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A large deviation principle for the multispecies stirring
process*
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Abstract

In this paper we consider the multispecies stirring process on the discrete torus. We
prove a large deviation principle for the trajectory of the vector of densities of the
different species. The technique of proof consists in extending the method of the
foundational paper [15] based on the superexponential estimate to the multispecies
setting. This requires a careful choice of the corresponding weakly asymmetric
dynamics, which is parametrized by fields depending on the various species. We also
prove the hydrodynamic limit of this weakly asymmetric dynamics, which is similar
to the ABC model in [12, 2]. Using the appropriate asymmetric dynamics, we also
obtain that the mobility matrix relating the drift currents to the fields coincides with
the covariance matrix of the reversible multinomial distribution, which then further
leads to the Einstein relation.
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1 Introduction

1.1 Motivations

Interacting particle systems [23, 16] are used to study how macroscopic equations
emerge from microscopic stochastic dynamics, as well as in the study of driven non-
equilibrium systems and their non-equilibrium steady states. Among these, a well-studied
process is the so-called Symmetric Simple Exclusion Process (SSEP), where particle
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A large deviation principle for the multispecies stirring process

interactions are governed by an exclusion constraint that permits at most one particle
per site. This model (and various modifications of it) has been extensively studied
in the literature, both in the study of scaling limits [14, 7, 22, 24] as well as in the
understanding of microscopic properties of non-equilibrium steady states [21, 11]. The
study of large deviations of the trajectory of the empirical density field for the SSEP was
initiated in [15] (see also [13] where the gradient method was introduced in the context
of Ginzburg-Landau models). The method developed there, valid for so-called gradient
systems is based on the superexponential estimate, which allows to replace empirical
averages of local functions by functions of the density field. This implies that one can
prove with the same method at the same time the hydrodynamic limit of the weakly
asymmetric exclusion process as well as the large deviations from the hydrodynamic
limit for the SSEP.

The study of systems with multiple conserved quantities and their hydrodynamic limits
has gained substantial interest in recent times, see e.g., [2, 4, 12, 19] and references
therein (see also e.g. [18] for an earlier reference). In particular, these results constitute
rigorous versions of fluctuating hydrodynamics or mode coupling theory, see e.g., [24,
25, 26]. Another motivation for multispecies (and also connected multi-layer) models
and their scaling limits is the phenomenon of uphill diffusion [5, 9] and systems of active
particles.

The process we study in our paper is the multispecies analogue of the SSEP, known
as the multispecies stirring process [30, 28, 3], on the geometry of the torus. In this
process, at every site there is at most one particle, which can be of type α ∈ {1, . . . , n}.
The absence of a particle is called a particle of type zero. To each nearest neighbor
edge is associated a Poisson clock of rate 1, different Poisson clocks being independent.
When the clock of an edge rings, the occupancies of that edge are exchanged. An
exchange between a particle of type α ∈ {1, . . . , n} at site x and an empty site at site
x + 1 is of course the same as a jump of the particle from x to x + 1. It is well-known
that the hydrodynamic limit for the densities of the n types of particles is a system of
uncoupled heat equations, and in [4] it is also proved that the fluctuations around this
hydrodynamic limit is an infinite dimensional Ornstein-Uhlenbeck process. Other results
on the multispecies stirring process include duality, and exact formulas for the moments
in the non-equilibrium steady state of a boundary driven version using duality combined
with integrability (both can be found in [3]).

To our knowledge, no explicit formula exists for the large deviation rate function for
the density profile in the non-equilibrium steady state, as is the case e.g. for the SSEP,
see [8]. In the setting of the macroscopic fluctuation theory, the rate function in the
non-equilibrium steady state is strongly related to the rate function for the trajectory of
the empirical density profile, i.e., the large deviations around the hydrodynamic limit.
Therefore, in order to make progress in the understanding of non-equilibrium large
deviations in multispecies models, it is natural to study the large deviations around the
hydrodynamic limit for the multispecies stirring process. To the best of our knowledge,
no rigorous results have been established in the context of dynamic large deviations for
the multispecies stirring process.

In this paper we implement the method of [15] for gradient systems, based on
the superexponential estimate, (see also [14] chapter 10) in our multispecies setting.
The study of the large deviation principle for the multispecies stirring process relies
on the introduction of a well-chosen weakly asymmetric process, where the rates are
deformed by an exponential tilting, i.e., by introducing weak and slowly varying (in space)
external fields that introduce a drift on the particles of various types. To understand
the probability of deviating trajectories for the densities, one has to choose these fields
governing the asymmetry in such a way that in the modified dynamics the deviating
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trajectory becomes typical. The large deviation rate function is then roughly the relative
entropy of the modified dynamics w.r.t. original dynamics which can be computed with
the Girsanov formula. In particular, exactly as is done in [15] for the single species
case, we also prove as byproduct the hydrodynamic limit of this weakly asymmetric
multispecies process, which is a system of nonlinear coupled parabolic equations, closely
related to the ABC model [12]. In this limiting partial differential equation (PDE), in
addition to diffusion, a drift term is introduced into the currents, which makes this system
appealing for describing multi-component diffusion processes in applications [20, 6]. The
relation between the drift currents and the fields is via the symmetric Onsager matrix,
which coincides with the covariance matrix of the multinomial reversible measures.

As a perspective towards further research, this work could serve as a starting point for
various questions. These include exploring the extension of large deviation principles and
hydrodynamic limits to boundary-driven systems in the multispecies setup, as previously
done for the single species case [10]. Additionally one can investigate the density
field fluctuations in the weakly asymmetric multispecies stirring process, analogous to
what has been done for the ABC model in the context of the Kardar-Parisi-Zhang (KPZ)
universality class [2]. Moreover, it would be of interest to apply these techniques to
multi-layer systems [19], where the geometry consists of two layers with SEP dynamics
occurring within each layer, coupled with particle exchange between the layers.

1.2 Organization of the paper and main results

Starting from the literature, in Section 2 we first recall the definition of the multi-
species stirring process, on the geometry of a torus, reporting also its reversible measure.
Then, in Section 2.2 we define a weakly asymmetric version of the multispecies stirring
process where the transition rates are perturbed by a family of potentials, indexed by
the species involved in the transition and dependent on space and time.

Finally, in Section 2.3 we state the so-called superexponential estimate. This estimate
turns out to be a useful tool in the proof of the hydrodynamic limit of the weakly
asymmetric model and in the proof of the large deviation principle as well. The proof
of this estimate goes beyond the main scope of this paper, therefore we report it in
Appendix A.

In Section 3 we state the hydrodynamic limit of the weakly asymmetric model. We
postpone the proof to Section 5 since it can be shown by standard methods. Then, in
Section 3.1, we make a specific choice of potentials needed for the proof of the large
deviation principle. This choice is further motivated by Einstein relations between
diffusion, mobility and compressibility matrices.

In Section 4, we proceed to state and prove the large deviation principle. With both
the original model and the weakly asymmetric model established, we first obtain the
Radon-Nikodym derivative of their respective path-space measures in Section 4.1. This
can be computed using the Girsanov formula and will be equal to exponential martingale
associated with the original model. For the upper bound, we first establish the exponen-
tial tightness of the path-space measures in Section 4.2 (which reduces the proof to ver-
ifying the upper bound for compact sets instead of closed sets). The upper bound is then
derived in Section 4.3 using the martingale property of the Radon-Nikodym derivative.

For the lower bound, which we prove in Section 4.4, we demonstrate the relationship
between the large deviation rate function and the hydrodynamic limit of the weakly
asymmetric model. Specifically, for every deviating path, we show the existence of a
potential such that this path becomes typical under the weakly asymmetric dynamics.
This leads to a new formulation of the large deviation rate functional, expressed as the
norm of this potential in an appropriate Sobolev space. Finally, using this relationship,
we are able to demonstrate the lower bound.

EJP 30 (2025), paper 152.
Page 3/36

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1417
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A large deviation principle for the multispecies stirring process

2 The multispecies stirring process

In this section, we describe the multispecies stirring process. We first examine the
symmetric case, then we define a weakly asymmetric version in which the transition
rates are “deformed” through a potential.

In both cases, we consider the geometry of a one-dimensional torus with N sites,
denoted by TN = Z/NZ. Additionally, for simplicity, we consider the scenario with two
types of particles, in addition to vacancies, also-called holes (the general case of n types
of particles will be considered in Remarks 3.4 and 4.16). The occupation variable is
denoted by η = (ηxα)α∈{0,1,2} ,x∈TN

, where ηxα ∈ {0, 1} represents the presence or absence
of a particle of type α at site x. For any t ≥ 0, the configuration of the process at time t
is denoted by η(t).

As a convention, we use the labels α = 1, 2 to distinguish particles of species 1 and 2,
and we use the label α = 0 to denote the holes. The term “holes” is motivated by the fact
that its occupation variable is determined once we know the occupation variable of the
species of particles 1 and 2, due to the so-called “exclusion constraint”

ηx0 = 1− ηx1 − ηx2 ∀x ∈ TN . (2.1)

Therefore, the configuration space reads

ΩN =
⊗
x∈TN

Ωx where Ωx =

{
ηx = (ηx0 , η

x
1 , η

x
2 ) :

2∑
α=0

ηxα = 1

}
. (2.2)

In the literature, the multispecies stirring process has also been considered with
maximal occupancy per site higher than 1 (see [30, 3]), and also the boundary driven
case has been considered (see [28, 3]).

In this paper, on the same geometry and configuration space, we introduce two types
of dynamics: the symmetric and the weakly asymmetric ones. In the symmetric dynamics,
each transition occurs at the same rate to both the left and the right. In contrast, the
weakly asymmetric dynamics introduces a weak asymmetry in the rates, resulting in a
“drift” in the particles’ jumps.

2.1 The symmetric case

In the symmetric case, the dynamics consists in swapping occupancies of nearest
neighbor sites according to independent rate 1 Poisson processes. More precisely,
considering any bond (x, x+ 1), any particle or hole present at site x is exchanged with
any particle or hole present at site x + 1. For any α, β ∈ {0, 1, 2} such that ηxαη

x+1
β = 1

we now define the configuration ηx,x+1
α,β obtained by swapping the occupancies at x and

x+ 1 via
ηx,x+1
α,β = η − δxα + δxβ − δx+1

β + δx+1
α

where ±δxα indicates that a particle or vacancy of type α is added or removed at site x. If
ηxαη

x+1
β 6= 1 then we make the convention that ηx,x+1

α,β = η. The infinitesimal generator of
this process is then given by a superposition of local operators as

L =

N∑
x=1

Lx,x+1 where LN,N+1 = LN,1 (2.3)

where, for every function f : ΩN → R

Lx,x+1f(η) =

2∑
α,β=0

ηxαη
x+1
β

(
f(ηx,x+1

α,β )− f(η)
)
. (2.4)
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This process has reversible product measures with multinomial marginals:

νpN =

N⊗
x=1

νpN,x νpN,x ∼ Multinomial(1, p1, p2) . (2.5)

Here p = (p1, p2) where p1 and p2 are the probabilities of having a particle of type 1

respectively 2 at any given site. Furthermore, under the measure νpN , the probability
to have no particle at any site x ∈ TN is equal to p0 := 1 − p1 − p2. Reversibility of
the measures νpN follows from the detailed balance condition. In the following, it will

be useful to denote by ν
1/3
N the reversible measure with multinomial densities given by

p1 = p2 = 1
3 .

We denote by T = [0, 1] the one-dimensional torus. For γ(·) = (γ1(·), γ2(·)), where
γα : T → [0, 1] for α ∈ {1, 2} are smooth functions such that γ1(u) + γ2(u) ≤ 1 for all
u ∈ T, we introduce the local equilibrium product measures associated to γ:

ν
γ(·)
N :=

N⊗
x=1

ν
γ(·)
N,x , (2.6)

where the marginals over each site are multinomial and given by

ν
γ(·)
N,x ({η : ηxα = 1}) =

{
γα
(

x
N

)
if α ∈ {1, 2},

1− γ1
(

x
N

)
− γ2

(
x
N

)
if α = 0.

(2.7)

2.2 The weakly asymmetric stirring process

We introduce a weakly asymmetric version of the multispecies stirring process, which
will play a crucial role in the study of large deviations. We parametrize the weak
asymmetry by three smooth functions H = (H01,H02,H12). Moreover, we define for
α < β and fixed T > 0

Hβα(u, t) := −Hαβ(u, t) ∀u ∈ T, ∀t ∈ [0, T ] . (2.8)

The reason for this antisymmetric choice (2.8) will be clarified later. The time-dependent
generator of the weakly asymmetric multispecies stirring process parametrized by H is
then given by

LH(t) =

N∑
x=1

LH
x,x+1(t) such that LH

N,N+1(t) = LH
N,1(t) (2.9)

where the local operators are defined as

(
LH
x,x+1(t)f

)
(η) =

2∑
α,β=0

cH,αβ
(x,x+1)(t)

(
f(ηx,x+1

α,β )− f(η)
)
, (2.10)

and where

cH,αβ
(x,x+1)(t) = exp

(
∇NHαβ(

x
N , t)

)
ηxαη

x+1
β . (2.11)

Here ∇N denotes the discrete gradient, i.e.,

∇NHαβ(
x
N , t) = Hαβ(

x+1
N , t)−Hαβ(

x
N , t). (2.12)

Later on we will omit the explicit dependence on t in (2.10) for notational simplicity.
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Remark 2.1. In this remark we explain the choice imposed by (2.8). In general, the
weakly asymmetric rate of exchanging a particle of type α at x and a particle of type β

at y with x ∼ y nearest neighbors, determined by the potential Hαβ , is given by

exp
(
Hαβ(

y
N , t)−Hαβ(

x
N , t)

)
ηxαη

y
β (2.13)

However, exchanging occupancy of type α at site x with type β at site y via the potential
Hαβ has to be identical with exchanging occupancy of type β at site y with type α at site
x via the potential Hβα. Therefore, the following has to hold

exp
(
Hαβ(

y
N , t)−Hαβ(

x
N , t)

)
ηxαη

y
β = exp

(
Hβα(

x
N , t)−Hβα(

y
N , t)

)
ηyβη

x
α. (2.14)

This is satisfied if and only if Hαβ = −Hβα.

We introduce some further notation. For all T > 0, we consider the Skorokhod space
D ([0, T ],Ω), which consists of the càdlàg trajectories taking values in Ω. On this space,
we define the following path space measures:

• P1/3
N : path space measure of the symmetric process with generator (2.3), initialized

with the distribution ν
1/3
N .

• Pγ
N : path space measure of the symmetric process with generator (2.3), initialized

with the distribution ν
γ(·)
N .

• Pγ,H
N : path space measure of the weakly asymmetric process with generator (2.9),

initialized with the distribution ν
γ(·)
N .

For each species α ∈ {1, 2} we introduce the corresponding empirical density field

µα,N (η(N2s)) :=
1

N

N∑
x=1

ηxα(N
2s)δ x

N
, (2.15)

Remark 2.2. For the sake of notational simplicity, sometimes we will abbreviate the
empirical density µα,N (η(N2s)) by µα,N (s).

This density field µα,N (s) takes values in D ([0, T ],M1), where M1 denotes the space
of measures over Ω with total mass bounded by 1, i.e., sup||f ||≤1〈µα,N (s), f〉 ≤ 1. Addi-
tionally, we define the vector of density fields

µN (s) =

(
µ1,N (s)

µ2,N (s)

)
(2.16)

taking values in the space D ([0, T ],M1 ×M1). We consider two functions G1, G2 ∈
C2,1(T× [0, T ]) and we list them in a vector denoted by

G(u, s) :=

(
G1(u, s)

G2(u, s)

)
. (2.17)

Then, we denote the pairing

〈µN (s),G(·, s)〉 =
∫
T

G1(u, s)µ1,N (du, s) +

∫
T

G2(u, s)µ2,N (du, s) . (2.18)

2.3 Superexponential estimate

In this section we state the so-called superexponential estimate. This is a crucial tool
initially introduced in [13], [15], which allows to replace macroscopic averages of local
observables by an appropriate function of the local density. This is crucial both in the
derivation of the hydrodynamic limit of the weakly asymmetric model as well as in the
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large deviations of the symmetric model. In the latter it becomes important that the
replacement is superexponentially good, i.e., can still be performed e.g. in exponential
martingales containing local averages. This replacement is carried out within a space
interval constructed around a microscopic point. Eventually, the size of this interval
shrinks as the system size increases.

We consider a local function φ defined on ΩN for every large enough N , meaning that
φ only depends on a fixed number of sites. For example, in the main part of this paper
we only consider functions of the type φ(η) = ηxαη

x+1
β for α, β ∈ {0, 1, 2} and x ∈ TN .

Furthermore, we define

φ̃(p) := Eνp
N
[φ] . (2.19)

namely the expectation with respect to the multinomial product measure νpN with con-
stant parameters p = (p1, p2).

Next, we introduce a function that will play a key role in the superexponential
estimate. This function relates to the behavior of occupation variables in a small
neighborhood around a microscopic point and it reads

VN,ε(η) =

N∑
x=1

∣∣∣∣∣∣ 1

2εN + 1

∑
|x−y|≤Nε

τyφ(η)− φ̃

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1 ,
1

2Nε+ 1

∑
|x−y|≤εN

ηy2

∣∣∣∣∣∣ ,
(2.20)

where τy is the shift operator, shifting the configuration η by y sites to the right, i.e.,
(τyη)

x = ηx+y for all x ∈ TN . The superexponential estimate is then the following result.

Theorem 2.3. For any δ > 0, for all T > 0 and φ : ΩN → R

lim
ε→0

lim
N→∞

1

N
log P

1/3
N

(
1

N

∫ T

0

VN,ε(η(s))ds ≥ δ

)
= −∞. (2.21)

Since the proof of this Theorem is rather long and involved, and it is not the main
result of this paper, we postpone it to appendix A.

In the following corollary we show that the superexponential estimate also holds
when we start from a local equilibrium distribution.

Corollary 2.4. Given a profile γ = (γ1, γ2), (2.21) holds also for the path space measure
P

γ
N .

Proof. the proof follows from Theorem 2.3 and from the following upper bound for all
sets A ⊂ D([0, T ]; ΩN )

P
γ
N (A) =

∑
η∈ΩN

dνγN

dν
1/3
N

(η)Pη
N (A)ν

1/3
N (η) ≤ 3NP

1/3
N (A), (2.22)

where we used that

dνγN

dν
1/3
N

(η) =
∏

x∈TN

(
γ1
1
3

)η1(x)(γ2
1
3

)η2(x)(1− γ1 − γ2
1
3

)η0(x)

≤ 3N . (2.23)

3 Hydrodynamic limit of the weakly asymmetric model

In this section we state the hydrodynamic limit of the weakly asymmetric version of
the multispecies stirring model with generator (2.9).

EJP 30 (2025), paper 152.
Page 7/36

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1417
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A large deviation principle for the multispecies stirring process

Remark 3.1. Sometimes, in this section and in the following one, in order to alleviate
the notation, we do not explicitly write the space and time dependence of the densi-
ties. Namely, when this dependence is understood we only write ρ, ρ1, ρ2 in place of
ρ(u, t), ρ1(u, t), ρ2(u, t). The same convention is used for the potentials Hα,β(u, t).

Theorem 3.2. As N tends to infinity, the density fields for the species α = 1, 2 converge
in probability Pγ,H

N to the unique weak solution (ρ1(t, u), ρ2(t, u)) of the following system
of hydrodynamic equations

∂tρ1 = ∆ρ1 − 2∇ (ρ1(1− ρ1 − ρ2)∇H10)− 2∇ (ρ1ρ2∇H12) ,

∂tρ2 = ∆ρ2 − 2∇ (ρ2(1− ρ1 − ρ2)∇H20) + 2∇ (ρ1ρ2∇H12) , (3.1)

with initial conditions

ρ1(0, u) = γ1(u), ρ2(0, u) = γ2(u). (3.2)

Proof. The well-posedness of the PDE in (3.1) follows from the well-posedness of quasi-
linear parabolic equations as in Chapter 7 of [27]. For the rest of the proof we refer to
Section 5.

In particular in the case where every Hαβ = 0, we recover the uncoupled heat
equations

∂tρ1 = ∆ρ1, (3.3)

∂tρ2 = ∆ρ2. (3.4)

which in matrix form reads

∂t

(
ρ1
ρ2

)
= D(ρ1, ρ2)

(
∆ρ1
∆ρ2

)
, (3.5)

where

D(ρ1, ρ2) =

(
1 0

0 1

)
(3.6)

is the diffusion matrix.

3.1 Potentials for large deviations

In order to prove the large deviations for the trajectory of the empirical densities, we
need appropriate perturbations of the dynamics which make these deviating trajectories
typical. As will become clear in section 4, these perturbations correspond to the weakly
asymmetric stirring process, with potentials which we denote by

H1(u, t) := H10(u, t), H2(u, t) := H20(u, t) ∀u ∈ T and t ∈ [0, T ] , (3.7)

and where moreover, the potential H12 satisfies

H12(u, t) = H1(u, t)−H2(u, t) ∀u ∈ T and t ∈ [0, T ]. (3.8)

Therefore, the resulting hydrodynamic equations read

∂tρ1 = ∆ρ1 − 2∇ (ρ1(1− ρ1)∇H1) + 2∇ (ρ1ρ2∇H2) ,

∂tρ2 = ∆ρ2 − 2∇ (ρ2(1− ρ2)∇H2) + 2∇ (ρ1ρ2∇H1) . (3.9)

The intuitive interpretation of this choice of potentials is the following. Particles of
type 1 and 2 are driven across the holes (particles of type 0) by the force depending
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on the potential H1 and H2 (namely the external fields are given by the gradient of the
potentials) respectively. When two particles of type 1 and 2 are adjacent, a competition
between the fields generated by the potentials H1 and H2 sets in. As a result, the net
field acting on each species is given by ±∇(H1 −H2) respectively. Moreover, as we will
point out later, this choice of the fields allows the system to satisfy the Einstein relation
connecting diffusion, mobility and compressibility matrices.

3.2 Currents and the Einstein relation

Macroscopic currents The hydrodynamic equations (3.9) can be interpreted as con-
servation laws. To illustrate this, we compute the macroscopic currents for each species.
These currents represent the net flux crossing an infinitesimal volume surrounding a
point u ∈ T at any time t ∈ [0, T ]. We identify two types of currents:

1. Fick’s currents: These currents are proportional to minus the density gradients via
the diffusion matrix as given in (3.6). The currents are expressed as(

JF
1

JF
2

)
= −D(ρ1, ρ2)

(
∇ρ1
∇ρ2

)
. (3.10)

Generally, the diffusivity matrix (3.6) may depend on the densities, but in this case,
it simplifies to the identity matrix.

2. Drift currents: these currents are defined as the product of (twice)1 the mobility
matrix

χ(ρ1, ρ2) =

(
ρ1(1− ρ1) −ρ1ρ2
−ρ1ρ2 ρ2(1− ρ2)

)
(3.11)

and the external field, which is the gradient of the potential (H1,H2). Specifically,
these currents are given by(

JD
1

JD
2

)
= 2χ(ρ1, ρ2)

(
∇H1

∇H2

)
. (3.12)

It is important to note that the mobility matrix (3.11) is symmetric and corresponds
to the covariance matrix of the multinomial distribution with parameters ρ1, ρ2.
This matrix also appears in the study of fluctuations as proved in [4].

We now compute the total currents, which are given by the sum of Fick’s and of the
drift currents for each species. Namely they read(

J1
J2

)
=

(
JF
1

JF
2

)
+

(
JD
1

JD
2

)
. (3.13)

Therefore, equation (3.9) can be obtained by substituting the total currents (3.13) in the
continuity equations of the densities, i.e.

∂tρ1 = −∇J1,

∂tρ2 = −∇J2 . (3.14)

Einstein’s relation We introduce the free energy functional F , that is defined as the
large deviation functional of a multinomial random variable with number of trials equal
to 1 and probabilities all equal to 1/3. Namely, we have that

F (ρ1, ρ2) = ρ1 log(ρ1) + ρ2 log(ρ2) + (1− ρ1 − ρ2) log(1− ρ1 − ρ2) + log(3) . (3.15)

1The factor 2 in front is due to the fact that in the generator (2.3) both jumps, to the left and to the right,
have rate 1, instead of 1/2.
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We compute the Hessian matrix of F (ρ1, ρ2), sometimes called the inverse of the com-
pressibility matrix, obtaining

F
′′
(ρ1, ρ2) =

(
1
ρ1

+ 1
1−ρ1−ρ2

1
1−ρ1−ρ2

1
1−ρ1−ρ2

1
ρ2

+ 1
1−ρ1−ρ2

)
. (3.16)

Then we see that by combining (3.6), (3.11) and (3.16), the following relation holds.

D(ρ1, ρ2) = F
′′
(ρ1, ρ2)χ(ρ1, ρ2) . (3.17)

This equality is called the Einstein relation (see [1, 24] for details). Notice that we used
the specific form of the potentials described in (3.7) and (3.8) to obtain the Einstein
relation (3.17), which provides another physical motivation for these conditions.

Remark 3.3. We can recover the hydrodynamic limit of the single species weakly
asymmetric exclusion process from equation (3.9) as given in [15, Theorem 3.1]. Namely,
if we choose the same potential H1 = H2 = H, then we obtain the following.

∂tρ1 = ∆ρ1 − 2∇ (ρ1(1− ρ1 − ρ2)∇H) ,

∂tρ2 = ∆ρ2 − 2∇ (ρ2(1− ρ1 − ρ2)∇H) . (3.18)

By now defining % := ρ1 + ρ2, i.e., % does not distinguish between particles of type 1 and
type 2, then % satisfies

∂t% = ∆%− 2∇(%(1− %)∇H). (3.19)

This result is to be expected, since the process defined as η := η1 + η2 is a standard
(weakly asymmetric) exclusion process.

Remark 3.4. At the cost of more notational complexity, but no additional mathematical
difficulties, one can generalize the hydrodynamic limit of Theorem 3.2 to any number of
species, i.e., α ∈ {0, 1, ..., n} for any n ∈ N.

The hydrodynamic limit of the weakly asymmetric model with the general potentials
Hαβ = −Hβα is now given by a system of n dependent partial differential equations

∂tρα = ∆ρα − 2
∑
β 6=α

∇ (ραρβ∇Hαβ) , (3.20)

with the convention that ρ0 = 1−
∑n

α=1 ρα. For the large deviations of the trajectories of
the densities we only need n potentials. The choice of potentials, which is the analogue
of the conditions (3.7) and (3.8), then reads

Hα := Hα0, Hαβ := Hα −Hβ . (3.21)

This choice of potentials then results in the following hydrodynamic limit

∂tρα = ∆ρα − 2∇ (ρα(1− ρα)∇Hα) + 2
∑
β 6=α

∇ (ραρβ∇Hβ) . (3.22)

4 Large deviations

In this section we aim to prove the large deviation principle of the multispecies
stirring process. We start by defining the rate function Iγ : D([0, T ],M1 ×M1) → [0,∞]

which consists of two parts

Iγ(ρ) = h(ρ(0);γ) + I0(ρ), (4.1)
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where ρ(0) denotes the trajectory ρ evaluated at the initial time t = 0. Here h(ρ(0);γ) is
the static part of the large deviation functional, i.e. the one due to the initial product
measure νγN as defined in (2.6). It is given by the formula

h(ρ(0);γ) := sup
φ

hφ(ρ(0);γ),

hφ(ρ(0);γ) :=
2∑

α=0

〈ρα(0), φα〉 −
∫
T

log

(
2∑

α=0

γα(u)e
φα(u)

)
du, (4.2)

where the supremum is taken over all continuous φ = (φ0, φ1, φ2) and we use that
ρ0 := 1− ρ1 − ρ2.

I0(ρ) is the dynamic part of the large deviation functional, i.e., the one due to the
dynamics of the trajectory ρ over time. It has the following form,

I0(ρ) = sup
G

{
`(ρ;G)− 1

2 ||G||2H(ρ)

}
. (4.3)

Here the supremum is taken over vectors of functions G =
(
G1

G2

)
where both G1, G2 ∈

C2,1(T× [0, T ]). The operator ` is the linear operator corresponding to the hydrodynamic
limit of the multispecies SEP, i.e., it is given by

`(ρ;G) = 〈ρ(T ),G(·, T )〉 − 〈ρ(0),G(·, 0)〉 −
∫ T

0

〈ρ(t), (∂t +∆)G(·, t)〉dt, (4.4)

which is equal to zero for all G iff ρ solves the PDE ∂tρ(t) = ∆ρ(t) in the sense of
distributions. Lastly, the norm in the definition of the rate function (4.3) is the norm
corresponding to the following inner product

〈G,H〉H(ρ) = 2

∫ T

0

〈ρ1(t)(1− ρ1(t)),∇G1(·, t)∇H1(·, t)〉dt

+ 2

∫ T

0

〈ρ2(t)(1− ρ2(t)),∇G2(·, t)∇H2(·, t)〉dt

− 2

∫ T

0

〈ρ1(t)ρ2(t),∇G1(·, t)∇H2(·, t) +∇G2(·, t)∇H1(·, t)〉dt. (4.5)

Through this norm, and its action on smooth functions, we can then define a Hilbert
space H(ρ) as the completion of the set of smooth functions.

Remark 4.1. In Lemmas 4.9 and 4.10 we give more explicit forms of the functionals
h(·;γ) and I0 respectively. Namely, h(ρ(0);γ) can be written as the limit of relative
entropies of multinomials with respective densities ρ(0) and γ, and I0(ρ) = 1

2 ||H||2H(ρ)

where H ∈ H(ρ) is the unique function such that ρ satisfies (3.9) in the weak sense.

In order for a large deviation principle to hold, we need to show that we have the
following two inequalities:

• Upper bound: For every closed C ⊂ D([0, T ];M1 ×M1) we have that

lim
N→∞

1

N
logPγ

N (µN ∈ C) ≤ − inf
ρ∈C

Iγ(ρ). (4.6)

• Lower bound: For every open O ⊂ D([0, T ];M1 ×M1) we have that

lim
N→∞

1

N
logPγ

N (µN ∈ O) ≥ − inf
ρ∈O

Iγ(ρ). (4.7)
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We give a proof for the upper and lower bound in sections 4.3 and 4.4 respectively. First

we calculate the Radon-Nikodym derivative
dPρ,H

N

dPγ
N

of the path space measures of the

weakly asymmetric process relative to the original process in Section 4.1. Additionally,
we establish exponential tightness in section 4.2 which allows for the substitution of
closed sets with compact sets in the derivation of the upper bound.

Remark 4.2. Often, in the following to alleviate notation we do not write explicitly the
time dependence of the occupation variables. Namely, we write ηxα in place of ηxα(N

2s)

when the time dependence is understood.

4.1 Radon-Nikodym derivative and the exponential martingale

The goal of this section is to obtain an explicit expression of the Radon-Nikodym
derivative of the path space measure Pγ,H

N with respect to the path space measure Pγ
N .

From the literature (see [14, Proposition 2.6] and [17, Chapter 19]) the Girsanov formula
states that

log

(
dPγ,H

N

dPγ
N

)
=

N∑
x=1

2∑
α,β=0

∫ T

0

log

(
cH,αβ
(x,x+1)(s)

ηxαη
x+1
β

)
dJx,x+1

αβ (s)

−N2
N∑

x=1

2∑
α,β=0

∫ T

0

ηxαη
x+1
β

(
exp

{
∇NHαβ

(
x
N , s

)}
− 1
)
ds . (4.8)

Here, we represent by Jx,x+1
α,β (s) the number of transitions occurred up to time s ∈ [0, T ]

that swap the occupancies of species α, β between sites x and x + 1. Under the path

space measure Pγ,H
N the random process

(
Jx,x+1
α,β (s)

)
s≥0

is a Poisson process with

intensity cH,αβ
(x,x+1)(s). In the following result we provide an alternative formula for the

Radon-Nikodym derivative
dPγ,H

N

dPγ
N

.

Lemma 4.3. For all T ≥ 0, for all N ∈ N and for all H1,H2 ∈ C2,1(T × [0, T ]) we have
that

ZH
T,N (µN ) :=

dPγ,H
N

dPγ
N

=exp (N〈µN (T ),H(·, T )〉 −N〈µN (0),H(·, 0)〉)

· exp

(
−
∫ T

0

e−N〈µN (s),H(·,s)〉 (∂s +N2L
)
eN〈µN (s),H(·,s)〉ds

)
.

(4.9)

Additionally, under conditions (2.8), (3.7) and (3.8) we have

N2e−N〈µN (s),H(·,s)〉LeN〈µN (s),H(·,s)〉 =

N∑
x=1

2∑
α,β=0

ηxαη
x+1
β

[
exp

{
∇NHαβ

(
x
N , s

)}
− 1
]
,

(4.10)

and where

e−N〈µN (s),H〉∂se
N〈µN (s),H(·,s)〉 = 〈µ1(s), ∂sH1(·, s)〉+ 〈µ2(s), ∂sH2(·, s)〉 . (4.11)
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Proof. We consider the first term in the right hand side of equation (4.8) and we write

N∑
x=1

2∑
α,β=0

∫ T

0

log

(
cH,αβ
(x,x+1)(s)

ηxαη
x+1
β

)
dJx,x+1

αβ (s)

=

N∑
x=1

∫ T

0

∇NH10

(
x
N , s

) [
dJx,x+1

10 (s)− dJx,x+1
01 (s)

]
+

N∑
x=1

∫ T

0

∇NH20

(
x
N , s

) [
dJx,x+1

20 (s)− dJx,x+1
02 (s)

]
+

N∑
x=1

∫ T

0

∇NH12

(
x
N , s

) [
dJx,x+1

12 (s)− dJx,x+1
21 (s)

]
. (4.12)

We use conditions (2.8), (3.7) and (3.8). Moreover, we denote by dηxα(s) the infinitesimal
net current of particles of type α crossing the site x up to time s ∈ [0, T ], i.e., it is defined
through

∫ t

0
dηxα(s) = ηxα(t)− ηxα(0) for any t > 0. We then have that

dηx1 (s) = dJx,x+1
01 (s)− dJx,x+1

10 (s)− dJx,x+1
12 (s) + dJx,x+1

21

− dJx−1,x
01 (s) + dJx−1,x

10 (s) + dJx−1,x
12 (s)− dJx−1,x

21 (s),

dηx2 (s) = dJx,x+1
02 (s)− dJx,x+1

20 (s)− dJx,x+1
21 (s) + dJx,x+1

12 (s)

− dJx−1,x
02 (s) + dJx−1,x

20 (s) + dJx−1,x
21 (s)− dJx−1,x

12 (s), (4.13)

and so

N∑
x=1

{∫ T

0

H1

( x

N
, s
) [

dJx,x+1
01 (s)− dJx,x+1

10 (s)− dJx,x+1
12 (s) + dJx,x+1

21

−dJx−1,x
01 (s) + dJx−1,x

10 (s) + dJx−1,x
12 (s)− dJx−1,x

21 (s)
]

+

∫ T

0

H2

( x

N
, s
) [

dJx,x+1
02 (s)− dJx,x+1

20 (s)− dJx,x+1
21 (s) + dJx,x+1

12 (s)

−dJx−1,x
02 (s) + dJx−1,x

20 (s) + dJx−1,x
21 (s)− dJx−1,x

12 (s)
]}

=

N∑
x=1

{∫ T

0

H1

( x

N
, s
)
dηx1 (s) +

∫ T

0

H2

( x

N
, s
)
dηx2 (s)

}
= N〈µN

1 (T ),H1 (·, T )〉+N〈µN
2 (T ),H2 (·, T )〉 −N〈µN

1 (0),H1 (·, 0)〉 −N〈µN
2 (0),H2 (·, 0)〉

−N

∫ T

0

〈µN
1 (s), ∂sH1(·, s)〉ds−N

∫ T

0

〈µN
1 (s), ∂sH2(·, s)〉ds, (4.14)

where in the last equality we have integrated by parts.
To conclude the proof we have to show that (4.10) holds true. By applying the

generator (2.3) we have that

N2e−N〈µN (s),H(·,s)〉LeN〈µN (s),H(·,s)〉

= N2
N∑

x=1

2∑
α,β=0

ηxαη
x+1
β

(
exp

{
N〈µN

1 (ηx,x+1
α,β (N2s)),H1(·, s)〉+N〈µN

2 (ηx,x+1
α,β (N2s)),H2(·, s)〉

}
· exp

{
−N〈µN

1 (η(N2s)),H1(·, s)〉 −N〈µN
2 (η(N2s)),H2(·, s)〉

}
− 1
)

=

N∑
x=1

2∑
α,β=0

ηxαη
x+1
β

[
exp

{
∇NHαβ

(
x
N , s

)}
− 1
]
, (4.15)
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where we have used the conditions on the potentials expressed in equations (2.8), (3.7)
and (3.8).

Corollary 4.4. Equation (4.10) can be written as

N2e−N〈µN (s),H(·,s)〉LeN〈µN (s),H(·,s)〉

=

N∑
x=1

{
ηx1

[
∆H1

(
x
N , s

)
+ (1− ηx+1

1 )
(
∇H1

(
x
N , s

))2]
+ ηx2

[
∆H2

(
x
N , s

)
+ (1− ηx+1

2 )
(
∇H2

(
x
N , s

))2]
− ηx1η

x+1
2

[
∇H1

(
x
N , s

)
∇H2

(
x
N , s

)]
− ηx2η

x+1
1

[
∇H1

(
x
N , s

)
∇H2

(
x
N , s

)] }
+O(1) .

(4.16)

Furthermore, for all H1,H2 ∈ C2,1(T× [0, T ]) and for all N ∈ N there exists a constant
c > 0 such that

dPγ,H
N

dPγ
N

≤ exp {cN} . (4.17)

Proof. First we expand the exponential function on the right hand side of (4.10) by using
the Taylor series and we also use (2.1). Finally, we use conditions (2.8), (3.7) and (3.8),
obtaining

N∑
x=1

2∑
α,β=0

ηxαη
x+1
β

[
exp

{
∇NHαβ

(
x
N , s

)}
− 1
]

= N2
N∑

x=1

2∑
αβ=0

{
Hαβ

(
x+1
N , s

)
−Hαβ

(
x
N , s

)
+

1

2

(
Hαβ

(
x+1
N

)
−Hαβ

(
x
N , s

))2}
ηxαη

x+1
β +O(1)

=

N∑
x=1

{
ηx1∆NH1

(
x
N , s

)
+ ηx2∆NH2

(
x
N , s

)
+ ηx1

(
1− ηx+1

1

) (
∇H1

(
x
N , s

))2
+ ηx2

(
1− ηx+1

2

) (
∇H2

(
x
N , s

))2−(ηx1ηx+1
2 + ηx2η

x+1
1

) (
∇H1

(
x
N , s

)
∇H2

(
x
N , s

))}
+O(1) .

(4.18)

The estimate (4.17) follows, since ηxα ≤ 1 for all a ∈ {1, 2} and for all x ∈ TN and because
the functions H1(·, ·),H2(·, ·) belong to the space C2,1(T× [0, T ]).

Corollary 4.5. The super exponential estimate (2.21) holds also for the path space
measure Pγ,H

N .

Proof. For any measurable set A ⊂ D ([0, T ],M1 ×M1) we have the following chain of
inequalities

1

N
logPγ,H

N (A) =
1

N
logEγ,H

N

[
1A

dPγ
N

dPγ,H
N

dPγ,H
N

dPγ
N

]
=

1

N
logEγ

N

[
1A

dPγ,H
N

dPγ
N

]

≤ 1

N
logEγ

N [1A] + c . (4.19)

Here we have changed the path space measure from P
γ,H
N to Pγ

N and we have used the
estimate (4.17). Therefore, by taking the limit N → ∞ and by using Theorem 2.3 we
have the result.
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4.2 Exponential tightness

Theorem 4.6 (Exponential Tightness). For any n ∈ N there exists a compact set Kn ⊂
D([0, T ],M1 ×M1) such that

lim
N→∞

1

N
logPγ

N (µN /∈ Kn) = −n. (4.20)

With exponential tightness, the large deviation upper bound for closed sets C ∈
D([0, T ],M1 ×M1) follows from the upper bound for compact sets. Namely, for every
n ∈ N we have that

lim
N→∞

1

N
logPγ

N (µN ∈ C) ≤ lim
N→∞

1

N
log [Pγ

N (µN ∈ C ∩ Kn) ∨ Pγ
N (µN /∈ Kn)] , (4.21)

where C ∩ Kn is a compact set.
We will prove Theorem 4.6 following the same approach as in [14, Section 10.4]. We

start with the following Lemma.

Lemma 4.7. For every ε > 0 and G ∈ C2(T)× C2(T)

lim
δ→0

lim
N→∞

1

N
logPγ

N

(
sup

|s−t|<δ

|〈µN (t),G〉 − 〈µN (s),G〉| ≥ ε

)
= −∞. (4.22)

Proof. First note that by (2.22), it is enough to show that (4.22) holds for the equilibrium
measure P1/3

N . We then use the following inclusion{
sup

|s−t|<δ

|〈µN (t),G〉 − 〈µN (s),G〉| ≥ ε

}

⊂
[Tδ−1]⋃
k=0

{
sup

kδ≤t<(k+1)δ

|〈µN (t),G〉 − 〈µN (kδ),G〉| > 1
4ε

}
, (4.23)

in order to find that

lim
N→∞

1

N
logP

1/3
N

(
sup

|s−t|<δ

|〈µN (t),G〉 − 〈µN (s),G〉| ≥ ε

)

≤ lim
N→∞

1

N
log

[Tδ−1]
sup
k=0

P
1/3
N

(
sup

kδ≤t<(k+1)δ

|〈µN (t),G〉 − 〈µN (kδ),G〉| ≥ 1
4ε

)

= lim
N→∞

1

N
logP

1/3
N

(
sup

0≤t<δ
|〈µN (t),G〉 − 〈µN (0),G〉| ≥ 1

4ε

)
, (4.24)

where we used that P1/3
N is an invariant measure for the last equality. Since we are

considering every G, we can neglect the absolute value. Furthermore, recalling the
definition of ZG

t,N (µN ) in (4.9), we have that for any λ > 0

P
1/3
N

(
sup

0≤t<δ
〈µN (t),G〉 − 〈µN (0),G〉 ≥ 1

4ε

)
= P

1/3
N

(
sup

0≤t<δ

1

N
logZλG

t,N (µN ) +
1

N

∫ t

0

e−λN〈µN (s),G〉 (∂s +N2L
)
eλN〈µN (s),G〉ds ≥ 1

4λε

)
≤ P

1/3
N

(
sup

0≤t<δ

1

N
logZλG

t,N (µN ) ≥ 1
8λε

)
+ P

1/3
N

(
sup

0≤t<δ

1

N

∫ t

0

e−λN〈µN (s),G〉 (∂s +N2L
)
eλN〈µN (s),G〉ds ≥ 1

8λε

)
. (4.25)
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Note that by (4.16) and the fact that there is at most one particle per site,

sup
0≤t<δ

1

N

∫ t

0

e−λN〈µN (s),G〉 (∂s +N2L
)
eλN〈µN (s),G〉ds = O(δ). (4.26)

Furthermore, by Doob’s martingale inequality

P
1/3
N

(
sup

0≤t<δ

1

N
logZλG

t,N (µN ) ≥ 1
8λε

)
= P

1/3
N

(
sup

0≤t<δ
ZλG
t,N (µN ) ≥ e

1
8Nλε

)
≤ e−

1
8Nλε,

(4.27)
where we used that ZλG

t,N (µN ) is a mean 1 martingale. Therefore we find that

lim
δ→0

lim
N→∞

1

N
logP

1/3
N

(
sup

0≤t<δ
〈µN (t),G〉 − 〈µN (0),G〉 ≥ ε

)
≤ − 1

8λε, (4.28)

and since we took λ > 0 arbitrary this concludes the proof.

With this Lemma we are able to prove the exponential tightness of the empirical
distributions.

Proof of Theorem 4.6. Consider a countable uniformly dense family {Hk}k∈N ⊂ C2(T)×
C2(T). Then, for each δ > 0, ε > 0 we define the following set

Ck,δ,ε =

{
µ ∈ D([0, T ],M1 ×M1); sup

|t−s|≤δ

|〈µ(t),Hk〉 − 〈µ(s),Hk〉| ≤ ε

}
. (4.29)

First of all, note that Ck,δ,ε is closed. Furthermore, by Lemma 4.7 we know that we can
find a δ = δ(k,m, n) such that

P
γ
N (µN 6∈ Ck,δ,1/m) ≤ exp(−Nnmk) (4.30)

for N large enough. We then define

Kn =
⋂

k≥1,m≥1

Ck,δ(k,m,n),1/m. (4.31)

Then we find that

P
γ
N (µN 6∈ Kn) ≤

∑
k≥1,m≥1

exp(−Nnmk) ≤ C exp(−Nn) (4.32)

where C > 0 is some constant, and so

lim
N→∞

1

N
logPγ

N (µN 6∈ Kn) ≤ −n. (4.33)

Since Kn is closed, we now only have to show that Kn is relatively compact for every
n ∈ N, i.e., we need to show that the following two things holds [14, Proposition 4.1.2]

1. {µ(t);µ ∈ Kn, t ∈ [0, T ]} is relatively compact in M1 ×M1.

2. lim
δ→0

sup
µ∈Kn

wδ(µ) = 0 where

wδ(µ) := sup
|t−s|≤δ

∞∑
k=1

1

2k
|〈µ(t),Hk〉 − 〈µ(s),Hk〉|

1 + |〈µ(t),Hk〉 − 〈µ(s),Hk〉|
= 0. (4.34)

Note here that (1) is satisfied since M1 ×M1 itself is compact, and (2) is satisfied by the
definition of Kn, hence Kn is compact.
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4.3 Proof of the upper bound

Theorem 4.8 (Upper bound for compact sets). For any compact K ⊂ D ([0, T ],M1 ×M1)

we have that

lim
N→∞

1

N
logPγ

N (µN ∈ K) ≤ − inf
ρ∈K

Iγ(ρ). (4.35)

Proof. For any given G1, G2 ∈ C2,1(T × [0, T ]), and ε > 0, δ > 0, we introduce the
following

Bδ,α,β
ε,N,Gα,Gβ

:=

{
η(t), 0 ≤ t ≤ T :

∣∣∣∣∣ 1N
N∑

x=1

∫ T

0

∇Gα

(
x
N , s

)
∇Gβ

(
x
N , s

)
·

ηxα(s)η
x+1
β (s)−

 1

2εN + 1

∑
|y−x|≤Nε

ηyα

 1

2εN + 1

∑
|y−x|≤Nε

ηyβ

 ds

∣∣∣∣∣∣ ≤ δ

 .

(4.36)

Moreover, we denote by

Bδ
ε,N,G = ∩2

α,β=1B
δ,α,β
ε,N,Gα,Gβ

. (4.37)

By the superexponential estimate with φ(η) = ηxα(s)η
x+1
β (s), it then follows that for every

δ > 0

lim
ε→0

lim
N→∞

1

N
logPγ

N

(
Bδ

ε,N,G

)
= 1, (4.38)

and so

lim
N→∞

1

N
logPγ

N ({µN ∈ K}) = lim
ε→0

lim
N→∞

1

N
logPγ

N

(
{µN ∈ K} ∩ Bδ

ε,N,G

)
. (4.39)

We now define qε :=
1
2ε1{[−ε,+ε]} and we introduce the following

Z̃G
T,N (µN ∗ qε) := exp

(
`(µN ∗ qε;G)− 1

2 ||G||2H(µN∗qε)

)
=exp

{
N〈(µN (T ) ∗ qε) ,G(·, T )〉 −N〈(µN (0) ∗ qε) ,G(·, 0)〉

}
· exp

{
−N

∫ T

0

〈(µN (t) ∗ qε), (∂s +∆)G(·, t)〉dt

}

· exp

{
−N

∫ T

0

〈(µ1,N (t) ∗ qε) (1− (µ1,N (t) ∗ qε)) , (∇G1(·, t))2〉dt

}

· exp

{
−N

∫ T

0

〈(µ2,N (t) ∗ qε) (1− (µ2,N (t) ∗ qε)) , (∇G2(·, t))2〉dt

}

· exp
{
−2N

∫ t

0

〈(µ1,N (t) ∗ qε) (µ2,N (t) ∗ qε) ,∇G1(·, t)∇G2(·, t)〉dt
}
,

(4.40)

where ∗ is the convolution. Recalling the definition of the exponential martingale
ZG
T,N (µN ) defined in (4.9), by (4.10) we have that for all N and all {η(t), 0 ≤ t ≤ T} ∈

Bδ
ε,N,G,

Z̃G
T,N (µN ∗ qε) ≤ ZG

T,N (µN ) exp {N(c(ε) + δ)}, (4.41)
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with c(ε) a constant that vanishes as ε → 0. Using (4.39) and recalling the definition of
hφ in (4.2) we then find that

lim
N→∞

logPγ
N

(
{µN ∈ K} ∩ Bδ

ε,N,G

)
= lim

N→∞

1

N
logEνγ

N

[
1{{µN∈K} ∩ Bδ

ε,N,G

} Z̃G
T,N (µN ∗ qε)

Z̃G
T,N (µN ∗ qε)

· e
Nhφ(µN (0);γ)

eNhφ(µN (0);γ)

]

≤ lim
N→∞

1

N
logEνγ

N

[
ZG
T,N (µN ) · eNhφ(µN (0);γ)

]
+ c(ε) + δ

− inf
ρ∈K

{
hφ(ρ(0);γ) + `(ρ ∗ qε;G)− 1

2 ||G||2H(ρ∗qε)

}
. (4.42)

Since ZG
T,N (µN ) is a martingale with ZG

0,N (µN ) = 1

Eνγ
N

[
ZG
T,N (µN )eNhφ(µN (0);γ)

]
= Eνγ

N

[
eNhφ(µN (0);γ)

]
= 1 . (4.43)

By taking the limsup for ε → 0 and δ → 0, by optimizing over G and over φ and by
exchanging the supremum and the infimum (by using the argument of Lemma 11.3 of
[29]) we obtain that

lim
δ→0

lim
ε→0

lim
N→∞

1

N
logPγ

N

(
{µN ∈ K} ∩ Bδ

ε,N,G

)
≤ − inf

ρ∈K
Iγ(ρ), (4.44)

then the Theorem follows.

4.4 Proof of the lower bound

Lemma 4.9. Assume that h(ρ(0);γ) < ∞, then there exists a density ω := dρ(0)
dλ , with λ

the Lebesgue measure, and

h(ρ(0);γ) = lim
N→∞

1

N
Eνω

N

[
log

(
dνωN
dνγN

)]
. (4.45)

Proof. If ρ(0) is not absolutely continuous with respect to the Lebesgue measure, then
there exists a A ⊂ T and a ∈ {1, 2} such that λ(A) = 0 and ρa(0)(A) > 0. Then, for

every n ∈ N we choose a sequence (φ
(n)
a,k)k∈N such that φ(n)

a,k → n1A, one can show that
h(ρ(0);γ) = ∞ by letting n → ∞. Hence if h(ρ(0);γ) < ∞ we have that ω exists. The
rest of a proof is just a calculation.

h(ρ(0);γ) = sup
φ

{
2∑

α=0

〈ωα, φα〉 −
∫
T

log

(
2∑

α=0

γα(u)e
φα(u)

)
du

}

=

2∑
α=0

〈ωα, log

(
ωα

γα

)
〉

= lim
N→∞

1

N
Eνω

N

[
log

(
dνωN
dνγN

)]
. (4.46)

Lemma 4.10. Assume that I0(ρ) < ∞, then there exists an H ∈ H(ρ) such that for all
smooth functions G we have that

`(ρ;G) = 〈G,H〉H(ρ) . (4.47)

Moreover, the following holds

I0(ρ) = 1
2 ||H||2H(ρ). (4.48)
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Remark 4.11. Observe that if (4.47) holds for all G, then ρ satisfies the equations (3.9)
in the sense of distributions. This will be used in the proof of the large deviation lower
bound. Indeed, by choosing a non-typical trajectory, we can find an H that makes it
typical, i.e. that makes it solve the weakly asymmetric hydrodynamic equations.

Proof. By definition, we have that

I0(ρ) ≥ λ`(ρ;G)− 1

2
λ2||G||2H(ρ) (4.49)

for any λ > 0. Optimizing over λ we have that

λ∗ =
`(ρ;G)

||G||2H(ρ)

, (4.50)

and so

`(ρ;G)2 ≤ 2I0(ρ)||G||2H(ρ). (4.51)

This means that the linear functional `(ρ; ·) is bounded in the Hilbert space H(ρ) and so,
by the Riesz representation Theorem, there exists an H ∈ H(ρ) such that (4.47) holds
for all G. Using this, we find that

I0(ρ) = sup
G

{
〈G,H〉H(ρ) − 1

2 ||G||2H(ρ)

}
= sup

G

{
1
2 ||H||2H(ρ) − 1

2 ||H −G||2H(ρ)

}
= 1

2 ||H||2H(ρ), (4.52)

which concludes the proof.

Remark 4.12. We have shown that if I0(ρ) < ∞, then there exists an H ∈ H(ρ) such
that ρ satisfies the equations (3.9). However, for the proof of the hydrodynamic limit of
the weakly asymmetric model we need a stronger regularity condition on H, namely
Hαβ ∈ C2,1([0, T ]×T) for each α, β. We denote the subset of all trajectories that satisfy
this extra regularity condition by Do ([0, T ],M1 ×M1). By its supremum representation
in (4.3), I0 is convex and lower semi-continuous, hence it can be shown that every
ρ ∈ Do ([0, T ],M1 ×M1) can be approximated by trajectories ρn ∈ D ([0, T ],M1 ×M1),
such that

lim
n→∞

I0(ρn) = I0(ρ). (4.53)

A detailed proof of such a result can be found e.g. in [14, Lemma 10.5.5].

Theorem 4.13. Fix ρ ∈ Do ([0, T ],M1 ×M1), then for any open neighborhood O around
ρ we have that

lim
N→∞

1

N
logPγ

N (µN ∈ O) ≥ −Iγ(ρ). (4.54)

Proof. If Iγ(ρ) = ∞ then the result is immediate, hence we can assume that Iγ(ρ) < ∞.
Therefore, by Lemma 4.10, there exists a smooth H such that 3.9 holds weakly. Fix this
H and recall that dρ(0) = ωdλ, then we denote

dPω,H
N

dPγ
N

=
dνωN
dνγN

dPγ,H
N

dPγ
N

. (4.55)
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We then have that

P
γ
N (µN ∈ O) = E

γ
N

[
1{µN∈O}

dPω,H
N

dPγ
N

dPγ
N

dPω,H
N

]
= E

ω,H
N

[
1{µN∈O}

dPγ
N

dPω,H
N

]
. (4.56)

From Theorem 3.2 it follows that ρ is the typical trajectory of the new dynamics, and so

lim
N→∞

P
ω,H
N (µN ∈ O) = 1. (4.57)

Using this and Jensen inequality, we have that

lim
N→∞

1

N
logPγ

N (µN ∈ O) = lim
N→∞

1

N
logEω,H

N

[
dPγ

N

dPω,H
N

]

≥ lim
N→∞

1

N
E

ω,H
N

[
log

(
dPγ

N

dPω,H
N

)]

= lim
N→∞

1

N
E

ω,H
N

[
log

(
ZH
T,N (µN ) ·

dνγN
dνωN

)]
= −

[
`(ρ,H)− 1

2 ||H||2H(ρ) + h(ρ(0);γ)
]
. (4.58)

Lastly, by Lemma 4.10, we know that `(ρ,H) = ||H||2H(ρ) and I0(ρ) = 1
2 ||H||2H(ρ), hence

we indeed find that

lim
N→∞

1

N
logPγ

N (µN ∈ O) ≥ −
[
1
2 ||H||2H(ρ) + h(ρ(0);γ)

]
= Iγ(ρ). (4.59)

Theorem 4.14. For any open set O ⊂ D ([0, T ],M1 ×M1) we have that

lim
N→∞

1

N
logPγ

N (µN ∈ O) ≥ − inf
ρ∈O

Iγ(ρ) . (4.60)

Proof. The proof is a straightforward consequence of Theorem 4.13 and Remark 4.12.

Remark 4.15. In parallel with Remark 3.3, by choosing the same potential H1 = H2 = H

we can recover the large deviation rate function of the dynamics of the single species
SEP as given in [15]. Namely, by putting % = ρ1 + ρ2 the rate function I0(ρ) from (4.52)
becomes a function of % only, i.e.,

I0(ρ) =
1

2
||H||2H(ρ) =

∫ T

0

〈(%(t)(1− %(t)),
(
∇H(·, t)

)2〉dt. (4.61)

Remark 4.16. In parallel with Remark 3.4, the large deviation result reported in this
section can be generalized to an arbitrary number of species, namely α ∈ {0, 1, . . . , n}.
In this case, we consider a n-dimensional vector of densities denoted by ρ = (ρ1, . . . , ρn).
Moreover, we consider n-potentials denoted by Hα, that we list in the vector H =

(H1, . . . , Hn). Therefore, the large deviation functional reads

I(n)(ρ) = I(n)
0 (ρ) + h(n)(ρ(0);γ) . (4.62)

Here h(n)(ρ(0);γ) is the relative entropy between the multinomial distributions with
densities corresponding to ρ evaluated at time t = 0 and the original starting density
given by γ = (γ1, . . . , γn). Moreover, we have that

I(n)
0 (ρ) =

1

2
‖H‖2H(ρ), (4.63)
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where the norm is given by

‖H‖2H(ρ) = 2

n∑
α=1

∫ T

0

〈ρα(t)(1− ρα(t)), (∇Hα(·, t))2〉dt

− 2

n∑
α=1

∑
β 6=α

∫ T

0

〈ρα(t)ρβ(t),∇Hα(·, t)∇Hβ(·, t)〉dt . (4.64)

For any k ≤ n there exists a relation between the dynamic part of the large deviation
rate function of the n-species model I(n)

0 and of the k-species model I(k)
0 . Namely, for any

partition {A1, ..., Ak} of the set {1, ..., n}, by choosing the same potentials within each
partition, i.e., Hj = H` for every j ∈ A`, we find that

I(n)(ρ1, ..., ρn) = I(k)
0 (ρ̃1, ..., ρ̃k), (4.65)

where ρ̃` =
∑

j∈A`
ρj . This generalizes the result in Remark 4.15.

5 Proof of the hydrodynamic limit of the weakly-asymmetric pro-
cess

We consider the Dynkin martingale

MG
N (t) = 〈µN (t),G(·, t)〉 − 〈µN (0),G(·, 0)〉 −

∫ t

0

N2(LH + ∂s)〈µN (s),G(·, s)〉ds

= MG1

1,N (t) +MG2

2,N (t), (5.1)

where

MG
α,N (t) = 〈µα,N (t), G(·, t)〉 − 〈µα,N (0), G(·, 0)〉 −

∫ t

0

N2(LH + ∂s)〈µα,N (s), G(·, s)〉ds.

(5.2)

We see that we need to apply the generator LH to the density field 〈µα,N (s), G(·, s)〉.
This can be derived from the effect of the generator applied to the function f(η) = ηxα.
We start in the case of α = 1. If we look at LHηx1 we get a positive (resp. negative)
contribution of the rates where a particle of type 1 is added (resp. subtracted) at position
x, i.e.,

LHηx1 = cH,0,1
(x,x+1)(s) + cH,2,1

(x,x+1)(s) + cH,1,0
(x−1,x)(s) + cH,1,2

(x−1,x)(s)

− cH,1,0
(x,x+1)(s)− cH,1,2

(x,x+1)(s)− cH,0,1
(x−1,x)(s)− cH,2,1

(x−1,x)(s). (5.3)

Using that

cH,αβ
(x,x+1)(s) = exp

(
∇NHαβ(

x
N , s)

)
ηxαη

x+1
β

=
(
1 +∇NHαβ(

x
N , s) +

(
∇NHαβ(

x
N , s)

)2)
ηxαη

x+1
β +O( 1

N3 ), (5.4)

we find that

LHηx1 =
(
1 +∇NH01(

x
N , s)

)
ηx0η

x+1
1 +

(
1 +∇NH21(

x
N , s)

)
ηx2η

x+1
1

+
(
1 +∇NH10(

x−1
N , s)

)
ηx−1
1 ηx0 +

(
1 +∇NH12(

x−1
N , s)

)
ηx−1
1 ηx2

−
(
1 +∇NH10(

x
N , s)

)
ηx1η

x+1
0 −

(
1 +∇NH12(

x
N , s)

)
ηx1η

x+1
2

−
(
1 +∇NH01(

x−1
N , s)

)
ηx−1
0 ηx1 −

(
1 +∇NH21(

x−1
N , s)

)
ηx−1
2 ηx1 +R(N, x, s),

(5.5)
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with R(N, x, s) a remainder term which we will show vanishes once combined with the
test function G as we send N → ∞.

First we will focus on the terms that do not depend on H in the above equation.
Using the fact that η0 = 1− η1 − η2, after some calculation we find that

ηx0η
x+1
1 + ηx2η

x+1
1 + ηx−1

1 ηx0 + ηx−1
1 ηx2 − ηx1η

x+1
0 − ηx1η

x+1
2 − ηx−1

0 ηx1 − ηx−1
2 ηx1

= ηx+1
1 + ηx−1

1 − 2ηx1 ,

(5.6)

i.e., we recover the discrete Laplacian of ηx1 .
For the terms depending on the potential H10 = −H01 we then have that(

ηx−1
1 ηx0 + ηx−1

0 ηx1
)
∇NH10(

x−1
N , s)−

(
ηx0η

x+1
1 + ηx1η

x+1
0

)
∇NH10(

x
N , s). (5.7)

and the terms depending on the potential H12 = −H21(
ηx−1
1 ηx2 + ηx−1

2 ηx1
)
∇NH12(

x−1
N , s)−

(
ηx2η

x+1
1 + ηx1η

x+1
2

)
∇NH12(

x
N , s). (5.8)

With these calculations, we then find that

N2LH〈µ1,N (s), G(·, s)〉

= N

N∑
x=1

(ηx+1
1 + ηx−1

1 − 2ηx1 )G( x
N , s)

+N

N∑
x=1

( (
ηx−1
1 ηx0 + ηx−1

0 ηx1
)
∇NH10(

x−1
N , s)

−
(
ηx0η

x+1
1 + ηx1η

x+1
0

)
∇NH10(

x
N , s)

)
G( x

N , s)

+N

N∑
x=1

( (
ηx−1
1 ηx2 + ηx−1

2 ηx1
)
∇NH12(

x−1
N , s)

−
(
ηx2η

x+1
1 + ηx1η

x+1
2

)
∇NH12(

x
N , s)

)
G( x

N , s)

+N

N∑
x=1

R(N, x, s)G( x
N , s). (5.9)

where by reordering the terms, we have

N2LH〈µ1,N (s), G(·, s)〉

= N

N∑
x=1

ηx1∆NG( x
N , s) +N

N∑
x=1

(
ηx0η

x+1
1 + ηx1η

x+1
0

)
∇NH10(

x
N , s)∇NG( x

N , s)

+N

N∑
x=1

(
ηx2η

x+1
1 + ηx1η

x+1
2

)
∇NH12(

x
N , s)∇NG( x

N , s) +N

N∑
x=1

R(N, x, s)G( x
N , s).

(5.10)

The remainder term R(N, x, s) is given by

R(N, x, s) =
(
ηx0η

x+1
1 − ηx1η

x+1
0

) (
∇NH10(

x
N , s)

)2
−
(
ηx−1
0 ηx1 − ηx−1

1 ηx0
) (

∇NH10(
x−1
N , s)

)2
+
(
ηx2η

x+1
1 − ηx1η

x+1
2

) (
∇NH12(

x
N , s)

)2
−
(
ηx−1
2 ηx1 − ηx−1

1 ηx2
) (

∇NH12(
x−1
N , s)

)2
+O( 1

N3 ), (5.11)

EJP 30 (2025), paper 152.
Page 22/36

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1417
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A large deviation principle for the multispecies stirring process

and when combined with a test function, we see that

N

N∑
x=1

R(N, x, s)G( x
N , s)

= −N

N∑
x=1

(
ηx0η

x+1
1 − ηx1η

x+1
0

) (
∇NH10(

x
N , s)

)2
∇NG( x

N , s)

−N

N∑
x=1

(
ηx2η

x+1
1 − ηx1η

x+1
2

) (
∇NH12(

x
N , s)

)2
∇NG( x

N , s) +O( 1
N ) . (5.12)

Note that this vanishes as N → ∞ since the discrete derivative ∇N is an operator of
order 1

N . Thus, all in all:

N2LH〈µ1,N (s), G(·, s)〉

=
1

N

∑
x∈TN

ηx1∆G
(

x
N

)
+

1

N

∑
x∈TN

(
ηx0η

x+1
1 + ηx1η

x+1
0

)
∇H10(

x
N , s)∇G( x

N , s)

+
1

N

∑
x∈TN

(
ηx2η

x+1
1 + ηx1η

x+1
2

)
∇H12(

x
N , s)∇G( x

N , s) +O( 1
N ). (5.13)

By choosing: φ(η) = ηx1η
x+1
1 and φ(η) = ηx1η

x+1
2 we now use the superexponential

estimate in Theorem 2.3 twice and we replace

2

N

∑
x∈TN

ηx1η
x+1
1 −→ 2

N

∑
x∈TN

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 , (5.14)

and

2

N

∑
x∈TN

ηx1η
x+1
2 −→ 2

N

∑
x∈TN

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 1

2Nε+ 1

∑
|x−y|≤εN

ηy2

 . (5.15)

Indeed, to prove equation (5.14) one writes that, for all G,H10 ∈ C2,1(T× [0, T ]) and for
all a > 0, there exists ε0 > 0 such that for all η ∈ Ω and for all ε < ε0 we have that∣∣∣∣∣ 1N

∫ T

0

∑
x∈TN

∇G
( x

N
, s
)
∇H10

( x

N
, s
)
ηx1η

x+1
1 ds

− 1

N

∫ T

0

∑
x∈TN

∇G
( x

N
, s
)
∇H10

( x

N
, s
) 1

2εN + 1

∑
|x−y|≤εN

ηy1η
y+1
1

 ds

∣∣∣∣∣∣ ≤ a . (5.16)

Therefore, using the superexponential estimate of Theorem 2.3 we have that

lim
ε→0

lim
N→∞

1

N
logPγ,H

N

(∣∣∣∣∣ 1N
∫ T

0

∑
x∈TN

∇G
( x

N
, s
)
∇H10

( x

N
, s
)
ηx1η

x+1
1 ds

− 1

N

∫ T

0

∑
x∈TN

∇G
( x

N
, s
)
∇H10

( x

N
, s
)

· 2
N

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 ds

∣∣∣∣∣∣ ≥ a


= −∞ . (5.17)
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With the same argument one can prove (5.15) as well. Moreover, using qε =
1
2ε1{[−ε,+ε]},

then we can write

1

N

∑
x∈TN

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 = (µ1,N (s) ∗ qε) (µ1,N (s) ∗ qε) ,

(5.18)

and

1

N

∑
x∈TN

 1

2Nε+ 1

∑
|x−y|≤εN

ηy1

 1

2Nε+ 1

∑
|x−y|≤εN

ηy2

 = (µ1,N (s) ∗ qε) (µ2,N (s) ∗ qε) .

(5.19)

Combining (5.13) with equations (5.18) and (5.19), we have that the Dynkin martingale
MG

1,N (t) is written as a function of the empirical density, namely

MG
1,N (t) = 〈µ1,N (t), G(·, t)〉 − 〈µ1,N (0), G(·, 0)〉 −

∫ t

0

〈µ1,N (s), (∂s +∆)G(·, s)〉ds

− 2

∫ t

0

〈
(µ1,N (s) ∗ qε)

(
1− (µ1,N (s) ∗ qε)− (µ2,N (s) ∗ qε)

)
,∇H10(·, s)∇G(·, s)

〉
ds

− 2

∫ t

0

〈(µ1,N (s) ∗ qε) (µ2,N (s) ∗ qε) ,∇H12(·, s)∇G(·, s)〉ds+R(ε,N), (5.20)

where the remainder term R(ε,N) goes to zero in probability as N → ∞ and ε → 0. A
similar result can be found for MG

2,N (t).
Now we show that the martingaleMG

N (t) vanishes as N → ∞. The quadratic variation
is computed by the carré du champ formula as

ΓG
N,t = N2LH〈µN (t),G(·, t)〉2 − 2〈µN (t),G(·, t)〉N2LH〈µN (t),G(·, t)〉

=

N∑
x=1

2∑
α,β=0

cH,α,β
(x,x+1)(t)

[
〈µN (ηx,x+1

α,β (N2t)),G(·, t)〉 − 〈µN (η(N2t),G(·, t)〉
]2

=

N∑
x=1

(
cH,0,1
(x,x+1)(t) + cH,1,0

(x,x+1)(t)
) (

∇NG1

(
x
N , t

))2
+

N∑
x=1

(
cH,0,2
(x,x+1)(t) + cH,2,0

(x,x+1)(t)
) (

∇NG2

(
x
N , t

))2
+

N∑
x=1

(
cH,1,2
(x,x+1)(t) + cH,2,1

(x,x+1)(t)
) (

∇NG1

(
x
N , t

)
−∇NG2

(
x
N , t

))2
, (5.21)

which is of order 1/N and goes to 0 as N → ∞. This implies that for all δ > 0

lim
N→∞

P
γ,H
N

(
sup

t∈[0,T ]

|MG
N (t)| ≥ δ

)
≤ lim

N→∞

1

δ2
E

γ,H
N

[
sup

t∈[0,T ]

|MG
N (t)|2

]

≤ lim
N→∞

4

δ2
E

γ,H
N

[
|MG

N (T )|2
]

= lim
N→∞

4

δ2
E

γ,H
N

[∫ T

0

ΓG
N,sds

]
= 0 . (5.22)

Next, by the (exponential) tightness of the sequence µN we have the existence of
convergent subsequences, and by combining this with (5.20) and (5.22) we observe that
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these convergent subsequences are concentrated on the set of trajectories ρ such that
for all δ > 0 there exists an ε̂ such that for all ε ≤ ε̂ and for all t ∈ [0, T ] we have that∣∣∣∣〈ρ(t),G(·, t)〉 − 〈ρ(0),G(·, 0)〉 −

∫ t

0

〈ρ(s), (∂s +∆) ,G(·, s)〉ds

+

∫ t

0

〈(ρ1(t) ∗ qε) (1− (ρ1(t) ∗ qε)− (ρ2(t) ∗ qε)),∇G1(·, s)H10(·, s)〉ds

+

∫ t

0

〈(ρ2(t) ∗ qε) (1− (ρ1(t) ∗ qε)− (ρ2(t) ∗ qε)),∇G2(·, s)∇H20(·, s)〉ds

−
∫ t

0

〈(ρ1(t) ∗ qε) (ρ2(t) ∗ qε) , (∇G1(·, s)−∇G2(·, s))∇H12(·, s)〉ds
∣∣∣∣ ≤ δ . (5.23)

Finally, letting ε̂ tend to 0, we observe that ρ solves equation (3.1) in the sense of
distributions.

A Proof of the superexponential estimate

The objective of this appendix is to prove the superexponential estimate presented
in Theorem 2.3. We follow here the road of the original paper [15], i.e., reducing the
problem to one and two blocks estimates which then boil down to a uniform equivalence
of ensembles. For the convenience of the reader and self-consistency of the paper, we
nevertheless prefer to provide full details.

A.1 Equivalence of ensembles

In the following we denote by νNα1,α2
the measure

νNα1,α2
=
⊗
x∈TN

νN,x
α1,α2

where νN,x
α1,α2

∼ Multinomial(1, 1− α1 − α2, α1, α2) . (A.1)

Lemma A.1. Given k1, k2 ∈ N0 such that k1 + k2 ≤ N , the distribution νNα1,α2
conditioned

on the event

Ωk1,k2
:=

{
η
∣∣∣ N∑

x=1

ηx1 = |η1| = k1,

N∑
x=1

ηx2 = |η2| = k2

}
(A.2)

is equal to the uniform distribution of k1, k2 particles of colours 1 and 2 respectively, over
N available sites. That is

νNα1,α2

(
η

∣∣∣∣|η1| = k1, |η2| = k2

)
=

{(
N

k1,k2

)−1
if η ∈ Ωk1,k2

0 else
(A.3)

Proof. We denote by Ωk1,k2
the subspace of Ω where there are k1, k2 colours 1 and 2

respectively. Then, we have that

νNα1,α2

(
η

∣∣∣∣|η1| = k1, |η2| = k2

)
=

νNα1,α2
(η, |η1| = k1, |η2| = k2)

νNα1,α2
(η1| = k1, |η2| = k2)

=


αk

1α
k
2 (1−α1−α2)

N−k1−k2∑
ξ∈Ωk1,k2

νN
α1,α2

(ξ)
if |η1| = k1 and |η2| = k2,

0 if |η1| 6= k1 or |η2| 6= k2 .

(A.4)
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By direct computations we write

αk
1α

k
2(1− α1 − α2)

N−k1−k2∑
ξ∈Ωk1,k2

νNα1,α2
(ξ)

=
αk1
1 αk2

2 (1− α1 − α2)
N−k1−k2

αk1
1 αk2

2 (1− α1 − α2)N−k1−k2

1

|Ωk1,k2 |
=

1

|Ωk1,k2 |
=

1(
N

k1,k2

) .
(A.5)

Lemma A.2. The measure νNα1,α2
can be written as a convex combination of uniform

measures, namely

νNα1,α2
(η) =

N∑
k1=0

N∑
k2=0

1{k1+k2≤N}ν
N
α1,α2

(
η

∣∣∣∣|η1| = k1, |η2| = k2

)
νNα1,α2

(|η1| = k1, |η2| = k2) .

(A.6)

Proof. The proof trivially follows from Lemma A.1 and from the fact that

N∑
k1=0

N∑
k2=0

1{k1+k2≤N}ν
N
α1,α2

(|η1| = k1, |η2| = k2) = 1 (A.7)

with
νNα1,α2

(|η1| = k1, |η2| = k2) ≥ 0 ∀k1, k2 . (A.8)

For the sake of simplicity we denote by µN,k1,k2
the following distribution:

µN,k1,k2
(η) = νNα1,α2

(
η

∣∣∣∣|η1| = k1, |η2| = k2

)
. (A.9)

Lemma A.3. [Equivalence of ensembles] Let ` ≤ N and consider the subset of sites
Λ` = {0, 1, . . . , `} ⊂ TN . We introduce the configuration ζ = (ζ0, . . . , ζ`) over Λ`, where
ζx = (ζx0 , ζ

x
1 , ζ

x
2 ) with ζx1 , ζ

x
2 ∈ {0, 1}, satisfying the (exclusion) constraint ζx0 = 1− ζx1 − ζx2 .

We further denote by m1 = |ζ1| and m2 = |ζ2|, the number of particles of species 1 and of
species 2 present in the subset Λ` respectively. Then,

lim
N→∞,

k1/N→α1,
k2/N→α2

µN,k1,k2

({
η : η0 = ζ0, . . . , η` = ζ`

})
= αm1

1 αm2
2 (1− α1 − α2)

`−m1−m2 . (A.10)

Proof. By direct computations we write

µN,k1,k2

({
η : η0 = ζ0, . . . η` = ζ`

})
=

(
N−`

k1−m1,k2−m2

)(
N

k1,k2

)
=

(N − `)!(N − k1 − k2)!k1!k2!

N !(k1 −m1)!(k2 −m2)!(N − k1 − k2 − `+m1 +m2)!

=
k1(k1 − 1) · · · (k1 −m1 + 1)

Nm1

k2(k2 − 1) · · · (k2 −m2 + 1)

Nm2

× (N − k1 − k2)(N − k1 − k2 − 1) · · · (N − k1 − k2 − `+m1 +m2 + 1)

N `−m1−m2

× N `

N(N − 1) · · · (N − `+ 1)
, (A.11)

where in the last equality we have used the properties of the factorials and we have
multiplied by N`

N` . By taking the limit we have that

lim
N→∞,

k1/N→α1,
k2/N→α2

µN,k1,k2

({
η : η0 = ζ0, . . . η` = ζ`

})
= αm1

1 αm2
2 (1− α1 − α2)

`−k1−k2 . (A.12)
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We call a function φ : Ω → R, with Ω defined as in (2.2), local if φ(η) depends only on
η1, ..., η` for some fixed ` not dependent on N .

Corollary A.4. For every local function φ, we have that

lim
N→∞

sup
0≤k1,k2≤N
k1+k2≤N

∣∣∣∣EµN,k1,k2
[φ]− EνN

k1
N

,
k2
N

[φ]

∣∣∣∣ = 0. (A.13)

Proof. For every finite N , the supremum over k1 and k2 is reached. Denote by k∗1(N) and
k∗2(N) a value of k’s where the supremum is attained. Since

0 ≤ k∗1(N)

N
≤ 1 , (A.14)

there exists a convergent subsequence of k∗1(N)/N . By consequence, as φ is local and by
Lemma A.3, we have

lim
i→∞

∣∣∣∣∣EµN,k∗
1(Ni),k

∗
2(Ni)

[φ]− EνN
k∗
1(Ni)

Ni
,
k∗
2(Ni)

Ni

[φ]

∣∣∣∣∣ = 0. (A.15)

This holds for every possible converging subsequence of k∗
1 (N)
N and hence the statement

follows.

A.2 One and two blocks estimates

In this section, our goal is to show that proving Theorem 2.3 can be reduced to
establishing two key lemmas, referred to as the one block and two blocks estimates,
respectively. We hereby follow verbatim the steps of the proof of Theorem 2.1 of [15],
with necessary adaptations to cover the multispecies case. The crucial aspect of this
approach lies in the application of the Feynman-Kac formula (c.f. [14, Proposition A.7.1]).

We focus on the quantity P1/3
N

(
1
N

∫ t

0
VN,ε(η(s))ds ≥ δ

)
and we apply the exponential

Chebyshev inequality, obtaining

P
1/3
N

(
1

N

∫ t

0

VN,ε(η(s))ds ≥ δ

)
≤ e−δNaE

1/3
N

[
exp

(
a

∫ t

0

VN,ε(η(s))ds

)]
, (A.16)

where we have denoted by E1/3
N the expectation with respect to P1/3

N . To estimate the
right hand side of (A.16) we define the operator

K = L+ aV , (A.17)

i.e.,

Kf(η) = Lf(η) + aV (η)f(η). (A.18)

Using Feynman-Kac formula (see [14, Proposition A.7.1, Lemma A.7.2])

E
1/3
N

[
exp

(
a

∫ t

0

VN,ε(η(s))ds

)]
=
〈
1, etK1

〉
L2(νN

1/3,1/3
)

≤ exp (tλmax(K)), (A.19)

where λmax(K) is the largest eigenvalue of the operator K. It follows that

e−δNaE
1/3
N

[
exp

(
a

∫ t

0

VN,ε(η(s))ds

)]
≤ exp

(
N

(
t

N
λmax(K)− δa

))
. (A.20)

EJP 30 (2025), paper 152.
Page 27/36

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1417
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A large deviation principle for the multispecies stirring process

Therefore, since we can make a arbitrarily large, to prove the superexponential estimate,
it is enough to show that

lim
ε→0

lim
N→∞

1

N
λmax(K) = 0 . (A.21)

For the largest eigenvalue we have the variational representation

λmax(K) = sup
fN

{
a〈VN,ε(η), fN 〉νN

1/3,1/3
−N2DN (fN )

}
, (A.22)

where the supremum is taken over functions fN that are probability densities with
respect to νN1/3,1/3, i.e., fN ≥ 0 and

∑
η∈Ω fN (η)3−N = 1. Furthermore, DN is the

so-called Dirichlet form associated with the generator L, and is given by

DN (fN ) =
1

2

∑
η,ξ∈Ω

νN1/3,1/3(η)L(η, ξ)
(√

fN (ξ)−
√
fN (η)

)2
=

3−N

2

∑
η∈Ω

N∑
x=1

2∑
α,β=0

ηxαη
x+1
β

(√
fN (ηx,x+1

α,β )−
√

fN (η)

)2

, (A.23)

where L(η, ξ) denotes the rate of jumping from configuration η to ξ under L, and where

〈VN,ε(η), fN 〉νN
1/3,1/3

=
∑
η∈Ω

VN,ε(η)fN (η)3−N . (A.24)

Since φ(η) is bounded, VN,ε(η) is a sum of N uniformly bounded terms by its definition
in (2.20), and so there exists a positive constant c such that

〈VN,ε(η), fN 〉νN
1/3,1/3

≤ cN . (A.25)

As a result, we restrict the supremum to the set of densities fN that satisfyDN (fN ) ≤ c/N .
Furthermore, we consider only the densities fN that are translation invariant (since
DN (·) is convex, for details see Appendix 10 of [14]). Consequently, we obtain the
estimate

sup
DN (fN )≤c/N

a
∑
η∈Ω

VN,ε(η)fN (η)3−N −N2DN (fN )


≤ sup

DN (fN )≤c/N

a
∑
η∈Ω

VN,ε(η)fN (η)3−N

 . (A.26)

This implies that is enough to show that

lim
ε→0

lim
N→∞

sup
DN (fN )≤c/N

1

N

∑
η∈Ω

VN,ε(η)fN (η)3−N

 = 0 . (A.27)

Writing out the definition of VN,ε(η) given in definition (2.20), we obtain, using translation
invariance of f ,

lim
ε→0

lim
N→∞

sup
DN (fN )≤c/N

∑
η∈Ω

∣∣∣∣∣∣ 1

2Nε+ 1

∑
|x|≤εN

τxφ(η)

−φ̃

 1

2Nε+ 1

∑
|x|≤εN

ηx1 ,
1

2Nε+ 1

∑
|x|≤εN

ηx2

∣∣∣∣∣∣ fN (η)3−N

 = 0 .

(A.28)
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For any fixed y ∈ TN , we consider a neighborhood of discrete points {y − k, y − k +

1, . . . , y + k − 1, y + k}. Within this neighborhood, we have the following approximation

1

N

∑
y

τyφ(η) =
1

N

∑
y

1

2k + 1

∑
|z−y|≤k

τzφ(η) +O
(

k

N

)
. (A.29)

Next we add and subtract the quantity φ̃
(

1
2k+1

∑
|z−x|≤k η

z
1 ,

1
2k+1

∑
|z−x|≤k η

z
2

)
inside the

absolute value of equation (A.28), obtaining∣∣∣∣∣∣ 1

2εN + 1

∑
|x|≤εN

τxφ(η)− φ̃

 1

2εN + 1

∑
|y|≤εN

ηy1 ,
1

2εN + 1

∑
|y|≤εN

ηy2

∣∣∣∣∣∣
≤ 1

2εN + 1

∑
|x|≤εN

∣∣∣∣∣∣ 1

2k + 1

∑
|z−x|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2

∣∣∣∣∣∣
+

1

2εN + 1

∑
|x|≤εN

∣∣∣∣∣∣φ̃
 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2


− φ̃

 1

2εN + 1

∑
|y|≤εN

ηy1 ,
1

2εN + 1

∑
|y|≤εN

ηy2

∣∣∣∣∣∣+O
(

k

N

)
. (A.30)

We consider the second addend in the right-hand-side of (A.30). By exploiting the
multi-variable mean-value theorem and (A.29) we have that

1

(2εN + 1)

∑
|x|≤εN

∣∣∣∣∣∣φ̃
 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2


− φ̃

 1

2εN + 1

∑
|y|≤εN

ηy1 ,
1

2εN + 1

∑
|y|≤εN

ηy2

∣∣∣∣∣∣
≤ ‖∇φ̃‖∞

(2εN + 1)

∑
|x|≤εN

∥∥∥∥∥∥
 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2


−

 1

2εN + 1

∑
|y|≤εN

ηy1 ,
1

2εN + 1

∑
|y|≤εN

ηy2

∥∥∥∥∥∥
2

≤ ‖∇φ̃‖∞
(2εN + 1)2

∑
|x|≤εN

∑
|y|≤εN

∥∥∥∥∥∥
 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2


−

 1

2k + 1

∑
|y−z|≤k

ηz1 ,
1

2k + 1

∑
|y−z|≤k

ηz2

∥∥∥∥∥∥
2

+O
(

k

N

)
. (A.31)

It follows that∣∣∣∣∣∣ 1

2εN + 1

∑
|x|≤εN

τxφ(η)− φ̃

 1

2εN + 1

∑
|y|≤εN

ηy1 ,
1

2εN + 1

∑
|y|≤εN

ηy2

∣∣∣∣∣∣
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≤ 1

2εN + 1

∑
|x|≤εN

∣∣∣∣∣∣ 1

2k + 1

∑
|z−x|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2

∣∣∣∣∣∣
+

‖∇φ̃‖∞
(2εN + 1)2

∑
|x|≤εN

∑
|y|≤εN

∥∥∥∥∥∥
 1

2k + 1

∑
|x−z|≤k

ηz1 ,
1

2k + 1

∑
|x−z|≤k

ηz2


−

 1

2k + 1

∑
|y−z|≤k

ηz1 ,
1

2k + 1

∑
|y−z|≤k

ηz2

∥∥∥∥∥∥
2

+O
(

k

N

)
. (A.32)

Arrived at this point, in order to obtain (A.27) it is sufficient to prove the following two
lemmas:

Lemma A.5 (One block estimate). For all c > 0

lim
k→∞

lim
N→∞

sup
D(fN )≤c/N∑

η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣ fN (η)3−N = 0 . (A.33)

Lemma A.6 (Two blocks estimate). For all c > 0

lim
k→∞

lim
ε→0

lim
N→∞

sup
|r|≤2εN+1

sup
D(fN )≤c/N∑

η∈Ω

∥∥∥∥∥∥
 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

−

 1

2k + 1

∑
|z+r|≤k

ηz1 ,
1

2k + 1

∑
|z+r|≤k

ηz2

∥∥∥∥∥∥
2

fN (η)3−N

= 0 . (A.34)

A.3 Proof of the one block estimate

Fix k ∈ N such that k ≤ N , and consider the set {x ∈ TN : |x| ≤ k}. We introduce
the subspace Ω2k+1 ⊂ Ω, which represents the state space restricted to these 2k + 1

sites. Then, for any function g : Ω2k+1 → R, we define the “restricted” Dirichlet form as
follows:

D∗
2k+1(g) =

1

2

∑
η∈Ω2k+1

3−(2k+1)
k−1∑
x=−k

2∑
α,β=0

ηxαη
x+1
β

(√
g(ηx,x+1

α,β )−
√

g(η)

)2

. (A.35)

Next, we define the marginal of the density fN over Ω2k+1 as

fk
N (η) = 3−N+2k+1

∑
ηx : |x|>k

fN (η) . (A.36)

Using the following inequality

(√∑
j

aj −
√∑

j

bj

)2

≤
∑
j

(√
aj −

√
bj

)2
, (A.37)
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we have that

D∗
2k+1(f

k
N ) =

1

2

∑
η∈Ω2k+1

3−N
k−1∑
x=−k

2∑
α,β=0

ηxαη
x+1
β

√ ∑
(ηx)|x|>k

fN (ηx,x+1
α,β )−

√ ∑
(ηx)|x|>k

fN (η)

2

≤ 1

2

∑
η∈Ω

3−N
k−1∑
x=−k

2∑
α,β=0

ηxαη
x+1
β

(√
fN (ηx,x+1

α,β )−
√

fN (η)

)2

=
1

2

k−1∑
x=−k

∑
η∈Ω

3−N
2∑

α,β=0

η0αη
1
β

(√
fN (η0,1

α,β)−
√
fN (η)

)2

=
2k

N
D(fN ) . (A.38)

Here, in the up to last equality we have used the translation invariance. All in all, we
obtain the upper bound

D∗
2k+1(f

k
N ) ≤ 2k

N
D(fN ) . (A.39)

As a consequence

sup
D(fN )≤c/N

∑
η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣ fN (η)3−N

≤ sup
D∗

2k+1(gk)≤(2ck)/N2

∑
η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)

− φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣ gk(η)3−2k−1 +O
(

k

N

)
.

(A.40)

Taking the limsup as N → ∞ and using the compactness of the level sets of the Dirichlet
form (for details see Appendix 10 of [14]), we have

lim
N→∞

sup
D∗

2k+1(gk)≤
2ck
N2

∑
η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)−φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣gk(η)3−2k−1

≤ sup
D∗

2k+1(gk)=0

∑
η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣gk(η)3−2k−1 .

(A.41)

The set of probability distribution with density gk such that D∗
2k+1(gk) = 0 is the set of

uniform distributions over Ω2k+1 with fixed number of particles k1, k2 of species 1 and 2

respectively. Therefore, taking the supremum in equation (A.41) is equivalent to taking
the supremum over all configurations η in the space Ω2k+1 with fixed number of particles
k1 and k2 of the two species. As a consequence, by taking the limsup for k → ∞, we have
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that

lim
k→∞

sup
D∗

2k+1(gk)=0

∑
η∈Ω

∣∣∣∣∣∣ 1

2k + 1

∑
|z|≤k

τzφ(η)− φ̃

 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2

∣∣∣∣∣∣ gk(η)3−2k−1

= lim
k→∞

sup
k1,k2=0,...,2k+1
k1+k2≤2k+1

∑
η∈Ω2k+1

|η1|=k1,|η2|=k2

∣∣∣ 1
2k+1

∑
|z|≤k τzφ(η)− φ̃

(
1

2k+1

∑
|z|≤k η

z
1 ,

1
2k+1

∑
|z|≤k η

z
2

)∣∣∣(
2k+1
k1,k2

)
= lim

k→∞
sup

k1,k2=0,...,k : k1+k2≤2k+1

∣∣∣∣∣Eµk,k1,k2
[φ]− Eνk

k1
2k+1

,
k2

2k+1

[φ]

∣∣∣∣∣
= 0 . (A.42)

Here, in the last step, we used Corollary A.4.

A.4 Proof of the two blocks estimate

In analogy to the approach used in the proof of Lemma A.5, we now consider two
blocks of size 2k + 1: the first centered around the microscopic point 0 ∈ TN and the
second centered around the microscopic point r ∈ TN . The centers of these two blocks
are separated by a distance of at most 2εN+1. We denote by ζ, ξ the configurations in the
first and second block respectively, both belonging to the sub-space Ω2k+1. We consider
an arbitrary function g : Ω2k+1 × Ω2k+1 → R and we define the following “restricted”
Dirichlet-forms:

D1
k(g) =

1

2

∑
ζ,ξ∈Ω2k+1

3−4k−2
k−1∑
x=−k

2∑
α,β=0

ζxαζ
x+1
β

(√
g(ζx,x+1

α,β , ξ)−
√

g(ζ, ξ)

)2

(A.43)

D2
k(g) =

1

2

∑
ζ,ξ∈Ω2k+1

3−4k−2
k−1∑
x=−k

2∑
α,β=0

ξxαξ
x+1
β

(√
g(ζ, ξx,x+1

α,β )−
√

g(ζ, ξ)

)2

(A.44)

∆k(g) =
1

2

∑
ζ,ξ∈Ω2k+1

3−4k−2
(√

g(ζ, ξ)0 −
√

g(ζ, ξ)
)2

(A.45)

where (ζ, ξ)0 indicates the configurations where the occupation variables at the center
points of the two blocks have been exchanged. Intuitively, the first Dirichlet-form
concerns the first block; the second Dirichlet-form the second block; the third Dirichlet-
form takes into account the transfer of particles from one block to the other. We now
introduce the marginal over the two blocks

fr,k
N (η) = 3−N+4k+2

∑
ηx : |x|>k, |x−r|>k

fN (η) . (A.46)

Arguing as in the proof of Lemma A.5, one can show the following estimates:

D1
k(f

r,k
N ) ≤ 2k

N
D(fN ) (A.47)

D2
k(f

r,k
N ) ≤ 2k

N
D(fN ) . (A.48)

We now aim to find an upper bound for the Dirichlet-form ∆k(·) in terms of ε. Obtaining
the configuration (ζ, ξ)0 from the configuration (ζ, ξ) is equivalent to permuting the
occupation variables η0 and ηr. We introduce the permutation operator Px,y between
sites x and y, defined as follows:

Px,yη =
(
η0, . . . , ηx−1, ηy, ηx+1, . . . , ηy−1, ηx, ηy+1, . . . , ηN

)
. (A.49)
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By applying (A.37) and by the definition of the marginal over the two blocks written in
(A.46) we obtain

∆k(f
r,k
N ) =

1

2

∑
ζ,ξ∈Ω2k+1

3−4k−2

(√
fr,k
N (ζ, ξ)0 −

√
fr,k
N (ζ, ξ)

)2

≤ 1

2

∑
η∈Ω

3−N

(√
fN (P0,rη)−

√
fN (η)

)2

. (A.50)

This permutation operator satisfies the property2

P1,2P3,2P2,1 = P1,2P2,1P1,3 = P1,3 . (A.51)

Therefore, we have that(√
fN (P0,rη)−

√
fN (η)

)2

=

(√
fN (P0,1η)−

√
fN (η) +

√
fN (P0,1P1,2η)−

√
fN (P0,1η)

+
√
fN (P2,3P1,2P0,1η)−

√
fN (P1,2P0,1η) + . . .

+
√
fN (P1,0 · · ·Pr−1,r−2Pr−1,r · · ·P0,1η)−

√
fN (P2,1 · · ·Pr−1,r−2Pr−1,r · · ·P0,1η)

)2

≤ (2r − 1)

{(√
fN (P0,1η)−

√
fN (η)

)2

+

(√
fN (P0,1P1,2η)−

√
fN (P0,1η)

)2

+

(√
fN (P2,3P1,2P0,1η)−

√
fN (P1,2P0,1η)

)2

+ . . .

+

(√
fN (P1,0 · · ·Pr−1,r−2Pr−1,r · · ·P0,1η)−

√
fN (P2,1 · · ·Pr−1,r−2Pr−1,r · · ·P0,1η)

)2
}
.

(A.52)

Consequently, we find that

1

2

∑
η∈Ω

3−N

(√
fN (P0,rη)−

√
fN (η)

)2

≤ (2r − 1)2
1

2

∑
η∈Ω

3−N
2∑

α,β=0

η0αη
1
β

(√
fN (η0,1

α,β)−
√
fN (η)

)2

, (A.53)

where we used the translation invariance of fN . Therefore, using (A.50), it follows that

∆k(f
r,k
N ) ≤ (2r − 1)2

N
D(fN ) . (A.54)

Finally, for fixed c > 0, ε > 0 and N ∈ N, we define the set

AN,ε :=

{
g : D1

k(g) ≤
2ck

N2
, D2

k(g) ≤
2ck

N2
, ∆k(g) ≤ ε2c

}
. (A.55)

Arguing as in the proof of Lemma A.5 it follows that

{fN : D(fN ) ≤ c/N, } ∩ {r : |r| ≤ εN} ⊂ {g : g ∈ AN,ε} . (A.56)

2that can be proved by using the fact that Pi,j = Pj,i and Pi,jPj,k = Pj,kPi,k.
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The above inclusion relation implies that

sup
|r|≤εN

sup
fN : D(fN )≤c/N

∑
η∈Ω

∥∥∥∥∥∥
 1

2k + 1

∑
|z|≤k

ηz1 ,
1

2k + 1

∑
|z|≤k

ηz2


−

 1

2k + 1

∑
|z+r|≤k

ηz1 ,
1

2k + 1

∑
|z+r|≤k

ηz2

∥∥∥∥∥∥
2

fN (η)3−N

≤ sup
g∈AN,ε

∑
ζ,ξ∈Ω2k+1

∥∥∥∥∥
(

1

2k + 1

k∑
x=−k

ζx1 ,
1

2k + 1

k∑
x=−k

ζx2

)

−

(
1

2k + 1

k∑
x=−k

ξx1 ,
1

2k + 1

k∑
x=−k

ξx2

)∥∥∥∥∥
2

g(ζ, ξ)3−4k−2 . (A.57)

By taking the limsup for N → ∞ and ε → 0, by exploiting the compactness of the level
sets of the Dirichlet forms and by using the fact that for all x ∈ R2 it holds ‖x‖1 ≥ ‖x‖2 3

we obtain

sup
D1

k(g)=0

D2
k(g)=0,

∆k(g)=0

∑
ζ,ξ∈Ω2k+1

∥∥∥∥∥
(

1

2k + 1

k∑
x=−k

ζx1 ,
1

2k + 1

k∑
x=−k

ζx2

)

−

(
1

2k + 1

k∑
x=−k

ξx1 ,
1

2k + 1

k∑
x=−k

ξx2

)∥∥∥∥∥
2

g(ζ, ξ)3−4k−2

≤ sup
D1

k(g)=0

D2
k(g)=0,

∆k(g)=0

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣
(

1

2k + 1

k∑
x=−k

ζx1

)
−

(
1

2k + 1

k∑
x=−k

ξx1

)∣∣∣∣∣ g(ζ, ξ)3−4k−2

+ sup
D1

k(g)=0

D2
k(g)=0,

∆k(g)=0

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣
(

1

2k + 1

k∑
x=−k

ζx2

)
−

(
1

2k + 1

k∑
x=−k

ξx2

)∣∣∣∣∣ g(ζ, ξ)3−4k−2 .

(A.58)

The set of distributions that satisfy D1
k(g) = D2

k(g) = ∆k(g) = 0 is the set of uniform
distributions over Ω2k+1 × Ω2k+1, with fixed numbers k1 and k2 of particles of species 1
and 2 respectively. We choose the function φ1 : Ω2k+1 → R as

φ1(ζ) = ζ01 and φ1(ξ) = ξ01 , (A.59)

and the function φ2 : Ω2k+1 → R as

φ2(ζ) = ζ02 and φ2(ξ) = ξ02 . (A.60)

Consequently, recalling (2.19), we have that

φ̃1(α1, α2) = α1 and φ̃2(α1, α2) = α2 . (A.61)

3Here we denoted by ‖x‖1 := |x1|+ |x2| and ‖x‖2 :=
√

|x1|2 + |x2|2.
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As a consequence, we obtain

lim
k→∞

sup
D1

k(g)=0

D2
k(g)=0,

∆k(g)=0

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣
(

1

2k + 1

k∑
x=−k

ζx1

)
−

(
1

2k + 1

k∑
x=−k

ξx1

)∣∣∣∣∣ g(ζ, ξ)3−4k−2

+ lim
k→∞

sup
D1

k(g)=0

D2
k(g)=0,

∆k(g)=0

∑
ζ,ξ∈Ω2k+1

∣∣∣∣∣
(

1

2k + 1

k∑
x=−k

ζx2

)
−

(
1

2k + 1

k∑
x=−k

ξx2

)∣∣∣∣∣ g(ζ, ξ)3−4k−2

≤ lim
k→∞

sup
0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ,ξ∈Ω2k+1

∣∣∣( 1
2k+1

∑k
x=−k ζ

x
1

)
− φ̃1

(
k1

4k+2 ,
k2

4k+2

)∣∣∣(
4k+2
k1,k2

)
+ lim

k→∞
sup

0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ,ξ∈Ω2k+1

∣∣∣( 1
2k+1

∑k
x=−k ξ

x
1

)
− φ̃1

(
k1

4k+2 ,
k2

4k+2

)∣∣∣(
4k+2
k1,k2

)
+ lim

k→∞
sup

0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ,ξ∈Ω2k+1

∣∣∣( 1
2k+1

∑k
x=−k ζ

x
2

)
− φ̃2

(
k2

4k+2 ,
k2

4k+2

)∣∣∣(
4k+2
k1,k2

)
+ lim

k→∞
sup

0≤k1,k2≤4k+2
k1+k2≤4k+2

∑
ζ,ξ∈Ω2k+1

∣∣∣( 1
2k+1

∑k
x=−k ξ

x
2

)
− φ̃2

(
k2

4k+2 ,
k2

4k+2

)∣∣∣(
4k+2
k1,k2

) = 0 . (A.62)

The last equality follows from Corollary A.4.
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