
Comparative Analysis of Curriculum Strategies in training Meta-Learning
Curriculum Strategies for Faster Meta-Learning

Maria Mihai1

Supervisors: Matthijs Spaan1, Joery de Vries1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Maria Mihai
Final project course: CSE3000 Research Project
Thesis committee: Matthijs Spaan, Joery de Vries, Pradeep Murukannaiah

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Meta-Learning is an emerging field where the main
challenge is to develop models capable of distill-
ing previous experiences to efficiently learn new
tasks. Curriculum Learning, a group of optimiza-
tion strategies, structures data in a meaningful or-
der which aids learning. However, the extent to
which curriculum strategies can optimize the per-
formance of meta-learners remains unclear. Here
we study the separate and joint effects of a model-
based (ScreenerNet) and a statistics-based (Active
Bias) curriculum strategy on the training of a meta-
learning model (Neural Processes) which solves 1-
D function regression tasks. The findings show that
ScreenerNet increases in-task accuracy and speeds
convergence, but decreases the generalisation per-
formance. Active Bias achieves mixed generalisa-
tion results and significantly decreases training effi-
ciency when trained on noisy data-sets. Combining
them partially mitigates ScreenerNet’s overfitting
and stabilises Active Bias’ susceptibility to noise,
but further research is necessary in order to achieve
consistent improvements to the baseline.

1 Introduction
A great part of the evolution of Machine Learning systems

can be closely traced to inspirations drawn from the human
brain. In 1993, it was proposed to extend this link by mir-
roring the learning strategy of humans (Elman, 1993). Few
students are taught concepts in random order; instead, signif-
icant efforts and considerations are paid by their teachers to
order the concepts, usually by increasing difficulty, in curric-
ula. Applying a similar process in the training of ML models
has been repeatedly shown to increase learning performance
(Soviany et al., 2022; Wang et al., 2021).

Another emerging topic in computer science is Meta-
Learning, or “learning-to-learn”. Hospedales et al define
Meta-Learning as “the process of distilling the experience
of multiple learning episodes ... to improve future learning
performance” (Hospedales et al., 2021, p. 5149). In other
words, meta-learners do not rely on dedicated human tun-
ing in order to achieve satisfactory performance for a specific
task; they can generalize insights acquired in solving previous
tasks in order to more efficiently learn similar, yet new, tasks.
Contemporary deep learning is often criticized for requiring
large data volumes and extracting superficial patterns (Mar-
cus, 2018). Meta-learning aims to address these issues but
faces challenges such as susceptibility to label noise (Liang
et al., 2022; Lu et al., 2020) and high computational costs
(Hospedales et al., 2021). Optimization techniques have been
applied with the purpose of addressing some of these limita-
tions (Killamsetty et al., 2022; Mazumder et al., 2021). How-
ever, few studies comprehensively analyze the effects of Cur-
riculum Learning techniques in the training of meta-learners
(Que and Yu, 2024). This can be partly attributed to the fact
that many of these techniques rely on a domain-dependent
- and often human-assigned - definition of difficulty (Jiang

et al., 2015; Graves et al., 2017), which is not trivial in the
case of meta-learning.

A first requirement for a Curriculum Learning strategy is
wide, task-agnostic applicability, for which the subset of Self-
Paced Learning methods is well-suited (Soviany et al., 2022).
Within this family, the general idea is to construct curricula
by ordering samples from easy to difficult according to a dif-
ficulty measure obtained from the model’s performance. A
large and diverse pool of strategies exist for distilling this
measure of difficulty, with earlier versions using simple per-
formance statistics (Kumar et al., 2010; Lee and Grauman,
2011). Later, a new family of strategies emerged, which re-
placed these statistics with model-based approaches aimed
at discovering more complex and abstract patterns (Kim and
Choi, 2018; Jiang et al., 2018). In the statistics-based group,
the ‘easy-to-difficult‘ ordering was redefined through more
nuanced techniques (Chang et al., 2017; Tang and Huang,
2019).

In this research, we will analyse near state-of-the-art repre-
sentatives from both the model-based and the statistics-based
approaches. Within the first group, ScreenerNet is an attached
neural network which performs training on all samples, but
assigns higher importance to tasks predicted to be more diffi-
cult (Kim and Choi, 2018). Within the second group, Active
Bias aims to find a general solution to the target sample dif-
ficulty on which to train, using uncertainty as a measure to
construct curricula at the ‘edge’ of a model’s ability (Chang
et al., 2017). Our contribution is comparing these approaches
in the extent to which they can improve the performance of a
meta-learning model (Neural Processes) which is trained for
solving 1-D function regression tasks; we additionally study
the effects of combining the two approaches.

We will compare the strategies from three perspectives:
noise robustness, generalization, and efficiency. In the first
category, experiments will assess each strategy’s impact on
model performance when trained on noisy data. In the sec-
ond, we will evaluate the model’s ability to generalize to new
task types. In the third, we will analyze the training behavior
of each strategy.

2 Background & Related Work
This section contains a deeper description of the prob-

lem being optimized (meta-learning), a general description
of the family of methods which constitute the optimization
approach (curriculum strategies), and a description of the
specific strategies which constitute the focus of the research
(ScreenerNet and Active Bias). For these strategies, their
main properties will be presented along with the motivation
for their study. A more detailed description of how they were
adapted and implemented can be found in section 3.

2.1 Meta-Learning & Neural Processes
In classical machine learning, models are trained on large

amounts of data in order to achieve high performance on a
specific problem. However, if a change occurs in the under-
lying assumptions of the problem, the model needs to be re-
trained using an amount of time and data resources which is

1

comparable to the one used in the initial training. The chal-
lenge of meta-learning is to extract knowledge from previous
experiences such that it can be applied in the learning of new
tasks, thus reducing the learning effort (Vanschoren, 2018).
Meta-Learning techniques have achieved promising results in
various fields (from increasing accuracy in Language Mod-
elling (Vinyals et al., 2016) to adapting more quickly in 2D
Navigation RL tasks (Finn et al., 2017)). Because they are
trained to reuse insights from past experience, they are partic-
ularly suited to cases where there are multiple, similar tasks
to learn, but few examples for each (Garnelo, 2018; Dubois
et al., 2020).

Neural Processes are “meta-learning algorithms for few-
shot function regression” (Garnelo et al., 2018, p. 5). Their
name stems from their architecture, which combines prop-
erties of Neural Networks and Gaussian Processes (stochas-
tic processes which are fully specified by a mean function
and a covariance function (Williams and Rasmussen, 1995)).
The architecture of Neural Processes consists of three main
components: an encoder, an aggregator, and a conditional de-
coder. The encoder is parameterised as a neural network; it
accepts pairs (x, y)i of values from the context set, and out-
puts a representation ri = h((x, y)i). The aggregator then
outputs a global representation r (often computed as a mean
of all representations ri). Finally, the decoder (also parame-
terised as a neural network) accepts the representation r and
the target input xT and predicts a mean and variance of the
predictive distribution of the target output yT . This architec-
ture is illustrated in Figure 1. The testing and application of
Neural Processes can be described as follows: the NP model
is presented with a context set for a task it has not encountered
before; using only a forward pass (and no gradient updates),
it adapts to the current context and uses information gained
during the training process in order to make predictions for
unseen samples (the target set) of the current task. The sam-
ple loss function used for the training of Neural Processes is
the negative of the Evidence Lower Bound (ELBO), which
represents the likelihood of the observed data (Y) given the
current prediction (µ, σ) for the value of f(X).

(1)ELBO(f) ≤ ln(N(Y |µ, σ))

2.2 Curriculum Learning
The family of curriculum strategies is diverse in applica-

tions, methods, and levels at which they can be applied. So-
viany et al propose seven categories of curriculum learning
(CL) methods: vanilla CL, self-paced learning, balanced CL,
self-paced CL, teacher–student CL, implicit CL, and progres-
sive CL (Soviany et al., 2022). As noted by the authors, this
categorization still presents overlaps, and is not exhaustive.
However, it reflects the main trends and evolution in the field.

Vanilla CL methods - introduced by Bengio et al (Bengio
et al., 2009) - use pre-defined rules to assemble fixed curric-
ula. At the other end of the spectrum, self-paced learning
methods - introduced by Kumar et al (Kumar et al., 2010)
- create curricula dynamically, based only on the learning
model’s performance. This approach is more suitable for
optimizing meta-learning, where comprehensive heuristics

Figure 1: Architecture of Neural Processes, consisting of an encoder
(e), an aggregator (a), and a decoder (d). An input consisting of a
context set of x, y pairs is provided to the encoder, which outputs an
individual representation to each pair of points. These representa-
tions are then aggregated into a global representation, which, along
with the x coordinate of a point from the target set, is used by the
decoder to make a prediction defined by a mean and variance. Note.
Adapted from (Garnelo, 2018).

for defining task difficulty are not yet available or intuitive.
The other categories of CL include variations or combina-
tions of Vanilla CL and SPL. Relevant to the current research
are Teacher-Student Curriculum Learning (CL) and Active
Learning.

Under Teacher-Student strategies, learning is split into the
main task (for which the student is being trained) and de-
termining the optimal parameters for learning (for which the
teacher is being trained). Therefore, Teacher-Student strate-
gies are similar to self-paced CL in that the learning progress
is used for predicting certain components of a curriculum, but
for Teacher-Student systems, the prediction is more advanced
and delegated to another learning system. An example of a
Teacher-Student system is ScreenerNet(Kim and Choi, 2018),
which is described in subsection 2.3.

Active Learning strategies place emphasis on uncertainty,
rather than learning models. In other words, they note that
focusing on the ‘easy’ samples is more effective in some sce-
narios, while focusing on the ‘difficult’ samples can yield bet-
ter results in others. The proposed general solution is to take
into account the uncertainty, or how consistent is the model’s
performance on a given sample. An example of an Active
Learning strategy is Active Bias, which is described in sub-
section 2.4.

2.3 ScreenerNet
ScreenerNet is an attachable neural network, trained at the

same time as the main neural network, which aims to learn the
significance of each learning sample (Kim and Choi, 2018).
The significance score is highly influenced by the error which
ScreenerNet predicts the main neural network will have on a
given sample (the higher the estimated error, the higher the

2

weight). In the training procedure outlined by the authors,
ScreenerNet does not select only certain tasks which will be
passed on to the main neural network; rather, all tasks are se-
lected, but some of them have higher weight on the loss of
the main neural network. Moreover, it has been shown to in-
crease convergence speed and accuracy for image classifica-
tion and deep reinforcement learning, as well as out-perform
sampling-based curriculum learning methods (with which it
can be combined for further improvement). On the other
hand, the authors do not discuss training conditions which in-
clude noisy datasets. In such cases, given the fact that higher
error samples have higher weights, the noise robustness can
potentially have lower performance.
Objective function ScreenerNet minimizes the following
objective function:

(2)LSN =
∑
x∈X

((1− wx)
2lx + w2

xmax(M − lx, 0)),

where X is the set of samples (or tasks), wx is the weight
assigned to a task x, lx is the main neural network’s loss for
the given task, and M is a constant used for upwards-clipping
the value of the losses.
Expected effect We expect that ScreenerNet’s main im-
provement will be increasing the model’s accuracy for the
tasks with higher predicted difficulty. However, a limitation
of the current research is that we will not investigate the ex-
tent to which ScreenerNet can model difficulty. At the same
time, we expect that ScreenerNet will improve the conver-
gence speed of Neural Processes because of its significance-
weighted parameter update.

2.4 Active Bias
Active Bias is a sampling strategy which emphasises un-

certain samples Chang et al. (2017); it is part of the Active
Learning category of curriculum strategies, and the authors
describe multiple implementations, of which one (SGD-PV)
is more applicable for regression tasks. The main insight is
that the samples on which the model consistently gets low er-
rors might be too easy to further improve the model, while the
samples on which the model consistently gets high errors may
be too difficult and thus not bring significant improvements
to the model. Therefore, the prioritized samples are those for
which the model sometimes gives low errors, but where per-
formance can still be improved. This strategy is introduced
in response to the observation that Self-Paced Learning (em-
phasising easy samples) and Hard Example Mining (empha-
sising difficult samples) both have demonstrated performance
improvements in different situations (Shrivastava et al., 2016;
Jiang et al., 2015). However, when approaching a new data-
set, it is not always clear which method will be more effective.
The proposed strategy, Active Bias, aims to automatically dis-
cover the target difficulty for a given scenario. Figure 2 illus-
trates an insight into the difference between easy, uncertain
and difficult samples.
Expected effect We expect that Active Bias increases the
generalisation performance, because the training is per-
formed on samples which are expected to have stronger learn-
ing signals. However, because not all samples are presented

Figure 2: Simplified example of easy, uncertain and hard samples.
The first and third functions both have low error variance, even
though their errors significantly vary in magnitude. The first exam-
ple would be sampled with higher probability in Self Paced Learn-
ing, while the third example would be emphasised in Hard Example
Mining. However, the second function has larger error variance. The
intuition behind Active Learning is that a model can have the largest
learning model when training on such a task, and will therefore as-
sign it higher sampling probability. Note. Adapted from (Chang
et al., 2017).

to the model with the same frequency, we expect that the
model will have lower accuracy on some sample types. As
a result, there could be large differences in the loss values
for different sample types. Finally, we expect that the noisy
samples will be considered more ‘difficult‘ and therefore be
sampled with lower probability, therefore increasing the noise
robustness.

3 Approach
This section contains a description of the procedures by

which the three techniques (ScreenerNet, Active Bias and
their combination) were applied in the context of training
Neural Processes for 1-D function regression tasks. For each
of these, we will describe mainly what has been added to the
baseline training procedure illustrated in Figure 3.

Figure 3: Simplified overview of the training procedure of Neural
Processes, where their architecture is treated as a black-box model.
This structure, which uses mini-batch gradient descent, is seen as a
baseline against which the other learning variants will be compared.

3.1 ScreenerNet
Training The joint training procedure for ScreenerNet and
Neural Processes is outlined in the following pseudo-code:

3

Algorithm 1 Training Neural Processes with ScreenerNet

1: Initialize ScreenerNet
2: Initialize NP
3: for iteration = 1, 2, . . . do
4: for Every mini-batch of tasks b do
5: for Every sample f in b do
6: wf ← normalised(S(f))
7: ef ← ELBO(f)
8: lf ← L(f) (Eq. 3)
9: end for

10: eNP
b ← − 1

|b|
∑

f∈b(wf · ef)
11: eSN

b ← 1
|b|

∑
f∈b L

SN (lf , wf) (Eq. 2)
12: UpdateNetwork(NP, eNP

b)
13: UpdateNetwork(SN, eSN

b)
14: end for
15: end for

Every training iteration consists of the sampling of batches
of tasks (or functions). For each of them, ScreenerNet pre-
dicts a weight, and a loss is computed as an average of losses
over a target set of points on the function. Then, the loss by
which ScreenerNet is updated is its objective function applied
to the current batch, and the loss by which NP is updated is
the negative of the weighted mean of all losses in the current
batch. This procedure is illustrated in Figure 4.

Figure 4: Overview of training Neural Processes using weights pre-
dicted by ScreenerNet. At each training step, a batch of data is sam-
pled stochastically, and provided as input for both ScreenerNet and
NP. The errors of NP are weighted using ScreenerNet’s output and
averaged in order to obtain the error by which NP will be updated.
For visual simplicity, the updating of ScreenerNet using its objective
loss is not displayed.

Changes The original pseudo-code was slightly adapted for
the specific context of the training procedure of Neural Pro-
cesses. The most significant way in which the procedure was
adapted is that the loss on which the NP model is trained dif-
fers from the loss which is inputted to ScreenerNet. This
is because of two reasons: firstly, it was empirically seen
that ScreenerNet is not able to ’predict’ the Evidence Lower
Bound, which reflects the internal KL-complexity. Secondly,
the objective loss of ScreenerNet requires positive losses in
order for its predicted weights to be well-defined. There-
fore, after experimenting with different formulas, the follow-

ing sample loss functions has been identified:

(3)L(f) =
1

|T |
∑
i∈T

(σi +
||yi − µi||

σi
),

where T = (x, y)i is the target set of the sample function x,
and µi, σi are the predicted mean and variance of the model
for each value yi. The purpose of this formulation of the
loss function is to penalize both low accuracy (reflected in
the term ||yi−µi||

σi
) and low precision (σi). This formula is

similar to the Gaussian log-likelihood, but it does not apply
logarithm to the variance in order to ensure positive sample
losses.

The other changes which were made to the original training
algorithm are:

• Regularization was not applied to the ScreenerNet pa-
rameters because the regularizing term did not improve
accuracy or performance;

• Weights were not scaled to the [0, 1] range because this
reduced the weighted loss below the initial loss, artifi-
cially lowering the learning rate. Instead, weights are
normalized to sum to the batch size.

• The first 10% of epochs were used as ’burn-in’ epochs
to ensure that ScreenerNet’s initial sub-optimal perfor-
mance does not affect the early stages of training while
it is being improved.

• The authors found that ScreenerNet performs best when
its architecture is similar to the main neural network.
However, due to the deep architecture of Neural Pro-
cesses, a simpler architecture with fewer layers was cho-
sen to reduce computational efforts.

3.2 Active Bias
Sampling Distribution By substituting the predicted class
with prediction loss in the sampling distribution by which the
SGD-PV Active Bias method is defined, the resulting sam-
pling distribution can be obtained:

(4)P (i|(li)c1) ∝ p((li)c1) + ϵ, where

(5)p((li)c1) =

√
v̂ar((li)c1 +

v̂ar((li)c1)
2

c− 1

In Equation 4, the probability of selecting sample i, given
the entire set of prediction losses of the model previously ob-
tained on that sample (li)c1), is proportional to its correspond-
ing sampling score plus a smoothing constant ϵ (which pre-
vents low-variance samples from not being sampled again).
In Equation 5, the sampling score p((li)c1) is computed based
on the estimated variance of the loss (v̂ar((li)c1) and its confi-
dence interval. The loss metric is the Evidence Lower Bound
(described in subsection 2.1), and their variance is computed
using a rolling-variance algorithm with numerical stability
properties (Cook, 2014).

4

Training The training procedure is similar to that of the
baseline and is divided into two phases based on the au-
thors’ recommendation to use Active Bias after several burn-
in epochs. In the first phase, tasks are sampled equally, and
their training errors update stored utilities to compute run-
ning variance. In the second phase, variances continue to be
updated, but tasks are sampled from a categorical distribution
using probability scores from Equation 5. The authors sug-
gest experimenting with different burn-in percentages; in the
experiments, we used 50%.

Figure 5: Overview of training Neural Processes using batches sam-
pled according to the Active Bias distribution. At each training step,
Neural Processes are trained on a batch sampled by the AL Sampler.
The error history for each sample in the batch is updated, which is
followed by a per-sample update in variance and sampling scores for
the next iteration.

3.3 Combined approach

Changes The authors of ScreenerNet state that their model
can be used to extend stochastic sampling methods for in-
creased performance (Kim and Choi, 2018). This can be done
by using the Active Bias sampling distribution in the sam-
pling of batches in line 4 of Algorithm 1. Because Screen-
erNet and Active Bias target different elements of the train-
ing procedure (the losses and the samples, respectively), no
changes were applied to either of the techniques. The proce-
dure is illustrated in Figure 6.

Expected effect We expect that combining these tech-
niques will mitigate some of their possible negative effects.
For instance, as elaborated in subsection 2.4, Active Bias
could insufficiently train the model on high loss samples;
ScreenerNet’s significance loss could lead to the parameters
being updated by a larger step after such samples. At the
same time, assuming that ScreenerNet is more susceptible to
highly noisy data, Active Bias could decrease the probability
that such samples are presented to the model.

4 Experimental Setup and Results
The purpose of this research is to determine whether the

described strategies improve the performance of Neural Pro-
cesses with regard to three aspects: Training Performance,
Generalization and Robustness.

Figure 6: Complete training procedure for Neural Processes. Both
Active Learning sampling and ScreenerNet error re-weighting are
performed. For visual simplicity, the updating of ScreenerNet using
its objective loss is not displayed.

This section contains a description, motivation and discus-
sion of results for the experiments performed in comparing
ScreenerNet, Active Bias and their combination in the train-
ing of Neural Processes. The task on which the evaluation
is performed is presented in subsection 4.1; the metrics cho-
sen for the evaluation are described in subsection 4.3, and the
structure of the experiments is specified in subsection 4.2. Fi-
nally, the results, along with their interpretation, are presented
in subsection 4.4.

4.1 Dataset description

Figure 7: Examples of tasks on which the variants are trained and
tested. The first three examples showcase different function types
(from left to right: Sinusoidal, Slope, and clipped Polynomial of
rank 2), with a low level of noise (0.01) applied. The final example
depicts a Sinusoidal function with a higher level of noise (0.2) ap-
plied.

In 1-D function regression, each task involves learning a
one-dimensional function. Initially, the NP model receives
a (possibly noisy) context set consisting of (xC

i , y
C
i) points

from the function. For evaluation, a target set of previously
unseen points (xT

i , y
T
i) is chosen. The NP model outputs a

pair µ and σ, which represent the predicted value and the as-
sociated uncertainty for the corresponding yTi = f(xT

i |C)
value of the query input xT

i .

In the experiments, three family functions were considered
(Sinusoidal, Slope, and second order Polynomials), as well
as multiple levels of noise - examples of such functions are
illustrated in Figure 7. Each function sample is represented
by a context set (having 128 (x, y) pairs) and a target set (hav-
ing 64 (x, y) pairs), both sampled from the function’s graph,
such that for every pair, x ∈ [−1, 1]; the data-set is obtained

5

by randomly sampling functions within the specified fami-
lies. Additional transformations applied to the function sam-
ples are: vertically shifting (adding a constant value to all y
values), masking (not including any samples whose x coor-
dinate falls within a randomly-chosen sub-interval of the do-
main) and widening (sampling points from a larger domain,
e.g. [−3, 3]).

4.2 Setup
Preliminary Details The experiments concern 4 models,
which shall be abbreviated and referred to as NP (unaug-
mented Neural Processes - the baseline), NP+SN (Neural
Processes weighted by ScreenerNet), NP+AB (Neural Pro-
cesses with SGD-PV sampling), and NP+SN+AB (Neural
Processes with ScreenerNet-weighted loss and SGD-PV sam-
pling). These models were trained and evaluated on the
same data-sets. The training and evaluation data-set distri-
butions are specified in Appendix A. All training hyper-
parameters are specified in Appendix B. The implementation
of the variants and experiments was performed in Python and
JAX(Bradbury et al., 2018) (a library which leverages high-
performance numerical computing); Pytorch was used for
some data handling utilities(Paszke et al., 2017). Most of the
experiments were run on the DelftBlue super-computer(Delft
High Performance Computing Centre , DHPC).

Note on training set-up Initially, the models were trained
on both set-ups (one consisting of different function families,
and one consisting of different noise levels). However, the re-
sults indicated that the Active Bias variants trained on noisy
datasets performed significantly worse. In 3 out of 5 runs,
there were no improvements in loss values after 150 epochs.
It can therefore be concluded that, under Active Bias sam-
pling with a noisy dataset, the NP+AB model did not evolve
past the initial state, and therefore did not demonstrate
sufficient improvements to be comparable to the NP and
NP+SN variants. For this reason, the quantitative experi-
ments were performed on the variants trained under the set-
up with different function families. The exact values for both
set-ups are presented in Appendix B.

Structure The evaluation of the four variants contains a
quantitative and a qualitative set of experiments. The qual-
itative experiments are targeted at the training efficiency of
the 4 variants. Each quantitative experiment is performed
by evaluating all variants on a single function type (this is
in contrast to their training, which has been performed with
three different function types). Here, a function type is used
to a refer to a fixed distribution consisting of function family
along with its defining parameters, noise levels, and (option-
ally) parameters such as shift values or gap interval. In se-
lecting the functions for the quantitative experiments, abso-
lute differences between hyper-parameter values were taken
into consideration as an informal measure of distance. We
loosely refer to Setlur et al’s categorisation of In-Distribution
(ID) and Out-Of-Distribution (OOD) evaluation settings, al-
though most of their work concerns meta-learners for classi-
fication tasks (Setlur et al., 2021). To this end, we split the
quantitative experiments into two categories: ID (evaluating
on identical and very similar function types as in the training

distribution), and OOD (evaluating on function types with a
higher degree of changes applied in the test function type pa-
rameters).
Hypotheses The experiments are set-up to reflect the fol-
lowing claims, which are motivated in the Expected effect
paragraphs from subsection 2.3 and subsection 2.4.

1. ScreenerNet increases ID accuracy, achieving lower
losses on task types seen during training.

2. Active Bias increases generalisation performance,
achieving lower error than the baseline on test functions
which are highly different from the training distribution.

3. Combining ScreenerNet with Active Bias achieves
higher generalisation performance than ScreenerNet.

4. Combining ScreenerNet with Active Bias leads to lower
loss variance than Active Bias.

4.3 Metrics
Various metrics can objectively assess the accuracy of a

model in a regression context. When selecting evaluation
metrics for our experiments, we considered the following as-
pects. First, we chose a widely used metric, Mean Squared
Error, to ensure consistency with other experiments. Second,
we selected a metric that incorporates uncertainty: Negative
Log Likelihood. The exact formulas used to compute these
metrics are specified below.

(6)MSE(yT , µT , σT) =
1

|T |
∑
i∈T

(yi − µi)
2

NLL(yT , µT , σT) =
∑
i∈T

log(max(σ2
i , ϵ)) +

(yi − µi)
2

max(σ2
i , ϵ)

(7)

Under the first loss function (Equation 6), only inac-
curacy ((yi − µi)

2 is penalised. Under the second loss
function (Equation 7), both inaccurate predicted means
((yi−µi)

2

max(σ2
i ,ϵ)

) and imprecise variances (log(max(σ2
, , ϵ)) are pe-

nalised (here, the ϵ constant ensures numerical stability in the
case of small variances, and it is set at 10−6). These loss
functions will be used to assess the predictions of each vari-
ant against the evaluation tasks described in the next section.

4.4 Results
Qualitative: Convergence Figure 8 depicts the training
loss evolution for the four variants trained in the set-up with
different function families. It can be seen that NP+SN con-
verges around the 50th epoch and there is less variance be-
tween the evolutions of the 5 runs. The NP+AB model stabi-
lizes approximately around the 75th epoch. However, when
trained on the noisy set-up, the NP+AB variant did not show
any improvements in the evaluation results after 150 epochs
for 3 out of the 5 runs. This phenomenon was also observed
for the NP+SN+AB, but for 1 out of the 5 runs. The mean
loss values and 95% confidence intervals are represented in
Figure 9. After an attempt to identify the runs which had
no evolution and train them for an additional 50 epochs, no

6

improvement was seen. Because of time constraints, it was
decided to not run the evolution for more epochs. Future re-
search could investigate the training behaviour of Active Bias
under noisy conditions further, as well as perform the quanti-
tative comparisons.

Figure 8: Evolution of NLL loss evaluated during the training pro-
cess of the four variants on the clean data-set, represented as mean
value and 95% confidence interval. The losses were evaluated after
every fifth epoch.

Figure 9: Evolution of NLL loss evaluated during the training pro-
cess of the four variants on the noisy data-set, represented as mean
value and 95% confidence interval. The losses were evaluated after
every fifth epoch.

Quantitative: In-Distribution Figure 10 shows RMSE
and NLL values for the functions which the variants trained

on. Although the differences in precision (RMSE loss) are
negligible, ScreenerNet appears to have a slight improvement
for the NLL loss values for the polynomial and slope func-
tions, confirming Claim 1. The NP+AB variant achieves
similar results to the baseline, for the sinus and slope func-
tions, but slightly higher losses with a large outlier for the
polynomial functions. This could be attributed to preferential
sampling. The NP+SN+AB variant does not present improve-
ments to the either of the other variants.

Figure 10: Box-plots of NLL and RMSE losses aggregated over 5
distinct runs. The box-plots are grouped according to experiments
(the first four plots, in blue, are results for the sinusoidal functions,
the next four plots, in orange, are results for the polynomial func-
tions, and the final four plots, in green, are result for the slope func-
tions.

Quantitative: Out-of-Distribution Figure 11 shows ex-
periment results for different but similar functions to those
seen during training (sinusoidal functions with different am-
plitudes and periods - the exact parameters are specified in
Appendix A). ScreenerNet has worse performance than the
baseline for most of the experiments, while Active Bias and
the combined approach have similar or slightly better losses.
Figure 12 depicts the NLL and RMSE losses for 4 categories
of experiments, where the same type of sinusoidal function
is inputted to the following transformations: large noise vol-
umes, vertical shift, masking, and larger domain than in the
training set. The first observation is that the baseline achieves
the best results in most of the experiments. The second ob-
servation is that, for some of the experiments, Active Bias
and the combined method have outliers with extremely large
losses. Claim 2 is thus neither accepted nor rejected,
as NP+AB achieves mixed generalisation results when com-
pared to the baseline. The third observation is that the com-
bined method achieves slightly lower NLL and RMSE losses
for the generalisation experiments, but this result is off-set by

7

the presence of high-loss outliers. Therefore, the third claim
is neither accepted nor rejected. Finally, by analysing both
ID and OOD experiments, we can observe that the combined
approach has lower loss variance than Active Bias in nearly
all experiments, thus confirming Claim 4.

Figure 11: Box-plots of NLL losses aggregated over 5 distinct runs.
The box-plots are grouped according to the 5 different experiments
on function types which are similar to those on which the training
was performed.

Figure 12: Box-plots of NLL and RMSE losses aggregated over 5
distinct runs. The box-plots are grouped according to 4 experiment
types, corresponding to the following function types (highly noisy,
vertically shifted, masked and wider domain of definition.

5 Conclusions and Future Work
The purpose of this research has been to investigate the

extent to which two Curriculum Strategies can improve the
efficiency, robustness and generalisation of training Meta-
Learning system. The chosen strategies were ScreenerNet
(Kim and Choi, 2018) and Active Bias (Chang et al., 2017),
and they were assessed in the context of training Neural Pro-
cesses (Garnelo et al., 2018) for 1-D function regression.

ScreenerNet is a model-based approach to automatic cur-
riculum detection. Our hypothesis was that it would in-
crease accuracy on data-sets with the same distribution as the
training set, and that it would accelerate convergence. The
findings confirmed this hypothesis, although the improve-
ments are limited. However, ScreenerNet appears to decrease
the accuracy on out-of-distribution tasks, presenting signs of
overfitting. This can be partially attributed to an inherent
trade-off between architecture complexity and training effi-
ciency: increasing the complexity of ScreenerNet’s architec-
ture can also improve the accuracy of the weights it assigns,
but requires more training epochs.

Active Bias, a statistics-based approach to automatic cur-
riculum detection, was hypothesized to improve noise robust-
ness and generalization. Results showed mixed accuracy im-
provements for out-of-distribution tasks, with no consistent
pattern being identified. We were unable to either accept or
reject the noise robustness hypothesis, as the model failed to
evolve past the initial state after 200 epochs in 3 out of the 5
training runs under a noisy training set configuration. Future
research could investigate the training behaviour with differ-
ent degrees of noise, and whether a trade-off between noise
robustness and training efficiency is necessary when applying
Active Bias.

Finally, we analysed the combined effects on training of
ScreenerNet and Active Bias. The combined approach par-
tially mitigates ScreenerNet’s tendency to overfit on the dif-
ficult tasks, achieving better results on out-of-distribution
tasks, and partially mitigates Active Bias’ susceptibility to
noise, by achieving more consistent behaviour when trained
on noisy data. Although the current implementation of this
approach did not show reliable or consistent improvements
to the baseline performance, in the future an ablation study
could investigate different ways in which the two strategies
can be applied at the same time in order to mutually mitigate
some of their shortcomings and amplify their benefits.

8

6 Responsible Research
A very important part of conducting research is reflect-

ing on its potential impact and actively using the result of
these reflections to shape and drive the research. This section
will schematically describe the research process under three
perspectives: Integrity, Reproducibility and Ethics. Repro-
ducibility will be presented with regard to the FAIR princi-
ples of data-management: Findable, Accessible, Interopera-
ble, and Reusable (Wilkinson et al., 2016).

Findable This principle states that data and meta-data
should be assigned unique and persistent identifiers. In our
case, data-sets are not persisted, but generated at every run.
However, we provide the implementation of the data gen-
eration procedure, and clearly state which hyper-parameters
were used to generate each training and testing data-set.
Moreover, for each training run, we store the final parame-
ters in log-files which are clearly named (containing method
name, training set-up and the run identifier).

Accessible This principle states that the authentication and
authorisation processes for retrieving data should be clear. In
our case, the research is openly accessible at repo-link.

Interoperable This principle states that the data should be
compatible with broadly-used languages for knowledge rep-
resentation. In our case, data is persisted using Pickle, a
Python object serialisation module 1. Although the data-sets
are not persisted, the loss and model parameters are JAX and
Flax objects, respectively.

Reusable The data-sets are reusable because the data-set
generation procedure is implemented at https://github.com/
maria-mihai/screenernet-activebias. Furthermore, the exper-
iments are reusable because we store the final optimal param-
eters for each variant and each of the 5 runs.

Integrity While researchers may have some bias towards
their proposed solutions, it is crucial that this does not affect
the objectivity of their findings. The analysis presented here
does not include corrupted or altered results. Comparisons
between different variants were conducted under the same
conditions, thoroughly described in the report. Additionally,
experiments were repeated with multiple random seeds to
minimize the influence of random initialization. However,
the research context imposed some limitations. Due to time
constraints, each model was run only five times; ideally, this
number would be higher. Limited time and computational
resources also restricted the optimization of model hyperpa-
rameters. More extensive experimentation with different ar-
chitectures, loss functions, and burn-in epochs would likely
impact the final results, but this was not feasible within the
project’s timeline.

Ethical considerations At a low-level, the current body of
research does not propose a new technique, but rather adapt
existing optimization strategies to augment an already exist-
ing model. Therefore, one could claim that it does not intro-
duce a new system which could have direct impact on the ex-
ternal world. A more indirect consideration, however, is that

1https://docs.python.org/3/library/pickle.html

this research constitutes a contribution to the field of meta-
learning. This is worth reflecting on because meta-learning
enables foundation models. As presented by Bommasani et
al, foundation models are defined by two properties: emer-
gence - they derive the ability to satisfactorily solve tasks for
which they were not explicitly trained; and homogenization -
they can be applied in a wide range of scenarios, which lever-
ages previously inaccessible tasks, but also leads to single
points of failure (Bommasani et al., 2022). We acknowledge
that emergence and homogenization were indirect goals of
this current research, and recognise the necessity of research
into AI safety principles.

9

repo-link
https://github.com/maria-mihai/screenernet-activebias
https://github.com/maria-mihai/screenernet-activebias
https://docs.python.org/3/library/pickle.html

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

(2009). Curriculum learning. In Proceedings of the
26th annual international conference on machine learning,
pages 41–48.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora,
S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A.,
Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castel-
lon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q.,
Demszky, D., Donahue, C., ..., and Liang, P. (2022). On
the opportunities and risks of foundation models.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. (2018). JAX: com-
posable transformations of Python+NumPy programs.

Chang, H.-S., Learned-Miller, E., and McCallum, A. (2017).
Active bias: Training more accurate neural networks by
emphasizing high variance samples. Advances in Neural
Information Processing Systems, 30.

Cook, J. D. (2014). Accurately computing running variance.
https://www.johndcook.com/blog/standard deviation/. Ac-
cessed: 2024-06-03.

Delft High Performance Computing Centre (DHPC) (2024).
DelftBlue Supercomputer (Phase 2). https://www.tudelft.
nl/dhpc/ark:/44463/DelftBluePhase2.

Dubois, Y., Gordon, J., and Foong, A. Y. (2020).
Neural process family. http://yanndubs.github.io/
Neural-Process-Family/.

Elman, J. L. (1993). Learning and development in neural
networks: The importance of starting small. Cognition,
48(1):71–99.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational conference on machine learning, pages 1126–
1135. PMLR.

Garnelo, M. (2018). Meta-learning and neural processes. Pre-
sentation held as part of the DeepMind ELLIS UCL CSML
Seminar Series.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende,
D. J., Eslami, S., and Teh, Y. W. (2018). Neural processes.
arXiv preprint arXiv:1807.01622.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and
Kavukcuoglu, K. (2017). Automated curriculum learning
for neural networks. In international conference on ma-
chine learning, pages 1311–1320. Pmlr.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A.
(2021). Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence,
44(9):5149–5169.

Jiang, L., Meng, D., Zhao, Q., Shan, S., and Hauptmann, A.
(2015). Self-paced curriculum learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 29.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L.
(2018). Mentornet: Learning data-driven curriculum for

very deep neural networks on corrupted labels. In Interna-
tional conference on machine learning, pages 2304–2313.
PMLR.

Killamsetty, K., Li, C., Zhao, C., Chen, F., and Iyer, R.
(2022). A nested bi-level optimization framework for ro-
bust few shot learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 7176–
7184.

Kim, T.-H. and Choi, J. (2018). Screenernet: Learning self-
paced curriculum for deep neural networks. arXiv preprint
arXiv:1801.00904.

Kumar, M., Packer, B., and Koller, D. (2010). Self-paced
learning for latent variable models. Advances in neural
information processing systems, 23.

Lee, Y. J. and Grauman, K. (2011). Learning the easy things
first: Self-paced visual category discovery. In CVPR 2011,
pages 1721–1728. IEEE.

Liang, K. J., Rangrej, S. B., Petrovic, V., and Hassner, T.
(2022). Few-shot learning with noisy labels. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9089–9098.

Lu, J., Jin, S., Liang, J., and Zhang, C. (2020). Robust few-
shot learning for user-provided data. IEEE transactions on
neural networks and learning systems, 32(4):1433–1447.

Marcus, G. (2018). Deep learning: A critical appraisal. arXiv
preprint arXiv:1801.00631.

Mazumder, P., Singh, P., and Namboodiri, V. P. (2021). Rnnp:
A robust few-shot learning approach. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 2664–2673.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. (2017). Automatic differentiation in pytorch. In NIPS-
W.

Que, X. and Yu, Q. (2024). Dual-level curriculum meta-
learning for noisy few-shot learning tasks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 14740–14748.

Setlur, A., Li, O., and Smith, V. (2021). Two sides of meta-
learning evaluation: In vs. out of distribution. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W., editors, Advances in Neural Information Processing
Systems, volume 34, pages 3770–3783. Curran Associates,
Inc.

Shrivastava, A., Gupta, A., and Girshick, R. (2016). Train-
ing region-based object detectors with online hard example
mining. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 761–769.

Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. (2022).
Curriculum learning: A survey. International Journal of
Computer Vision, 130(6):1526–1565.

Tang, Y.-P. and Huang, S.-J. (2019). Self-paced active learn-
ing: Query the right thing at the right time. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 33, pages 5117–5124.

10

https://www.johndcook.com/blog/standard_deviation/
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
http://yanndubs.github.io/Neural-Process-Family/
http://yanndubs.github.io/Neural-Process-Family/

Vanschoren, J. (2018). Meta-learning: A survey. arXiv
preprint arXiv:1810.03548.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
(2016). Matching networks for one shot learning. Ad-
vances in neural information processing systems, 29.

Wang, X., Chen, Y., and Zhu, W. (2021). A survey on cur-
riculum learning. IEEE transactions on pattern analysis
and machine intelligence, 44(9):4555–4576.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Apple-
ton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W.,
da Silva Santos, L. B., Bourne, P. E., et al. (2016). The
fair guiding principles for scientific data management and
stewardship. Scientific data, 3(1):1–9.

Williams, C. and Rasmussen, C. (1995). Gaussian processes
for regression. Advances in neural information processing
systems, 8.

11

A Training and Evaluation Set-ups

Table 1: Training and Evaluation set-up 1 (Figure 8, Figure 10)

Experiment
number Function type Noise level

1 sinus, amplitude=0.5, period=2.0 0.01
2 polynomial, second degree 0.01
3 slope 0.01

Table 2: Training set-up 2 (Figure 9)

Experiment
number Function type Noise level

1 sinus, amplitude=0.5, period=2.0 0.0
2 sinus, amplitude=0.5, period=2.0 0.1
3 sinus, amplitude=0.5, period=2.0 0.2

Table 3: Evaluation table used in Figure 11

Experiment
number Function type Noise level

1 sinus, amplitude=1.0, period=2.0 0.15
2 sinus, amplitude=0.75, period=1.0 0.05
3 sinus, amplitude=0.5, period=1.2 0.25
4 sinus, amplitude=1.0, period=0.75 0.05

5 sinus, amplitude=1.0, period=0.75,
vertically shifted by 1.0 0.0

Table 4: Evaluation set-up used in Figure 12

Experiment
number Function type Noise level

1 sinus, amplitude=1.0, period=0.75 0.45
2 sinus, amplitude=1.0, period=0.75, shifted by 3.0 0.1
3 sinus, amplitude=1.0, period=0.75, masked 0.1
4 sinus, amplitude=1.0, period=0.75, domain=(-3, 3) 0.1

12

B Hyperparameters

Hyper-parameter Value Comments

Batch size 128
Context set size 64
Target set size 32
Number of epochs 150
Dataset size 12800

ScreenerNet burn-in epochs 15 Number of epochs for which ScreenerNet was trained
without its output being applied in training NP.

Active Bias burn-in epochs 75 Number of epochs for which Active Bias was trained
without its output being applied in training NP.

M 1.5 ScreenerNet clipping constant
Evaluation set size 1280
Evaluation context set size 512
Evaluation target set size 256

13

	Introduction
	Background & Related Work
	Meta-Learning & Neural Processes
	Curriculum Learning
	ScreenerNet
	Active Bias

	Approach
	ScreenerNet
	Active Bias
	Combined approach

	Experimental Setup and Results
	Dataset description
	Setup
	Metrics
	Results

	Conclusions and Future Work
	Responsible Research
	Training and Evaluation Set-ups
	Hyperparameters

