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Analog interfacing is the only way to communicate with a quantum
processor, whether it is applying qubit operations or reading their
quantum states. There exist other applications where analog interfac-
ing is abundant, e.g. sensor networks, automotive, industrial control,
etc. In those applications the use of FPGAs is continuously growing,
however a direct link between the analog world and the digital FPGA
is still missing (except for the newest generation of FPGAs, where
analog-to-digital conversion is present, but limited in performance).
External analog-to-digital converters (ADCs) are combined together
with the FPGA to form a complete, application specific, system. This
system is thus limited in compactness, flexibility and reconfigurability.

To address those issues we propose an ADC architecture, imple-
mented entirely in a conventional FPGA, that is fully reconfigurable
and easy to calibrate. This allows one to alter the design, according
to the system requirements. Therefore it can be used in a wide range
of operating conditions, such as a harsh cryogenic environment, where
we demonstrated that the FPGA is able to operate.

This architecture employs time-to-digital converters (TDCs) and
phase interpolation techniques to reach a sampling rate, higher than
the clock frequency, up to 1.2 GSa/s. The resulting FPGA ADC
can achieve a 8 bit resolution over a 0.6 to 1.9 V input range. The
system non-linearities are less than 0.45 LSB. The main advantages
of this architecture are its scalability and reconfigurability, enabling
applications with changing demands on one single platform.
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Abstract

Analog interfacing is the only way to communicate with a quantum processor, whether
it is applying qubit operations or reading their quantum states. There exist other
applications where analog interfacing is abundant, e.g. sensor networks, automotive,
industrial control, etc. In those applications the use of FPGAs is continuously growing,
however a direct link between the analog world and the digital FPGA is still miss-
ing (except for the newest generation of FPGAs, where analog-to-digital conversion is
present, but limited in performance). External analog-to-digital converters (ADCs) are
combined together with the FPGA to form a complete, application specific, system.
This system is thus limited in compactness, flexibility and reconfigurability.

To address those issues we propose an ADC architecture, implemented entirely in a
conventional FPGA, that is fully reconfigurable and easy to calibrate. This allows one
to alter the design, according to the system requirements. Therefore it can be used in
a wide range of operating conditions, such as a harsh cryogenic environment, where we
demonstrated that the FPGA is able to operate.

This architecture employs time-to-digital converters (TDCs) and phase interpolation
techniques to reach a sampling rate, higher than the clock frequency, up to 1.2 GSa/s.
The resulting FPGA ADC can achieve a 8 bit resolution over a 0.6 to 1.9 V input
range. The system non-linearities are less than 0.45 LSB. The main advantages of
this architecture are its scalability and reconfigurability, enabling applications with
changing demands on one single platform.
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Introduction 1
1.1 Motivation

The interaction between the analog and digital worlds has always been a challenge.
Special design techniques are required to make a good analog front-end to the digital
system. As analog-to-digital conversion is needed in numerous applications, ranging
from sensor nodes, industrial control to (quantum) physics experiments, various ADCs
with a wide range of specifications exist.
Each application has its own set of requirements, making it hard to reuse the same
ADC design. The standard approach would be to combine an off-the-shelf ADC that
matches the requirements with the digital system, either a system-on-chip or a recon-
figurable device. After the system is set, the specifications can no longer be easily
altered. Therefore the system, using an external ADC, is limited in terms of flexibility,
scalability, reconfigurability and overall system size.
A better approach would be to create a more flexible system with an integrated recon-
figurable ADC. This approach enables a single platform suitable for many applications
that only needs to be adapted with a firm- and/or software change and a calibration
in the new environment. The most suitable platform to build a flexible system is in a
reconfigurable logic device, i.e. a CPLD or FPGA.
The need for interaction with the analog world and the digital reconfigurable devices
has been recognised by FPGA manufacturers. Xilinx includes an on-chip ADC (XADC)
in the 7 Family generation of FPGAs, Altera in the MAX-10 FPGA and Microsemi
in their Fusion Mixed Signal FPGAs. Although this integration has some advantages,
such as lower power, smaller system size and a simple interface, it is still not flexible.
It rules out the possibility to change the conversion rate, the number of ADC channels,
and above all, it takes die space solely reserved for the ADC, whether it is used or not.
In this thesis, we propose a solution using a FPGA to create a soft-core ADC archi-
tecture. Except for some small resistors on the PCB, the ADC can be completely
integrated into the reconfigurable hardware blocks. Therefore the ADC can be easily
interfaced with the remainder of the digital circuitry, it can be scaled to the required
sampling rate or resolution and it even allows ADCs with different specifications in one
system.
Above all, our approach allows calibration to each new environment the system is op-
erating in, i.e. changes in voltage, temperature or chip can be calibrated out. We aim
to show the effectiveness of our calibration techniques by operating the ADC both at
room temperature and in a deep cryogenic environment at 4 Kelvin.
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1.2 Related work

The idea to create an ADC in a FPGA isn’t something new. Sigma delta ADCs have
been implemented in [1–3]. The conversion speed of these converters is fairly low with
50KSa/s. The goal of these papers was to implement an ADC inside the FPGA to
reduce the PCB size or to reduce development time.
With voltage to time converters, much higher sample rates can be achieved, in [4] mul-
tiple ADCs were created with 3 resistors and 1 capacitor. With those components a
RC curve was created on multiple LVDS components. The ADC inputs were also con-
nected to the LVDS inputs. By measering the time between start of the RC curve and
the first edge in the LVDS output an analog to digital conversion could be performed.
With this method a 6 bit, 22.5MSa/s conversion was reached.
The previous paper however could have created faster and more accurate ADC’s if they
would have used carry-chain based time to digital converters [5,6]. Although those are
more expensive in therms of utilization of the FPGA.
That is exactly what has been done in [7], here they created 16, 7 bits, 62.5MSa/s ADCs
with one FPGA. But they still used 4 resistors and a capacitor for every channel.
One of the latest works [8] created a 7 bits 200MSa/s ADC with only 1 resistor. Instead
of adding a capacitor they used the parasitic capacitance of the LVDS input. This work
is the closest competitor and will be used as basis for this thesis.
Most quantum computing applications take place at sub-kelvin temperatures. As it is
hard to let electrical signals cross 300K. There has been a growing interest for cryogenic
electronics. Over the years multiple papers [9–11] have been released that demonstrated
functional FPGA’s down to 77K. It is already proposed to bring the electronics for quan-
tum computing to 4K [12], and very recent [13] demonstrated partial functionality of
the ARTIX-7 near 4K.
If an FPGA implemented ADC could function at 4K, the flexibility of the FPGA can
be used to calibrate this system to the changes at that temperature.
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Background 2
This chapter summarizes the literature of this thesis. Here you will find the neces-
sary definitions that come with characterizing an ADC or TDC. Also different ADC
architectures with their FPGA implementation are discussed.

2.1 Characterization of an analog-to-digital converter

It is always a challenge to compare multiple devices. ADCs are no exception. There is a
great variety of parameters on which ADCs can be rated besides range and sample rate,
in this chapter the INL, DNL and ENOB will be introduced. The importance of each
parameter is also varying between projects. IEEE has specified a methodology [14] to
measure an ADC. This section includes some of the methods to measure the parameters
of an ADC.

2.1.1 Differential non-linearity (DNL)

The differential non-linearity is defined as the difference between the actual step width
and ideal step width. The official way to measure the DNL is by it’s transition levels.
The formula to derive it can be found in Equation 2.1. For a perfect ADC all DNL
values are 0, corresponding to the ideal step width of 1 LSB. When a step is missing
in the outputs it has a value of -1 and when a step is double the width, it has a value
of 1.

DNL [k] =
T [k + 1] + T [k] −Q

Q
(2.1)

Where:
Q is the ideal width of a code bin
T [k] is the input value corresponding to the transition from k-1 to k

To properly characterize the DNL in the presence of noise (Figure 2.1 and 2.2) we
use the so-called histogram mehtod. The histogram method implies that if an input
signal has a known probability density function (PDF). The output of the ADC should
also have a similar PDF. For the ADC we are able to use a ramp function that starts
below the range and ends above the range. Thus creating a uniform PDF for all
voltages. Such a system can be found in Figure 2.3 and an example of a measured
PDF in Figure 2.4. The min and max output of the ADC will be more frequent, due
to exceeding the range, but all values between the min and max should have the same
density.
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To extract the DNL from the PDF, Equation 2.2 can be used.

DNL [k] =
D [k]

M
− 1 (2.2)

Where:
D [k] is the density of a code bin
M is the mean density of all code bins between the min and max code bin

2.1.2 Integral non-linearity (INL)

The integral non-linearity is the difference between the ideal and measured code transi-
tion levels after correcting for static gain and offset. The static gain and offset correction
basically say that the ideal transitions levels can be determined by a best fit line. The
INL can be expressed as a function of the code bins or as worst case values. When
there isn’t much noise on the ADC output, such as in Figure 2.1, it is possible to calcu-
late the transition levels. In that case Equation 2.3 can be used to calculate the INL.
When there is significant noise on the output such as in Figure 2.2, it is better to use
the histogram method. The INL can then be calculated by integrating the DNL as is
shown in Equation 2.4.

INL [k] = 100% ∗ ϵ [k]

VFS

(2.3a)

ϵ [k] =
T [k] + VOS − TNOM [k]

Q
(2.3b)

Where:
Q is the ideal width of a code bin
T [k] is the input value corresponding to the transition from k-1 to k
VOS is the output offset in units of the input quantity, nominally equal to zero
VFS is the full-scale range of ADC input units
TNOM [k] is the best fit line through all codes

INL [k] =
k∑

i=1

DNL [i] (2.4)

2.1.3 Signal to noise and distortion ratio (SINAD)

The SINAD is the ratio between the signal and the distortion plus noise. The SINAD
can be calculated in multiple ways. For sinusoidal signals we perform the FFT of the
converted digital signal. Another method is by fitting a sinusoidal signal of known
frequency onto the data. Afterwards all deviations from that fitted sinusoidal signal
are the noise and distortion. Fitting a frequency on the sample data can be done using
the least-square-method. In Equation 2.6a we can see an equation that describes a
known frequency on the left and the unknown composition of amplitude, phase and
offset on the right. On the right there is a formula with the unknowns A, B and C.
These parameters can be found with the least-square-method. The advantage of the
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fitted sinus method is that it can also work with aperiodic data. Where the FFT can
only work with periodic data.

SINAD =
PSignal

Pnoise + Pdistortion

(2.5)

a ∗ sin(x + p) + o = A ∗ sin(x) + B ∗ cos(x) + C (2.6a)

a =
√
A2 + B2, p = atan2(B,A), o = C (2.6b)

2.1.4 Effective number of bits (ENOB)

The ENOB gives a performance indication of your ADC. It can be calculated with
Equation 2.7, here the signal to noise ratio is used to determine the maximum resolution
in which a signal can be distinguished from noise.

ENOB =
SINAD − 1.76

6.02
(2.7)
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2.2 Analog-to-digital converters

Analog-to-digital converters are widely used. There are a great number of different
ADC types. Every type has its own advantages and disadvantages. This section in-
cludes analyses of serveral ADC structures. They are compared on required resources,
conversion speed, resolution and by the possibility to implement them on an FPGA.

2.2.1 Flash ADC

Flash ADC’s are the fastest, they can be made with conversion speeds up to tens of
gigasamples per second (GSa/s). The downside of this architecture can be found in
the required resources. The number of resistors, comparators and logic complexity
increases exponentially with the resolution, (2N − 1) where N is the number of bits.
Because this exponential demand for resources, flash ADCs usually have a smaller
resolution than ADCs with other architectures in the same price range. When trying
to make a flash ADC with more bits the chance of mismatches increases. When this
chance isn’t negligible anymore, the simple decoding of Figure 2.7, starts producing
errors. These errors are discussed in subsubsection 2.4.2.1.

Figure 2.7: The simple decoding of a flash ADC 1

Implementing a flash ADC on an FPGA is possible but not easy. An FPGA has
LVDS inputs that could be used as comparators. The resistors could be mounted
outside of the FPGA. However all FPGA pins have a capacitance around 8 pF [15].
This makes it hard to create, for example, a 6 bit ADC. Such ADC would have a 512 pF
input capacitance, require 64 LVDS inputs and 65 resistors. The big input capacitance
would reduce the usefulness of the high sample rate because it is basically a low pass
filter.

1source: http://www.allaboutcircuits.com/textbook/digital/chpt-13/flash-adc
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2.2.2 Sigma-delta modulation

The sigma-delta modulation is an ADC with a feedback control loop. The components
of a sigma-delta modulator are an analog summing circuit, a comparator, a voltage
reference, a switch and an integrator. In short, the sigma-delta works by comparing
the analog input with the integrated value of the DAC. When the integrated value is
lower than the analog input, the DAC will increase the value of the integrator. This
continues until the integrated value is greater again.

Figure 2.8: The schematic of a sigma-delta ADC 2

In Figure 2.9 it can be seen that the digital output will follow the value of the signal
with an error of at most 1 LSB, except when the signal increases faster then 1 LSB per
sample, in which case a slope overload occurs.

Figure 2.9: The signal of a sigma-delta ADC 3

The sigma-delta modulation can also be implemented on an FPGA [1–3], only the
time from comparator to integrator costs some time. For example, if an FPGA operates
at 400MHz and takes 2 clock cycles to read the input, 1 cycle to process the input and
write the new DAC output and 1 cycle to settle the new DAC value. The sample rate
will be 100 MSa/s. This is still 10 times lower than the goal of 1 GSa/s.

2source: http://skywired.net/blog/2011/05/introducing-the-delta-sigma-modulator
3source: http://www.analog.com/media/en/training-seminars/tutorials/MT-022.pdf?doc=cn0354.pdf
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2.3 Characterizing time-to-digital converters

TDCs are components to quantize the time between two events. These events can be
clock events or incoming signals. TDCs have just as ADCs an INL, DNL. The ENOB
however is impractical to measure with a TDC. So instead one can express the TDC’s
effective resolution with a single shot time resolution.

2.3.1 INL and DNL

As explained in subsection 2.1.1 and 2.1.2, it is possible to retrieve the INL and DNL
from a PDF. For a TDC it is difficult to generate a ramp function in time length. But a
randomly occurring pulse is relative easy to create. By measuring a random frequency
the outcome should have a uniform PDF. So Equation 2.2 and 2.4 hold also for the
TDC case.

2.3.2 Single-shot time resolution (SSTR)

To measure the single-shot time resolution it is required to have a setup where the
same input value can be generated multiple times. Afterwards, the variation (σ) can
be calculated of the output values, the variation of the SSTR can be calculated with
Equation 2.8. When different parts are used to measure different outcomes, such as
with a delay line of subsection 2.4.2. It can be useful to measure the SSTR for multiple
inputs. Afterwards the SSTR can be coupled to the input to express the accuracy over
the entire range.

SSTR =
σ ∗ LSB√

2
(2.8)
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2.4 Time-to-digital converters

This section will introduce multiple ways to create a time-to-digital converter(TDC)
on an FPGA. Because of the goal to create an GSa/s ADC with an TDC this section
will aim at TDC’s with a sub nanosecond resolution.

2.4.1 Multi-phased clock counting

A simple way to increase the resolution of a counter is by counting on multiple phases.
In Figure 2.10 an example of an multi phase counter is shown. This schematics origi-
nates from [4], in that paper they used this TDC to create multiple ADCs. The amount
of resources required to make such a TDC in an FPGA are little compared to a delay
line. For FPGA TDCs with a resolution just below the nanosecond, this is the most
efficient structure. But every time the resolution doubles, the number of required phase
shifted clocks also doubles, making this method impractical beyond a certain resolution.

Figure 2.10: Multi phased clock TDC design, source [4]
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2.4.2 Delay Line

The mechanism of the delay line is comparable with the flash ADC of subsection 2.2.1.
Instead of resistors, delay components are used. In Figure 2.11 it can be seen that a
start pulse enters the delay line and gets delayed by the delay blocks τ . After some
time a second event (a clock or stop signal) occurs to write the delay line data into the
flip flops. The time difference between start en stop determines how many flip-flops
will be set to 1. The time between start and stop can be calculated with Equation 2.9.

△t =
τ

Q
(2.9)
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Figure 2.11: Schematic of a delay line

2.4.2.1 Bubbles in carry-chain

Because of clock skew and jitter there is a possibility that not all flip flops are set
at the same time. This results in a fussy transition, as can be seen in the example
of Figure 2.12. To find the best transition point some form of filtering is required.
subsection 3.2.1 proposes multiple strategies to solve this problem.
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Figure 2.12: Example of bubbles
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Designs 3
The goal of this thesis is to create a giga sample ADC by building on the work of
Homulle [8]. In his work the analog-to-digital conversion is done by integrating time.
Here we tests the hypothesis that when using a time to voltage conversion, it is possible
to produce a data point that consists out of a time and a voltage. Then by using
multiple of these converters the data points can be merged to create an analog-to-
digital converter with a much higher sampling rate.

3.1 Single LVDS ADC

FPGA

LVDS TDC

MMCM
R

Clock

Signal

Ref pin

n

p

Vref

Figure 3.1: Single LVDS schematic
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Figure 3.2: Single channel sampling

Figure 3.1 contains the schematic of a single LVDS ADC. The reference pin charges and
discharges the parasitic capacitance of the LVDS input. Figure 3.2 shows the resulting
RC curve. The data dots in this graph are the points where the LVDS output switches
value. By measuring the time of these events we can infer the original voltage. Because
the charging and discharging curves are clearly different, they both require their own
calibration to convert a time to a voltage.
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3.1.1 Best RC curve

The parasitic capacitance of the LVDS input is a fixed value estimated at 9 pF (see
subsection 4.3.1). But the resistor can be chosen freely (see Figure 3.1). This way we
can create every RC time for the reference signal. In this section we will describe a
reference signal by its number of RC periods in a reference period. The reference period
is reconfigurable in the ADC we will create.
Figure 3.3 shows the dependence of the Vref time response from the ratio of the sampling
period Ts to RC time constant. The RC time constant has two opposite effects on
the ADC. By charging the capacitance to fast, RC distortion occurs (an example in
Figure 3.3b), which results in a non-linear voltage-to-time conversion. Moreover the
absolute voltage range becomes bigger.
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Figure 3.3: Absolute RC response in time

To make the quality of the ADC better in terms of SNDR, the influence of static noise
should be reduced. Sources of this noise are for example thermal noise or interference
from other signals on the PCB. The influence of that noise is least when we maximize
the smallest voltage step per time unit. As that value is related to the range and RC
distortion, we can find an optimum for RC. In Figure 3.4 one can see that the optimum
is at Ts/RC = 2.5.
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The second problem is the ratio between minimum and maximum voltage steps per time
unit. This value is only influenced by the RC distortion. Figure 3.5 shows these ratios,
already when Ts/RC = 1.3, the maximum step is 2 times bigger then the minimum
step. To explain the problems of the RC distortion Figure 3.7 shows the ADC output
of a sinusoid, the reference signal had a Ts/RC = 5. Here is a noticeable difference
between the data acquired from the rising curve and the falling. This can be explained
by the time-to-voltage conversion (see Figure 3.6). With the same time resolution, the
rising curve has a higher accuracy at the top of the Vref signal.

Rising Falling

Figure 3.6: The Vref top, notice that the
time-to-voltage step has a higher resolu-
tion for the rising curve
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Figure 3.7: Merging measurement out-
puts of a Vref signal with significant RC
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3.1.2 Sample rate, accuracy and power consumption

The power dissipation, accuracy and sample speed are correlated with each other. To
achieve an increase in the measurement accuracy, thus reducing quantization noise, the
sampling period, Ts needs to be increased. When increasing the sampling period, the
reference period will also increase. This results in a higher RC/Ts. To counter this
effects the resistor needs to be increased as well. This increase in resistance results in
a lower current and power dissipation. Figure 3.8 shows the resolution in bits of the
conversion as a function of the sampling rate. This graph is based on a time resolution
of 17 ps.
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Figure 3.8: Single channel resolution vs sampling rate
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3.1.3 Noise

All digital systems have margins in which they are specified to operate. Power supplies
may have noise and ripples, clocks can have some jitter and the outputs will have
similar impurities. That’s where this project will find the borders of minimal noise
with off-the-shelf components.

3.1.3.1 Power supply noise

As the power consumption of the FPGA is strongly influenced by its activity. It is
difficult to minimize the noise on the output voltage. With clocks running over 100MHz
and a power consumption that is influenced by events. Ripples up to 20 mV (peak-peak)
have been measured.

3.1.3.2 Voltage drop

As this setup will be tested on a prototype board that is powered from long cables.
There is a significant voltage drop on all cables due to intrinsic resistance of the cables.
Combine this with a varying power consumption and this could significantly change
the RC curve or effect the logic speed.

3.1.3.3 Thermal noise

The warmer an environment the more noise is measured over the components of a
system. For this system the thermal noise applies on the reference signal. This signal
is actually just an RC oscillation. This means that the thermal noise is only influenced
by the KTC noise [16]. For the 9 pF parasitic capacitance we expect the noise is less
then 20 µV according to Equation 3.1. This becomes insignificant compared to the
noise of the power supply.

vn =

√
kBT

C
(3.1)

3.1.3.4 Jitter on clock

Normally, jitter only influences the margins for the timing constrains. Thats is why
most Xilinx components have two settings, namely high performance and low power.
With the low power setting the component uses less power in exchange for more jitter.
When trying to read-in a carry-line, the FPGA was only designed to do this within
the timing contains. However, now it is of great importance that the jitter is as low
as possible. This project crosses the boundaries within which an FPGA is designed to
operate.

3.1.3.5 Jitter on interconnects

After the LVDS component, the signal needs to travel over the chip to the input of the
TDC. This journey often takes more then 5 ns. When comparing this massive 5 ns to
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the tiny TDC resolution of 17 ps are notices that an increase or decrease of 0.3% is
equal to 1 LSB. In subsection 4.3.2 it is determined that the speed of the interconnects
is related to the internal voltage.

3.1.3.6 LVDS interference

LVDS works by measuring the direction of the current between the two input pins.
This can only be done if there is a current between those pins and when there is a
current between those pins they also influence each other. This means that the input
signal can actually change the reference signal.
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3.2 FPGA implemented TDC design

One of the most important features of the carry-chain is the uniformity of the delay
elements. The higher the sampling frequency the shorter the carry-chain. The ARTIX-
7 used for this project has a carry elements delay of 17 ps. Figure 3.9 shows a graph of
the sampling frequency vs carry-chain length. The line in this graph covers the points
where the total delay of the carry-chain equals the sampling period. In this condition
the dead time in the raw data vanishes. When comparing the sampling frequency vs
utilization, a shorter carry-chain requires less resources for the decoder and involves
simpler calculations. The limit is the maximum FPGA frequency of 450 MHz.
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Figure 3.9: The sampling frequency vs carry-chain length for full coverage
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3.2.1 Carry-chain read-out

The read-out of the carry-chain is relatively simple. One needs to connect the input
signal to the input of the carry-chain. Preferably a signal that hasn’t been latched into
a clock domain (for example directly from a LVDS input). When reading a signal that
has been clocked into a clock domain, timing violations will arise (These violations can
be prevented by making the sample and signal clock asynchronous).
After the input signal is connected to the first element of the carry-chain. All carry
elements need to be connected together. When that’s is done all first flip-flops need to
be placed on the same slice as the carry elements. Then a second flip-flop is required
to eliminate metastability. A schematic overview of the carry-chain read-out can be
found in Figure 3.11.
Figure 3.10 shows a Vivado implementation of a carry-chain read-out. This image also
shows the structure of the XC7A100T (ARTIX-7). The FPGA is 200 by 80 slices and
every slice contains 4 carry elements. Making it possible to create a carry-chain of 800
elements. However, there are 8 clock domains, within a clock domain there is minimal
clock skew. So, ideally a carry-chain is routed in only 1 clock domain. Every clock
domain is 50 slices high, making it possible to create a carry-chain of 200 elements in
one clock domain.

Figure 3.10: schematic view of vivado carry-chain
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Figure 3.11: schematic view of a carry-chain read-out inside an FPGA

After the second flip-flop, the data is decoded. This is a heavy process due to the
amount of data involved. For example a 200 elements long carry-chain sampled at
400 MHz, produces 80 Gb/s. Processing this much data has a big influence on the
FPGAs power consumption and resources. Therefore 2 carry-chain decoder structures
were tested. Afterwards we judged them on required resources and maximum frequency.
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Figure 3.12: A timing explanation of the carry-chain

The read-out of the carry-chain is triggered by the FPGA clock, the start however isn’t
an active switch but is determined by the delay of the carry-chain (see Figure 3.38 and
3.39). In Figure 3.12 is an demo readout of a 32 element carry-chain. The data of the
first carry-element is always the most recent data, making the end of the carry-chain
the oldest. So, an edge, fast after the previous clock cycle, appears at the end of the
carry-chain. In subsection 3.2.2, 3.2.3 and 3.2.4 we will decode this data.
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Another property to judge a carry-chain decoder on is how it handles bubbles. Bubbles
are created by clock-skew and clock-jitter. An example of a bubble in the carry-chain
output can be found in figure 3.13. Here one can see that there are a few bumps in the
transition of the signal. The bubbles can be ignored or filtered out. One method for
example is a median filter implemented by counting the number of ones.

�����������������������������������������

�������

Figure 3.13: Example of bubbles

Creating a long virtual carry-chain can be required due to the physical limit of 800
carry elements, but it is also more efficient in resources. There have been multiple
works [17], [18] where the range of an TDC was extended with a coarse counter and an
event trigger in the carry-chain decoder. This requires, that after every measurement
a decision has to be made about the usefulness of the data. For this work the decoder
output will be added for a fixed number of clock cycles. An example can be found
in Figure 3.14. Because input edges can occur at the same time as an clock cycle,
can bubbles be filtered out by adding the results. This also prevents the problem of
choosing an event in the case of multiple events.
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Figure 3.14: Example of a virtual carry-chain, here 4 samples of a 100 elements carry-chain
are combined to create a virtual carry-chain of 400 elements
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3.2.2 Count-ones carry-chain decoder

The count-ones-decoder works by counting the number of ones in the output. Fig-
ure 3.15 shows that this architecture minimizes the length over which data needs to be
send, because every time two parts are added to form new data, data can stay locally
in the FPGA, making this a simple and scalable architecture.
The implemented version of this decoder has 2 parameters which can be set, block size
and number of blocks. The block size refers to the number of bits that is converted to
a number in the first step of the decoder. In Figure 3.15 a block size of 3 is used. The
number of blocks, determines out of how many counting blocks the decoder exists, thus
indirect it also determines the carry-chain length.
By this counting mechanism, bubbles in are averaged out, it behaves as a median filter.
Especially in terms of clock-skew this is the best solution. For the implementation of
an ADC this decoder can be used to get the time of a transition from 0 to 1 or from 1
to 0, under the precondition that the direction of the transition is known.
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Figure 3.15: An example of the count-ones decoder
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3.2.2.1 Performance

To gain some more knowledge about carry-chain decoders and FPGA routing. All
possible versions of the decoders were synthesized and benchmarked on maximum fre-
quency and used resources. All these tests were done on the ARTIX-7 speedgrade -2.
In Figure 3.16 we can see that with a block size (BS) greater than 8 it becomes very
difficult to overcome the barrier of 400 MHz. However in figure 3.17 we see that the
small block sizes of 3 and 4 are very inefficient in therms of utilization. The block sizes
6 and 7 however performs well on both performance and utilization. Therefore, we
recommend using this setting for creating decoders.
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TDC len Block size Freq (MHz) Regs Luts Utilization

192 3 464 758 371 0.74 %

196 4 458 782 385 0.77 %

195 5 407 707 300 0.68 %

198 6 464 661 262 0.62 %

196 7 458 612 297 0.60 %

192 8 458 620 345 0.63 %

198 9 458 616 316 0.61 %

190 10 339 574 291 0.57 %

198 11 329 575 359 0.60 %

192 12 329 534 275 0.53 %

Table 3.1: Count ones implementations near a length of 200 carry elements
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3.2.3 Multiplexer carry-chain decoder

Where the count-ones-decoder processes the data from locally to globally. The Multi-
plexer implementation starts directly by processing the entire carry-chain. Every clock
cycle the carry-chain gets split into 2, keeping only the useful part. The multiplexer
decoder can only detect a rising or a falling edge in the carry-chain. This needs to be
decided before synthesizing. Figure 3.18 shows an example of the multiplexer decoder
that is set to detect a falling edge in the carry-chain.
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Figure 3.18: An example of the multiplexer based carry-chain decoder

3.2.4 Advanced multiplexer carry-chain

Because the multiplexer decoder from subsection 3.2.3 chooses the split of the entire
carry-chain based on only one bit. There can be situations where bubbles created by
clock skew can increase the non-linearity when not processed. An example of such a
situation can be found in Figure 3.19.

1111 1111 1110 0100 1000 0000 0000 0000

1000 0000 0000 0000Unprocessed
bubbles

Figure 3.19: An example of unprocessed bubbles by the simple multiplexer implementation
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The latency and utilization can be reduced by chopping the multiplexer into multiple
pieces. Figure 3.20 shows how a carry-chain can be chopped into 5 pieces. From now
on this will be called mux steps.

11111111 11111111 11111111 11111000 00000000} } } } }

��������

1 2 3 4 5
Mux steps

Figure 3.20: A schematic overview of the number of mux steps

As a solution for handling bubbles caused by clock skew, the advanced multiplexer
doesn’t pick it’s useful data by just one bit. A number of bits can be set by the
parametric, ”filter bits”. Figure 3.21 shows an example of a carry-chain with 3 filter
bits and 5 mux steps. The output of the filter is determined by majority voting.
Afterwards the two filters that could contains bubbles are copied to the result. Note
that the outer left and right filters aren’t required for this algorithm, they behave as
data bits, but are required to have a fixed number of output bits.

111     11111     111     11111     111     11111     111     11111     010     00000     000

111   11111   010

� � � � � �

`1` `1` `1` `1` `0` `0`

} } } } }
�} Filter bits

Data bits

Figure 3.21: A schematic overview of the filter mux implementation

Near the end of the decoding there isn’t always enough data to chop the carry-chain in
the number of mux steps. When this happens, the maximum number of steps that is
still possible, will be executed. Another problem could be that the data bits can’t be all
equal due to the carry-chain length. When this occurs the length is virtually extended
with zeros at the end of the carry-chain. After every decoding step this advanced
decoder checks if it’s faster to process the remaining data with the count-ones-method
or with another multiplexer step and then the count ones method. In Figure 3.22a you
can see a multiplexer step on the remaining chain from Figure 3.21 and in Figure 3.22b
the count-ones steps. Here we picked 6 bits to count in one clock cycle, from now on
we will call this number of bits the block size. Because the remaining 7 bits of the
multiplexer step would also take 2 clock cycles to count, it is more efficient to skip this
step and directly perform the counting method on the 11 bits.

26



� �

`1` `0`

}111   1   111   1   010�

`1`

}

111   1   010

(a) An example of the next mux step

111111     110100

Count
Ones

Count
Ones

+
����

(b) An example of the counting steps

Figure 3.22: The last steps of decoding

3.2.4.1 Performance

The advanced multiplexer carry-chain decoder has 4 parameters (length, mux steps,
filter bits and block size). To vary over all those values would result in an explosion of
data. This is prevented by using a fixed carry-chain length of 200 elements. Figure 3.23
shows that the split that the mux steps 2 and 3 are less efficient than the 4 until 8
steps. However, the mux steps 7 and 8 don’t reach the 400MHz. Figure 3.24 shows
the max frequency and utilization expressed in number of filter bits. Over the entire
range from 1 to 11 bits there implementations over the 400 MHz. The only thing that
can be observed from the data is that the number of filter bits clearly impacts the
utilization. Table 3.2 shows all filter sizes with their most efficient implementation,
that also exceeds the 400MHz.
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Figure 3.23: Mux steps vs utilization and
max frequency
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Filter Mux steps Block size Freq (MHz) Regs Luts Utilization

1 5 9 439 476 124 0.42 %

3 6 9 438 474 157 0.44 %

5 6 7 432 491 170 0.45 %

7 5 8 436 513 170 0.47 %

9 6 7 433 506 191 0.47 %

11 6 7 435 515 203 0.49 %

Table 3.2: Multiplexer solutions with a max with different filter sizes and there utilization

3.2.5 Discussion

The 2 decoder structures have been implemented, tested and specified. The count-
ones-decoder uses clearly more resources with an utilization of 0.60 % compared to
the 0.42 % of the unfiltered multiplexer decoder. But to filter out all bubbles, maybe
11 bits filters are required, this increases the utilization of the multiplexer decoder to
0.49 %.
All these implementations were synthesized and simulated. The simulation outputs
were even checked for errors in the decoder. But the power consumption is still unclear.
They both process data in a different way, so most likely there will be differences in
the power consumption.
For now the count-ones is the easiest, because it can detect both edges and filter out any
kind of bubbles. But once the count-ones works it is a good idea to test the advanced
multiplexer.
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3.3 Scaling up conversion speed

As section 3.2 concludes that the maximum sampling rate of the carry-chain is around
400 MSa/s. In this section 2 designs are discussed that could increase the performance
by adding resources.

3.3.1 Parallel sampling

Parallel sampling is a method to increase resolution. Parallel sampling makes multiple
ADC’s sample in different parts of the input range. After every measurement cycle,
there should only be one part of the range that had a collision. That part can than
translate its result to the global range. An example of parallel sampling can be seen in
Figure 3.25a, here multiple RC curves with different offsets are merged. However the
signal here can cross between 2 RC curves. To force collisions all curves need to be 180
degrees phase shifted with respect to their adjacent neighbors. This has been done in
Figure 3.25b.
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Figure 3.25: Two versions of parallel sampling
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3.3.2 Interlaced sampling

Where parallel sampling increases the resolution of the ADC, interlaced sampling is a
good way to increase the sampling rate. It works by phase shifting multiple RC curves,
so that they are all equally spread over 360 degrees. In Figure 3.26 you see an example
of 4 interlaced RC curves. In section 3.2 we established that it is possible to determine
the measurement time and voltage. So all outputs of the measurements can be sorted
in time and combined to one output stream.
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Figure 3.26: The waveforms of interlaced sampling

With all these independent sources that produce measurements, there is an increase of
high frequency noise. Because each falling and rising wave has its own calibration.
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3.3.3 Discussion

When comparing parallel sampling to interlaced sampling, parallel sampling has less
noise because it has only one reference signal for a sub-range in the adc. This means
that low input frequencies will be measured with less noise. One of the disadvantages
is the limitation of the sampling rate. This is linked to the switching performance of
the io pins.
The parallel sampling can only adjust its sampling rate by increasing the frequency of
all RC signals. To gain more resolution it only needs more channels. The interlaced
sampling however, can drop its frequency on the RC signals for more accuracy and
increase the number of channels for a higher sampling rate.
Both implementation can’t sample signals that cross the rising or falling part of a
reference period more than once. This because the carry-chain decoders can only detect
one edge. This means that the maximum input frequency one can measure is equal to
the reference frequency. So even if a design would consist out of 100 interlaced phases
of 100MHz, it would have a sampling rate of 20GSa/s, but it can’t measure a 200MHz
sinusoidal.
This problem could partly be solved by combining parallel and interlaced sampling. An
example is shown in Figure 3.27. When double the accuracy is required with interlaced
sampling. Instead of lowering the reference frequency and doubling the phases, it
is possible to add parallel interlaced reference signals. By doing this the theoretical
accuracy is doubled without reducing the maximum frequency that can be measured.
Because our goal is a sampling rate of 1 GSa/s, the interlaced sampling is the best and
easiest implementable solution. The parallel sampling implementation is hard to realize
with only a source of 2.5 Volts and resistors. So for practical reasons the interlaced
sampling method is the method of choice in our implementations.
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Figure 3.27: Combined parallel and interlaced sampling
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3.4 FPGA ADC structures

There are some challenges before the interlaced sampling method can actually be imple-
mented. The developed carry-chain decoders can measure only one edge every sample.
To make sure that two edges don’t appear in the same clock cycle. An extreme accurate
calibration is necessary. This section will show the possibilities for and implementations
of such a calibration procedures.

3.4.1 IODelay

The ARTIX-7 has 300 IDELAYE2 components. These delay components can add a
configurable delay to a signal. Between 0 and 31 delay tabs can be added to the signal
with a resolution of 78, 52 or 39ps [15]. These different resolutions can be created
by offering the IDELAYCTRL respectavely 200, 300 or 400MHz clock. Unfortunately
Xilinx doesn’t provide information about the actual implementation. However the
manual says the following:

If the IDELAYE2 or ODELAYE2 primitives are instantiated, the IDELAYCTRL module must
also be instantiated. The IDELAYCTRL module continuously calibrates the individual delay
taps (IDELAY/ODELAY) in its region (see Figure 2-16, page 126), to reduce the effects of
process, voltage, and temperature variations. The IDELAYCTRL module calibrates IDELAY
and ODELAY using the user supplied REFCLK.

We can thus deduce that the IDELAYCTRL can adjust the delay of the IDELAY
components to match the control frequency. In Figure 3.28 one can see a schematic of
an IDELAY component. These IDELAY and ODELAY are mainly used directly before
reading or writing an IO pin. However the IDELAY can also be used from within
the FPGA. A signal from the FPGA can be routed to an IDELAYE2 component and
then routed back to the FPGA. This makes it an excellent addition to our carry-chain
implementations.

IDELAY

IDELAYCTRLClk_300
Mhz

Delay Input (0-31)
Signal Input

Signal output

Figure 3.28: A schematic overview of IDELAYCTRL and IDELAY
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3.4.2 Logic speed stabilization

Once some measurements had been done with long power supply cables, it became clear
that these cables had a negative effect on the accuracy of the ADC. The observation
was that fixed input signals created a repeatable distortion (see Figure 3.29). Combine
these facts with the logic speed observations of subsection 4.3.2, it is presumable that
this distortion was caused by longterm (milliseconds) voltage drop. The electric cables
have a resistance and form a circuit as in Figure 3.30. The voltage on those cables is
dependent on the current the FPGA uses. When the FPGA uses more current there is
a higher voltage on the cables, thus a lower voltage on the FPGA.
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Ideally we would like to adjust the voltage on the FPGA to create an energy efficient
solution. However with the PCB already designed and produced there isn’t any other
way than adjusting the voltage drop by regulating the power consumption. As far as
we could observe, changes the TDC outcome slowly, roughly 50ps after 5 microseconds.
This gives us a hints that the decoupling works fine.
To counter the logic speed variations a self measuring clock analyzer was created (see
Figure 3.32). Here a 400MHz clock is routed through multiple delay components and
than connected to a carry-chain. Where it first goes through 152 carry elements (38
slices) before it reaches a short, 48 carry elements long decoder.
So the clock signal is significantly influenced by the logic speed. When the FPGA is
put into a stable condition the delay components can be adjusted to measure the falling
clock edge in the middle of the carry-chain decoder. Now with the assumption that the
delayed clock is influenced more by delay then the clock, an increase in decoder output
means the logic has become faster, and a decrease means that the logic has become
slower.
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Now to compensate for this behaviour, a fast 6.25 MHz control loop has been de-
signed (see Figure 3.32). This control loop sums 4 results and brings them to an
100MHz clock domain. Then an infinite impulse response filter is applied. Every 160
ns, the output is analyzed to check if it corresponds to a higher or slower logic speed.
Given that outcome an array of oscillators is controlled.
In total 512 oscillators are used. All implemented with 6 LUTS as in Figure 3.46. These
oscillators were grouped in 4 oscillator farms (see Figure 3.33). Making it possible to
enable and disable them in quantities of 4.
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Figure 3.31: FPGA Schematic
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Figure 3.33: The two oscillation components

34



3.4.3 IODelay with Counting

As the goal of this project is to create a reconfigurable ADC, it would be a waste of
time to directly implement all prototype algorithms on the FPGA. To save some time
only the most essential data processing is done on the FPGA. Figure 3.34 contains a
schematic of a 6 interlaced phases sampling ADC. The MMCM creates the reference
pulses and the sample clock. The UART receives and sends data to the PC.
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Figure 3.34: Schematic of a GSa/s ADC

Figure 3.35 shows a zoom of the ADC block. Here the data enters through a LVDS
port and goes through 3 DELAY components before it reaches a multiplexer. By this
configurable delay the input signal can be aligned with the sample clock (this is further
explained in section 3.5). In this section is also explained why the ref clocks needs to
be connected to the carry-chain.
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Figure 3.35: ADC implementation count-ones decoder
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3.4.4 IODelay with multiplexer read-out

The setup for the multiplexer decoder read-out has an additional XNOR gate com-
pared to the count-ones version (see Figure 3.36). This gate is necessary because the
multiplexer carry-chain decoder can only detect rising edges. Other than the XNOR
gate there are no differences with Figure 3.35. In Figure 3.37 is an example of the
signals. The carry-chain decoder here samples every 100 time units. The falling edges
of the reference signal only generates falling edges in the LVDS output. This is why
the XNOR is added, by using a XNOR on the reference output all falling edges turn
in rising edges.
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Figure 3.36: ADC implementation mux decoder
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3.4.5 Discussion

While the only difference between the two ADC implementation is a XNOR gate and
the carry-chain decoder, the calibration procedures are different. However, the count-
ones version is simpler. For the first GSa/s FGPA ADC it is better to first have a clear
design. That when errors occur it is easier to pinpoint the error.
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3.5 System Calibration

In contrast to ASIC ADCs, that only need a small auto calibration or no calibration at
all, our ADC needs a full calibration. By having a full calibration, we can compensate
for a wide temperature range and can use components with higher tolerance. The
calibration consists of 4 steps and needs a total of 3 different input signals on the
ADC. Two sawtooth and one sinusoidal signal, whose frequencies are proportional to
the sapling rate, are applied to the ADCs input during this phase.

3.5.1 TDC Length Calibration

The wide temperature range brings significant changes to the timing inside the FPGA.
To deal with timing differences the used carry-chain has been made longer than the
sampling period, which is 2.5 ns. The implemented carry-chain consists out of 200
delay elements and has a delay of 3.2 ns at room temperature. Figure 3.38 and 3.39
show the problems that are created when the carry-chain has more or less delay than
the sampling period. In the case of a line covering more time than the sampling period,
the last part of the chain will be a representation of data from the previous period.
Data will be double sampled, leading to an overestimation of the correct time. A line
that is too short will loose a part of the required measurable range, leading to an
underestimation of the correct time in this lost range.
To equalize these values, the TDC has an option to disable elements at the end of
the chain. The calibration of the TDC length is done by phase shifting a clock signal
through the TDC, as can be seen in Figure 3.40, only if the length of the TDC exactly
matches the clock period, the output values will stay the same while shifting a clock
through the line. Too long TDCs will have an overestimation of the time in a certain
range, too short TDCs will have an underestimation of the time in a certain spot.
By repeating the same measurement with increasingly more TDC blocks disabled, we
can find the number of blocks for which the output of the TDC is always the same, i.e.
the smallest standard deviation over one complete 360 degrees rotation of the clock.
Now the carry-chain covers exactly one clock period, it is possible to virtually increase
the carry-chain. This is achieved by adding multiple outputs together. In this way we
can reduce the sampling rate and increase the resolution for more accuracy.
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Figure 3.40: Different average TDC values with a too short, too long and a perfect TDC,
while rotating the clock input by 360 degrees through the carry-chain. Only in the perfect
TDC, the average is constant.

3.5.2 TDC Alignment Calibration

After calibration of the TDC length, the TDC needs to be aligned with the reference
period. We have to take into account the fact that one LVDS generates two outcomes
in one reference period, one for the rising and one for the falling edge. Hereafter, we
will refer to these properties as even, respectively odd, parity.
Figure 3.41 shows on the first line the RC-curve and a DC input signal on the bottom
of the range. These two signals compared in the LVDS buffer lead to the result shown
below for an unaligned TDC. The measured values are 0 and 20 for the first and second
half of the clock period, which is not aligned to the reference period. Consequently one
of the parities can’t measure the current input voltage. After alignment of TDC clock
and reference period, the values are properly measured to be 5 respectively 15. Both
parities can measure input voltages over the complete analog range.
By applying a slow ramp that exceeds the minimum and maximum input voltage, we
can find the best alignment of the TDC, i.e. when the TDC parities have a maximum
span. At a certain time after starting the ramp, the TDC values of the parities go
from 0 to 1, indicating the start of the TDC span. The span ends as soon as the
parities go from max-1 to max. By calculating the time between these events for both
parities we can calculate the span. When doing this span measurement for all possible
alignments we can find the alignment where both parities have the biggest span. That
is the configuration in which the alignment is optimal.
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Figure 3.41: A timing diagram of TDC alignment process. The measurement period of the
TDC doesn’t match with the reference period. The TDC is shifted to match both periods to
one another.

3.5.3 TDC to ADC Calibration

After completing the calibration of the TDC, the voltage characteristics of the ADC is
calibrated. The transfer of input voltage to digital output is measured by applying a
sawtooth on the input of the ADC. As there is a direct relation between input voltage
and time after starting the sawtooth, the sample time can be converted to a voltage.
For every LVDS input this calibration generates two look-up tables that convert TDC
values to ADC values, one for the falling and one for the rising RC-curve. An actual
conversion graph can be seen in Figure 3.42. Rising and falling curves are monotonic.
This can be explained by the duty cycle measurement. As shown in Figure 3.43 the
outcome of the TDCs is positively correlated to time of measurement for the rising
curve and negatively correlated to the falling curve.
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for their RC distortion.
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Figure 3.43: The timing diagram of the TDCs. The principle of counting ones in the carry-
chain decoder makes the generated time stamps to appear for the rising edge to be between
the start of the reference period and the crossing point of the signal and ramp. For the
falling edge, the calculated time is between the falling edge crossing point and the end of the
reference period.

3.5.4 ADC Synchronization

The entire design of this ADC depends on the accuracy of the ADC synchronization.
After all, the results of the 6 interleaved channels can only be combined if the channels
are accurately synchronized to one another. With the previous calibration steps, each
LVDS input behaves as a standalone ADC, generating two values in one period of the
reference signal. To properly combine the values of six different channels, the time
difference of each of the six phases has to be known.
To the inputs of all six channels, a sinusoid with a period covering 32 reference periods is
applied. All ADCs measure this signal and a least-square-fit is done on the result. This
least-square-fit produces a phase of the measured signal. This phase can be converted
to a time and than every ADC calculates his offset from the mean off all phases. By
applying all these offsets the ADCs produce ADC values with timestamps that can be
sorted and then produce an output seen in figure 3.44.
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Figure 3.44: The timestamps of 12 different sources, every source has its own marker
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3.6 Cryogenic Design

Before creating an ADC at 4 Kelvin, it was important to test the basic parts of the
FPGA independently, so to pinpoint potential problems during the cooling procedure.
For the first test we wanted to see if a programmed and functioning FPGA keeps
operating when cooled down. This can be done by reading an io pin and writing the
input (asynchronously) to an output pin. If this operation is succesful we can try to
reprogram the FPGA at 4 Kelvin.

3.6.1 Measurement Setup

The setup consists out of a tank filled with liquid helium as can be seen in Figure 3.45.
On top of this tank a probe can be inserted. The probe is moved vertically to adjust
the FPGA temperature. Through the probe run 16 cables that are connected to a
pin header. Additional cables, such as power cables or cables with high frequency
connectors, can be added as well.
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Figure 3.45: The helium setup

3.6.2 Oscillators

A first test to obtain a speed indication is an oscillator test. This is a friendly test to
check the speed of the logic. In Figure 3.46 one can see the schematic of an FPGA
implemented oscillator, the inverter and the multiplexer are both implemented with 1
LUT5. The buffer to create the delay of the oscillator is implemented in 3 ways: with
LUTS, carry-elements and IDELAY components.
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Figure 3.46: The schematic of an oscillator

3.6.3 Serial and block ram

Two important components for testing the TDC and ADC are serial communication
and block ram. The communication is necessary to get the data to the PC and the
block ram modules can be used to store the massive amount of data created in a short
measurement. To test these two we first test the serial communication by implementing
an echo program. Once this program works the echo is extended by adding a FIFO as
buffer between receiving and sending data. The schematic of this test can be found in
Figure 3.47.
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Figure 3.47: The schematic of the block ram test

43



44



Results 4
The measurements that can be done on a reconfigurable device are endless. The de-
signed ADC has 4 adjustable variables: temperature, sample rate, range and resources.
Therefore a set of configurations has been tested at room temperature. Afterwards we
did measurements of a 1.2GSa/s ADC on multiple identical PCBs. To test our FPGA
at deep cryogenic temperatures we first checked the basic functions. Afterwards we
tested the 1.2 GSa/s ADC in liquid helium. For getting more knowledge about logic
operating speed we tested an oscillator at multiple voltages and temperatures.

4.1 The PCB

Figure 4.1: PCB front Figure 4.2: PCB back

The used PCB for the FPGA was extremely minimalistic. Every component that could
be placed more than a meter away from the FPGA isn’t on the PCB. This reduced
the chance of failing parts at 4 degrees Kelvin. The only parts that remained on the
PCB are the decoupling caps, some resistors, and the FPGA itself. The capacitors are
all picked by their potential to keep operating at 4 Kelvin, making this a truly unique
board. Thanks to the minimalistic design this device can’t work alone. The FPGA
needs 3 power supplies with voltages of 1.0V, 1.8V and 2.5V, it requires a differential
clock and it needs to be programmed with the JTAG pins. The used equipment is
mentioned in section 4.2.
The PCB was created by Bishnu Patra as an internship for his master. There were
some design faults in the PCB. In total 2 were found, the differential clock wasn’t
connected to a differential input and the polarized capacitors were all reverse mounted.
Both these faults could be fixed with some simple modifications. Figure 4.1 shows that
an additional MMCX connector is soldered on the spare 16 pins bank. By adding this
connector we could put the clock on a differential buffer.
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4.2 Equipment

For the 3 voltages, 2 TTi EL302RT Triple power supplies were used. The differential
clock was provided with a SP605 (spartan 6) development board and we could program
the FPGA with the digilent USB-JTAG programmer. The scope we used to measure
jitter on the clocks and read the output of the signal generator is a LeCroy WavePro
700Zi-A scope. This together with LeCroy ZS2500 probes. Although the differential
clock pin is connected to a non dedicated clock buffer, when we copied the clock inside
the FPGA and then connected it to the oscilloscope, we measured a jitter of only 8
ps. The function generator that was used is the Rohde & Schwarz HMF2550 function
generator. This device was connected to the PC with a RS232 connection, to create
a closed loop between PC, FPGA and function generator. Calibration steps could be
automated to prevent user errors and to decrease measurement- and development time.
The function generator works with a 250MSa/s, 14 bits resolution DAC, making it diffi-
cult to create a clean sinusoids at high frequencies. Leading to a harmonics suppression
greater than -40 dBc for signals greater then 10 MHz, which means that if we measure
this signal with a perfect ADC it will appear to have only 6 bits of ENOB.

Figure 4.3: Measurement setup
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4.3 Room temperature results

4.3.1 Capacitance measurement

To measure a capacitance of about 10 pF is difficult. But we wanted to have an
estimation of the LVDS input capacitance. The designed measurement method is to
charge and discharge the capacitance with an FPGA pin through a 500Ω resistor. The
charging signal and the LVDS input voltage were measured with an active probe. This
measurement data was saved on the oscilloscope and afterwards processed. A simulated
LVDS input voltage could be calculated from the measured charging signal. Here all
possible capacitance values could be simulated, and the best fit could be determined.
This best fit turned out to be at 10 pF, in Figure 4.4, the simulation of the 10 pF
capacitance is shown together with the measured LVDS input. The active probe has
a capacitance of 0.9 pF, this could be subtracted from the measured value, Therefore
the LVDS input capacitance is estimated to be 9 pF.
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Figure 4.4: LVDS capacitance measurement ans simulation result
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4.3.2 Logic speed vs power supply

The carry-chain is a promising tool to create high performance sensors. However the
carry-chain isn’t an official component of the FPGA. Xilinx doesn’t optimize the carry-
chain for stability but for power consumption and speed. To get an idea of the corre-
lation between the speed of the logic and the voltages of the VCCINT and VCCAUX.
Multiple measurements have been done, 2 for the carry chain resolution and 4 with an
IODELAY based oscillator. All these measurements have been executed on 6 implemen-
tations on different locations inside the FPGA. The measurements on the carry-chain
resolution can be found in Figure 4.5 and 4.6. Here can be seen that over the supported
VCCINT from 950mV to 1050mV, the resolution changes with 23 percent! This means
that the ADC is also very sensitive to these changes.
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Figure 4.5: Carry resolution vs
VCCINT (VCCAUX = 1.8V)
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Figure 4.6: Carry resolution vs
VCCAUX (VCCINT = 1.0V)
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Figure 4.7: Oscillator period with 77
delay tabs vs VCCINT (VCCAUX =
1.8V)
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Figure 4.8: Oscillator period with 77
delay tabs vs VCCAUX (VCCINT =
1.0V)

48



Because the IODELAY is supposed to be continuously calibrated as discussed in sub-
section 3.4.1. An oscillator was made with this delay component. Afterwards it was
measured over the VCCINT and VCCAUX range with 2 delay configurations. The
results of these oscillator measurements can be found in Figure 4.7, 4.8, 4.9 and 4.10.
The VCCAUX seems to have no influence on the logic speed but the VCCINT has a
significant influence on the oscillator period. However it is still possible that the logic
and the interconnects are influenced by the VCCINT but the delay component not.
To prove that the delay component is stable over the VCCINT range, the oscillator
periods from the 2 delay configurations where subtracted from each other. The result
of this can be found in Figure 4.11. Here you can observer that the delay component
stays stable over the entire range.
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Figure 4.9: Oscillator period with-
out delay vs VCCINT (VCCAUX =
1.8V)
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Figure 4.10: Oscillator period with-
out delay vs VCCAUX (VCCINT =
1.0V)
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Figure 4.11: Period difference between 77 tabs and 0 tabs delay vs VCCINT (VCCAUX =
1.8V)
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4.3.3 1.2 GSa/s ADC Characterization

While the goal was 1 GSa/s we made a 1.2 GSa/s because of the chosen frequencies
inside the FPGA. As far as we could find, this has never been done before thus we
believe that this fully programmable FPGA based ADC is the state-of-the-art.

4.3.3.1 INL, DNL and single shot

The INL and DNL of this ADC are determined by 12 sources, each source has its own
calibration. To obtain these graphs a slow ramp was applied to the ADC. By sampling
this ramp multiple times the INL could be determined by calculating the difference
between the sample mean and the best fitted line. In total 5.5 million samples were
used to create these graphs. The data was averaged over 1 LSB to determine the non
linearity. The DNL was then calculated by counting the number of occurrences of an
output and then dividing it by the mean.
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Figure 4.13: The DNL of the 1.2 GSa/s
ADC

To get an estimation of the noise as a function of the ADC value. The single shot
accuracy is also determined with the ramp data. By calculating the mean of the
variance between the mean and the individual values for each bin. It was possible to
sketch a good impression of the accuracy over the entire range. Figure 4.14 shows the
single shot accuracy.
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Figure 4.14: The single shot accuracy over the output range
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4.3.3.2 Spectrum and samples

To rate the performance in effective number of bits (ENOB), a sinusoid was inputted to
the ADC. By analyzing the output the signal-to-noise and distortion ratio SINAD and
the total harmonic distortion THD could be determined. For this kind of measurements
the function generator has to outperform the ADC. But for our application we could
not access such a device. The used signal generator could only suppress it harmonics
by > 37 dB for signals > 25MHz. In Figure 4.15 and 4.16 two examples of digitized
sinusoidal signals are shown: one at 1 and one at 25 MHz input frequency. For reference,
a best fit sinewave is drawn through the measurement points. Comparing a 1 and
25 MHz input, sampled at 1.2 GSa/s, we observe slightly higher noise at 25 MHz.
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Figure 4.15: 1 MHz sinus signal
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Figure 4.16: 25 MHz sinus signal
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Figure 4.17: Spectrum of a 1 MHz sinus
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Figure 4.18: Spectrum of a 25 MHz sinus

Transferring the sampled sinusoid to the Fourier domain with an FFT, leads to the
frequency domain plots of Figure 4.17 and 4.18. For these spectra 48000 samples were
used. Again the 1 and 25 MHz signals are taken as an example. The SINAD is defined
as the power ratio of the signal to the sum of the remainder of the spectrum. The
SINAD was found to be 37 dB, respectively 25 dB. Furthermore the THD, defined as
the ratio of the sum of all signal harmonics by the power of the signal frequency itself,
was found to be -52 dB, respectively -34 dB. The noise floor in contrast was roughly
-60 dB below the main signals power, showing that the harmonic distortion is a major
contributor to the lower SINAD especially at higher input frequencies.
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From the SINAD, the ENOB is calculated with Equation 4.1 to be 6 respectively
4 bits. Again it has to be noted that the performance is limited for a large part by the
function generators harmonics and noise.

ENOB =
SINAD − 1.76

6.02
(4.1)

Finally the effective number of bits ENOB over frequency is shown in Figure 4.19.
The expected behaviour for the SINAD is to drop over the increasing input frequencies
and gives an indication of the effective resolution bandwidth ERBW of our ADC. The
ERBW is the input frequency at which the SINAD drops by 3 dB or the ENOB by
0.5 LSB. The ERBW is in the order of 5 MHz.

4.3.4 Range vs ENOB

As already discussed in subsection 3.1.1, the RC curve can influence the noise and
range. To test the impact of the RC distortion and static noise, 3 different resistor
sizes were soldered on the PCB. Which resulted in a different range and ENOB, see
Table 4.1. Surprisingly all the results are close. What indicates that the static noise
and RC distortion have about the same impact on the system. It could be that with
a better function generator the smallest range would perform better. For an arbitrary
function generator it is hard to create a high resolution sinusoidal with a range between
1.12 and 1.45 volts.

Resistors (Ohm) Range low (V) Range high (V) Range total (V) ENOB

200 0.47 2.02 1.55 6.1

500 0.88 1.66 0.78 6.3

1000 1.12 1.45 0.33 6.0

Table 4.1: Results of the 1.2GSa/s ADCs with different range

52



4.3.5 Cross device performance

As the application is so close to the maximum capability of an FPGA and PCB, it is
likely that there are changes in performance from board to board. We had 3 boards
at our disposal and tested the 1.2 GSa/s ADC on all the boards. The results are
depicted in Figure 4.19, the performance of the ADCs on all three boards is very
similar thanks to the advanced calibration of our ADC. The calibration can smooth
out the performance over different devices making this ADC usable as a soft-core of
which the performance can be well regulated.
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Figure 4.19: The ENOB over input frequency tested on 3 identical boards. The ENOB rolls of
at roughly 5 MHz, which is the ERBW of the system (a drop in ENOB of 0.5 LSB compared
to the maximum).
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4.3.6 Performance over multiple configurations

An interesting aspect of this ADC is the possibility to switch between a number of
configurations. The only requirements are a small firmware change and, for optimal
range, a change in reference resistor for the creation of the RC-ramp. The performance
of ADCs, capable of sampling from 12.5 MSa/s up to 2.4 GSa/s, is shown in Figure 4.20.
For a single channel, being only the rising or falling edge of one LVDS comparator, we
can reach a performance of over 9 bits (ENOB) with a sampling rate of 12.5 MSa/s. The
highest possible sampling rate is achieved with a reference period of 200 MHz on the 6
phase interleaved channels, leading to an impressive 2.4 GSa/s on an FPGA. With each
pin added to the ADC, the performance can be improved, however the performance
doesn’t scale linearly with the number of pins added to the system. The performance
at 2.4 GSa/s is slightly less than 4 bits, especially due to distortion and also due to
interference between the different RCs of 200 MHz.
With our ADC we can achieve a wide variety of both sampling rates, a factor of 192
between highest and lowest, and effective resolution, a factor of 5 bits difference. This
makes the ADC useful in many applications, whatever fits in the range of possible
configurations.
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Figure 4.20: The resources vs sample rate vs enob
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4.3.7 Logic speed stabilizer

The logic speed stabilizer from subsection 3.4.2 is tested by offering multiple VCCINT
voltages. The data is measured at multiple oscillator enable percentages. Table 4.2 the
results of the measurements. The VCCINT current shows a 30 mA increase for every
10 percent of the oscillators. This increase of current increases the voltage drop as well,
by that increase the VCCINT voltage on the PCB is kept stable, thus we can conclude
that the voltage drop can be controlled by steering the FPGA’s power consumption.
The VCCO current increases because an FPGA pin was used to output the enable
percentage of the oscillators.

Oscillators enable(%) 20 30 40 50 60 70 80

VCCINT supply(mV) 1037.0 1040.0 1043.5 1046.8 1050.2 1053.9 1057.4

VCCINT PCB(mV) 999.1 999.3 999.5 999.7 999.9 1000.0 1000.0

VCCINT cable(mV) 28.5 31 33.5 36.3 38.7 41.8 44.6

GND cable(mV) 9.3 9.8 10.4 11 11.5 12.2 12.8

VCCINT(mA) 309 336 364 392 419 451 481

VCCAUX(mA) 222 222 222 222 222 222 222

VCCO(mA) 26 29 33 36 40 44 47

Table 4.2: Results of the logic speed stabilizer

To put the logic speed stabilizer to test, the FPGA was connected with 3 meter long
power cables, and programmed with the 1.2GSa/s FPGA ADC that included the logic
speed stabilizer. Without the logic speed stabilizer, the ADC failed to calibrate. With
this stabilizer the ADC could be successfully calibrated. Afterwards a 10MHz sinusoid
was measured that is shown in Figure 4.21.
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Figure 4.21: A 10MHz sinusoid measured with the 1.2GSa/s ADC, while the FPGA was
powered with 3 meter long cables and the logic speed stabilizer was enabled
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4.4 Cryogenic Testing

This section outlines the results of the measurement campaign in Milan. Here we could
use a probe to cool the FPGA in a helium vessel, (as can be read in section 3.6).
These measurements were done before we discovered that all polarized capacitors were
mounted with reverse polarity, and before the logic speed stabilizer was designed.

Figure 4.22: The measurement setup in Milan

4.4.1 Basic functionality

From our tests we could conclude that the FPGA is fully functional at 4 Kelvin. We
successfully programmed the FPGA at 4 Kelvin, then tested the serial connection at
650 kb/s. This test was extended by buffering the serial communication in a BRAM
implemented FIFO. This was done 10 times with 8191 Bytes and all tests were success-
ful. Then the IDELAYE2 components were tested followed by the MMCM and PLL.
Table 4.3 shows a summary of all tested components and if they worked at 4 Kelvin.
The FPGA had been tested on two different days and spend 2 times, 5 hours in the
liquid helium.

Component/functionality Works at 4 Kelvin

PROGRAMMING Yes

MMCM Yes

PLL Yes

LUTS Yes

BRAM Yes

LVDS INPUT Yes

IO PINS Yes

IDELAYE2 Yes

400 MHz TDC decoder Yes

1.2 GSa/s ADC Half, see subsection 4.4.5

Table 4.3: The parts that were tested at 4 Kelvin
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4.4.2 Power consumption

The power consumption was measured at multiple temperatures for different programs.
To our surprise the power consumption increased when lowering the temperature. The
VCCAUX had the biggest increase of power consumption. This might have a relation
to the reverse mounted polarized capacitors. Another phenomena, experienced at both
room temperature and 4 kelvin, was the VCCO shorting after the supply went past the
2.8 Volts. This problem was gone after the capacitors were mounted correct. Figure 4.23
shows the idle power consumption, Figure 4.24a shows the MMCM power consumption
and Figure 4.24b shows the PLL power consumption.
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Figure 4.23: The idle power consumption of an unprogrammed FPGA
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(a) Power consumption of a MMCM 100 to 50MHz
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(b) Power consumption of a PLL 100 to 50MHz

Figure 4.24: The last steps of decoding
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4.4.3 Logic speed

To get an estimation of the logic and interconnect speed, multiple oscillators were
created. Oscillators were used because they output an frequency that is directly related
to the speed of their components. By measuring that frequency, even small changes
in logic speed can be detected. Figure 4.25a shows two oscillators, one created with
carry-elements and one with LUTS. Figure 4.25b shows an oscillator designed with
IDELAYE2 blocks. The temperature has little influence at the oscillators until the
temperature goes below 70K. The drop in the delay oscillator period could have been
caused by the unsupported 100 MHz to IDELAYCTRL, this frequency was used to
prevent the usage of a MMCM or PLL.
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(a) Oscillators with LUTS and Carry elements

Temperature [K]
0 50 100 150 200

P
er

io
d 

[n
s]

10

20

30

40

50

60

70

80
Max IDELAYE2
Min IDELAYE2

(b) Oscillator with IDELAYE2 components

Figure 4.25: The power consumption of the MMCM and PLL

4.4.4 Jitter analysis
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(a) Jitter on the PLL and MMCM
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Figure 4.26: The last steps of decoding
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Figure 4.26 shows the jitter of the clocks and logic oscillators vary slightly. There isn’t
a pattern or significant change. Thus its safe to assume that this wouldn’t influence the
FPGA timing constraints. Figure 4.27 shows an shocking increase of the IDELAYE2
jitter. This could be caused by the unsupported IDELAYCTRL frequency. But for the
ADC it would be terrible to have a jitter higher then 80 ps, as that stands for roughly
5 LSB.
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Figure 4.27: The jitter of the IDELAYE2 oscillator

4.4.5 Cryogenic FPGA ADC

The 1.2GSa/s ADC was successfully programmed into the ARTIX-7 at 4 Kelvin. But
the voltage drop caused to much distortion, to perform the calibration (This was also
the case at roomtemperature). To still get any results, the 600MSa/s ADC was pro-
grammed in the ARTIX-7. With this setting the FPGA could execute all calibration
steps. Resulting in a measurements that confirmed that the ADC was fully functional.
Figure 4.28 shows the measurement results of a 500KHz sinusoidal.
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Figure 4.28: The measured 500KHz sinusiodal
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Recommendations / future
work 5
The results of this thesis proved that it is possible to create a 1.2GSa/s ADC on an
FPGA. It also showed full functionality of the FPGA at 4 Kelvin. However there are
still remaining problems before this work could be implemented in a quantum computer
error correction loop.

5.1 Range

Multiple applications don’t work with a range that is between 0.5 and 2.0 Volts, they
need to be able to measure small positive and negative voltages. A range between -1
and 1 volt would be ideal. For that kind of applications an operational amplifier could
offer a solution. By using an amplifier the input capacitance can be reduced (now
estimated at 54 pF, see subsection 4.3.1). Even when the operational amplifier deforms
the output at low temperatures, these effects might be automatically compensated for
in the calibration procedure.

5.2 Power dissipation

The current power dissipation of 800 mW is a serious problem for operating at cryogenic
temperatures. By changing algorithms and by optimizing the VHDL code the power
consumption can be reduced. However, the fact that 6 carry-chain decoders need to
process 80Gb per second, 480Gb in total, is a problem.

5.3 Scalability

For now the FPGA uses 20% of its resources with the 1.2GSa/s ADC. Probably 3 or 4
of those ADCs could fit into the ARTIX-7 100k. All of those ADCs could be connected
to the same RC curves. With some effort the efficiency of the TDC decoders and other
components can be increased. Combine this with the usage of a bigger FPGA, it can
be possible to make an ADC with 16 or even 32 channels.
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5.4 Auto calibration

One of the bottlenecks of this design is the requirement of calibration signals. Preferably
the FPGA can calibrate itself completely. This would make the ADC more user friendly
and would make it possible to create a development board that directly supports this
ADC. Basically the calibration of the ADC could be implemented by adding one resistor
(50kΩ for example), to the board and connecting the 50Ω closing resistor to an FPGA
pin. Given that the FPGA pins are tristate pins, we could put the 50Ω resistor to high
impedance and charge the parasitic capacitance of the ADC with the 50kΩ resistor.
This could produce a RC charging curve which can be used to calibrate the time-to-
voltage conversion. Afterwards the 50kΩ resistor can be put in high impedance and
the 50Ω resistor could produce a fast RC pulse for the synchronization of the multiple
carry-chains. After the calibration the 50Ω can serve as a closing resistor.
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Conclusion 6
A completely reconfigurable design was presented, using a low cost Artix-7 FPGA. The
design has a sampling rate as high as 2.4 GSa/s and it achieves a resolution of 9 bits
(ENOB). A full characterization has been done for the 1.2 GSa/s variant. The mea-
surements resulted in an ENOB of 6 bits, a single shot of 1.1 LSB, and a high linearity
(DNL [-0.8 1.1] LSB and INL [-0.4 0.45] LSB). To demonstrate the functionality of this
design, measurements were performed on 3 PCBs, showing minimal differences between
the boards.
The reconfigurable design was demonstrated to work from 12.5 MSa/s up to 2.4 GSa/s.
This work showed that the ADCs can be calibrated in terms of the TDC length, TDC
alignment and ADC synchronization. Thanks to the synchronization of single ADC
channels, higher sampling rates can be achieved without losing much of the ENOB.
This ADC is not only reconfigurable, but it can also be calibrated for any change in
operating environment, compensating for either changes in temperature, voltage or in
between devices. The system is completely soft-core and can be implemented in an
FPGA, only 7 additional resistors are needed (6 for the RC-curves and one 50 Ω clos-
ing resistor).
The Artix-7 was tested at 4 Kelvin to demonstrate usefulness for quantum computing
applications, during these tests the FPGA was fully functional. The logic of the ADC
worked as well, but the output was distorted (this was also the case at room tempera-
ture), caused by a voltage drop. To counter these effects, a logic speed stabilizer, that
stabilizes the power consumption, was designed and showed to prevent distortions.
To the best of our knowledge this is the fastest fully reconfigurable sof-core FPGA ADC
reported to date. Thanks to the reconfigurability and calibration feature, this ADC
can be used in many applications with specifications ranging from low sampling speed
and high accuracy to very high sampling rates as 1.2 GSa/s.
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