12.12. When T_c is plotted against the opening percentage, a type of curve as shown in Figure 12.13 can be seen.

Both graphs show a trend towards to a horizontal asymptote. When it is stated that on average at least 75% of the maximum heat flow must be transported, the opening percentages per circumstance as shown in Table 12.10 apply.

Figure 12.12: Q_{pcm} versus opening percentage of inlet or outlet.

Figure 12.13: T_c versus opening percentage of inlet or outlet.

Location	Mean night temperature in cooling period	U-value of glazing (W/m²K)	Δh = 0.8 m	Δh = 2.2 m
Stockholm	10.90	1.6	2.70%	1.40%
SLOCKHOIM	10 °C	0.7	2.90%	1.60%
Milon	14.90	1.6	3.10%	2.20%
IVIIIdI1	14 °C	0.7	3.40%	2.40%
Cairo	15.90	1.6	3.20%	2.20%
CallO	15 °C	0.7	3.40%	2.40%
Cinconoro	26.00	1.6		
Singapore	20 C	0.7		

Table 12.10: Ideal opening percentage of inlet or outlet in façade for different circumstances.

The percentages found represent the size of one opening: the inlet or the outlet. Both openings have the same size. Because the average night temperature in Singapore is equal to 26 °C, night cooling is not applicable as it is not effective.

From Table 12.10 can be seen that ideal opening size differs from 1.40% to 3.40% and that the average of all outcomes equals 2.5%. The results show expected patterns: in situations with a higher outside temperature, larger openings are required. This also applies in situations where the glazing is better insulated (heat can escape less well). Varying the distance between the openings has a practically same effect as varying the climate.

If in a case where 3.4% of opening is desired (Cairo, U = 0.7, dh = 0.8), the value of 2.5% is applied, Q_{pcm} will be equal to 844.8 W instead of 911.9 W. This means that 7.4% less energy is removed than desired. If the same calculation is made for all situations, results are obtained as shown in Table 12.11. Table 12.11 shows that the influence of assuming the average value for the opening percentage does not have an impact higher

Location	Mean night temperature in cooling period	U-value of glazing (W/m²K)	Δh = 0.8 m	∆h = 2.2 m
Ctoolubolus	10.00	1.6	-1.6%	+10.7%
Stockholm	10 °C	0.7	-3.4%	+8.3%
Milan	14.90	1.6	-4.6%	+2.4%
IVIIIdfi	14 °C	0.7	-7.2%	+0.8%
Caina	15.00	1.6	-5.3%	+2.4%
Cairo	15 °C	0.7	-7.4%	+0.9%
<i>c</i> :		1.6		
Singapore	20 °C	0.7		

 Table 12.11: Increase or decrease of Q_{pcm} when applying average opening percentage from table 12.10

than 10.7%. Given the fact that the objective of this project is to investigate the influence of certain variables, it is desired to reduce the number of additional variables as much as possible. A maximum difference of 10.7% is therefore considered 'OK' and therefore, the size of the openings in the outer wall is fixed at 2.5%.

12.4.3. IMPLEMENTATION IN MATLAB/SIMULINK

Before implementation in Matlab and Simulink, equation 12.3 has been defined in a different from:

$$\dot{V}_{stack} = C_1 \cdot \sqrt{\left(\frac{1}{T_e} - \frac{1}{T_c}\right)}$$
 (12.10)

$$C_{1} = C_{d} \cdot \sqrt{\frac{\frac{2g\Delta hP_{0}/R}{1}}{\frac{1}{A_{i}^{2}} + \frac{1}{A_{e}^{2}}}}$$
(12.11)

In which C_1 represents the 'flow coefficient'. The heat loss (W) due to night ventilation are calculated with equation 12.12:

$$Q_{\text{stack}} = \rho c \cdot \dot{V}_{\text{stack}} \cdot (T_e - T_c)$$
(12.12)

The simulink component that calculates the heat loss is shown in Figure 12.14. The implementation of equation 12.10 can easily be seen in the figure. It can also be seen that only when the Boolean conditions: 'vw_cav_vents_open', 'vw_nighttime' and 'vw_summer_mode' are met, a heat loss is put in operation.

Figure 12.14: Simulink component of night ventilation system.

In the Matlab-file, the following commands are defined:

```
Q_oc.A1 = 0.025*room.width*room.height; %surface area of inlet (m2)
Q_oc.A2 = 0.025*room.width*room.height; %surface area of outlet (m2)
```

Q_oc.dH Q_oc.Cd	= 2.2; = 0.8;	<pre>%height difference of the two vent openings (m). %discharge coefficient (-)</pre>
% definiti	on of the flow coeff	icient C_1:
Q_outside_	cavity.C_1 = Q_oc.Cd	*(2*
1/(1/Q_oc.)	A1^2+1/Q_oc.A2^2)*9.	8*Q_oc.dH*101325/287)^0.5;
%control s	ettings for opening/	closing of the cavity vents:
ThresholdC	avVentOpen = 24;	% Operative temp above which the vents are opened
ThresholdC	avVentClosed = 22;	% Operative temp below which the vents are closed
		(a relay applies between the threshold setpoints)

12.5. AIR EXCHANGE BETWEEN CAVITY AND ROOM

The fifth and final component that was not present in the initial simulation model was the modelling of the air exchange between the cavity and the room. In the initial model, a constant airflow was modelled, but in reality, this air exchange varies over time. The airflow is generated by a temperature difference between the room and the cavity, which consequently causes a difference in air density between both spaces.

In this section, the influence of the configuration of the openings in the innovative Trombe wall on the behavior of the airflow between room and cavity is described. Section 12.5.1 explains the working principle of the air exchange between both spaces. Section 12.5.2 explains how and why a certain number of openings exist and the working principle and details of the study are described in section 12.5.3. The implementation of the results of the study in the simulation model of Matlab/Simulink is described in section 12.5.4.

12.5.1. PRINCIPLE

In a traditional Trombe wall, openings only exist at the top and bottom of the wall, where in a lightweight, translucent adaptable Trombe wall, numerous openings are spread homogeneously over the entire surface of the wall. Heat flows through these openings, of which the size depends on the temperature difference between cavity and room. When the temperature in the cavity is lower than the temperature in the room, heat flows from room to cavity (heat loss), but when the temperature in the cavity is higher than the temperature in the room (by, for example, a high amount of incoming solar radiation) heat flows from cavity to room (as indicated in Figure 12.15).

Figure 12.15: Principle of air exchange between room and cavity (made by the author).

The volume flow rate of air (m^3/s) through each opening can be calculated with equation 12.13:

$$\dot{V}_{flow,hole} = c_1 \cdot (\Delta p)^{c_n}$$
 (12.13)

In which c_1 is the flow coefficient (-), c_n the flow exponent (-) and Δp the pressure drop across the opening. The flow coefficient c_1 and the flow exponent c_n are related to the size of the opening and the type of flow (laminar or turbulent). As it is desirable to rewrite this formula in an expression in which the relationship between flow and temperature is described, the law of Gay-Lussac is applied. Gay-Lussac's law states that if the volume of a certain amount of gas is held constant as the temperature increases, the pressure also increases (Benedict, 1984). The relation is presented in equation 12.14:

$$\frac{p_{room}}{T_{room}} = \frac{p_{cavity}}{T_{cavity}}$$
(12.14)

In which p_{room} represents the pressure at room side of the opening (Pa), p_{cavity} the pressure at cavity side of the opening (Pa), T_{room} the temperature at room side of the opening (°C) and T_{cavity} the temperature at cavity side of the opening (°C).

If one wants to calculate the total airflow through all the openings together, the average temperature of the room and the average temperature of the cavity should be used. Under the assumptions that the air is a perfect gas under the entrance and exit conditions of the opening and that the flow is adiabatic, the equation can now be rewritten in the form shown in equation 12.15:

$$\dot{V}_{flow,total} = c_1 \cdot (T_{cavity} - T_{room})^{c_n}$$
(12.15)

12.5.2. AMOUNT OF OPENINGS IN THE LTATW

One of the most important starting points at the start of the Double Face project was to design an innovative Trombe wall, which is partly translucent and partly transparent. The wall had to be partially transparent, so that the view towards outdoors would be preserved. The disadvantage of designing too many openings in the innovative Trombe wall, however, is that this is accompanied by a reduced performance of the wall, in terms of energy savings. In one of the early stages of the Double Face project, research has been done into the effect of the amount of openings in the innovative Trombe wall on the energy savings of the system. A total of three studies have been conducted: one with simulations in Matlab, one with simulations in Comsol and one with more detailed simulations in Comsol CFD. Based on the findings from these studies (see section 6.2.4), it was indicated that the ideal opening percentage in the innovative Trombe wall is equal to 10%. This value is therefore also adopted in this Master thesis study.

12.5.3. INFLUENCE OF AMOUNT OF OPENINGS ON AIR EXCHANGE

To investigate how the configuration of openings in the wall affects the air flow between room and cavity, or in other words: what the values of c_1 and c_n are, different models were analyzed in DesignBuilder. The models all represent a 'basic' room with the same dimensions. To ensure that the findings are valid for each climate and each period of the year, different times (both in summer and in winter) and all four different climates and orientations have been studied. The LTATW is modeled in DesignBuilder as shown in Figure 12.16.

Figure 12.16: Configuration of openings in DesignBuilder simulation model.

The holes in the wall are homogeneously distributed over the surface and the opening percentage equals 10%. In total there are ten layers with five openings in each layer, except in the bottom layer, which consist of four openings.

With the help of all input data, DesignBuilder is able to measure the amount of natural ventilation through a construction. There are two types of infiltration and natural ventilation modelling options in DesignBuilder: scheduled and calculated. In a scheduled type of simulation, the natural ventilation change rate and infiltration air change rate is explicitly defined beforehand. In a calculated type of simulation, infiltration and natural ventilation are calculated based on crack dimensions, window openings, buoyancy, etc. The latter type of modelling results in slower simulations, but also in more accurate results (DesignBuilder, 2018). As the complexity of the basic model is not high, the calculated type of simulation was not too time-consuming. The results of one room, with western orientation and located in Stockholm (on a summer day) are shown in Figure 12.17 to 12.26. In these results, the amount of air (m³/s) through a single hole of a specific layer is shown. In all cases, the airflow through openings of the same layer is the same.

Figure 12.17: Airflow through one of the five holes of layer 1 (top layer) on Wednesday 3 July 2002.

Figure 12.18: Airflow through one of the five holes of layer 2 on Wednesday 3 July 2002.

Figure 12.19: Airflow through one of the five holes of layer 3 on Wednesday 3 July 2002.

Figure 12.20: Airflow through one of the five holes of layer 4 on Wednesday 3 July 2002.

Figure 12.21: Airflow through one of the five holes of layer 5 on Wednesday 3 July 2002.

Figure 12.22: Airflow through one of the five holes of layer 6 on Wednesday 3 July 2002.

Figure 12.23: Airflow through one of the five holes of layer 7 on Wednesday 3 July 2002.

Figure 12.24: Airflow through one of the five holes of layer 8 on Wednesday 3 July 2002.

Figure 12.25: Airflow through one of the five holes of layer 9 on Wednesday 3 July 2002.

Figure 12.26: Airflow through one of the four holes of layer 10 (bottom layer) on Wednesday 3 July 2002.

The red curve shows the size of air flow from cavity to room and the blue curve shows the size of air flow from room to cavity. From all results (also the results of other climates, orientations and seasons), it can be seen that the neutral pressure line is located between layer five and six (exactly in the middle of the height of the wall). Above this line, the air flows in an opposite direction of the air below this level (see Figure 12.15). When the air temperature in the cavity is higher than the air temperature in the room, the air in the cavity flows upwards and warm air enters at the top of the room. When the temperature in the cavity is lower than that of the room, air flows in the opposite direction. The total air flow between the room and cavity is the air flow through all holes in the layers above the neutral line or below the neutral line added together.

Now that many different models have been simulated in DesignBuilder, the relation between the airflow and the temperature difference between cavity and room could be determined. For all models, $\dot{V}_{flow,total}$ and the corresponding temperature difference between room and cavity was obtained (T_{cavity} - T_{room}). Total airflow values were selected at the following times: 06:00 AM, 12:00 PM and 06:00 PM (see Figure 12.27). The values of these times are added for each layer and listed against the corresponding average room and cavity temperature.

Figure 12.27: Analysis of values for $\dot{V}_{flow,total}$ (only layer 1 and layer 5 showed), T_c and T_{room} (bottom graph) at 06:00 AM, 12:00 PM and 06:00 PM.

The relation between $\dot{V}_{flow,total}$ and (T_c-T_r) is shown in Figure 12.28.

With the aid of a curve fitting tool, the values of c_1 and c_n were determined:

 $c_1 = 0.061$ $c_n = 0.5$

Figure 12.28: relation between total airflow rate and temperature difference between cavity and room.

12.5.4. IMPLEMENTATION IN MATLAB/SIMULINK

The heat load (W) due to the airflow between cavity and room can be calculated using equation 12.16:

$$Q_{airflow room-cavity} = \rho c \cdot \dot{V}_{flow,total} \cdot (T_{cavity} - T_{room})$$
(12.16)

In which ρc represents the product of the density of air (=1.2 kg/m³) and the heat capacity of air (=1000 J/kgK). The simulation component in Simulink is shown in Figure 12.29.

Figure 12.29: Simulink component of air exchange between cavity and room.

In Matlab, the flow coefficient c1 and the exponent coefficient cn are defined as follows:

Q_room_cavity.C_1 = 0.061; Q_room_cavity.C_n = 0.5;

12.6. VALIDATION OF COMPONENTS

In chapter 11 was described how the initial simulation model was validated. The results of this validation procedure were sufficient and it was concluded that the initial (modified) simulation model is a good representation of the real system, with accurate and reliable outcomes. However, by adding the five simulation components mentioned in this chapter to the initial simulation model, the validation is no longer fully valid. Therefore, all simulation components need to be tested on their reliability and correctness of implementation. When it can be concluded that all components have been implemented correctly, and the (partial) simulation results are as expected, it can also be concluded that the extended simulation model is validated.

In chapter 11, four validation techniques were listed: analytical validation, empirical validation, expert intuition and comparative testing. Because, in case of the five simulation components, it is dealt with just one aspect instead of a whole dynamic system, they are validated with the analytical validation technique. Of each of the components, the analytical solution is known and results can more easily be compared to

knowledge from theory. In this section, the analysis of the simulation results of each component is described. Section 12.6. starts with the validation of the infiltration component and ends with the validation of the component of the air exchange between room and cavity.

12.6.1. INFILTRATION

In order to assess whether the mechanism of infiltration was correctly implemented, the results for the energy flow due to infiltration during one year (Jan-Dec) for each climate were analyzed. The results of an old and a new building in a cold climate (Stockholm) and an old building in a tropical climate (Singapore) are shown in Figure 12.30, 12.31 and 12.32, respectively. The results are as expected: the infiltration losses in Stockholm are high in the winter (temperature difference between inside and outside is high) and low in the summer (temperature difference between inside and outside is low). In case of an 'old' building (ACH = 0.8), the heat losses are much higher compared to the heat losses of a 'new' building (ACH = 0.2). For an old building, the heat losses in the winter are around 300 to 400 W and around 0 W in the middle of the summer. In case of a new building, these heat losses are four times as low. In Singapore, heat gains from infiltration occur instead of heat losses. As the outside temperature is almost always consistently higher than the room temperature, a fairly horizontal graph is seen.

Figure 12.30: Heat load due to infiltration on old building in Stockholm.

Figure 12.32: Heat load due to infiltration on old building in Singapore.

12.6.2. PCM HYSTERESIS

To assess whether the PCM hysteresis mechanism works correctly, a test-case was performed. In this testcase a PCM was modeled in a simple situation. The test case consisted of a one-dimensional homogeneous PCM plate with an adiabatic boundary condition on one side and heat transfer to an air cavity on the other side. In the test-case, multiple variant calculations have been done in Matlab, in which the following parameters were set as constants: Ts_pcm = 23; Tl_pcm = 26; panel_pcm.d = 0.025; panel_pcm.c = 2000; panel_pcm.rho = 1450; panel_pcm.la = 0.6; p_alpha_cav = 7.7;

The following parameters were set as variables:

panel_pcm.h
dead_band_pcm
nl_pcm

The temperature in the cavity concerns a square wave with a period of 24 hours. The temperature is 19.5 C for 12 hours and 29.5 C for the next 12 hours, etc. The average of 24.5 C corresponds to the average of the phase-change melting and solidification temperature. This signal is not further varied in this study. An overview of the variables and their values is shown in Table 12.12.

Table 12.12: Value of variable for each variant.			
Variant nr.	nl_pcm	enthalpy (kJ/kg)	dead_band (°C)
1	1	0	0
2	5	0	0
3	1	180	0
4	5	180	0
5	1	180	2
6	5	180	2
7	1	180	5
8	5	180	5

Ten days were calculated for each variant. The results during the last two days are shown in each graph as follows (axes not labelled in figures):

Upper plot:

- Cavity temperature (red if nl_pcm = 1, purple if nl_pcm = 5).
- Temperature at PCM surface (blue).
- Other temperatures in the PCM if nl_pcm = 5 (various colours).

Middle plot:

Heat flow density from the PCM to the cavity in W/m²K

Lower plot:

Stored heat in the PCM in 10⁶ J

Comments on the results of the calculations are given below. The graphs are shown in Figure 12.33 to 12.40.

Variant 1

Without latent energy, the temperature of the plate approaches the cavity temperature after every 12 hours. At a delta T=10 °C, layer thickness d=0.025 m, density $p=1450 \text{ kg/m}^3$ and heat capacity c=2000 J/kgK, the expected heat exchange is 0.73 MJ. This corresponds very well to the amplitude of the stored heat in the calculation (bottom plot).

Variant 2 (as variant 1 but with multiple control volumes in the PCM)

With the plate divided into multiple control volumes, it can be seen that the heat resistance in the plate plays a role. The plate undergoes a ΔT averaging about 7.5 °C and corresponding to a heat exchange of 0.55 MJ. The amplitude of the stored heat in the calculation is also approximately 0.55 MJ.

Variant 3 (as variant 1 but with latent energy)

With latent energy the temperature of the PCM remains in the phase-change area and varies approximately with 0.8 °C. The corresponding latent heat storage is 0.8/3*180*1450*0.025=1.74 MJ. This corresponds well with the amplitude of the stored heat in the calculation.

Variant 4 (as variant 3 but with multiple control volumes in the PCM)

With the plate divided into multiple control volumes, it can be seen that the surface temperature of the PCM 'goes through' the melting temperature of 26 °C. The temperature deeper in the PCM, at a depth of 2.5 cm, hardly varies. The heat exchange is considerably lower with 1.25 MJ than with variant 3. This can be explained by the larger amplitude of the temperature at the PCM surface.

Variant 5 (as variant 3 but with hysteresis of 2 °C)

The effect of hysteresis is clearly reflected in the temperature trend of the PCM. The heat exchange is approximately 1.35 MJ.

Variant 6 (as variant 5 but with multiple control volumes in the PCM)

With the plate divided into multiple control volumes, it can be seen that the surface temperature of the PCM 'goes through' the melting temperature of 26 °C. Because of the hysteresis of 2 °C, this now takes place at 27 °C. The hysteresis is still clearly visible in the temperature curve in the PCM at 2.5 cm depth. The heat exchange is approximately 1.05 MJ.

Variant 7 (as variant 3 but with hysteresis of 5 ° C)

The hysteresis of 5 °C is clearly reflected in the temperature curve of the PCM. The heat exchange is approximately 1.05 MJ.

Variant 8 (as variant 7 but with multiple control volumes in the PCM)

With the plate divided into multiple control volumes, it was seen in the previous variants that the surface temperature of the PCM 'went through' the melting temperature of 26 °C. That is no longer the case now, which can be explained by the hysteresis. The heat exchange is approximately 0.90 MJ.

Conclusions

The results of the PCM Simulink component are consistent with the expected outcomes based on physical insight for the tested cases. The method of modeling the phase change and the associated latent energy can be characterized as 'realistic' on the basis of this comparison.

Figure 12.33: Results variant 1.

Figure 12.34: Results variant 2.

Figure 12.35: Results variant 3.

Figure 12.37: Results variant 5.

Figure 12.39: Results variant 7.

Figure 12.38: Results variant 6.

Figure 12.40: Results variant 8.

12.6.3. ROTATION SCHEDULE

To assess whether the rotation schedule component has been implemented correctly, multiple simulations of one year in all four climates were run. The results of the 'summer mode' condition of the same room (but in different climates) are shown in Figure 12.41 to 12.44.

Figure 12.41: vw summer mode in an annual simulation of a room in a cold climate (Stockholm).

Figure 12.42: vw_summer_mode in an annual simulation of a room in a mild climate (Milan).

Figure 12.43: vw_summer_mode in an annual simulation of a room in a dry climate (Cairo).

Figure 12.44: vw_summer_mode in an annual simulation of a room in a tropical climate (Singapore).

The above graphs show an expected behavior: in Stockholm, the summer mode condition is short (only in the middle of summer) and in Singapore, summer mode is always activated. In addition to the summer and winter mode condition, also the conditions of day-time and night-time were analysed. The results of the last days of December of the simulation of a room in a cold climate and in a tropical climate are shown in Figure 12.45 and 12.46.

Figure 12.45: vw daytime on the last days in December of a room in a cold climate (Stockholm).

Figure 12.46: vw_daytime on the last days in December of a room in a tropical climate (Singapore).

It is clear to see that the winter days in a cold climate are relatively short and the winter days in a tropical climate are about as long as the winter nights. Finally, the conditions determining the orientation of the LTATW were analysed. The results of the last days of December of the simulation of a room in a cold climate and in a tropical climate are shown in Figure 12.47 and 12.48.

Figure 12.47: vw_pcm_roomside on the last days in December of a room in a cold climate (Stockholm).

Figure 12.48: vw_pcm_roomside on the last days in December of a room in a tropical climate (Singapore).

The results for 'vw_pcm_roomside' are as expected. It is clear to see that in a cold climate the LTATW is oriented towards the interior at night and that in a tropical climate the LTATW is oriented towards the exterior at night.

12.6.4. AIR EXCHANGE BETWEEN CAVITY AND EXTERIOR

To assess whether the night ventilation mechanism has been implemented correctly, the results for each climate have been analyzed. The results of an annual simulation of a room in a cold climate and a room in a temperate climate are shown in Figure 12.49 and 12.50.

Figure 12.49: Power of night ventilation system in annual simulation of a room in a cold climate (Stockholm).

Figure 12.50: Power of night ventilation system in annual simulation of a room in a temperate climate (Milan).

The results are as expected. Night cooling occurs only in summer mode and is on average at its highest in the periods when the difference between cavity temperature and exterior night temperature is at its greatest: just before mid-summer and just after mid-summer.

12.6.5. AIR EXCHANGE BETWEEN CAVITY AND ROOM

In order to assess whether the mechanism of air exchange between cavity and room has been implemented correctly, the results have been analyzed under different conditions. The results of a room (southern orientation of LTATW, triple clear glazing) in a cold climate and the results of a room (southern orientation of LTATW, triple clear glazing) in a temperate climate are shown in Figure 12.51 and 12.52.

Figure 12.51: Heat loads from air exchange room-cavity in annual simulation of a room in a cold climate (Stockholm).

Figure 12.52: Heat loads from air exchange room-cavity in annual simulation of a room in a temperate climate (Milan).

The results are as expected. The equilibrium position of both graphs is just below zero in the winter and just above zero in the summer. Therefore, the cavity generally functions as heat sink in the winter and as heat source in the summer. However, the cavity behaves every day for a small period of time also as heat source, due to the incoming solar radiation (see Figure 12.53). During this period, the cavity is heated up and heat flows from cavity to room. On some days the intensity of the sun is high, as can be seen from the high peaks that occasionally occur. From Figure 12.51 and 12.52 can also be seen that only in summer mode, the heat losses are much greater. These heat losses only occur at night, when night ventilation is activated. During night ventilation, heat is removed from the cavity, causing the temperature to drop and heat losses through openings in the LTATW are greatly increased (see Figure 12.53).

Figure 12.53: Heat loads from air exchange room-cavity in annual simulation of a room in a cold climate (Stockholm). Two zoom-ins to show: heat flow from cavity to room due to solar radiation (left) and heat flow from room to cavity due to night ventilation (right).

13. CONCLUSION PART III

This chapter is the final chapter of part III and gives an overall conclusion of the findings made during the synthesis and development of the simulation model. In the past four chapters, the theory behind thermal energy simulations was explained, the features of the initial simulation model were described and the validation and verification procedure of this model was explained. Finally, the simulation model has been extended with addition of new components, which were all tested and analyzed, and a reliable model has been obtained that is ready for the parameter study of this Master's thesis project. Of each topic in part III, a conclusion is described in this chapter.

CHAPTER 9: THEORY OF THERMAL ENERGY BALANCES

Chapter 9 has given insight into the working principle behind thermal energy balances. A thermal energy balance considers four main flows of energy: transmission, ventilation and infiltration, solar gains and internal gains, which are all taken into account into the simulation model developed in this project. All these flows of energy are implemented in the simulation model by using the equations shown in section 9.1. The simulation model developed in this project is not based on a stationary heat balance, but on a non-stationary heat balance. In a stationary heat balance, temperatures and heat fluxes are constant in time and energy storage is not taken into account. Because in reality, heat fluxes and temperatures do vary with time, and heat storage should not be neglected, a stationary heat balance is not suitable for the research in this thesis. In section 9.3, the numerical principle of a non-stationary heat balance was explained by showing examples of two one-node room models and one two-node room model. With the knowledge gained from the examples and the numerical principle of non-stationary multi-node heat conduction, the final step towards the non-stationary multi-node heat balance could be made. In section 9.5, all important equations were described, on which the simulation model in Matlab/Simulink is based. With this information, the Matlab script and the corresponding Simulink components can be more easily understood.

CHAPTER 10: INITIAL SIMULATION MODEL

In chapter 10, all aspects of the initial simulation model were described one-by-one. A schematization of the room and the LTATW was shown, the node definitions were described and the modes of heat transfer were explained graphically. As it is not convenient to include the entire Matlab-file in this thesis, only the

most important parts are shown, of which are the definition of a lot of parameters and conditions, the mass matrix and the stiffness matrix. Finally, in section 10.3, the most important Simulink components were shown.

CHAPTER 11: VALIDATION AND VERIFICATION

Chapter 11 started with a literature review on the principle of computerized simulation model validation and verification. Verification of a computerized model is intended to ensure that the model does where it is made for. It is the process of confirming that implementation is correctly done with respect to the conceptual model and that it matches the assumptions and the specifications agreed-upon. Model validation is the task of proving that the simulation model is a reasonable representation of the actual system. In this project, the simulation model is validated an verified in one step, and with one technique: comparative testing. The main reason for choosing this technique is because a technology is studied of which a prototype does not yet exist and therefore, real system measurements are not possible. In the validation procedure, simulation results of 20 different room configurations in Matlab/Simulink and DesignBuilder are compared, and after various modifications, the results were similar enough. Because of similarity in results, it is consequently assumed that implementation of every aspect of the conceptual model is done correctly and that the computerized model does where it is made for. In other words; the simulation model is both validated and verified, and can be used for further research.

CHAPTER 12: EXTENDED SIMULATION MODEL

In chapter 12, the procedure of improving the initial simulation model was described. In order to meet the objectives of this research, the initial simulation model needed to be improved by the addition of five missing components: modelling of infiltration, modelling of PCM hysteresis, modelling a certain rotation schedule, modelling of night ventilation and modelling of the air exchange between cavity and room. The first component, infiltration, was developed based on the analytical relation between air tightness of a building and the temperature difference between the indoor and outdoor environment. The simulation results for various room configurations were analysed and assessed as expected. The second component, PCM hysteresis, was already implemented in the initial simulation model, but was not tested in the validation procedure. After discovering the malfunctioning of the mechanism, a new mechanism has been developed that has been tested in a variant study. The study revealed that the modelling of the thermal behaviour of the PCM was assessed as realistic. The third component was developed based on three conditions: winter/summer mode, daytime/night-time mode and roomside/cavityside mode. The implementation of the conditions was tested by performing multiple simulations of different room configurations in all four climates and the results showed expected behaviour. The fourth component, the night ventilation mechanism, was just like infiltration, based on equations from theory. Based on a substudy, one ideal opening size of inlet and outlet was determined. The implementation was analysed in Simulink by annual simulations and the results showed expected behaviour. The final component of the air exchange between cavity and room was also based on an analytical relation between air flow rate and temperature difference between room and cavity. The exact relation was determined with the help of simulation results from DesignBuilder, and the Simulink component was validated by performing annual simulations of various rooms in different climates. In this case again, the results were as expected.

In part III the simulation model has been explained, validated and improved/extended. After a validation of the extended version, the final result of part III is an accurate, reliable and useful simulation model with which the parameter study in this Master's thesis project can be performed.

PARTIV SIMULATION RESULTS AND ANALYSIS

14. SIMULATION CONDITIONS

After studying literature, gaining knowledge and implementing this knowledge into a reliable and effective simulation model, part IV of this thesis is about the simulation of it. The first chapters of part IV describe the simulation conditions, the results and the analysis of these results. Hereafter, a sensitivity analysis is reported and a side-study is carried out into the influence on the energy demand for artificial lighting. Before going into all these topics, the purpose of this chapter is to explain what the simulation conditions, assumptions and starting points were, before the simulation was started. An overview of the variables, with their classification and values of their chosen subdivisions are described in section 14.1. All parameters and associated values that have been kept constant in the study is given in section 14.2. Finally, section 14.3 and 14.4 briefly describe the simulation settings and simulation procedure.

14.1. VARIABLE PARAMETERS

The variable parameters of the simulation model are the parameters of which their influence is studied in this project. The variables are:

- Climate
- Building function
- Orientation
- Age
- Building method
- Room size
- Window size
- Type of glazing

The eight variables above are treated as discrete variables, which means that only a certain number of 'intermediate' values is studied. In this thesis, these intermediate values have also been called 'subdivisions', and their number differs per variable. The objective of this research is to be able to study the influence of the variable parameters on the energy and comfort performance of the LTATW as well as possible, provided that the size of the project does not become too large. Therefore, only most 'typical' or most relevant subdivisions have been selected. An overview of the subdivisions of all variable parameters and their values is given in Table 14.1 and Table 14.2 (building method properties). The sources of these values are given in Table 14.4.

Parameter	Subdivisions	Value(s)
Climate	Cold	Weather data: T _e = Te_Stockholm_double (obtained from weatherfile: SWE_Stockholm.Arlanda.024600_IWEC) q _{sol} = qsol_Stockholm_double (obtained from weatherfile: SWE_Stockholm.Arlanda.024600_IWEC)
		Rotation schedule:
		A _{sunrise} = 3.2; A _{sunset} = 3.2
		B _{sunrise} = 5.625; B _{sunset} = 17.95
	Temperate	Weather data: T _e = Te_Milan_double (obtained from weatherfile: ITA_Milano-Linate.160800_IGDG) q _{sol} = qsol_Milan_double (obtained from weatherfile: ITA_Milano-Linate.160800_IGDG)
		Rotation schedule:
		A _{sunrise} = 1.8; A _{sunset} = 1.8
		$B_{sunrise} = 6.31; B_{sunset} = 18.45$
	Dry	Weather data: T _e = Te_Cairo_double (obtained from weatherfile: EGY_Cairo.Intl.Airport.623660_ETMY) q _{sol} = qsol_Cairo_double (obtained from weatherfile: EGY_Cairo.Intl.Airport.623660_ETMY)
		Rotation schedule:
		A _{sunrise} = 1.0; A _{sunset} = 1.0
		B _{sunrise} = 5.88; B _{sunset} = 17.95
	Tropical	Weather data: T _e = Te_Singapore_double (obtained from weatherfile: SGP_Singapore.486980_IWEC) q _{sol} = qsol_Singapore_double (obtained from weatherfile: SGP_Singapore.486980_IWEC)
		Rotation schedule:
		$A_{sunrise} = 0.25; A_{sunset} = 0.25$
		$B_{sunrise} = 7.02; B_{sunset} = 19.08$
Building function	Office	Total internal heat gains: 25 W/m ²
		people present: 08:00 - 18:00 (Mon-Fri)
		Mechanical ventilation rate: 2.0/3600 (s ⁻¹)
		Mechanical ventilation flow: 08:00 - 18:00 (Mon-Fri)
	Residence	Total internal heat gains: 6 W/m ²
		people present: 18:00 - 08:00 (Mon-Fri) and 00:00 - 24:00 (Sat-Sun)
		Mechanical ventilation rate: 0.7/3600 (s ⁻¹) Mechanical ventilation flow: 18:00 - 08:00 (Mon-Fri) 00:00 - 24:00 (Sat-Sun)
Orientation	North	Different values of q _{sol}
	East	Different values of q_{sol}
	South	Different values of q_{sol}
	West	Different values of q _{sol}

 Table: 14.1:
 Variable parameters, their subdivisions and values.

Age	New	Infiltration rate = $0.2/3600$ (s ⁻¹)
		R _c = 4.5 m²K/W (façade)
	Old	Infiltration rate: 0.8/3600 (s ⁻¹)
		$R_c = 2.0 \text{ m}^2\text{K/W}$ (façade)
Room size	Small room	A = 20 m² (square surface)
	Big room	A = 100 m ² (square surface)
Window size	Small window	WWR = 25%
		Δh = 0.8 m (difference in height inlet/outlet)
	Large window	WWR = 75%
		Ab = 2.2 m (difference in beight inlet/outlet)
		Δh = 2.2 m (difference in height met/outlet)
		Zii – 2.2 iii (difference in height finlet/odtlet)
Type of glazing	Double, clear glazing	$U_{gl} = 1.6 \text{ W/m}^2\text{K}$
Type of glazing	Double, clear glazing	$U_{gl} = 1.6 \text{ W/m}^2\text{K}$ SHGC = 0.7
Type of glazing	Double, clear glazing Double, coated	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7
Type of glazing	Double, clear glazing Double, coated glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ $SHGC = 0.7$ $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$
Type of glazing	Double, clear glazing Double, coated glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7 $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.2
Type of glazing	Double, clear glazing Double, coated glazing Triple, clear glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7 $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.2 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$
Type of glazing	Double, clear glazing Double, coated glazing Triple, clear glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7 $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.2 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$ SHGC = 0.5
Type of glazing	Double, clear glazing Double, coated glazing Triple, clear glazing Triple, coated glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7 $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.2 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$ SHGC = 0.5 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$
Type of glazing	Double, clear glazing Double, coated glazing Triple, clear glazing Triple, coated glazing	$U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.7 $U_{gl} = 1.6 \text{ W/m}^{2}\text{K}$ SHGC = 0.2 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$ SHGC = 0.5 $U_{gl} = 0.7 \text{ W/m}^{2}\text{K}$ SHGC = 0.1

Building	Inner walls (all adiabatic)	Outer wall (orien1 façade cavity wall with glazing, not adiabatic)	thickness	
method			new building	old building
Light-weight	5 cm timber	inner leaf: timber wall	5.0 cm	5.0 cm
		insulation: polystyrene	10.0 cm	4.0 cm
		outer leaf: timber cladding	5.0 cm	5.0 cm
Medium-weight	10 cm sand-lime stone	inner leaf: sand-lime stone	10.0 cm	10.0 cm
		insulation: polystyrene	12.0 cm	5.0 cm
		outer leaf: metal cladding	0.5 cm	0.5 cm
Heavy-weight	15 cm heavy concrete	inner leaf: heavy concrete	10.0 cm	10.0 cm
		insulation: polystyrene	11.0 cm	4.0 cm
		outer leaf: brickwork	10.0 cm	10.0 cm

Table: 14.3: Material properties.

Material	Density (kg/m³)	specific heat capacity (J/kgK)	Conductivity (W/mK)
Sand-lime stone	2000	840	1
Polystyrene (extruded)	35	1470	0.027
Timber	800	1880	0.22
Metal cladding	7850	500	50
Heavy concrete	2400	840	1.7
Brickwork	2100	840	0.8

Parameter	Source
Weather file values	https://energyplus.net/weather
Rotation schedule values	https://timeanddate.com
Internal heat gains	Itard (2018)
Mechanical ventilation rates	Itard (2018)
Infiltration rates	Van Bueren et al. (2012)
Façade insulation values	https://.bouwbesluitonline.nl
Glazing properties	Van Bueren et al. (2012)
Material properties	van der Linden, Erdtsieck, Kuijpers-van
	Gaalen, & Zeegers (2011)

From the tables it can be seen that only the four main climates of the world, determined with the aid of chapter 7, have been investigated. In the simulation model, the difference in climate is expressed by differences in values for outdoor temperature, solar radiation and times for sunrise and sunset. Two building functions have been investigated: offices and residences, of which the difference between the two is expressed in differences between occupation times, internal heat gains and ventilation rates. Of the third parameter, orientation, the four main orientations were studied: north, east, south and west. The difference between orientations is expressed in different values for incoming solar radiation.

In this study, two buildings ages have been investigated: 'old' buildings and 'new' buildings. An old building is characterized by a building with outdated building envelope, which has a relatively low insulation value and a low airtightness. The two parameters that determine the layout of the room construction are the floor surface area and the window-to-wall ratio. When combining the subdivisions of both parameters, four possible constructions arise: a small room with a small window, a small room with a large window, a big room with a small window, and a big room with a large window. In all cases, it is assumed that the surface/size of the LTATW is equal to the area of the window (it is placed right behind the window, with a small distance between). In case of a large room with large window there is therefore a larger LTATW than in case of a small room with large window.

Four glazing types have been studied: double clear glazing, double coated glazing, triple clear glazing and triple coated glazing. Because single glazing is hardly, if at all, applied in new buildings (which are eligible for this innovative system), this type of glazing was not selected in the study. The coated glazing versions were also examined, just to gain insight into the performance of the LTATW in for example, a glazed skyscraper with coated/reflective glazing. Of the last variable, the construction method, three typical subdivisions were made: a light-weight, medium-weight and heavy-weight load-bearing structure. A light-weight building is defined here as a building with timber frame construction, a medium-weight building is defined as a building with a steel construction and sand-lime walls, and a heavy-weight building is defined as a building that is only made up of thick walls of concrete.

14.2. CONSTANT PARAMETERS

The constant parameters in this study are all other parameters of the simulation model, except the variable parameters mentioned in section 14.1. An overview of all constant parameters and their values is given in Table 14.5.

Parameter	Simulation condition(s)
Simulation time	1 January – 31 December
Initial node temperature	23 °C
Room height	2.7 m
Shading	When $T_{room,oper} > 24$ °C and $P_{sol,in} > 100$ W
	SHGC _{shading} = 0.25 (25% unshaded)
Natural ventilation	When T _{room,air} > 24 °C
	Rate = 2.0/3600 (s ⁻¹)

Table 14.5: Values of constant parameters

Heat recovery	Efficiency = 0.9
	Bypassed when $T_{room,oper} > 24$ °C and $T_{room,oper} > T_e$
Mechanical night ventilation	When $T_{room,oper} > 24$ °C and $T_{room,oper} > T_e$
Natural night ventilation	$A_{inlet} = A_{outlet} = 0.025*A_{facade}$
	C _d = 0.8
	When $T_{room,oper} > 24$ °C and $T_{room,oper} > T_e$
Thermostat set-points	Heating: 20 °C Cooling: 26 °C
LTATW characteristics	Cavity width: 0.2 m PCM layer thickness: 2.5 cm Aerogel layer thickness: 1 cm
Type of PCM	Rubitherm SP25E2 (T _s = 23 °C; T _l = 26 °C; hysteresis = 2.0 °C)
Percentage of openings in LTATW	10%
Heat transfer coefficients (convection)	α_i = 2.7 W/m ² K; α_e = 25.0 W/m ² K
	adiabatic walls: $\alpha_e = 0 W/m^2 K$
nl_pcm	5
nl_ins	3
Airflow through LTATW	C ₁ = 0.0669
	C _n = 0.4627
Rotation schedule	$\phi_{\text{sunrise}} = 1.75$
	$\phi_{sunset} = 4.9$

The simulations in this study assume that a room is located in the middle of a building (see Figure 14.1). This means, that all walls, except the outer wall are schematized as adiabatic surfaces. Only in the outer wall (façade of the building), a window exists. The other five walls are made up of a closed, solid construction.

14.3. SIMULATION SETTINGS

The solver configuration settings of the simulation model are shown in Appendix B. From appendix B it can be seen that the start time and stop time of the simulation are defined by two parameters from the Matlabfile. The type of solver used is 'ode23tb (stiff/TR-BDF2)' (a variable-step solver). All solver details and zerocrossing options are set up on the advice of the supervisors/mentors of this project.

14.4. PROCEDURE

When all intermediate values (or subdivisions) of the variable parameters are combined, a total of 3072 different situations arise. For each situation, the system is simulated with and without LTATW, resulting in a total of 6144 simulations. Because each simulation requires about 3 to 8 minutes, the simulation procedure was conducted with multiple computers.

Figure 14.1: Schematization of room in building (made by the author).

15. SIMULATION RESULTS AND ANALYSIS

In this chapter, the simulation results of all room configurations are shown and analyzed. First, the overall results of the energy performance of the Trombe wall are shown in section 15.1. These results include scatter plots in which the values for energy reduction (both relative and absolute) are shown per configuration, distribution charts that show the probability density of values for energy reduction and finally, correlation charts, which give insight into the influence of each individual variable parameter. In section 15.2, the influence of these variables is analyzed in more detail and in section 15.3, the results of a sensitivity study are shown.

15.1. SIMULATION RESULTS

Section 15.1.1 shows the distribution charts, section 15.1.2 shows the configurations charts and section 15.1.3 shows the correlation charts. The analysis and generation of charts was done with modeFRONTIER.

15.1.1. DISTRIBUTION CHARTS

Figure 15.1 and 15.2 show the probability density distribution (histograms) of the outcomes for relative change in heating energy demand (change in %) and absolute change in heating energy demand (difference in kWh), as a result of installing a LTATW. The probability density distributions provide insight into the occurrence of the different outcomes of all 3072 room configurations.

It can be seen that a large amount of the outcomes are represented by the bar above zero (most right bar in Figure 15.1 and most left bar in Figure 15.2). This bar is in both cases that high, because this result occurs in many of the room configurations located in a dry or tropical climate, since no heating is required. Also at a 100% reduction (Figure 15.1) there is a higher bar, because in a considerable amount of situations, the initial energy demand is reduced to zero. It can be demonstrated with modeFRONTIER that the average reduction in heating energy demand equals 21.3% of the initial energy demand or 127.7 kWh in absolute sense. The standard deviation of the reduction in percentage is equal to 28.2% and the standard deviation of the reduction in absolute terms is equal to 197.5 kWh.

Figure 15.1 and 15.2: Probability density distribution of values of relative change and difference in heating energy demand.

Figure 15.3 and 15.4 show the probability density distribution of the outcomes for relative change and absolute change in cooling energy demand. Again, extremes can be seen around 0%, 100% and 0 kWh. This can be explained by the fact that cooling is often not required in cold and temperate climates, and that again, the energy demand is fully reduced in a some of the room configurations. modeFRONTIER demonstrates that the average reduction in cooling energy demand equals 23.1% of the initial energy demand or 126.6 kWh in absolute sense. The standard deviation equals 29.5% in relative sense and 121.5 kWh in absolute sense.

Figure 15.3 and 15.4: Probability density of values for relative change and difference in cooling energy demand.

Because all climates have been included in the analysis of the distribution charts, the values for the average results are not very representative. It is true that in case of heating much higher reductions (more than 21.3%) occur in the cold and mild climates, and that in the case of cooling higher reductions (more than 23.1%) occur in the hot climates. Therefore, to obtain representative values for the average reduction of the heating and cooling energy demand, the distribution charts per climate are shown in section 15.1.1.1 to 15.1.1.4.

15.1.1.1. DISTRIBUTION IN A COLD CLIMATE

Figure 15.5 and 15.6 show the probability density distribution of the outcomes for relative change in heating energy demand (change in %) and absolute change in heating energy demand (difference in kWh), as a result of installing a LTATW in a cold climate. The total number of configurations is equal to a quarter of the total number of configurations in this study (768 rooms). Now, a smoother trend can be seen, without a high bar above zero. It can be demonstrated with the software that the average reduction in heating energy demand in a cold climate equals **32.4%** of the initial energy demand or **326.3 kWh** in absolute sense. The standard deviation of the reduction in percentage is equal to 23.9% and the standard deviation of the reduction in absolute terms is equal to 242.7 kWh.

Figure 15.5 and 15.6: Probability density distribution of values of relative change and difference in heating energy demand in a cold climate.

Figure 15.7 and 15.8 show the probability density distribution of the outcomes for relative change and absolute change in cooling energy demand. Because cooling is not required in many cases in a cold climate, as expected, a high bar can be noticed above zero (both charts). In some cases the reduction in percentage of the cooling energy demand is very high (see Figure 15.7), but it can be seen from Figure 15.8 that the corresponding reduction in kWh is relatively low. With the charts it can be demonstrated that the average reduction in cooling energy demand in a cold climate equals **22.4%** of the initial energy demand or **8.3 kWh** in absolute sense. The standard deviation equals **39.9%** in relative sense and 22.7 kWh in absolute sense.

Figure 15.7 and 15.8: Probability density of values for relative change and difference in cooling energy demand in a cold climate.

15.1.1.2. DISTRIBUTION IN A TEMPERATE CLIMATE

Figure 15.9 and 15.10 show the probability density distribution of the outcomes for relative change in heating energy demand and absolute change in heating energy demand, as a result of installing a LTATW in a temperate climate. With the charts it can be demonstrated that the average reduction in heating energy demand in a temperate climate equals **36.1%** of the initial energy demand (which is more than in a cold climate) or **181.3 kWh** in absolute sense (which is less than in a cold climate). The standard deviation of the reduction in percentage is equal to 27.5% and the standard deviation of the reduction in absolute terms is equal to 151.7 kWh.

Figure 15.11 and 15.12 show the probability density distribution of the outcomes for relative change and absolute change in cooling energy demand. With the charts it can be demonstrated that the average reduction in cooling energy demand in a temperate climate equals **49.9%** of the initial energy demand or **115.0 kWh** in absolute sense. The standard deviation equals 26.4% in relative sense and 87.3 kWh in absolute sense.

Figure 15.9 and 15.10: Probability density distribution of values of relative change and difference in heating energy demand in a temperate climate.

Figure 15.11 and 15.12: Probability density of values for relative change and difference in cooling energy demand in a temperate climate.

15.1.1.3. DISTRIBUTION IN A DRY CLIMATE

Figure 15.13 and 15.14 show the probability density distribution of the outcomes for relative change in heating energy demand and absolute change in heating energy demand, as a result of installing a LTATW in a dry climate. Because heating is not required in many cases in a dry climate, as expected, a high bar can be noticed above zero (both charts). In a small number of cases the reduction in percentage of the heating energy demand is very high (see Figure 15.13), but it can be seen from Figure 15.14 that the corresponding reduction in kWh is relatively low. With the charts it can be demonstrated that the average reduction in heating energy demand in a dry climate equals **16.8%** of the initial energy demand or **3.1 kWh** in absolute sense. The standard deviation equals 32.3% in relative sense and 7.7 kWh in absolute sense.

Figure 15.15 and 15.16 show the probability density distribution of the outcomes for relative change and absolute change in cooling energy demand. With the charts it can be demonstrated that the average reduction in cooling energy demand in a dry climate equals **15.2%** of the initial energy demand (which is less than in a temperate climate) or **233.1 kWh** in absolute sense (which is more than in a temperate climate). The standard deviation equals 7.6% in relative sense and 137.3 kWh in absolute sense.

Figure 15.13 and 15.14: Probability density distribution of values of relative change and difference in heating energy demand in a dry climate.

Figure 15.15 and 15.16: Probability density of values for relative change and difference in cooling energy demand in a dry climate.

15.1.1.4. DISTRIBUTION IN A TROPICAL CLIMATE

Figure 15.17 and 15.18 show the probability density distribution of the outcomes for relative change in heating energy demand and absolute change in heating energy demand, as a result of installing a LTATW in a tropical climate. Because heating is not required in all cases in a tropical climate only one bar can be noticed above zero (both charts). Therefore, the average reduction in heating energy demand in a tropical climate equals **0.0%** of the initial energy demand or **0.0 kWh** in absolute sense.

Figure 15.17 and 15.18: Probability density distribution of values of relative change and difference in heating energy demand in a tropical climate.

Figure 15.19 and 15.20 show the probability density distribution of the outcomes for relative change and absolute change in cooling energy demand. With the charts it can be demonstrated that the average reduction in cooling energy demand in a tropical climate equals **4.7%** of the initial energy demand (which is less than in dry climate) or **149.9 kWh** in absolute sense (which is also less than in a dry climate). The standard deviation equals 2.5% in relative sense and 78.1 kWh in absolute sense.

Figure 15.19 and 15.20: Probability density of values for relative change and difference in cooling energy demand in a dry climate.

15.1.2. CONFIGURATIONS CHARTS

Figure 15.21 shows a scatter chart with the heating energy simulation results of all 3072 room configurations. The results in the chart include two values, which are plotted against each other: the energy reduction in relative sense (change in %) and the energy reduction in absolute sense (difference in kWh). From the figure, it can be seen that a rather exponential distribution describes the relation between the two. When the relative change in energy demand is high, a relatively lower difference in energy demand is seen. On the other hand, a lower relative change is generally accompanied by a higher difference between the energy demand before and after.

With the inclusion of lines representing the average reductions found in the previous section, the chart of Figure 15.21 can be divided into four different areas: A, B, C and D (see Figure 15.22). Area A represents an area filled with room configurations that show great potential for installing the innovative Trombe wall, as both a relatively high energy reduction in percentage and energy reduction in absolute sense is experienced (both above average). In this area, installing a LTATW leads to a considerable reduction in energy demand, while the investment costs will also be paid-back faster than average (pay-back time is shorter with a higher difference in energy demand (kWh)).

Figure 15.21: Absolute versus relative reduction in heating energy demand after installing a LTATW.

Because detailed information about the investment costs of the LTATW is still unknown, it is also unknown if the average reduction in absolute sense corresponds to a common, average and not too long pay-back time. However, for now, it is assumed that this is the case. (This chart could be used to determine the maximum investment costs in future research).

Area B represents an area with room configurations that experience a relatively high reduction in energy demand in absolute sense, but low reduction in relative sense. In this region, a lot of energy is reduced (and therefore the system will be paid-back much faster), but the reduction is small compared to the initial energy demand. In this area, therefore, the advice applies that it may be better to look for other energy-saving alternatives that are capable of reducing a larger part of the energy demand of the room (or in the end: the building). When a designer or building owner agrees with a relatively a low percentage decrease than average, this area is still an area with high potential.

Figure 15.22: Absolute and relative reduction in heating energy demand after installing a LTATW – four different chart areas.

Area C represents an area with rooms that experience a percentage reduction of the energy demand which is average to high (even up to 100%), but where the absolute differences are relatively small. For these room configurations, the system therefore seems to be an ideal energy reducer in the first case, but the disadvantage is that the investment costs can probably not be repaid within a reasonable amount of time. The system is therefore probably too expensive in this area, and only when money does not play a significant role, this area has some potential.

Finally, area D represents an area in which both the relative change and the absolute difference in energy demand is low. Room configurations in this area do not offer any potential for installing a LTATW.

Figure 15.23 and 15.24: Heating energy demand without LTATW versus absolute energy reduction with LTATW (left) and versus relative energy reduction with LTATW (right).

In Figure 15.23, the absolute energy reduction is plotted against the initial energy demand. From the figure it can be seen that the higher the initial energy demand, the higher the reduction, until a maximum reduction is reached. This means that the Trombe wall can reduce a certain maximum amount of energy, and thus has a certain maximum capacity. In this study, it was assumed that a larger room with a larger window results in a larger Trombe wall. A hypothesis might therefore have been that there would be a more linear relationship., but apparently, a larger room (with accompanying larger energy demand) cannot be proportionally 'maintained' by the larger Trombe wall. Also from Figure 15.21 and 15.24, the presence of a maximum capacity can be noticed, as a relatively higher initial energy demand never results in a very high reduction in percentage.

Figure 15.25 shows a scatter chart with the cooling energy simulation results of all 3072 room configurations. Again, the same two values are plotted against each other: the energy reduction in relative sense and the energy reduction in an absolute sense.

Figure 15.25: Absolute and relative reduction in cooling energy demand after installing a LTATW.

It can be seen from the figure that in case of cooling, not all rooms experience an energy reduction, but that there are also rooms in which an increase in energy demand takes place. However, it is reassuring that all these configurations are on the same line around an absolute reduction of 0 kWh, which means that in all these cases the energy demand changes in one way or another from a small value to a slightly larger, small value (such as a change of for example 0.1 to 0.5 = 50%). When a large part of these configurations is ignored, the chart shown in Figure 15.26 arises.

Figure 15.26: Absolute and relative reduction in cooling energy demand after installing a LTATW – four different chart areas.

Remarkable is that there is again a concentration of most room configurations above the horizontal axis and the vertical axis, but now, no clear exponential relation can be seen (which was the case in the heating chart). The distribution in this chart seems to be deflecting to the left, and shows that in some cases, relatively high absolute reductions can be achieved with at the same time a relatively large reduction in percentage. Again, the chart in Figure 15.26 is divided into four different areas: A, B, C and D. Area A represents an area filled with room configurations that show great potential for installing a LTATW, as both a relatively high energy reduction in percentage and energy reduction in absolute sense is experienced. Area B again represents an area with high absolute reductions, but in which only a small part of the initial energy demand is reduced, Area C again represents a relatively less profitable part and area D is again an area without any potential.

Figure 15.27 and 15.28: Cooling energy demand without LTATW versus absolute energy reduction with LTATW (left) and versus relative energy reduction with LTATW (right).

In Figure 15.27, the absolute energy reduction (kWh) is plotted against the initial energy demand. It can be seen that also in case of cooling, a maximum capacity of the LTATW exists. However, a less obvious asymptote can be seen here, in contrast to the graph of heating. It seems that even at higher initial energy demands, a larger part can still be reduced (also seen in Figure 15.28), and explains the distribution in Figure 15.26.

15.1.3. CORRELATION CHARTS

Figure 15.29 shows a correlation matrix with six of the eight variable parameters on the vertical axis and six outcomes regarding energy demand on the horizontal axis. For each combination of variable parameter and outcome, the correlation matrix shows the relevant correlation coefficient. This correlation coefficient is based on the principle of Pearson (Pearson correlation) and is a number between -1 and 1. The Pearson correlation coefficient indicates the extent to which two parameters are linearly related: a correlation coefficient of -1 indicates that the data points in a scatter chart lie exactly on a straight, descending line, which means that the two parameters are perfectly, but negatively linearly related. A correlation of 0 means that the two parameters don't have any linear relation and a correlation of 1 means that the two parameters are perfectly positively linearly related (Cohen, Cohen, West, & Aiken, 1983). The variables 'type of glazing' and 'orientation' are not included, as their subdivisions are randomly arranged 'values' and a possible optimum might exist at one of the middle values (like a southern orientation). The influence of these two variables is clarified with others charts and tables in the remainder of part IV.

Figure 15.29: Correlation matrix.

In the matrix, six outcomes regarding energy demand are taken into account: the initial heating and cooling energy demand, the relative change in heating and cooling energy demand and the absolute difference in heating and cooling energy demand. For each type of energy demand, the results of the correlation matrix are presented in a clearer, graphical way in Figure 15.30 to 15.35.

Before discussing the results of the correlation matrix, the following must be explained: as mentioned before and above, the variables studied in this thesis are discrete variables instead of continuous variables. Before simulation, these discrete variables were arranged from 'low' to 'high' using the numbers 1 to 4. Showing this order (Table 15.1) is important to understand what a negative and a positive correlation coefficient exactly means.

Variable	$low \rightarrow high$			
	1	2	3	4
Climate	Cold	Temperate	Dry	Tropical
Building function	Office	Residence		
Age	New	Old		
Building method	Light-weight	Medium-weight	Heavy-weight	
Room size	Small	Big		
Window size	Small	Large		

 Table 15.1: Classification of variables.

Figure 15.30: Effect size of variable parameters on heating energy demand without LTATW.

Figure 15.31: Effect size of variable parameters on cooling energy demand without LTATW.

From the correlation matrix and the charts of Figure 15.30 and 15.31 it quickly becomes clear that climate has the highest influence on the outcomes for the initial energy demand. As expected: the warmer the climate, the lower the heating energy demand (negative relation, indicated with a blue color) and the higher the cooling energy demand (positive relation, indicated with a red color). Of course, a bigger room results in a higher energy demand and a lower air tightness and insulation value of the façade results in more need for heating. Also, the heating energy demand of offices is much lower than the heating energy demand of residences. What is striking, however, is that the construction method has a relatively very small influence on the initial heating and cooling energy demand.

The influence of the variables on the heating energy reduction in relative and absolute sense is shown in Figure 15.32 and 15.33. From Figure 15.32 can be seen that on average, all parameters have a positive effect on the relative change in heating energy demand. It appears to be that in a warmer climate and in an older and heavier residential building, a higher reduction in relative sense can be achieved. Furthermore, a bigger room with a larger window also result in a better performance in relative sense.

Figure 15.32: Effect size of variable parameters on relative change in heating energy demand.

Figure 15.33: Effect size of variable parameters on difference in heating energy demand.

However, when looking at Figure 15.33, it can be seen that a warmer climate does not lead to a higher reduction of the heating energy demand in absolute sense. In this case, in fact, it appears to be that the colder the climate, the higher the total energy reduction in kWh. It is true again, that a Trombe wall in a big room of an old residential building provides the highest reductions.

The influence of the variables on the cooling energy reduction in relative and absolute sense is shown in Figure 15.34 and 15.35. From Figure 15.34 can be seen that a warmer climate results in a higher energy reduction in relative sense. Furthermore, a 'higher' building function (residence) is accompanied with a lower percentage reduction, just like a room with smaller window (and also a smaller LTATW). From Figure 15.35 can be seen that, on average, a warmer climate results in the highest reduction in absolute sense, just like a bigger room with larger window. In a residence, the absolute reductions are also slightly larger.

Figure 15.34: Effect size of variable parameters on relative change in cooling energy demand.

Figure 15.35: Effect size of variable parameters on difference in cooling energy demand.

Finally, the results of the correlation analysis are also shown using pie charts (Figure 15.36). In these pie charts, only the ratio between the effect sizes of the variables is shown and not the direction (negative or positive) of the correlation. Therefore, the variables 'type of glazing' and 'orientation' are included as well. From the pie charts can be seen that the type of glazing and orientation have a greater influence on the initial heating energy demand than the initial cooling energy demand. Apparently, in rooms that require heating, receiving solar gains and not losing lots of heat through the glazing is of greater influence than in cooling cases. When looking at the pie charts of relative difference in energy demand, it can be seen that orientation and type of glazing do not have a major influence. In case of absolute energy reduction, however, the influence is greater. What the order size of this influence is and which orientation and type of glazing is the most favourable, is explained in the next section and can also be determined from the designer tables in chapter 17.

Figure 15.36: Pie charts of effect sizes of variable parameters.

15.2. ANALYSIS OF INDIVIDUAL PARAMETER INFLUENCE

In the previous section, it was made clear which variables have the most influence on the energy and comfort performance of the LTATW, and what the direction of the correlation between variable and energy performance is. With this knowledge an idea has been obtained of the effect size of the variables, but because this analysis is based on a correlation calculated over an enormous number of different situations, the results are difficult to interpret. In this section, insight into the performance of the Trombe wall under different circumstances is improved by using the scatter charts from the previous section. With these scatter charts, more knowledge can be gained about the most potential circumstances and the performance of each individual variable and its subdivision values. All eight variables are discussed in section 15.2.1 to 15.2.8.

15.2.1. INFLUENCE OF CLIMATE

Figure 15.37 shows the relation between relative change in heating energy demand and absolute difference in heating energy demand. Now, however, the type of climate is indicated with a color for each of the 3072 room configurations. It is immediately noticeable that for heating reduction purposes, only the cold and mild climates are of major relevance. Configurations of a dry climate can also be seen, but their absolute reduction in energy demand is relatively low. Room configurations from a tropical climate cannot be seen in the graph, because obviously, no heating is required in these cases. With the division of the chart in different areas (previous section) in mind, it can be concluded that the LTATW performs best in a cold climate and temperate climate (heating). In relative terms, the LTATW performs slightly better in a temperate climate, but the highest reductions in absolute terms are achieved in a cold climate. This supports the findings from Figure 15.32 and 15.33 and tells again that the findings from the previous chapter can be misleading and do not directly reveal the most optimal situation.

Figure 15.37: Relative change versus difference in heating energy demand with indication of climate types.

Figure 15.38 shows the relation between relative change in cooling energy demand and absolute difference in cooling energy demand. Again, the type of climate is indicated with a color. It is immediately noticeable that for cooling reduction purposes, the tropical, dry and temperate climates are of relevance. Configurations of a cold climate can also be seen, but their absolute reduction in energy demand is low. With the division of the chart in different areas in mind, it can be concluded that the LTATW performs best in a temperate or dry climate (cooling), but that also in a tropical climate, the performance is fine. The highest absolute reductions are achieved in a dry climate, and the highest percentage reductions can be achieved in temperate climates. For this, it is true that shorter pay-back times occur in the rooms located in a dry climate. An increase in energy demand only occurs in room configurations of cold climates, but they are not of major importance as absolute differences here are around 0 kWh.

Again, the chart of Figure 15.38 shows that the results shown in the previous section can be misleading. Figure 15.34 and 15.35 revealed that on average, a warmer climate both results in a higher cooling energy reduction in relative and absolute sense. From Figure 15.38 can be seen that this is indeed true, until the tropical climate has been 'reached'. In this climate both the reduction in absolute sense and in relative sense is again smaller than in a dry climate. Finally, it can again be seen from Figure 15.38 that the innovative Trombe wall has a maximum reducing capacity, because in a dry climate with higher cooling energy demands, it is not able anymore to reduce more than about 30% of the initial energy demand.

Figure 15.38: Relative change versus difference in cooling energy demand with indication of climate types.

In conclusion of this section, Figure 15.39 shows the relation between absolute reduction in heating energy demand and absolute reduction in cooling energy demand. The chart shows that the multi-seasonal operation capability of the LTATW is best utilized in a temperate climate. In this climate, the LTATW can be used both in summer as passive cooling mechanism and in winter as passive heating mechanism.

Figure 15.39: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of climate types.

15.2.2. INFLUENCE OF BUILDING FUNCTION

The influence of the function of a building is studied with the same type of chart. From Figure 15.40 can be seen that in case of reduction of heating demand purposes, the function of a building is not of great importance. The same, good performances can be achieved in both offices and residences. However, slightly higher reductions in percentages are achieved in offices and slightly higher absolute reductions are achieved in residences. This can be explained by the fact that the heating demand is slightly higher in rooms of residences.

Figure 15.40: Relative change versus difference in heating energy demand with indication of building functions.

From Figure 15.41 can be seen that in case of reduction of cooling demand purposes, the function of a building is of much greater importance than in case of heating. Better performances are seen in the rooms of residences, as both a higher absolute reduction and a higher relative reduction is achieved. In Figure 15.42, the relation between absolute reduction in heating energy demand and absolute reduction in cooling energy demand is shown. The chart also reveals that higher reductions of cooling energy demand occur in rooms of residences. However, both building functions do not form an obstacle to being able to make use of the multi-seasonal operation capability of the LTATW.

Figure 15.41: Relative change versus difference in cooling energy demand, with indication of building functions.

Figure 15.42: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of building functions.

15.2.3. INFLUENCE OF ORIENTATION

From both Figure 15.43 and 15.44 it can be seen that the effect size of orientation is low, as there are both good and bad performances of rooms with a LTATW on each orientation. This is logical, because the Trombe wall with its energy storing phase change material performs well, even without a rotation mechanism and a position behind the window. However, when the graphs (and also the designer tables in chapter 17) are better studied, it can be seen that per situation, certain orientations result in a better performance than other orientations. As the innovative part of the Double Face project is based on adaptability and positioning behind a window, it is important to find the best orientation here, even though the results can be good for all orientations.

When studying Figure 15.43, it can be seen that data-points/rooms with a southern orientation of the LTATW are more often concentrated at the upper boundary of the distribution. This would suggest that a southern orientation leads more often to both a higher reduction in relative sense, and higher reduction in absolute sense. Because it is interesting to know here, per situation, what the influence of the orientation is, four data-points of three of the same rooms (but with varying orientation) are highlighted and a green arrow is drawn to indicate the 'path' from north, east and west to south. In all three cases, it can be seen that the data-points of north, east and west are concentrated around the same value of energy reduction (both absolute and relative) and that a southern orientation, however, leads to a significant shift. In all three cases, it can be seen that when a room is oriented towards the south, the data-point also moves to the upper boundary of the chart. In one case, both a higher relative reduction and absolute reduction is achieved (data-point 2377), but in the other two cases a higher reduction in relative sense occurs and a lower reduction in absolute sense. Apparently it is true that a southern orientation provides the best reduction in relative terms, but because the initial heating energy is lower due to the solar gains, the absolute reduction is also less in the end. It is made clear here that a southern orientation, as expected, results in the best performance (because the LTATW can now absorb more energy from the sun), but it must be checked with the aid of the designer tables, whether the reduction in absolute terms will still be above average.

From Figure 15.44 it can be seen that there is a weaker correlation between (cooling) energy performance and orientation. Also here, four data-points of three of the same room configurations and circled with a green line. Now, however, no direct preference can be expressed for optimal orientation, and to see what is the best for each situation, the designer table should be consulted. In two of the three highlighted room cases, the following behavior is seen: a northern orientation provides a slightly larger reduction in relative terms, but a slightly lower reduction in absolute terms. This can be explained by the fact that the initial cooling demand for a northern orientation is already lower, so that the absolute reduction will also be lower in the end (same principle as for heating, but vice versa). The results for cooling are as expected, because the working principle of passive cooling of the Trombe wall does not rely on direct contact with the energy of the sun, but with the energy from sources within the building.

Figure 15.45 shows that for all orientations, the LTATW can function both as a passive heating and passive cooling system.

Figure 15.43: Relative change versus difference in heating energy demand with indication of LTATW orientations. Green arrows indicate the path of a data-point of the same situation, moving from a north/east/west data-point to a data-point with southern orientation.

Figure 15.44: Relative change versus difference in cooling energy demand with indication of LTATW orientations. Green circles indicate the location on the chart of four of the same room configurations with varying orientation.

Figure 15.45: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of LTATW orientations.

15.2.4. INFLUENCE OF AGE

Figure 15.46 shows the distribution of room configurations in old buildings and in new buildings. What can be seen is a clear distribution, in which the data points of rooms in new buildings are concentrated more around the bottom left part of the figure, while data points of rooms in old buildings are concentrated more to the right. With the division of the chart in the four areas A, B, C and D in mind, it can be concluded that the situations that are most suitable for a considerable reduction of the initial energy demand of the room are rooms of a new building. However, a LTATW installed in an old building is capable of reducing much more energy in absolute sense, because the initial heating energy demand in these cases is much higher, due to the higher infiltration rate and poorer façade insulation properties.

From Figure 15.47 it can be seen that the correlation in case of cooling is slightly weaker than in case of heating. Nevertheless, a clear distribution pattern can still be seen, in which the innovative Trombe wall in rooms of a new building perform slightly better. It is noted in fact that the data-points of rooms in old buildings concentrate more to the bottom the right, and that the data-points of rooms in new buildings often have both a higher relative reduction as well as an absolute reduction.

Figure 15.46: Relative change versus difference in heating energy demand with indication of building ages.

Figure 15.47: Relative change versus difference in heating energy demand with indication of building ages.

Figure 15.48: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of building ages.

From Figure 15.48 can be seen that no preference can be expressed regarding best option to benefit from the multi-seasonal operation capability of the LTATW, since both ages perform well. A LTATW in a new building, however, perform slightly better for cooling purposes and a LTATW in an old building slightly better for heating (which matches the findings above).

15.2.5. INFLUENCE OF BUILDING METHOD

Figure 15.49 shows that the influence of type of building method on the performance of the LTATW is low. Good performances are achieved in both light-weight buildings, medium-weight buildings and heavy-weight buildings. To find out which construction method is best for a specific situation, reference is made to the

designer tables. In these tables, a slightly better performance is found for heavy-weight buildings (also confirmed by Figure 15.32 and 15.33).

Figure 15.49: Relative change versus difference in heating energy demand with indication of building methods.

In case of cooling, the same, low correlation applies. Therefore, the designer tables should again be consulted per situation. Both absolute reductions in cooling and heating energy demand can be achieved in all building methods (Figure 15.51).

Figure 15.50: Relative change versus difference in cooling energy demand with indication of building methods

Figure 15.51: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of building methods.

15.2.6. INFLUENCE OF ROOM SIZE

Figure 15.52 shows a distribution which is quite similar to the distribution shown in Figure 15.46. Again, a clear difference in distribution can be seen, in which the data points of small rooms are concentrated more around the bottom left part of the figure, while data points of big rooms in are concentrated more to the right. With the division of the chart into the four areas A, B, C and D in mind, it can be concluded that the situations that are most suitable for reducing the heating energy demand of the room are situations with big rooms (data-points positioned more in both area A and B). This can be explained by the fact that the energy demand for heating of bigger rooms is much higher, due to the higher room volume, and more energy is available to reduce. In relative sense, however, it seems to be that the LTATW performs slightly better in smaller rooms.

Because the energy demand of a small room differs considerably from the energy demand of a big room, the normalized results are also analyzed for this variable. These normalized results represent the energy consumption per square meter and are shown in Figure 15.53. From Figure 15.53 it can be seen that the best performance of the LTATW is achieved in small rooms. In these rooms, it seems to be that the Trombe wall reduces the most energy per square meter. In bigger rooms, the wall according to Figure 15.52 also performs well, because the reduction in kWh is high, but it seems that the larger wall (because of a bigger room) is not used to its full potential. With this knowledge, it can be concluded that a Trombe wall can be installed in both small rooms and big rooms. Yet, when a room is too big, the capacity of the LTATW will no longer be sufficient and only a small part of the energy will be reduced.

Figure 15.52: Relative change versus difference in heating energy demand with indication of room sizes.

Figure 15.53: Relative change versus difference in heating energy demand with indication of room sizes (per square meter).

In the case of cooling, the same two charts were analyzed: the chart with the exact values (Figure 15.54) and the chart with the normalized values (Figure 15.55). From Figure 15.54, the same type of behavior can be noticed as was seen in Figure 15.52. In relative sense, the LTATW performs slightly better in smaller rooms, but higher reductions in absolute sense are achieved in bigger rooms. From Figure 15.55 it can be seen that the best cooling performance of the LTATW is achieved in small rooms. In these rooms, it also seems to be that the Trombe wall reduces the most energy per square meter. In bigger rooms, the wall according to Figure 15.54 also performs well, because the reduction in kWh is high, but it seems that the larger wall (because of a bigger room) is not used to its full potential. With this knowledge, it can be concluded that a Trombe wall can be installed in both small rooms and big rooms. Yet, when a room is too big, the capacity of the LTATW will no longer be sufficient and only a small part of the energy will be reduced. In order to know whether enough energy will be reduced to repay the system, the designer tables will have to be consulted.

As expected, Figure 15.56 shows that room size does not affect the multi-seasonal operation capability of the LTATW.

Figure 15.54: Relative change versus difference in cooling energy demand with indication of room sizes.

Figure 15.55: Relative change versus difference in cooling energy demand with indication of room sizes (per square meter).

Figure 15.56: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of room sizes.

15.2.7. INFLUENCE OF WINDOW SIZE

Figure 15.57 shows a clear distribution between the reduction of the heating energy demand and the window size. Data-points of rooms with small windows are most positioned above the yellow line, while data points of rooms with large windows are most positioned below the yellow line. It can therefore be concluded that the Trombe wall can better be placed in a room with a smaller window, than in a room with a larger window, as it is apparently the case that the combination of an almost fully glazed façade (with more heat losses through the glazing) and a Trombe wall results in a poorer performance. To support this conclusion, the same chart has been created in which the two possible U-values of the four types of glazing are indicated (see Figure 15.58). It can indeed be deduced from this chart that a same, clear separation in the distribution exist for U-values of the glazing and that the U-value might indeed be the explanation why a Trombe wall performs better behind a smaller window. Apparently, a combination of a small window with double glazing gives the best results because the least transmission losses occur and at the same time, most

of the solar energy is transmitted to enhance the working principle of the LTATW. As mentioned before, this study assumed that the size of the Trombe wall is the same as the size of the window. A small window therefore means a smaller Trombe wall, and therefore also, less storage materials/capacity. Figure 15.57, however, reveals that the size of the Trombe wall has no major influence on the performance and that even a smaller version provides enough 'capacity'.

From Figure 15.59, a clear difference in distribution can be seen as well. However, in this case, the Trombe wall performs slightly better behind a large window, as data points of rooms with small windows are located more near the right bottom corner. This could be explained by the fact that rooms with large windows have a larger Trombe wall and experience higher solar loads, so more cooling energy can be reduced. As expected, Figure 15.60 shows that the size of the window does not significantly affect the multi-seasonal operation capability of the LTATW. Smaller windows are preferred for heating purposes and larger windows are preferred for cooling purposes.

Figure 15.57: Relative change versus difference in heating energy demand with indication of window sizes.

Figure 15.58: Relative change versus difference in heating energy demand with indication of the two possible U-values of all four glazing types.

Figure 15.59: Relative change versus difference in cooling energy demand with indication of window sizes.

Figure 15.60: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of window sizes.

15.2.8. INFLUENCE OF TYPE OF GLAZING

The last parameter that has been analyzed is the type of glazing. From Figure 15.61 it can be seen that the correlation between heating energy reduction and type of glazing is not that high and just as in case of orientation, good performances can be achieved with all four types of glazing. However, these good performances are not due to the position and adaptability capacity of the Trombe wall, but are the result of the energy storage capacity of the wall, which is utilized anyway. In order to be a better building application with PCM than for example, ordinary technologies like a PCM/concrete wall, the type of glazing is certainly of importance. Just as in case of the charts with varying orientation, when the chart with varying glazing types (and also the designer tables in chapter 17) are studied more locally, it can be seen that per situation, certain types of glazing result in a better performance than other types of glazing.

When studying Figure 15.61, it can be seen that rooms with triple coated glazing are more often concentrated near the origin of the chart. This suggests that with this type of glazing, an often lower reduction in absolute sense and relative sense is experienced. For the other types of glazing, it is more

difficult to form a substantiated conclusion. Therefore, reference is made to the designer tables in chapter 17. From these tables, it becomes clear that in most of the situations, a better performance in relative sense is achieved with a clear type of glazing (both double and triple). However, more energy is often reduced in absolute sense with the coated types of glazing. This can be explained by the fact that with a coated type of glazing, the heating energy demand is higher, and so, the Trombe wall reduces more energy in total. It is made clear here that a clear type of glazing, as expected, results in the best performance (because the LTATW can now absorb more energy from the sun), but it must be checked with the aid of the designer tables, whether the reduction in absolute sense will still be above average.

Figure 15.61: Relative change versus difference in heating energy demand with indication of glazing types.

In case of cooling (Figure 15.62), a same kind of distribution can be noticed. In this case, however, it is more clear that the uncoated types of glazing (both double and triple) result in the highest reduction of the cooling energy demand. Double coated glazing performs just a bit better than triple coated glazing, but their reductions are lower compared to the uncoated glazing types. Because the results differ greatly depending on the situation though, it is better to consult the designer tables again.

Finally, Figure 15.63 shows that type of glazing does not significantly affect the multi-seasonal operation capability of the LTATW. With double clear glazing however, the highest reductions are achieved.

Figure 15.62: Relative change versus difference in cooling energy demand with indication of glazing types.

Figure 15.63: Absolute change in cooling energy demand versus absolute change in heating energy demand, with indication of glazing types.

15.3. SENSITIVITY ANALYSIS

In this study, eight parameters were treated as variables and a many other parameters were assumed to be constants. The values of these constant parameters were determined based on customary, most common or most relevant values (the starting points and assumptions can be found in Table 14.5). In this section, the influence of changing these parameters is studied. The study in the section is also called the sensitivity analysis, as it is studied how representative the results of the simulations are when other values of these constant parameters are chosen. Are the findings from this study also valid for other starting assumptions, and if not, how sensitive are the results for a change in these assumptions?

In this sensitivity study, four constant parameters were analysed: the heating thermostat set-point, the cooling thermostat-setpoint, shading and the type of PCM. The first three parameters have been chosen because they can easily be influenced by people. In offices, for example, it can be assumed that the heating thermostat set-point is held fairly constant throughout the year, but in residences it is more common that people change this value now and then. The same applies to the cooling thermostat set-point. Besides thermostat set-points, shading is also a parameter that can often be influenced by users themselves. Some people prefer much incoming sunlight, but other people prefer to shield themselves from the sun as much as possible. A parameter that will not be influenced by users, but was interesting to study, is the type of phase change material. In the Double Face 1.0 project a particular type of PCM was chosen and this sensitivity analysis will show whether a good choice was made.

For each of the four studied parameters, four room configurations were analysed for a heating energy demand case, and four room configurations were analysed for a cooling energy demand case: one room configuration with both a high percentage reduction and a high absolute reduction (in area A), one room configuration with mainly a high absolute reduction (in area B), one room configuration with only a high percentage reduction (in area B), one room configuration with only a high percentage reduction (in area C) and one room configuration with both a low percentage and absolute reduction (area D). The four configurations regarding heating energy demand are highlighted in Figure 15.64 and the four configurations regarding cooling energy demand are highlighted in Figure 15.65.

Figure 15.64: Analyzed room configurations and their configuration number (heating energy demand).

Figure 15.65: Analyzed room configurations and their configuration number (cooling energy demand).

15.3.1. HEATING THERMOSTAT SET-POINT

The influence of the heating thermostat set-point on the absolute reduction of the heating energy demand of all four rooms is shown in Figure 15.66. It can be seen that a lower set-point temperature results in a lower reduction of the heating energy demand, and can be explained by the fact that a lower set-point temperature results in a reduction of the initial energy demand. From Figure 15.23 can then be seen that a lower initial energy demand results in a lower reduction by the LTATW. What can also be seen is that the

ratio between the points remains fairly the same, so that the findings from the main study (influence of parameters) of this thesis also apply to rooms with a slightly lower heating set-point temperature. However, something striking is what happens when the heating set-point temperature is increased. Up to 22 °C the same trend still applies, but when the set-point temperature is set at 23 °C, a sudden maximum appears. The same applies to a set-point temperature of 26 °C. This of course has everything to do with the melting and solidification temperature of the PCM. In part II (literature review) was revealed that the best storage performance of a PCM is achieved when the melting temperature of the PCM was set just above the heating set-point temperature.

Figure 15.66: Effect of heating thermostat set-point temperature on reduction of heating energy demand by the LTATW.

Figure 15.67 shows the results of relative change and absolute change in heating energy demand for all four rooms, with indication of the path that is followed when a different set-point is chosen. The data points with the default thermostat set-point (20 °C) are highlighted with a small circle. From the graph it can be seen that a higher thermostat set-point results in a higher absolute energy reduction and that multiple maximums exist.

Figure 15.67: Effect of changing the heating thermostat set-point temperature from 16 °C to 27 °C and path of the four data points.

When the set-point temperature is increased too much (higher than 26 °C), the reduction drops to almost zero. As a lot of temperatures have been studied here, the sensitivity seems reasonably large. However, it must be noted that if people change the set-point temperature, this is often only by a few degrees. Therefore, the sensitivity is in fact moderate.

15.3.2. COOLING THERMOSTAT SET-POINT

The influence of the cooling thermostat set-point on the absolute reduction of the cooling energy demand of all four rooms is shown in Figure 15.68. It can be seen that a lower set-point temperature results in a higher reduction of the cooling energy demand, and can be explained by the fact that a lower set-point temperature results in an increase of the initial energy demand. From Figure 15.27 can then be seen that a higher initial energy demand generally results in a higher reduction by the LTATW. The ratio between the results of the rooms is fairly the same, except of room 418. It is again striking that a minimum appears at a thermostat set-point of 23 °C. This can be explained by the fact that when the temperature in the room never exceeds 23 °C, the LTATW becomes useless.

Figure 15.68: Effect of cooling thermostat set-point temperature on reduction of cooling energy demand by the LTATW.

Figure 15.69 shows the results of relative change and absolute change in cooling energy demand for all four rooms, with indication of the path that is followed when a different cooling set-point is chosen. The data points with the default thermostat set-point (26 °C) are highlighted with a small circle. From the graph can be seen that a higher thermostat set-point results in a lower absolute energy reduction and that a maximum exist at 23 °C, which is always located around lower reductions.

Figure 15.69: Effect of changing the cooling thermostat set-point temperature from 22 °C to 29 °C and path of the four data points.

In contrast to the results from the sensitivity analysis of the heating set-point, the sensitivity seems to be somewhat higher in case of cooling set-point temperature.

15.3.3. SHADING

In all room models, the shading device is activated by default when the sun is shining (with a solar radiative power higher than 100 W) and when the operative temperature of the room exceeds 24 °C. In this sensitivity analysis, it is studied what the influence of the results is, when the preferences of occupants regarding shading are different. Or, in other words: how sensitive are the results when shading is already activated by users at a lower operative room temperature? Or even at a higher temperature than 24 °C?

The influence of the minimum 'shading temperature' on the absolute reduction of the cooling energy demand of all four rooms is shown in Figure 15.70. From the figure can directly be seen that the influence is minimal. Only when the shading device is used after 26 °C, the energy reduction decreases slightly for rooms 3019 and 3050.

Figure 15.70: Effect of 'minimal shading temperature' on reduction of cooling energy demand by the LTATW. Figure 15.71 shows the results of relative change and absolute change in cooling energy demand for all four rooms, with indication of the path that is followed when a different shading schedule is chosen. The data points with the default minimal temperature (24 °C) are highlighted with a small circle. From the graph can be seen that when the sun blinds are used at a higher temperature, lower reduction of cooling energy are achieved, as all paths move to the origin. However, the sensitivity is very low. Therefore, it can be concluded that whatever the shading schedule is, the results of the main study of this thesis are still valid.

Figure 15.71: Effect of 'minimal shading temperature' and path of the four data points.

15.3.4. TYPE OF PCM

Finally, the influence of type of PCM on the validity of the results was investigated. Because this parameter affects both the heating and the cooling demand, both cases are analyzed.

15.3.4.1. HEATING

The influence of the type of PCM on the absolute reduction of the heating energy demand of all four rooms is shown in Figure 15.72. From the figure, a fairly constant behaviour can be seen, with an optimum for the PCM product SP24E (room 169, 1945 and 2882) and SP25E2 (room 2469). The presence of the maxima is as expected: a PCM used for heating purposes performs at its best when the solidification temperature is just above heating thermostat set-point temperature and the solidification temperature of SP24E is at 22 °C. These results give the suspicion that a 'lower' PCM should have been chosen, but it should be noted that the LTATW is also used for cooling purposes and that therefore, a melting temperature just below the cooling set-point temperature is required. Furthermore, the influence of direct solar radiation causes a PCM type to be chosen that has an even higher transition temperature (demonstrated by room 2469).

Figure 15.72: Effect of PCM type on reduction of heating energy demand by the LTATW.

Figure 15.73 shows the results of relative change and absolute change in heating energy demand for all four rooms, with indication of the path that is followed when a different type of PCM is chosen. The data points with the default PCM type are highlighted with a small circle. From the graph can be seen that the path is limited and an optimum occurs at a certain spot on the path. It can also be seen that the sensitivity is relatively low.

Figure 15.73: Effect of PCM type and path of the four data points.

It has thus been proven above that an optimum reduction exist with a PCM with a transition temperature just above the heating thermostat set-point temperature. What is against the expectations, however, is that even with PCM's with a transition temperature lower and much higher than the heating set-point, the

results are still good. A less horizontal trend of the lines was expected here in advance. It therefore seems that the system also functions well without the presence of latent heat storage materials. To investigate whether this is true, three new simulations were done for each of the four room configurations: a simulation including a Trombe wall without latent energy (PCM is seen as a sensible heat storage material), a simulation including a Trombe wall in which the PCM is replaced by water and a simulation in which the Trombe wall has no thickness (and is just modelled as a flat vertical plane). The results are shown in Table 15.2.

	Reduction of heating energy demand (kWh)			
	169	1945	2469	2882
PCM layer = SP25E2 (h_{sf} = 1.8e10 ⁵ J/kg)	52	369	834	186
PCM layer = SP25E2 (h _{sf} = 0 J/kg)	35	355	738	164
PCM layer = Water ⁷	40	356	746	169
No thickness of PCM layer and insulation layer	32	307	733	121

Table 15.2: Reduction of heating energy demand with different Trombe wall layer characteristics.

It can indeed be seen from Table 15.2 that the installation of the Trombe wall system also results in substantial energy savings without integration of a latent storage material. Nevertheless, it can be seen that when a material with latent storage capacity (PCM) is chosen, an even higher reduction will take place. If only the results of the above four room configurations are considered, it can be calculated that of the total reduction, on average 15% is achieved by the latent heat storage principle of the PCM and 85% by the Trombe wall construction itself. Replacing the PCM layer with (the much cheaper material) water or only applying a flat plate without thickness will also lead to substantial reductions in energy demand, according to this numerical study.

15.3.4.2. COOLING

The influence of the type of PCM on the absolute reduction of the cooling energy demand of all four rooms is shown in Figure 15.74. From the figure, a fairly constant behaviour can be seen, with an optimum for the PCM product SP26E. The presence of the maxima is reasonably as expected: a PCM used for cooling purposes performs at its best when the melting temperature is just below cooling thermostat set-point temperature and the melting temperature of SP26E is at 26 °C. Therefore, the PCM type looks a bit too 'high'. However, it can be concluded that the choice for SP25E2 is the right choice, as it represents the average of the ideal temperatures found for heating and cooling.

Figure 15.74: Effect of PCM type on reduction of cooling energy demand by the LTATW.

⁷ Material characteristics of water: $C_p = 4200 \text{ J/kgK}$; $\rho = 1000 \text{ kg/m}^3$; $\lambda = 0.6 \text{ W/mK}$; $h_{sf} = 0 \text{ J/kg}$

Figure 15.75 shows the results of relative change and absolute change in cooling energy demand for all four rooms, with indication of the path that is followed when a different type of PCM is chosen. The data points with the default PCM type are highlighted with a small circle. From the graph can be seen that again, the path is limited and an optimum occurs at a certain spot on the path. Again, the sensitivity is relatively low.

Figure 15.75: Effect of PCM type and path of the four data points.

Because also in case of cooling, a less horizontal trend of the lines in Figure 15.74 was expected, three new simulations were done for each of the four room configurations as well. The results are shown in Table 15.3.

	Reduction of cooling energy demand (kWh)			
	418	1989	3019	3050
PCM layer = SP25E2 (h_{sf} = 1.8e10 ⁵ J/kg)	90	70	556	250
PCM layer = SP25E2 (h_{sf} = 0 J/kg)	68	59	504	213
PCM layer = Water	78	61	554	223
No thickness of PCM layer and insulation layer	66	61	435	196

Table 15.3: Reduction of cooling energy demand with different Trombe wall layer characteristics.

From Table 15.3 it can also be seen that the installation of the Trombe wall system results in substantial energy savings even without integration of a latent storage material. Nevertheless, it can be seen that when a material with latent storage capacity (PCM) is chosen, the highest reduction will take place. If only the results of the above four room configurations are considered, it can be calculated that of the total reduction, on average 16% is achieved by the latent heat storage principle of the PCM and 84% by the Trombe wall construction itself. Replacing the PCM layer with (the much cheaper material) water or only applying a flat plate without thickness will also lead to substantial reductions in energy demand.

16. ARTIFICIAL LIGHTING

In this Master thesis study, the main goal was to predict the thermal energy savings that result from installing an innovative Trombe wall in a room. A type of energy demand that is not explicitly included in the main study is the (electrical) energy demand for artificial lighting. Nevertheless, given the purpose of this study (providing recommendations to designers based on the energy savings), it is important to study these as well. It is often the case that the innovative Trombe wall comes with significant thermal energy savings, but by blocking the incoming sunlight, the electrical energy demand for artificial lighting is obviously higher. As a result, some favorable situations are therefore not as favorable as they may seem in advance. This chapter shows the results of this particular study, focused only on the energy consumption for artificial lighting. In section 16.1 the simulation models with their specific configuration, materials and dimensions are explained. In section 16.2 the lighting schedules are described and in section 16.3 the type of artificial lighting used and their corresponding lighting control mechanism is explained. The chapter ends with sections 16.4 and 16.5, in which the results of the simulations are shown and the conclusions are described.

16.1. SIMULATION MODELS

The energy demand for artificial lighting is calculated using DesignBuilder, in which 256 different situations have been modelled. In comparison with the main study of this Master thesis project, the amount of situations investigated is much less. In the main study, eight different aspects are examined: building function, age, building method, room size, window size, type of glazing, orientation and climate. The combinations of all these parameters with their corresponding subdivisions result in a total of 3072 possible situations. The parameters that have an influence on the energy demand for artificial lighting are: building function, room size, window size, type of glazing, orientation and climate are building method have no influence, and when it is assumed that the difference in light transmission through double glazing and triple glazing is negligible (so two types of glazing are studied instead of four), 256 situations remain.

For every single situation, two models have been made: one without LTATW and one with LTATW. The differences between both models can be seen in Figure 16.1 and Figure 16.2 (a large window is shown in the example).

Figure 16.1: Small room with and without LTATW.

Figure 16.2: Big room with and without LTATW.

Both models represent the same rectangular space, consisting of four walls, a roof and a floor. The only difference between the two models is the layout of the glazing: in the model without LTATW, the glass has the same properties over the entire surface. In the model with LTATW, the glazed surface consists of three layers, in which the middle layer represents the concentration of openings in the Trombe wall. This layout is a simplification of reality, but it does approach the final design of the LTATW, where the openings are no longer homogeneously distributed over the surface, but are concentrated around eye level. The total surface area of the middle layer is equal to 10% of the total glazed area. The walls, roof and floor of the room all have a reflection factor of 0.

As mentioned above, two types of glazing have been investigated: clear and coated. The clear glazing has a light transmittance of 80% and the coated glazing has a light transmittance of 20%⁸. The two different phases of the PCM (solid and liquid) are also taken into account. A PCM in solid state transmits less daylight compared to a PCM in liquid state. The LT-value of a solid piece of PCM is equal to 0.2% and the LT-value of a liquid piece of PCM equals 24.2% (Wattez, 2018). Eventually, the net light transmission into the room is equal to the product of the LT-value of the glazing and the LT-value of the innovative Trombe wall. An overview of all possible glazing layer characteristics is given in Table 16.1.

In DesignBuilder, the minimum allowed value of the light transmission through a glazed surface equals 0.01. As a consequence, in the cases with the presence of a LTATW in solid state in combination with a layer of clear or coated glazing in front, a configuration shown in Figure 16.3 is used. In this model, the low light transmittance through the top and bottom layer is neglected, and only one layer is modelled.

	LT - Clear	LT - Coated
No Panel:	0.8	0.2
With LTATW – Liquid state:		
Layer representing openings (middle layer)	0.8	0.2
Layer representing LTATW (top and bottom layer)	0.1936	0.0484
With LTATW – Solid state:		
Layer representing openings (middle layer)	0.8	0.2
Layer representing LTATW (top and bottom layer)	0.0016	0.0004

 Table 16.1: LT-values of all layers in DesignBuilder model

⁸ Values for light transmittance obtained from: https://kennisbank.isso.nl

Figure 16.3: Small room of a residence with the LTATW in solid state.

16.2. LIGHTING SCHEDULES

This study assumes that the PCM-containers in the PCM wall are in complete fluid state in the office cases. In these cases, the occupation times are from 08:00 - 18:00 (Monday to Friday), so during the day. During this period, it is assumed that the sun shines uninterrupted. In case of a residence, it is assumed that the LTATW is completely solid within the lighting schedule of week days and partly liquid or solid during the weekend. For the residences, a lighting schedule of 07:00 - 08:00 and 18:00 - 23:00 (Monday to Friday) is used. On Saturday and Sunday, the occupation time is assumed to be from 09:00 - 00:00. Within the latter, the PCM is assumed to be in liquid state from 09:00 - 18:00 and in solid state from 18:00 - 00:00 (see Table 16.2). In DesignBuilder, an on-off simulation including different phases of PCM over time is not possible. Therefore, in case of the residences, two different simulations had to be run (one with using a liquid PCM and one with using a solid PCM) and the results were added together. Within the occupation time of the office rooms, no phase transition of the PCM occurs, and a single simulation was enough.

Table 16.2: Lighting schedule of offices and residences and associated state of PCM.			
	Lighting schedule	State of PCM	
Offices			
Monday – Friday	08:00 - 18:00	liquid	
Saturday, Sunday	-	-	
Residences			
Monday – Friday	07:00 - 08:00	solid	
	18:00 - 23:00	solid	
Saturday, Sunday	09:00 - 18:00	liquid	
	18:00 - 00:00	solid	

16.3. LUMINAIRE TYPE AND LIGHTING CONTROL

In DesignBuilder, calculations have been done assuming a suspended luminaire type (see Figure 16.4), with a normalised power density of 2.0 W/m² per 100 lux. The lighting control mechanism includes a target illuminance⁹ of 500 lux (at 0.80 m height) for offices and a target illuminance of 200 lux for residences.

The electric lights are controlled according to the availability of natural daylight. In DesignBuilder, a simulation is done where the illuminance levels are calculated at each time step. After this, it is determined how much the artificial lighting can be reduced. The illuminance level resulting from the incoming sunlight depends on many factors, including sun position, sensor positions, location, glass transmittance of windows, room size, shading and reflectance of interior surfaces. In DesignBuilder, the reduction of the electrical energy can be calculated in several ways. In this study, a linear control type is used (Figure 16.5). With linear control, the luminaires dim and light up in a continuously and linearly way from maximum light output to minimum light output, and vice versa (DesignBuilder, 2018).

⁹ Target illuminance values obtained from: NEN-EN 12464-1 (2011) and BIM (2010).

Figure 16.4 and 16.5: Luminaire types (left) and linear lighting control (right) (DesignBuilder, 2018).

16.4. SIMULATION RESULTS

Just like the models in the main study, all 256 situations have been simulated over a period of one year (1 Jan - 31 Dec). For each situation, two simulations were carried out: one without LTATW and one with LTATW. For both cases, the annual electrical energy demand in kWh was calculated, as was the absolute difference and the increase in percentage. The results regarding energy increase are shown in the designer tables (Table 5 and 6) in chapter 17.

For all situations investigated in the main study, this study also reveals the energy and comfort performance related to artificial lighting. Multiple tables have been developed in this thesis (see chapter 17), and to obtain a total picture for a given situation, several tables have to be consulted one after the other. What is important to mention here is that the values in Table 1 to 4 (related to thermal energy) represent the *energy demand*. The final *energy consumption* depends on the type of heating or cooling generation system used (the energy demand has to be multiplied by a conversion factor, which differs per generation system). The values in Table 5 and 6 already represent the electrical energy *consumption* for artificial lighting.

Also for this side-study, a short data-analysis was carried out with modeFRONTIER. For findings regarding the influence of the variable parameters, the results for initial electrical energy demand are as expected. The size of the room has the biggest influence on the energy demand, followed by the type of glazing (Figure 16.6). A bigger room means a higher energy demand, just like a coated type of glazing. The energy demand for artificial lighting in small office rooms is in most cases lower than the energy demand of small rooms of residences. This can be explained by the fact that in office cases, the occupation times are during the day when the sun is shining. For residences, the occupation times are mainly in the evening when its dark, and therefore, more lighting is needed. Only in a cold climate there are cases where the energy demand of offices is higher, which is logical, because days in cold climates are relatively shorter. It can also be seen that when the room gets bigger, the influence of the higher target illuminance in offices becomes more influential, as a result of which the energy demand is often larger. From the designer tables (Table 5 and 6) can be seen that the influence of orientation is relatively small.

Figure 16.6: Effect size of variable parameters on electrical energy demand for artificial lighting, without LTATW.

From Figure 16.7 and Table 5 and 6 in chapter 17 can be seen that the highest increase in electrical energy demand is found in office cases. This makes sense, because suddenly the amount of natural light is greatly reduced. In residences, the sun does not always shine during occupation times, as a result of which the LTATW has less influence on the energy demand. After building function, the size of the room and climate are of greatest influence. Logically, the biggest change occurs for small rooms, as in the warmest climates (with the longest days).

Figure 16.7: Effect size of variable parameters on the percentage increase in electrical energy demand for artificial lighting.

From Figure 16.7 and Table 5 and 6 in chapter 17 can be seen that also the highest increase in absolute sense occurs in office rooms. A bigger room means a higher energy demand and therefore, also a bigger increase and a smaller window means less natural light, so a higher increase in energy demand.

Figure 16.8: Effect size of variable parameters on the difference in electrical energy demand for artificial lighting.

Finally, Figure 16.9 and 16.10 reveal that the average increase in energy demand equals 52.4% in relative sense and 222.9 kWh in absolute sense. However, the standard deviation is in both cases too high to assume this average value for all situations. That is why it is better to consult the designer table for each individual situation.

Figure 16.9 and 16.10: Probability density of values for relative change and difference in energy demand for artificial lighting.

16.5. SENSITIVITY ANALYSIS

One of the assumptions in this study was that the phase change material in the LTATW is in liquid state every day and in every climate between 08:00 AM and 18:00 PM. In practice, however, the times for sunrise and sunset vary by climate and season. In climates and seasons where the sun starts to shine before 08:00 AM, the results with this assumption will approach reality, but in climates and season where the sun starts to shine the sun starts to shine later (and also goes down earlier) the LTATW is in a liquid state for a much shorter amount of time.

In this section, a sensitivity analysis is conducted into the influence of the start and end time of the liquid state of the PCM on the findings of the study. Also in this sensitivity analysis, not all 256 situations are resimulated, but only four: two situations (one office room and one residence room) where the energy demand increases the least (in absolute sense) and two situations (one office room and one residence room) where the energy demand increases the most (in absolute sense). From Table 6 in chapter 17 can be seen that these are the following room configurations:

- 1. Lowest increase in residence: small room dry climate large window with clear glazing, facing east (3.26 kWh).
- Lowest increase in office: small room dry climate large window with clear glazing, facing south (2.14 kWh).
- 3. Highest increase in residence: big room temperate climate small window with clear glazing, facing north (236.8 kWh).
- 4. Highest increase in office: big room tropical climate small window with clear glazing, facing north (1131.76 kWh).

For each of the four configurations, a new simulation has been carried out in which the time span (of 10 hours) of the liquid state of the PCM has been moved to earlier in the day and later in the day. The results are shown in Figure 16.11.

Figure 16.11: Effect of times of liquid state of PCM on increase in electrical energy demand for artificial lighting.

From Figure 16.11 can be seen that the time span on which the PCM is in liquid state has a small to moderate influence on the increase in energy demand. Only in case of room 4 it appears that an optimal result has been achieved with the assumption made. In the other three room cases, the energy increase is almost constant. For rooms 2 and 4 (both office rooms), a minimum can be seen, which can be explained by the fact that at this time span the office always receives sunlight through a Trombe wall in liquid state. For all other time spans, there is always at least one hour where the wall is in solid state (during the occupation time). For room cases 1 and 3 (both rooms in residences), slight optimums can also be seen at later time spans, which makes sense, because then the room will also experience a part of daylight that passes through a liquid wall.
17. DESIGNER TABLES

In addition of studying the influence of different parameters on the energy and comfort performance of the lightweight, translucent adaptable Trombe wall, another objective was to develop several designer tables. With these tables, an interested designer or owner of a building can instantly get an idea of the performance of the system in his or her situation in a few glances. In addition, it can also be derived from the tables, how a better performance may be achieved, if certain values or configurations in the design are adjusted. In total, six main tables were developed: two with regard to the heating energy demand, two with regard to the cooling energy demand and two with regard to the energy demand for artificial lighting.

17.1. EXPLANATORY NOTES

As mentioned above, two tables have been developed for each type of energy demand: one table has been set up with values for the energy reduction or increase in absolute terms and one with values of the energy reduction of increase expressed in percentages. In this way, the designer receives a complete picture of his or her situation, and knows whether installing a LTATW is effective or useful, or not. Two tables for each type of energy demand have been developed, in order to prevent a distorted picture from being given. Namely, when only a table with values for the increase or decrease in percentages is given, one does not know for sure whether a large reduction in absolute sense also takes place. Also the other way around, when a large reduction in absolute sense is achieved, it is also desirable to know how many percent this is of the initial energy demand. By being able to consult both tables, the designer can now know both.

In addition to being able to read the exact values from the tables, it is also indicated with a colour which situations are favourable and which are not. A green cell means a favourable result and a red cell means a poor result. Everything in between is indicated with a lighter green colour, a lighter red colour or a yellow colour. In order to still be able to see in only one table whether a value is favourable in both absolute and relative terms, some values are bolded and some are not. In the tables with absolute values (in kWh), a bolded value means that in this situation, also an above average reduction is achieved in relative sense (%) (located in area A and C). In the table with percentage changes, a bolded value means that in that situation, also an above average reduction is not be tables in the tables of heating and cooling represent the decrease in energy *demand* per year. The values in the tables of artificial lighting represent the increase in energy *consumption* (final energy) per year.

The vertical and horizontal arrangement of the variable parameters and their subdivisions is based on their influence. The parameters with the greatest influence are most left or most at the top in the tables and the parameters with the smallest influence are located at the most right or at the bottom part of the axes. Therefore, note that the arrangement differs per table.

17.2. TABLE 1: RELATIVE CHANGE IN HEATING ENERGY DEMAND

				Climate →				Cold o	limate							Temper	ate climate							Dry	climate							Tropica	al climate			
TABLE 1:	RELATIVE CHANGE	IN HEATING ENERGY D	DEMAND (%)	Building function →		0	ffice			Resid	dence			0	Office			Resi	sidence				Office			Resid	lence			Off	fice			Resid	ience	
Age ↓	Window size ↓	Building method ↓	Room size ↓	Orientation Type of glazing	North	East	South	West	North	East	South	West	North	East	South	n West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		light-weight	Small room (A=20m²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-54.3 - 51.7 -81.1 -75.4	-57.4 -51.4 -84.4 -75.9	-83.1 -60.7 -100.0 -84.9	-57.5 -52.8 -86.8 -76.9	-37.9 -33.7 -50.3 -45.4	-37.4 -34.5 -50.8 -46.1	-52.8 -39.2 -73.7 -50.5	-38.3 -35.8 -52.3 -46.8	-78.7 -64.2 -100.0 -85.7	-85.7 -65.2 -100.0 -85.2	-96.0 -71.4 -100.0 -90.5	-82.0 -65.6) -100.0 -88.9	-47.7 -40.9 -70.0 -55.2	-52.7 -40.7 -78.0 -56.7	-67.3 -45.8 -100.0 -60.6	-52.7 -41.1 -75.8 -56.7	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Light Weight	Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	- 56.9 - 55.0 -56.7 -55.9	- 58.3 - 55.6 -59.6 -56.2	-75.8 -59.3 -82.5 -58.1	-58.1 -56.2 -63.8 -56.9	-35.0 -32.4 -40.4 -37.8	-33.7 -32.7 -41.0 -38.1	-45.0 -36.1 -59.7 -40.9	-34.0 -33.2 -41.6 -38.4	-65.2 -55.3 -75.9 -55.3	-72.1 -53.8 -80.8 -56.8	-80.6 -60.3 -93.8 -57.6	-68.9 -53.8 -80.0 -56.8	-46.6 -41.4 -60.7 -50.6	-52.0 -42.1 -67.6 -51.0	-60.8 -45.7 -87.1 -54.7	-53.0 -42.3 -68.1 -51.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	Small window	Modium weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-56.2 - 53.3 -90.8 -86.5	-60.7 -53.4 -92.3 -86.7	-88.1 -62.1 -100.0 -93.3	-61.5 -53.6 -96.2 -86.7	-35.8 -32.5 -48.6 -43.5	-36.1 -33.2 -49.2 -44.6	-54.2 -38.5 -76.1 -49.5	-36.2 -34.2 -50.6 -45.0	-92.5 -74.0 -100.0 -100.0	-96.4 -75.7 0.0 -100.0	-100.0 -83.7 0.0 -100.0) -96.4 -76.1 0.0) -100.0	-47.0 -39.1 -73.1 -55.5	-52.1 -39.1 -85.1 -56.4	-66.7 -45.0 -100.0 -61.7	-51.8 -39.5 -81.1 -56.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	(wwr=0.25)	Weddurf-weight	Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-80.2 -77.8 -93.3 -95.2	-82.5 -78.4 -100.0 -95.0	-96.7 -85.9 -100.0 -90.9	-83.5 -78.8 -100.0 -94.7	-33.4 -31.3 -40.2 -36.4	-32.3 -31.5 -40.7 -36.7	-47.2 -34.8 -62.8 -40.3	-32.8 -32.1 -42.0 -36.9	-100.0 -100.0 0.0 0.0	-100.0 -100.0 0.0 0.0	0.0 -100.0 0.0 0.0	-100.0 -100.0 0.0 0.0	-47.6 -42.2 -67.8 -52.7	-54.6 -42.7 -78.9 -53.6	-68.8 -46.3 -100.0 -58.3	-54.1 -42.9 -77.5 -53.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Home weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-62.8 -58.3 -100.0 -97.4	-69.1 -58.9 -100.0 -97.2	-97.8 -73.5 -100.0 -100.0	-70.6 -60.1 -100.0 -97.2	-38.1 -33.9 -52.5 -46.5	-37.5 -35.1 -54.7 -47.6	-61.5 -40.7 -84.0 -53.6	-38.2 -36.1 -56.4 -48.2	-100.0 -89.1 0.0 -100.0	-100.0 -91.4 0.0 -100.0	0.0 -97.2 0.0 0.0	-100.0 -91.4 0.0 -100.0	-50.8 -41.5 -84.3 -60.9	-57.4 -41.7 -93.9 -62.1	-78.8 -48.1 -100.0 -70.8	-57.7 -41.3 -93.9 -62.9	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
New huilding		incovy weight	Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-96.3 -94.0 -100.0 -100.0	-96.2 -94.2 0.0 -100.0	-100.0 -97.2 0.0 -100.0	-97.4 -94.9 0.0 -100.0	-35.7 -33.0 -45.3 -40.4	-35.7 -33.2 -47.9 -41.1	-53.7 -37.7 -78.0 -47.1	-36.3 -33.6 -49.3 -42.2	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-56.5 -47.3 -85.4 -67.3	-65.9 -48.0 -95.8 -69.0	-88.7 -54.0 -100.0 -74.7	-65.0 -48.0 -95.9 -69.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		light-weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-24.5 -22.4 -31.5 -26.8	-27.8 -22.6 -38.5 -27.5	-62.1 -31.1 -100.0 -35.8	-30.8 -25.1 -38.4 -28.2	-20.1 -17.3 -20.5 -15.9	-22.4 -18.1 -26.7 -17.0	-53.3 -25.4 -78.4 -23.2	-24.5 -19.8 -28.7 -18.2	-37.7 -29.9 -74.2 -36.6	-47.4 -29.8 -85.7 -37.6	-73.3 -37.3 -100.0 -50.0	-51.2 -30.8 -85.7 -38.4	-26.2 -19.8 -38.2 -20.9	-34.4 -20.9 -53.9 -20.3	-64.4 -26.5 -88.6 -26.8	-36.3 -21.8 -52.2 -21.0	0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 -100.0 0.0 0.0	0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
			Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-34.9 -32.3 -42.0 -33.4	-37.7 -32.0 -42.4 -35.7	-71.5 -41.3 -89.0 -43.5	-40.1 -34.1 -44.5 -35.9	-23.6 -20.8 -18.9 -17.1	-23.8 -21.3 -21.4 -17.4	-46.3 -25.6 -61.8 -21.8	-25.5 -22.9 -24.4 -18.1	-51.7 -43.3 -68.1 -39.4	-61.0 -42.3 -81.1 -40.2	-78.7 -48.3 -89.5 -47.4	-58.3 -43.7 -71.1 -40.9	-32.4 -26.6 -38.2 -23.1	-37.4 -26.0 -45.5 -23.9	-60.3 -30.6 -95.2 -28.1	-37.1 -26.9 -47.3 -24.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	Large window	Medium-weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-25.0 -22.6 -32.9 -26.9	-28.2 -23.2 -36.8 -27.1	-60.7 -31.2 -100.0 -34.8	-31.8 -24.9 -42.6 -27.9	-20.0 -17.3 -19.9 -15.8	-21.5 -17.5 -25.5 -16.5	-44.8 -23.4 -68.1 -22.7	-22.4 -19.2 -28.0 -17.4	-38.9 -29.3 -100.0 -43.6	-48.6 -29.5 -100.0 -44.9	-77.6 -37.9 -100.0 -54.8	-51.4 -30.5 -100.0 -45.7	-26.4 -20.2 -41.2 -20.4	-31.2 -20.5 -57.3 -20.3	-56.2 -26.2 -100.0 -27.0	-35.1 -21.3 -56.0 -20.7	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	(wwr=0.75)		Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-38.1 -36.0 -53.6 -48.0	-42.2 -36.0 -58.7 -48.1	-76.1 -44.3 -100.0 -61.5	-44.3 -36.8 -64.6 -49.3	-23.2 -21.0 -18.9 -17.0	-23.9 -21.9 -22.2 -17.6	-44.8 -26.9 -51.0 -21.1	-25.5 -23.4 -24.7 -18.2	-70.1 -51.4 0.0 -85.7	-86.6 -52.9 0.0 -90.9	-93.3 -59.6 0.0 -100.0	-87.8 -53.6 0.0) -90.9	-32.6 -26.5 -42.7 -24.3	-40.1 -26.3 -56.5 -25.2	-54.9 -32.3 -100.0 -28.3	-37.4 -26.9 -54.2 -25.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Heavy-weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-26.2 -23.4 -37.7 -29.9	-29.4 -24.4 -42.2 -30.1	-62.0 -33.7 -100.0 -42.4	-34.2 -26.0 -48.6 -30.9	-21.0 -17.4 -20.8 -16.7	-21.5 -18.2 -29.0 -17.8	-50.0 -24.6 -70.6 -24.7	-23.9 -20.5 -31.7 -18.5	-42.2 -31.3 -100.0 -55.6	-57.4 -32.1 0.0 -60.0	-88.5 -40.1 0.0 -82.1	-59.2 -33.1 0.0 -60.0	-28.1 -20.8 -45.3 -21.4	-34.3 -21.4 -61.9 -22.4	-54.0 -27.0 -100.0 -28.9	-37.3 -21.9 -62.5 -23.2	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
			Big room (A=100m ²)	Double glazing (ciear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-41.6 -38.7 -77.3 -65.8	-48.2 -38.9 -83.7 -68.1	-87.2 -53.0 0.0 -83.9	-50.5 -40.0 -90.5 -68.3	-24.6 -21.9 -21.0 -17.9	-24.6 -22.7 -25.7 -18.7	-48.4 -27.7 -70.2 -23.8	-26.1 -23.4 -27.8 -19.4	-89.1 -64.2 0.0 -100.0	-98.1 -66.5 0.0 0.0	-100.0 -78.5 0.0 0.0	0 -98.2 -67.2 0.0 0.0	-33.8 -27.8 -52.7 -27.4	-42.7 -27.2 -85.8 -27.9	-67.9 -33.4 0.0 -34.5	-42.0 -28.3 -75.4 -28.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Light-weight -	Small room (A=20m²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (clear)	-24.7 -23.9 -26.9 -25.8 -14.9	-25.6 -23.8 -28.1 -25.6 -15.3	-32.0 -25.3 -33.7 -26.7 -17.8	-26.3 -24.3 -28.8 -26.1 -15.6	-22.4 -20.8 -24.0 -22.0 -12.6	-23.5 -21.3 -25.2 -22.0 -13.3	-27.8 -22.6 -29.0 -22.7 -14.6	-23.3 -21.6 -24.8 -22.2 -13.0	-30.1 -27.4 -33.6 -29.7 -18.2	-32.0 -27.3 -34.8 -30.0 -19.1	-38.2 -29.0 -40.8 -30.7 -22.0	-31.9 -27.7 -34.4 -30.1 -19.2	-24.7 -21.9 -26.4 -23.2 -13.6	-26.3 -22.2 -28.6 -23.1 -14.8	-30.5 -23.4 -32.9 -23.5 -16.0	-26.3 -22.3 -28.0 -23.1 -14.0	-100.0 -75.0 -100.0 -60.0 -68.8	-80.0 -80.0 -75.0 -75.0	-100.0 0.0 -100.0 0.0	0.0 -75.0 0.0 -66.7 -80.0	-81.8 -55.1 -77.8 -59.0 -50.9	-100.0 -59.4 -100.0 -58.6 -61.5	-83.3 0.0 -66.7 -100.0	-100.0 -63.6 -100.0 -59.1 -66.7	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
			Big room (A=100m ²)	Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (clear)	-14.8 -14.7 -14.4 -25.8	-14.8 -15.3 -14.2 -27.3	-15.1 -16.9 -14.4 -31.9	-14.9 -15.3 -14.3 -27.7	-12.0 -12.2 -11.5 -22.4	-12.2 -13.4 -11.4 -22.7	-12.5 -14.2 -11.6 -26.4	-12.4 -13.0 -11.5 -22.7	-17.4 -18.1 -16.8 -31.5	-17.2 -18.4 -16.6 -32.9	-17.9 -20.0 -16.7 -39.2	-17.5 -18.8 -16.8 -32.7	-13.0 -13.5 -12.4 -24.6	-12.9 -14.6 -12.3 -26.0	-13.7 -16.6 -12.3 -30.0	-13.0 -14.3 -12.3 -26.0	-35.7 -66.7 -33.3 0.0	-43.5 -77.8 -38.1 0.0	-63.6 0.0 -57.1 0.0	-42.9 -66.7 -35.0 0.0	-39.6 -50.0 -38.4 -100.0	-39.0 -57.1 -37.2 0.0	-45.7 -100.0 -37.8 0.0	-44.3 -65.0 -36.3 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	Small window (wwr=0.25)	Medium-weight -	Small room (A=20m ²)	Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (coated)	-25.0 -27.8 -26.9 -15.7	-24.9 -29.3 -26.7 -16.2	-26.5 -34.7 -27.6 -18.5	-25.2 -29.7 -26.9 -16.1	-20.7 -23.8 -21.8 -12.6	-21.2 -24.4 -21.8 -13.0	-22.5 -29.1 -22.4 -13.7	-21.9 -24.1 -22.1 -12.5	-28.9 -34.5 -31.5 -19.7	-29.0 -35.7 -31.5 -20.7	-30.7 -40.9 -32.0 -22.1	-29.5 -35.7 -31.7 -19.9	-21.8 -26.2 -23.0 -13.7	-22.0 -28.8 -23.0 -14.7	-23.3 -32.2 -23.5 -15.9	-22.2 -28.0 -23.0 -14.3	-100.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-56.4 -100.0 -60.0 -53.5 -29.6	-54.2 -100.0 -52.4 -89.5	-100.0 0.0 -85.7 0.0	-62.5 0.0 -58.8 -100.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
			(A=100m ²) Small room	Triple glazing (clear) Triple glazing (coated) Double glazing (cear) Double glazing (cear)	-15.5 -15.2 -29.4 -28.3	-16.3 -14.9 -30.9 -27.8	-18.1 -14.9 -36.7 -29.8	-15.9 -15.0 -31.0 -28.2	-12.2 -11.5 -25.0 -23.5	-13.1 -11.4 -25.7 -24.0	-13.8 -11.5 -30.8 -25.8	-12.7 -11.5 -25.8 -24.6	-19.3 -18.4 -35.5 -32.9	-20.0 -18.3 -36.1 -33.1	-21.9 -18.4 -42.9 -35.3	-20.0 -18.3 -37.3 -33.3	-13.4 -12.3 -27.9 -24.7	-14.4 -12.1 -29.6 -25.1	-16.3 -12.2 -33.3 -26.3	-13.9 -12.2 -29.9 -25.2	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-47.5 -35.4 -100.0 -61.8	-81.8 -30.4 0.0 -65.0	0.0 -39.5 0.0 0.0	-100.0 -29.5 0.0 -85.7	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Heavy-weight –	(A=20m ²) Big room	Triple glazing (clear) Triple glazing (coated) Double glazing (clear) Double glazing (coated)	-32.0 -30.7 -18.3 -17.9	-33.6 -30.2 -19.0 -17.8	-39.1 -31.5 -21.1 -18.5	-33.9 -30.6 -19.1 -18.0	-27.1 -24.9 -14.6 -13.9	-27.7 -25.1 -14.8 -13.9	-32.5 -25.8 -15.8 -14.2	-27.7 -25.4 -14.6 -14.3	-39.0 -36.1 -22.7 -22.0	-40.3 -35.9 -23.8 -21.8	-47.6 -37.1 -26.2 -22.2	-40.5 -36.2 -23.1 -22.1	-30.1 -26.3 -15.9 -14.8	-32.4 -26.3 -16.8 -14.8	-36.6 -26.9 -18.3 -15.3	-32.0 -26.4 -16.7 -15.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-100.0 -68.0 -76.5 -41.0	0.0 -66.7 -100.0 -42.2	0.0 -100.0 0.0 -100.0	0.0 -80.0 0.0 -53.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
Old building			(A=100H ⁻) Small room (A=20m ²)	Triple glazing (clear) Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	-18.3 -17.8 -13.4 -13.0 -12.5	-19.2 -17.5 -15.4 -12.8 -14.9	-21.0 -17.8 -37.0 -16.8 -38.1	-19.0 -17.7 -18.9 -14.1 -18.3	-14.3 -13.5 -13.6 -12.1 -11.6	-15.1 -13.4 -18.0 -13.7 -15.7	-15.9 -13.7 -36.6 -17.2 -32.8	-14.7 -13.5 -19.2 -14.5 -15.3	-23.3 -21.9 -18.5 -15.4 -18.6	-23.1 -21.7 -21.2 -15.6 -22.4	-25.6 -21.8 -43.6 -19.0 -47.8	-23.6 -21.8 -22.4 -16.1 -25.9	-15.9 -14.4 -17.0 -13.0	-16.9 -14.3 -20.7 -13.4 -19.7	-18.8 -14.4 -39.5 -16.7 -37.6	-16.5 -14.4 -21.1 -14.3 -19.7	0.0 -100.0 -61.5	0.0	0.0	0.0 0.0 -100.0	-74.2 -42.9 -100.0 -44.4	-100.0 -40.7 0.0 -54.8	-70.4 0.0 -100.0	-100.0 -46.2 0.0 -87.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0
		Light-weight –	Big room (A=100m ²)	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	-10.5 -10.8 -10.9 -7.1	-10.9 -11.9 -10.8 -8.3	-13.7 -23.2 -12.5 -18.5	-11.4 -14.4 -11.5 -11.3	-9.5 -10.5 -9.5 -7.2	-10.5 -11.8 -10.2 -8.7	-12.9 -19.1 -12.1 -12.0	-11.4 -12.4 -10.8 -8.1	-13.4 -14.8 -13.6 -10.8	-13.8 -15.1 -13.4 -12.7	-17.2 -29.1 -15.2 -26.5	-14.5 -18.2 -14.2 -13.4	-10.2 -12.6 -10.3 -9.1	-10.4 -13.8 -10.4 -12.2	-12.4 -20.5 -12.1 -19.0	-10.6 -14.0 -10.7 -10.8	-60.0 -100.0 -43.2 -100.0	-66.7 -100.0 -64.0 -100.0	0.0 0.0 -100.0 0.0	-100.0 0.0 -65.0 0.0	-41.9 -90.0 -37.6 -100.0	-41.2 -100.0 -42.3 -100.0	-100.0 0.0 -90.5 0.0	-72.7 -100.0 -50.0 -100.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	large window		Small room (A=20m ²)	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (coated) Triple glazing (coated)	-6.8 -15.3 -14.2 -14.4	-6.7 -16.4 -14.1 -15.3	-8.1 -34.0 -17.5 -33.3	-7.0 -18.9 -15.2 -18.5	-5.8 -13.3 -12.2 -11.4	-6.3 -15.6 -13.4 -14.1	-7.5 -30.2 -16.2 -24.6	-6.5 -16.1 -14.3 -13.8	-8.8 -19.2 -16.7 -18.8	-8.6 -22.5 -17.0 -23.1	-9.6 -38.6 -19.7 -47.2	-9.0 -24.1 -17.9 -24.8	-6.3 -17.0 -13.1 -15.1	-6.2 -19.0 -13.7 -19.0	-7.0 -33.9 -16.3 -34.1	-6.4 -19.7 -14.3 -17.8	-36.0 0.0 -75.0 0.0	-40.0 0.0 -100.0 0.0	-100.0 0.0 0.0 0.0	-41.2 0.0 0.0 0.0	-26.5 0.0 -44.0 0.0	-23.2 0.0 -50.0 0.0	-68.2 0.0 0.0 0.0	-33.3 0.0 -100.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
	(wwr=0.75)	Medium-weight –	Big room (A=100m²)	Double glazing (clear) Double glazing (ccated) Triple glazing (clear) Triple glazing (coated)	-12.3 -12.0 -8.3 -7.7	-11.7 -13.0 -11.9 -9.6 -7.6	-21.7 -13.3 -16.3 -9.0	-12.2 -14.0 -12.3 -10.4 -7.7	-10.3 -9.5 -6.9 -5.8	-10.5 -10.7 -10.1 -8.2 -6.1	-16.2 -11.7 -13.3 -7.4	-10.9 -10.7 -7.2 -6.4	-14.5 -15.9 -14.9 -11.3 -9.9	-14.0 -17.6 -14.9 -13.7 -9.9	-10.8 -27.5 -15.9 -25.2 -10.5	-14.5 -17.2 -15.3 -14.5 -10.1	-11.8 -10.4 -8.5 -6.4	-14.5 -10.5 -11.7 -6.3	-19.0 -12.0 -18.4 -7.0	-13.1 -10.8 -9.7 -6.5	0.0 -75.0 0.0 -100.0	0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 -100.0 0.0 0.0	-100.0 -37.6 -100.0 -22.5	-30.8 0.0 -28.6 0.0 -18.9	0.0 -100.0 0.0 -100.0	0.0 -46.8 0.0 -25.6	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		Heavy-weight	Small room (A=20m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-17.3 -15.3 -16.0 -13.4	-17.9 -15.3 -18.3 -13.3	-35.4 -18.0 -37.1 -17.4	-19.4 -16.0 -18.3 -14.0	-14.2 -13.1 -13.0 -10.8	-15.8 -14.1 -15.2 -11.7	-26.7 -16.4 -26.5 -14.5	-17.4 -15.2 -14.9 -12.4	-20.8 -18.4 -22.5 -16.7	-25.2 -18.9 -24.8 -16.8	-43.1 -21.5 -48.7 -19.8	-25.6 -19.6 -28.6 -17.2	-17.6 -14.0 -15.3 -11.8	-19.3 -15.0 -20.1 -12.0	-32.7 -17.6 -33.2 -14.3	-20.7 -15.3 -20.2 -12.4	0.0 -100.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 -46.3 0.0 -44.4	0.0 -76.5 0.0 -50.0	0.0 0.0 0.0 0.0	0.0 -100.0 0.0 -100.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
		,	Big room (A=100m ²)	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-13.7 -12.9 -10.0 -8.8	-14.4 -12.8 -11.1 -8.7	-23.0 -14.6 -16.8 -10.5	-14.5 -13.5 -11.7 -9.3	-10.6 -10.2 -7.5 -6.6	-11.7 -11.0 -8.8 -6.9	-16.2 -11.7 -14.0 -8.4	-11.3 -11.6 -8.5 -7.1	-16.7 -16.3 -13.9 -11.4	-19.1 -16.1 -15.8 -11.4	-26.5 -17.8 -25.0 -12.5	-18.7 -16.8 -17.8 -11.5	-12.8 -11.1 -9.6 -7.2	-14.3 -11.1 -11.4 -7.2	-19.5 -13.0 -17.5 -8.1	-13.5 -11.8 -10.5 -7.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-100.0 -34.7 0.0 -28.8	0.0 -40.4 0.0 -28.6	0.0 0.0 0.0 0.0	0.0 -78.4 0.0 -53.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0

17.3. TABLE 2: ABSOLUTE REDUCTION OF HEATING ENERGY DEMAND

	TABLE 2: ABSOLUTE REDUCTION OF HEATING ENERGY DEMAND (KWH/YEAR)		Climate →				Cold c	imate							Temperat	e climate							Dr	climate							Tropical	climate				
TABLE 2: ABSOL	UTE REDUCTION OF	HEATING ENERGY DE	MAND (KWH/YEAR)	Building function →		0	ffice			Resid	ence			Offic	e			Reside	ence				Office			Res	idence			Of	fice			Reside	nce	
Age ↓	Room size ↓	Type of glazing ↓	Window size ↓	Orientation Building method	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
			Small window (wwr=0.25)	Light-weight Medium-weight	119 114	109 105	74 52	107 104	194 174	164 150	132 116	163 145	48 37	42 27	24 5	41 27	103 93	96 85	68 52	96 85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Double glazing (clear)	Large window (wwr=0.75)	Light-weight Medium-weight	142	136 141	149 111	150 155	202	193 179	274	206	75 75	73 67	63 38	83 73	115 112	123 104	145 91	130 117	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Small window (wwr=0.25)	Light-weight Medium-weight	156 140 137	146 129 126	93 119 108	164 132 125	206 207 193	177 199 184	166 186 173	190 204 187	76 61 57	70 58 53	23 50 41	74 59 54	116 122 109	109 114 102	68 109 99	119 115 103	0	0 0 0	0	0	0 0	0	0	0 0	0 0 0	0 0	0	0 0	0 0 0	0 0	0 0	0
		Double glazing (coated)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	147 174 184	136 158 170	122 165 165	137 176 180	200 229 226	194 218 208	181 239 212	197 234 225	57 106 105	53 96 96	35 93 91	53 100 100	113 139 140	105 135 130	102 140 133	104 141 135	0 1 0	0 0 0	0 0 0	0 0 0	0 4 2	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	Small room (A=20m ²)		Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	192 73 59	179 65 48	174 28 8	188 66 50	226 153 136	215 133 118	219 101 83	239 134 118	110 14 1	102 10 0	91 5 0	106 11 0	142 77 68	132 71 63	133 43 30	136 69 60	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		Triple glazing (clear)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	52 56 54	39 55 46	2 44 18	38 53 52	145 84 79	128 92 84	84 109 64	128 95 88	0 23 14	0 18 5	0 11 1	0 18 5	70 50 49	62 48 43	21 31 15	62 47 42	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
			Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	57 86 77	46 82 72	5 73 56	51 83 72	80 172 154	92 166 150	48 155 140	96 167 150	3 24 10	0 23 8	0 19 4	0 24 8	48 90 81	39 89 79	1 83 74	40 89 79	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		Triple glazing (coated)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	75 72 70	70 68 64	47 63	69 69	164 96 94	159 95 90	149 99 93	159 100 93	2 34 34	1 32 31	0 32 23	1 33 32	84 60	82 54 52	80 57 54	83 56	0	0	0	0	0	0 0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0
New building			Constitution (unit 0.75)	Heavy-weight Light-weight	75	68 147	61 100	69 143	98 424	95 357	98 291	97 351	35 45	33 44	23 29	33 42	56 198	55 191	54 121	57 195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Double glazing (clear)	small window (wwr=0.25)	Heavy-weight Light-weight	165 142 395	156 129 359	110 69 355	156 129 384	421 434 614	400 413 581	369 388 550	403 413 617	11 0 198	9 0 176	4 0 160	10 0 185	217 227 375	209 218 342	188 201 329	210 218 354	0	0	0	0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0 0	0 0	0	0 0 0
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	435 453 187	397 412 179	340 376 153	401 418 181	615 636 457	591 604 437	560 562 408	621 613 438	188 197 52	174 179 49	130 124 47	178 182 49	363 369 233	335 334 227	332 326 210	343 348 228	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		Double glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	165 142 395	156 129 359	110 69 355	156 129 384	421 434 614	400 413 581	369 388 550	403 413 617	11 0 198	9 0 176	4 0 160	10 0 185	217 227 375	209 218 342	188 201 329	210 218 354	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	Big room (A=100m ²)		Large window (wwr=0.75)	Medium-weight Heavy-weight	435 453 68	397 412 62	340 376 52	401 418 67	615 636 308	591 604 279	560 562 249	621 613 278	188 197 22	174 179 21	130 124 15	178 182 20	363 369 136	335 334 127	332 326 88	343 348 128	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0 0	0 0	0 0	0 0	0 0	0 0 0	0 0	0 0
	(Triple glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight	14 1 102	11	2	10	282 305	253 280	214 227	256 286	0	0	0	0	118 117	112 91	61 18	110 93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Large window (wwr=0.75)	Medium-weight Heavy-weight	74	61 41	3	62 38	185 182 193	183 183 200	124 127	196 207	0	0	0	0	99 97	87 97	19 0	84 86	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Triple glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	81 20 1	77 19 1	68 10 1	78 18 1	341 305 329	332 296 321	313 284 320	331 295 326	21 0 0	21 0 0	19 0 0	21 0 0	157 136 148	153 133 145	145 126 130	153 133 145	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		····•• 00 ()	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	116 110 106	117 102 98	104 72 47	117 104 97	239 230 234	227 223 229	225 207 223	232 226 234	39 12 1	37 10 0	36 4 0	38 10 0	127 125 129	124 121 122	116 106 114	127 122 124	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		Double glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	271 301 361	253 288 343	243 248 298	260 289 339	399 396 455	380 363 424	356 326 392	369 358 419	161 176 207	155 167 191	146 152 171	157 167 198	238 236 276	234 229 267	224 214 242	234 229 270	2 0 0	0 0 0	0 0 0	0 0 0	9 8 6	4 0 0	0 0 0	2 0 0	0 0 0							
		Double glazing (cical)	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	171 212 246	169 194 215	262 229 231	209 220 228	282 274 295	330 277 280	494 346 288	347 279 299	108 120 132	105 118 133	156 124 125	115 129 137	182 180 186	197 175 176	282 207 184	200 182 189	1 0 0	0 0 0	0 0 0	0 0 0	2 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
		Double glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	293 325 385	279 309 362	270 299 352	284 312 366	415 412 482	407 404 471	401 397 466	411 416 480	171 190 226	164 184 219	161 179 214	167 188 221	241 239 278	236 234 274	234 232 269	238 236 275	6 1 0	4 0 0	1 0 0	3 0 0	27 22 21	19 13 13	5 3 0	14 10 12	0 0 0							
	Small room		Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	204 242 267	185 222 248	204 229 240	205 238 257	309 310 336	325 318 333	354 327 330	341 335 356	125 148 166	119 141 159	126 139 153	124 149 166	184 186 199	179 184 201	198 192 206	191 192 205	8	5	0	4	28 22 19	17 11 13	5 0 0	14 11 8	0 0 0	0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0
	(A=20m*)	Triple glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	256 278 339	244 269 326	232 244 290	249 269 325	376 371 436	362 348 408	338 333 386	351 339 404	153 162 192	145 154 182	138 140 169	145 155 184	223 220 262	225 225 261	219 209 244	221 219 258	0	0	0	0	7 5	4	0	2 0 0	0	0	0	0	0	0	0	0
			Large window (wwr=0.75)	Medium-weight Heavy-weight	132 150	111 120 146	173 140 149 259	142	163 163 186	196 172 186	262 183 191 267	164 177 276	72 86	73 78	85 75	80 91	115 106 107	121 116 122	100 128 117 211	124 109 123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Triple glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight	298 357	287 341	279 334	289 345	379 449 172	369 438 180	361 429	372 442 194	130 173 207 73	169 201 72	162 196 80	170 203 76	219 258 101	215 253	210 248	215 254	0	0	0	0	18 17 13	17 11 12 7	6	10 12 8	0	0	0	0	0	0	0	0
Old building			Large window (wwr=0.75)	Medium-weight Heavy-weight	136 158 562	128 149 536	140 170 525	133 156 546	173 197 886	180 200 878	191 221 829	189 210 844	83 97 326	80 93 320	81 96 320	82 95 326	103 117 514	100 114 530	107 123 509	104 118 502	0 0 11	0	0	0 0 4	8 8 27	4 5 16	0	7 6 12	0 0 0	0	0	0 0 0	0	0	0 0 0	0
		Double glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	645 780 445	623 760 428	585 689 607	614 754 528	883 1036 796	854 981 801	770 894 998	810 954 824	373 439 282	367 431 252	332 396 378	356 419 312	516 609 501	527 608 496	499 580 577	511 606 507	0 0 8	0 0 1	0 0 0	0 0 0	23 26 18	17 8 4	0 0 0	7 0 4	0 0 0							
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	561 642 596	521 587 579	584 613 559	557 583 584	776 799 906	719 782 893	784 761 878	712 738 906	326 343 341	316 342 330	342 308 327	313 338 338	468 506 531	516 501 516	509 506 527	466 476 522	0 0 10	0 0 10	0 0 7	0 0 9	10 1 53	0 0 39	0 0 16	0 0 35	0 0 0							
		Double glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	686 813 521	661 788 485	634 772 499	666 792 521	905 1060 835	876 1036 851	873 1011 923	897 1063 897	396 471 324	385 457 304	375 439 313	389 462 326	524 614 497	514 602 481	517 596 518	519 610 496	1 0 16	1 0 16	0 0 3	0 0 13	40 34 62	24 27 41	17 15 19	22 28 32	0 0 0							
	Big room (A=100m ²)		Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	634 697 508	594 658 497	587 658 480	615 690 500	841 896 803	849 916 834	883 881 789	893 966 800	388 427 294	370 404 284	353 395 275	382 421 293	501 535 473	488 515 491	509 550 508	503 546 481	3 0 10	1 0 7	0 0 0	1 0 4	47 34 25	20 23 16	4 0 6	22 29 13	0 0 0							
		Triple glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	581 710 230	578 708 237	551 662 389	562 694 326	798 952 439	809 940 480	755 881 633	779 913 435	329 403 155	323 380 162	309 365 263	325 390 175	471 564 289	485 576 353	492 574 436	467 562 312	0 0 5	0 0 1	0 0 0	0 0 0	19 23 12	18 11 1	0 0 0	11 1 1	0 0 0							
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	293 360 526	301 351 511	349 355 501	323 364 514	418 457 801	448 478 784	532 545 772	386 452 785	169 206 296	183 207 289	235 218 282	195 236 292	268 302 467	332 320 456	404 374 447	275 294 458	0 0 8	0 0 8	0 0 8	0 0 7	3 0 43	0 0 35	0 0 17	0 0 29	0 0 0							
		Triple glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	602 729 253	583 707 240	563 692 271	587 715 254	798 955 410	779 933 433	767 925 487	784 941 446	343 416 158	336 407 150	327 395 157	337 409 158	461 550 242	451 539 233	442 530 250	452 541 241	0 0 9	0 0 8	0 0 7	0 0 7	29 30 26	21 24 16	15 19 15	18 24 18	0 0 0							
			Large window (wwr=0.75)	Medium-weight Heavy-weight	316 367	300 352	327 389	304 375	412 469	421 478	476 541	441 489	190 219	184 212	182 214	189 215	244 277	236 268	250 288	244 279	1 0	0	0 0	0 0	16 17	10 12	11 0	11 17	0	0 0	0	0 0	0	0	0	0 0

17.4. TABLE 3: RELATIVE CHANGE IN COOLING ENERGY DEMAND

				Climate →			C	old climate							Tempera	te climate							Dry cl	imate							Tropical	l climate			
TABLE 3:	RELATIVE CHANGE	IN COOLING ENERGY	DEMAND (%)	Building function →		Of	fice		Re	esidence			Offi	ice			Resi	idence			C	Office			Residen	e			Off	fice			Resider	ıce	
Window size ↓	Room size ↓	Age ↓	Building method ↓	Orientation Type of glazing	North	East	South We	st Nor	th East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	outh	West	North	East	South	West	North	East	South	West
			Light-weight	Double glazing (clear) Double glazing (coated) Triple glazing (clear)	80.0 0.0 100.0	50.0 66.7 75.0	17.6 7. 33.3 50 60.0 50	7 -100 0 0.0 0 -100	0.0 -88.9 0 0.0 0.0 -100.0	-86.7 0.0 -100.0	-88.9 0.0 -100.0	-24.1 -25.9 -25.5	-19.8 -23.9 -21.6	-24.4 -26.3 -25.6	-24.2 -25.2 -27.4	-70.6 -88.7 -79.8	-65.8 -86.7 -76.0	-68.2 -86.9 -77.3	-67.3 -86.7 -75.2	-10.9 -10.5 -11.2	-9.9 -10.6 -10.7	-11.2 -10.8 -11.8	-12.1 -11.6 -12.1	-24.8 -26.8 -27.7	-24.0 -26.9 -26.9	-27.1 -28.0 -29.8	-24.8 -27.1 -27.2	-3.7 -3.5 -3.3	-3.7 -3.6 -3.3	-3.8 -3.5 -3.3	-4.1 -3.6 -3.5	-7.0 -8.7 -7.0	-6.8 -8.9 -6.9	-6.9 -8.6 -6.9	-7.1 -9.0 -7.1
		New building	Medium-weight	Double glazing (clear) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 0.0 0.0 0.0	-50.0 0.0 -100.0	-33.3 -50 0.0 0. -100.0 -100	0 0.0 0 0.0 0 0.0	0 0.0 0 -100.0 0 0.0 0 0.0	-100.0 0.0 0.0	0.0 -100.0 0.0 0.0	-25.7 -41.2 -45.7 -42.9	-25.0 -39.7 -42.7 -41.0	-25.2 -40.9 -44.3 -44.2	-27.1 -39.6 -44.3 -44.4	-93.9 -80.5 -97.8 -90.9	-92.6 -74.3 -94.2 -85.7	-90.9 -77.1 -96.1 -86.9	-90.7 -76.4 -96.2 -85.7	-10.7 -11.9 -12.2 -12.3	-11.0 -11.4 -12.1 -11.6	-11.2 -12.5 -12.5 -12.7	-11.0 -13.1 -12.3 -13.1	-29.3 -26.2 -27.9 -29.4	-30.1 -25.7 -27.7 -28.3	-30.5 -28.8 -28.8 -31.4	-30.2 -26.8 -28.2 -29.4	-3.4 -3.6 -3.5 -3.2	-3.5 -3.6 -3.6 -3.2	-3.2 -3.6 -3.5 -3.2	-3.5 -3.9 -3.7 -3.4	-9.2 -6.7 -8.4 -6.7	-9.4 -6.3 -8.5 -6.5	-9.0 -6.6 -8.3 -6.4	-9.4 -6.7 -8.5 -6.6
			Heavy-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0. -100.0 0. 0.0 0. 0.0 0.	0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-48.0 -45.1 -54.4 -49.1	-46.9 -44.1 -49.3 -48.0	-47.5 -44.5 -52.0 -50.0	-47.5 -44.8 -52.0 -49.2	-100.0 -86.5 -100.0 -95.5	-100.0 -81.2 -100.0 -91.1	-100.0 -81.6 -100.0 -91.3	-100.0 -81.8 -100.0 -91.0	-12.5 -12.6 -12.3 -13.2	-12.6 -12.0 -12.4 -12.5	-12.9 -13.3 -13.0 -13.3	-12.9 - 13.9 -13.0 -13.9	-30.7 -27.3 -28.3 -30.1	-31.0 -27.3 -28.1 -29.3	-31.9 -30.3 -29.5 -32.6	-31.3 -28.1 -28.7 -30.4	-3.3 -3.7 -3.7 -3.3	-3.5 -3.6 -3.8 -3.3	-3.3 -3.7 -3.7 -3.3	-3.4 -4.0 -3.9 -3.5	-8.8 -6.9 -8.7 -6.9	-8.9 -6.7 -8.7 -6.7	-8.6 -6.7 -8.5 -6.8	-8.9 -7.0 -8.9 -7.0
	Small room (A=20m²)		Light-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 0.0 0.0 0.0	0.0 50.0 0.0 40.0	0.0 0. 12.5 -16 0.0 0. 0.0 0.	0 0.0 7 0.0 0 0.0	0 0.0 0 <mark>-50.0</mark> 0 0.0	0.0 -33.3 0.0 0.0	0.0 -50.0 0.0 0.0	-56.5 -19.9 -22.1 -20.8	-55.2 -14.5 -22.4 -17.5	-56.7 -19.9 -21.9 -22.9	-56.7 -21.3 -24.0 -22.3	-100.0 -59.5 -73.5 -70.8	-100.0 -56.0 -73.8 -64.2	-100.0 -58.8 -73.8 -67.1	-100.0 -56.4 -73.8 -67.1	-12.8 -9.7 -9.6 -9.6	-13.1 -9.4 -10.2 -9.5	-13.4 -10.3 -10.7 -10.7	-13.5 -11.7 -11.1 -11.5	-30.8 -19.7 -21.9 -21.3	-31.0 -19.0 -22.6 -20.7	-32.0 -20.9 -23.5 -22.2	-31.8 -20.4 -23.2 -21.3	-3.6 -4.8 -4.8 -4.5	-3.7 -4.9 -5.1 -4.7	-3.5 -4.7 -4.8 -4.5	-3.7 -5.1 -5.0 -4.8	-9.1 -8.9 -11.0 -9.3	-9.3 -8.8 -11.4 -9.3	-8.9 -8.8 -10.9 -9.0	-9.2 -9.1 -11.4 -9.5
		Old building	Medium-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0. -100.0 0. 0.0 0. 0.0 0.	0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-21.6 -34.5 -35.8 -34.0	-22.9 -32.6 -35.5 -36.0	-22.3 -34.3 -36.8 -36.8	-23.4 -33.6 -37.3 -36.6	-79.3 -75.7 -87.0 -81.8	-80.0 -69.2 -87.1 -77.5	-80.0 -71.4 -87.1 -78.9	-80.0 -70.3 -87.1 -79.2	-9.7 -10.9 -11.2 -11.1	-10.6 -10.7 -11.9 -11.4	-11.0 -11.9 -12.4 -12.0	-11.3 -12.5 -12.8 -12.5	-23.2 - 20.7 -21.9 -21.7	-24.5 -20.5 -23.0 -21.9	-25.3 - 22.4 -23.8 - 24.1	-25.0 -21.7 -23.8 -23.1	-4.8 -4.9 -5.3 -4.8	-5.1 -5.1 -5.5 -5.0	-4.7 -5.0 -5.2 -4.8	-5.0 -5.3 -5.6 -5.1	-11.5 -8.9 -11.1 -9.2	-12.0 -8.9 -11.4 -9.3	-11.3 -8.8 -10.9 -9.0	-12.0 -9.1 -11.5 -9.4
			Heavy-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0. 0.0 0. 0.0 0. 0.0 0.	0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	-38.7 -37.4 -42.6 -40.5	-38.2 -38.5 -42.9 -42.2	-38.2 -38.8 -43.5 -44.1	-39.7 -38.5 -43.5 -41.0	-94.7 -84.7 -100.0 -93.5	-92.0 -77.8 -100.0 -88.9	-92.0 -77.2 -100.0 -88.5	-92.0 -79.0 -100.0 -88.9	-11.5 -11.6 -12.1 -11.8	-12.4 -11.7 -13.0 -12.1	-12.8 -12.4 -13.5 -12.7	-13.2 - 13.6 -14.2 -13.8	-23.2 -21.5 -23.9 -23.2	-24.5 -22.1 -24.7 -23.5	-25.4 -24.3 -25.6 -25.9	-25.3 -23.7 -25.9 -25.3	-5.4 -5.6 -6.2 -5.6	-5.7 -5.7 -6.4 -5.7	-5.2 -5.6 -6.0 -5.5	-5.6 -6.0 -6.5 -5.9	-11.5 -10.1 -12.4 -10.5	-12.1 -10.0 -12.9 -10.6	-11.3 -9.9 -12.3 -10.2	-12.0 -10.2 -12.8 -10.6
Small window (wwr=0.25)			Light-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	0.0 14.3 0.0 6.7	0.0 13.4 8.0 19.3	0.0 0. 1.0 -2. 2.1 -2. 7.2 11	0 0.0 3 -100 3 -100 4 -100	0 0.0 1.0 -66.7 1.0 0.0 1.0 -85.7	0.0 -65.0 0.0 -72.7	0.0 -60.0 0.0 -62.5	-43.8 -5.2 -7.1 -5.2	-45.5 -5.7 -5.9 -5.6	-47.3 -7.5 -6.4 -6.3	-47.3 -6.4 -7.6 -6.6	-100.0 -43.9 -53.6 -49.2	-100.0 -42.8 -52.8 -48.0	-100.0 -44.0 -53.8 -49.8	-100.0 -43.3 -53.2 -48.6	-12.5 -4.2 -3.9 -3.8	-13.7 -4.4 -3.8 -4.0	-14.0 -4.7 -4.1 -4.3	-14.8 -5.4 -4.1 -4.8	-24.9 -14.1 -14.1 -14.8	-26.6 -14.0 -14.3 -14.9	-27.5 -15.7 -15.0 -16.3	-28.1 -15.1 -15.0 -15.5	-6.3 - 1.7 -1.5 -1.3	-6.6 - 1.7 -1.5 -1.3	-6.1 - 1.7 -1.5 -1.3	-6.6 - 1.9 -1.6 -1.5	-12.9 -4.0 -4.2 -3.5	-13.6 -4.0 -4.3 -3.6	-12.8 -4.0 -4.1 -3.5	-13.5 -4.2 -4.3 -3.7
		New building	Medium-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	2.9 -25.0 0.0 -33.3	4.7 16.7 100.0 80.0	7.3 2. -10.0 14 0.0 0. 33.3 20	6 0.0 3 0.0 0 0.0 0 0.0	0 0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	-6.8 -15.6 -13.7 -16.2	-6.3 -17.3 -12.6 -17.8	-6.8 -17.5 -13.0 -19.5	-6.8 -17.2 -13.3 -18.2	-57.9 -49.5 -62.8 -56.2	-57.2 -46.9 -61.2 -52.8	-57.7 -48.9 -62.2 -55.1	-57.2 -48.1 -62.2 -54.2	-3.7 -4.9 -4.9 -4.7	-3.8 -4.6 -4.8 -4.5	-3.8 -5.2 -5.0 -4.9	-3.8 -5.6 -4.9 -4.9	-14.9 -15.0 -15.7 -16.1	-15.3 -15.0 -15.8 -16.1	-15.4 -16.2 -16.1 -17.0	-15.8 -15.8 -16.0 -16.5	-1.3 -1.7 -1.5 -1.3	-1.3 -1.6 -1.5 -1.3	-1.2 -1.6 -1.5 -1.3	-1.3 -1.8 -1.5 -1.4	-3.9 -3.8 -4.0 -3.3	-4.1 -3.8 -4.1 -3.3	-3.9 -3.7 -3.9 -3.3	-4.1 -4.0 -4.1 -3.5
Big (A=:	Pigroom		Heavy-weight	Double glazing (coated) Double glazing (coated) Triple glazing (coated) Triple glazing (coated)	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0. 0.0 -10 0.0 0. 0.0 0.		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	-14.5 -17.8 -17.8 -18.4	-13.6 -19.1 -16.9 -18.2	-14.1 -17.8 -17.5 -17.5	-14.1 -18.9 -18.0 -18.7	-67.6 -53.7 -68.1 -59.7	-66.4 -52.1 -66.5 -58.4	-66.8 -53.7 -67.3 -60.5	-66.8 -52.9 -66.8 -57.7	-4.7 -4.9 -4.7 -4.7	-4.7 -4.7 -4.7 -4.6	-4.7 -5.3 -4.8 -4.7	-4.8 -6.0 -5.0 -5.3	-16.6 -15.8 -15.9 -16.8	-16.9 -15.9 -16.2 -16.9	-17.0 -17.2 -16.6 -17.8	-17.1 -16.8 -16.8 -17.4	-1.3 -1.7 -1.6 -1.4	-1.3 -1.7 -1.6 -1.3	-1.2 -1.7 -1.5 -1.3	-1.3 -1.9 -1.7 -1.4	-3.7 -4.0 -4.2 -3.5	-3.8 -4.0 -4.2 -3.5	-3.6 -4.0 -4.1 -3.4	-3.8 -4.2 -4.3 -3.6
	(A=20m ²)		Light-weight	Double glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (coated)	-4.3 0.0 -4.3	-9.1 10.3	-4.7 -8. -5.0 -11 0.0 -3.	5 0.0 1 0.0 5 0.0	0 -50.0 0 0.0 0 -100.0	-33.3 0.0 0.0	0.0	-7.6 -6.1 -6.6	-6.6 -6.4 -5.9	-8.6 -6.9 -8.2	-8.0 -7.2 -7.1	-33.7 -40.4 -39.2	-33.1 -39.7 -36.7	-32.1 -40.2 -37.7	-33.4 -40.8 -36.1	-3.8 -3.7 -3.5	-3.7 -3.8 -3.5	-4.2 -4.1 -4.1	-5.1 -4.4 -4.5	-10.2 -10.8 -10.3	-10.3 -11.6 -10.3	-11.2 -11.8 -11.4	-11.2 -12.0 -11.2	-2.1 -2.0 -1.9	-2.2 -2.1 -2.0	-2.1 -2.0 -1.8	-2.4 -2.1 -2.0	-4.9 -5.2 -4.6	-5.5 -5.5 -4.8	-4.9 -5.2 -4.6	-5.2 -5.5 -4.8
		Old building	Medium-weight	Double glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (cear)	0.0	-5.5 -14.3 0.0 -33.3	-25.0 50 -25.0 0. 200.0 0.	0 0.0 0 0.0 0 0.0	0.0 0 0.0 0 0.0 0 0.0	0.0	0.0	-3.3 -10.9 -9.7 -10.7	-11.6 -10.2 -13.0	-0.5 -13.0 -11.1 -12.6	-12.4 -10.7 -12.7	-42.2 -44.5 -55.9 -53.2	-44.0 -42.6 -57.7 -51.1	-44.6 -42.5 -57.4 -51.6	-44.0 -43.0 -57.7 -48.9	-5.5 -4.4 -4.4 -4.2	-3.5 -4.5 -4.7 -4.3	-4.0 -4.8 -5.0 -4.7	-4.1 -5.5 -5.1 -5.2	-10.5 -10.6 -10.6 -10.8	-11.2 -11.4 -11.6	-12.2 -12.0 -11.8 -12.2	-12.0 -12.1 -12.3 -12.4	-2.3 -2.3 -2.0	-2.0 -2.3 -2.4 -2.1	-2.3 -2.2 -2.0	-2.5 -2.4 -2.2	-5.0 -4.9 -5.3 -4.6	-5.4 -5.0 -5.5 -4.7	-5.0 -4.9 -5.2 -4.5	-5.2 -5.5 -4.8
			Heavy-weight	Double glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	0.0	0.0 0.0 0.0	0.0 0. 0.0 0. 0.0 0.		0.0 0.0 0.0 0.0	0.0	0.0	-10.1 -14.0 -12.7 -13.9	-10.4 -14.3 -14.1 -14.7	-11.2 -15.0 -14.7 -16.0	-10.7 -15.2 -15.1 -16.0	-59.5 -51.4 -69.7 -60.1	-50.3 -50.4 -68.9 -56.3	-60.3 -49.3 -69.8 -56.0	-50.2 -68.9 -55.7	-4.3 -4.8 -4.7	-4.7 -4.8 -5.2 -4.7	-4.8 -5.4 -5.1	-5.0 -5.8 -5.8	-11.7 -11.6 -11.9	-11.7 -12.3 -12.8 -12.5	-12.1 -13.1 -13.2 -13.3	-12.7 -13.6 -13.8 -13.7	-2.1 -2.7 -2.7 -2.4	-2.2 -2.7 -2.8 -2.5	-2.6 -2.6 -2.4	-2.9 -2.8 -2.6	-5.6 -6.0 -5.3	-5.5 -5.8 -6.3 -5.5	-5.6 -5.9 -5.3	-5.9 -6.3 -5.6
			Light-weight	Double glazing (coated) Double glazing (clear) Driple glazing (clear) Triple glazing (coated)	-38.5 -75.0 -43.3 -75.0	-29.9 -22.2 -42.9 -20.0	-37.1 -45 -55.6 -71 -39.4 -47 -40.0 -75	3 -95 4 0.0 9 -100 0 0.0	.6 -80.4 -100.0 1.0 -94.9 0 0.0	-79.0 -100.0 -92.7 0.0	-79.3 -100.0 -93.5 0.0	-12.9 -34.5 -44.3 -39.1 -48.8	-14.9 -30.6 -36.5 -36.7 -44.3	-15.5 -33.7 -42.3 -37.9 -46.2	-15.3 -33.3 -43.8 -37.9 -47.3	-73.8 -58.8 -87.7 -73.4 -98.4	-74.7 -56.4 -86.0 -70.7 -95.7	-75.5 -58.0 -86.2 -73.3 -95.7	-74.5 -57.5 -86.2 -72.0 -95.7	-4.6 -14.8 -15.8 -16.6 -16.3	-5.2 -13.0 -14.5 -14.7 -16.0	-5.2 -16.8 -16.1 -19.0 -16.7	-5.7 -16.8 -15.4 -17.4 -16.4	-11.8 -23.8 -27.4 -29.7 -31.7	-12.8 -21.7 -24.8 -27.4 -30.9	-13.3 -30.3 -26.8 -37.2 -32.6	-14.2 -22.9 -24.6 -28.3 -30.5	-2.5 -4.8 -4.1 -4.2 -3.4	-2.7 -4.5 -4.1 -4.1 -3.4	-2.4 -4.9 -4.2 -4.3 -3.4	-2.7 -5.5 -4.4 -4.8 -3.5	-5.0 -8.1 -4.6 -8.1	-6.2 -4.4 -7.6 -3.9 -7.6	-5.0 -8.1 -4.4 -7.9	-5.0 -8.0 -4.5 -8.0
		New building	Medium-weight	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated)	-72.7 0.0 -85.7 0.0	-67.4 0.0 -78.6 0.0	-62.5 -69 0.0 0. -80.9 -78 0.0 0.	4 -100 0 0.0 1 -100 0 0.0	0.0 -94.4 0 0.0 1.0 -98.8 0 0.0	-92.6 0.0 -99.2 0.0	-93.9 0.0 -100.0 0.0	-43.3 -57.4 -51.4 -65.2	-42.5 -52.9 -50.0 -63.6	-44.5 -55.4 -52.1 -64.6	-43.0 -56.3 -52.0 -65.3	-64.4 -96.9 -78.5 -100.0	-60.3 -94.8 -74.0 -100.0	-64.1 -94.7 -77.2 -100.0	-63.1 -94.9 -76.0 -100.0	-15.7 -16.5 -17.5 -17.8	-14.4 -15.6 -16.5 -17.3	-18.5 -16.5 -20.3 -18.0	-17.0 -16.2 -18.7 -17.5	-25.0 -27.2 -31.1 -32.7	-23.6 -25.9 -29.7 -31.3	-32.5 -27.7 -38.3 -33.2	-24.1 -26.0 -29.7 -31.5	-4.3 -4.3 -3.7 -3.6	-4.1 -4.2 -3.6 -3.5	-4.5 -4.4 -3.9 -3.6	- 5.0 -4.5 -4.2 -3.6	-5.0 -8.1 -4.3 -7.9	-4.5 -7.6 -3.9 -7.7	-5.1 -8.0 -4.4 -7.9	-5.0 -7.9 -4.2 -7.9
	Small room (A=20m ²)		Heavy-weight	Double glazing (clear) Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (clear)	-100.0 0.0 -100.0 0.0	-69.6 0.0 -84.6 0.0	-74.5 -76 0.0 0. -86.2 -87 0.0 0.	7 -100 0 0.0 5 -100 0 0.0 7 .97	1.0 -98.6 0 0.0 1.0 -100.0 0 0.0 3 .62.8	-97.4 0.0 -100.0 0.0 -73.0	-96.3 0.0 -100.0 0.0	-46.9 -65.3 -54.7 -74.7	-43.4 -60.6 -51.6 -70.9	-46.1 -62.0 -54.3 -73.3 -31.4	-45.8 -62.3 -53.5 -71.8	-68.3 -100.0 -82.6 -100.0	-62.6 -100.0 -76.5 -100.0	-65.2 -100.0 -80.5 -100.0	-64.6 -100.0 -78.2 -100.0	-16.2 -16.3 -17.8 -17.5	-15.0 -15.1 -16.9 -17.2	-18.7 -16.5 -20.3 -17.8	-17.0 -16.1 -19.2 -17.2	-25.8 -27.7 -31.8 -32.4	-24.2 -26.5 -30.3 -32.2	-32.7 -28.5 -38.9 -33.3 -21.5	-24.7 -26.7 -30.5 -32.4	-4.2 -4.4 -3.6 -3.7	-3.8 -4.3 -3.3 -3.5	-4.3 -4.5 -3.7 -3.7	-4.8 -4.6 -4.0 -3.7	-5.1 -8.2 -4.3 -8.0	-4.5 -7.8 -3.9 -7.7	-5.1 -8.1 -4.3 -8.0	-5.1 -8.1 -4.2 -8.0
	(* 2011)		Light-weight	Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (clear)	-100.0 -35.7 -100.0 -80.0	-50.0 -27.0 -75.0 -30.0	-60.0 -75 -33.3 -46 -66.7 -10 -45.9 -58	0 0.0 3 -100 0.0 0.0 3 -100	0 0.0 1.0 -88.9 0 0.0 1.0 -86.4	-100.0 -91.1 0.0 -84.8	-100.0 -90.9 0.0 -85.2	-41.9 -35.1 -44.4 -40.3	-36.1 -30.0 -42.0 -36.6	-39.0 -34.2 -42.4 - 39.7	-41.1 -35.5 -40.9 -38.4	-82.5 -65.7 -92.9 -60.2	-76.5 -61.5 -89.6 -54.1	-77.9 -64.3 -91.5 -58.0	-80.0 -62.1 -89.6 -55.1	-13.3 -13.6 -13.4 -13.3	-12.5 -11.9 -13.6 -11.5	-13.5 -15.7 -14.3 -15.0	-13.7 -15.1 -13.8 -14.5	-22.1 -21.1 -24.6 -19.7	-20.5 -19.8 -24.3 -18.2	-22.3 -23.8 -25.2 -23.0	-20.8 -20.3 -23.4 -19.4	-4.2 -4.0 -3.6 -4.2	-4.1 -3.9 -3.6 -4.0	-4.2 -4.2 -3.6 -4.4	-4.5 -4.6 -3.7 - 4.9	-8.1 -4.8 -8.2 -5.4	-7.9 -4.3 -8.1 -5.0	-8.0 -4.7 -8.1 -5.5	-8.2 -4.8 -8.3 -5.4
		Old building	Medium-weight	Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (clear)	0.0 -100.0 0.0 -100.0	0.0 -45.5 0.0 -30.0	0.0 0. -52.9 -66 0.0 0. -35.3 -54	0 0.0 7 -100 0 0.0 5 0.0	0 0.0 1.0 -100.0 0 0.0 0 -85.7	0.0 -96.0 0.0 -88.5	0.0 -100.0 0.0 -90.9	-52.1 -46.5 -58.4 -43.0	-47.7 -43.0 -56.5 -37.2	-50.5 -45.5 -58.3 -41.8	-50.5 -45.3 -57.6 -41.3	-93.2 -75.0 -100.0 -63.1	-89.3 -67.6 -100.0 -54.9	-89.1 -72.5 -97.2 -59.1	-91.1 -70.4 -100.0 -58.0	-14.2 -14.5 -15.0 -13.3	-13.6 -13.2 -15.0 -12.1	-14.6 -16.2 -15.4 -14.9	-14.5 -15.7 -15.1 -14.6	-22.0 -22.9 -24.2 -20.5	-21.4 -21.8 -24.3 -19.3	-22.8 -26.0 -25.7 -23.9	-21.6 -22.1 -24.3 -20.3	-4.5 -3.8 -3.9 -4.2	-4.4 -3.6 -3.9 -3.9	-4.6 -3.9 -3.9 -4.4	-4.6 -4.3 -4.0 - 4.8	-8.4 -4.8 -8.2 -5.6	-8.1 -4.5 -8.2 -5.1	-8.2 -4.8 -8.3 -5.7	-8.3 -4.7 -8.3 -5.6
Large window (wwr=0.25)			Heavy-weight	Double glazing (coated) Triple glazing (clear) Triple glazing (coated) Double glazing (coated)	0.0 0.0 -22.6 -42.9	0.0 -83.3 0.0 -16.5	0.0 0. -57.1 -80 0.0 0. -30.8 -27 -30.6 -38	0 0.0 0 0.0 0 0.0 8 -87 7 -100	0 0.0 0 -100.0 0 0.0 .0 -73.3 10 -100.0	0.0 -100.0 0.0 -76.3	0.0 -100.0 0.0 -79.6	-58.8 -50.5 -66.7 -18.9	-54.3 -46.2 -63.9 -16.9	-57.0 -50.4 -65.7 -21.6 -18.2	-56.5 -48.1 -64.8 -20.0	-100.0 -81.0 -100.0 -43.8	-95.7 -73.4 -100.0 -42.0	-97.8 -75.9 -100.0 -43.4	-97.8 -72.4 -100.0 -42.9	-14.4 -14.5 -14.9 -8.6 -8.2	-13.9 -13.4 -14.9 -7.7 -7.8	-14.8 -15.9 -15.5 -10.4 -8.3	-14.6 -16.1 -15.2 -10.3	-22.5 -23.6 -24.6 -16.4 -17.0	-21.6 -22.8 -25.2 -15.8	-23.8 -26.8 -26.0 -20.4	-22.1 -23.2 -25.5 -17.3	-4.8 -3.7 -4.3 -2.8	-4.7 -3.7 -4.2 -2.7	-4.8 -3.9 -4.2 -2.9	-5.0 -4.2 -4.4 -3.3 -2 5	-8.8 -5.0 -8.7 -4.6	-8.5 -4.7 -8.6 -4.4	-8.7 -5.1 -8.7 -4.7	-8.8 -5.0 -8.8 -4.9
		New building	Light-weight	Triple glazing (clear) Triple glazing (coated) Double glazing (clear) Double glazing (coated)	-18.4 -42.6 -62.5 -100.0	-15.0 -21.7 -31.8 -75.0	-28.0 -27 -30.8 -27 -42.3 -53 -57.1 -83	1 -100 3 0.0 4 -100 3 0.0	103.0 .0 -91.2 -100.0 .0 -89.7 0 0.0	-100.0 -94.1 -100.0 -87.8 0.0	-92.1 -100.0 -88.3 0.0	-18.6 -21.1 -23.6 -27.4	-18.6 -19.5 -24.0 -25.9	-21.3 -20.3 -25.9 -26.5	-21.1 -19.3 -24.8 -27.3	-53.6 -71.9 -45.9 -69.1	-51.8 -70.3 -45.1 -66.0	-53.8 -71.9 -46.2 -68.4	-52.3 -70.7 -46.0 -68.0	-8.6 -7.7 -8.4 -8.8	-7.5 -7.6 -8.0 -8.7	-9.8 -8.0 -10.0 -8.8	-9.8 -7.8 -10.2 -8.6	-18.6 -18.3 -16.8 -18.0	-17.6 -18.1 -16.4 -17.4	-22.3 -18.5 -20.6 -17.9	-19.0 -18.3 -17.6 -17.3	-1.9 -1.6 -2.8 -2.4	-1.9 -1.5 -2.6 -2.4	-2.0 -1.6 -2.8 -2.5	-2.3 -1.6 -3.2 -2.6	-3.3 -3.8 -4.6 -5.1	-3.1 -3.8 -4.4 -4.9	-3.4 -3.9 -4.7 -5.0	-3.5 -3.9 -4.9 -5.1
		new Johning	Heavy-weight	Triple glazing (clear) Triple glazing (coated) Double glazing (clear) Double glazing (clear) Triple glazing (coated)	-58.8 -100.0 -87.5 0.0	-39.5 0.0 -27.3 0.0	-48.3 -55 -66.7 -50 -33.3 -58 0.0 0.	6 -100 0 0.0 1 0.0 0 0.0	.0 -100.0 0 0.0 -100.0 -100.0 0 -100.0 0 0.0	-99.1 0.0 -100.0 0.0	-100.0 0.0 -100.0 0.0	-28.3 -28.5 -25.9 -29.4	-26.1 -28.0 -26.0 -26.9	-28.7 -27.5 -26.8 -29.9	-27.1 -29.6 -27.1 -28.9	-55.2 -80.2 -49.6 -73.4	-53.8 -79.1 -47.1 -70.9	-57.3 -78.7 -48.8 -71.9	-55.7 -79.1 -47.5 -71.3	-8.4 -8.6 -8.6 -8.8	-7.9 -8.3 -8.4 -8.3	-9.3 -8.7 -10.2 -8.8	-9.8 -8.6 -10.5 -8.7	-19.1 -19.6 -17.5 -18.0	-18.4 -19.4 -17.0 -17.7	-22.3 -19.7 -20.9 -18.4	-19.7 -19.4 -18.2 -18.2	-1.8 -1.6 -2.7 -2.5	-1.7 -1.6 -2.5 -2.5	-1.9 -1.6 -2.8 -2.5	-2.1 -1.6 -3.2 -2.6	-3.2 -3.7 -4.6 -5.2	-3.0 -3.7 -4.3 -5.0	-3.2 -3.7 -4.7 -5.1	-3.3 -3.8 -4.9 -5.2
	Big room (A=20m²)		Light-weight	Triple glazing (Clear) Triple glazing (coated) Double glazing (coated) Double glazing (coated) Triple glazing (clear)	-75.0 0.0 -27.4 -26.3 -32.2	-50.0 0.0 -12.4 -25.0 4.4	-40.9 -56 0.0 0. -34.5 -35 -26.7 -34 -34.0 -29	- 0.0 0 0.0 7 -86 6 0.0 5 -100	-100.0 0 0.0 7 -45.2 0 -100.0 1.0 -40.9	-100.0 0.0 -51.6 0.0 -45.2	-100.0 0.0 -54.5 0.0 -40.7	-28.2 -33.3 -17.7 -18.0 -18.5	-28.9 -31.9 -14.8 -16.1 -14.4	-30.5 -32.5 -19.0 -17.8 -18.8	-28.5 -33.0 -18.7 -18.3 -20.0	-86.7 -37.2 -56.4 -46.5	-55.7 -83.5 -33.8 -52.0 -43.8	-58.9 -84.9 -36.8 -54.5 -45.2	-58.1 -84.0 -36.2 -54.0 -44.3	-8.5 -8.1 -7.1 -6.9 -6.5	-7.8 -8.0 -6.2 -6.4 -5.6	-9.2 -8.3 -7.7 -7.1 -7.3	-10.1 -8.3 -9.0 -7.1 -8.0	-19.8 -19.6 -12.1 -13.3 -12.2	-19.2 -19.8 -10.6 -13.2 -11.2	-20.1 -13.0 -13.4 -12.7	-19.7 -12.5 -12.7 -12.1	-1.8 -1.6 -2.7 -2.3 -1.9	-1.7 -1.6 -2.5 -2.3 -1.8	-1.9 -1.6 -2.8 -2.3 -2.0	-2.1 -1.7 -3.2 -2.5 -2.3	-3.3 -3.8 -4.5 -5.0 -3.3	-2.9 -3.7 -4.3 -4.9 -3.2	-3.2 -3.8 -4.6 -5.0 -3.4	-3.4 -3.9 -4.7 -5.1 -3.5
		Old building	Medium-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (clear)	-30.0 -58.3 0.0 -33.3	-16.0 -21.6 0.0 -31.8	-18.2 -28 -37.8 -46 -33.3 -50 -44.0 -50	6 0.0 9 0.0 0 0.0 0 0.0	0 0.0 -77.8 0 0.0 -100.0	0.0 -37.5 0.0 -50.0	0.0 -16.7 0.0 0.0	-18.2 -22.1 -23.2 -23.8	-18.5 -20.8 -22.2 -23.2	-18.2 -22.8 -24.4 -24.1	-18.4 -23.0 -24.1 -24.5	-61.7 -38.8 -67.3 -51.3	-59.4 -35.2 -66.2 -47.7	-61.0 -38.9 -66.1 -52.1	-60.6 -38.2 -66.7 -48.5	-6.2 -7.3 -7.4 -7.1	-6.2 -6.1 -7.1 -6.1	-6.6 -7.6 -7.6 -7.1	-6.5 -8.5 -7.7 -8.0	-13.0 -12.3 -13.0 -13.1	-13.1 -11.4 -12.8 -12.1	-13.5 -13.5 -13.5 -13.5	-13.2 -13.3 -13.2 -13.0	-1.6 -2.7 -2.5 -1.9	-1.6 -2.5 -2.5 -1.8	-1.6 -2.7 -2.5 -1.9	-1.7 -3.1 -2.6 -2.2	-3.9 -4.7 -5.0 -3.4	-4.0 -4.5 -5.0 -3.3	-3.9 -4.8 -5.0 -3.4	-4.0 -5.0 -5.2 -3.6
			Heavy-weight	Triple glazing (coated) Double glazing (clear) Double glazing (coated) Triple glazing (coated) Triple glazing (coated)	0.0 -100.0 0.0 0.0	-50.0 -25.0 0.0 -50.0	-100.0 -100 -22.7 -42 0.0 0. -44.4 -66	0.0 9 0.0 0 0.0 7 0.0	0.0 0 0.0 0 0.0 0 0.0	0.0 0.0 0.0 0.0	0.0	-24.8 -22.8 -26.9 -25.4	-24.2 -22.2 -25.9 -24.7	-25.3 -23.3 -25.8 -26.4	-24.3 -23.5 -26.9 -26.6	-75.7 -44.7 -76.9 -56.5	-74.8 -37.3 -74.5 -51.3	-75.7 -40.0 -75.2 -53.8	-76.2 -41.2 -74.5 -51.5	-6.8 -7.3 -7.4 -7.1	-6.8 -6.5 -7.1 -5.7	-7.1 -7.5 -7.6 -6.7	-6.9 -8.5 -8.0 -8.0	-12.6 -13.0 -13.1 -13.5 -12.7	-12.8 -12.6 -13.2 -13.1	-13.3 -14.1 -14.1 -14.2	-13.0 -13.8 -13.5 -13.9 -13.4	-1.7 -2.7 -2.6 -1.9	-1.8 -2.5 -2.6 -1.8	-1.7 -2.8 -2.6 -2.0	-1.8 -3.2 -2.8 -2.3	-3.9 -4.9 -5.3 -3.6 -4 2	-4.0 -4.7 -5.3 -3.4	-3.9 -4.9 -5.3 -3.5	-4.0 -5.1 -5.5 -3.7

17.5. TABLE 4: ABSOLUTE REDUCTION OF COOLING ENERGY DEMAND

				Climate →				Cold cl	limate							Temper	ate climate							Dry	limate							Tropical	l climate			
TABLE 4: ABSOL	BLE 4: ABSOLUTE REDUCTION OF COOLING ENERGY DEMAND (KWH/ 10m size ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		EMAND (KWH/YEAR)	Building function →		0	ffice			Resid	dence			Of	ffice			Res	idence			C	ffice			Resid	lence			Of	ffice			Resid	ence	
Room size ↓	Window size ↓	Type of glazing ↓	Age ↓	Orientation Building method	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		Double glazing (cloar)	New building	Light-weight Medium-weight Heavy-weight	-4 0 0	-6 1 0	-3 1 1	-1 1 0	2 0 0	8 1 0	13 2 0	8 2 0	40 56 55	38 62 64	47 65 65	45 61 64	84 91 90	96 104 108	103 111 111	99 107 108	85 89 92	86 95 99	100 106 111	116 121 128	139 145 150	159 169 178	187 197 206	194 208 217	65 64 65	68 65 66	66 64 65	73 70 72	90 85 88	91 85 90	88 84 85	95 89 93
		bouble glazing (cical)	Old building	Light-weight Medium-weight	0	-4 0	-1 1	1 0	0	1 0	1 0	1 0	28 39	24 43	33 46	34 44	47 53	56 63	60 65	57 64	81 89	87 97	97 109	119 125	124 128	138 147	154 163	171 180	90 95	95 101	89 96	99 105	130 131	135 137	129 130	139 140
			New building	Light-weight Medium-weight	0	-2 0	-2 0	-1 0	0	0	0	0	37 28 37	47 28 38	47 31 39	45 29 39	50 47 44	52 49	61 53 49	64 52 50	68	105 72 78	113 74 81	82	132 112 114	159 121 122	177 127 128	198 131 134	109 53 53	115 54 54	108 52 53	120 55 56	149 86 82	90 85	146 85 81	158 90 85
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0	0	0	0	0 0	0	0	0	37 21 74	37 24 27	39 23 78	39 25 28	38 25 20	46 31 27	46 31 27	46 31 27	74 69 78	78 77 87	82 81 91	86 87 98	114 110	122 122 121	129 128 125	135 135 135	56 80	58 85 94	55 79 87	59 84	85 129 130	87 136 137	83 127 128	88 136 137
	Small window (wwr=0.25)			Heavy-weight Light-weight	0	0	0 -6	0	0	0	0 9	0	23 38	27 36	27 43	20 27 45	16 83	24 95	24	24 94	83 81	94 84	98	108 103	116 137	130 154	135 177	147 180	104 53	110 56	101 54	111 59	147 79	156 82	145 78	155 83
		Triple glazing (clear)	New building	Medium-weight Heavy-weight	0	1	1	1 0	0	0	0	0	51 52 26	55 59 25	61 62	59 60 21	90 85	102	106	102	84 88 75	87 92	96 99	107 112	144 146	160 165	184 190	192 198	52 54	54 55 86	52 53	56 58	75 77	76 79	72 76	77 81
			Old building	Medium-weight Heavy-weight	0	0	0	0	0	0	0	0	33 34	41 43	42 45	41 41	40 45 43	55 56	56 54	57 56	84 88	94 99	100 105	105 112 123	120 120 127	132 138 148	145 153 165	165 182	80 87 101	92 107	86 99	94 109	122 121 139	128 128 147	119 118 136	129 129 146
		Triple glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	0 0 0	-1 0 0	-1 0 0	-1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	26 36 35	27 38 37	27 38 38	29 38 38	46 42 35	50 47 40	50 47 40	49 47 40	65 72 72	69 75 76	71 77 78	71 79 81	111 114 112	120 121 119	122 125 124	127 129 129	48 47 50	50 50 53	46 46 49	50 49 52	82 78 80	85 80 83	80 76 78	85 80 82
Small room		The glazing (coated)	Old building	Light-weight Medium-weight Heavy-weight	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	19 24 21	22 26 25	21 26 26	22 27 26	23 18 12	28 23 19	28 23 19	28 23 19	66 76 81	75 85 93	78 88 95	82 93 104	107 104 111	120 116 126	124 121 131	129 127 142	76 85 100	82 91 107	74 83 98	80 89 106	124 124 141	132 133 151	122 122 139	132 132 150
(A=20m²)			New building	Light-weight Medium-weight	15 8	26 29	53 45	43 34	43 26	86 84	124 126	96 92	116 125	130 156	151 167	136 154	177	221 232	240 257	229 243	173 178	184 200	268 275	283 283	236 247	276 302	441 471	374 394	117 110	119 110	121 115	141 133	107 109	102 105	108 111	115 117
		Double glazing (clear)	Old building	Light-weight Medium-weight	4 10 4	16 7 6	38 32 17	23 27 14	14 12 2	27 19	54 39	36 23	87 100	92	165 122 127	158 106 118	194 117 130	142 153	163 170	150 157	182 152 156	151 162	274 231 222	283 245 242	187 199	208 233	295 312	291 312	106 114 112	104 116 112	111 120 117	128 137 134	110 117 125	105 113 124	111 119 127	118 127 135
			New building	Light-weight Medium-weight	2 3 0	3 2 0	6 5 0	6 5 0	0 0 0	6 1 0	23 2 0	10 2 0	101 62 62	111 57 64	127 66 67	121 67 67	130 64 63	150 74 73	166 75 72	159 75 74	155 124 124	171 123 128	219 139 136	245 141 143	206 152 148	248 154 159	323 168 171	327 173 181	111 72 76	110 74 76	118 74 78	135 78 81	131 104 104	129 102 102	132 105 103	140 107 106
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0 2 0	0 3 0	0 3 0	0 3 0	0 0 0	0 0 0	0 1 0	0 1 0	62 54 49	66 53 51	67 57 54	66 58 53	57 47 41	70 52 50	67 53 49	70 56 51	120 111 116	121 113 120	133 123 129	140 132 137	148 138 134	161 142 145	174 155 155	184 160 164	79 78 85	78 79 86	80 79 87	84 85 90	106 116 121	105 117 121	104 115 119	108 121 124
	Large window (wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight	0 13 6	0 27 22	0 39 38	0 34 25	0 46 33	0 93 84	0 127 118	0 100 90	47 111 125	51 128 150	53 138 159	52 128 153	34 196 205	44 241 248	44 263 271	45 247 254	116 166 169	121 175 190	129 248 247	137 241 253	135 242 252	145 282 306	160 441 452	166 367 384	91 89 81	92 92 82	92 93 85	97 107 96	127 79 74	128 73 73	125 76 77	132 83 77
		Triple glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	2 5 3	11 10	25 20	14 19 8	23 7	66 24 11	103 41 74	74 30 15	128 84 94	147 90	158 105	151 102 110	209 119	251 142 150	276 155 166	255 146 157	169 140	193 143	243 202	260 209 215	256 174 188	311 202 223	457 259 279	393 257 279	78 89 86	77 92 88	81 93	91 107 103	75 89 91	72 86 91	74 89 91	77 96 94
			New building	Heavy-weight Light-weight Medium-weight	0	5	4 2	4 3 0	0	2	8	3 0	96 60	108	120 60	111 61	132 61	157 67	167 67	155 67 62	144 110	157 114	192 119	220 122	193 139	233 146	287 154	293 157	86 52	89 53	90 52	102 55	95 83	96 80	96 81	101 84 87
		Triple glazing (coated)	Old building	Heavy-weight Light-weight	0	0	0	0 2	0	0	0	0	59 48	61 50	63 50	61 47	46	55	53 43	55	114	113	117 110	124 119 110	141 137 124	148	155 153 136	163 136	56 59	55	56 59	58 62	81 96	80 97	81 95	83 99
			New building	Heavy-weight Light-weight	0 -9	0	0	0	0	0	0 13	0 9	45 42 41	48 46 49	49 46 64	49 46 53	31 24 181	29 200	28 210	37 30 203	105 103 145	108 161	114 113 174	117 116 207	119 119 307	128 131 338	135 135 386	138 143 402	72 127	72 129	70 127	58 74 142	102 201	103 206	97 102 198	106 216
		Double glazing (clear)		Heavy-weight Light-weight	1 0 1	-2 0 -6	1 0 2	1 3	0	0	0	0	93 95 52	112 111 50	115 103 64	110 109 58	193 189 89	209 214 101	221 224 99	214 217 103	159 154 141	159 159 147	181 180 165	203 215 209	322 338 255	356 377 279	393 415 306	416 442 332	125 129 175	126 130 183	124 129 174	137 143 195	190 198 284	193 204 297	186 197 282	202 213 307
				Medium-weight Heavy-weight Light-weight	0 0 0	1 0 -4	1 0 -1	-1 0 1	0 0 1	0 0 0	0 0 0	0 0 0	54 61 46	63 70 40	72 73 43	67 73 51	98 92 142	113 116 150	111 111 154	114 114 151	157 168 123	171 179 124	184 201 134	219 235 135	258 283 262	299 324 275	321 347 290	353 393 301	189 221 105	197 229 108	187 217 102	209 243 110	286 327 182	299 347 188	282 323 179	309 353 190
		Double glazing (coated)	New building	Heavy-weight Light-weight	0 0 0	-1 0 2	0 1	0 0 2	0 0 0	0 0 0	0 0 0	0 0 0	63 72 34	61 72 38	63 74 41	64 76 42	145 139 67	153 147 73	156 148 74	155 147 75	146 136 126	145 139 134	150 142 144	152 150 157	287 286 239	300 304 265	306 313 272	316 329 286	104 111 155	107 113 165	102 107 151	108 116 163	171 178 267	177 183 284	169 175 264	178 186 284
	Small window		Old building	Medium-weight Heavy-weight	-1 0	0	3 0	0	0	0	0	0	38 42 20	42 50	46 52	44 53	66 62	79 73	78 74	79 73	146 155	158 171	168 178	177 197	228 246	255 282	265 293	285 318	173 206	184 219	169 201	183 219	268 307	284 328	266 303	285 327
	(000 0.25)	Triple glazing (clear)	New building	Medium-weight Heavy-weight	1 0 1	-4 -1	-2 -1	-1 0	0	0	0	0	90 91	106 96	118 92	108	200 190	210 212 97	222 222 100	215 209	146 142	146 145	160 151	165 175	322 333	349 365	374 390	390 409 201	94 99	94 98	91 96	107 102 106	155 161 249	159 166 264	151 159	164 171
			Old building	Medium-weight Heavy-weight	0	1	-2 0	-1 0	0	0	0	0	49 56 42	66 66 41	64 71	63 71	100 92	114 103	114	109 102	145 159	153 165	168 180	193 213 120	247 270 262	284 306 277	302 326 280	329 360 293	161 193 88	170 203	159 188 84	176 210	251 290	264 308	247 287 159	267 311
		Triple glazing (coated)	New building	Medium-weight Heavy-weight	0	0	0	-1	0	0	0	0	65 73	63 73	65 75	65 75	150	155	159	155	135	137 131	115 137 132	140 138	288 288	302 303	304 306	313 321	85 91	89 94	82 88	88 94	150 150 156	105 156 162	135 148 153	103 157 164
Big room			Old building	Medium-weight Heavy-weight	0	-1	0	0	0	0	0	0	38 41	41	44 52	42 51	64 59	73 71	73 71	73 70	138 145	152 153 166	156	140	231 219 238	260 248 268	265 256 278	201 276 306	140 157 190	168 203	150 151 183	165	247 247 285	265 264 306	244 244 281	262 262 303
(A=100III-)		Double glazing (clear)	New building	Medium-weight Heavy-weight	33 15 7	39 21 9	44	39 18	47 12 0	70 26	171 137 94	83 43	222 218 222	234 259 259	283 271	268 263 269	353 369	410 427 432	437 449 458	423 436 435	376 347 351	381 376 388	488	537 546	518 528 546	622 643	827 828 833	802 828	258 257 256	257 251 247	265 264 265	304 305	322 324 326	325 327 320	332 333 331	360 363
			Old building	Light-weight Medium-weight Heavy-weight	20 7 1	19 8 4	70 17 5	51 15 6	13 0 0	19 7 0	32 6 0	30 2 0	180 176 167	181 194 190	233 213 200	217 210 198	209 200 212	230 224 224	259 251 242	252 245 247	320 318 314	313 300 314	406 378 367	503 461 460	405 410 428	415 446 489	524 539 556	580 613 630	262 264 270	256 256 262	268 270 279	315 314 325	345 364 376	349 367 382	356 372 382	381 403 415
		Double glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	21 2 0	11 6 0	22 4 0	24 5 0	3 0 0	5 0 0	4 0 0	6 0 0	156 146 139	145 148 136	143 152 152	148 154 145	189 188 179	203 202 195	209 210 194	204 208 196	287 288 281	284 299 278	306 304 295	322 308 304	366 383 379	379 398 402	397 412 420	415 429 448	180 185 190	179 185 191	182 188 192	191 197 202	256 254 258	256 254 257	255 250 258	268 264 268
	Large window	(concd)	Old building	Light-weight Medium-weight Heavy-weight	5 0 0	9 0 0	8 1 0	9 1 0	0 0 0	1 0 0	0 0 0	0 0 0	117 107 107	114 112 113	125 122 111	126 119 116	124 113 100	128 129 117	133 127 115	134 130 117	256 264 259	250 264 261	277 282 277	285 298 305	331 316 311	348 330 336	354 349 359	357 366 368	187 202 216	187 205 218	190 204 217	202 216 229	283 289 305	286 292 311	285 287 302	298 303 320
	(wwr=0.25)	Triple plazing (clear)	New building	Light-weight Medium-weight Heavy-weight	23 10 3	27 17 9	70 29 9	52 25 9	43 7 0	104 53 11	160 110 56	117 69 29	196 235 211	224 241 247	261 266 261	247 246 240	376 373 393	432 435 436	461 474 470	439 450 454	343 313 310	329 326 317	451 396 382	470 445 454	509 518 533	564 587 610	758 750 758	716 739 753	163 156 154	161 152 149	170 162 160	198 187 185	200 191 196	197 187 186	206 192 191	219 210 211
		mpre Sidzing (cical)	Old building	Light-weight Medium-weight Heavy-weight	19 2 0	-5 7 4	48 11 4	31 9 4	6 0 0	9 3 0	14 2 0	11 0 0	167 165 160	150 182 176	196 190 189	200 189 188	212 213 212	236 240 238	248 264 250	242 244 239	271 283 277	252 265 243	340 314 290	394 378 377	357 376 385	371 399 430	430 451 473	462 495 525	170 170 177	169 166 172	176 174 182	207 204 211	222 228 240	222 230 240	229 228 236	244 250 261
		Triple glazing (costod)	New building	Light-weight Medium-weight Heavy-weight	20 1 0	15 0 0	20 2 0	15 1 0	0 0 0	1 0 0	1 0 0	1 0 0	147 140 144	143 145 145	148 141 146	138 152 149	207 203 195	215 216 203	220 214 203	217 216 204	248 258 238	250 258 241	265 269 249	264 274 257	347 368 363	358 380 382	367 385 388	379 397 400	111 113 116	110 111 114	111 114 112	114 117 119	170 164 167	171 166 165	171 164 166	176 169 171
		mpic grazing (coated)	Old building	Light-weight Medium-weight Heavy-weight	6 0 0	4 1 1	4 1 0	6 1 0	0 0 0	0 0 0	0 0 0	0 0 0	109 105 103	118 107 107	115 112 108	116 107 109	113 103 93	117 113 103	119 112 102	120 115 102	215 227 221	222 231 230	236 241 236	237 239 246	288 271 269	300 286 289	310 297 298	314 303 307	122 133 146	124 136 147	121 133 144	129 140 153	201 201 213	204 205 217	198 198 212	207 209 222

17.6. TABLE 5: RELATIVE CHANGE IN ENERGY DEMAND FOR ARTIFICIAL LIGHTING

TABLE 5: RELATIVE C	ANGE IN ENERGY DEMAND FOR	ARTIFICIAL LIGHTING (%)	Climate →		Cold	limate			Tempera	te climate			Dry c	limate			Tropica	l climate	
Building function ↓	Room size ↓	Window size ↓	Orientation Type of glazing	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		Small window	Clear	77.4	61.0	36.1	58.4	122.3	93.6	64.9	98.3	153.3	102.3	43.1	95.9	131.1	133.7	140.5	141.6
	Small room	(wwr=0.25)	Coated	130.1	147.2	186.7	151.2	139.7	170.8	215.2	167.0	177.3	220.5	338.3	452.7	263.1	251.4	278.3	271.7
	(A=20m ²)	Large window	Clear	44.6	35.6	21.4	34.2	64.6	44.9	32.0	52.0	13.0	6.7	2.5	6.8	12.7	20.0	12.3	22.9
Office		(wwr=0.75)	Coated	57.6	49.9	45.4	54.0	84.4	73.6	75.4	78.7	151.2	118.2	102.5	105.0	223.7	149.7	223.0	188.2
Once		Small window	Clear	37.6	41.9	48.7	44.1	51.5	62.0	79.4	61.9	116.0	120.7	134.3	94.2	198.6	138.5	192.3	159.0
	Big room	(wwr=0.25)	Coated	6.4	12.3	26.1	14.1	7.9	15.1	21.0	14.9	12.8	22.1	36.9	36.1	20.9	28.2	21.3	26.7
	(A=100m ²)	Large window	Clear	71.7	54.9	35.8	57.8	108.6	81.8	64.5	90.9	123.1	65.0	30.6	76.9	123.8	112.7	128.5	145.0
		(wwr=0.75)	Coated	16.8	26.4	46.9	30.6	21.4	38.3	62.2	39.6	38.9	62.8	97.9	63.0	80.3	79.7	78.3	87.6
		Small window	Clear	20.3	17.4	16.5	16.2	22.1	18.8	19.2	16.6	11.5	8.4	11.2	9.2	14.9	12.7	14.6	15.6
	Small room	(wwr=0.25)	Coated	21.4	16.6	15.9	19.4	24.8	19.7	17.1	23.5	26.6	22.6	16.5	16.3	18.9	19.1	18.9	17.3
	(A=20m ²)	Large window	Clear	10.1	11.8	9.9	9.0	9.8	12.2	10.8	8.8	2.8	2.0	2.6	3.1	12.3	12.7	12.5	11.1
Posidoneo		(wwr=0.75)	Coated	21.0	17.3	16.0	16.0	24.6	18.9	17.4	16.8	15.4	11.2	11.8	8.9	11.7	12.3	11.7	10.8
Residence		Small window	Clear	24.3	18.7	17.0	19.8	28.0	21.0	18.8	22.0	20.8	16.9	13.5	12.1	14.3	14.7	14.3	13.8
	Big room	(wwr=0.25)	Coated	7.8	10.5	12.4	13.1	9.1	12.8	15.0	16.7	12.7	17.5	17.5	15.3	16.0	16.2	15.7	16.5
	(A=100m ²)	Large window	Clear	18.3	16.3	15.6	13.5	20.6	17.4	18.0	13.3	9.3	7.6	10.1	6.2	13.3	12.2	13.0	12.8
		(wwr=0.75)	Coated	19.0	14.9	12.7	15.7	22.0	17.3	15.4	19.8	24.3	20.1	14.0	13.6	17.5	17.1	16.6	15.9

17.7. TABLE 6: ABSOLUTE INCREASE IN ENERGY DEMAND FOR ARTIFICIAL LIGHTING

TABLE 6: ABSOLUTE INCREA	ASE IN ENERGY DEMAND FOR AR	TIFICIAL LIGHTING (KWH/YEAR)	Climate →		Cold	limate			Tempera	te climate			Dry c	limate			Tropica	l climate	
Building function ↓	Room size ↓	Window size ↓	Orientation Type of glazing	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		Small window	Clear	159.55	117.44	60.49	108.57	181.45	124.99	77.02	129.33	151.04	100.72	39.56	87.99	75.77	84.57	80.34	81.78
	Small room	(wwr=0.25)	Coated	276.41	269.35	257.59	264.45	279.81	273.75	275.12	272.78	293.4	284.12	289.69	518.3	298.78	267.63	301.49	278.35
	(A=20m ²)	Large window	Clear	66.57	51.39	29.38	48.43	63.32	43.3	29.51	49.04	11.39	6.01	2.14	5.84	6.73	10.61	6.53	12.09
Office		(wwr=0.75)	Coated	156.98	121.33	85.5	124.37	187.24	137.26	111.21	147.32	216.22	147.89	102.97	127.01	172.42	135.8	173.08	152.02
Onice		Small window	Clear	622.87	602.7	530.8	600.62	751.64	734.3	757.2	737.75	1070.8	914.76	762.47	686.32	1131.76	886.99	1112.29	951.85
	Big room	(wwr=0.25)	Coated	152.64	270.77	484.14	301.52	184.11	320.27	414.43	317.47	279.11	429.97	614.38	598.19	413.84	513.81	419.68	494.29
	(A=100m ²)	Large window	Clear	742.71	522.53	294.4	530.86	835.23	560.58	389.22	614.41	602.71	319.59	139.13	348.65	367.03	372.27	380.79	429.38
		(wwr=0.75)	Coated	345.77	466.7	615.16	515.35	414.46	597.19	785.22	622.37	622.4	774.61	868.96	681.08	914.36	844.48	899.11	911.74
		Small window	Clear	33.11	28.52	26.77	26.21	34.11	29.37	29.63	25.24	18.87	13.74	18.23	15.14	23.31	20.12	22.9	24.18
	Small room	(wwr=0.25)	Coated	41.61	32.3	29.3	36.08	46.23	36.45	30.71	41.22	47.61	39.56	28.95	28.66	33.46	33.75	33.35	30.28
	(A=20m ²)	Large window	Clear	15.74	18.38	15.43	13.93	14.48	18.14	15.95	12.98	4.51	3.26	4.29	5	18.37	19	18.58	16.51
Paridonco		(wwr=0.75)	Coated	36.5	30.3	27.35	27.35	40.05	31.36	28.36	26.91	25.63	18.68	19.54	14.77	19.26	20.36	19.28	17.6
Residence		Small window	Clear	217.53	167.95	148.2	171.42	236.8	179.07	157.2	179.71	174.43	141.04	112.08	101.97	120.27	123.63	120.05	115.6
1	Big room	(wwr=0.25)	Coated	88.34	113.7	126.38	136.27	101.33	134.58	151.02	166.85	133.91	174.05	167.78	146.25	161.41	160.67	158.56	162.4
1	(A=100m ²)	Large window	Clear	150.53	134.39	127.65	110.06	158.99	135.67	139.28	101.33	75.43	61.5	81.85	50.6	103.93	96.83	101.88	99.31
		(wwr=0.75)	Coated	186.22	145.87	118.98	147.63	206.76	161.31	140.12	174.89	215.29	173.71	121.75	118.66	154.94	150.04	147.22	139.06

18. CONCLUSION PARTIV

This chapter gives an overall conclusion of the knowledge obtained from part IV. In the past four chapters, the simulation conditions were listed, the simulation results were shown and the analysis was reported. Part IV ended with a side-study into the influence of the LTATW on the energy demand for artificial lighting and with the final chapter showing the six most important designer tables. For chapter 15, 16 and 17, a conclusion is described in this chapter, in which all of the sub-questions stated in chapter 1 are answered as well.

CHAPTER 15: SIMULATION RESULTS AND ANALYSIS

In chapter 15, the simulation results were shown using the modeFRONTIER data analysis tools. Various results have been obtained from the analysis, including results relating to the distribution of the results of all 3072 room configurations, the results per room configuration and results related to correlation between building parameter and energy performance. Of the first-mentioned results, the most important findings were that in case of heating, the LTATW ensures an average reduction of 21.3% of the initial energy demand (or 127.7 kWh per year) and in case of cooling, it has been revealed that the LTATW provides an average reduction of 23.1% (or 126.6 kWh per year). Because in both situations, the standard deviation is high (in the order of magnitude of the value itself) and all climate types have been included, this average does not immediately give a good idea of the energy results that will be experienced in the specific situation of the interested designer. Therefore, the average reductions per climate type have also been analysed. It was found that in a cold climate the average reduction of the heating energy demand is 32.4% (or 326.3 kWh per year) and for cooling 22.4% (or 8.3 kWh per year). In a temperate climate, the average reduction of the heating energy demand equals 36.1% (or 181.3 kWh per year) and the average reduction of the cooling energy demand equals 49.9% (or 115.0 kWh per year). The reduction of the heating energy demand in a dry climate equals 16.8% (or 3.1 kWh per year) and the reduction of the cooling energy demand equals 15.2% (or 233.1 kWh per year). Finally, there is no reduction of the heating energy demand in a tropical climate and the reduction of the cooling energy demand equals 4.7% (or 149.9 kWh per year).

The configurations charts of heating and cooling have shown the distribution when the energy reduction in relative terms (%) is plotted against the energy reduction in absolute terms (kWh). With the aid of this graph and the average values found in the distribution charts, four graph parts could been drawn up: A, B, C and D. Using this graph, it can directly be seen under which circumstances the purchase of a LTATW will be the

most profitable. Parts A and B of the chart represent a part in which room configurations experience an above-average reduction in absolute sense, and in which the pay-back time will therefore be shorter. In the more right parts of the chart, there is a high energy reduction in absolute sense, but the energy demand will still be relatively high. In the best case scenario, a room is therefore located in part A, where a large part of the energy demand is reduced, and at the same time, a lot of costs.

Besides being able to see the most potential situations from the graph, it is often also possible to deduce what the best performing values of the variables are. In fact, the best performing values/subdivisions of the variables are often located at the upper boundary of the graph (area A) and the least performing variables are slightly more concentrated towards the origin. This is so, because under the best circumstance, often both a higher reduction in absolute sense and higher reduction in relative sense is experienced. Because in the chart it is not indicated which rooms have the same configurations (except for the variable studied), one can better consult the designer tables for this purpose.

The correlation charts in section 15.1.3 give a good idea of the magnitude of the influence of each variable, but do not give a representative result about which value of this parameter results in the best performance. In fact, there is often an optimum performance found for one of the 'middle' subdivisions (such as for a dry climate and temperate climate in case of cooling). They therefore only give information about the average trend, determined over all situations.

In order to answer all sub-questions of this research, the influence of each individual parameter was analysed. The first variable that was analysed was climate. It was revealed that in case of heating only a cold and temperate climate are of relevance, since no heating is required in the other types of climates. From the analysis it could be concluded that in relative sense, the Trombe wall performs best in a temperate climate, and that in absolute sense, the Trombe wall performs best in a cold climate. In case of cooling, the system performs best in a temperate climate and a dry climate. Because the LTATW is designed to be both a passive cooling system in the summer and passive heating system in the winter, it has clearly been proven that only the temperate climate is the most logical choice. With this knowledge gained, sub-question 1 (*How does climate influence the performance of a LTATW?*) is answered.

Analysis of the second variable, building function, has shown that in case of heating the function is not of great influence. The system performs well in both an office and a residence. In case of cooling, higher reductions of the energy demand are achieved in residences. This answers sub-question 2.1 (*How does the function of a building influence the performance of a LTATW?*)

Thirdly, the influence of the orientation of the Trombe wall was investigated. The study shows that the Trombe wall always delivers a considerable reduction in energy demand, as it provides the room with an additional amount of storage capacity. Nevertheless, even greater performance can be achieved when the wall is positioned at a southern orientation (as expected), because now, the wall is able to absorb the most solar energy. In many cases of heating, however, it is true that a southern orientation is also accompanied with a lower initial energy demand, so it must be checked in the designer table whether the reduction in kWh is still enough as well. In case of cooling, it was revealed that orientation is of a much lesser influence. This result is also as expected, since the passive cooling principle of the Trombe wall is not based on direct contact with the sun, but with the internal heat loads. A northern orientation seems to be providing the best results in relative terms, but in absolute sense it is sometimes the case that less energy is reduced in kWh in total (same principle as for relation heating-southern orientation). This answers sub-question 2.2 (*How does the orientation influence the performance of a LTATW?*).

The study shows that the age of a building does not have a major influence on the performance of the Trombe wall. In old buildings, the initial energy demand for heating is often higher, so that a lot more energy can be reduced in absolute sense. In new buildings, the energy demand is lower on average, so that the LTATW can ensure a substantial reduction on the energy demand in percentage. Therefore, in both cases, the Trombe wall performs well. In case of cooling, the same is experienced, although a slight preference can be expressed for new buildings. This answers sub-question 2.3 (*How does the age of a building influence the performance of a LTATW?*).

Studying the influence of the construction method on the performance of the wall has shown that this parameter has the least influence of all studied parameters. In both light-weight, medium-weight and heavy-weight buildings, a good performance can be achieved. Of course, there is a slightly more suitable building method for each situation, and this can therefore be determined from the designer tables. This answers sub-question 2.4 (*How does the building method influence the performance of a LTATW?*).

For the size of the room, the same findings regarding heating apply as for the age of a building: both room sizes perform equally well. It could be concluded that a Trombe wall can be installed in both small rooms and big rooms, but that when a room is too big, the capacity of the Trombe wall will no longer be useful to reduce a large amount of the initial energy demand. The same applies to cooling. Clearer results of the study have come from the analysis of the influence of the size of the window. Research has shown that for heating purposes, a room with a smaller window is more often preferred and for cooling purposes, a large window. Because the innovative Trombe wall will have to serve as both a passive heating and cooling device, an average size window (with for example WWR=0.5) will therefore probably be the most suitable. This answers sub-question 2.5 and 2.6 (*How does room size influence the performance of a LTATW?*; *How does window size influence the performance of a LTATW?*).

Finally, the influence of type of glazing was studied. When studying the graphs it was difficult to distinguish between which type of glazing results in a better performance of the Trombe wall than the other. With the aid of the designer tables, however, it became clear that in relative terms the largest reductions of the heating energy demand (as expected) were achieved with clear glazing. With clear glazing, more energy can be absorbed from the sun. Just like with the orientation, the reduction in absolute terms with the best performing variable seems to be less in much cases, and for each situation, the designer tables should be consulted as well. In case of cooling, it is a bit more clear that the uncoated types of glazing results in the highest reductions of the cooling energy demand. This answers sub-question 2.7 (*How does type of glazing influence the performance of a LTATW?*).

In the final section of chapter 15, the sensitivity of the results of the study to adjusting four of the assumptions was tested. These assumptions included four parameters that were set as constants: the heating and cooling thermostat set-point, the shading schedule and the type of PCM. The sensitivity analysis showed that when changing the heating thermostat-setpoint temperature, almost the same conclusions can be derived from the result of the study, since the ratio between the changes remains the same. The actual values in the designer tables, however, do change considerably. In addition, if the temperature is increased to above 23 °C, the results change enormously (caused by the hysteresis of the PCM). When it is assumed that people do not adjust the thermostat set-point to a temperature below 18 degrees or above 23 degrees, it can be concluded that the sensitivity is not too high. Secondly, rooms with different values for cooling set-points were simulated in order to study the sensitivity to changing this aspect. The same order of magnitude sensitivity was found as with the heating set-point and also here, only major changes in results in ratio between results happen below a set-point of 23 °C.

The third constant parameter that has been analysed was the shading schedule. In the simulations, it was assumed that shading is only switched on when the operative room temperature rises above 24 °C. In the sensitivity study it was investigated whether a change of this temperature has an influence on the final findings of the study and it was found that changing this temperature hardly influences the results. The results are therefore also valid for buildings with a varying or slightly other shading strategy.

Finally, the influence of type of PCM on the energy performance of the LTATW was investigated. In case of heating, an optimum was found with a PCM with a transition temperature just above the heating set-point temperature. In case of cooling, this optimum was found on and just below the cooling set-point temperature (findings correspond with the findings from literature study). The choice for SP25E2 therefore seems to be a good middle way, with which the wall can function well in both seasons. Finally, it should be mentioned that the influence of the type of PCM is less than expected. Additional research indicated that the Trombe wall construction also provides a substantial reduction in energy demand even without latent heat storage materials (approximately 15% of the total reduction is caused by the PCM and 85% by the construction itself).

CHAPTER 16: ARTIFICIAL LIGHTING

Chapter 16 investigated the influence of the Trombe wall on the electrical energy demand for artificial lighting. For all possible situations, models were simulated in DesignBuilder and results were shown using correlation charts, distribution charts and the designer tables.

The correlation charts have shown that room size and building function have the greatest influence on the increase in energy demand. As expected, the increase in energy demand is the highest in rooms of office buildings. Here, the positive influence of sunlight during the day is reduced the most. for the same reason, the increases are the highest in the two warmest climates (climates with the longest days). When the LTATW is placed behind a larger window, the increase in energy demand for artificial lighting is 52.4%. Because the standard deviation here is also relatively high, it is better to assess each situation using the designer tables.

Finally, a sensitivity analysis was performed, to investigate how decisive the assumption was that the PCM is in liquid state from 08:00 to 18:00 hrs. It was found that in case of office rooms, this assumption leads to the most favorable results. When times of liquid state of the PCM varies, the energy demand will increase, but remains within limitation. In case of the residential rooms, the sensitivity is low, and it can therefore be assumed that the results of the side-study are also valid enough for deviating times of sunrise and sunset.

CHAPTER 17: DESIGNER TABLES

The influence of the variables on the performance of the LTATW can roughly be determined with the help of the correlation matrices in chapter 15 (option 1). A much better and more reliable picture, however, can be obtained by studying the configurations charts with indications of the different values of the variables (option 2). However, because the performance is often very dependent on each situation, most information can be obtained from the designer tables. For each situation, the exact values of energy savings can be read and also with the help of the colour indications in the tables it can be quickly determined which situations result in the best performance, and which situations result in worse performances. To conclude: green cells with a bolded value represent the most favourable situations.

19. DISCUSSION

In this chapter, the value of the findings from this Master's thesis project are discussed. How can the findings be best interpreted? And what were important limitations in this study? The answer to these two questions has been answered in sections 19.1 and 19.2. Finally, a number of important issues are mentioned that can be investigated in the future in order to confirm or contradict the results of this research. There are also additional things mentioned that are interesting to be investigated in the future (section 19.3).

19.1. INTERPRETATION OF FINDINGS

In chapter 15 and 16, all results of the study were shown using correlation charts, distribution charts and scatter charts. The best picture of the results is obtained with the aid of the scatter charts, in which the values of the studied variable parameters are indicated. With the correlation charts, clear conclusions can be derived, but because such a large number of room configurations are examined in the study, this result does not often apply to the actual situation. It is simply an average, calculated over a large number of situations. An even better picture for every single situation can be obtained with the designer tables. These tables show the result with regard to energy savings for each specific situation. The advantage of the designer tables is that the influence of a variable parameter can be viewed much more clearly per situation, while the scatter chart does not indicate which data-points are of the same room configuration.

Because climate has such a large influence on the results, it seems in the correlation charts that parameters such as orientation and building method have a very low influence. This is relatively the case, but it can be seen in the designer tables that with a correct choice for orientation and construction method, even higher reductions can be achieved. Furthermore, it was interesting in this project to also study the influence of the glazing types. Because coated glazing was therefore also included in the study (which will be less the case in buildings with a LTATW), the final average reductions achieved with the wall will be higher.

An assumption that has made it difficult to investigate the influence of the variable parameters room size and window size is the assumption that the Trombe wall has the same size (surface area) as the size of the window. This assumption has been made to make the situations in the designer tables as realistic as possible: when an interested designer has a room with a small window, he or she wants to know what the energy savings are with a LTATW of the same size (and not with a too large LTATW, which is also much more expensive). In addition, it is also assumed that behind a large window in a larger room there is a much larger version of the Trombe wall. This assumption therefore makes the use of the designer tables more appropriate, but makes investigating the influence of room size and window size more difficult. For example, if the results show that a Trombe wall performs better in a big room, it is not directly clear whether this is due to the room size or to the larger version of the Trombe wall (as it has more storage capacity). In case of these two variables, therefore, a good overall conclusion about the influence on the performance of the LTATW cannot be formulated with the results of this study.

One thing that has also complicated the analysis of the influence of the variables is that changing the value of a variable affects both the initial energy demand and the energy demand after installing a LTATW. The clearest example of this occurs in the analysis of the variable orientation. When the Trombe wall is placed on a southern orientation instead of a northern one, the reduction of the heating energy demand is expected to increase in percentage. This is indeed true, but the reduction in absolute sense often goes down here. This is because the initial heating energy demand at a southern orientation is now lower (due to more incoming solar radiation), and thus also the total reduction in kWh will also be lower. That is why it was of great importance in this study to not only show the reductions in percentages, but also the reductions in kWh. Only if both values of reductions are high, purchasing a LTATW is recommended.

In the artificial lighting side-study, the increase in energy demand for all possible situations was calculated. These results give an interested designer even more information about the future energy demands, but should only be consulted when the room has only one window (behind which the Trombe wall stands). When the room has multiple windows, behind which there is no Trombe wall, in most cases enough daylight will come in, so that the influence of installing one wall has a minor influence on the energy demand for artificial lighting.

Finally, it is important to mention that the findings in this thesis are obtained with a numerical study. The exact values of the results (in the designer tables) may therefore differ slightly in reality. However, the relation between outcomes for different situations will probably remain the same and the conclusions about the global influence of the variable parameters will therefore continue to apply. However, this must be confirmed with a validation by means of experimental research in the future.

19.2. LIMITATIONS

An important limitation in this study is of course the amount of variable parameters and their number of subdivisions included. In this study, the influence of eight variable parameters has been investigated, each with a certain amount of subdivisions. With the chosen quantities a total of 3072 different situations arise, and 6144 simulations were therefore required. With every addition of a new variable or subdivision, there is also a considerable increase in the number of required simulations. If, for example, another building age is examined (a third one), the number of required simulations already increases from 6144 to 9216. Because the research in this Master's thesis project has to be completed within a certain time, this number of simulations is too great. Only when there are a lot more computers available, or when the speed of the simulations increases, more variables can be examined, within the same amount of time. Because the number of variables/subdivisions had to remain limited, only the most typical and most common situations were examined in this study.

Another important limitation in this study was the inability to validate the numerically obtained results with the results from experimental research. Now, the results have been validated using a cross comparison between two different types of software, but the most formal way of validation is by comparing with the results of experimental research. In fact, it is not certain that the results from the other type of software (DesignBuilder) do represent reality.

19.3. FUTURE DIRECTIONS

In this section, a number of suggestions are made for interesting follow-up steps/studies in the future. The simulation model developed in this project can be used for this purpose. The suggestions are listed below:

- When more time and/or resources will be available in the future, it is interesting to study more parameters. In order to arrive at more detailed findings, it is also interesting to study the same eight parameters again, but to include many more subdivisions. Because it is now known that the LTATW is hardly needed for heating purposes in a dry or tropical climate and is hardly needed for cooling purposes in a cold climate, these climates do not have to be studied in a future study. It would then be much better to focus only on the temperate climate, in which all kinds of subclimates also exist (see Table 7.1). In addition to other climates, there are of course also a lot of other building functions, window sizes, room sizes and more specific building ages than just 'new' and 'old' that could be studied.
- Another suggestion is not to work in a future study with different results for reduction of heating energy demand, reduction of cooling energy demand and values in kWh and percentages, but to come up with just one result for each situation: the pay-back period. With this value, a good picture is immediately given of in which situations the innovative Trombe wall is recommended and in which situations it is not. In the pay-back period both the reductions for heating and cooling energy demand are included, just like the investment costs, and therefore, it does not have to be checked in the designer tables (chapter 17) or scatter charts (chapter 15) whether the situations are in area A or B (above the average reduction in kWh line). Because detailed information about the costs of the LTATW is fairly unknown so far, this has not been possible to apply in this study.
- In this study, the energy savings were calculated, resulting from the installation of a LTATW in a specific room. With the sensitivity study in chapter 15 it was discovered that these savings are partly due to the position of the Trombe wall in front of the window, and partly due to the storage principle of the PCM. A future interesting study would be to investigate how different aspects of the LTATW exactly contribute to the total energy savings. Are there mainly energy savings because a kind of extra insulation layer is created in front of the window? Or does the principle of a double skin façade with its natural ventilation features already provide a lot of energy savings? And what exactly is the size of the influence on the energy savings of applying phase change material in the wall? If this influence is small, would it not be more sensible to use another (more transparent and less expensive) fluid in the Trombe wall?
- To obtain even more reliable findings, the model should be validated in the future with the results from experimental research.
- The simulation model could be extended with a mechanism that calculates the energy demand for artificial lighting. In this study, these simulations were done with DesignBuilder, but a more advanced simulation model would be able to obtain all results in one.

20. FINAL CONCLUSION AND RECOMMENDATION

This thesis started with a literature study within the global topic of passive solar building design. from this main topic, more and more was zoomed in on the main subject: the lightweight translucent and adaptable Trombe wall. With the literature study it was revealed that a passive solar building design strategy often leads to lower energy bills, a more comfortable indoor climate in summer and winter, more satisfaction of the user and the avoidance of the use of fossil fuels. One passive solar building strategy is the Trombe wall concept (system based on indirect gain), which never really got off the ground in the past. However, by applying phase change materials in the Trombe wall, a new, innovative idea seems to have been devised, which increases the storage capacity of the wall, reduces the weight, allows sunlight to pass through and ensures the preservation of the view to the outside environment. With the choice of SP25E2 as PCM product, the most suitable type of PCM (based on desirable chemical, thermophysical, economic, kinetic and environmental properties) with the right phase-transition temperature has been chosen.

The second part of this thesis described the creation and development of the simulation model used in the main research of this thesis. The creation of an initial simulation model (made in DF1.0) has been studied and described and was subsequently extended to a suitable simulation model. The calculation of the simulation model is based on a non-stationary multi-node heat balance, in which all relevant flows of energy and all simulation conditions are taken into account. The simulation model has been validated using a cross-comparison with DesignBuilder and with the help of a test-case and multiple analyses. After validation of the extended model, an accurate, reliable and useful simulation model was obtained with which the parameter study in this Master's thesis project could be carried out.

With more than 6000 simulations, it was found that by installing a LTATW in a room, the average reduction of the heating energy demand equals 21.3% and the average reduction of the cooling energy demand equals 23.1%. Because high differences exist between the four studied climates, the average reductions per climate were also determined: it was found that in a cold climate the average reduction of the heating energy demand is 32.4% (or 326.3 kWh per year) and for cooling 22.4% (or 8.3 kWh per year). In a temperate climate, the average reduction of the heating energy demand equals 36.1% (or 181.3 kWh per year) and the average reduction of the cooling energy demand equals 49.9% (or 115.0 kWh per year). The reduction of the heating energy demand in a dry climate equals 16.8% (or 3.1 kWh per year) and the reduction of the heating energy demand in a tropical climate and the reduction of the cooling energy demand equals 4.7% (or 149.9 kWh per year).

After simulations, the influence of the following eight parameters on the energy and comfort performance of the lightweight translucent and adaptable Trombe wall was studied: climate, building function, orientation, age, building method, room size, window size and type of glazing. It was revealed that in case of heating, only a cold and temperate climate are of relevance, since no or very little heating is required in a dry and tropical climate. It could be concluded that in relative sense (reduction in percentage), the Trombe wall performs best in a temperate climate, and that in absolute sense (reduction in kWh), the Trombe wall performs best in a cold climate. In case of cooling, the system performs best in a temperate climate and in a dry climate. Because the LTATW is designed to be both a passive cooling system in the summer and passive heating system in the winter, it has clearly been proven that only the temperate climate is the most logical choice.

Analysis of the second variable, building function, has shown that in case of heating the function is not of great influence. The system performs well in both offices and residences. In case of cooling, higher reductions are achieved in residences. Thirdly, the influence of the orientation of the Trombe wall was investigated. It was found that on all orientations, the Trombe wall delivers a considerable reduction in energy demand, but the greatest performance can be achieved when the wall is positioned at a southern orientation (in case of reduction of the heating energy demand). In many cases of heating, however, it is true that a southern orientation is also accompanied with a lower initial energy demand, so it must be checked in the designer tables whether the reduction in kWh is still enough as well. In case of cooling, it was revealed that orientation is of a much lesser influence.

The study shows that the age of a building does not have a major influence on the performance of the Trombe wall. In old buildings, the initial energy demand for heating is often higher, so that a lot more energy can be reduced in absolute sense. In new buildings, the energy demand is lower on average, so that the LTATW can ensure a substantial reduction on the energy demand in percentage. In case of cooling, the same is experienced, although a slight preference can be expressed for new buildings.

Studying the influence of the construction method on the performance of the wall has shown that this parameter has the least influence of all studied parameters. In both light-weight, medium-weight and heavy-weight buildings, a good performance can be achieved. Of course, there is a slightly more suitable building method for each situation, and this can therefore be determined from the designer tables.

For the size of the room, the same findings regarding heating apply as for the age of a building: both room sizes perform equally well. It can be concluded that a Trombe wall can be installed in both small rooms and big rooms, but that when a room is too big, the capacity of the Trombe wall will no longer be useful to reduce a large amount of the initial energy demand. The same applies to cooling. Clearer results of the study have come from the analysis of the influence of the size of the window. Research has shown that for heating purposes, a room with a smaller window is more often preferred and for cooling purposes, a large window. Because the innovative Trombe wall will have to serve as both a passive heating and cooling device, an average size window (with for example WWR=0.5) will therefore probably be the most suitable.

Finally, the influence of type of glazing was studied. When studying the graphs it was difficult to distinguish between which type of glazing results in a better performance of the Trombe wall than the other. With the aid of the designer tables, however, it became clear that in relative terms the largest reductions of the heating energy demand (as expected) were achieved with clear glazing. With clear glazing, more energy can be absorbed from the sun. Just like with the orientation, the reduction in absolute terms with the best performing variable seems to be less in much cases, and for each situation, the designer tables should be consulted as well. In case of cooling, it is a bit more clear that the uncoated types of glazing results in the highest reductions of the cooling energy demand. With the information above, the main research question can be answered (*How do building parameters and climate influence the energy and comfort performance of a lightweight translucent adaptable Trombe wall?*).

With the sensitivity studies it was found that changing the heating thermostat set-point temperature (up to 23°C) and cooling thermostat set-point temperature (up to a minimum of 23°C) has little or no influence on the way in which the variables influence the performance of the Trombe wall. However, it is true that the numerical results for reduction of heating and cooling (as shown in the designer tables) change

considerably. The designer tables are therefore only valid with the set-point temperatures that are assumed in this thesis. With the sensitivity study it was also found that shading has little influence on the results.

Finally, the influence of the type of PCM on the energy performance of the LTATW was investigated. In case of heating, an optimum was found with a PCM with a transition temperature just above the heating setpoint temperature. In case of cooling, this optimum was found on and just below the cooling set-point temperature. Finally, it should be mentioned that the influence of the type of PCM is less than expected. Additional research indicated that the Trombe wall construction also provides a substantial reduction in energy demand even without latent heat storage materials (approximately 15% of the total reduction is caused by the PCM and 85% by the Trombe-wall construction itself).

In addition to the main study, a side-study was carried out into the influence of the innovative Trombe wall on the energy demand for artificial lighting. It was shown that room size and building function have the greatest influence on the increase in energy demand and that the increase in energy demand is the highest in rooms of office buildings and rooms located in the two warmest climates. It was shown that the average increase in energy demand for artificial lighting is 52.4%. Because the standard deviation here is relatively high, it is better to assess each situation using the designer tables.

If only the results from rooms in a temperate climate are considered, and it is thought of the fact that the Trombe wall must serve as a heating and cooling device in all seasons, it is most recommended to install the Trombe wall in a new-built residence with heavy-weight structure. The Trombe wall can best be placed behind a south-facing, medium-sized window (WWR \approx 0.5) with clear triple glazing, in a room not much larger than 100 m². To prevent the energy demand for artificial lighting from becoming too high, it is recommended to place the wall in a room with more than just one window.

- 4TU.Bouw. (2014). Double Face: A System for Adjustable Translucent Thermal mass; Delft University of Technology & Eindhoven University of Technology. Retrieved from https://www.4tu.nl/bouw/en/LHP2014/doubleface/
- Adams, S., Becker, M., Krauss, D., & Gilman, C. (2010). Not a dry subject: optimizing water Trombe wall. In *Proceedings of the Solar Energy Society Annual Conference 2010*.
- Agrawal, B., & Tiwari, G. N. (2010). *Building integrated photovoltaic thermal systems: for sustainable developments*. Royal Society of Chemistry.
- Aldawoud, A. (2013). The influence of the atrium geometry on the building energy performance. *Energy and Buildings*, *57*, 1-5.
- Alexiou, M. (2017). Adaptive façade system based on phase change materials (Master's thesis, Delft University of Technology, The Netherlands). Retrieved from: https://repository.tudelft.nl/
- Ataer, O. E. (2006). Storage of Thermal Energy. Encyclopedia of Life Support Systems (EOLSS) UNESCO.
- Athienitis, A. K., & Chen, Y. (2000). The effect of solar radiation on dynamic thermal performance of floor heating systems. *Solar Energy*, *69*(3), 229-237.
- Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Phase change materials for building applications: a state-of-the-art review. *Energy and buildings*, 42(9), 1361-1368.
- Bailey, R. G. (2009). Ecosystem geography: from ecoregions to sites. Springer Science & Business Media.
- Benedict, R. P., & Xvi, B. (1984). Fundamentals of temperature, pressure, and flow measurements. John Wiley & Sons.
- Berthou, Y., Biwole, P. H., Achard, P., Sallée, H., Tantot-Neirac, M., & Jay, F. (2015). Full scale experimentation on a new translucent passive solar wall combining silica aerogels and phase change materials. *Solar Energy*, *115*, 733-742.
- BIM. (2010). Fiche 2.2: Het ontwerp van kunstmatige verlichting in woningen en kantoren.
- Blondeau, P., Spérandio, M., & Allard, F. (1997). Night ventilation for building cooling in summer. *Solar* energy, 61(5), 327-335.
- Bourdeau, L. E. (1980). Study of two passive solar systems containing phase change materials for thermal storage. In *Presented at the 5th Natl. Passive Solar Conf., Amherst, Mass., 19-26 Oct. 1980*.
- Browning, R. (1961). The Seasons.
- Bruno, F., & Saman, W. Y. (2002). Testing of a PCM energy storage system for space heating.
- Buchdahl, J. (2010). Atmosphere, Climate & Environment Information Programme. *Ace. mmu. ac. uk. Archived from the original on*, 07-01.
- Buddhi, D., & Sharma, S. D. (1999). Measurements of transmittance of solar radiation through stearic acid: a latent heat storage material. *Energy conversion and management*, *40*(18), 1979-1984.
- Cabeza, L. F., Castell, A., Barreneche, C. D., De Gracia, A., & Fernández, A. I. (2011). Materials used as PCM in thermal energy storage in buildings: a review. *Renewable and Sustainable Energy Reviews*, 15(3), 1675-1695.
- Carson, I. I., & John, S. (2002, December). Verification validation: model verification and validation. In *Proceedings of the 34th conference on Winter simulation: exploring new frontiers* (pp. 52-58). Winter Simulation Conference.
- Chan, H. Y., Riffat, S. B., & Zhu, J. (2010). Review of passive solar heating and cooling technologies. *Renewable and Sustainable Energy Reviews*, 14(2), 781-789.
- Chen, D., & Chen, H. W. (2013). Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. *Environmental Development*, *6*, 69-79.
- Cohen, P., West, S. G., & Aiken, L. S. (2014). Applied multiple regression/correlation analysis for the behavioral sciences. Psychology Press.
- Collier, R. K., & Grimmer, D. P. (1979). *Experimental evaluation of phase change material building walls using small passive test boxes* (No. LA-UR-79-175; CONF-790106-4). Los Alamos Scientific Lab., NM (USA).
- Cosmatu, T., Wattez, Y., Turrin, M., & Tenpierik, M. (2017). Integrating technical performances within design exploration. The case of an innovative Trombe wall. In *Symposium on Simulation for Architecture and Urban Design* (p. 101). Simulation Councils.
- Dehra, H. (2009). A two dimensional thermal network model for a photovoltaic solar wall. *Solar Energy*, *83*(11), 1933-1942.

Depecker, P., Menezo, C., Virgone, J., & Lepers, S. (2001). Design of buildings shape and energetic consumption. *Building and Environment*, *36*(5), 627-635.

DesignBuilder. (2018). Simulation made easy. Retrieved from https://www.designbuilder.co.uk/

- Diarce, G., Urresti, A., García-Romero, A., Delgado, A., Erkoreka, A., Escudero, C., & Campos-Celador, Á. (2013). Ventilated active façades with PCM. *Applied energy*, *109*, 530-537.
- Domroes, M. (2003). Climatological characteristics of the tropics in China: climate classification schemes between German scientists and Huang Bingwei. *Journal of Geographical Sciences*, *13*(3), 271-285.
- Drake, J. B. (1987). A study of the optimal transition temperature of PCM (phase change material) wallboard for solar energy storage (No. ORNL/TM-10210). Oak Ridge National Lab., TN (USA).
- Elarga, H., Goia, F., Zarrella, A., Dal Monte, A., & Benini, E. (2016). Thermal and electrical performance of an integrated PV-PCM system in double skin façades: A numerical study. *Solar Energy*, *136*, 112-124.
- Ellis, P. G. (2003). *Development and validation of the unvented Trombe wall model in EnergyPlus* (Doctoral dissertation, University of Illinois at Urbana-Champaign).
- Evers, A. C., Medina, M. A., & Fang, Y. (2010). Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. *Building and Environment*, *45*(8), 1762-1768.
- Feldman, D., Banu, D., Hawes, D., & Ghanbari, E. (1991). Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. *Solar energy materials*, 22(2-3), 231-242.
- Fernandez, A. I., Martínez, M., Segarra, M., Martorell, I., & Cabeza, L. F. (2010). Selection of materials with potential in sensible thermal energy storage. *Solar Energy Materials and Solar Cells*, 94(10), 1723-1729.
- Fiorito, F. (2012). Trombe walls for lightweight buildings in temperate and hot climates. Exploring the use of phase-change materials for performances improvement. *Energy Procedia*, *30*, 1110-1119.
- Fokaides, P. A., Kylili, A., & Kalogirou, S. A. (2015). Phase change materials (PCMs) integrated into transparent building elements: a review. *Materials for Renewable and Sustainable Energy*, 4(2), 6.
- Frei, W. (2016). Thermal Modelling of Phase-Change Materials with Hysteresis. Retrieved from: https://www.comsol.com/blogs/thermal-modeling-of-phase-change-materials-with-hysteresis/
- Gencoglu, M. T., & Turkoglu. (2004). Passive Solar Building Design.
- Ghoneim, A. A., & Klein, S. A. (1989). The effect of phase-change material properties on the performance of solar air-based heating systems. *Solar Energy*, *42*, 441-447.
- Gratia, E., & De Herde, A. (2003). Design of low energy office buildings. *Energy and Buildings*, 35(5), 473-491.
- Grynning, S., Goia, F., Rognvik, E., & Time, B. (2013). Possibilities for characterization of a PCM window system using large scale measurements. *International Journal of Sustainable Built Environment*, 2(1), 56-64.
- Guarino, F., Athienitis, A., Cellura, M., & Bastien, D. (2017). PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates. *Applied energy*, *185*, 95-106.
- Günther, E., Hiebler, S., Mehling, H., & Redlich, R. (2015). Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. *International Journal of Thermophysics*, *30*(4), 1257-1269.
- Gupta, N., & Tiwari, G. N. (2016). Review of passive heating/cooling systems of buildings. *Energy Science & Engineering*, 4(5), 305-333.
- Hadjieva, M., Stoykov, R., & Filipova, T. Z. (2000). Composite salt-hydrate concrete system for building energy storage. *Renewable Energy*, 19(1-2), 111-115.
- Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. *Energy conversion and management*, *39*(11), 1127-1138.
- Hillston, J. (2003). Model validation and verification. *Edinburgh: University of Edinburgh*.
- Hollo, N. (2011). Warm house cool house—Inspirational designs for low-energy housing. In *Fuel and Energy Abstracts*(Vol. 37, No. 3, p. 203). Elsevier.
- Höppe, P. R. (1993). Heat balance modelling. Experientia, 49(9), 741-746.
- Hordeski, M. F. (2011). *Megatrends for energy efficiency and renewable energy*. The Fairmont Press, Inc.. HTI. (2005). Thermische behaaglijkheid. *Dictaat Technische installaties*. 1-20.
- Ismail, K. A. R., & Henríquez, J. R. (2001). Thermally effective windows with moving phase change material curtains. *Applied Thermal Engineering*, *21*(18), 1909-1923.
- Itard, L. (2018). Towards zero-energy buildings [Powerpoint lecture slides]. Retrieved from: https://brightspace.tudelft.nl/

- Ji, J., Yi, H., He, W., & Pei, G. (2007). PV-Trombe wall design for buildings in composite climates. *Journal of Solar Energy Engineering*, 129(4), 431-437.
- Khalifa, A. J. N., & Abbas, E. F. (2009). A comparative performance study of some thermal storage materials used for solar space heating. *Energy and Buildings*, *41*(4), 407-415.
- Kienzl, N. (1999). Advanced building skins: translucent thermal storage elements (Doctoral dissertation, Massachusetts Institute of Technology).
- Koláček, M., Charvátová, H., & Sehnálek, S. (2017). Experimental and numerical research of the thermal properties of a PCM window panel. *Sustainability*, *9*(7), 1222.
- Kolaitis, D. I., Garay Martinez, R., & Founti, M. A. (2015). An experimental and numerical simulation study of an active solar wall enhanced with phase change materials. *Journal of Facade Design and Engineering*, *3*(1), 71-80.
- Kondo, T., & Ibamoto, T. (2003). Research on using the PCM for ceiling board. In *Proceedings of the 9th* International Conference on Thermal Energy Storage–Futurestock.
- Köppen, W. (1900). Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. *Geographische Zeitschrift*, 6(11. H), 593-611.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. *Meteorologische Zeitschrift*, 15(3), 259-263.
- Laity, J. J. (2009). Deserts and desert environments (Vol. 3). John Wiley & Sons.
- Lara, C. C., Tenpierik, M., Turrin, M., & Van der Spoel, W. (2015). Thermal simulations. Double Face Project, 1-18.
- Leang, E., Tittelein, P., Zalewski, L., & Lassue, S. (2017). Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. *Energy Procedia*, *122*, 1009-1014.
- Li, Y., & Liu, S. (2014). Experimental study on thermal performance of a solar chimney combined with PCM. *Applied Energy*, *114*, 172-178.
- Linacre, E., & Geerts, B. (1997). Climates and weather explained: an introduction from a southern perspective. Routledge.
- Liu, C., Wu, Y., Li, D., Zhou, Y., Wang, Z., & Liu, X. (2017). Effect of PCM thickness and melting temperature on thermal performance of double glazing units. *Journal of Building Engineering*, *11*, 87-95.
- Mansy, K. (2006). Five locations to represent world climates. Europe, 45, 107.
- Manual, R. (2012). Green & Sustainable Remediation Manual.
- McKnight, T. L. (2000). Climate zones and types. Physical geography: a landscape appreciation.
- Medina, M. A., King, J. B., & Zhang, M. (2008). On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs). *Energy*, *33*(4), 667-678.
- Melero, S., Morgado, I., Neila, F. J., & Acha, C. (2011). Passive evaporative cooling by porous ceramic elements integrated in a Trombe wall. *Architecture & sustainable development*, *2*, 267.
- Memon, S. A. (2014). Phase change materials integrated in building walls: A state of the art review. *Renewable and sustainable energy reviews*, *31*, 870-906.
- Morrison, D. J., & Abdel-Khalik, S. I. (1978). Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. *Solar Energy*, 20(1), 57-67.
- Neeper, D. A. (2000). Thermal dynamics of wallboard with latent heat storage. *Solar energy*, *68*(5), 393-403. Neeper, D. A. (1986). Solar buildings research: what are the best directions. *Passive Sol J*, *3*, 213-219.
- NEN-EN 12464-1. (2011). Light and lighting Lighting of work places Part 1: Indoor work places. Nederlands Normalisatie Instituut.
- NEN-EN 15251. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. *Nederlands Normalisatie Instituut*.
- Onishi, J., Soeda, H., & Mizuno, M. (2001). Numerical study on a low energy architecture based upon distributed heat storage system. *Renewable energy*, 22(1-3), 61-66.
- Ostry, M., & Charvat, P. (2013). Materials for advanced heat storage in buildings. *Procedia Engineering*, 57, 837-843.
- Peippo, K., Kauranen, P., & Lund, P. D. (1991). A multicomponent PCM wall optimized for passive solar heating. *Energy and buildings*, *17*(4), 259-270.
- Prakash, G., & Garg, H. P. (2000). Solar energy: fundamentals and applications.
- Rabani, M., Kalantar, V., Faghih, A. K., Rabani, M., & Rabani, R. (2013). Numerical simulation of a Trombe wall to predict the energy storage rate and time duration of room heating during the non-sunny periods. *Heat and Mass Transfer*, *49*(10), 1395-1404.
- Saadatian, O., Lim, C. H., Sopian, K., & Salleh, E. (2013). A state of the art review of solar walls: Concepts and

applications. Journal of Building Physics, 37(1), 55-79.

- Saadatian, O., Sopian, K., Lim, C. H., Asim, N., & Sulaiman, M. Y. (2012). Trombe walls: A review of opportunities and challenges in research and development. *Renewable and Sustainable Energy Reviews*, 16(8), 6340-6351.
- Sadineni, S. B., Madala, S., & Boehm, R. F. (2011). Passive building energy savings: A review of building envelope components. *Renewable and sustainable energy reviews*, *15*(8), 3617-3631.
- Schittich, C. (Ed.). (2003). Solar architecture: strategies, visions, concepts. Walter de Gruyter.
- Schlesinger, S. (1979). Terminology for model credibility. Simulation, 32(3), 103-104.
- Shapiro, M. (1989). Development of the enthalpy storage materials, mixture of methyl stearate and methyl palmitate. *Subcontract report to Florida Solar Energy Center*.
- Shingare, A., Singh, H., & Sharma, M. (1986). Design of Passive Solar Building. International Journal For Engineering Applications and Technology, 1(C), 1-6.
- Soares, N., Costa, J. J., Gaspar, A. R., & Santos, P. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. *Energy and buildings*, *59*, 82-103.
- Soares, N., Samagaio, A., Vicente, R., & Costa, J. (2011, November). Numerical simulation of a PCM shutter for buildings space heating during the winter. In *World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden* (No. 057, pp. 1797-1804). Linköping University Electronic Press.
- Sohani, A., Sayyaadi, H., & Mohammadhosseini, N. (2018). Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. *Energy Conversion and Management*, *158*, 327-345.
- Sokol, D. (2008). Off the wall: Trombe walls at a visitor's center bask in the sunshine. *Green Source, the magazine of sustainable design*.
- Stazi, F., Mastrucci, A., & di Perna, C. (2012). The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study. *Energy and Buildings*, 47, 217-229.
- Stern, H., De Hoedt, G., & Ernst, J. (2000). Objective classification of Australian climates. *Australian Meteorological Magazine*, 49(2), 87-96.
- Stevanović, S. (2013). Optimization of passive solar design strategies: A review. *Renewable and Sustainable Energy Reviews*, 25, 177-196.
- Stritih, U., & Novak, P. (1996). Solar heat storage wall for building ventilation. *Renewable Energy*, 8(1-4), 268-271.
- Sun, W., Ji, J., Luo, C., & He, W. (2011). Performance of PV-Trombe wall in winter correlated with south façade design. *Applied Energy*, 88(1), 224-231.
- Szokolay, S., & Docherty, M. J. (1999). Climate Analysis (PLEA Note 5).
- Tenpierik, M. (2017). Double Face 2.0. A lightweight translucent adaptable Trombe wall. *RuMoer, 66. Adaptation,* 6-11.
- Thiele, A. M., Sant, G., & Pilon, L. (2015). Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. *Energy Conversion and Management*, *93*, 215-227.
- Torcellini, P., & Pless, S. (2004). Trombe walls in low-energy buildings: practical experiences. *National Renewable Energy Laboratory*, *1617*, 80401-3393.
- Tunç, M., & Uysal, M. (1991). Passive solar heating of buildings using a fluidized bed plus Trombe wall system. *Applied energy*, *38*(3), 199-213.
- Turrin, M., Tenpierik, M., de Ruiter, P., van der Spoel, W., Lara, C. C., Heinzelmann, F., ... & van Bommel, W. (2014). DoubleFace: Adjustable translucent system to improve thermal comfort. *SPOOL*, 1(2), 5-9.
- Tyagi, V. V., & Buddhi, D. (2007). PCM thermal storage in buildings: a state of art. *Renewable and Sustainable Energy Reviews*, *11*(6), 1146-1166.
- U.S. Department of Energy. (2000). Passive Solar Design Strategies: Guidelines for Home Building Passive Solar Design Strategies. *Guidelines for BODIe Builders*, 97.
- U.S. Department of Energy (DOE). (2001). Passive Solar Design for the Home. *Energy Efficiency and Renewable Energy*, 1-8.
- Van Bueren, E., van Bohemen, H., & Visscher, H. (2012). Sustainable urban environments. *An Ecosystems Approach*.
- Van der Linden, A. C., Erdtsieck, P., Kuijpers-van Gaalen, I. M., & Zeegers, A. (2011). *Bouwfysica*. ThiemeMeulenhoff.
- Van der Spoel, W. H. (2016). Playing with heat balances: An introduction to numerical modelling of heat transfer problems (lecture reader).
- Van der Spoel, W. H. (2018). CIE4225: Advanced and applied building physics. Air flow [Powerpoint lecture slides]. Retrieved from: https://brightspace.tudelft.nl/

- Van der Spoel, W. H., & Cauberg, J. J. M. (2006). Optimization of passive application of phase-change materials in building walls. 433-440.
- Wang, Q., & Zhao, C. Y. (2015). Parametric investigations of using a PCM curtain for energy efficient buildings. *Energy and Buildings*, *94*, 33-42.
- Wattez, Y. (2018). Double Face 2.0 Final report thermal aspects, measurements and simulations.
- Wattez, Y., Cosmatu, T., Tenpierik, M., Turrin, M., Heinzelmann, F., Brotas, L., & Nicol, F. (2017). Renewed Trombe wall passively reduces energy consumption.
- Weinläder, H., Beck, A., & Fricke, J. (2005). PCM-facade-panel for daylighting and room heating. *Solar Energy*, 78(2), 177-186.
- Weinlaeder, H., Koerner, W., & Heidenfelder, M. (2011). Monitoring results of an interior sun protection system with integrated latent heat storage. *Energy and Buildings*, 43(9), 2468-2475.
- Xiao, W., Wang, X., & Zhang, Y. (2009). Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. *Applied Energy*, *86*(10), 2013-2018.
- Xu, X., Zhang, Y., Lin, K., Di, H., & Yang, R. (2005). Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. *Energy and Buildings*, 37(10), 1084-1091.
- Yinping, Z., & Yi, J. (1999). A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. *Measurement Science and Technology*, 10(3), 201.
- Zalewski, L., Joulin, A., Lassue, S., Dutil, Y., & Rousse, D. (2012). Experimental study of small-scale solar wall integrating phase change material. *Solar Energy*, *86*(1), 208-219.
- Zhai, X. Q., Song, Z. P., & Wang, R. Z. (2011). A review for the applications of solar chimneys in buildings. *Renewable and Sustainable Energy Reviews*, *15*(8), 3757-3767.
- Zhou, D., Zhao, C. Y., & Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. *Applied energy*, *92*, 593-605.

Room model 1:

Office – Tropical climate – Northern orientation – Single clear glazing – Small room – Lightweight structure – Old building

Room model 2:

Office – Temperate climate – Western orientation – Triple coated glazing – Small room – Lightweight structure – Old building

Room model 3:

Office – Temperate climate – Southern orientation – Single clear glazing – Small room – Heavyweight structure – Old building

Room model 4:

Office – Temperate climate – Northern orientation – Triple coated glazing – Small room – Heavyweight structure – Old building

Room model 5:

Office – Cold climate – Western orientation – Triple coated glazing – Small room – Heavyweight structure – Old building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

Room model 6:

Office – Cold climate – Eastern orientation – Single clear glazing – Small room – Lightweight structure – New building

Room model 7:

Office – Cold climate – Southern orientation – Single clear glazing – Big room – Lightweight structure – New building

Page 189 of 231

Room model 8:

Office – Tropical climate – Southern orientation – Triple coated glazing – Big room – Lightweight structure – New building

Room model 9:

Office – Dry climate – Western orientation – Single clear glazing – Small room – Heavyweight structure – New building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

Room model 10:

Office – Dry climate – Eastern orientation – Single clear glazing – Big room – Heavyweight structure – New building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

Room model 11:

Residence – Cold climate – Northern orientation – Single clear glazing – Big room – Lightweight structure – Old building

Room model 12:

Residence – Tropical climate – Southern orientation – Triple coated glazing – Big room – Lightweight structure – Old building

Room model 13:

Residence – Dry climate – Western orientation – Triple coated glazing – Big room – Lightweight structure – Old building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

Room model 14:

Residence – Dry climate – Northern orientation – Single clear glazing – Big room – Heavyweight structure – Old building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.
Room model 15:

Residence – Tropical climate – Eastern orientation – Single clear glazing – Big room – Heavyweight structure – Old building

Room model 16:

Residence – Temperate climate – Eastern orientation – Triple coated glazing – Small room – Lightweight structure – New building

Room model 17:

Residence – Cold climate – Western orientation – Triple coated glazing – Big room – Lightweight structure – New building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

Room model 18:

Residence – Temperate climate – Southern orientation – Single clear glazing – Small room – Heavyweight structure – New building

Room model 19:

Residence – Tropical climate – Northern orientation – Triple coated glazing – Small room – Heavyweight structure – New building

Page 201 of 231

Room model 20:

Residence – Dry climate – Eastern orientation – Triple coated glazing – Big room – Heavyweight structure – New building

*absolute values too small: ratio between difference in energy demand (kWh) per week is not representative anymore and values for relative change are therefore not shown. Example of situation with too small values: energy demand in week 1 goes from 0.001 kWh to 0.1 kWh = 100% increase.

APPENDIX B

Simulink configuration settings

imulation time												
Start time: start_time			S	top time: stop_tim	e							
olver selection												
Type: Variable-step			-	Solver: ode23tb	(stiff/TR-BDF2)	-						
Solver details												
Max step size:	1800		Relativ	e tolerance: 1e-3								
Min step size:	auto		Absolu	te tolerance: auto								
Initial step size:	auto		🗸 Aut	o scale absolute to	lerance							
Solver reset method: Robust												
Solver reset method: Robust Shape preservation: Enable All												
Number of consecutiv	e min steps:	1										
Solver Jacobian meth	od:	auto				•						
Zero-crossing options												
Zero-crossing control:	Use local s	ettings	-	Algorithm:	Nonadaptive	-						
Time tolerance:	10*128*eps	6		Signal threshold:	auto							
Number of consecutiv	e zero crossi	ngs: 1000										
Tasking and sample time	o options											
		itian for data tran	ofor									
	ue rate trans	illon for data tran	isier									
	ie indicates i	ligher lask phone	У									
Advanced parameters												
Enable decoupled co	ontinuous inte	egration										
Enable minimal zero	-crossing im	pact integration										

				Climate →			Cold c	imate					Tempe	ate climate					D	y climate						Tro	opical climate			
TABLE 7: HE	EATING ENERGY DEI	MAND WITHOUT LTAT	TW (KWH/YEAR)	Building function →		Office			Residence			Office			Resident	e		Office			Reside	ence			Office			Resid	dence	
Age ↓	Room size ↓	Type of glazing ↓	Window size ↓	Orientation Building method	North	East South	West	North	East Sout	th West	North	East Sou	uth West	North	East	outh West	Nort	h East S	outh Wes	t North	East	South	West	North	East S	outh We	est North	East	South	West
		Double claring (class)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	219 203 196	190 89 173 59 165 45	186 169 160	512 486 486	438 415 408	250 426 214 401 205 395	61 40 27	49 28 15	25 5 5 2 0 1	0 210 8 190 5 189	5 182 8 163 9 155	101 1 78 1 66 1	.82 .64 .56	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0
		Double grazing (clear)	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	580 596 595	490 240 500 183 497 150	487 488 480	1005 992 982	863 834 822	514 840 384 807 332 794	199 193 180	154 138 122	86 16 49 14 26 12	2 439 2 429 5 41	9 358 5 333 3 318	225 3 162 3 126 3	158 133 119	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0
			Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	271 257 252	251 196 236 174 231 166	250 233 228	615 593 590	576 554 552	474 570 449 547 445 545	95 77 64	89 70 58	70 9 49 7	0 290 1 279 8 27	8 280 9 261 2 252	238 2 220 2 212 2	180 161	0 0 0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0 0 0	0 0	0
	Small room	Double glazing (coated)	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	778 814 819	700 530 732 529 734 517	701 723 723	1322 1310 1299	1204 1191 1184	940 1182 905 1172 890 1164	355 358 352	322 325 318	249 32 240 32 227 32	5 703 8 694 0 683	2 647 4 633 3 618	529 6 508 6 492 6	546 534 521	1 0 0 0	0	0 4 0 2 0	1	0 0 0	0	0	0	0	0 0 0	0 0 0	0	0
	(A=20m ²)	Triple glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	90 65 52	77 28 52 8 39 2	76 52 38	304 280 276	262 240 234	137 256 109 233 100 227	14 1 0	10 0 0	5 1 0 0	1 110 0 9: 0 8:	0 91 3 74 3 66	43 30 21	91 74 66	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	178 164 151	143 44 125 18 109 5	138 122 105	409 396 385	345 329 317	139 331 94 314 68 303	31 14 3	21 5 0	11 2 1 0	1 13: 5 119 0 100	1 89 9 75 6 63	35 15 1	90 75 64	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Triple glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	114 89 77	108 86 83 60 72 47	108 83 71	379 354 353	360 336 334	307 357 283 333 278 330	28 10 2	27 8 1	21 2 4 0	7 16 8 14 1 13	3 157 5 140 8 132	137 1 120 1 113 1	157 140 132	0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
New huilding			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	269 260 251	247 176 236 158 226 144	245 233 223	605 595 586	558 545 535	427 549 409 536 397 525	93 78 63	85 69 55	64 8 42 7 28 9	6 28 0 27 5 26	7 266 5 256 2 245	213 2 200 2 187 2	267 256 246	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Double glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	288 167 107	252 132 137 30 79 6	246 133 76	1210 1143 1119	1059 993 962	646 1032 574 969 527 941	69 2 0	61 1 0	36 6 0 0	1 429 1 372 0 330	5 367 2 315 5 276	199 3 157 3 115 2	168 116 177	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	951 914 863	808 369 759 230 699 149	801 742 679	2322 2281 2243	1993 1 1941 1895	1056 1934 871 1885 746 1836	261 164 101	210 112 54	108 21 30 11 3 5	6 910 5 869 7 820	5 732 9 685 0 637	393 7 284 6 234 6	'33 688 640	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Double glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	340 212 151	322 258 199 128 137 71	322 198 136	1410 1345 1317	1337 1 1270 1 1245 1	1129 1321 1060 1255 1029 1229	94 11 0	91 9 0	78 9 4 1 0	1 563 0 514 0 480	3 539 4 489 0 454	460 5 406 4 372 4	39 189 154	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
	Big room		Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	1223 1209 1170	1123 859 1102 768 1058 710	1127 1090 1044	2955 2933 2899	2734 2 2702 2 2661 2	2145 2692 2081 2659 2032 2615	457 366 307	416 329 269	331 42 218 33 158 27	3 141: 2 137: 1 132:	1 1313 1 1276 8 1229	1075 13 1027 12 976 12	14 77 30	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
	(A=100m²)	Triple glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	120 15 1	104 63 11 2 0 0	105 10 0	762 701 674	680 622 584	417 669 341 610 291 580	29 0 0	26 0 0	16 2 0 0	5 224 0 174 0 13	4 188 4 142 7 95	101 1 61 1 18	.88 .42 97	0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	243 138 75	198 73 104 3 49 0	191 96 42	1001 962 918	866 823 779	351 836 243 793 181 744	47 0 0	37 0 0	19 3 0 0	8 272 0 232 0 184	2 187 2 154 4 113	62 1 19 1 0 1	.88 .55 .14	0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Triple glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	145 21 1	137 117 20 11 1 1	137 19	903 838 815	871 806 781	766 863 704 799 679 773	38 0 0	37 0 0	33 3 0 0	7 310 0 250 0 220	0 300 8 248 0 210	265 3 216 2 174 2	100 148 110	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	347 229 161	328 239 212 117 144 56	326 211 142	1394 1353 1310	1304 1 1265 1223	1031 1284 980 1245 937 1204	99 14 1	92 11 0	76 9 4 1 0	3 549 1 514 0 473	9 519 4 481 1 437	413 5 375 4 330 4	19 81 38	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Double glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	1098 1167 1228 1273	988 760 1054 778 1110 811 1095 708	988 1042 1094 1105	1778 1771 1820 2066	1617 1 1601 1 1652 1 1832 1	1280 1587 1234 1575 1273 1626 1348 1803	534 559 583 585	485 507 529 495	382 49 388 51 399 53 358 51	2 96 0 96 1 98 3 107	5 890 D 881 B 903 B 950	735 8 713 8 726 9 714 9	189 180 103	2 0 0 0 1 0	0 0 0	0 11 0 8 0 6 0 2	4 0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0	0
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	1388 1423 1225	1182 674 1204 652 1170 1069	1166 1178 1171	2064 2076 1991	1774 1 1771 1 1913 1	1145 1733 1079 1722 1775 1901	626 635 623	525 528 601	321 53 290 53 556 60	6 106 5 105 3 109	1 923 7 913 8 1065	610 9 563 9 998 10	923 914 965	0 0 0 0 8 5	0 0 1	0 0 0 0 4 49	0 0 32	0 0 6	0 0 22	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Double glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	1298 1360 1570	1241 1129 1300 1183 1447 1216	1239 1296 1455	1990 2051 2544	1906 1 1961 1 2377 2	1764 1897 1809 1950 2055 2347	658 687 814	635 662 764	583 63 607 66 662 77	7 109 3 112 1 1414	5 1063 7 1093 4 1340	994 10 1021 10 1185 13)63)93 37	1 0 0 0 13 6	0 0 0	0 39 0 34 4 63	24 20 31	3 0 5	16 14 16	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
	Small room (A=20m ²)		Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	1703 1742 951	1576 1309 1618 1337 867 688	1570 1607 865	2549 2562 1567	2369 2 2367 2 1439 1	2022 2343 2012 2343 1166 1416	885 903 455	828 843 417	705 83 712 84 338 42	3 141 6 142 1 84	7 1341 2 1343 5 790	1175 13 1173 13 666 7	140 143 189	4 1 1 0 2 0	0 0 0	0 50 0 41 0 9	22 17 4	0 0 0	11 8 2	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
		Triple glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	1001 1059 863	917 703 970 741 745 454 702 424	907 958 744	1558 1610 1427	1424 1 1475 1 1248	1143 1405 1187 1456 859 1219	470 492 370	431 452 312	342 43 355 45 209 32	4 84: 4 87(1 71)	1 781 D 806 7 631	650 7 667 8 442 6	/81 106 130		0	0 7 0 5 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0
			Small window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	938 1055 1106	796 402 1024 966 1074 1010	708 775 1024 1072	1425 1435 1743 1740	1220 1221 1697 1 1691	720 1185 1617 1691 1609 1685	383 525 549	314 514 536	154 31 488 51 506 51	.8 699 5 959 7 959	9 606 5 936 1 933	352 6 897 9 894 9	608 935 933	0 0 5 4 0 0	0	0 0 3 39 0 20	0 29 21	0 9 7	0 22 17	0	0	0 0	0 0 0	0 0 0	0	0
		Triple glazing (coated)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	1164 1090 1157	1129 1061 1030 904 1096 956	1127 1032 1093	1801 1805 1805	1748 1 1717 1 1710 1	1660 1741 1544 1703 1528 1697	574 544 574	560 521 547	529 56 466 52 483 54	1 983 4 981 9 981	2 963 8 952 8 950	921 9 869 9 864 9	963 951 950	0 0 5 3 0 0	0 0 0	0 25 3 31 0 22	18 17 13	3 3 0	15 11 9	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
Old building			Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	1182 3760 4107	1124 977 3496 2952 3839 3170	1118 3505 3817	1817 7029 7017	1712 1 6591 5 6547 5	1527 1699 5697 6513 5604 6479	580 1787 1896	552 1677 1776	485 55 1452 169 1499 178	3 993 6 3776 6 3775	2 952 5 3593 3 3579	863 9 3181 35 3143 35	952 688 677	0 0 16 8 0 0	0	0 18 5 53 0 43	10 26 19	0 6 0	6 18 7	0 0	0 0	0 0 0	0 0 0	0 0 0 0 0 0 0	0 0 0	0 0 0
		Double glazing (clear)	Large window (wwr=0.75)	Light-weight Medium-weight	4263 4106 4575 4695	3990 3267 3610 2621 4002 2690 4090 2660	3958 3672 3967	7117 7549 7540 7528	6772 5 6706 4	5073 6554 5213 6634 4831 6538 4691 6533	1930 1899 2045 2048	1809 1670 1797 1795	1513 181 1297 171 1242 182 1154 181	4 398 1 397	3 3619 9 3607 1 3560 8 2506	3164 36 2821 36 2678 35 2592 25	61 61	8 1 0 0	0	0 34 0 20 0 10	8 4 0	0	4	0	0	0	0		0	0
		Daubla stasta f	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	4095 4023 4383 4531	3913 3703 4267 4026 4417 4164	4024 3919 4264 4409	7524 7529 7652	7347 7 7338 7 7445 7	7029 7319 7013 7314 7101 7422	1961 2099 2141	1919 2053 2092	1829 192 1944 205 1978 209	6 408 6 408 6 408	2 4009 0 4009 9 4063	3857 40 3853 40 3899 40	007 008 063	28 23 1 1 0 0	11 0 0	21 134 0 101 0 83	100 74 64	35 28 15	79 61 52	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0	0
	Big room	Double glazing (coated)	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	4765 5281 5401	4495 3994 5004 4411 5137 4505	4518 4997 5115	8788 8810 8824	8384 7 8376 7 8359 7	7613 8316 7553 8310 7512 8300	2374 2603 2626	2269 2487 2503	2056 228 2218 249 2219 251	9 480 7 481 0 481	5 4634 7 4642 5 4634	4264 46 4252 46 4235 46	627 640 634	37 25 4 1 0 0	3 0 0	20 165 1 125 0 98	97 70 57	21 4 0	64 47 37	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
	(A=100m ²)	Triple glazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	3454 3747 3888	3252 2832 3546 3041 3685 3145	3259 3530 3661	6556 6543 6648	6213 5 6176 5 6245 5	5537 6161 5466 6125 5526 6201	1624 1703 1733	1542 1615 1644	1372 155 1408 165 1424 165	6 350 3 350 0 355	9 3370 4 3358 5 3401	3058 33 3027 33 3055 34	166 157 101	15 9 0 0 0 0	0 0 0	6 50 0 40 0 31	28 22 11	6 0 0	20 11 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	3227 3535 3601	2867 2106 3121 2144 3172 2110 2601	2894 3092 3121	6090 6069 6072	5491 4 5455 3 5454 3	4219 5368 3996 5333 3896 5334	1437 1499 1487	1280 1333 1313	991 130 934 134 871 132	5 3180 9 3150 6 3133	0 2893 5 2849 5 2807	2294 28 2192 28 2136 28 2630	91 49 112	5 1 0 0 0 0	0 0 0	0 12 0 3 0 0	1 0 0	0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0	0 0	0 0
		Triple glazing (coated)	Small window (wwr=0.25)	Lignt-weight Medium-weight Heavy-weight	3665 3967 4103 3741	3604 3485 3903 3767 4038 3893 3608 2245	3606 3901 4034 2620	6957 6959 7083 7104	6850 6 6964 6 6895 6	6664 6836 6765 6950 6496 6863	1762 1864 1900	1739 1839 1873 1752	1088 174 1778 184 1808 187 1641 174	2 3750 0 3750 5 3809 0 282	3715 2 3712 9 3766 4 3750	3628 37 3624 37 3673 37 3559 37	14 11 166	24 21 0 0 0 0 25 20	14 0 0 7	0 112 0 82 0 70	94 69 59	45 38 27 22	80 61 52	0	0 0 0	0	0	0 0 0 0 0	0	0
			Large window (wwr=0.75)	Medium-weight Heavy-weight	4082	3950 3644 4030 3704	3946 4019	7111 7124	6889 6 6881 6	6472 6858 6446 6849	1921	1867 1860	1729 187 1716 186	1 383 3 383	3752 3752	3554 37 3538 37	752 744	1 0 0 0	0	0 71 0 59	53 42	11	43	0	0	0	0	0 0	0	0

APPENDIX C

Additional designer tables - Energy demand without LTATW

				Climate →			Co	d climate							Temperate	e climate							Dry cli	mate						т	Tropical clim	late			
TABLE 8: C	OOLING ENERGY DE	MAND WITHOUT LTA	TW (KWH/YEAR)	Building function →		Office			Resid	dence			Offic	ce			Resid	ence			Offic	e			Residenc	e			Office				Residence		
Room size ↓	Window size ↓	Type of glazing ↓	Age ↓	Orientation Building method	North	East	outh West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East S	outh	West	North	East So	outh V	West N	orth i	East Soi	uth We	≥st
			New building	Light-weight Medium-weight Heavy-weight		5 <u>12</u>) 2	17 3	13 2	2 9 0 1	19	5 9 2 2 0 0	166 136 122	192 156	193 159	186 154	119 113	146 140	151 144 126	147 140	780 745 721	870 834 822	895 848 824	960 927 920	560 554	662 657	691 683	781 775 772	1755 1767 1766	1814 1828	1755 1766 1765	1801 1816 1817	1279 1275 1272	1346 1342	1281 1 1277	1338 1333
		Double glazing (clear)	Old building	Light-weight Medium-weight		8 8 0 1	8	6 0	0 2 0 0		3 2 0 0	141 113	165 132	166 134	160 131	79 70	100 91	102 91	101 91	836 816	928 908	945 919	1013 997	630 618	725 717	737 727	839 830	1891 1925	1953 1991	1890 1925	1936 1976	1460 1467	1532 1541	1462 1 1469	1525 1531
			New building	Heavy-weight Light-weight Medium-weight		0 0 2 3 0 0	0 3 0	0 2 0	0 0 0 0 0 0) ()	0 0 0 0 0 0	99 108 81	122 117 89	121 118 88	117 115 88	59 53 45	81 60 52	79 61 51	81 60 52	805 648 616	899 680 645	908 684 649	996 709 674	613 418 408	719 449 441	729 453 444	834 484 476	1942 1501 1498	2009 1521 1519	1940 1500 1498	1996 1516 1515	1480 984 976	1556 1008 1000	1481 1 985 1 977	1545 1004 996
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight		0 0 0 2 0 0	0 2 0	0 1 0	0 0 0 0 0 0		0 0 0 0 0 0	68 95 67	75 107 76	75 105 76	75 104 75	38 34 23	46 42 31	46 42 31	46 42 31	600 717 696	630 754 733	633 758 736	661 783 765	403 503 488	434 541 525	437 544 529	470 581 567	1494 1650 1668	1515 1675 1694	1493 1649 1667	1512 1667 1688	973 1169 1170	997 1198 1200	973 1169 1170	993 1195 1196
	Small window (wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight		0 0 \$ 8 0 1	0 10 1	0 8 1	0 0 1 5 0 0		0 0 9 6 0 0	54 149 119	63 167 134	62 168 138	62 164 133	16 104 99	24 125 119	24 128 122	24 125 119	687 721 682	725 787 749	728 803 757	761 853 817	486 495 489	526 573 566	528 594 586	568 661 654	1680 1629 1632	1707 1674 1678	1678 1629 1631	1702 1664 1669	1182 1130 1124	1214 1181 1174	1182 1 1132 1 1125	1209 1174 1167
		Triple glazing (clear)		Heavy-weight Light-weight		0 0 2 5	0	0	0 0 0) (0 0	106 125	123 143	124 144	122 139	89 65	112 81	115 82	111 82	668 778	736 849	744 861	808 912	485	563 638	582 645	651 722	1629 1773	1675 1821	1628 1772	1667 1808	1120 1315	1171 1370	1122 1 1316	1164 1364
			Old building	Medium-weight Heavy-weight Light-weight		0 0 0 0 2 3	0 0 2	0 0 2	0 0 0 0 0 0) (0 0 0 0 0 0	97 84 101	114 102 108	114 102 107	112 100 107	55 46 49	71 63 54	71 61 55	72 63 54	755 745 610	828 818 630	834 825 632	894 891 647	552 548 379	629 629 399	636 637 400	713 718 420	1798 1811 1420	1848 1863 1433	1797 1809 1419	1837 1853 1430	1317 1330 892	1374 1389 907	1318 1 1331 1 892	1367 1380 905
		Triple glazing (coated)	New building	Medium-weight Heavy-weight			0 0	0 0	0 0		0 0 0 0	75	81 67 96	80 67	80 67	42 35 29	47 40 25	47 40 25	47 40 25	576 561	594 579 707	596 581 709	612 598 726	371 364	390 384	392 387	412 406	1412 1407 1576	1426 1421	1412 1407 1575	1423 1418	883 879	897 894	883 879	895 891
Small room			Old building	Medium-weight Heavy-weight) 0) 0	0	0	0 0 0 0		0 0 0 0	62 48	68 55	68 55	68 55	19 12	25 19	25 19	25 19	659 650	684 677	686 679	706 702	402 448 446	474 474	477	502 505	1588 1598	1607 1618	1587 1597	1602 1614	1075 1077 1089	1099 1113	1077 1 1089	1096 1109
(A=20m²)		Double glazing (clear)	New building	Light-weight Medium-weight Heavy-weight	3	9 87 L 43 4 23	143 72 51	95 49 30	45 107 26 89 14 71	157 136 115	7 121 6 98 5 80	336 289 277	425 367 350	448 375 358	409 358 345	301 292 284	392 385 377	414 401 391	398 385 376	1169 1135 1126	1419 1388 1380	1598 1488 1464	1681 1661 1663	990 987 983	1271 1278 1278	1455 1450 1441	1634 1633 1629	2463 2533 2553	2616 2695 2716	2464 2534 2552	2576 2 2659 2684	150 2169 2168	2328 2353 2353	2156 2 2176 2 2174	2310 2329 2328
		bouble glazning (cicar)	Old building	Light-weight Medium-weight Heavy-weight	2	1 58 5 20 2 10	97 37 17	64 : 24 11	13 43 2 22 0 7	74 46	4 53 6 27 6 11	289 248 235	374 314 298	389 320 304	356 307 293	228 216 206	295 283 273	309 293 281	303 285 274	1191 1172 1165	1431 1412 1408	1563 1482 1466	1673 1665 1673	1014 1010 1005	1271 1281 1282	1371 1359 1351	1613 1612 1610	2552 2639 2669	2706 2800 2832	2555 2640 2669	2662 2 2762 2799	284 2319 2326	2460 2504 2514	2290 2 2326 2 2332	2448 2483 2489
			New building	Light-weight Medium-weight Heavy-weight		1 9 0 0	9 0	7 0	0 1 0 0		2 2 0 0	140 108	156 121 109	156 121	153 119	73 65 57	86 77 70	87 76 67	87 78 70	784 753 726	849 818 801	861 824 805	914 884 871	555 545 525	621 614	626 618	703 695	1758 1777 1779	1804 1825 1827	1758 1777 1778	1793 1815	1288 1291	1339 1344 1242	1290 1 1293	1334 1338
	Large window	Double glazing (coated)	Old building	Light-weight Medium-weight			5	4	0 0	1		129 94	147 107	146 107	141 105	57 44 24	68 56	68 55	70 56	835 815	902 882	910 886	963 945	625 610	691 679	694 681	771 758	1868 1903	1914 1952	1868 1903	1902 1940	1428 1441	1481 1496	1430 1 1443	1477 1489
	(wwr=0.25)		New building	Light-weight Medium-weight	3	0 63 7 28	99 47	71 4 32 1	46 98 33 85	137	7 107 9 90	284 243	349 300	364 305	338 294	267 261	341 335	359 351	343	1003 964	1188 1153	1307 1218	1387 1356	814 811	1028 1030	1186 1181	1297 1294	2137 2177	2252 2297	2138 2176	2225	1731 1736	1863 1871	1736 1 1741	1847 1852
		Triple glazing (clear)	Old building	Light-weight Medium-weight	1	2 13 4 37 3 11	60 17	16 . 41 12	7 27 1 11	45	5 33 5 15	234 239 202	285 300 249	291 307 253	282 287 243	253 181 172	231 222	241 229	235 223	1029 1003	1141 1205 1181	1197 1285 1226	1351 1387 1369	805 825 821	1027 1019 1022	1174 1086 1075	1290 1265 1263	2184 2234 2292	2305 2349 2412	2183 2236 2292	2283 2319 2386	1732 1870 1888	2001 2024	1736 1 1875 1 1893	1847 1989 2007
			New building	Heavy-weight Light-weight Medium-weight		0 6 4 5 0 0	7 5 0	5 4 0	0 2 0 0 0 0	: 8) (8 3 0 0 0 0	190 123 92	234 131 99	238 130 99	231 129 98	163 62 54	214 70 62	220 70 60	214 70 62	992 676 641	1173 711 675	1207 714 676	1368 744 709	817 438 431	1022 472 466	1071 473 467	1261 514 508	2309 1537 1539	2432 1562 1564	2308 1537 1539	2407 1557 1559	1891 1023 1020	2029 1050 1048	1895 2 1024 : 1021	2010 1047 1044
		Triple glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight		0 0 2 4 0 0	0 3 0	0 2 0	0 0 0 0 0 0		0 0 0 0 0 0	79 108 77	86 119 85	86 118 84	85 115 85	46 42 31	55 48 37	53 47 36	55 48 37	624 732 707	657 767 741	657 770 741	693 799 776	423 505 491	460 540 526	460 540 526	503 581 568	1534 1658 1674	1559 1684 1701	1534 1658 1674	1555 1677 1695	1014 1168 1171	1042 1197 1202	1015 1 1170 1 1173	1038 1195 1198
			New building	Heavy-weight Light-weight Medium-weight	6	0 0 3 97 4 12	0 100 10	0 86 7	0 0 5 12 0 0) (20) (0 0 0 15 0 0	63 785 596	72 856 647	70 851 656	71 829 639	24 412 390	29 467 446	28 477 452	30 469 445	693 3461 3246	727 3667 3450	727 3726 3481	764 3861 3643	483 2180 2152	520 2406 2380	519 2459 2424	561 2668 2639	1678 7574 7571	1705 7706 7708	1677 7572 7568	1700 7675 7679	1172 4997 4981	1203 5150 5134	1173 1 5002 4985	1199 5130 5112
		Double glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	2	0 1 3 50 2 7	1 43 4	1 35 2	0 0 0 2 0 0		0 0 3 3 0 0	533 682 495	580 757 544	578 745 554	576 727 539	352 264 220	411 305 265	417 308 261	410 308 265	3160 3710 3558	3362 3923 3774	3384 3964 3796	3567 4101 3960	2133 2495 2438	2364 2709 2660	2406 2731 2679	2624 2953 2907	7550 8183 8254	7688 8322 8400	7547 8181 8251	7662 8282 8364	4962 5762 5780	5119 5924 5947	4969 5 5767 5 5783	5095 5909 5927
			New building	Heavy-weight Light-weight Medium-weight	3	0 0 5 50 0 1	0 47 1	0 44 1	0 0 1 0 0 0		0 0 0 0 0 0	437 644 461	488 682 483	488 677 483	480 675 481	179 265 231	230 284 250	225 286 251	227 284 249	3497 3147 2953	3714 3224 3021	3733 3244 3029	3917 3287 3085	2409 1852 1824	2639 1926 1897	2659 1935 1904	2895 2006 1975	8277 7002 6970	8426 7048 7017	8272 7000 6969	8395 7037 7007	5801 4328 4303	5977 4381 4356	5805 5 4329 4 4305	5951 4373 4348
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	1	0 0 5 22 0 1	0 20 3	0 18 2	0 0 0 0 0 0		0 0 0 0 0 0	405 560 391	425 596 413	423 593 413	423 586 410	204 166 118	221 184 137	220 184 136	220 184 137	2867 3436 3288	2934 3521 3372	2941 3532 3381	3001 3585 3443	1796 2205 2143	1874 2292 2231	1882 2300 2239	1956 2388 2324	6943 7646 7681	6990 7702 7740	6941 7643 7678	6981 7683 7724	4282 5100 5102	4336 5167 5171	4284 4 5101 5 5104	4328 5160 5162
	(wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight	6	0 0 88 3 5	0 83 6	0 70 5	0 0 5 7 0 0		000	331 751 555	354 804 597	354 804 606	352 786 592	89 378 356	106 419 398	106 426 403	106 420 397	3228 3315 3100	3315 3479 3252	3322 3511 3275	3394 3616 3394	2115 2029 2004	2209 2199 2174	2216 2240 2206	2306 2393 2364	7693 7286 7266	7755 7385 7367	7689 7284 7263	7741 7363 7347	5120 4658 4637	5194 4772 4752	5121 5 4661 4 4641	5183 4756 4734
		Triple glazing (clear)	Old building	Light-weight Medium-weight	2	3 39 L 3	33 1	0 28 0	0 0 2 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	495 640 460	528 700 509	526 698 506	525 679 496	318 232 188	264 223	265 221	266 223	3013 3574 3421	3170 3741 3585	3181 3774 3603	3320 3874 3734	1986 2344 2287	2158 2510 2458	2189 2529 2473	2347 2692 2646	7241 7916 7966	7343 8023 8079	7238 7913 7964	7324 7991 8051	4615 5430 5438	4732 5554 5567	4621 4 5432 5 5441	4/14 5542 5550
			New building	Light-weight Medium-weight	3	43 1	41	0 39 0	0 0		0 0	402 628 448	448 651 462	443 649 461	444 645 460	259	271 238	272 238	271 238	3359 3060 2863	3525 3104 2903	3113 2906	3143 2940	1765 1738	1810 1783	1815 1787	2033 1859 1830	6819 6778	6848 6808	6817 6777	6840 6801	4118 4090	4152 4123	4119 4 4091	4147
Big room		Triple glazing (coated)	Old building	Light-weight Medium-weight	1	5 19 0 0	18 1	17 1	0 0		0 0	544 378	405 568 394	404 565 394	560 392	156	168 121	168 121	168 121	3354 3204	3415 3262	3420 3266	3452 3309	2111 2051 2022	2174 2112 2001	2179 2118	2238	7480 7502 7511	7519	7477 7499	7505 7532	4896 4892 4000	4944 4941 4062	4896 4 4893 4	4938
(A=100m ²)			New building	Light-weight Medium-weight Heavy-weight	14 2	5 236 4 66 3 33	351 2 104 42	48 ! 73 : 31	54 146 12 78 0 26	224	4 167 6 94	1173 925 858	1382 1081 997	1423 1094 1011	1338 1060 991	800 769 744	976 947 917	1008 972 938	987 948 915	4375 4139 4059	4929 4692 4611	5273 4856 4745	5518 5278 5223	3158 3136 3115	3786 3784 3772	4056 4014 3987	4572 4555 4537	9216 9336 9352	9565 9702 9722	9218 9334 9347	9477 9622 9650	7001 7030 7014	7411 7451 7437	7017 7 7046 7028	7366
		Double glazing (clear)	Old building	Light-weight Medium-weight Heavy-weight	7	3 153 2 37 16	203 1 45 22	43 : 32 14	15 42 0 9 0 0	- 62 - 16	2 55 6 12 0 0	1018 798 733	1226 934 854	1225 936 859	1158 912 842	562 516 474	680 637 601	704 646 605	696 641 600	4533 4375 4314	5068 4899 4833	5271 5000 4905	5593 5431 5391	3357 3320 3290	3910 3899 3879	4024 3981 3950	4633 4604 4581	9700 9880 9931	10046 10245 10300	9703 9881 9928	9948 10156 10222	7653 7735 7740	8056 8158 8170	7669 8 7751 7755	8028 8109 8113
		Double de la circa di	New building	Light-weight Medium-weight Heavy-weight	4	9 81 2 8 0 0	72 7 0	62 6 0	3 5 0 0 0 0		4 6 0 0 0 0	745 532 472	799 571 505	785 574 508	772 564 502	310 272 244	344 306 275	345 307 270	345 306 275	3483 3274 3193	3638 3434 3341	3671 3447 3361	3782 3578 3494	2159 2131 2100	2318 2292 2268	2335 2303 2278	2509 2478 2457	7604 7612 7592	7707 7720 7701	7604 7611 7591	7683 7697 7680	5028 5026 5005	5147 5148 5129	5032 5 5030 5 5011	5134 5132 5111
	Large window	Double glazing (coated)	Old building	Light-weight Medium-weight Heavy-weight	1	9 36 L 5 D 0	30 3 0	26 2 0	0 1 0 0 0 0		0 0 0 0 0 0	649 462 398	709 505 436	704 500 430	690 493 432	220 168 130	246 195 157	244 192 153	248 195 157	3717 3566 3501	3880 3722 3656	3903 3733 3666	4014 3866 3809	2486 2427 2381	2643 2584 2543	2648 2589 2546	2821 2766 2724	8148 8217 8225	8253 8327 8336	8149 8217 8223	8224 8300 8313	5696 5725 5722	5817 5851 5853	5701 5 5729 5 5727	5808 5837 5835
	(wwr=0.25)	Triple statise (stars)	New building	Light-weight Medium-weight Heavy-weight	12 1	5 180 7 43 4 18	250 1 60 22	92 4 45 16	43 114 7 53 0 11	170 111 56	0 127 1 69 6 29	1053 831 747	1203 923 856	1226 928 857	1171 909 841	701 676 654	834 809 783	857 827 798	839 808 781	3982 3737 3647	4383 4135 4045	4601 4243 4131	4816 4564 4492	2737 2712 2693	3200 3192 3180	3396 3359 3339	3769 3751 3734	8439 8494 8487	8697 8764 8759	8439 8491 8482	8636 8708 8708	6024 6027 6007	6324 6333 6313	6035 6 6038 6016	6287 6290 6270
		(clear)	Old building	Light-weight Medium-weight Heavy-weight	5	9 114 5 22 0 8	141 1 25 9	05 18 6	6 22 0 3 0 0	31	1 27 4 2 0 0	902 693 629	1044 784 713	1042 787 715	1000 771 707	456 415 375	539 503 464	549 507 465	546 503 464	4150 3987 3916	4540 4367 4292	4668 4424 4334	4924 4752 4697	2920 2880 2849	3318 3299 3279	3390 3348 3323	3833 3798 3778	8953 9071 9096	9208 9340 9368	8954 9070 9093	9139 9277 9312	6690 6735 6734	6986 7044 7047	6701 6 6746 6744	6962 7006 7005
		Triplo glazing (costs -1)	New building	Light-weight Medium-weight Heavy-weight	4	7 69 L 4 D 0	65 3 0	55 2 0	0 1 0 0 0 0		1 1 0 0 0 0	697 491 433	735 517 454	730 513 449	716 514 452	288 253 225	306 273 243	306 272 239	307 273 243	3226 3017 2925	3311 3093 3000	3330 3097 3003	3384 3176 3082	1899 1875 1848	1979 1954 1931	1982 1955 1933	2076 2048 2028	7087 7062 7033	7142 7119 7090	7087 7063 7032	7130 7108 7079	4416 4401 4376	4479 4465 4441	4419 4 4405 4380	4471 4456 4431
		(coated)	Old building	Light-weight Medium-weight Heavy-weight	2	0 25 L 2 D 1	22 1 0	21 1 0	0 0 0 0		0 0 0 0 0 0	600 423 357	639 443 378	633 442 375	629 440 377	183 136 105	197 151 119	195 148 117	198 151 118	3480 3318 3248	3565 3396 3326	3570 3397 3326	3639 3473 3407	2211 2152 2113	2291 2233 2196	2291 2232 2195	2384 2328 2291	7667 7696 7690	7724 7756 7751	7668 7696 7690	7709 7742 7739	5098 5106 5098	5163 5175 5169	5100 5 5109 5 5101	5158 5166 5159

TABLE 9: ENERGY DEMA	ND FOR ARTIFICIAL LIGHTING W	ITHOUT LTATW (KWH/YEAR)	Climate →		Cold o	limate			Tempera	te climate			Dry cl	imate			Tropica	l climate	
Room size ↓	Type of glazing ↓	Building function ↓	Orientation Window size	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		Office	Small window	206.2	192.4	167.7	185.8	148.3	133.6	118.6	131.6	98.6	98.4	91.8	91.7	57.8	63.3	57.2	57.8
	Clear	Office	Large window	149.3	144.2	137.2	141.7	98.0	96.4	92.2	94.4	87.9	89.0	87.2	86.3	53.0	53.2	53.0	52.8
	Clear	Residence	Small window	163.2	164.3	162.7	161.6	154.1	155.9	154.4	152.4	163.7	163.3	163.3	163.8	156.3	158.4	156.8	154.6
Small room		Residence	Large window	156.0	156.1	155.6	155.2	148.0	148.9	148.3	147.2	162.1	162.1	162.0	162.1	148.9	149.4	149.0	148.8
(A=20m ²)		Office	Small window	212.4	183.0	138.0	174.9	200.3	160.2	127.9	163.3	165.5	128.9	85.6	114.5	113.6	106.5	108.3	102.5
	Lauroom L=20m²) Coated	Office	Large window	272.5	243.2	188.5	230.5	221.8	186.5	147.5	187.3	143.0	125.1	100.5	120.9	77.1	90.7	77.6	80.8
	Coateu	Pacidonco	Small window	194.6	194.3	184.3	185.8	186.7	185.1	179.2	175.6	179.0	175.2	175.1	176.3	176.7	176.4	176.9	174.9
		Residence	Large window	174.2	174.9	171.0	170.8	162.9	165.7	162.7	160.1	166.4	166.2	165.4	166.9	164.1	165.6	164.2	162.8
		Office	Small window	1656.0	1437.1	1090.6	1362.2	1458.7	1185.2	954.0	1191.5	923.5	757.8	567.7	728.7	570.0	640.4	578.4	598.8
	Clear	Office	Large window	1035.4	952.2	822.7	918.6	768.7	685.6	603.4	676.2	489.6	491.8	455.0	453.2	296.5	330.2	296.4	296.1
	Clear	Pacidonco	Small window	895.2	898.8	870.1	866.7	845.9	854.5	835.7	817.4	837.9	833.1	832.9	840.1	840.1	843.7	841.8	836.7
Big room		Residence	Large window	821.9	825.3	816.4	813.1	772.6	781.3	772.8	763.3	810.1	807.9	807.0	810.0	782.2	791.5	784.5	774.0
(A=100m ²)	Big room (A=100m²) Coated	Office	Small window	2376.9	2195.9	1854.3	2135.2	2328.8	2120.3	1977.2	2126.4	2173.8	1944.3	1664.7	1655.9	1976.4	1822.6	1967.6	1853.8
		Office	Large window	2055.2	1766.3	1312.1	1685.9	1937.4	1561.3	1261.6	1569.9	1599.2	1234.0	888.0	1081.3	1138.1	1059.4	1147.8	1040.8
		Recidence	Small window	1128.6	1082.9	1023.3	1040.5	1108.3	1047.7	1009.8	998.5	1058.4	992.3	959.0	955.1	1005.9	991.6	1007.0	985.1
		nesidence	Large window	977.6	977.6	936.0	939.3	941.4	931.3	907.4	885.1	884.2	865.6	870.4	869.7	884.1	879.8	884.7	874.2

Additional designer tables - Energy demand per square meter

Age Type of gising Window size Underweight 7.5 5.3 2.5 5.3 7.5 5.3 7.5 7	Residence East South West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light weight 0 Window size Undow size Orientation North Est South Weit North Est	East South West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Normal room Light-weight 6.0 5.5 5.7 5.4 9.7 6.2 6.6 6.7 6.7 6.4 7.5 6.6 6.7 7.5 6.8 7.6 7.5 6.8 7.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bould glazing (clear) Current regime Current regime <thcurrent regime<="" th=""> Current regime C</thcurrent>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Normal register Normal register Index register Index register Normal regis	0.0 0.0 0.0 0.0 0.0 0.0 0.0 <u>0.0 0.0</u>
And the product part of	
(A=20m') Light-weight 3.7 3.7 3.7 5.7 6.7 5.7 6.7 <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Large window (wwr=0.75) Medium-weight 2.7 2.3 0.9 2.6 4.0 4.2 3.2 4.4 0.7 0.3 0.1 0.3 2.5 2.2 0.8 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Heavy-weight 2.9 2.3 0.3 2.6 4.0 4.6 2.4 4.8 0.2 0.0 0.0 2.4 2.0 0.1 2.0 0.0 <t< td=""><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Small window (wwr=0.25) Medium-weight 3.9 3.6 2.8 3.6 7.7 7.5 7.0 7.5 6.5 6.4 6.1 6.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
New building Large window (wwre).75 Medium-weight 3.5 3.2 2.8 3.3 4.7 4.5 4.7 1.7 1.6 1.2 1.6 2.8 2.6 2.7 2.7 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Small window (wwr=0.25) Medium-weight 1.7 1.6 1.1 1.6 4.2 4.0 3.7 4.0 0.1 0.0 0.1 2.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Double glazing (code) Heavy-weight 14 13 0.7 13 4.3 4.1 3.9 4.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Big room Heavy-weight 4.5 4.1 3.8 4.2 6.4 6.0 5.6 6.1 2.0 1.8 3.7 3.3 3.5 0.0 <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Triple glazing (clear) Intervy-weight 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Light-weight 0.8 0.8 0.7 0.8 3.4 3.1 3.1 3.0 0.2 0.2 0.2 0.1 1.5 1.5 1.5 0.0 <t< td=""><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Improgram Control Improgram Improgram <thimprogram< th=""> <thimprogram< th=""></thimprogram<></thimprogram<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Duble glazing (clear) Light-weight 13.6 13.7 12.2 13.0 200 17.8 17.8 17.8 17.9 11.9 11.7 11.7 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Large window (wwre0.75) Medium-weight 10.6 9.7 11.5 11.0 13.7 13.9 17.3 14.0 6.0 5.9 6.2 6.5 9.0 8.8 10.4 9.1 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Double glazing (covie) Disk window (wn c) (wn c) Disk window (wn c) <t< td=""><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ \frac{5}{\text{mall room}} = \frac{5}{\text{mall room}} = \frac{1}{10000000000000000000000000000000000$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Imple grazing (Lear) Lightweight 5.4 5.6 8.7 6.8 8.3 9.8 14.1 9.4 3.5 3.5 5.0 4.2 5.7 6.1 8.3 6.2 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Image: Note of the state o	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Old building Large window (wwreu?c) Medium-weight 6.8 6.4 7.0 6.7 8.7 9.0 9.6 9.5 4.2 4.0 4.1 5.2 5.0 5.4 5.0 0.0 0.0 0.4 0.2 0.0 0.4 0.2 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Medium-weight 6.5 7.8 7.6 6.9 7.5 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1 7.8 7.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Image: New part of the any-weight 6.4 5.9 6.1 5.8 8.0 7.8 7.6 7.4 3.4 3.1 3.4 5.1 5.0 5.1 5.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Double glazing (coated) Dictory Magnet 5.2 4.9 5.0 5.2 8.4 8.5 9.2 9.0 3.1 3.3 5.0 4.8 5.2 5.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(A=100m ⁴) (A=100m ⁴)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Large window (wwr=0.75) Large window (wwr=0.75) <thlarge (wwr="0.75)</th" window=""> Large window (wwr=0.75)<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></thlarge>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Small window (ww=0.25) Medium-weight 6.0 5.8 5.6 5.9 8.0 7.7 7.8 3.4 3.3 3.4 4.5 4.5 6.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

APPENDIX D

				Climate →				Cold cl	imate							Temp	erate clim	nate							Dry	climate							Tropical	climate			
TABLE 11: ABSOL	UTE REDUCTION OF (COOLING ENERGY DEI	MAND (KWH/M²/YEAR)	Building function →		Off	ice			Resid	dence				Office				Residen	nce				Office			Resi	lence			C	Office			Reside	ence	
Room size ↓	Window size ↓	Type of glazing ↓	Age ↓	Orientation Building method	North	East	South	West	North	East	South	West	North	n Eas	it Sou	th We	t Nor	rth E	ast	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
			New building	Light-weight Medium-weight	-0.2 0.0	-0.3 0.1	-0.2 0.1	-0.1 0.1	0.1 0.0	0.4 0.1	0.7 0.1	0.4	2.0 2.8	1.9	2.	2.3	43	.2 4	4.8 5.2	5.2 5.6	5.0 5.4	4.3 4.5	4.3 4.8	5.0 5.3	5.8 6.1	7.0	8.0 8.5	9.4 9.9	9.7 10.4	3.3 3.2	3.4 3.3	3.3 3.2	3.7 3.5	4.5 4.3	4.6 4.3	4.4 4.2	4.8 4.5
		Double glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 -0.2 0.0	0.1 -0.1 0.1	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	2.8 1.4 2.0	3.2 1.2 2.2	3. 1. 2.	3.2 7 1.7 3 2.2	4. 2. 2.	.5 5 .4 2 .7 3	5.4 2.8 3.2	5.6 3.0 3.3	5.4 2.9 3.2	4.6 4.1 4.5	5.0 4.4 4.9	5.6 4.9 5.5	6.4 6.0 6.3	7.5 6.2 6.4	8.9 6.9 7.4	10.3 7.7 8.2	10.9 8.6 9.0	3.3 4.5 4.8	3.3 4.8 5.1	3.3 4.5 4.8	3.6 5.0 5.3	4.4 6.5 6.6	4.5 6.8 6.9	4.3 6.5 6.5	4.7 7.0 7.0
			New building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 -0.1 0.0	0.0 -0.1 0.0	0.0 -0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.9 1.4 1.9	2.4 1.4 1.9	2.0 1.1 2.0	2.3 5 1.5 0 2.0	2.1 2.1 2.1	.5 3 .4 2 .2 2	3.2 2.6 2.5	3.1 2.7 2.5	3.2 2.6 2.5	4.7 3.4 3.8	5.3 3.6 3.9	5.7 3.7 4.1	6.8 4.1 4.2	6.6 5.6 5.7	8.0 6.1 6.1	8.9 6.4 6.4	9.9 6.6 6.7	5.5 2.7 2.7	5.8 2.7 2.7	5.4 2.6 2.7	6.0 2.8 2.8	7.5 4.3 4.1	7.8 4.5 4.3	7.3 4.3 4.1	7.9 4.5 4.3
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.9 1.1 1.2	1.9 1.2 1.4	2.0 1.1 1.0) 2.0 2 1.3 1 1.4	13 13 14	.9 2 .3 1 .0 1	2.3 1.6 1.4	2.3 1.6 1.4	2.3 1.6 1.4	3.7 3.5 3.9	3.9 3.9 4.4	4.1 4.1 4.6	4.3 4.4 4.9	5.7 5.5 5.4	6.1 6.1 6.1	6.5 6.4 6.3	6.8 6.8 6.8	2.8 4.0 4.5	2.9 4.3 4.7	2.8 4.0 4.4	3.0 4.2 4.7	4.3 6.5 6.5	4.4 6.8 6.9	4.2 6.4 6.4	4.4 6.8 6.9
	Small window (wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight	0.0 -0.2 0.0	0.0 -0.3 0.1	0.0 -0.3 0.1	0.0 -0.2 0.1	0.0 0.1 0.0	0.0 0.3 0.0	0.0 0.5 0.0	0.0 0.3 0.0	1.2 1.9 2.6	1.4 1.8 2.8	1. 2. 3.	1.4 2 2.3 1 3.0	0.4 4.3 4.3	.8 1 .2 4 .5 5	1.2 4.8 5.1	1.2 5.0 5.3	1.2 4.7 5.1	4.2 4.1 4.2	4.7 4.2 4.4	4.9 4.8 4.8	5.4 5.2 5.4	5.8 6.9 7.2	6.5 7.7 8.0	6.8 8.9 9.2	7.4 9.0 9.6	5.2 2.7 2.6	5.5 2.8 2.7	5.1 2.7 2.6	5.6 3.0 2.8	7.4 4.0 3.8	7.8 4.1 3.8	7.3 3.9 3.6	7.8 4.2 3.9
		Triple glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 -0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.6 1.3 1.7	3.0 1.3 2.1	3.: 1.: 2.:	L 3.0 7 1.6 L 2.1	4. 2. 2.	.3 5 .3 2 .3 2	5.1 2.6 2.8	5.3 2.8 2.8	5.1 2.8 2.9	4.4 3.8 4.2	4.6 4.1 4.7	5.0 4.6 5.0	5.6 5.3 5.6	7.3 6.0 6.0	8.3 6.6 6.9	9.5 7.2 7.7	9.9 7.7 8.3	2.7 4.0 4.4	2.8 4.3 4.6	2.7 4.0 4.3	2.9 4.4 4.7	3.9 6.1 6.1	4.0 6.4 6.4	3.8 6.0 5.9	4.1 6.5 6.5
			New building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 -0.1 0.0	0.0 -0.1 0.0	0.0 -0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.7 1.3 1.8	2.2 1.4 1.9	2.	8 2.1 1.5 9 1.9	2.: 2.: 2.:	.2 2 .3 2 .1 2	2.8 2.5 2.4	2.7 2.5 2.4	2.8 2.5 2.4	4.4 3.3 3.6	5.0 3.5 3.8	5.3 3.6 3.9	6.2 3.6 4.0	6.4 5.6 5.7	7.4 6.0 6.1	8.3 6.1 6.3	9.1 6.4 6.5	5.1 2.4 2.4	5.4 2.5 2.5	5.0 2.3 2.3	5.5 2.5 2.5	7.0 4.1 3.9	7.4 4.3 4.0	6.8 4.0 3.8	7.3 4.3 4.0
		Triple glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.8 1.0 1.2	1.9 1.1 1.3	1.9 1.1 1.1	9 1.9 L 1.1 8 1.4	1. 1. 0.9	.8 2 .2 1 .9 1	2.0 1.4 1.2	2.0 1.4 1.2	2.0 1.4 1.2	3.6 3.3 3.8	3.8 3.8 4.3	3.9 3.9 4.4	4.1 4.1 4.7	5.6 5.4 5.2	6.0 6.0 5.8	6.2 6.2 6.1	6.5 6.5 6.4	2.5 3.8 4.3	2.7 4.1 4.6	2.5 3.7 4.2	2.6 4.0 4.5	4.0 6.2 6.2	4.2 6.6 6.7	3.9 6.1 6.1	4.1 6.6 6.6
Small room (A=20m ²)			New building	Heavy-weight Light-weight Medium-weight	0.0 0.8 0.4	0.0 1.3 1.5	0.0 2.7 2.3	0.0 2.2 1.7	0.0 2.2 1.3	0.0 4.3 4.2	0.0 6.2 6.3	0.0 4.8 4.6	1.1 5.8 6.3	1.3 6.5 7.8	1.: 7.6 8 8.4	8 1.3 5 6.8 1 7.7	0.1 8.2 9.4	.6 1 .9 1 .4 1	1.0 11.1 11.6	1.0 12.0 12.9	1.0 11.5 12.2	4.1 8.7 8.9	4.7 9.2 10.0	4.8 13.4 13.8	5.2 14.2 14.2	5.6 11.8 12.4	6.3 13.8 15.1	6.6 22.1 23.6	7.1 18.7 19.7	5.0 5.9 5.5	5.4 6.0 5.5	4.9 6.1 5.8	5.3 7.1 6.7	7.1 5.4 5.5	7.6 5.1 5.3	7.0 5.4 5.6	7.5 5.8 5.9
		Double glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.2 0.5 0.2	0.8 0.4 0.3	1.9 1.6 0.9	1.2 1.4 0.7	0.7 0.6 0.1	3.5 1.4 1.0	5.6 2.7 2.0	3.9 1.8 1.2	6.5 4.4 5.0	7.6 4.6 5.8	6.1 6.1	8 7.9 L 5.3 I 5.9	9.1 5.1 6.1	.7 1 .9 7 .5 7	11.8 7.1 7.7	12.8 8.2 8.5	12.2 7.5 7.9	9.1 7.6 7.8	10.4 7.6 8.1	13.7 11.6 11.1	14.2 12.3 12.1	12.7 9.4 10.0	15.5 10.4 11.7	23.6 14.8 15.6	20.2 14.6 15.6	5.3 5.7 5.6	5.2 5.8 5.6	5.6 6.0 5.9	6.4 6.9 6.7	5.5 5.9 6.3	5.3 5.7 6.2	5.6 6.0 6.4	5.9 6.4 6.8
			New building	Heavy-weight Light-weight Medium-weight	0.1 0.2 0.0	0.2 0.1 0.0	0.3 0.3 0.0	0.3 0.3 0.0	0.0 0.0 0.0	0.3 0.1 0.0	1.2 0.1 0.0	0.5 0.1 0.0	5.1 3.1 3.1	5.6 2.9 3.2	6.4 3.3 3.4	6.1 3 3.4 1 3.4	63 30 30	.5 7 .2 3 .2 3	7.5 3.7 3.7	8.3 3.8 3.6	8.0 3.8 3.7	7.8 6.2 6.2	8.6 6.2 6.4	11.0 7.0 6.8	12.3 7.1 7.2	10.3 7.6 7.4	12.4 7.7 8.0	16.2 8.4 8.6	16.4 8.7 9.1	5.6 3.6 3.8	5.5 3.7 3.8	5.9 3.7 3.9	6.8 3.9 4.1	6.6 5.2 5.2	6.5 5.1 5.1	6.6 5.3 5.2	7.0 5.4 5.3
		Double glazing (coated)	Old building	Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.2 0.0	0.0 0.2 0.0	0.0 0.2 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.1 0.0	3.1 2.7 2.5	3.3 2.7 2.6	2.9 2.9	1 3.3 9 2.9 7 2.7	2.0	.9 3 .4 2 .1 2	3.5 2.6 2.5	3.4 2.7 2.5	3.5 2.8 2.6	6.0 5.6 5.8	6.1 5.7 6.0	6.7 6.2 6.5	7.0 6.6 6.9	7.4 6.9 6.7	8.1 7.1 7.3	8.7 7.8 7.8	9.2 8.0 8.2	4.0 3.9 4.3	3.9 4.0 4.3	4.0 4.0 4.4	4.2 4.3 4.5	5.3 5.8 6.1	5.3 5.9 6.1	5.2 5.8 6.0	5.4 6.1 6.2
	(wwr=0.25)		New building	Light-weight Medium-weight	0.0 0.7 0.3	0.0 1.4 1.1	0.0 2.0 1.9	0.0 1.7 1.3	0.0 2.3 1.7	0.0 4.7 4.2	0.0 6.4 5.9	0.0 5.0 4.5	2.4 5.6 6.3	2.6 6.4 7.5	2.: 6.9	2.6 6.4) 7.7	1. 9.1 10.	.7 2 .8 1:).3 1:	2.2 12.1 12.4	2.2 13.2 13.6	2.3 12.4 12.7	5.8 8.3 8.5	6.1 8.8 9.5	6.5 12.4 12.4	6.9 12.1 12.7	6.8 12.1 12.6	7.3 14.1 15.3	8.0 22.1 22.6	8.3 18.4 19.2	4.6 4.5 4.1	4.6 4.6 4.1	4.6 4.7 4.3	4.9 5.4 4.8	6.4 4.0 3.7	6.4 3.7 3.7	6.3 3.8 3.9	6.6 4.2 3.9
		Triple glazing (clear)	Old building	Light-weight Medium-weight	0.1 0.3 0.2	0.6 0.5 0.3	1.3 1.0 0.5	0.7 1.0 0.4	1.2 0.4 0.1	3.3 1.2 0.6	5.2 2.1 1.2	3.7 1.5 0.8	6.4 4.2 4.7	7.4 4.5 5.4	5.	7.6 5.1 3 5.5	10. 6.1 6.1	0.5 12 .0 7 .5 7	12.6 7.1 7.5	13.8 7.8 8.3	12.8 7.3 7.9	8.5 7.0 7.3	9.7 7.2 7.8	12.2 10.1 10.0	13.0 10.5 10.8	12.8 8.7 9.4	15.6 10.1 11.2	22.9 13.0 14.0	19.7 12.9 14.0	3.9 4.5 4.3	3.9 4.6 4.4	4.1 4.7 4.5	4.6 5.4 5.2	3.8 4.5 4.6	3.6 4.3 4.6	3.7 4.5 4.6	3.9 4.8 4.7
			New building	Light-weight Medium-weight	0.0 0.2 0.0	0.3 0.1 0.0	0.2 0.1 0.0	0.2 0.2 0.0	0.0 0.0 0.0	0.1 0.0 0.0	0.4	0.2	4.8 3.0 3.0	5.4 2.9 3.2	6.0 3.0 3.1	0 5.6 0 3.1 2 3.2	6.1 3.2 2.1	.67 .13 .73	7.9 3.4 3.1	8.4 3.4 3.0	7.8 3.4 3.1	7.2 5.5 5.7	7.9 5.7 5.9	9.6 6.0 6.1	11.0 6.1 6.2	9.7 7.0 7.1	11.7 7.3 7.3	14.4 7.7 7.8	14.7 7.9 8.0	4.3 2.6 2.8	4.5 2.7 2.8	4.5 2.6 2.8	5.1 2.8 2.8	4.8 4.2 4.1	4.8 4.0 4.1	4.8 4.1 4.1	5.1 4.2 4.1
		Triple glazing (coated)	Old building	Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.2 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0	0.0	0.0	0.0	2.4 2.3	3.1 2.5 2.4	2.1 2.1	2 3.1 5 2.4 5 2.5	2.	.3 2 .0 2 .6 1	2.8 2.2 1.9	2.7	2.8	5.5 4.9 5.3	5.7 5.2 5.6	5.5 5.7	5.5 5.9	6.9 6.2 6.0	6.6 6.4	6.8 6.8	6.8 6.9	2.8 3.0 3.3	2.8 3.1 3.4	2.8 3.0 3.3	2.9 3.1 3.4	4.1 4.8 4.8	4.0 4.9 5.0	4.1 4.8 4.9	4.2 5.0 5.0
		Duckla slasing (slass)	New building	Light-weight Medium-weight Heavy-weight	-0.1 0.0 0.0	-0.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0	0.0 0.1 0.0 0.0	0.0 0.0 0.0	0.0 0.1 0.0	0.4	0.5	0.0	5 0.5 2 1.1 0 1.1	13	.2 1 .8 2 .9 2 .9 2	2.0 2.1 2.1	2.1 2.2 2.2	2.0 2.1 2.2	1.5 1.6 1.5	1.6 1.6 1.6	1.7 1.8 1.8	2.1 2.0 2.2	3.1 3.2 3.4	3.4 3.6 3.8	3.9 3.9 4.2	4.0 4.2 4.4	1.3 1.3 1.3	1.3 1.3 1.3	1.3 1.2 1.3	1.4 1.4 1.4	2.0 1.9 2.0	2.1 1.9 2.0	2.0 1.9 2.0	2.2 2.0 2.1
			Old building	Light-weight Medium-weight Heavy-weight	0.0 0.0 0.0	-0.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.5 0.5 0.6	0.5 0.6 0.7	i 0.1	5 0.6 7 0.7 7 0.7	0.3 1.0 0.3	.9 1 .0 1 .9 1	1.0 1.1 1.2	1.0 1.1 1.1	1.0 1.1 1.1	1.4 1.6 1.7	1.5 1.7 1.8	1.7 1.8 2.0	2.1 2.2 2.4	2.6 2.6 2.8	2.8 3.0 3.2	3.1 3.2 3.5	3.3 3.5 3.9	1.8 1.9 2.2	1.8 2.0 2.3	1.7 1.9 2.2	2.0 2.1 2.4	2.8 2.9 3.3	3.0 3.0 3.5	2.8 2.8 3.2	3.1 3.1 3.5
		Double glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.5	0.4	i 0.4	0.5 0.6 7 0.8	1/	A 1 .5 1 .4 1	1.5 1.5 1.5	1.5 1.6 1.5	1.5 1.6 1.5	1.2 1.5 1.4	1.2 1.5 1.4	1.3 1.5 1.4	1.4 1.5 1.5	2.6 2.9 2.9	2.8 3.0 3.0	2.9 3.1 3.1	3.0 3.2 3.3	1.1 1.0 1.1	1.1 1.1 1.1	1.0 1.0 1.1	1.1 1.1 1.2	1.8 1.7 1.8	1.9 1.8 1.8	1.8 1.7 1.8	1.9 1.8 1.9
	Small window		Old building	Medium-weight Heavy-weight	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.1	5 0.4 5 0.5	0.1	.7 0 .6 0	0.8 0.7	0.8 0.7	0.8 0.7	1.5	1.6	1.7	1.8 2.0	2.3	2.6 2.8	2.7	2.9 3.2	1.7	1.8	1.7	1.8	2.7 3.1	2.8 3.3	2.7 3.0	2.9 3.3
	(wwr=0.25)	Triple glazing (clear)	New building	Medium-weight Heavy-weight	0.0 0.0 0.0	-0.2 0.0 0.0	-0.1 0.0 0.0	-0.1 0.0 0.0	0.1 0.0 0.0	0.1 0.0 0.0	0.1 0.0 0.0	0.1	0.4	0.5 1.1 1.0		0.5 2 1.1 0 1.0	1.2	.9 2 .0 2 .9 2	2.0 2.1 2.1	2.1 2.2 2.2	2.0 2.2 2.1	1.3 1.5 1.4	1.4 1.5 1.5	1.5 1.6 1.5	1.7 1.7 1.8	3.0 3.2 3.3	3.3 3.5 3.7	3.7 3.7 3.9	3.7 3.9 4.1	1.0 0.9 1.0	1.0 0.9 1.0	1.0 0.9 1.0	1.1 1.0 1.1	1.7 1.6 1.6	1.7 1.6 1.7	1.6 1.5 1.6	1.8 1.6 1.7
			Old building	Medium-weight Heavy-weight Light-weight	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.5 0.6 0.4	0.7 0.7 0.4	0.0	5 0.6 7 0.7 1 0.4	1. 0.3 1.3	.0 1 .9 1 .5 1	1.1 1.0 1.6	1.1 1.0 1.6	1.1 1.0 1.6	1.5 1.6 1.1	1.5 1.7 1.2	1.7 1.8 1.2	1.9 2.1 1.2	2.5 2.7 2.6	2.8 3.1 2.8	3.0 3.3 2.8	3.3 3.6 2.9	1.6 1.9 0.9	1.7 2.0 0.9	1.6 1.9 0.8	1.8 2.1 0.9	2.5 2.9 1.6	2.6 3.1 1.7	2.5 2.9 1.6	2.7 3.1 1.7
		Triple glazing (coated)	New building	Medium-weight Heavy-weight Light-weight	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.7 0.7 0.3	0.6 0.7 0.3	i 0.1 0.1	7 0.7 8 0.8 1 0.3	1.) 1.) 0.)	.5 1 .5 1 .7 0	1.6 1.5 0.8	1.6 1.5 0.8	1.6 1.5 0.8	1.4 1.3 1.2	1.4 1.3 1.3	1.4 1.3 1.4	1.4 1.4 1.4	2.9 2.9 2.3	3.0 3.0 2.6	3.0 3.1 2.7	3.1 3.2 2.8	0.9 0.9 1.4	0.9 0.9 1.5	0.8 0.9 1.4	0.9 0.9 1.5	1.5 1.6 2.5	1.6 1.6 2.7	1.5 1.5 2.4	1.6 1.6 2.6
Big room (A=100m ²)			Old building	Medium-weight Heavy-weight Light-weight	0.0 0.0 0.3	0.0 0.0 0.4	0.0 0.0 1.1	0.0 0.0 0.7	0.0 0.0 0.5	0.0 0.0 1.1	0.0 0.0 1.7	0.0 0.0 1.3	0.4	0.4	0.	0.4 0.5 1 2.7	0.1 0.1 3.2	.6 0 .6 0 .5 4	0.7 0.7 4.1	0.7 0.7 4.4	0.7 0.7 4.2	1.4 1.5 3.8	1.5 1.7 3.8	1.6 1.7 5.5	1.7 1.9 5.7	2.2 2.4 5.2	2.5 2.7 6.0	2.6 2.8 8.3	2.8 3.1 7.9	1.6 1.9 2.6	1.7 2.0 2.6	1.5 1.8 2.7	1.7 2.0 3.1	2.5 2.9 3.2	2.6 3.1 3.3	2.4 2.8 3.3	2.6 3.0 3.6
		Double glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.2 0.1 0.2 0.1	0.2 0.1 0.2 0.1	0.4 0.1 0.7 0.2	0.4 0.2 0.5 0.2	0.0 0.1 0.0	0.3 0.2 0.1	0.9	0.4 0.3 0.0	2.2 2.2 1.8 1.8	2.6 2.6 1.8 1.9	2.1 2.1 2.1	2.0 7 2.7 3 2.2 1 2.1	3. 2. 2.	.5 4 .7 4 .1 2 .0 2	4.3 2.3 2.2	4.5 4.6 2.6 2.5	4.4 4.4 2.5 2.5	3.5 3.2 3.2	3.8 3.9 3.1 3.0	4.9 4.9 4.1 3.8	5.5 5.0 4.6	5.5 5.5 4.1 4.1	6.4 4.2 4.5	8.3 5.2 5.4	8.3 5.8 6.1	2.6 2.6 2.6 2.6	2.5 2.5 2.6 2.6	2.0 2.7 2.7 2.7	3.1 3.2 3.1	3.3 3.5 3.6	3.2 3.5 3.7	3.3 3.6 3.7	3.6 3.8 4.0
			New building	Heavy-weight Light-weight Medium-weight	0.0 0.2 0.0	0.0 0.1 0.1	0.1 0.2 0.0	0.1 0.2 0.1	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.1 0.0	1.7 1.6 1.5	1.9 1.5 1.5	2.0 1.0 1.0	2.0 1.5 5 1.5	2. 1. 1.	.1 2 .9 2 .9 2	2.2 2.0 2.0	2.4 2.1 2.1	2.5 2.0 2.1	3.1 2.9 2.9	3.1 2.8 3.0	3.7 3.1 3.0	4.6 3.2 3.1	4.3 3.7 3.8	4.9 3.8 4.0	5.6 4.0 4.1	6.3 4.2 4.3	2.7 1.8 1.9	2.6 1.8 1.9	2.8 1.8 1.9	3.3 1.9 2.0	3.8 2.6 2.5	3.8 2.6 2.5	3.8 2.6 2.5	4.2 2.7 2.6
	large window	Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.4 1.2 1.1	14 1.1 1.1	1.1	1.5 1.3 1.2	13 13 13	.8 2 .2 1 .1 1	2.0 1.3 1.3	1.9 1.3 1.3	2.0 1.3 1.3	2.8 2.6 2.6	2.8 2.5 2.6	3.0 2.8 2.8	3.0 2.9 3.0	3.8 3.3 3.2	4.0 3.5 3.3	4.2 3.5 3.5	4.5 3.6 3.7	1.9 1.9 2.0	1.9 1.9 2.1	1.9 1.9 2.0	2.0 2.0 2.2	2.6 2.8 2.9	2.6 2.9 2.9	2.6 2.9 2.9	2.7 3.0 3.0
	(wwr=0.25)	Triale size (size)	New building	Light-weight Medium-weight Heavy-weight	0.2 0.1 0.0	0.3 0.2 0.1	0.7 0.3 0.1	0.5 0.3 0.1	0.4 0.1 0.0	1.0 0.5 0.1	1.6 1.1 0.6	0.0 1.2 0.7 0.3	2.0 2.4 2.1	1.1 2.2 2.4 2.5	2.	1.2 5 2.5 7 2.5 5 2.4	3. 3. 3.	.8 4 .7 4 .9 4	4.3 4.4 4.4	4.6 4.7 4.7	4.4 4.5 4.5	2.6 3.4 3.1 3.1	2.6 3.3 3.3 3.2	2.8 4.5 4.0 3.8	4.7 4.5 4.5	5.1 5.2 5.3	5.6 5.9 6.1	7.6 7.5 7.6	7.2 7.4 7.5	1.6 1.6 1.5	1.6 1.5 1.5	1.7 1.6 1.6	2.5 2.0 1.9 1.9	2.0 1.9 2.0	2.0 1.9 1.9	2.1 1.9 1.9	2.2 2.1 2.1
		I FIPIE glazing (clear)	Old building	Light-weight Medium-weight Heavy-weight	0.2 0.0 0.0	-0.1 0.1 0.0	0.5 0.1 0.0	0.3 0.1 0.0	0.1 0.0 0.0	0.1 0.0 0.0	0.1 0.0 0.0	0.1 0.0 0.0	1.7 1.7 1.6	1.5 1.8 1.8	2.0	2.0 9 1.9 9 1.9	2. 2. 2.	.1 2 .1 2 .1 2	2.4 2.4 2.4	2.5 2.6 2.5	2.4 2.4 2.4	2.7 2.8 2.8	2.5 2.7 2.4	3.4 3.1 2.9	3.9 3.8 3.8	3.6 3.8 3.9	3.7 4.0 4.3	4.3 4.5 4.7	4.6 5.0 5.3	1.7 1.7 1.8	1.7 1.7 1.7	1.8 1.7 1.8	2.1 2.0 2.1	2.2 2.3 2.4	2.2 2.3 2.4	2.3 2.3 2.4	2.4 2.5 2.6
		Triple glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	0.2 0.0 0.0	0.2 0.0 0.0	0.2 0.0 0.0	0.2 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.5 1.4 1.4	1.4 1.5 1.5	1.	1.4 1.5 1.5	2.: 2.1 2.1	.1 2 .0 2 .0 2	2.2 2.2 2.0	2.2 2.1 2.0	2.2 2.2 2.0	2.5 2.6 2.4	2.5 2.6 2.4	2.7 2.7 2.5	2.6 2.7 2.6	3.5 3.7 3.6	3.6 3.8 3.8	3.7 3.9 3.9	3.8 4.0 4.0	1.1 1.1 1.2	1.1 1.1 1.1	1.1 1.1 1.1	1.1 1.2 1.2	1.7 1.6 1.7	1.7 1.7 1.7	1.7 1.6 1.7	1.8 1.7 1.7
			Old building	Medium-weight Heavy-weight	0.1 0.0 0.0	0.0	0.0 0.0 0.0	0.1 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	1.1 1.1 1.0	1.2 1.1 1.1	1.	1.2 1 1.1 1 1.1	1.	.1 1 .0 1 .9 1	1.2 1.1 1.0	1.2 1.1 1.0	1.2 1.2 1.0	2.2 2.3 2.2	2.2 2.3 2.3	2.4 2.4 2.4	2.4 2.4 2.5	2.9 2.7 2.7	3.0 2.9 2.9	3.1 3.0 3.0	3.1 3.0 3.1	1.2 1.3 1.5	1.2 1.4 1.5	1.2 1.3 1.4	1.3 1.4 1.5	2.0 2.0 2.1	2.0 2.1 2.2	2.0 2.0 2.1	2.1 2.1 2.2

TABLE 12: ABSOLUTE INCR	EASE IN ENERGY DEMAND FOR A	RTIFICIAL LIGHTING (KWH/M/YEAR)	Climate →		Cold	climate			Tempera	ate climate			Dry c	limate			Tropica	Il climate	
Building function ↓	Room size ↓	Window size ↓	Orientation Type of glazing	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
		Small window	Clear	8.0	5.9	3.0	5.4	9.1	6.2	3.9	6.5	7.6	5.0	2.0	4.4	3.8	4.2	4.0	4.1
	Small room	(wwr=0.25)	Coated	13.8	13.5	12.9	13.2	14.0	13.7	13.8	13.6	14.7	14.2	14.5	25.9	14.9	13.4	15.1	13.9
	(A=20m ²)	Large window	Clear	3.3	2.6	1.5	2.4	3.2	2.2	1.5	2.5	0.6	0.3	0.1	0.3	0.3	0.5	0.3	0.6
Office		(wwr=0.75)	Coated	7.8	6.1	4.3	6.2	9.4	6.9	5.6	7.4	10.8	7.4	5.1	6.4	8.6	6.8	8.7	7.6
Office		Small window	Clear	6.2	6.0	5.3	6.0	7.5	7.3	7.6	7.4	10.7	9.1	7.6	6.9	11.3	8.9	11.1	9.5
	Big room	(wwr=0.25)	Coated	1.5	2.7	4.8	3.0	1.8	3.2	4.1	3.2	2.8	4.3	6.1	6.0	4.1	5.1	4.2	4.9
	(A=100m ²)	Large window	Clear	7.4	5.2	2.9	5.3	8.4	5.6	3.9	6.1	6.0	3.2	1.4	3.5	3.7	3.7	3.8	4.3
		(wwr=0.75)	Coated	3.5	4.7	6.2	5.2	4.1	6.0	7.9	6.2	6.2	7.7	8.7	6.8	9.1	8.4	9.0	9.1
		Small window	Clear	1.7	1.4	1.3	1.3	1.7	1.5	1.5	1.3	0.9	0.7	0.9	0.8	1.2	1.0	1.1	1.2
	Small room	(wwr=0.25)	Coated	2.1	1.6	1.5	1.8	2.3	1.8	1.5	2.1	2.4	2.0	1.4	1.4	1.7	1.7	1.7	1.5
	(A=20m ²)	Large window	Clear	0.8	0.9	0.8	0.7	0.7	0.9	0.8	0.6	0.2	0.2	0.2	0.3	0.9	1.0	0.9	0.8
Bosidonso		(wwr=0.75)	Coated	1.8	1.5	1.4	1.4	2.0	1.6	1.4	1.3	1.3	0.9	1.0	0.7	1.0	1.0	1.0	0.9
Residence		Small window	Clear	2.2	1.7	1.5	1.7	2.4	1.8	1.6	1.8	1.7	1.4	1.1	1.0	1.2	1.2	1.2	1.2
	Big room	(wwr=0.25)	Coated	0.9	1.1	1.3	1.4	1.0	1.3	1.5	1.7	1.3	1.7	1.7	1.5	1.6	1.6	1.6	1.6
	(A=100m ²)	Large window	Clear	1.5	1.3	1.3	1.1	1.6	1.4	1.4	1.0	0.8	0.6	0.8	0.5	1.0	1.0	1.0	1.0
		(wwr=0.75)	Coated	1.9	1.5	1.2	1.5	2.1	1.6	1.4	1.7	2.2	1.7	1.2	1.2	1.5	1.5	1.5	1.4

				Climate →				Cold cl	limate							Tempera	te climate							Dry c	imate							Tropical	l climate			
TABLE 13: HEA	ATING ENERGY DEN	IAND WITHOUT LTAT	W (KWH/M²/YEAR)	Building function →		Off	ce			Resi	dence			(Office			Resi	dence			0	ffice			Resid	ence			Of	ffice			Resid	ence	
Age ↓	Room size ↓	Type of glazing ↓	Window size ↓	Orientation Building method	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
			Small window (wwr=0.25)	Light-weight Medium-weight	11.0 10.2	9.5 8.7	4.4 2.9	9.3 8.4	25.6 24.3	21.9 20.8	12.5 10.7	21.3 20.0	3.1 2.0	2.4 1.4	1.2 0.3	2.5 1.4	10.8 9.9	9.1 8.1	5.0 3.9	9.1 8.2	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
		Double glazing (clear)	Large window (wwr=0.75)	Light-weight Medium-weight	9.8 29.0 29.8	8.2 24.5 25.0	2.2 12.0 9.1	8.0 24.4 24.4	24.3 50.3 49.6	20.4 43.1 41.7	10.3 25.7 19.2	19.8 42.0 40.3	1.4 9.9 9.7	0.7 7.7 6.9	0.0 4.3 2.4	0.8 8.1 7.1	9.5 22.0 21.3	7.8 17.9 16.7	3.3 11.2 8.1	7.8 17.9 16.6	0.0 0.0 0.0															
			Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	29.8 13.6 12.8	24.8 12.6 11.8	7.5 9.8 8.7	24.0 12.5 11.7	49.1 30.8 29.7	41.1 28.8 27.7	16.6 23.7 22.4	39.7 28.5 27.4	9.0 4.8 3.8	6.1 4.4 3.5	1.3 3.5 2.5	6.3 4.5 3.5	20.6 14.9 14.0	15.9 14.0 13.0	6.3 11.9 11.0	16.0 14.0 13.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
		Double glazing (coated)	Large window (wwr=0.75)	Heavy-weight Light-weight	12.6 38.9	11.5 35.0	8.3 26.5	11.4 35.0	29.5 66.1	27.6 60.2	22.2	27.3	3.2 17.8	2.9 16.1	1.8	2.9 16.3	13.6 35.1	12.6 32.3	10.6 26.5	12.6 32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Small room (A=20m ²)		Small window (wwr=0.25)	Heavy-weight Light-weight	41.0	36.7	25.8 1.4	36.2 3.8	64.9 15.2	59.2 13.1	44.5	58.2 12.8	17.6	15.9	11.3	16.0	34.1 5.5	30.9 4.5	24.6	31.0 4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Triple glazing (clear)		Heavy-weight Light-weight	2.6 8.9	1.9 7.1	0.4	1.9 6.9	13.8 20.4	11.7 17.2	5.0 7.0	11.7 11.4 16.5	0.0	0.0	0.0	0.0	4.0 4.2 6.6	3.3 4.4	1.5	3.3 4.5	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0
			Large window (wwr=0.75)	Medium-weight Heavy-weight	8.2 7.5 5.7	6.3 5.5	0.9	6.1 5.3	19.8 19.2	16.4 15.9 18.0	4.7 3.4	15.7 15.1 17.8	0.7	0.2	0.1	0.2	5.9 5.3 8.7	3.8 3.2 7.9	0.8	3.7 3.2 7.9	0.0 0.0	0.0														
		Triple glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight	4.4 3.9	4.2 3.6	3.0 2.3	4.1 3.5	17.7 17.7	16.8 16.7	14.1 13.9	16.6 16.5	0.5	0.4	0.2	0.4	7.3 6.9	7.0 6.6	6.0 5.6	7.0 6.6	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0						
Newbuilding			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	13.5 13.0 12.5	12.3 11.8 11.3	8.8 7.9 7.2	12.3 11.7 11.1	30.2 29.7 29.3	27.9 27.3 26.8	21.3 20.5 19.9	27.4 26.8 26.3	4.7 3.9 3.2	4.2 3.5 2.7	3.2 2.1 1.4	4.3 3.5 2.8	14.4 13.7 13.1	13.3 12.8 12.2	10.7 10.0 9.4	13.3 12.8 12.3	0.0 0.0 0.0															
New building			Small window (wwr=0.25)	Light-weight Medium-weight	2.9 1.7	2.5 1.4	1.3 0.3	2.5 1.3	12.1 11.4	10.6 9.9	6.5 5.7	10.3 9.7	0.7	0.6	0.4	0.6	4.2 3.7	3.7 3.2	2.0 1.6	3.7 3.2	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0
		Double glazing (clear)	Large window (wwr=0.75)	Light-weight Medium-weight	9.5 9.1	0.8 8.1 7.6	3.7 2.3	0.8 8.0 7.4	23.2 22.8	9.6 19.9 19.4	5.3 10.6 8.7	9.4 19.3 18.9	2.6 1.6	2.1 1.1	1.1 0.3	2.2 1.2	9.2 8.7	2.8 7.3 6.9	3.9 2.8	7.3 6.9	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0											
			Small window (wwr=0.25)	Light-weight Medium-weight	8.6 3.4 2.1	7.0 3.2 2.0	1.5 2.6 1.3	6.8 3.2 2.0	22.4 14.1 13.4	19.0 13.4 12.7	7.5 11.3 10.6	18.4 13.2 12.6	1.0 0.9 0.1	0.5 0.9 0.1	0.0 0.8 0.0	0.6 0.9 0.1	8.2 5.6 5.1	6.4 5.4 4.9	2.3 4.6 4.1	6.4 5.4 4.9	0.0 0.0 0.0															
		Double glazing (coated)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	1.5 12.2 12.1	1.4 11.2 11.0	0.7 8.6 7.7	1.4 11.3 10.9	13.2 29.6 29.3	12.4 27.3 27.0	10.3 21.4 20.8	12.3 26.9 26.6	0.0 4.6 3.7	0.0 4.2 3.3	0.0 3.3 2.2	0.0 4.2 3.3	4.8 14.1 13.7	4.5 13.1 12.8	3.7 10.8 10.3	4.5 13.1 12.8	0.0 0.0 0.0															
	Big room (A=100m ²)		Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	11.7 1.2 0.1	10.6 1.0 0.1	7.1 0.6 0.0	10.4 1.0 0.1	29.0 7.6 7.0	26.6 6.8 6.2	20.3 4.2 3.4	26.2 6.7 6.1	3.1 0.3 0.0	2.7 0.3 0.0	1.6 0.2 0.0	2.7 0.2 0.0	13.3 2.2 1.7	12.3 1.9 1.4	9.8 1.0 0.6	12.3 1.9 1.4	0.0 0.0 0.0															
		Triple glazing (clear)	Large window (wwr=0.75)	Heavy-weight Light-weight Medium-weight	0.0 2.4 1.4	0.0 2.0 1.0	0.0 0.7 0.0	0.0 1.9 1.0	6.7 10.0 9.6	5.8 8.7 8.2	2.9 3.5 2.4	5.8 8.4 7.9	0.0	0.0	0.0	0.0	1.4 2.7 2.3	1.0 1.9 1.5	0.2 0.6 0.2	1.0 1.9 1.6	0.0 0.0 0.0															
			Small window (wwr=0.25)	Heavy-weight Light-weight Medium-weight	0.8	0.5	0.0	0.4	9.2 9.0 8.4	7.8 8.7 8.1	1.8 7.7 7.0	7.4 8.6 8.0	0.0	0.0	0.0	0.0	1.8 3.1 2.6	1.1 3.0 2.5	0.0	1.1 3.0 2.5	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0								
		Triple glazing (coated)	Lerre wieden (unur-0.75)	Heavy-weight Light-weight	0.0	0.0	0.0	0.0	8.1 13.9	7.8 13.0	6.8 10.3	7.7	0.0	0.0	0.0	0.0	2.2 5.5	2.1	1.7	2.1	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0	0.0 0.0
			Crael window (wwr-0.75)	Heavy-weight Light-weight	2.3 1.6 54.9	2.1 1.4 49.4	1.2 0.6 38.0	2.1 1.4 49.4	13.5 13.1 88.9	12.6 12.2 80.8	9.8 9.4 64.0	12.5 12.0 79.3	0.1 0.0 26.7	0.1 0.0 24.2	0.0	0.1 0.0 24.6	5.1 4.7 48.2	4.8 4.4 44.5	3.7 3.3 36.8	4.8 4.4 44.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0
		Double glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	58.3 61.4 63.6	52.7 55.5 54.7	38.9 40.6 35.4	52.1 54.7 55.3	88.5 91.0 103.3	80.1 82.6 91.6	61.7 63.7 67.4	78.8 81.3 90.1	27.9 29.1 29.2	25.3 26.4 24.7	19.4 20.0 17.9	25.5 26.6 25.7	48.0 49.4 53.6	44.0 45.2 47.5	35.7 36.3 35.7	44.0 45.2 47.5	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.4 0.3 0.1	0.0 0.0 0.0										
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	69.4 71.2 61.2	59.1 60.2 58.5	33.7 32.6 53.5	58.3 58.9 58.6	103.2 103.8 99.6	88.7 88.5 95.7	57.3 54.0 88.7	86.6 86.1 95.1	31.3 31.8 31.1	26.3 26.4 30.1	16.1 14.5 27.8	26.8 26.8 30.2	53.0 52.9 54.9	46.2 45.7 53.3	30.5 28.1 49.9	46.1 45.7 53.2	0.0 0.0 0.4	0.0 0.0 0.3	0.0 0.0 0.0	0.0 0.0 0.2	0.0 0.0 2.5	0.0 0.0 1.6	0.0 0.0 0.3	0.0 0.0 1.1	0.0 0.0 0.0							
		Double glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	64.9 68.0 78.5	62.0 65.0 72.4	56.4 59.2 60.8	61.9 64.8 72.7	99.5 102.5 127.2	95.3 98.0 118.9	88.2 90.4 102.7	94.8 97.5 117.4	32.9 34.3 40.7	31.8 33.1 38.2	29.1 30.3 33.1	31.8 33.2 38.6	54.8 56.3 70.7	53.2 54.7 67.0	49.7 51.0 59.2	53.2 54.7 66.9	0.1 0.0 0.6	0.0 0.0 0.3	0.0 0.0 0.0	0.0 0.0 0.2	2.0 1.7 3.2	1.2 1.0 1.5	0.2 0.0 0.3	0.8 0.7 0.8	0.0 0.0 0.0							
	Small room (A=20m ²)		Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	85.2 87.1 47.6	78.8 80.9 43.4	65.5 66.9 34.4	78.5 80.3 43.3	127.5 128.1 78.4	118.5 118.4 71.9	101.1 100.6 58.3	117.2 117.1 70.8	44.3 45.1 22.8	41.4 42.1 20.9	35.2 35.6 16.9	41.6 42.3 21.0	70.9 71.1 42.3	67.0 67.2 39.5	58.8 58.6 33.3	67.0 67.2 39.4	0.2 0.1 0.1	0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.5 2.1 0.5	1.1 0.8 0.2	0.0 0.0 0.0	0.5 0.4 0.1	0.0 0.0 0.0							
		Triple glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	50.1 52.9 43.1	45.8 48.5 37.2	35.1 37.0 22.7	45.4 47.9 37.2	77.9 80.5 71.4	71.2 73.7 62.4	57.2 59.4 43.0	70.2 72.8 61.0	23.5 24.6 18.5	21.6 22.6 15.6	17.1 17.8 10.5	21.7 22.7 16.0	42.1 43.5 35.8	39.1 40.3 31.5	32.5 33.4 22.1	39.1 40.3 31.5	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.4 0.3 0.0	0.0 0.0 0.0										
			Large window (wwr=0.75)	Medium-weight Heavy-weight Light-weight	45.9 46.9 52.7	39.1 39.8 51.2	21.0 20.1 48.3	38.4 38.8 51.2	71.3 71.7 87.2	61.0 61.1 84.8	37.2 36.0 80.8	59.4 59.3 84.5	19.1 19.2 26.3	15.8 15.7 25.7	9.0 7.7 24.4	16.2 15.9 25.7	35.2 35.0 47.7	30.6 30.3 46.8	18.7 17.6 44.9	30.6 30.4 46.8	0.0 0.0 0.3	0.0 0.0 0.2	0.0 0.0 0.1	0.0	0.0 0.0 1.9	0.0 0.0 1.4	0.0 0.0 0.4	0.0 0.0 1.1	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0
		Triple glazing (coated)	Small window (wwr=0.25)	Medium-weight Heavy-weight Light-weight	55.3 58.2 54.5	53.7 56.5 51.5	50.5 53.1 45.2	53.6 56.3 51.6	87.0 90.1 90.3	84.6 87.4 85.8	80.4 83.0 77.2	84.2 87.1 85.1	27.4 28.7 27.2	26.8 28.0 26.0	25.3 26.4 23.3	26.8 28.1 26.2	47.5 49.1 49.4	46.6 48.1 47.6	44.7 46.1 43.5	46.6 48.1 47.5	0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.1	1.5 1.3 1.5	1.1 0.9 0.9	0.3	0.8 0.7 0.6	0.0	0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0
Old building			Large window (wwr=0.75)	Medium-weight Heavy-weight	57.9 59.1 37.6	54.8 56.2 35.0	47.8 48.9 29.5	54.6 55.9 35.0	90.3 90.9 70.3	85.5 85.6	76.4 76.3	84.9 85.0	28.7 29.0	27.3 27.6	24.2 24.3	27.4 27.7 17.0	49.4 49.6 37.8	47.5 47.6 35.9	43.2 43.2 31.8	47.5 47.6 35.9	0.0	0.0	0.0	0.0	1.1 0.9	0.6 0.5 0.3	0.0	0.4 0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Double glazing (clear)	Small window (wwr=0.25)	Medium-weight Heavy-weight	41.1 42.6	38.4 39.9	31.7 32.7	38.2 39.6	70.2	65.5 66.1	56.0 56.7	64.8 65.5	19.0 19.3	17.8	15.0 15.1	17.9 18.2	37.7 38.2	35.8 36.2	31.4 31.6	35.8 36.2	0.0	0.0	0.0	0.0	0.4	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			Large window (wwr=0.75)	Medium-weight Heavy-weight	41.1 45.7 47.0	40.0 40.9	26.2 26.9 26.6	36.7 39.7 40.2	75.4 75.4	67.1 67.0	48.3 46.9	65.4 65.3	20.4 20.5	18.0 18.0	13.0 12.4 11.6	17.1 18.2 18.1	39.9 39.7 39.5	35.6 35.1	28.2 26.8 25.9	35.6 35.2	0.0	0.0 0.0 0.0	0.0	0.0	0.2	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0	0.0
		Double glazing (coated)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	40.2 43.8 45.3	39.1 42.7 44.2	37.0 40.3 41.6	39.2 42.6 44.1	75.2 75.3 76.5	73.5 73.4 74.5	70.3 70.1 71.0	73.2 73.1 74.2	19.6 21.0 21.4	19.2 20.5 20.9	18.3 19.4 19.8	19.3 20.6 20.9	40.8 40.8 41.4	40.1 40.1 40.6	38.6 38.5 39.0	40.1 40.1 40.6	0.3 0.0 0.0	0.2 0.0 0.0	0.1 0.0 0.0	0.2 0.0 0.0	1.3 1.0 0.8	1.0 0.7 0.6	0.3 0.3 0.2	0.8 0.6 0.5	0.0 0.0 0.0							
	Big room		Large window (wwr=0.75)	Líght-weight Medium-weight Heavy-weight	47.6 52.8 54.0	45.0 50.0 51.4	39.9 44.1 45.1	45.2 50.0 51.1	87.9 88.1 88.2	83.8 83.8 83.6	76.1 75.5 75.1	83.2 83.1 83.0	23.7 26.0 26.3	22.7 24.9 25.0	20.6 22.2 22.2	22.9 25.0 25.1	48.1 48.2 48.2	46.3 46.4 46.3	42.6 42.5 42.4	46.3 46.4 46.3	0.4 0.0 0.0	0.2 0.0 0.0	0.0 0.0 0.0	0.2 0.0 0.0	1.7 1.3 1.0	1.0 0.7 0.6	0.2 0.0 0.0	0.6 0.5 0.4	0.0 0.0 0.0							
	(A=100m ²)	Triple plazing (clear)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	34.5 37.5 38.9	32.5 35.5 36.9	28.3 30.4 31.4	32.6 35.3 36.6	65.6 65.4 66.5	62.1 61.8 62.4	55.4 54.7 55.3	61.6 61.3 62.0	16.2 17.0 17.3	15.4 16.2 16.4	13.7 14.1 14.2	15.6 16.2 16.5	35.1 35.0 35.5	33.7 33.6 34.0	30.6 30.3 30.5	33.7 33.6 34.0	0.1 0.0 0.0	0.1 0.0 0.0	0.0 0.0 0.0	0.1 0.0 0.0	0.5 0.4 0.3	0.3 0.2 0.1	0.1 0.0 0.0	0.2 0.1 0.0	0.0 0.0 0.0							
			Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	32.3 35.4 36.0	28.7 31.2 31.7	21.1 21.4 21.1	28.9 30.9 31.2	60.9 60.7 60.7	54.9 54.6 54.5	42.2 40.0 39.0	53.7 53.3 53.3	14.4 15.0 14.9	12.8 13.3 13.1	9.9 9.3 8.7	13.1 13.5 13.3	31.8 31.6 31.3	28.9 28.5 28.1	22.9 21.9 21.4	28.9 28.5 28.1	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.1 0.0 0.0	0.0 0.0 0.0										
		Triple glaving (const1)	Small window (wwr=0.25)	Light-weight Medium-weight Heavy-weight	36.7 39.7 41.0	36.0 39.0 40.4	34.9 37.7 38.9	36.1 39.0 40.3	69.6 69.6 70.8	68.6 68.5 69.6	66.7 66.6 67.7	68.4 68.4 69.5	17.6 18.6 19.0	17.4 18.4 18.7	16.9 17.8 18.1	17.4 18.4 18.7	37.6 37.5 38.1	37.1 37.1 37.7	36.3 36.2 36.7	37.1 37.1 37.7	0.2 0.0 0.0	0.2 0.0 0.0	0.1 0.0 0.0	0.2 0.0 0.0	1.1 0.8 0.7	0.9 0.7 0.6	0.5 0.4 0.3	0.8 0.6 0.5	0.0 0.0 0.0							
		(coated)	Large window (wwr=0.75)	Light-weight Medium-weight Heavy-weight	37.4 40.8 41.5	36.1 39.5 40.3	33.5 36.4 37.0	36.2 39.5 40.2	71.0 71.1 71.2	69.0 68.9 68.8	65.0 64.7 64.5	68.6 68.6 68.5	18.0 19.2 19.2	17.5 18.7 18.6	16.4 17.3 17.2	17.6 18.7 18.6	38.3 38.4 38.3	37.5 37.5 37.4	35.6 35.5 35.4	37.5 37.5 37.4	0.2 0.0 0.0	0.2 0.0 0.0	0.1 0.0 0.0	0.2 0.0 0.0	1.0 0.7 0.6	0.7 0.5 0.4	0.2 0.1 0.0	0.5 0.4 0.3	0.0 0.0 0.0							

				Climate →				Cold c	limate							Tempera	e climate							Dry c	limate							Tropical	climate			
TABLE 14: CO	OLING ENERGY DEM	IAND WITHOUT LTAT	W (KWH/M²/YEAR)	Building function →		Of	fice			Resi	idence			C	Office			Resid	lence			0	ffice			Resid	lence			Offic	e			Reside	ence	
Room size ↓	Window size ↓	Type of glazing ↓	Age ↓	Orientation Building method	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West	North	East	South	West
			New building	Light-weight Medium-weight	0.2	0.6	0.8	0.6	0.1	0.4	0.7	0.5	8.3 6.8	9.6 7.8	9.6 7.9	9.3 7.7	5.9 5.7	7.3 7.0	7.5 7.2	7.3 7.0	39.0 37.3	43.5 41.7	44.8 42.4	48.0 46.3	28.0 27.7	33.1 32.8	34.5 34.2	39.1 38.8	87.8 88.3	90.7 91.4	87.7 88.3	90.0 90.8	64.0 63.7	67.3 67.1	64.1 63.8	66.9 66.6
		Double glazing (clear)	Old building	Light-weight Medium-weight	0.1 0.0	0.4 0.0	0.4	0.3	0.0	0.1	0.0 0.2 0.0	0.1 0.0	7.0	8.2	8.3 6.7	8.0 6.5	4.0 3.5	5.0 4.5	5.1	5.0 4.5	41.8	46.4	47.3 45.9	50.6 49.8	31.5 30.9	36.2 35.9	36.8 36.4	41.9 41.5	94.6 96.3	97.7 99.6	94.5 96.2	96.8 98.8	73.0 73.3	76.6 77.0	73.1 73.4	76.2 76.6
			New building	Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.9 5.4 4.0	6.1 5.8 4.4	6.0 5.9 4.4	5.9 5.8 4.4	3.0 2.6 2.3	4.1 3.0 2.6	4.0 3.0 2.6	4.1 3.0 2.6	40.3 32.4 30.8	45.0 34.0 32.2	45.4 34.2 32.4	49.8 35.4 33.7	30.7 20.9 20.4	22.5 22.0	36.4 22.6 22.2	41./ 24.2 23.8	97.1 75.0 74.9	100.4 76.1 76.0	97.0 75.0 74.9	99.8 75.8 75.7	74.0 49.2 48.8	50.4 50.0	74.1 49.2 48.9	77.3 50.2 49.8
		Double glazing (coated)	Old building	Light-weight Medium-weight	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.4 4.7 3.4	3.7 5.3 3.8	3.8 5.3 3.8	3.8 5.2 3.8	1.9 1.7 1.2	2.3 2.1 1.5	2.3 2.1 1.5	2.3 2.1 1.5	30.0 35.9 34.8	31.5 37.7 36.6	31.6 37.9 36.8	33.0 39.2 38.3	20.1 25.1 24.4	21.7 27.0 26.3	21.9 27.2 26.4	23.5 29.1 28.3	74.7 82.5 83.4	75.8 83.7 84.7	74.7 82.4 83.3	75.6 83.4 84.4	48.6 58.5 58.5	49.8 59.9 60.0	48.7 58.5 58.5	49.6 59.8 59.8
	Small window (wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight	0.0 0.2 0.0	0.0 0.4 0.1	0.0 0.5 0.0	0.0 0.4 0.0	0.0 0.0 0.0	0.0 0.2 0.0	0.0 0.4 0.0	0.0 0.3 0.0	2.7 7.5 6.0	3.1 8.4 6.7	3.1 8.4 6.9	3.1 8.2 6.6	0.8 5.2 4.9	1.2 6.2 6.0	1.2 6.4 6.1	1.2 6.2 5.9	34.4 36.0 34.1	36.2 39.3 37.5	36.4 40.1 37.8	38.0 42.6 40.8	24.3 24.8 24.5	26.3 28.6 28.3	26.4 29.7 29.3	28.4 33.0 32.7	84.0 81.5 81.6	85.4 83.7 83.9	83.9 81.4 81.6	85.1 83.2 83.5	59.1 56.5 56.2	60.7 59.0 58.7	59.1 56.6 56.3	60.4 58.7 58.3
		Triple glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.2 0.0	0.0 0.2 0.0	0.0 0.2 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.0 0.0	5.3 6.3 4.9	6.1 7.1 5.7	6.2 7.2 5.7	6.1 7.0 5.6	4.5 3.2 2.8	5.6 4.0 3.6	5.7 4.1 3.6	5.6 4.1 3.6	33.4 38.9 37.8	36.8 42.4 41.4	37.2 43.1 41.7	40.4 45.6 44.7	24.2 28.2 27.6	28.1 31.9 31.4	29.1 32.3 31.8	32.5 36.1 35.7	81.5 88.6 89.9	83.8 91.0 92.4	81.4 88.6 89.8	83.4 90.4 91.8	56.0 65.7 65.9	58.6 68.5 68.7	56.1 65.8 65.9	58.2 68.2 68.3
			New building	Heavy-weight Light-weight Medium-weight	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.2 5.0 3.8	5.1 5.4 4.0	5.1 5.4 4.0	5.0 5.3 4.0	2.3 2.5 2.1	3.1 2.7 2.4	3.1 2.7 2.3	3.1 2.7 2.4	37.2 30.5 28.8	40.9 31.5 29.7	41.2 31.6 29.8	44.6 32.3 30.6	27.4 19.0 18.5	31.5 19.9 19.5	31.8 20.0 19.6	35.9 21.0 20.6	90.5 71.0 70.6	93.1 71.6 71.3	90.5 71.0 70.6	92.6 71.5 71.1	66.5 44.6 44.1	69.5 45.3 44.9	66.5 44.6 44.2	69.0 45.2 44.8
		Triple glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.1 4.4 3.1	3.4 4.8 3.4	3.3 4.7 3.4	3.3 4.7 3.4	1.7 1.5 1.0	2.0 1.8 1.2	2.0 1.8 1.2	2.0 1.8 1.2	28.1 34.1 32.9	29.0 35.4 34.2	29.0 35.5 34.3	29.9 36.3 35.3	18.2 23.1 22.4	19.2 24.4 23.7	19.4 24.5 23.8	20.3 25.8 25.1	70.4 78.8 79.4	71.0 79.7 80.3	70.3 78.7 79.3	70.9 79.4 80.1	43.9 54.0 53.9	44.7 55.0 54.9	44.0 54.0 53.9	44.6 54.9 54.8
Small room (A=20m ²)		+	New building	Heavy-weight Light-weight Medium-weight	0.0 2.0 0.5	0.0 4.3 2.1	0.0 7.1 3.6	0.0 4.7 2.5	0.0 2.2 1.3	0.0 5.4 4.4	0.0 7.8 6.8	0.0 6.1 4.9	2.4 16.8 14.4	2.8 21.3 18.3	2.7 22.4 18.7	2.7 20.4 17.9	0.6 15.0 14.6	1.0 19.6 19.2	0.9 20.7 20.0	0.9 19.9 19.3	32.5 58.4 56.8	33.8 70.9 69.4	33.9 79.9 74.4	35.1 84.0 83.0	22.3 49.5 49.4	23.7 63.5 63.9	23.8 72.7 72.5	25.2 81.7 81.6	79.9 123.1 126.7	80.9 130.8 134.7	79.8 123.2 126.7	80.7 128.8 133.0	54.5 107.5 108.5	55.6 116.4 117.6	54.4 107.8 108.8	55.4 115.5 116.4
		Double glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.2	1.2 2.9	2.6 4.8	1.5 3.2	0.7	3.6 2.1	5.8 3.7 2.3	4.0 2.6	13.9 14.4	17.5 18.7	17.9 19.5	17.2 17.8	14.2 11.4 10.8	18.9 14.7 14.2	19.5 15.5	18.8 15.1	56.3 59.6	69.0 71.6 70.6	73.2 78.1 74.1	83.1 83.7 83.3	49.2 50.7	63.9 63.5 64.0	72.0 68.5	81.4 80.6	127.6 127.6 131.9	135.8 135.3	127.6 127.7 132.0	134.2 133.1 138.1	108.4 114.2 116.0	117.7 123.0 125.2	108.7 114.5	116.4 122.4 124.1
			New building	Heavy-weight Light-weight Medium-weight	0.1	0.5	0.9	0.5	0.0	0.3	1.3 0.1	0.6	11.7 7.0	14.9 7.8	15.2 7.8	14.7 7.6	10.3 3.7	13.7 4.3	14.1 4.4	13.7 4.4	58.2 39.2	70.4	73.3 43.0 41.2	83.7 45.7	50.3 27.7	64.1 31.0	67.5 31.3	80.5 35.2 24.7	133.5 87.9	141.6 90.2	133.4 87.9	140.0 89.6	116.3 64.4	125.7 67.0	116.6 64.5	124.5 66.7
		Double glazing (coated)	Old huilding	Heavy-weight Light-weight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.7	5.5	5.4	5.3	2.8	3.5	3.4	3.5	36.8 41.8	40.1	40.3	43.6	26.7 31.3	30.4 34.6	30.6 34.7	34.4 38.6	88.9 93.4	91.3 95.7	88.9 93.4	90.9 95.1	64.4 71.4	67.1 74.1	64.5 71.5	66.7 73.9
	Large window (wwr=0.25)		New building	Heavy-weight Light-weight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.7	4.7	4.6	1.7	2.3	2.2	2.3	40.2	43.5	43.7	46.8	30.0 40.7	33.5 51.4	33.6 59.3	37.5 64.9	95.7 106.8	98.1 112.6	95.7 106.9	97.7 111.2	72.2 86.5	75.0 93.2	72.3	74.6 92.4
		Triple glazing (clear)	Old huilding	Heavy-weight Light-weight	0.3	1.4 0.6 1.9	2.3 1.5 3.0	0.8	1.7 1.2 0.4	4.2 3.3 1.3	5.2 2.3	4.5 3.7 1.7	12.2 11.7 12.0	14.3 15.0	15.3 14.5 15.4	14.7 14.1 14.4	13.0 12.6 9.0	16.8 16.4 11.6	17.5 17.1 12.0	16.7 16.3 11.8	48.2 47.6 51.4	57.0 60.3	59.8 64.2	67.5 69.3	40.5 40.3 41.3	51.5 51.4 50.9	59.0 58.7 54.3	64.5 63.2	108.8 109.2 111.7	114.9 115.3 117.4	109.1 111.8	113.6 114.2 116.0	86.6 93.5	93.5 93.3 100.1	87.0 86.8 93.7	92.6 92.4 99.5
			New kuilding	Heavy-weight Light-weight	0.0	0.8 0.3 0.3	0.3	0.6	0.0	0.1	0.4	0.7 0.1 0.0	9.5	12.4	12.6	12.2 11.6 6.4	8.0 8.1 3.1	11.1 10.7 3.5	11.5 11.0 3.5	11.1 10.7 3.5	49.6 33.8	59.1 58.6 35.5	60.4 35.7	68.4 37.2	41.0 40.8 21.9	51.1 51.1 23.6	53.8 53.5 23.7	63.1 63.1 25.7	114.6 115.5 76.9	120.6 121.6 78.1	114.6 115.4 76.9	119.3 120.4 77.8	94.4 94.5 51.1	101.2 101.4 52.5	94.6 94.7 51.2	100.3 100.5 52.3
		Triple glazing (coated)		Medium-weight Heavy-weight Light-weight	0.0 0.0 0.1	0.0 0.0 0.2	0.0 0.0 0.1	0.0 0.0 0.1	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.6 3.9 5.4	5.0 4.3 5.9	4.9 4.3 5.9	4.9 4.3 5.8	2.7 2.3 2.1	3.1 2.8 2.4	3.0 2.7 2.3	3.1 2.7 2.4	32.1 31.2 36.6	33.8 32.8 38.3	33.8 32.8 38.5	35.5 34.7 40.0	21.6 21.1 25.3	23.3 23.0 27.0	23.3 23.0 27.0	25.4 25.1 29.0	76.9 76.7 82.9	78.2 78.0 84.2	76.9 76.7 82.9	78.0 77.8 83.9	51.0 50.7 58.4	52.4 52.1 59.9	51.1 50.8 58.5	52.2 51.9 59.7
			Old building	Medium-weight Heavy-weight Light-weight	0.0 0.0 0.6	0.0 0.0 1.0	0.0 0.0 1.0	0.0 0.0 0.9	0.0 0.0 0.0	0.0 0.0 0.1	0.0 0.0 0.2	0.0 0.0 0.1	3.9 3.2 7.8	4.3 3.6 8.6	4.2 3.5 8.5	4.2 3.6 8.3	1.5 1.2 4.1	1.9 1.5 4.7	1.8 1.4 4.8	1.9 1.5 4.7	35.3 34.6 34.6	37.0 36.3 36.7	37.1 36.4 37.3	38.8 38.2 38.6	24.6 24.2 21.8	26.3 26.0 24.1	26.3 26.0 24.6	28.4 28.1 26.7	83.7 83.9 75.7	85.0 85.2 77.1	83.7 83.9 75.7	84.8 85.0 76.8	58.6 58.6 50.0	60.1 60.2 51.5	58.6 58.7 50.0	59.9 59.9 51.3
		Double glazing (clear)	Old building	Medium-weight Heavy-weight Light-weight	0.0 0.0 0.2	0.1 0.0 0.5	0.1 0.0 0.4	0.1 0.0 0.3	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	6.0 5.3 6.8	6.5 5.8 7.6	6.6 5.8 7.4	6.4 5.8 7.3	3.9 3.5 2.6	4.5 4.1 3.1	4.5 4.2 3.1	4.5 4.1 3.1	32.5 31.6 37.1	34.5 33.6 39.2	34.8 33.8 39.6	36.4 35.7 41.0	21.5 21.3 25.0	23.8 23.6 27.1	24.2 24.1 27.3	26.4 26.2 29.5	75.7 75.5 81.8	77.1 76.9 83.2	75.7 75.5 81.8	76.8 76.6 82.8	49.8 49.6 57.6	51.3 51.2 59.2	49.9 49.7 57.7	51.1 51.0 59.1
			New huilding	Heavy-weight Light-weight Medium-weight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	5.4 4.9 6.8	4.9 6.8	5.4 4.8 6.7	2.2 1.8 2.7	2.5	2.6 2.2 2.9	2.7 2.3 2.8	35.0 35.0 31.5	37.1 32.2 30.2	38.0 37.3 32.4	39.6 39.2 32.9	24.4 24.1 18.5	26.4 19.3	26.6 19.3	29.1 28.9 20.1	82.5 82.8 70.0	84.0 84.3 70.5 70.2	82.5 82.7 70.0	83.6 83.9 70.4 70.1	57.8 58.0 43.3 43.0	59.5 59.8 43.8	57.8 58.1 43.3 42.0	59.5 59.5 43.7
		Double glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.2 0.0	0.0	0.0	0.0 0.2 0.0	0.0	0.0	0.0	0.0	4.1	4.0	4.0	4.2	2.0 1.7 1.2	2.2 1.8 1.4	2.2 1.8 1.4	2.2 1.8 1.4	28.7 34.4 32.9	29.3 35.2 33.7	29.4 35.3 33.8	30.0 35.9 34.4	18.0 22.0 21.4	18.7 22.9 22.3	18.8 23.0 27.4	19.6 23.9 23.2	69.4 76.5 76.8	69.9 77.0 77.4	69.4 76.4 76.8	69.8 76.8 77.2	42.8 51.0 51.0	43.4 51.7 51.7	42.8 51.0	43.3 51.6 51.6
	Small window (wwr=0.25)		New building	Heavy-weight Light-weight Medium-weight	0.0 0.6 0.0	0.0 0.9 0.1	0.0 0.8 0.1	0.0 0.7 0.0	0.0 0.0 0.0	0.0 0.1 0.0	0.0 0.1 0.0	0.0 0.1 0.0	3.3 7.5 5.6	3.5 8.0 6.0	3.5 8.0 6.1	3.5 7.9 5.9	0.9 3.8 3.6	1.1 4.2 4.0	1.1 4.3 4.0	1.1 4.2 4.0	32.3 33.1 31.0	33.1 34.8 32.5	33.2 35.1 32.8	33.9 36.2 33.9	21.1 20.3 20.0	22.1 22.0 21.7	22.2 22.4 22.1	23.1 23.9 23.6	76.9 72.9 72.7	77.5 73.9 73.7	76.9 72.8 72.6	77.4 73.6 73.5	51.2 46.6 46.4	51.9 47.7 47.5	51.2 46.6 46.4	51.8 47.6 47.3
		Triple glazing (clear)	Old building	Heavy-weight Light-weight Medium-weight	0.0 0.2 0.0	0.0 0.4 0.0	0.0 0.3 0.0	0.0 0.3 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.9 6.4 4.6	5.3 7.0 5.1	5.3 7.0 5.1	5.2 6.8 5.0	3.2 2.3 1.9	3.6 2.6 2.2	3.7 2.7 2.2	3.6 2.7 2.2	30.1 35.7 34.2	31.7 37.4 35.8	31.8 37.7 36.0	33.2 38.7 37.3	19.9 23.4 22.9	21.6 25.1 24.6	21.9 25.3 24.7	23.5 26.9 26.5	72.4 79.2 79.7	73.4 80.2 80.8	72.4 79.1 79.6	73.2 79.9 80.5	46.2 54.3 54.4	47.3 55.5 55.7	46.2 54.3 54.4	47.1 55.4 55.5
			New building	Heavy-weight Light-weight Medium-weight	0.0 0.3 0.0	0.0 0.4 0.0	0.0 0.4 0.0	0.0 0.4 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	4.0 6.3 4.5	4.5 6.5 4.6	4.4 6.5 4.6	4.4 6.5 4.6	1.5 2.6 2.3	1.8 2.7 2.4	1.8 2.7 2.4	1.8 2.7 2.4	33.6 30.6 28.6	35.2 31.0 29.0	35.4 31.1 29.1	36.9 31.4 29.4	22.6 17.6 17.4	24.4 18.1 17.8	24.5 18.2 17.9	26.3 18.6 18.3	79.8 68.2 67.8	81.0 68.5 68.1	79.8 68.2 67.8	80.7 68.4 68.0	54.6 41.2 40.9	55.9 41.5 41.2	54.6 41.2 40.9	55.7 41.5 41.2
Big room		Triple glazing (coated)	Old building	Heavy-weight Light-weight Medium-weight	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	3.9 5.4 3.8	4.0 5.7 3.9	4.0 5.7 3.9	4.0 5.6 3.9	2.0 1.5 1.1	2.1 1.7 1.2	2.1 1.7 1.2	2.1 1.7 1.2	27.8 33.5 32.0	28.2 34.2 32.6	28.2 34.2 32.7	28.6 34.5 33.1	17.1 21.1 20.5	17.6 21.7 21.1	17.6 21.8 21.2	18.1 22.4 21.8	67.5 74.8 75.0	67.8 75.2 75.4	67.5 74.8 75.0	67.7 75.1 75.3	40.7 49.0 48.9	41.0 49.4 49.4	40.7 49.0 48.9	41.0 49.4 49.3
(A=100m ²)			New building	Light-weight Medium-weight Heavy-weight	1.5 0.2 0.1	2.4 0.7 0.3	3.5 1.0 0.4	2.5 0.7 0.3	0.5	1.5 0.8 0.3	2.2 1.6	0.0 1.7 0.9 0.4	5.2 11.7 9.2 8.6	13.8 10.8 10.0	3.3 14.2 10.9 10.1	5.3 13.4 10.6 9.9	8.0 7.7 7.4	9.8 9.5 9.2	10.1 9.7 9.4	9.9 9.5 9.2	43.8 41.4 40.6	49.3 46.9 46.1	52.1 52.7 48.6 47.5	55.2 52.8 52.2	31.6 31.4 31.1	37.9 37.8 37.7	40.6 40.1 39.9	45.7 45.6 45.4	92.2 93.4 93.5	95.6 97.0 97.2	92.2 93.3 93.5	94.8 96.2 96.5	70.0 70.3 70.1	74.1 74.5 74.4	70.2 70.5 70.3	49.5 73.7 73.9 73.8
		Double glazing (clear)	Old building	Light-weight Medium-weight Heavy-weight	0.7 0.1 0.0	1.5 0.4 0.2	2.0 0.5 0.2	1.4 0.3 0.1	0.1 0.0 0.0	0.4 0.1 0.0	0.6 0.2 0.0	0.5 0.1 0.0	10.2 8.0 7.3	12.3 9.3 8.5	12.2 9.4 8.6	11.6 9.1 8.4	5.6 5.2 4.7	6.8 6.4 6.0	7.0 6.5 6.1	7.0 6.4 6.0	45.3 43.8 43.1	50.7 49.0 48.3	52.7 50.0 49.1	55.9 54.3 53.9	33.6 33.2 32.9	39.1 39.0 38.8	40.2 39.8 39.5	46.3 46.0 45.8	97.0 98.8 99.3	100.5 102.4 103.0	97.0 98.8 99.3	99.5 101.6 102.2	76.5 77.3 77.4	80.6 81.6 81.7	76.7 77.5 77.5	80.3 81.1 81.1
		Double glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	0.5 0.0 0.0	0.8 0.1 0.0	0.7 0.1 0.0	0.6 0.1 0.0	0.0 0.0 0.0	0.1 0.0 0.0	0.0 0.0 0.0	0.1 0.0 0.0	7.5 5.3 4.7	8.0 5.7 5.1	7.9 5.7 5.1	7.7 5.6 5.0	3.1 2.7 2.4	3.4 3.1 2.8	3.5 3.1 2.7	3.5 3.1 2.7	34.8 32.7 31.9	36.4 34.3 33.4	36.7 34.5 33.6	37.8 35.8 34.9	21.6 21.3 21.0	23.2 22.9 22.7	23.3 23.0 22.8	25.1 24.8 24.6	76.0 76.1 75.9	77.1 77.2 77.0	76.0 76.1 75.9	76.8 77.0 76.8	50.3 50.3 50.0	51.5 51.5 51.3	50.3 50.3 50.1	51.3 51.3 51.1
	Large window		Old building	Light-weight Medium-weight Heavy-weight	0.2 0.0 0.0	0.4 0.0 0.0	0.3 0.0 0.0	0.3 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	6.5 4.6 4.0	7.1 5.1 4.4	7.0 5.0 4.3	6.9 4.9 4.3	2.2 1.7 1.3	2.5 1.9 1.6	2.4 1.9 1.5	2.5 1.9 1.6	37.2 35.7 35.0	38.8 37.2 36.6	39.0 37.3 36.7	40.1 38.7 38.1	24.9 24.3 23.8	26.4 25.8 25.4	26.5 25.9 25.5	28.2 27.7 27.2	81.5 82.2 82.2	82.5 83.3 83.4	81.5 82.2 82.2	82.2 83.0 83.1	57.0 57.3 57.2	58.2 58.5 58.5	57.0 57.3 57.3	58.1 58.4 58.3
	(wwr=0.25)	Triple glazing (clear)	New building	Light-weight Medium-weight Heavy-weight	1.2 0.2 0.0	1.8 0.4 0.2	2.5 0.6 0.2	1.9 0.5 0.2	0.4 0.1 0.0	1.1 0.5 0.1	1.7 1.1 0.6	1.3 0.7 0.3	10.5 8.3 7.5	12.0 9.2 8.6	12.3 9.3 8.6	11.7 9.1 8.4	7.0 6.8 6.5	8.3 8.1 7.8	8.6 8.3 8.0	8.4 8.1 7.8	39.8 37.4 36.5	43.8 41.3 40.5	46.0 42.4 41.3	48.2 45.6 44.9	27.4 27.1 26.9	32.0 31.9 31.8	34.0 33.6 33.4	37.7 37.5 37.3	84.4 84.9 84.9	87.0 87.6 87.6	84.4 84.9 84.8	86.4 87.1 87.1	60.2 60.3 60.1	63.2 63.3 63.1	60.4 60.4 60.2	62.9 62.9 62.7
			Old building	Light-weight Medium-weight Heavy-weight	0.6 0.1 0.0	1.1 0.2 0.1	1.4 0.2 0.1	1.1 0.2 0.1	0.1 0.0 0.0	0.2 0.0 0.0	0.3 0.0 0.0	0.3 0.0 0.0	9.0 6.9 6.3	10.4 7.8 7.1	10.4 7.9 7.2	10.0 7.7 7.1	4.6 4.1 3.8	5.4 5.0 4.6	5.5 5.1 4.6	5.5 5.0 4.6	41.5 39.9 39.2	45.4 43.7 42.9	46.7 44.2 43.3	49.2 47.5 47.0	29.2 28.8 28.5	33.2 33.0 32.8	33.9 33.5 33.2	38.3 38.0 37.8	89.5 90.7 91.0	92.1 93.4 93.7	89.5 90.7 90.9	91.4 92.8 93.1	66.9 67.4 67.3	69.9 70.4 70.5	67.0 67.5 67.4	69.6 70.1 70.1
		Triple glazing (coated)	New building	Light-weight Medium-weight Heavy-weight	0.5 0.0 0.0	0.7 0.0 0.0	0.6 0.0 0.0	0.5 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	7.0 4.9 4.3	7.3 5.2 4.5	7.3 5.1 4.5	7.2 5.1 4.5	2.9 2.5 2.2	3.1 2.7 2.4	3.1 2.7 2.4	3.1 2.7 2.4	32.3 30.2 29.2	33.1 30.9 30.0	33.3 31.0 30.0	33.8 31.8 30.8	19.0 18.7 18.5	19.8 19.5 19.3	19.8 19.6 19.3	20.8 20.5 20.3	70.9 70.6 70.3	71.4 71.2 70.9	70.9 70.6 70.3	71.3 71.1 70.8	44.2 44.0 43.8	44.8 44.7 44.4	44.2 44.1 43.8	44.7 44.6 44.3
			Old building	Medium-weight Heavy-weight	0.0	0.3	0.2	0.2	0.0	0.0	0.0	0.0	6.0 4.2 3.6	6.4 4.4 3.8	6.3 4.4 3.8	6.3 4.4 3.8	1.8	1.5 1.2	2.0 1.5 1.2	2.0 1.5 1.2	34.8 33.2 32.5	35.7 34.0 33.3	35.7 34.0 33.3	36.4 34.7 34.1	22.1 21.5 21.1	22.9 22.3 22.0	22.9 22.3 22.0	23.8 23.3 22.9	76.7 77.0 76.9	77.6 77.5	76.7 77.0 76.9	77.4 77.4	51.0 51.1 51.0	51.8 51.7	51.0 51.1 51.0	51.6 51.7 51.6