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A large deviation principle for the multispecies stirring
process”

Francesco Casini' Frank Redig* Hidde van Wiechen®

Abstract

In this paper we consider the multispecies stirring process on the discrete torus. We
prove a large deviation principle for the trajectory of the vector of densities of the
different species. The technique of proof consists in extending the method of the
foundational paper [15] based on the superexponential estimate to the multispecies
setting. This requires a careful choice of the corresponding weakly asymmetric
dynamics, which is parametrized by fields depending on the various species. We also
prove the hydrodynamic limit of this weakly asymmetric dynamics, which is similar
to the ABC model in [12, 2]. Using the appropriate asymmetric dynamics, we also
obtain that the mobility matrix relating the drift currents to the fields coincides with
the covariance matrix of the reversible multinomial distribution, which then further
leads to the Einstein relation.
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1 Introduction

1.1 Motivations

Interacting particle systems [23, 16] are used to study how macroscopic equations
emerge from microscopic stochastic dynamics, as well as in the study of driven non-
equilibrium systems and their non-equilibrium steady states. Among these, a well-studied
process is the so-called Symmetric Simple Exclusion Process (SSEP), where particle
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interactions are governed by an exclusion constraint that permits at most one particle
per site. This model (and various modifications of it) has been extensively studied
in the literature, both in the study of scaling limits [14, 7, 22, 24] as well as in the
understanding of microscopic properties of non-equilibrium steady states [21, 11]. The
study of large deviations of the trajectory of the empirical density field for the SSEP was
initiated in [15] (see also [13] where the gradient method was introduced in the context
of Ginzburg-Landau models). The method developed there, valid for so-called gradient
systems is based on the superexponential estimate, which allows to replace empirical
averages of local functions by functions of the density field. This implies that one can
prove with the same method at the same time the hydrodynamic limit of the weakly
asymmetric exclusion process as well as the large deviations from the hydrodynamic
limit for the SSEP.

The study of systems with multiple conserved quantities and their hydrodynamic limits
has gained substantial interest in recent times, see e.qg., [2, 4, 12, 19] and references
therein (see also e.g. [18] for an earlier reference). In particular, these results constitute
rigorous versions of fluctuating hydrodynamics or mode coupling theory, see e.g., [24,
25, 26]. Another motivation for multispecies (and also connected multi-layer) models
and their scaling limits is the phenomenon of uphill diffusion [5, 9] and systems of active
particles.

The process we study in our paper is the multispecies analogue of the SSEP, known
as the multispecies stirring process [30, 28, 3], on the geometry of the torus. In this
process, at every site there is at most one particle, which can be of type « € {1,...,n}.
The absence of a particle is called a particle of type zero. To each nearest neighbor
edge is associated a Poisson clock of rate 1, different Poisson clocks being independent.
When the clock of an edge rings, the occupancies of that edge are exchanged. An
exchange between a particle of type a € {1,...,n} at site x and an empty site at site
x + 1 is of course the same as a jump of the particle from z to x + 1. It is well-known
that the hydrodynamic limit for the densities of the n types of particles is a system of
uncoupled heat equations, and in [4] it is also proved that the fluctuations around this
hydrodynamic limit is an infinite dimensional Ornstein-Uhlenbeck process. Other results
on the multispecies stirring process include duality, and exact formulas for the moments
in the non-equilibrium steady state of a boundary driven version using duality combined
with integrability (both can be found in [3]).

To our knowledge, no explicit formula exists for the large deviation rate function for
the density profile in the non-equilibrium steady state, as is the case e.g. for the SSEP,
see [8]. In the setting of the macroscopic fluctuation theory, the rate function in the
non-equilibrium steady state is strongly related to the rate function for the trajectory of
the empirical density profile, i.e., the large deviations around the hydrodynamic limit.
Therefore, in order to make progress in the understanding of non-equilibrium large
deviations in multispecies models, it is natural to study the large deviations around the
hydrodynamic limit for the multispecies stirring process. To the best of our knowledge,
no rigorous results have been established in the context of dynamic large deviations for
the multispecies stirring process.

In this paper we implement the method of [15] for gradient systems, based on
the superexponential estimate, (see also [14] chapter 10) in our multispecies setting.
The study of the large deviation principle for the multispecies stirring process relies
on the introduction of a well-chosen weakly asymmetric process, where the rates are
deformed by an exponential tilting, i.e., by introducing weak and slowly varying (in space)
external fields that introduce a drift on the particles of various types. To understand
the probability of deviating trajectories for the densities, one has to choose these fields
governing the asymmetry in such a way that in the modified dynamics the deviating
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trajectory becomes typical. The large deviation rate function is then roughly the relative
entropy of the modified dynamics w.r.t. original dynamics which can be computed with
the Girsanov formula. In particular, exactly as is done in [15] for the single species
case, we also prove as byproduct the hydrodynamic limit of this weakly asymmetric
multispecies process, which is a system of nonlinear coupled parabolic equations, closely
related to the ABC model [12]. In this limiting partial differential equation (PDE), in
addition to diffusion, a drift term is introduced into the currents, which makes this system
appealing for describing multi-component diffusion processes in applications [20, 6]. The
relation between the drift currents and the fields is via the symmetric Onsager matrix,
which coincides with the covariance matrix of the multinomial reversible measures.

As a perspective towards further research, this work could serve as a starting point for
various questions. These include exploring the extension of large deviation principles and
hydrodynamic limits to boundary-driven systems in the multispecies setup, as previously
done for the single species case [10]. Additionally one can investigate the density
field fluctuations in the weakly asymmetric multispecies stirring process, analogous to
what has been done for the ABC model in the context of the Kardar-Parisi-Zhang (KPZ)
universality class [2]. Moreover, it would be of interest to apply these techniques to
multi-layer systems [19], where the geometry consists of two layers with SEP dynamics
occurring within each layer, coupled with particle exchange between the layers.

1.2 Organization of the paper and main results

Starting from the literature, in Section 2 we first recall the definition of the multi-
species stirring process, on the geometry of a torus, reporting also its reversible measure.
Then, in Section 2.2 we define a weakly asymmetric version of the multispecies stirring
process where the transition rates are perturbed by a family of potentials, indexed by
the species involved in the transition and dependent on space and time.

Finally, in Section 2.3 we state the so-called superexponential estimate. This estimate
turns out to be a useful tool in the proof of the hydrodynamic limit of the weakly
asymmetric model and in the proof of the large deviation principle as well. The proof
of this estimate goes beyond the main scope of this paper, therefore we report it in
Appendix A.

In Section 3 we state the hydrodynamic limit of the weakly asymmetric model. We
postpone the proof to Section 5 since it can be shown by standard methods. Then, in
Section 3.1, we make a specific choice of potentials needed for the proof of the large
deviation principle. This choice is further motivated by Einstein relations between
diffusion, mobility and compressibility matrices.

In Section 4, we proceed to state and prove the large deviation principle. With both
the original model and the weakly asymmetric model established, we first obtain the
Radon-Nikodym derivative of their respective path-space measures in Section 4.1. This
can be computed using the Girsanov formula and will be equal to exponential martingale
associated with the original model. For the upper bound, we first establish the exponen-
tial tightness of the path-space measures in Section 4.2 (which reduces the proof to ver-
ifying the upper bound for compact sets instead of closed sets). The upper bound is then
derived in Section 4.3 using the martingale property of the Radon-Nikodym derivative.

For the lower bound, which we prove in Section 4.4, we demonstrate the relationship
between the large deviation rate function and the hydrodynamic limit of the weakly
asymmetric model. Specifically, for every deviating path, we show the existence of a
potential such that this path becomes typical under the weakly asymmetric dynamics.
This leads to a new formulation of the large deviation rate functional, expressed as the
norm of this potential in an appropriate Sobolev space. Finally, using this relationship,
we are able to demonstrate the lower bound.
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2 The multispecies stirring process

In this section, we describe the multispecies stirring process. We first examine the
symmetric case, then we define a weakly asymmetric version in which the transition
rates are “deformed” through a potential.

In both cases, we consider the geometry of a one-dimensional torus with N sites,
denoted by Ty = Z/NZ. Additionally, for simplicity, we consider the scenario with two
types of particles, in addition to vacancies, also-called holes (the general case of n types
of particles will be considered in Remarks 3.4 and 4.16). The occupation variable is
denoted by 1 = (9)ac0,1,2} zeT, Where 0% € {0,1} represents the presence or absence
of a particle of type « at site x. For any ¢ > 0, the configuration of the process at time t
is denoted by n(t).

As a convention, we use the labels a = 1,2 to distinguish particles of species 1 and 2,
and we use the label a = 0 to denote the holes. The term “holes” is motivated by the fact
that its occupation variable is determined once we know the occupation variable of the
species of particles 1 and 2, due to the so-called “exclusion constraint”

g =1—n7 —n3 Ve e Ty. (2.1)

Therefore, the configuration space reads

2
Oy = ® Q, where Q.= {nr = (ng,ni,n5) : Zni = 1} . (2.2)

z€T N a=0

In the literature, the multispecies stirring process has also been considered with
maximal occupancy per site higher than 1 (see [30, 3]), and also the boundary driven
case has been considered (see [28, 3]).

In this paper, on the same geometry and configuration space, we introduce two types
of dynamics: the symmetric and the weakly asymmetric ones. In the symmetric dynamics,
each transition occurs at the same rate to both the left and the right. In contrast, the
weakly asymmetric dynamics introduces a weak asymmetry in the rates, resulting in a
“drift” in the particles’ jumps.

2.1 The symmetric case

In the symmetric case, the dynamics consists in swapping occupancies of nearest
neighbor sites according to independent rate 1 Poisson processes. More precisely,
considering any bond (z,x + 1), any particle or hole present at site x is exchanged with
any particle or hole present at site « + 1. For any «, 8 € {0, 1,2} such that ngnf,“ =1

we now define the configuration 7, ol

x + 1 via

obtained by swapping the occupancies at x and
Moy =m— 0%+ 05— o5 + o7t

where +62 indicates that a particle or vacancy of type « is added or removed at site z. If

nznfgﬂ # 1 then we make the convention that 17:” AR = 1. The infinitesimal generator of

this process is then given by a superposition of local operators as

N
L= Loor1 where Lyni1=Lyy (2.3)

where, for every function f : O — R

Lowirf(n ann;“( (Z5™) = f(m)) - 2.4)
a,=0
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This process has reversible product measures with multinomial marginals:
N
vk =Qvk. vk, ~ Multinomial(,py, ps). (2.5)
=1

Here p = (p1,p2) where p; and p, are the probabilities of having a particle of type 1
respectively 2 at any given site. Furthermore, under the measure %, the probability
to have no particle at any site x € Ty is equal to pg := 1 — p; — p2. Reversibility of

the measures v follows from the detailed balance condition. In the following, it will
be useful to denote by 1/]1\,/3 the reversible measure with multinomial densities given by
b1 =p2 = %

We denote by T = [0, 1] the one-dimensional torus. For v(-) = (71(),72(+)), where
Yo : T — [0,1] for € {1,2} are smooth functions such that v, (u) + 72(u) < 1 for all

u € T, we introduce the local equilibrium product measures associated to =:

N
VX,(‘) = ® VX,EX, (2.6)
x=1
where the marginals over each site are multinomial and given by

. o (& if 1,2},
v} ({n - 7721}){7 (%) if ae{l2} (2.7)

L= (%) = (F) if a=0

2.2 The weakly asymmetric stirring process

We introduce a weakly asymmetric version of the multispecies stirring process, which
will play a crucial role in the study of large deviations. We parametrize the weak
asymmetry by three smooth functions H = (Hy, Hoe, H12). Moreover, we define for
a < fand fixed T >0

Hpgo(u,t) == —Hpp(u,t)  YueT, Vtel0,T]. (2.8)
The reason for this antisymmetric choice (2.8) will be clarified later. The time-dependent

generator of the weakly asymmetric multispecies stirring process parametrized by H is
then given by

N
LMy =>"LH (t) suchthat L} . (t) =LY, (t) (2.9)
=1

where the local operators are defined as

2

(CH 0 ) = Y el (Fmss™) = fm) | (2.10)
a,3=0
and where
laainy(t) = exp (vNHaﬂ(%v t))ninﬁ“- (2.11)

Here V  denotes the discrete gradient, i.e.,
VNHQB(%,t):Ha/g(“"T“,t)—Hag(%,t). (2.12)

Later on we will omit the explicit dependence on t in (2.10) for notational simplicity.
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Remark 2.1. In this remark we explain the choice imposed by (2.8). In general, the
weakly asymmetric rate of exchanging a particle of type « at x and a particle of type
at y with « ~ y nearest neighbors, determined by the potential H,g, is given by

oxp (Hap($,1) = Hap(35:1)) e (2.13)

However, exchanging occupancy of type « at site x with type § at site y via the potential
H, 3 has to be identical with exchanging occupancy of type g at site y with type o at site
x via the potential Hg,. Therefore, the following has to hold

exXp (Haﬁ(%’t) - Haﬁ(%at)) Ufmz = €xXp (H,@a(%vt) - HBO((%J)) 77%7752- (2.14)

This is satisfied if and only if H,g = —Hg,.
We introduce some further notation. For all 7' > 0, we consider the Skorokhod space
D ([0,T7, ), which consists of the cadlag trajectories taking values in 2. On this space,
we define the following path space measures:
. ]P}V/S: path space measure of the symmetric process with generator (2.3), initialized
with the distribution v}/®.
. ]P}YV: path space measure of the symmetric process with generator (2.3), initialized
with the distribution 7.
. IP}(;H : path space measure of the weakly asymmetric process with generator (2.9),

initialized with the distribution »\”.

For each species « € {1,2} we introduce the corresponding empirical density field

N
1
pan ((N?8) =+ " 2 (N2s)d (2.15)
z=1

Remark 2.2. For the sake of notational simplicity, sometimes we will abbreviate the
empirical density jq, v (7(N?s)) by pa,n(s).

This density field po n(s) takes values in D ([0, T], M), where M; denotes the space
of measures over () with total mass bounded by 1, i.e., sup| <1 (tta,n(5), f) < 1. Addi-
tionally, we define the vector of density fields

pn(s) = (“LN(S)) (2.16)

w2 N ()

taking values in the space D ([0,T], My x M;). We consider two functions G1,Gs €
C?1(T x [0,T]) and we list them in a vector denoted by

L Gl(ua S)
G(u, s) == (GQ(U’ 8)) . 2.17)
Then, we denote the pairing
(a(5).68) = [ Gl (dus) + [ Galwshan(dus).  @18)
T T

2.3 Superexponential estimate

In this section we state the so-called superexponential estimate. This is a crucial tool
initially introduced in [13], [15], which allows to replace macroscopic averages of local
observables by an appropriate function of the local density. This is crucial both in the
derivation of the hydrodynamic limit of the weakly asymmetric model as well as in the
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large deviations of the symmetric model. In the latter it becomes important that the
replacement is superexponentially good, i.e., can still be performed e.g. in exponential
martingales containing local averages. This replacement is carried out within a space
interval constructed around a microscopic point. Eventually, the size of this interval
shrinks as the system size increases.

We consider a local function ¢ defined on 2y for every large enough NV, meaning that
¢ only depends on a fixed number of sites. For example, in the main part of this paper
we only consider functions of the type ¢(n) = ng‘;ng“ for o, 8 € {0,1,2} and =z € Ty.
Furthermore, we define

o(p) == Byz [¢]. (2.19)

namely the expectation with respect to the multinomial product measure v with con-
stant parameters p = (p1, p2).

Next, we introduce a function that will play a key role in the superexponential
estimate. This function relates to the behavior of occupation variables in a small
neighborhood around a microscopic point and it reads

N
1 - 1 1
Vnem) = E - E — - E S v,
e (m) 2N + 1 e = o | ono 1 9N ¥ 1 >
a=1 o —y|<Ne |o—yl<eN lo—yl<eN

(2.20)

where 7, is the shift operator, shifting the configuration n by y sites to the right, i.e.,
(rym)* = n**¥ for all = € Ty. The superexponential estimate is then the following result.

Theorem 2.3. Forany § >0, forallT >0and ¢ : Qy — R

_— T ]- 1/3 1 T
_ — > = —00. .
gl_l’)r(l) ]\}Lrgo N log P (N /0 Vne(n(s))ds > 5) 00 (2.21)

Since the proof of this Theorem is rather long and involved, and it is not the main
result of this paper, we postpone it to appendix A.

In the following corollary we show that the superexponential estimate also holds
when we start from a local equilibrium distribution.

Corollary 2.4. Given a profile v = (v1,72), (2.21) holds also for the path space measure
PY.

Proof. the proof follows from Theorem 2.3 and from the following upper bound for all
sets A C D([0,T]; Qn)

d Y
PR(A) = 3° PR (Al () < 3V PY(A), (2.22)
neQn Z/N

where we used that

Ay m(z) n2(x) 1 — oy — no(x)
Imy =] (T) (Aff) <7} 72) <3V, (2.23)

1/3 1 1 1
dvy 2eTN \ 3 3 3

3 Hydrodynamic limit of the weakly asymmetric model

In this section we state the hydrodynamic limit of the weakly asymmetric version of
the multispecies stirring model with generator (2.9).
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Remark 3.1. Sometimes, in this section and in the following one, in order to alleviate
the notation, we do not explicitly write the space and time dependence of the densi-
ties. Namely, when this dependence is understood we only write p, p1, p2 in place of
p(u,t), p1(u,t), p2(u,t). The same convention is used for the potentials H, g(u,t).

Theorem 3.2. As N tends to infinity, the density fields for the species oo = 1,2 converge
in probability ]P;*V’H to the unique weak solution (p;1(t,u), p2(t,u)) of the following system
of hydrodynamic equations

Oip1 = Apr — 2V (p1(1 — p1 — p2)VHig) — 2V (p1p2VHi2),

Osp2 = Apa — 2V (p2(1 — p1 — p2)VHag) + 2V (p1p2VHiz), (3.1)

with initial conditions

p1(0,u) =mi(u),  p2(0,u) = 72(u). (3.2)

Proof. The well-posedness of the PDE in (3.1) follows from the well-posedness of quasi-
linear parabolic equations as in Chapter 7 of [27]. For the rest of the proof we refer to
Section 5. O

In particular in the case where every H,g = 0, we recover the uncoupled heat
equations

Op1 = Ap1, (3.3)
Ip2 = Apa. (3.4)
which in matrix form reads
0, (Z;) = D(p1, p2) (iﬁl) , (3.5)
where
D(p1, p2) = (é ‘f) (3.6)

is the diffusion matrix.

3.1 Potentials for large deviations

In order to prove the large deviations for the trajectory of the empirical densities, we
need appropriate perturbations of the dynamics which make these deviating trajectories
typical. As will become clear in section 4, these perturbations correspond to the weakly
asymmetric stirring process, with potentials which we denote by

Hiy(u,t) :== Hyp(u,t), Hy(u,t) :== Hoo(u,t) YueT and te]0,T], (3.7)
and where moreover, the potential H;, satisfies
His(u,t) = Hy(u,t) — Ha(u,t) YueT and tel0,T]. (3.8)
Therefore, the resulting hydrodynamic equations read

dp1 = Ap1 =2V (p1(1 — p1)VH1) 4+ 2V (p1p2VH2),
3tp2 = Apz — 2V (pg(l — pQ)VHQ) + 2V (p1p2VH1) . (39)

The intuitive interpretation of this choice of potentials is the following. Particles of
type 1 and 2 are driven across the holes (particles of type 0) by the force depending
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on the potential H; and H> (namely the external fields are given by the gradient of the
potentials) respectively. When two particles of type 1 and 2 are adjacent, a competition
between the fields generated by the potentials H; and H> sets in. As a result, the net
field acting on each species is given by £V (H; — Hj) respectively. Moreover, as we will
point out later, this choice of the fields allows the system to satisfy the Einstein relation
connecting diffusion, mobility and compressibility matrices.

3.2 Currents and the Einstein relation

Macroscopic currents The hydrodynamic equations (3.9) can be interpreted as con-
servation laws. To illustrate this, we compute the macroscopic currents for each species.
These currents represent the net flux crossing an infinitesimal volume surrounding a
point u € T at any time ¢ € [0,7]. We identify two types of currents:

1. Fick’s currents: These currents are proportional to minus the density gradients via
the diffusion matrix as given in (3.6). The currents are expressed as

JF \Y
(é)Z—DWMM(V2>- (3.10)

Generally, the diffusivity matrix (3.6) may depend on the densities, but in this case,
it simplifies to the identity matrix.
2. Drift currents: these currents are defined as the product of (twice)® the mobility

matrix
pr(l—p1)  —pip2 )
; = 3.11
x(p1. p2) ( —P1p2 p2(1 — p2) ( :

and the external field, which is the gradient of the potential (H;, H2). Specifically,
these currents are given by

JP VH
(J;D) = 2x(p1, p2) (VH;) . (3.12)

It is important to note that the mobility matrix (3.11) is symmetric and corresponds
to the covariance matrix of the multinomial distribution with parameters py, p2.
This matrix also appears in the study of fluctuations as proved in [4].

We now compute the total currents, which are given by the sum of Fick’s and of the
drift currents for each species. Namely they read

I\ (IF JP
(Jz) _ <J2F) i (J2D> . (3.13)

Therefore, equation (3.9) can be obtained by substituting the total currents (3.13) in the
continuity equations of the densities, i.e.

Op1 = =V,
ath = 7VJ2 . (314)

Einstein’s relation We introduce the free energy functional F, that is defined as the
large deviation functional of a multinomial random variable with number of trials equal
to 1 and probabilities all equal to 1/3. Namely, we have that

F(p1,p2) = prlog(p1) + p2log(pz) + (1 — p1 — p2)log(l — p1 — p2) +log(3).  (3.15)

IThe factor 2 in front is due to the fact that in the generator (2.3) both jumps, to the left and to the right,
have rate 1, instead of 1/2.
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We compute the Hessian matrix of F'(p1, p2), sometimes called the inverse of the com-
pressibility matrix, obtaining

1—p1—p2 P2 + 1—p1—p2

" T — 1
Fo(pr,p2)= (P ez | lmmhe . (3.16)
Then we see that by combining (3.6), (3.11) and (3.16), the following relation holds.

D(p1,p2) = F (p1,p2)x(p1, p2) - (3.17)

This equality is called the Einstein relation (see [1, 24] for details). Notice that we used
the specific form of the potentials described in (3.7) and (3.8) to obtain the Einstein
relation (3.17), which provides another physical motivation for these conditions.

Remark 3.3. We can recover the hydrodynamic limit of the single species weakly

asymmetric exclusion process from equation (3.9) as given in [15, Theorem 3.1]. Namely,
if we choose the same potential H; = H, = H, then we obtain the following.

dp1 = Ap1 =2V (p1(1 — p1 — p2)VH),
3tp2 = Apg — 2V (pz(]. — pP1— pQ)VH) . (318)

By now defining ¢ := p1 + po, i.e., o does not distinguish between particles of type 1 and
type 2, then p satisfies

Oro = Ao —2V(o(1 — 0)VH). (3.19)

This result is to be expected, since the process defined as n := 1, + 72 is a standard
(weakly asymmetric) exclusion process.

Remark 3.4. At the cost of more notational complexity, but no additional mathematical
difficulties, one can generalize the hydrodynamic limit of Theorem 3.2 to any number of
species, i.e., « € {0,1,...,n} for any n € IN.

The hydrodynamic limit of the weakly asymmetric model with the general potentials

H,3 = —Hpg, is now given by a system of n dependent partial differential equations
8tpoc = Apa —2 Z \% (pap,BVHa,B) ’ (3.20)
p#a

with the convention that pg =1—)__, p,. For the large deviations of the trajectories of
the densities we only need n potentials. The choice of potentials, which is the analogue
of the conditions (3.7) and (3.8), then reads

H, := H,o, H.p:=H,— Hg. (3.21)
This choice of potentials then results in the following hydrodynamic limit

Opa = Apa =2V (pa(l = pa)VHy) + 2 Z \Y (paPﬁVHﬂ) . (3.22)
B#a

4 Large deviations

In this section we aim to prove the large deviation principle of the multispecies
stirring process. We start by defining the rate function Z : D([0,T], M; x My) — [0, ]
which consists of two parts

Zy(p) = h(p(0);7) + Zo(p), (4.1)
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where p(0) denotes the trajectory p evaluated at the initial time ¢ = 0. Here h(p(0);~) is
the static part of the large deviation functional, i.e. the one due to the initial product
measure 1/1'\7, as defined in (2.6). It is given by the formula

h(p(0);7) == sip he(p(0);7),

2

he(p(0);7) =Y (pa(0), da) — /T log (Z va(U)e%(“)) du, (4.2)
a=0

a=0

where the supremum is taken over all continuous ¢ = (g, &1, ¢2) and we use that
po :=1—p1—p2.

Zo(p) is the dynamic part of the large deviation functional, i.e., the one due to the
dynamics of the trajectory p over time. It has the following form,

Zo(p) = sup {(p: @) — 3Gl |- (4.3)

Here the supremum is taken over vectors of functions G = (g;) where both G1,G; €

C?1(T x [0,T]). The operator / is the linear operator corresponding to the hydrodynamic
limit of the multispecies SEP, i.e., it is given by

g(F’? G) = <p(T)7G(~,T)> - <p(0)7G(~,O)> - /0 <p(t), (at + A)G('7t)>dt’ (4.4)

which is equal to zero for all G iff p solves the PDE 0;p(t) = Ap(t) in the sense of
distributions. Lastly, the norm in the definition of the rate function (4.3) is the norm
corresponding to the following inner product

T
(G, H)yp) = 2/0 (p1(t)(1 = p1(1)), VG (- 1) VH1 (-, 1)) di
T
+2/0 (p2(t)(1 = pa(t)), VGa (-, ) VHy (-, 1)) dt
-2 /T <p1(t)p2(t), VGl(,t)VHQ(,t) + VGQ(,t)VHl(,t)> dt. (45)
0

Through this norm, and its action on smooth functions, we can then define a Hilbert
space H(p) as the completion of the set of smooth functions.

Remark 4.1. In Lemmas 4.9 and 4.10 we give more explicit forms of the functionals
h(-;+) and Z, respectively. Namely, h(p(0);~) can be written as the limit of relative
entropies of multinomials with respective densities p(0) and ~, and Zy(p) = 3|/ H| |3_L( o)
where H € H(p) is the unique function such that p satisfies (3.9) in the weak sense.

In order for a large deviation principle to hold, we need to show that we have the
following two inequalities:

» Upper bound: For every closed C C D([0,T]; M; x M;) we have that

— 1
— 1 - .
ngl(l)o N log P} (unv €C) < ;Iégz7(p)' (4.6)

» Lower bound: For every open O C D([0,T]; M; x M;j) we have that

1
. 7 ’7 > _ .
lenio v g Py (py € 0) 2 ,;ggly(p)- (4.7)
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We give a proof for the upper and lower bound in sections 4.3 and 4.4 respectively. First

we calculate the Radon-Nikodym derivative dfm of the path space measures of the
weakly asymmetric process relative to the orlglnal process in Section 4.1. Additionally,
we establish exponential tightness in section 4.2 which allows for the substitution of

closed sets with compact sets in the derivation of the upper bound.

Remark 4.2. Often, in the following to alleviate notation we do not write explicitly the
time dependence of the occupation variables. Namely, we write n? in place of nZ(N?s)
when the time dependence is understood.

4.1 Radon-Nikodym derivative and the exponential martingale

The goal of this section is to obtain an explicit expression of the Radon-Nikodym
derivative of the path space measure IP'J(,"H with respect to the path space measure PY;.
From the literature (see [14, Proposition 2.6] and [17, Chapter 19]) the Girsanov formula
states that

Py & & T (i)
log N = / log [ —2Z sz’m'H (s)
() - 2 [ (o

_N2Z Z/ nens ™ (exp {VNHap (%,5)} —1)ds. (4.8)

z=1a,5=0

Here, we represent by J..’ ””H( ) the number of transitions occurred up to time s € [0, 7]

that swap the occupancies of species «a,  between sites = and = + 1. Under the path
space measure IP}’V’H the random process (Ji’é“(s)) N is a Poisson process with
’ s>0

H. afp

intensity Clorz +1)( s). In the following result we provide an alternative formula for the

-yH

Radon-Nikodym derivative dP d]P., .

Lemma 4.3. For all T > 0, for all N € IN and for all Hy, Hy € C*>1(T x [0,7]) we have
that

apy
Zin(pn) = d]PA, =exp (N{(un(T), H(-,T)) — N(un(0), H(,0)))

T
- exp </ e N (LHED) (9, 4 N2L) e <uN<s>,H<~,s>>ds>,
0

(4.9)
Additionally, under conditions (2.8), (3.7) and (3.8) we have
N2e=Npn(9),H(.9)) £ N (). H(s) Z Z n;néﬂ lexp {VnHap (%,s)} —1] ,
e (4.10)
and where
NN g NN ODHED) (1 (5),0,Hy (- 5)) + (12(s), O Ha(, ). (4.11)
EJP 30 (2025), paper 152. https://www.imstat.org/ejp
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Proof. We consider the first term in the right hand side of equation (4.8) and we write

el (s)
> [ (“”511 )djiﬁ“@
r=1 a,3=0
N T
=3[ Vo (%.5) [0 () — A5 )]
z=170

N T
+ z_jl /0 Vv Hzo (%.5) a5 (5) — A5 (s)]

N T
+3 /0 Vi (£, 5) [ng“‘“(s) —dJ;ﬁ“(s)] L 412)
=1

We use conditions (2.8), (3.7) and (3.8). Moreover, we denote by dnZ(s) the infinitesimal
net current of particles of type « crossing the site x up to time s € [0, 7], i.e., it is defined
through fot dnZ(s) = nx(t) — n%(0) for any ¢ > 0. We then have that
dnf (s) = dJgi™ " (s) — dJig" " (8) — dJTTH (s) + ddpy™
= dJgr () + ATy () 4+ ATy T (s) — dgp Y (s),
dngz () = dJg5" " (s) — dJ3"  (s) — A5 () + AT (s)

— AT () AT () + AT (s) — AT (), (413)
and so
N
r o ( z dJa:,J;-‘rl de,I-‘rl dJ:c,;E-‘rl dJJ;,a;—i-l
Z N S 01 (8) —dJig" " (s) —dJys" " (s) +ddyy
=1 0

A5 s) + ARy () + AUy (s) — g ()]

T
b [ () [0 0 - AT (9) - AT (9) + AT )
0
—dJgy () + Ay () + AT (s) — AUy (s)
N T T
z x £ x
— ;::1 {/0 H; (N,s> dnf(s) —1—/0 H, (N,s) dn2(s)}
= N (T), Hi (-, T)) + N{(u3'(T), Hz (-, T)) = N{uq (0), H1 (-,0)) = N{p3'(0), Ha (-, 0))
T T
_ N/ (i (), 05 Hy (- ))ds — N/ (N (), 0, Ho (-, ))ds, (4.14)
0 0
where in the last equality we have integrated by parts.

To conclude the proof we have to show that (4.10) holds true. By applying the
generator (2.3) we have that

N2~ Nun (), H(-:8)) poN{pn (s),H(:,5))

SN Y 5t (exp {N (a (25 (V28), Hi (e 9))+-N (1 (357 (V25), (-, 9)))

z=1a,5=0
~exp {=N(u (n(N?s)), Hi(-,s)) — N{uy (n(N?s)), Ha(-, )} — 1)
N 2
Z S nin ! [exp {VnHap (%,5)} — 1], (4.15)
z=1a,8=0
EJP 30 (2025), paper 152. https://www.imstat.org/ejp
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where we have used the conditions on the potentials expressed in equations (2.8), (3.7)
and (3.8). O

Corollary 4.4. Equation (4.10) can be written as

N267N<I-"N (5)7H(')S)>£6N<”N(S)7H(')S)>

N
= >0 ok [A o) + (i) (VL (5.9)°]
g [AM (£,5) + (1= 5™ (VH: (%,9)) ]
— st [VH (%,5) VHz (%, 8)] —n5ni ™ [VH: (%, 5) VHz2 (%,5)] } +0(1).
(4.16)

Furthermore, for all Hy, H, € C*1(T x [0,T]) and for all N € N there exists a constant
¢ > 0 such that
dIP’Y’
d]P'Y

<exp{cN}. (4.17)

Proof. First we expand the exponential function on the right hand side of (4.10) by using
the Taylor series and we also use (2.1). Finally, we use conditions (2.8), (3.7) and (3.8),
obtaining

Z Z et [exp { Vv Hag (£,5)} — 1]

=1 a,=0

N 2
]' x
JW§:§:&aMﬁﬁaHw<m$+QunMﬁw>H@(;a>}ﬁ%ﬂ+oa>

z=1 af=0

Mz

(A (3.9) + AN (5) 58 (1= 57) (V1 (39))

=1
g (L= 15™1) (VHa (5,9)) = (5 + g (VH: (3,5) VH: (3,5)) )+ O(1).
(4.18)

The estimate (4.17) follows, since n% < 1 forall a € {1,2} and for all € T and because
the functions H(-,-), Ha(-,-) belong to the space C**(T x [0, T]). O

Corollary 4.5. The super exponential estimate (2.21) holds also for the path space
measure P},

Proof. For any measurable set A C D ([0,7], M; x M;) we have the following chain of
inequalities

1 1 dpP?, apPyH 1 apH
¥ log PTH (A) = ¥ log EYH Ad]P’YJvVH dIEJ’\%V = log EY, |14 dIP"
N
1
< —logE} [1a] +c. (4.19)

N

Here we have changed the path space measure from IPY\;H to P}, and we have used the
estimate (4.17). Therefore, by taking the limit N — oo and by using Theorem 2.3 we
have the result. O
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4.2 Exponential tightness

Theorem 4.6 (Exponential Tightness). For any n € IN there exists a compact set K,, C
D([0,T], My x M) such that

— 1
A}gnoo N log P (un ¢ Kp) = —n. (4.20)

With exponential tightness, the large deviation upper bound for closed sets C €

([0,T], M1 x M;) follows from the upper bound for compact sets. Namely, for every
n € IN we have that

I — 1
: . Y < 1i - Y Y
A}E}noo I log P (un €C) < 1\}51100 N log [P} (pny € CNEK,) VP (N ¢ Ky (4.21)

where C N K, is a compact set.

We will prove Theorem 4.6 following the same approach as in [14, Section 10.4]
start with the following Lemma.

Lemma 4.7. For everye > 0 and G € C*(T) x C*(T)

1
lim lim — log P}

lm lim = <|ﬂ|p<5 [{pn (), G) = (N (5), G)| = 5) = —o0. (4.22)

Proof. First note that by (2.22), it is enough to show that (4.22) holds for the equilibrium
1/3 L .
measure IP;”. We then use the following inclusion

|s—t|<d

{ sup [{ (1), G) — (un(s), G)| za}

(T6]
- U { sup |</J’N(t)7 G> - <u/N(k5)a G>| > }15} ) (4.23)
k=0 | FOSt<(k+1)d

in order to find that

— 1 1/3
lim — logP sup [{pun(t),G) — (un(s),G)| > ¢
Jim_ - logPY (s_t<5< (1), G) — {pn(5). G)
< hm —log [Tsu;)]IPl/?’ sup
oo N ks<t<(k+1)

(un (1), G) = (pn (R0), G)| > 16)

0<t<s

- T~ logPYf® (sup (6. @) — (i (0).G)] > 1 ) (4.20)

where we used that P N/ is an invariant measure for the last equality. Since we are

considering every G, we can neglect the absolute value. Furthermore, recalling the
definition of ZEN(MN) in (4.9), we have that for any A > 0

0<t<é

IP}\%3 ( sup (un(t),G) — (un(0),G) > i )

1 t
= IP}\{3 < sup Nlog Zt N(HN) N/ —AN(un (5).G (8 + N2£) NN (5).G) g g > iAe)
0<t<§

< IPJI\?3 ( sup —lothAN(uN) > é)\ )
o<t<s N

1 t
+IP]1\,/3 < sup —/ —AN(un (5),G) (8 +N2£) ANV N (9),G) g g > é)\{:‘) . (4.25)
o<t<s N
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Note that by (4.16) and the fact that there is at most one particle per site,

1 t
sup —/ e AN (un(5),G) (85 + N2£) NN (5).G) g g — 0(9). (4.26)
o<t<s IV

Furthermore, by Doob’s martingale inequality

1
Py’ ( sup NIOthN(NN) 1A€) =Py° ( sup Z)§(un) > éN”) <e s

0<t<§ 0<t<s
(4.27)
where we used that Z ’\G(u ~) is a mean 1 martingale. Therefore we find that
lim lim —logIP < sup (un(t),G) — (un(0),G) > 5) < =3, (4.28)
§—0 N—oo N 0<t<s
and since we took )\ > 0 arbitrary this concludes the proof. O

With this Lemma we are able to prove the exponential tightness of the empirical
distributions.

Proof of Theorem 4.6. Consider a countable uniformly dense family { Hy }rew € C?(T) x
C?(T). Then, for each § > 0, ¢ > 0 we define the following set

Crse= {[,L € D([0,T), M1 x My); sup [{u(t), Hi) — (p(s), Hg)| < e} . (4.29)

jt—s| <6

First of all, note that C, ;. is closed. Furthermore, by Lemma 4.7 we know that we can
find a 6 = §(k, m,n) such that

P (N & Crs1/m) < exp(—Nnmk) (4.30)

for N large enough. We then define

ICn = n Ck,é(k,m,n),l/nv (4.31)
E>1,m>1
Then we find that
Pl (un € Ky) < Z exp(—Nnmk) < Cexp(—Nn) (4.32)
k>1,m>1

where C' > 0 is some constant, and so
— 1
]\;gnoo N log]PX,(pN ZK,) < —n. (4.33)

Since IC,, is closed, we now only have to show that /C,, is relatively compact for every
n € N, i.e., we need to show that the following two things holds [14, Proposition 4.1.2]

1. {p(t); € Ky, t € [0,T]} is relatively compact in M; x M;.
2. lim sup ws(p) =0 where
6— OHG

[ee]

S )~ k) H
o) = S Do T (o), H) — (o) A

Note here that (1) is satisfied since M; x M; itself is compact, and (2) is satisfied by the
definition of K,,, hence K,, is compact. O
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4.3 Proof of the upper bound

Theorem 4.8 (Upper bound for compact sets). For any compact K C D ([0, T], M1 x M;)
we have that
hm —logIP’y (ny € K) < — inf I, (p). (4.35)
pE

Proof. For any given G1,G2 € C*1(T x [0,T]), and € > 0, § > 0, we introduce the
following

1 1
IS — | D || DL wh| | ds| <4
(4.36)
Moreover, we denote by
8,0,
Bl nG = Mas1BiNG. c, - (4.37)

By the superexponential estimate with ¢(n) = n%(s )r]g“( ), it then follows that for every

6>0

lim ngnoo—logIP (Bine) =1, (4.38)
and so
T —logPY ({pw € K)) = T T —logPY ({uy €K} N Bl yg). (439
N5oo N N AN 0 N N ~ (IHUN e N,G) - .

We now define g := 51— 4.} and we introduce the following

1
2e
ZE N (1N * q2) ==exp (ﬂ(uw $qe; G) — %HGH?A(M*%))

=exp {N{(ux(T) * 42), G( 1) = N{(ux(0) 4.) , G(, 0))}

- exp N/ (b (t) *ge), (33+A)G(~,t)>dt}

- exp MQ,N(t) % qe) (1 — (po,n(t) *q2)), (VGa(:, *ydt

- exp 2N/ w1 N (t) % qe) (po, N (t) % ¢e) , VG1(-, £) VGa(:, dt}
(4.

- exp { N/ (pa,n () *qe) (1 — (a1, n(8) *ge)) , (VG1 (-, dt

40)

where * is the convolution. Recalling the definition of the exponential martingale
Z§ y(uy) defined in (4.9), by (4.10) we have that for all N and all {n(t),0 <t < T} €

B!y
Z€ n 1y * q=) < Z€ v (un) exp {N(c(e) + )}, (4.41)
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with ¢(¢) a constant that vanishes as ¢ — 0. Using (4.39) and recalling the definition of
he in (4.2) we then find that

N@m log P}, ({NN ek} n Bg,N,G)

= lim i10 E Z%N(uzv*qs) eNho(n (0):7)
_N—><>ON g V%

l{{uNeIC} N BgyNG} ZZGN(HN % qe) " eNhe(pn (0))

< NIE%O Nbg E,y {ZJC“Y:N(H’N) . eNh(p(uN(o)d)} +c(e) +6

1 . . 1 2
= inf {no(p(0):7) + U 4::G) ~ 411G Bigpug.) } (4.42)

Since Z{ v (pn) is a martingale with Z§y (uy) =1
EV}; [ZTC::N(HN)eNhMHN(O);’Y)} - EV} [eNh¢(HN(0);’Y)] =1. (4.43)

By taking the limsup for ¢ — 0 and § — 0, by optimizing over G and over ¢ and by
exchanging the supremum and the infimum (by using the argument of Lemma 11.3 of
[29]) we obtain that

- — 1

T T T - ~ Py < _

iy iy i s P (e €K1 0 Bowe) < - Ble) - aad)
then the Theorem follows. O

4.4 Proof of the lower bound

Lemma 4.9. Assume that h(p(0);7) < oo, then there exists a density w := d’ég\o), with A
the Lebesgue measure, and

1 dv§
h(p(0);7) = lim —E,e |log [ —X)]|. 4.45
(p(0);7) = lim — N[og(d%ﬂ (4.45)
Proof. If p(0) is not absolutely continuous with respect to the Lebesgue measure, then
there exists a A C T and a € {1,2} such that A(4) = 0 and p,(0)(4) > 0. Then, for
every n € IN we choose a sequence (¢¢(:;3)ke11\1 such that ¢fl"]3 — nl 4, one can show that
h(p(0);) = oo by letting n — oo. Hence if h(p(0);v) < co we have that w exists. The

rest of a proof is just a calculation.

h(p(0); ) = sup {Zwa,%) —~ /Tlog <Z %(u)em(u)) du}

W
— lim %Eyﬁ [1og <dl’jNﬂ . (4.46)

O

Lemma 4.10. Assume that Z,(p) < oo, then there exists an H € H(p) such that for all
smooth functions G we have that

Up;G) = (G, H>7.¢(p) . (4.47)

Moreover, the following holds
To(p) = 31 H . (4.48)
EJP 30 (2025), paper 152. https://www.imstat.org/ejp
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Remark 4.11. Observe that if (4.47) holds for all GG, then p satisfies the equations (3.9)
in the sense of distributions. This will be used in the proof of the large deviation lower
bound. Indeed, by choosing a non-typical trajectory, we can find an H that makes it
typical, i.e. that makes it solve the weakly asymmetric hydrodynamic equations.

Proof. By definition, we have that
1
To(p) = M(p: G) = 5X[1Gl 3y (4.49)

for any A > 0. Optimizing over A we have that

o e G)

= B2 (4.50)
1GIE, )

and so
Up; G)* < 2To(p) Gy p. (4.51)

This means that the linear functional £(p; -) is bounded in the Hilbert space H(p) and so,
by the Riesz representation Theorem, there exists an H € H(p) such that (4.47) holds
for all G. Using this, we find that

— 1 2
To(p) = sup {(G. H)uie) — 311Gl )

= sup {31 H 3y~ 311H Gl |

= %HHH%{(,))a (4.52)
which concludes the proof. O

Remark 4.12. We have shown that if Zy(p) < oo, then there exists an H € H(p) such
that p satisfies the equations (3.9). However, for the proof of the hydrodynamic limit of
the weakly asymmetric model we need a stronger regularity condition on H, namely
Hap € C*1([0,T] x T) for each «, 3. We denote the subset of all trajectories that satisfy
this extra regularity condition by D, ([0, T], M1 x M;). By its supremum representation
in (4.3), Zy is convex and lower semi-continuous, hence it can be shown that every
p € D, (]0,T]), My x M) can be approximated by trajectories p,, € D ([0,T], M1 x M),
such that

n—oo
A detailed proof of such a result can be found e.g. in [14, Lemma 10.5.5].

Theorem 4.13. Fix p € D, ([0, T], My x M,), then for any open neighborhood O around
p we have that

1
lim NlogIP;(, (uy € O0) > —Zy(p). (4.54)

N—o00

Proof. If 7,(p) = co then the result is immediate, hence we can assume that Z.,(p) < oo.
Therefore, by Lemma 4.10, there exists a smooth H such that 3.9 holds weakly. Fix this
H and recall that dp(0) = wd\, then we denote

APy dvg P

dPY,  dv}, dP} (4.55)
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We then have that

apsH dary, w.H dpr?y,

From Theorem 3.2 it follows that p is the typical trajectory of the new dynamics, and so

lim P (uy € 0) = 1. (4.57)

N —oc0

Using this and Jensen inequality, we have that

lim — o P (uy € O) = lim L ogreH | PX
N%ooN SE NN NaooN BN dIPﬁH
. 1 H dP7
> lim —E% [lo N
T Nooo N & <dIP“AJfH)
. 1 w.H H dVX/v
=1 —E5 |1 Z —
N%OON N [og( T,N(HN) vy

— |Up. H) = §|H ) + h(p0):)] . (458)

Lastly, by Lemma 4.10, we know that {(p, H) = ||H||3,,, and Zo(p) = 5[/ H]|[3;,,), hence
we indeed find that

. 1
lim - logPY (i € O) > = ||| Hlfyp + h(p(0):7)] =Ty(p).  (4.59)
N—oc0 O

Theorem 4.14. For any open set O C D ([0, T], My x M;) we have that

1
—_— ~ o
ngn log P} (un € O) > ;Iel(fDI.,(p). (4.60)

Proof. The proofis a straightforward consequence of Theorem 4.13 and Remark 4.12. O

Remark 4.15. In parallel with Remark 3.3, by choosing the same potential H; = Hy, = H
we can recover the large deviation rate function of the dynamics of the single species
SEP as given in [15]. Namely, by putting ¢ = p; + p2 the rate function Zy(p) from (4.52)
becomes a function of p only, i.e.,

1 T 2

Zo(p) = 511 = | (261~ o(0). (VH ) ). (4.61)
Remark 4.16. In parallel with Remark 3.4, the large deviation result reported in this
section can be generalized to an arbitrary number of species, namely a € {0,1,...,n}.
In this case, we consider a n-dimensional vector of densities denoted by p = (p1,. .., pn).
Moreover, we consider n-potentials denoted by H,, that we list in the vector H =

(Hy,...,H,). Therefore, the large deviation functional reads
7 (p) = 2" (p) + 1™ (p(0);7) - (4.62)

Here h(")(p(0);~) is the relative entropy between the multinomial distributions with
densities corresponding to p evaluated at time ¢ = 0 and the original starting density
given by v = (71, ...,7»). Moreover, we have that

n 1
7" (p) = S H 3y, (4.63)
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where the norm is given by

H g, =2 / Pa(8)(1 = pa()), (VHa (- 1))t

a=1
—222/ (pa(t)ps(t), VHu (-, t)VHg(-,t))dt . (4.64)
a=1 p+#a«a

For any k < n there exists a relation between the dynamic part of the large deviation
rate function of the n-species model I(g") and of the k-species model Iék). Namely, for any
partition {44, ..., Ay} of the set {1,...,n}, by choosing the same potentials within each
partition, i.e., H; = H, for every j € Ay, we find that

I (py, oy po) = T8 (Br, oy i), (4.65)

where py = ZjeAg p;j. This generalizes the result in Remark 4.15.

5 Proof of the hydrodynamic limit of the weakly-asymmetric pro-
cess

We consider the Dynkin martingale

MR (t) = (un (1), G(-, 1)) — (un(0), G(-, 0)) —/0 N2(LH +0,)(un (5), G(-, 8))ds
= MUy (1) + M3 (t), (5.1)

where

MaG:N(t) = <MO¢,N(t)7 G('a t)> - <N’O¢,N(O)’ G('? 0)> - /0 NQ(EH + as><ﬂa,N(S)7 G('a S)>d8'
(5.2)

We see that we need to apply the generator £LH to the density field (i n(s),G(-,s)).
This can be derived from the effect of the generator applied to the function f(n) = nZ.
We start in the case of o = 1. If we look at L7 we get a positive (resp. negative)
contribution of the rates where a particle of type 1 is added (resp. subtracted) at position
z, i.e.,

+ _ H0, H.2, H, H.1,
£H771 = C(m,gil) (8) + C(m,iil)( ) + C(m 110:6)( ) + C(le?x) (S)

g’;fl)(s) - cg’;fl)(s) (Fi 0111)(5) cgfilm)(s) (5.3)

Using that
Cg?ﬁu(s) = exp (VNHaﬂ( ))772772“
= (1 + VNHas(%,s) + (VnHap(%,5)) ) it + O0(xs),  (5.4)
we find that

/~:H771 — (1 + VNHOI(%v 5)) nznw-l-l (1 + VNHQI(Ny )) 77§7ﬁ+1
+ (14 VaHio(55%,9)) i~ 'ng + (1+ Vv His (555, 9)) ni s
= (1 Vol ) " = (1+ T (s >> i

— (L+ VNHo (52, 8) 0y 't — (1+ VnHa (52, 9)) n5~'nf + R(N, z, s),
(5.5)
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with R(N, z,s) a remainder term which we will show vanishes once combined with the
test function G as we send N — oco.

First we will focus on the terms that do not depend on H in the above equation.
Using the fact that nyp = 1 — n; — 12, after some calculation we find that

x, xr+1 x, r+1 rx—1_x rx—1, x

mont T ugnt T i g T s — gt = aing T =g e — 05 g
=0t - 207,
(5.6)
i.e., we recover the discrete Laplacian of n{.
For the terms depending on the potential H;y = —Hj; we then have that
(=Y + 5~ 'nt) VivHuo(55+,s) — (i + g ™) Vv Hio(§.8). - (8.7)
and the terms depending on the potential Hi, = —Ho;
(0¥ ™"n5 +m5~'nT) Vv Hia (552, 8) — (i +nins ') VaHia(%,5). (5.8)
With these calculations, we then find that
N2LH (i n(5), G-, 8))
N
= NY (T + 0T = 2m)G (% )
z=1
N
+ N3 (g + 0§ ) Vv Hio (552, 9)
z=1
— (it 4 ning ™) Vv Hio(%,9)) G (5. 9)
N
+ NS (s 4+ ) Vv Hia (57t 9)
r=1
— (gni ™! ™) Vv Hia(%,9)) G4 9)
N
+ N> R(N,z,5)G(%,5). (5.9)
z=1
where by reordering the terms, we have
Nz‘cH(Ml,N(S)’ G(7 5)>
N N
=N niANG(%,8) + N> (m5ni™ +nfng ™) Vv Hio(%,9) VNG(%, 9)
r=1 =1
N N
+ N (gt gt Vv Hia(%,5)VNG(%,s) + N Y R(N,x,5)G(%£, ).
r=1 r=1
(5.10)

The remainder term R(N, z, s) is given by

2
R(N,@,s) = (mni™* = nimg ™) (VaHho(%.9)) = (5 ™08 = ni ™) (W Hio( 551, )

2
+ (77%”77?“ - 77@7%“) (VNH12(%a 8)) _(77;7177? — 77?177%) (VNH12(xN;17S))2
+ O(3); (5.11)
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and when combined with a test function, we see that

N
NZR(N,&E,S)G(£ s)

N
=1

Y 2
=N (nini™ —ning™) (VNHlo(%,S)) VNG(E,s)
=1
al 2
=N (it =t (Yool ) VaGla) + 0. (6:12)

r=1
Note that this vanishes as N — oo since the discrete derivative V  is an operator of
order ;. Thus, all in all:

N2LH (v (s), G-, 5))

1 X T 1 . b T 1y
=5 2 MAG(F) + 5 Do (i +ning ™) VHo(F.5)VG(5.9)
z€T N z€T N
1 xr T X T X
+ 5 N7 (gt g™ VH (£, 5)VG(E,5) + O(4). (5.13)
z€T N
By choosing: ¢(n) = i7" and #(n) = n¥ni"" we now use the superexponential
estimate in Theorem 2.3 twice and we replace

2 — 2 1 . 1 .
d @ — = S S - 5.14
N 2 i v 2 |lavert 2 W) |\awerr 2 ) 619
ze€T N ze€Tn le—y|<eN |z—y|<eN
and
vt = 2 g X W) (v &) 69
N He N 2Ne +1 "\ 2Ne+1 ? '
z€T N z€Tn lz—y|<eN lz—y|<eN

Indeed, to prove equation (5.14) one writes that, for all G, Hyq € C?'(T x [0,T]) and for
all a > 0, there exists ¢g > 0 such that for all n € Q2 and for all € < g we have that

LS S0 (G vt ()

1 [T T x 1
-5 Z \Y€ (N’S) VHig (N’S) N1 Z 7)?7]7{“ ds| <a. (5.16)
0 zeTwy |z—y|<eN

Therefore, using the superexponential estimate of Theorem 2.3 we have that
T T 1 ~,H 1 r z z x x+1
i i s (|3 [ 50 06 () 9 (5.0) e
z€T N
1 [T T T
S VG (50s) Vo (555)
N/, 2 NP Vs
zeT N

2 1 1 ,

R [ ) - Y d >

N | 2Ne +1 Z gt 2Ne +1 Z ) asp=a
lz—y|<eN |lz—y|<eN

= —00. (5.17)
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With the same argument one can prove (5.15) as well. Moreover, using ¢. = %61{[_67+5]},
then we can write

1 1 1 ,
N Z ONe 11 Z Uit ONe+1 Z ni | = (u1,n(s) * qe) (p1,n(s) *qe),
z€T N |z—y|<eN lz—y|<eN

(5.18)

and

<

1 1 1
Y —
N Z N1 Z Uit ONe+1 Z ny | = (pa,n(s) * ge) (p2,n(s) *ge) -

z€TN |z—y|<eN |[z—y|<eN
(5.19)

Combining (5.13) with equations (5.18) and (5.19), we have that the Dynkin martingale
M1G v (t) is written as a function of the empirical density, namely

t
MY () = (u,n (1), G, 1) = (11,5(0), G(-,0)) */0 (H1,n(8), (05 + A)G(-, 5))ds
t
=2 [ {(nav(s) 0 (1 (005(5) +02) = (ua(s) *42))- T Haol, ) VG, ) s
0
t
_ 2/ (1n(8) # 42) (o () * 42) . Vs (-, $)VG(-, 8)) ds + R(e, N),  (5.20)
0
where the remainder term R(e, N) goes to zero in probability as N — oo and ¢ — 0. A
similar result can be found for Mg’y (t).

Now we show that the martingale M § (t) vanishes as N — co. The quadratic variation
is computed by the carré du champ formula as

If. = NQEHWN( 1), G(1)* = 2(pn (), G(. )N LT (un (1), G(-, 1))

2
=Z S o0 [(ew iz (V) G () — (e (n(N?), G, 1)

a,B3=0

(el 0+ €20 0) (TnG (7.6)°

2

I
Mz i

=1
al 2
H,0,2 H 2 z
+ Z ( Ca, 2+1 Ca, m—El)( )> (vNG? (N’t))
al 2
# 32 (30 0+ 20 0) (T861 () - VaGa (.0))" . G2D

which is of order 1/N and goes to 0 as N — co. This implies that for all § > 0

X _
lim PL™ [ sup |[M§(#)]>d) < lim —QE'YH sup |[MS ()
N—oo te[0,7T] N—oo 0 | te[0,7]

.4 H G (2
< ngnoo ﬁE’Y [|MN (1)] ]

4wl rr
= lim —EY ¢ ds| =o0. 5.22
Noose 62 /0 N,s4S ( )

Next, by the (exponential) tightness of the sequence uy we have the existence of
convergent subsequences, and by combining this with (5.20) and (5.22) we observe that
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these convergent subsequences are concentrated on the set of trajectories p such that
for all § > 0 there exists an € such that for all ¢ < ¢ and for all ¢ € [0, 7] we have that

’<p(t)7G(vt)> —{p(0),G(-,0)) - /Ot<p(8), (0s +4),G(;5))ds
+ /;((m(t) *qe) (1= (p1(t) ¥ ¢c) = (p2(t) * ¢c)), VG (-, 8) Hio (-, 5))ds
+/Ot<(pz(t) *qe) (1= (p1(t) * gc) = (p2(t) % ge)), VGa(-, )V Hyo -, 5))ds
- /0t<(P1(t)*fIs) (p2(t) ¥ ¢c) , (VG (- 8) = VG, 8)) VHia(,8))ds| <4 (5.23)

Finally, letting € tend to 0, we observe that p solves equation (3.1) in the sense of
distributions.

A Proof of the superexponential estimate

The objective of this appendix is to prove the superexponential estimate presented
in Theorem 2.3. We follow here the road of the original paper [15], i.e., reducing the
problem to one and two blocks estimates which then boil down to a uniform equivalence
of ensembles. For the convenience of the reader and self-consistency of the paper, we
nevertheless prefer to provide full details.

A.1 Equivalence of ensembles

N

a1,a, the measure

In the following we denote by v

N _ N,z N,z . .
Vor,as = ® Vaia, ~ Where v, %~ Multinomial(1,1 —a; —ag,a1,a2). (A1)

z€T N

Lemma A.1l. Given kq, ko € INg such that k1 + ko < N, the distribution V;;Vl)az conditioned
on the event

N N
Qs = {77 ’ dont=Iml =k, Y 5 =n| = kz} (A2)
z=1 z=1

is equal to the uniform distribution of k1, ko particles of colours 1 and 2 respectively, over
N available sites. That is

N 1 .
ifne
V(ivl,ag (77‘|7]1| =k, |n2] = kz) = (kl’kz) g k2 (A.3)
0 else

Proof. We denote by )y, ., the subspace of (2 where there are ki, ks colours 1 and 2
respectively. Then, we have that

N
N Var,as (M M| = k1, [n2| = k2)
Vor,a =k ) =k =

1,002 <77‘|771| 1 |772| 2> Vévhaz (771‘ _ kl, |772| _ k’g)

afag(l—al—az)N7k17k2
= Zseﬂkl.kz Vévraz ©
0 if [n1| # k1 or [na| # ko
(A.4)

if |n1| = k1 and || = ko,
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By direct computations we write

afak(l—ay —ag)N "Mk okl — oy —ag)N-ki-k 11
e, 1, Vor.an(€) af'as? (1 — a1 —ag)Nhike (| 1l ()
(A.5)
O
Lemma A.2. The measure z/ffha2 can be written as a convex combination of uniform
measures, namely
N N
V(J)yl,ozg(n) = Z Z 1{k1+k2§N}V(J)¢\’1,a2 (77‘|771 = ki, |no| = k2>1/gl,az (Im| = k1, 2| = k2) .
k1=0ko=0
(A.6)
Proof. The proof trivially follows from Lemma A.1 and from the fact that
N N
D Lkthasny¥h oy (Im] = ka, [na| = ko) =1 (A.7)
k1=0ko=0
with
V(ivhoq (|’I71‘ :k1,|’l72| :k‘g) ZO Vkl,k‘g. (A8)
O
For the sake of simplicity we denote by uy x, «, the following distribution:
BN s s (1) = V3 <77‘|771 =k, |n2| = kz) ~ (A.9)

Lemma A.3. [Equivalence of ensembles] Let / < N and consider the subset of sites
Ay ={0,1,...,¢} C Ty. We introduce the configuration ¢ = ((°, ..., (%) over A,, where
¢* = (¢¥,CF,(5) with (T, ¢5 € {0,1}, satisfying the (exclusion) constraint (§ =1 — ¢ — (3.
We further denote by m; = |(1| and mo = |(2|, the number of particles of species 1 and of
species 2 present in the subset A, respectively. Then,

iy, ({0 0? =0 = () = oM el (1 - ag —ap) T (A10)

ki/N—aq,
k}z/NA)Oéz

Proof. By direct computations we write

(ks =y g ma)
Nk ks ({12 00 =0, = (1)) = e
)
- (N — NN — ky — ka)lky k!
= N1(ky — 1) (ks — ma) (N — ko — ka — €+ my + ma))!
By — 1)+ (k1 —my +1) ka(ky — 1)« (ks —ma + 1)

Nm Nm2
(N—k1—kz)(N—kl—k2—1)~--(N—k1—k2—€+m1+m2+1)
x fomlfmg
NK
X (A.11)

N(N=1)---(N—(+1)’

where in the last equality we have used the properties of the factorials and we have
14
multiplied by 4. By taking the limit we have that

: 4 74 l—k1—k
Jim ok, ({0 0" =0 =) =aMed (- an —ag) TR (A12)
0,
ki /N—ay, O
k}g/N%ag
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We call a function ¢ : Q@ — R, with Q defined as in (2.2), local if ¢(n) depends only on
M, ..., Ne for some fixed ¢ not dependent on N.

Corollary A.4. For every local function ¢, we have that

lim sup E.y kq ko [gb] -~ ) [¢] = 0. (A.13)
N=000<ky ko <N o 3.5
k1+ko<N

Proof. For every finite N, the supremum over k; and ks is reached. Denote by £} (V) and
k5(N) a value of k’s where the supremum is attained. Since

ki(N)

<
O_N

<1, (A.14)

there exists a convergent subsequence of k5 (N)/N. By consequence, as ¢ is local and by
Lemma A.3, we have

lim |E

1—>00

—-E =0. Al
Vv ko) 9] =0 (A-15)
N, T N;

KN kY (Ny) k5 (N;) [(b]

This holds for every possible converging subsequence of w and hence the statement

follows. O

A.2 One and two blocks estimates

In this section, our goal is to show that proving Theorem 2.3 can be reduced to
establishing two key lemmas, referred to as the one block and two blocks estimates,
respectively. We hereby follow verbatim the steps of the proof of Theorem 2.1 of [15],
with necessary adaptations to cover the multispecies case. The crucial aspect of this

approach lies in the application of the Feynman-Kac formula (c.f. [14, Proposition A.7.1]).

We focus on the quantity ]le\{g (% fot Vne(n(s))ds > 6) and we apply the exponential

Chebyshev inequality, obtaining
s (1 §Naml/3 ¢
Py (N/ VN e(n(s))ds > 6) < e NEyN {exp (a/ VN7€(’I’]($))dS>:| , (A.16)
0 0

where we have denoted by E}V/?’ the expectation with respect to ]P%S. To estimate the
right hand side of (A.16) we define the operator

K=L+aV, (A.17)
ie.,
Kf(n)=Lf(n)+aV(n)f(n). (A.18)

Using Feynman-Kac formula (see [14, Proposition A.7.1, Lemma A.7.2])

B fexp (o [ Victatonas) | = (e

1/3,1/3)
< exp (tAmaz(K)), (A.19)

where A4, (K) is the largest eigenvalue of the operator K. It follows that

¢~ONap1/3 {exp (a /0 t VN@(n(s))ds)} < exp (N <;[Amax(io - 5a)> L (A20)
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Therefore, since we can make a arbitrarily large, to prove the superexponential estimate,
it is enough to show that

— — 1
li li — Amaz =0. A.21
im - lim - (K)y=0 ( )

e—=0 N—oo

For the largest eigenvalue we have the variational representation

Amaz(K) = S}lp {a<VN78(77)> fN>y1A;3 s NQDN(fN)} ) (A.22)
. :
where the supremum is taken over functions fy that are probability densities with
respect to V{\;S 13 L€, fv = 0and 3 g fn(m)3~N = 1. Furthermore, Dy is the
so-called Dirichlet form associated with the generator £, and is given by

1

Dn(fw) =3 3 vhausslmin€) (VIn@ — Vi)
n,6€Q

_N N 2 2
Y S wt (Vi -vam) . e

neQ =1 a,5=0

where £(n, £) denotes the rate of jumping from configuration n to £ under £, and where

(Vive ), fnom, =D Ve fn(m)3=. (A.24)
neqQ

Since ¢(n) is bounded, Vy () is a sum of N uniformly bounded terms by its definition
in (2.20), and so there exists a positive constant ¢ such that

(VN:e(m), fn),~v. <cN. (A.25)

Vi/3,1/3
As a result, we restrict the supremum to the set of densities fy that satisfy Dy (fn) < ¢/N.
Furthermore, we consider only the densities fy that are translation invariant (since
Dy(+) is convex, for details see Appendix 10 of [14]). Consequently, we obtain the
estimate

sup a Ve fvm3 N = N°Dn(fn)
Dy <e/N | b

< sup ad Vne(mfnm3 ™. (A.26)
Dn(fw)<e/N | 1o
This implies that is enough to show that
lim lim sup N Z Vne(m)fn(n)3 N =0. (A.27)

e—0 N—)ooDN(fN)SC/N neQ

Writing out the definition of Viy (1) given in definition (2.20), we obtain, using translation
invariance of f,

lim Tim  sup > ! > Td(n)

e—0 NHOODN(fN)SC/N neo 2Ne +1

|z|<eN
O\ vt X Mawe X || v p =
2Ne + 1 DaNe +1 2 '
|z|<eN |z|<eN
(A.28)
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For any fixed y € Ty, we consider a neighborhood of discrete points {y — k,y — k +

1,...,y+k— 1,y + k}. Within this neighborhood, we have the following approximation
1 1 1 k
ﬁZTy¢(n) = NZ2/€+1 Z :¢(n) + 0 N/ (A.29)
Y Yy lz—y|<k

Next we add and subtract the quantity ¢ (ﬁ > o<k s TRET 2o a|<k 775) inside the
absolute value of equation (A.28), obtaining

1 - 1 1
2N + 1 > md(m) —¢ %N +1 > N1 >

|z|<eN lyl<eN ly|<eN

1 1 )
§25N+1”|Z 2%+ 1 Z T:0(n) — 2k+1 Z 771’7 Z U

z|<eN |z—z|<k |x—z] |lz—z|<k

1 ~ 1 1 i
+mz¢2k+1znl’k+ 2772

|z|<eN |lo—z]< |o—2|<k

1 1 k
7¢ 2eN + 1 Z 77172]\/'—1—1 Z 3 +0( > (A.30)

lyl<eN ly|<eN

We consider the second addend in the right-hand-side of (A.30). By exploiting the
multi-variable mean-value theorem and (A.29) we have that

1 e z
(2eN +1) > |0 T2 ”1’2k+1 >

|z|<eN \w z|<k lz—z|<k

- 1 1
O\ N Z ”1’2N+1 >

lyl< ly|<eN
V6l
< N7 7HNoe I
S | eI IR E
|| <eN |x z|< |z z|<k
1 1
Y Y
2N +1 > M oeN 11 >
ly|<eN ly|<eN )
||V¢Hoo 1 . 1 P
(2eN +1)2 Z Z 2k +1 Z Mook Z 2
|z|<eN |y|<eN |lz—z|<k |le—z|<k
Mo E g 2w oy (a31)
AT ”1’2k+1‘ l<k”2 N ‘
Yy—z Y—z|=

It follows that

1 -~ 1 1
2N + 1 > mo(n) ¢ %N +1 > N1 >

|z|<eN ly|<eN ly|<eN
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1 1 [ 1
S Nt 1 > % + 1 > melm) =9 2%+ 1 > ”1’2k Z "

lz|<eN lz—z|<k lo—z|< \w z|<k
IVl 1 "
T EeN T 2 2 2k+1 2 ”1’2k+ >
|z|<eN |y|<eN le—z|< |lz—2z|<k
1 1 k
— 5 — . (A.32
TS ’71’2k+ 2 +O<N) (8.32)
ly—z|< ly—z|<k 9

Arrived at this point, in order to obtain (A.27) it is sufficient to prove the following two
lemmas:

Lemma A.5 (One block estimate). For all ¢ > 0

lim lim  sup
k—oco N-—oo D(fn)<c/N

1 x —
> |5 2 om =6 2k+1 Z??quH Yows || fvm3 TV =0. (A33)

Sy |z|<k |z|<k

Lemma A.6 (Two blocks estimate). Forall ¢ > 0

lim lim lim sup sup
k—oo €—0 N‘)OO‘ ‘<26N+1 D(fN)<C/N

PR +1Zm,2 +1Zn2 - 2k+1 > 771,2 1 2 | s

neQ |z|<k |z4r|<k |z4+7r|<k
=0. (A.34)

A.3 Proof of the one block estimate

Fix k € IN such that £ < N, and consider the set {x € Ty : |z| < k}. We introduce
the subspace (5,41 C €2, which represents the state space restricted to these 2k + 1
sites. Then, for any function g : Q954+1 — R, we define the “restricted” Dirichlet form as
follows:

2
Diale) =5 3 37+ Z Z niné“( gl 5™ ~ %cTn)) . (A39)

T]EQQk+1 r=—k «a,5=0

Next, we define the marginal of the density fny over Q3,11 as

i (m) =3~ VH2EH Z fn(m (A.36)

x| >k

Using the following inequality

(\/Za] \/Zb) <y (\ﬁ \F) (A.37)
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we have that

k—1 2
D) =5 X3 St [ [ X w2 i

N€Qak+1 r=—k a,=0 () |2 >k M%) |z|>k
k—1 2 2
1 —N x, T+l z,x+1
<52 3Ny D mamg (\/fN(na,g ) =V fn(n)
nGQ w——kaB—O
2
LS Sy (Vi) - Vism)
xffk’rIEQ a,=0
2k
=D A.
% D). (439

Here, in the up to last equality we have used the translation invariance. All in all, we
obtain the upper bound

2%
Dy (fy) < 37 D(fw)- (A.39)

As a consequence

Sup Z ﬁ Z T:6(n) — 2k+1 Z 77172 +1 Z s || fv ()3~

D(fn)=<e/N peo |2I<k |z[<k

Yy %;zm

gk+1(9k)<(20k)/N2 neQ | |Sk

k
—ok—1
2k.|.1 Z 771’ § n5 || gx(n)3 +O(N> .

L=
(A.40)

Taking the limsup as N — oo and using the compactness of the level sets of the Dirichlet
form (for details see Appendix 10 of [14]), we have

lim sup Z %;—HZ T.9(n) Qk—l—lz ]17 27]2 gr(n)3~ 2kt

N—00 1y« c
D31 (96)<35% e |z| <k |z|< |Z|<k

< s ZﬁZMb(n)—% 2k+12m, k+12772 gr(m)3~2F L

D3k 1(91)=0 o |2|<k |z| <k
(A.41)

The set of probability distribution with density g; such that D3, ,(gx) = 0 is the set of
uniform distributions over Q91 with fixed number of particles ki, k2 of species 1 and 2
respectively. Therefore, taking the supremum in equation (A.41) is equivalent to taking
the supremum over all configurations 7 in the space 291 with fixed number of particles
k1 and ko of the two species. As a consequence, by taking the limsup for £ — oo, we have
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that
T sup S b = 6 | g X 0y O 0 || a3
%0 D3 (90=0 pen | 2R T LS |2I<k |2I<k

1 Y 1 z _ 1 z
‘m ngk T0(n) — ¢ (m ngk UiEiy =y Z‘z‘gk, 772) ’

= lim sup Z

2k+1
k—00 k) ky=0,...,2k+1 )
k1+ko<2k+1 NEQak 41 (kl,kg)
[m|=k1,|n2|=k2
= lim sup O [ E. [¢]
k=00 k1 ko=0,....k : k1+ko<2k+1 e
=0. (A.42)

Here, in the last step, we used Corollary A.4.

A.4 Proof of the two blocks estimate

In analogy to the approach used in the proof of Lemma A.5, we now consider two
blocks of size 2k + 1: the first centered around the microscopic point 0 € Ty and the
second centered around the microscopic point » € T . The centers of these two blocks
are separated by a distance of at most 2¢ N 1. We denote by ¢, § the configurations in the
first and second block respectively, both belonging to the sub-space (25;1. We consider
an arbitrary function g : Qi1 X Q2k4+1 — R and we define the following “restricted”
Dirichlet-forms:

k—1 2 2
D=1 ¥ sy Y gt (\/g(czzz“,@\/g(c,s)) (A43)

C,6€00k 41 r=—k a,3=0
1 k—1 2 2
Dilg)=5 D, 3772 % Zszsg’“( g(c,sifg“)—\/g(c,s)) (A.44)
C,6€0k11 z=—k a,3=0
1 2
Ag) =5 Y 372 (VoK - Vil.6) (A.45)
C,£€0k 11

where (¢, €)° indicates the configurations where the occupation variables at the center
points of the two blocks have been exchanged. Intuitively, the first Dirichlet-form
concerns the first block; the second Dirichlet-form the second block; the third Dirichlet-
form takes into account the transfer of particles from one block to the other. We now
introduce the marginal over the two blocks

n® : |z|>k, |z—r|>k

Arguing as in the proof of Lemma A.5, one can show the following estimates:
. 2k
Di(fy") < ~PUN) (A.47)
2/ g1,k 2k
Di(fn") = 17 D(fn)- (A.48)

We now aim to find an upper bound for the Dirichlet-form A(-) in terms of . Obtaining
the configuration (¢, £)° from the configuration (¢, €) is equivalent to permuting the
occupation variables 1° and n”. We introduce the permutation operator P, , between
sites x and y, defined as follows:
w

Pogm= (", .. on" LY g™ g gt Y (A.49)
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By applying (A.37) and by the definition of the marginal over the two blocks written in
(A.46) we obtain

A =5 Y a fo’“(c,oom’;k(c,s))?

C,6€0%11
1 2
< 2§23N (W— \/fT(H)> : (A.50)

This permutation operator satisfies the property?
PioP3aPoy = PioP1Pi3=P3. (A.51)

Therefore, we have that

<\/ fN(PO,rn) Y fN(U))Q
= (\/ In(Poam) — v fn(n) + \/fN(P0,1P1,277) - \/fN(Po,lTI)

+ \/fN(P2,3P1,2P0,177) - \/fN(P1,2P0,17I) +

2
+ \/,fN(Pl,O Py oPr - Poam) — \/fN(Pz,l Py Py Po,177)>

(2r —1) {(,/fN (Po.um) WT) (\/fN(Po,lPl,zn) - \/fN(Po,m)>2

2
+ (\/fN(P2,3P1,2P0,177) - \/fN(Pl,QPo,m)> +...

2
(\/fNPIO 'rlr 2Pr 1,r°° 'P0,17l \/fNP21 7‘17" 2Pr 1r"P0,177)) }

(A.52)
Consequently, we find that
1 B 2
523" <\/fN(Po,m) - \/fN(m)
neq
2
(2r —1)? Z 3N Z ok (x/fN(n?;,}g) - \/fN(n)> : (A.53)
7]69 a,B=0
where we used the translation invariance of fy. Therefore, using (A.50), it follows that
2r —1)2
AR(f3h) < @1y I ) D(fn)- (A.54)

Finally, for fixed ¢ > 0, ¢ > 0 and N € N, we define the set

2ck 2ck
Ay, = {g : Di(g9) < == e , Di(g) < ]\?2, Ar(g) §52c} . (A.55)

Arguing as in the proof of Lemma A.5 it follows that

{fnv : D(fn)<c¢/N,jn{r : |r|<eN}C{g : g€ Anc} . (A.56)

2that can be proved by using the fact that P j =P;;and P; jPj . = Pj P .
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The above inclusion relation implies that

sup sup Ut 3
|r|§stN:D<fN)§c/N,,z€;2 2k +1 +1 Z 2k+12<:k

- 2k;+ Z 771aﬁ STong ||| vz

|z4r|<k 9

<2k+1 ;Cl’%ﬂ ;(52)
<2k+1 Zﬁl’%ﬂ Z@)

By taking the limsup for N — oo and € — 0, by exploiting the compactness of the level
sets of the Dirichlet forms and by using the fact that for all € R? it holds ||z||; > ||z 3
we obtain

< sup Z

9EAN e C,€Q02k 41

g(¢, 637 %2, (A57)

sup

Di(9)=0 ¢, €005 4+1
D3 (9)=0,
Ak(g9)=0

1 K 1 K
<2k+1wzkgl’2k+1g:k@>

C £)3—4k 2

<2k+1 Z éL1’21c+1 Z 52)
(51 24) - (w2

C£34k2

< sup
Dy.(9)=0 C8€Qk 11
D2(

k\g =0,
Ay (9)=0

+ sup C€34k2

Dzi(g):() C,€E€EQak11
Dk (9)=0,
Ak(g9)=0

k
1 x
<2k+ 1 m;f?) - <2k+ 1 Z 52)
(A.58)
The set of distributions that satisfy Di(g) = Di(g) = Ax(g) = 0 is the set of uniform

distributions over o541 X Q9x41, with fixed numbers k; and k5 of particles of species 1
and 2 respectively. We choose the function ¢' : Qor+1 — Ras

#'(¢)=¢ and ¢'(&) =&, (A.59)

and the function ¢? : Q55,1 — R as

$°(¢)=¢ and ¢*(€) =¢&5. (A.60)

Consequently, recalling (2.19), we have that

gbl(Oél, Oég) = Q1 and (,252(041, OZQ) = Q9. (A61)

3Here we denoted by ||z||1 := |z1| + |2z2| and ||z||2 := /]z1|? + |z=2]2.
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As a consequence, we obtain

k k
_— 1 1 o
lim  sup (2,”1 > q‘) - <2k+1 > 5%) 9(¢.€)3~ 2
Dy (9)=0 ¢,6€1 11 r=—k r=—Fk
Dj(9)=0,
Ak (9)=0
_ 1 k 1 k
+ Jim - sup <2k — 2 <-§> - <2k — > f%) 9(¢,€)3717
Di(9)=0 ¢ £€npis o=k z=—k
7(9)=0,
Ax(9)=0
1 k z Pyl k k
T ‘(2k+1 Zz:—k Cl) —¢ (4@2’ 4kiz>‘
< khm sup pi
e Olilj}gzzs%ilf; C,€€Q k11 (k’l ,kz)

1 k 71 k k
(2k+1 Zw:—k €i”> - ¢ (4k-1-2’ 4k-2i-2)
(4k+2)
k1,k2

+ klim sup
=0 0<ky ko <4k+2
k1+k2§4k+2 C7€€Q2k+l

1 k x 72 (_k k
(2k+1 Zx:fk C21) —¢ (4ki2’ 4k42rz)
(4k+2)
k1,ka

+ klim sup
TP 0<ky, k2 <4k+2
k1+k2§4k+2 <a€EQ2k+1

1 k T\ _ 72 ko ko
— (2k+1 Dok 52) ¢ (4k+2’ Tht2
+ lim sup E ) =0. (A.62)

K00 0<ky ko <4k+2 o &5 (or o)

k1+ka<4k+2 >’ 2k+1 1,52

The last equality follows from Corollary A.4.
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