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1 Introduction
Safety-critical systems are increasingly incorporating ma-
chine learning-based components [2]. This is problematic
due to the lack of explainability and robustness against ad-
versarial attacks, prohibiting safety guarantees. Recent ef-
forts have employed Stochastic Control Barrier Functions
(SCBFs) to bound the safety probability for stochastic sys-
tems, but this method relies on a limiting assumption of con-
cavity of the barrier function [1]. We relax this assumption
using Linear Bound Propagation (LBP).

2 Method
Consider a stochastic discrete-time system

x(k+1) = f (x(k),u(k))+v(k) (1)

where x(k) ∈ Rn is the state, u(k) ∈ U ⊂ Rm is the control
input, and v(k) is additive noise. Let Knom : Rn → Rm be a
given nominal controller. If the closed-loop system satisfies
the SCBF condition [1], that is, there exists a function h :
Rn →R with an upper bound M ≥ 0 and constant α ∈ (0,1)
such that the inequality below holds for all x ∈ Rn

E[h( f (x,Knom(x))+v)]≥ αh(x), (2)

then the system is guaranteed safe up to time step K ∈N with
probability Ps ≥ h(x(0))

M αK . Furthermore, the SCBF condi-
tion can be used to design a safety filter, by solving the fol-
lowing stochastic Quadratic Programming (QP) problem at
each time step for a given function h

K(x) = argmin
u∈U

∥u−Knom(x)∥2 (3)

s.t. E[h( f (x,u)+v)]≥ α h(x) (4)

Solving Eq. (3)-(4) is hard: the dynamics may be unknown,
evaluating the expectation may have no analytical solution,
and the constraint may be non-concave in u. Despite these
challenges, the QP problem must be solved in real-time due
to the dependence on x, which is uncountable. Thus, we
require sound approximations.
We identify the unknown dynamics of the system using a
neural network (NN). Future work will focus on incorporat-
ing non-asymptotic bounds between NN and the underlying
dynamics [3]. To handle the complexity of the NN and of h,
we employ LBP from neural network verification [4]: com-
puting linear functions in u that bound the output of the NN,
given a compact input set U . The result is a linear lower
bound LLBP(u) ≤ E[h( f (x,u)+ v)] for all u ∈ U . Then re-
placing Eq. (4) with the following constraint results in an
(approximately) minimally-invasive safe action:

Figure 1: (left) Inverted pendulum over a time horizon of
1s. The bound on Pu = 1−Ps is computed using Eq. (2).
(right) 50 trajectories of the lunar lander with and without
safety filter. The nominal controller enters the unsafe set 6
times, while the safe controller does not leave the safe set.

LLBP(u) ≥ α h(x). (5)

This is a standard QP problem of m decision variables, hence
easy to solve in real-time.

3 Results
We demonstrate our approach on two benchmarks. In the
left of Fig. 1, we apply the SCBF to an inverted pendu-
lum, using LBP. The results confirm that the empirical safety
probability aligns with the derived theoretical bounds. The
right of Fig. 1 shows the Gym Lunar Lander. Our filter suc-
cessfully corrects the policy, ensuring safe trajectories with
only minimal modifications to the nominal controller.
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