Wireless control of LED display
system using Bluetooth and An-
droid

e
wn
)

=

=
W
O
=

L
3,

w

G
o
|

L
©

=
o
(T

o

Delf
U D e I ft Uﬁ\vtersity of ; R . ’
I lechnclogy Delft Centre for Computational Science and Engineering

Wireless control of LED display system
using Bluetooth and Android

BACHELOR OF SCIENCE THESIS

For the degree of Bachelor of Science in Electrical Engineering at Delft
University ol Technology

Sidharta Prahladsingh

Dennis Rutten

July 11, 2014

Faculty of Electrical Engineering, Mathematics and Computer Science (EWI) - Delft
University of Technology

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Table of Contents

Preface v
Acknowledgements vi

1 Introduction 1
2 Summary 2
2-1 System Design Overview 2

3 Communication Protocols 4
3-1 Wireless Protocols 4
3-1-1 Bluetooth 4

3-1-2 Wi o e 5

3-1-3 Comparison 5

32 Wired Protogols : o ¢ s s 2w sm: smeestms tas so @5 t 85 185 8 0 i)
3-2-1 SPL. . e 6

R . 7

3-2-3 UART . . . 8

304 Comparison ¢ : z:ws s@2 sz et ms s 8% s 0 fWs PHES @ L B g 9

3-3 Results, Discussion and Conclusion 9
3-3-1 Wired . . . L 9

3-3-2 Wireless 10

4 Smartphones and Apps 12
4-1 What are Smartphones and Apps? 12
4-2 Smartphone OSs 12
4-2-1 Androido 13

422 00S . L L 14

4-3 What is the best OS5 platform to create apps for? 14
4-4 App creation on Android Lo 15
Bachelor of Science Thesis Sidharta Prahladsingh

Dennis Rutten

i Table of Contents

5 1010-0TG 16
5-1 Whatis the IOIO-OTG? 16
5-2 What is the purpose of the IOIO-OTG in this project? 17
5-3 Communication Setup L 17
5-4 Implementation L 18
5-5 Results Discussion and Conclusion, 18

6 Android Application 19
6-1 App Functionalities Lo 19
6-2 Functionality Implementationo 20

6-2-1 Grabbing a Picture from Phoneo 20
6-2-2 Preparing Picture for Analyses 21
6-2-3 Rescaling Bitmaps. Lo 21
6-2-4 Analyzing Bitmap's Pixel RGB Values 22
6-2-5 Sending Information to IOIO-OTG 23
6-3 Extra Implementations oL 24
6-4 Results, Discussion and Conclusion, 24

7 Hardware Design 27
7-1 Three Designs L 27
7-2 32by 32 Matrix e 27

7-2-1 Power Supply 27
7-2-2 Final Power Supply 28
7-3 5by 16 Cup Wrapper. e 29
7-4 LED Ball 30

8 PCB 31
8-1 Non Flexible 32 by 32 e 31
8-2 Flexible PCB 33

9 Conclusion 34
9-1 Android 34
92 JOIO-OTG : s v s me s s s sms s meBdt@a 1 A5 8@ EME T @E §m 5 82 36
9-3 PCB . . . e 36
9-4 Power Supply 36
9-5 Overall System 37

A Android Codes 38
A-1 Basic Functionality Program Code 38

A-1-1 Library Importso 38
A-1-2 The Main Activity 39
A-1-3 Add Listeners to Buttono 40
A-1-4 Processing of Chosen Picture 41
A-1-5 Custom Processing Methods for Bitmaps 43
A-1-6 Sending Informationo 48
Sidharta Prahladsingh Bachelor of Science Thesis

Dennis Rutten

Table of Contents

Bibliography

Bachelor of Science Thesis

50

Sidharta Prahladsingh
Dennis Rutten

iv Table of Contents

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Preface

The anthors, Sidharta Prahladsingh and Dennis Rutten, have written this document as part
their thesis for their BAP project (Bachelor Afstudeer Project, Bachelor Graduation Project)
"Wireless control of LED lighting system using Bluetooth and Android" for the degree of
Bachelor of Science in Electrical Engineering at Delft University of Technology. The idea for
the project came from a Graduate Student, Manjunath R. V. Ramachandrappa Venkatesh,
under Prof.Dr. Q.C. Zhang.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Acknowledgements

Our thanks goes to Dr. J. Wei, Prof.Dr. G.QQ. Zhang and Manjunath R. V. Ramachan-
drappa Venkatesh for their coordination and continued support during the development of
this project, Mr. Ytai Ben-Tsvi, creator of the IOIO-OTG circuit board, for his support with
the I010-OTG and Android programming, Mr. Rudy Tjin-Kon-Koen for his support and
implementation ideas for the Android app, TU Delft for providing us a labroom and resources
to work with and finally again Manjunath R. V. Ramachandrappa Venkatesh for the idea for
this project.

Delft, University of Technology July 11, 2014

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Chapter 1

Introduction

More and more information is available on the internet. However, there are not many cheap
and easy ways to display information to large groups of people in public. In our project, we
will design a low cost and low energy solution to this problem using a LED-Matrix made from
flexible LED-strips as seen in Figure 1-1. In this thesis we will defend and explain how we
implemented our contribution to this project.

Figure 1-1: Flexible LED-Strip with 16 RGB LEDs

In this project we are supposed to develop a system that allows an Android smartphone
to control a LED-Matrix made from aforementioned flexible LED-strips. Our goal for this
project is to at least support a 32 by 32 display and be able to control that using an Android
app. When our goal is reached we are supposed to add extra features and functionality to
the system to further enhance the experience with the system.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Chapter 2

Summary

In this chapter we will in short show what the full system design will be for the full project.

2-1 System Design Overview

As can be seen in Figure 2-1 the system contains of four major blocks.

Android
Image] Jpg, -pug. .8l | Converts picture to
From phone or internet J R,G and B values
{ in byte form

Bluetooth Connection

I1I010-0TG

Forwards data received
from Bluetooth connection
to LED-Matrix driver
using SPI protocol

Wired Connection(SPI proteol)

LED-Matrix driver System
Designed on FPGA.
Generates Datasignal
according to input
, Data Signal via PCB board
Flexible LED-Matrix
Output display

Figure 2-1: Block diagram for basic full system design

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

2-1 System Design Overview 3

First you have the Android app, which retrieves a photo file from your phone or the internet
and sends it to the IOIO-OTG I/0 board via Bluetooth. The IOIO-OTG forwards the
received data to an FPGA using SPI protocol. The FPGA will contain the design for a driver
that controls a flexible LED-Matrix. This FPGA will process the received data and sends out
a data signal to the LED-Matrix. The LED-Matrix itself include drivers for red, green and
blue LEDs separately, which the aforementioned data signal coming from the FPGA board
should give input for.

The LED-Matrix in our case is special when it comes to its cost but also in its application
possibilities. The LED-strips are flexible, which allows a variety of applications on curved
surfaces.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Chapter 3

Communication Protocols

In this chapter we will investigate some wired and wireless protocols that are available for
our system.

3-1 Wireless Protocols

There are quite some ways to deliver information wirelessly: infrared, Wi-Fi, Bluetooth, etc.
however the most applicable two protocols for our system would be Wi-Fi and Bluetooth. In
the next few parts we are going to list some differences between the two protocols.

3-1-1 Bluetooth

Figure 3-1: Bluetooth logo

Bluetooth technology exchanges data over short distances using radio transmissions. Blue-
tooth technology operates in the unlicensed industrial, scientific and medical (ISM) band at
2.4 to 2.485 GHz, using a spread spectrum, frequency hopping, full-duplex signal at a nominal
rate of 1600 hops/sec.[1]

Range is application specific and although a minimum range is mandated by the Core Speci-

Range may vary depending on class of radio used in an implementation[2]:

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

3-1 Wireless Protocols 5

e Class 3 radios — have a range of up to 1 meter or 3 feet

e Class 2 radios — most commonly found in mobile devices — have a range of 10 meters or
33 feet

¢ Class 1 radios — used primarily in industrial use cases — have a range of 100 meters or
300 feet

3-1-2 Wifi

¥ @@

Figure 3-2: Wi-Fi logo

Wi-Fi is the name of a popular wireless networking technology that uses radio waves to
provide wireless high-speed Internet and network connections. A common misconception is
that the term Wi-Fi is short for "wireless fidelity," however this is not the case. Wi-Fi is
simply a trademarked phrase that means IEEE 802.11x.

Wi-Fi works with no physical wired connection between sender and receiver by using radio
frequency (RF) technology, a frequency within the electromagnetic spectrum associated with
radio wave propagation. When an RF current is supplied to an antenna, an electromagnetic
field is created that then is able to propagate through space. The cornerstone of any wireless
network is an access point (AP). The primary job of an access point is to broadcast a wireless
signal that computers can detect and "tune' into. [3]

While the official speeds of 802.11b, 802.11g, and 802.11n networks are 11, 54, and 270
megabits per second (Mbps) respectively, these figures represent a scenario that’s simply not
attainable in the real world. As a general rule, you should assume that in a best-case scenario
you'll get roughly one-third of the advertised performance.

It’s also worth noting that a wireless network is by definition a shared network, so the more
computers yvou have connected to a wireless access point the less data each will be able to
send and receive. Just as a wireless network’s speed can vary greatly, so too can the range.

[4]

3-1-3 Comparison

When it comes to cost, Bluetooth definitely is very attractive here. It is much cheaper to
implement

Bandwidth seems to be on the low side with Bluetooth (approx. 8U00Kbps, depends on

manufacturer), while Wi-Fi has more bandwidth (approx. 11Mbps, 54Mbps, and 270Mbps).

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

6 Communication Protocols

In our system bandwidth it is not much of a problem since we do not require much bandwidth
when we do one on one connection between Android device and LED-Matrix. However if for
applications where we connect more devices to the LED-Matrix, Wi-Fi would be better.

In our prototype system we do not need much higher bit-rates than 1Mbps. So Bluetooth
bit-rates (2.1Mbps) would be sufficient compared to Wi-I'i (600Mbps).

Bluetooth does not require an AP or access point like a Wi-Fi connection does. Also Bluetooth
range is much shorter (5-30meters or more, depends on manufacturer) and Wi-Fi has a much
larger range (32-95meters, depends on manufacturer, location or communication frequency).
For our prototype system we do not need much range unless you want to incorporate the
system as a display for information from a source far away.

Power consumption for Bluetooth is low, which is quite nice if you want to keep your system
green, but depending on the scale of the system, the power consumption wouldn’t matter
much compared to use of Wi-Fi.

Wi-Fi can be much more complex than Bluetooth to configure in both hardware and software,
so again it would depend on the scale of the system. Only if the scale needs to be large, would
the configuring of Wi-Fi be worth it.[5]

3-2 Wired Protocols

The 1010-OTG supports a few standard communication protocols like UART, 12C and SPI.
We are now going to look at each of the possible communication protocols that the IOIO-OTG
supports and list some situations where these protocols work best.

3-2-1 SPI

Serial Peripheral Interface (SPI) is a common interface used to communicate between inte-
prated circuits. A single SPI bus enables a single master device to communicate with one or
more slave devices at typical rates of up to tens of Mbit/sec. SPI is a full-duplex interface,
meaning that transmission and reception can are taking place concurrently. SPI requires 3
wires shared by the master and all slaves and an additional wire between the master and each
slave.

The master transmits pulses on the CLK line, to which all slaves listen. On each CLK pulse,
the master writes one bit to the MOSI (master-out-slave-in) line, and reads one bit from
the MISO (master-in-slave-out) line. Only a single slave may enabled at any given time,
preventing the possibility of concurrent write to the MISO line. The enabled slave is selected
by a SS (slave-select) pin, which the master controls. The master will never enable more than
one slave at a time. A slave that is not selected using its SS pin must never affect the MISO
line and also typically ignores the MOSI line. While normally the MISO is supposed to be
connected, the IOIO-OTG can just pull up or pull down the MISO pins, where it allows a
send-only situations.

The following illustration shows a typical SPI transaction, in which the master sends 3 bytes
(0x01, Ux02, 0x03, 0x04, 0x05) and receives 4 bytes (Ux0A, UxUB, 0x0C, UxUD) with a lag of
3. The total transaction length is thus 7 bytes. Time goes from left to write:[G]

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

3-2 Wired Protocols 7

Master || Ox01 | 0x02 | 0x03 0x04 | 0x05 | OxFF | OxFF
Slave Oxt'F | OxFF | OxFF 0x0A | 0x0B | 0x0C | 0x0D

In Figure 3-5 we see a block figure of an single Slave system with an example signal underneath.

In this we see how the data signal (MOSI) will be send out with a sample CLK (SCLK) by

SCLK P SCLK
SPI MOSI » MOSI SPI
Master MISO MISO Slave
5S » S5

s] —
e _JUNUIHUUT

Figure 3-3: SPI signal example for 1 byte(8bits) transfer

a SPI Master. This SCLK would be used by the Slave to sample the MOSI signal to receive
the right byte value. All this would be done as long as CS/SS is 0 for every package.

The SPI bus can operate with a single master device and with one or more slave devices.

3-2-2 IC

It is an interface which enables half-duplex serial communication between multiple devices,
sharing the same bus, with as little as 2 wires (hence the name). Each of the devices can be
cither master or slave, where masters are the only ones that can initiate data transactions.
Each slave device has a unique address on the bus, which is used to select it as the target of
a transaction.

The two wires used are called SDA (data) and SCL (clock). The SCL line is normally
controlled by the master, but in certain situations (clock stretching) may be pulled low by a
slave device. The SDA line is used for data transfer in both directions. The protocol dictates
who has access to the SDA line at any given time. Certain combinations of SDA /SCL states
are used as special signals between the master and slave, such as beginning and ending a
transaction.

A TWI transaction is comprised of one or more write steps or read steps. In a write step, the
master sends data to a slave. In a read step, the slave sends data back to the master. Most
commonly, TWT transactions will have either a write followed by a read, or only a single write
/ read.

The data rates 100KHz, 400KHz or 1MHz are supported. [7][8]
Let’s look at a sample signal to get a sense of the timing done with I2C. In Figure 3-4 we see

an example system and sample signal. Here the following happens:

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

8 Communication Protocols

e Data Transfer is initiated with a START bit (S) signaled by SDA being pulled low while
SCL stays high.

e SDA sets the 1st data bit level while keeping SCL low (during blue bar time.)
e The data is sampled (received) when SCL rises (green) for the first bit (B1).

e This process repeats, SDA transitioning while SCL is low, and the data being read while
SCL is high (B2, Bn).

e A STOP bit (P) is signaled when SDA is pulled high while SCT. is high.

In order to avoid false marker detection, SDA is changed on the SCL falling edge and is
sampled and captured on the rising edge of SCL.

@ Rp Vdd
1 L | i] 1 SDA
T 1 T —SCL

pC ADC DAC MC
Master|| Slave || Slave || Slave

REEFRE

Figure 3-4: 12C Single master example system with 3 Slaves

o)

The I2C bus is a multi-master bus which means any number of master nodes can be present.
Additionally, master and slave roles may be changed between messages (after a STOP is sent).

3-2-3 UART

Universal Asynchronous Reception and Transmission (UART) is a very common, simple and
useful serial communication interface. Its basis is a one-way communication channel, on which
one end transmits and the other end receives on a single wire. Each byte is sent on the wire
bit-by-bit, preceded by a start bit which is simply the bit 0" and followed by an optional
parity bit (used for error correction, but commonly not used at all) and one or two stop bits
(commonly only one), which are simply the bit 1"

When the line is idle, it is HIGH. The rate at which bits are sent is called baud rate. Common
baud rates are 9600, 19200, 38400, 115200, etc.

In the Table below vou see a example for a signal send via UART. Here D stands for Data
and the last Stop-bit is optional.

3 9 10 11
.6 | D. 7| Stop | Stop

Bit number | 1 2 3 4) 6
Start | D.0 | D.1 | D.2|D.3|D.4

Jd
)

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

3-3 Results, Discussion and Conclusion 9

Transmitting and receiving UARTs must be set for the same bit speed, character length,
parity, and stop bits for proper operation. [9][10]

3-2-4 Comparison

Let’s compare these protocols, so we can later make a decision on which of the three is most
suitable for our system. When it comes to bit-rates, the SPI protocols excel due to the wide
choice of speeds ranging from 30Kbits/sec to 8Mbits/s. UART has this freedom too but the
interrupts make it quite annoying to work with. I2C however is either set to 100kbits /sec or
10kbits/sec, which does not really work for our prototype system.

UART is the easiest system to implement, with I*C being the hardest. However, SPI shows
to be more applicable to communication systems overall.

In some systems the amount of used pins for the communication system can be an issue. For
this, SPI protocol uses the most pins (3 pins) in a single Master single slave setup, while
UART needs 2 and 1?C needs 1.

3-3 Results, Discussion and Conclusion

We will now test and conclude our final decission on communication protocols.

3-3-1 Wired
SCLK » SCLK
SPI MOSI » MOSI SP|
Master MISO MISO Slave
SS » SS

s 7] —
111

Figure 3-5: SPI signal example for 1 byte(8bits) transfer

Having seen our comparison in Section 3-2-4, we can now conclude which of the protocols is
the most suitable for our system.

Our SPI system is accurately portrayed in Figure 3-5 except for the fact that we decided that
we will be sampling on the rising edge (which was an option for the IOIO-OTG). To test
if this was actually happening we send a similar alternating signal (0xAA valued constant

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

10 Communication Protocols

signal) to see if we got the right signals with an oscilloscope (alternating signals are of course
easier to analyze with an oscilloscope) on all pins (CLK, SS/CS and MOSI). In Figure 3-6
we see a picture to the left and a signal on a oscilloscope to the right. The picture is created
from a constant OxAA value, which in theory should result in an alternating signal like in
Figure 3-5. The resulting signal at the MOSI pin of the IOIO-OTG locks to be correct, since
the frequency is 500kHz(half of CLK speed of 1MHz) and it's alternating.

L STOP | 5. 808us,

Frea=50@kHz

Figure 3-6: Left shows input picture (color with R,G and B = 0xAA) and right shows resulting
signal at output at a bitrate of 1Mbits/sec

3-3-2 Wireless

When we choose a wireless protocol, it mostly depends on the scale of the system. When we
need to include support for multiple users or for larger information travel distance then Wi-Fi
is the better choice to implement. However, in our prototype system we are accounting for
a one on one conhection with short distance and low cost, so Bluetooth would definitely be
more than sufficient.

We did some tests on some Bluetooth dongles that were supposedly compatible with the
10I0-OTG. However from the 3 dongles we ordered only 1 actually showed any results when
trying to pair with android devices. Figure 3-7 shows a picture of the working dongle on
which we will soon be looking at some lest results [rom. To test the Bluetooth connection
between the dongle used on the IOIO-OTG and an Android phone. To test this we plug the
Bluetooth dongle up to a laptop running on Linux (Windows does not allow easy capturing
of Bluetooth packages) and then look at the speed and the range we got at max. Before we
actually start the test we kept a few things in mind:

¢ Most mobile phones have Bluetooth v2.0 systems with Class 2 radios, so the nominal
bit-rate in theory would be about 3Mbits/s with a max range of 10m (30feet).

e The dongle in Figure 3-7 does say Class 1, but it is not sure if this is really the case since
the dongle is really cheap and probably not of optimal quality. However, we know, like
mobile phones, the phone has Bluetooth v2.0, which means that the nominal bit-rate is

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

3-3 Results, Discussion and Conclusion 11

Figure 3-7: Bluetooth dongle used in this Project

about 3Mbits/s and the nominal range (assuming the dongle actually works as a Classl
system) should be 100meters(300feet).

e Interferences can be a problem in all situations, which includes our testing environment,
so the range and average rate might suffer because of this.

Keeping all above in mind, we expect a bit-rate of <3Mbits/s (<375MB/s) and a range of
<10meters (<33feet).

After quite a few repetitions of our tests, our results were as follows:

e The max. bit-rate we got was 180kB /s which amounts to 1.440Mbits/sec

e The max. range we got without losing connection is about 5meters (16.40feet).

The equipment and resources we had for the tests were not very precise to test the decay
of bit-rate against range. At about 4.5 meters we still got the max. bit-rate of about 1.416
Mbits/sec, so from that we know that the decay of the bit-rate should not be mmch of a
problem in our system.

This shows that our predictions of the tests were actually not far off and now we can conclude
that for wireless counection we will have a limit of 5meters range and 1.440Mbits/s bit-rate.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Chapter 4

Smartphones and Apps

In this chapter we are going to talk about our research of smartphones and its apps. We are
finally going to motivate which

4-1 What are Smartphones and Apps?

Communication, entertainment, news-feed, information source, payment device, etc. are a
few mentions of the many uses for smartphones and it is hard to find anyone not having one
these days. Smartphones come with OS. Currently in the world the most notable two OSs
found on smartphones are Android and iOS, developed by Google and Apple respectively.

Apps are being developed almost every day on every smartphone platform for many different
purpose, whether for private or commercial use. These days, app development has been made
really easy [or anyone to get into, creale content and spread it to the public.

The questions we are going to try to answer, are:

What is de best OS platform to create apps for?

How do we start creating apps for this platform?

What functionality are we planning to have in the app?

¢ How are we planning to implement these functionalities?

4-2 Smartphone OSs

While it might seem obvious what smartphone OS we will choose to make our app in due to
our project’s title, it is always better to look at all options and be aware of the limitations

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

4-2 Smartphone OSs 13

and advantages that we may face in our development process in one OS compared to the
other. Earlier we already mentioned that the two most prominent OSs these days are Google’s
Android and Apple’siOS. Let’s first look at each of these two and their positives and negatives.

o oY
l'l

Figure 4-1: Google's Android Logo

4-2-1 Android

Android is an operating system based on the Linux kernel with a user interface based on direct
manipulation.[11] As of 2011 Android has the largest installed base of any mobile OS and as
of 2013, its devices also sell more than Windows, iOS and Mac OS devices combined.[12] As
of July 2013 the Google Play store, the Android app distribution site, has had over 1 million
Android apps published, and over 50 billion apps downloaded.[13] In the third quarter of the
year 2013, Android held 81,3% of the total Global Smartphone OS Market Share.[14] See
Figure 4-2-1.

Global Smartphone OS
Market Share - 2013 Q3

¥ Android 81,3 %

HApplei0S 13,4 %
Microsoft Windows
Phone 4,1 %

& BlackBerry 1 %

¥ Others 0,2 %

Figure 4-2: Global Smartphone OS Market Share Q3 2013

This OS’s source code is released by Google under open source licenses, although most An-
droid devices ultimately ship with a combination of open source and proprietary software.[15]
Android is popular with technology companies which require a ready-made, low-cost and
customizable operating system for high-tech devices.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

14 Smartphones and Apps

Android has a broad selection of first-and third-party apps, which can be acquired by users
through app stores such as Google Play or by installing APK-files downloaded from third-
party sites. These apps or applications, that extend the functionality of devices, are developed
primarily in the Java object oriented programming language using the Android software
development kit (ADK). The SDK is a spin-off of the Java development kit (JDK), made
more compatible for mobile devices and its uses.

4-2-2 i0S

Figure 4-3: Apple’s iOS Logo

i0S (previously iPhone OS) is a mobile OS developed by Apple Inc. and distributed exclu-
sively for Apple hardware. It is the operating system that powers iPhone, iPad, iPod Touch,
and Apple TV. Major versions of 108 are released annually. By late 2011, i0S accounted for
60% of the market share for smartphones and tablet computers. By Q3 2013, i0S accounted
for 13,4% of the smartphone OS market.[16][14]See Figure 4-2-1. iOS, unlike Android OS,
is a closed system. iOS devices are all according to a specific hardware design making app
creation easier when keeping hardware compatibility in mind.

The 105 SDK was released on March 6, 2008, and allows developers to make applications for
the iPhone and iPod Touch, as well as test them in an "iPhone simulator". However, loading
an application onto the devices is only possible after paying an iPhone Developer Program
fee. Objective-C is a thin layer on top of C, and moreover is a strict superset of C; it is
possible to compile any C program with an Objective-C compiler, and to freely include C
code within an Objective-C class. This makes functionality very broad and allows for many
implementations.

4-3 What is the best OS platform to create apps for?

Android OS can’t support Objective-C and 105 can’t support Java, so we have to make a
choice between the two systems.

When it comes to programming, in our case Java is the most accessible. We have been
exposed to Java during the Bachelor Program of Electrical Engineering, making it casier to
develop the app in Java. While Java has some restricted functionality, its ability to include
C programs makes it as well as Objective-C for programming.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

4-4 App creation on Android 15

i0S is much casier to write apps in due to the hardware being fixed and not changing for a
long time. For this project we want to be able to control various sensors and internal devices
in the phone and Android provides this ability better. Also the strict policies from Apple
might be hindering in app development process, not to mention the licensing cost.

These days and specifically since last year, the amount of Android users has heen steadily
towering over the amount of i0S users.

When we want to create an app, we also want to be sure that our app is accessible to as much
users as possible and we want to have freedom to test and distribute as we want, so Android
is the best choice.

4-4 App creation on Android

Since we have now decided that we are going to develop our app for Android platform, let us
consider the process. We first need to select an IDE. We are selecting Eclipse as our IDE for
various reasons. Eclipse is a very powerful program that makes developing programs easy and
efficient due to its ability to download plug-ins and SDKs from the internet and its powerful
compiler. It shouldn’t matter which IDE is used, but stability is definitely guaranteed with
Eclipse.

Furthermore, since we are only trained in basic level of Java/Object Oriented coding and first
time building an Android app, we used sources listed in the bibliography to help us.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Chapter 5

1010-0TG

In this chapter we will look at the IOIO-OTG and its functions applicable to our project and
then finally show how we finally apply the IOIO-OTG to our system.

5-1 What is the 1010-OTG?

L%

Figure 5-1: |010-OTG circuit board

IOIO-OTG (pronounced as "yoyo on the go") is a printed circuit board created by Ytai Ben-
Tsvi. The board is small and light and is relatively cheap, but is not supposed to replace
for instance a board like Arduino. It is only meant to provide I/O function where existing
systems lack it and add in either Bluetooth connection or USB communication with Android
devices. The IOIO-OTG is all open-source, software, firmware and hardware.

The IOIO-OTG board has the following main features:[17]
e USB-OTG dual-role (host, device).

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

5-2 What is the purpose of the I0I0-OTG in this project? 17

e Input voltage: 5V-15V, from external source or through USB (when connected to a
computer).

e Output voltage: 5V, up to 3A (!), 3.3V, up to 500mA.

e 46 I/O pins (digital 1/0), built-in pull-ups / pull-downs / open-drain on all pins.
e 16 Analog inputs.

e 9 PWM (for driving servos, DC motors, dimming LEDs, etc.).

e 4 UART.

¢ 3 TWI (I2C, SMBUS).

e 3 SPL

e § Pulse Input (precise pulse-width / frequency measurement).

e USB current limiting when acting as USB host (useful in Android mode).

e Switch for forcing host mode (for using non-standard USB cables, which are more
common than the standard ones...)

e On-board LED under user control.

5-2 What is the purpose of the 1010-OTG in this project?

We were provided the TOTIO-OTG for our project to use it to drive the LED-Matrix. However,
we quickly decided that it would be impossible for a four-man team to work on one Android
code, so we decided to design our driver on an FPGA board and only use the TOIO-OTG
as a communication device between Android devices and the FPGA board. As said before,
the IOIO-OTG includes handy libraries for Android and also has included functionality to
communicate via Bluetooth. Both of these features would be far too complex and time
consuming to finish designing within the project time period, therefor using the I0I0-OTG
in our prototype as proof of concept should suffice.

5-3 Communication Setup

Our commuunication setup is displayed in Figure 5-2. What the Android does to provide the
RGB values can be found at Chapter 6. For now we will assume that the IOIO-OTG will
receive 48 bytes of data, which will be forwarded to the FPGA via SPI protocol with a rate
of 1Mbits/sec. As mentioned before the IOIO is capable only of Bluetooth connection as
wireless connection and includes a variety of sending protocols for connections with its 1/0
pins. However this design is just a proof of concept so we need to consider for instance Wi-Fi
as an option and motivate why we choose SPI protocol to send information to the FPGA.

In Chapter 3 we discussed a few of the communication protocols available protocols and
motivated which why Bluetooth and SPI protocol is the right choice for our system. With
these choices in mind we can now design our communication system between Android devices

and the FPGA /LED-Matrix driver.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

18 I010-0TG

| Android I

Bluetooth (Wireless) | 48bytes @ approx. 1Mbits/s min.

l IOIO-0TG |

SPT protocol (Wired) | 48bytes @ 1Mbits/sec max.

[FPGA /LED-Matrix Driver]

Figure 5-2: Communication Setup

5-4 Implementation

In Section 6-2-5 we show how we order the TOTO to forward information. Only implementation
we have to do for the IOIO is to connect a Bluetooth dongle discussed in Chapter 3 and to
connect the in the android assigned MOSI, CLK and an extra pin to signify when an image
is being sent.

5-5 Results Discussion and Conclusion

The IOTO-OTG is very handy for Bluetooth connections with Android and providing 1/0
pins to the FPGA, however implementing Wi-Fi would be a bit more tricky. In Section 3-3
we see some results from the I010-OTG producing an SPI signal successfully. In Section 6-4,
we see that we get positive results from the implemented I010-OTG and the coding, showing
that this prototype is actually proven to be a success.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Chapter 6

Android Application

In this chapter we are going to explain the functionalities we want to implement into our app
and how we implement these.

6-1 App Functionalities

Since we as Electrical Engineers can’t be expected to instantly be able to develop complex
apps and since this system is supposed to function as prototype or proof of concept, we are
going to start with a basic design for the app. Earlier in the Chapter Project Goal we saw
that we need to be able take a picture and send the R, G and B values of the picture per
16 LED per package to the IOIO-OTG via Bluetooth to be further sent to the FPGA(LED-
Matrix Driver) as seen in Figure...This basic design will need to comply with the following

requirernents to achieve the goals mentioned above:

e It is safe in this level of design to assume the prototype LED-Matrix will be 32x32 pixels
big, but later we want to be able to expand. So accounting for this during development
is needed.

e Take an existing picture from the phone and resize and crop it to accommodate for the
resolution of our LED-Matrix.

e This picture needs to be analyzed per pixel for the RGB value of the picture.
e The RGB value needs to be split in an R, G and B value in byte form.

o All collected values in byte form need to be sent to the IOIO-OTG via Bluetooth with
instructions to forward the information to the FPGA via SPI protocol.

e Spi protocol on the IOIO-OTG only supports 64 bytes of data, so all collected info need
to be prepared for communication.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

20 Android Application

e The moment this basic level of functionality is achieved in the app, we can expand the
app further to include more functions and enhance the visual aesthetic of the app.

Now that we have a clear picture of our first milestone we can now list some functions we can
try to implement after basic level of functionality is achieved:

Get pictures from the internet.

Scroll picture to change where the picture is cropped to.

Splash screen and visual app design for a more representable design.

Sending info obtained from Animations.

Convert input text to picture.

Include options like screen size or background color.

6-2 Functionality Implementation

Let’s split the basic level functionalities we defined earlier:

Convert to Bitmap]

1
[Rescale to LED-Matrix Resolution]
1
[Extraction RGB values per pixel]
T

[Prepare Infromation for Sending Blucfooth I01I0-0TG

Figure 6-1: Visualization of basic level functionality of Android app

Above we can see the basic level functionality we defined earlier visualized. The 4 blocks in
the middle represent the methods used in the app. We will now explain how each of these
blocks will be implemented.

6-2-1 Grabbing a Picture from Phone

What we want is to make a button that brings you to a dialog to browse your phone for a
Picture. Android provides preset action handlers. In this case, we can create a Button that
will start an so called Intent to pick an image file. We see the implementation of this in the

Appendix A-1-3.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

6-2 Functionality Implementation 21

6-2-2 Preparing Picture for Analyses

After choosing the picture, we take the chosen picture and converts it to a Bitmap class object.
After conversion we want to resize the picture to the size of the LED-Matrix, preferably
without stretching.

The reason we want to convert the picture to a Bitmap is because we can later use the method
Bitmap.getPixels(int[] pixels, int offset, int stride, int x, int y, int width,
int height) to retrieve the RGB data of each pixel in the picture, which we will discuss later.

To convert the picture we need the method BitmapFactory.decodeFile(String pathName).
This method needs the pathName which means we have to create a string that precisely show
where the selected picture resides.

Since every phone compared to each other can have different storage names and since a phone
can have multiple storages, we need to make sure the correct path is always "formulated" for
it to work with the method BitmapFactory.decodeFile(String pathName). So for this we
use a Cursor to point in the right folder and then create a correct String notation of the
path. This can be seen implemented in the Appendix A-1-4. From here we see from that the
picture is then rescaled with RGBdrive.rescale(Bitmap bm,int d_x, int d_y) and then
processed for sending with RGBdrive.rgbDrive (Bitmap bm). Here RGBdrive is the class
shown in the Appendix A-1-5 where we declared most methods used for Bitmap processing.

6-2-3 Rescaling Bitmaps

Our LED-Matrix is quite variable in resolution and to comply with this we will need to
resize and crop our selected picture. The problem with this is that there are simple methods
available to resize Bitmaps to a specific resolution however this does not take in account the
ratio between height and width, resulting in a stretch or squished image.

What we do for that, is seen implemented in Appendix A-1-5. We check this by determining
if either the height or width is smaller and calculating the scaling ratio between the largest
of the two and the equivalent of the target picture and then finally using that ratio to rescale
the picture. This way we fill the LED-Matrix with as much of the picture as we can.

See Figure 6-2 for a visual representation of what we are trying to implement. In this case
we ensure that in most cases we will have filled the LED-Matrix with a decent amount of
the picture. In some cases the picture will not completely fill the LED-Matrix, but we chose
to allow this since in these cases the empty bits will appear black and we will have the full
picture in the screen. Also note that during this rescaling design we keep the focus in the
center.

Now that we have selected a suitable ratio, we can actually scale the image by preparing a
Rescaling Matrix using the calculated rescale ratio with Matrix.setScale(float xscale,
float yscale) and applying this to the image with both xscale and yscale set to our
selected scaling ratio. Like seen in the Figure 6-2 we, in this manner, preserve our ratio of
the image and avoid squishing or stretching.

After preparation of the Rescaling Matrix we send all info to the next method where we

actually finish resizing the picture. We won’t focus too long on what goes on in this method.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

22 Android Application

Chosen Image: Target Image: Result:

Width

pSioy

Figure 6-2: Vizualization of rescaling process

In short, we resize the original picture and then draw a rectangle with the Rect class to select
a part of the resized picture to which we want to crop to. To achieve this we have to use some
algorithms to every time calculate the needed info to finalize the resized picture as seen in the
Appendix A-1-5. This part of the code also accomodates for the scroll feature we mentioned
earlier, implemented as an extra feature.

After the result is achieved, the resulting Bitmap gets send to the next part of the process,
which is the analyses of the RGB values per pixel.

6-2-4 Analyzing Bitmap's Pixel RGB Values

What we want to do is dump all RGB values of a picture per pixel and split the R, G and B
values and store these values in a byte[] "byte array" in such a way that we can send this
info in an easy way to the IOIO-OTG.

RGB values for a pixel contain the information representing the level each color is apt to
display the color seen in this pixel. Each color have 256 levels of shades. To represent these
level we can use bytes containing 8 bits worth of data. So after getting the right R, G and B
value we convert this value to byte form.

We are going to use the method Bitmap.getPixels(int[] pixels, int offset, int stride,
int %, int y, int width, int height) to get all RGB values of the rescaled Bitmap per
pixel, where pixels is the array to receive the bitmap’s colors in. We need to consider a few
requirements and notes before we get to work:

e The above method reads the pixels from left to right and from top to bottom. We need
to check if this complies with the LED-Matrix.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

6-2 Functionality Implementation 23

e Each value in pixels[] will represent the RGB value of a pixel, numbered according
to above mentioned reading rule.

e The LED-Matrix reads in the color values G, R and B in that order.

¢ For their implementation, our teammates in charge of designing the driver for the LED-
Matrix using the FPGA, requested the information to be send for each LED-strip sep-
arate. Along with this all color codes need to be sorted per color per LED-strip (16
pixels). This means information for each LED-strip needs to be bundled and send in
the following way: 16 Green values in bytes, 16 Red values in bytes and finally 16 Blue
values in bytes for 1 LED-strip of 16 LEDs and repeat for next strip.

To comply with these requirements and notes, we need to create a solid algorithm to prepare
the RGB data. The basic idea we are going to use here is that we are going to convert the
picture in a large byte[] array that has a size of the picture’s total amount of pixels times
3. This byte[] array will be of the following form:

| Array entry | 0-15 | 16-31 32-47 | 47-62
‘Color Values | 16+xG | 16«xR 16+xB | 16xG

So the algorithm needs to fill in the array at the correct location with the correct info.

Earlier we mentioned de array pixels[] to contain RGB values for 1 pixel per entry. To split
this we just need to use a bit-wise shifting of the RGB value and then adding that to the hex
value 0xff to get R, G and B values seperate. This is implemented as seen in Appendix A-1-5.
Using the help of strip numbering and pixel numbering we can easily fill in the right value
for the colors of a pixel in the correct location in the bytel[].

6-2-5 Sending Information to 1010-0TG

Finally we have to send our byte[] array of RGB values to the I010-OTG. Earlier in Chap-
ter b TOTIO-OTG Section 5-3, we saw that we selected to send information from the IOTIO-OTG
board to the FPGA using SPI protocol. SPI protocol can send 64 bytes of data per time so
we need to control our data output to accommeodate for this.

The IOIO-OTG came with a handy set of libraries containing pre-made methods and classes
for controlling the IOIO-OTG with an Android phone. Due to the included preset libraries for
the IOIO-OTG the Android app will automatically constantly be trying to connect with the
I0I0-OTG (via Bluetooth or USB) and when connected will send information as requested
as long as allowed. In the Appendix A-1-6 we see a class called Looper which initiallizes pins,
opens them and finally in a constant loop tries to send data to the I010-OTG according
to what is written in the loop() method. In the loop() method we just have to order the
1010-OTG to send a byte[] array through the earlier opened SPI protocol connection to the
FPGA. Also a pin sends a logic "1" for as long as we are sending an image and a logic "0"
when idle.

For easy handling on FPGA side, we decided to split the data to 16 LEDs * 3 colors =
48bytes of data per package. Removing or adding 1 strip amounts to 48bytes of data, so
having packages be consistently 48bytes big, globalizes our code for [uture expansions of the
LED-Matrix. In the code at Appendix A-1-6 we see our code implemented.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

24 Android Application

6-3 Extra Implementations

Note: Since our current coding for the app is much too long to include in our thests we will
only include the basic code needed to achieve basic functionality. The code including the extras
is about twice as long.

Since we just wanted to build upon our existing code, we just implemented a few classes
that take a GIF animation and split it into an array of Bitmaps, which are being send to the
LED-Matrix through the same way pictures are being send one after another.

Furthermore, we have added the ability to send a picture or GIF animation from the the web
to the Led-Matrix, signifying the internet capability we have.

Another feature we added is to convert an input text to a picture in the form of Bitmap and
send that to the LED-Matrix. This we did to show we can show custom info.

The last extra feature is the option to scroll last sent picture using its preview via touch
commands. With this feature we can let the user select the correct position we want to use
of the cropped picture. This shows that we can have some interactivity in our app.

An implementation, that at the moment of writing we are hoping to have ready at the
demonstration of our system, is a feature that compliments the LED-Matrix in its flexible
state. For instance, when the LED-Matrix is applied in a cilindrical display facing outwards,
we could let an image or message circle around the display. This ofcourse will signify the
possiblities with the LED-Matrix applied on a curved surface.

The last extra feature is the option to scroll last sent picture using its preview via touch

commands. With this feature we can let the user select the correct position we want to use
of the cropped picture.

6-4 Results, Discussion and Conclusion

Optiens to set LED-screen
Placeholder name size and color options for

aoE/ o) sun e displaving text AQuE . vd0

W' rlexeD W Flexien ! % FlexLED

‘ Set Screen Size Share

Text Display Settings Share rofy UR

Share

Scroll
8 Text sharing

Select a Picture to Display. Select a Picture .o Display..

hacllo

Scroll to select preferred part of picture

Figure 6-3: Resulting Androidapp

Our resulting app is shown at Figure 6-3. In this picture we can see a lew of our features
in action. The app is tested and works perfectly, although with some bugs for now. The

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

6-4 Results, Discussion and Conclusion 25

IOIO-OTG seems to be sending the right information every time we send a picture as seen in
the Figure 6-4 so we can conclude that are current implementation must therefore be working
correctly. In Figure 6-5 we see an example of a picture being resized and cropped to the
required resolution and this seems to be going correctly using the algoritm we discussed in
Subsection 6-2-3, proving that the used algoritm is good for our system’s needs.

s s .

L .

L I R N S —
' . - 3 ..

¢ T .

Figure 6-4: Left shows input picture and right shows resulting output at the LED-Matrix

P RCICC .

-
P s
. .
I--..Q&‘ﬁgv.

.. -

f.- . ‘. .

Figure 6-5: Left shows input picture and right shows resulting output at the LED-Matrix

There is however a few observation to made concerning stability and optimization. During
our development of the app we have noticed a few key points that needs to be kept. in mind:

e We need to keep the memory of the Android in mind. The amount of internal RAM
memory a device can have is limited per device. To accommodate for this we need to
keep our app memory efficient. This means that we, for instance, need to keep path
names in our memory instead of full Bitmaps itself.

e The code is written in such a way that screen size modification at the LED-Matrix
side will not impact the programming at all. Since we added an option to change the
resolution in-app, the scalability of the LED-Matrix is very flexible when it comes to
the Android app. However, this is still limited to the Android device itself since higher
resolution can mean that more internal RAM is needed.

e Developing apps for Android devices is not limited to smartphones, as mentioned in
Chapter 4. This means that the app is definitely usable on for instance Android Tablets
as well. Any device running Android 2.0 and up and including sullicient amount of

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

26 Android Application

RAM to handle the image processing, should be able to run the app. Only thing that
might suffer on bigger screens is the User Interface layout, but the functionality won’t
be affected.

¢ Not all pictures can provide a clear picture on our LED-Matrix. For instance, JPEG
file format performs less clear than PNG. This is of course due to the conversion quality
of the picture format. To handle this we need to either perform better conversions or
require PNGs as input. The latter is not favorable.

e Due to an issue in the Android libraries for the IOIO-OTG board, we are having issues
displaying GIFs. This is a very rare problem so either we have to rewrite this part of
the system to work around the problem or further troubleshooting the issue. As it is
now, we are trying to find a solution with the creator of the IOIO-OTG, Ytai Ben-Tsvi.
[18]

e SPI protocol has a range of bit-rates between 30Kbits/sec and 8Mbits/sec included in
the IOIO-OTG standard programming. Therefore, we need to limit our sending rate
to 1Mbits/sec max. Else the Bluetooth connection cannot keep up with the wired SPT
protocol. In Section 3-3 we see that the nominal bit-rate we can get with our current
prototype is about 1.440Mbits/s.

So, in short, using the Android and IOIO-OTG combination works well, but when the sys-
tem would actually want to be commercial, a more complex development for specifically the
communication between Android and LED-Matrix driver system is needed. Especially when
Wi-Fi wants to be a possible wireless connection next to Bluetooth. Also the Android ap-
plication as it is can definitely be optimized with processing speed and internal memory in
mind.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Chapter 7

Hardware Design

In this chapter we will discuss three hardware designs related to our project.

7-1 Three Designs

Because the led strips are very flexible and transparent many designs are possible. The design
we produced is a 32 by 32 matrix screen powered by the grid. However there are two other
designs we would like to discuss. One is a design that can be fitted around a cup. Thisis a 5
by 16 design powered by a battery. We will also discuss a rounded ball design also powered
by batteries. In the battery powered system power consumption is of very high importance
and will be discussed thoroughly. Iowever in the case of the grid powered system 240V AC
needs to be converted into 5 V DC.

7-2 32 by 32 Matrix

To power the 32 by 32 matrix, we use a power supply that is connected to the grid. Firstly we
use a transformer to convert the 230V of the grid to the 5V needed by the LED-strips. This
voltage is then transformed into a DC voltage by a full bridge converter (the exact design is
discussed later). To light the LEID)’s about 1 A is used. The power consumption is about 5W.
This is a very low power consumption, if we compare this with a single LEDARE Led-lamp
E14 as advertised by IKEA (which uses about 7 W). A schematic of a 32 by 32 matrix can
be seen in Figure 7-1.

7-2-1 Power Supply

The power supply is designed to produce enough current and voltage to supply for the LED
strips. The LED strips need 3.3-5V and 24 mA per strip. Because all strips are connected in
parallel the required voltage remains 3.3 to 5 V and the required current is about 1.5 A. The

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

28

Hardware Design

Glass window

Figure 7-1: Schematics of 32 by 32 matrix

design for the Power supply can be seen in Figure 7-2. The design uses four diodes to convert
AC to DC, capacitors to compensate ripple voltage and a resistor to reduce the current.

DINdCC2

0 m_rumw
v o T
()
P S ‘
)
T i
10uk |
031
[

LDINLDC2

e | .
L
_.L .
- &70Cu

Figure 7-2: Schematics of powersupply

The power supply is also simulated by Pspice as can be seen in Figure 7-3. It can be noticed
that both the current as the voltage have small ripples. The voltage is about 4.5 and the

current about 1.5 A.

7-2-2 Final Power Supply

The final power supply that we used can be seen in figure 7-4. This is due to time constraint
and long producing time of PCBs. However this power supply meets our specs in voltage and

power and is therefore very suitable. [19]

Sidharta Prahladsingh
Dennis Rutten

Bachelor of Science Thesis

7-3 5 by 16 Cup Wrapper

“ C:\Ussrs\Dennis\Desktop\voeding\voeding\epol-voedingnieuw.sch

Date/Time run: 06/17/14 17:30:1¢ Temperature: 27.0
(2) epol-voedingnieuw (actiwve)
5.0 - |
|
t |
+ . +
4.0 < — 5~ B g o B o R o~ P B o gy = T~ 1T T~ i
=K -y, 7 w7 2 @ B s 7|
|
" I
| 1
3.0 |
4 |
| [
| \
2.0 } /|
| |
I
i 1 1 !
! _ _ . _ |
1.0 ’ e — =
!
I
o | | | I l
Os 50ms 100ms 150ms 200ms
o V(R7:2) o -I(R5)
Time |
Date: June 17, 2014 Page 1 Time: 17:35:46

Figure 7-3: |-V Characteristic of Powersupply

TR
ssavssvsno
ssssssssn T

Figure 7-4: Picture of powersupply used

7-3 5 by 16 Cup Wrapper

One of our designs is a 5 by 16 cup wrapper. This cup wrapper can be used by coffee
places like Starbucks to display advertisements. In this application power consumption is
very important, because it has to be mobile and therefore carry its own power supply. As
mentioned before the led drivers operate at a voltage of 3.3-5 V and use a current of up to
24 mA. Because there are 15 drivers in this 5 by 16 LEDs, the total power consumption will
be about 66-100 mW. Conventional Duracell batteries 1.5 V (three in series) have a power
storage of about 2,2 Ah this is enough for about three hours. If we want a system that is
sustained for about nine hours we simply add 2 more sets of battery’s in parallel.

Sidharta Prahladsingh

Bachelor of Science Thesis
Dennis Rutten

30 Hardware Design

Figure 7-5: LED-Cup

7-4 LED Ball

Another design that can be investigated is the LED Globe. This LED Globe could be used by
companies to show their activities on the globe or as a circular display which can be viewed
from all sides. This design can be manufactured in all sizes however our design will use 30
LED strips of each 16 LED. The power consumption of this device will be about 400-600mW .
With the same Duracell batteries, 15 batteries (5 sets of 3 in parallel) are required to power
the system for about three hours. However if nine hours of power is desired, 45 batteries are
needed. Because 45 batteries is too much for a consumer product, it is recommended to use a
larger power source(like an lithium-ion battery pack) or connect it to the grid as we do with
the 32 by 32.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

Chapter 8

PCB

8-1 Non Flexible 32 by 32

To create the 32 by 32 matrix, a PCB is needed. This PCB was designed using the software
create by Designspark and produced by EuroCircuit. To reach low energy losses and keep
the prototype affordable we used non flexible PCB design. The PCB contains connections
all the input signals to all the LED-strips. There are 32 ten pin connectors to connect all 32
LED strips. In Figure 8-1, the ten pin connector used by the led strips is shown and in the
table in Figure 8-3. There arc also 32 data pins that collect all the data from the FPGA,
one Vee pin and one ground pin. In the design of the PCB different layer are used. In the
top level there is a silk screen which can provide the design with text. Under this level there
is a level that defines the drill holes. There are also two copper levels. We use two copper
levels because more lines can be fitted on our PCB and lines can cross without connecting.
The top copper layer and the bottom copper layer is present on the entire PCB except where
the signal lines are present, which are insulated to prevent interference between the different
connecting lines. All connector lines are made as thick as the connector holes to prevent as
much energy losses in the PCB as possible.

6 7

Figure 8-1: Ten pin connector

In Figure 8-4, the top level and silkscreen can be seen. This is how the PCB can be seen from
above and were the pins will be soldered.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

32

PCB

Figure 8-2: Ten pin connector

Connectorsnumbers

Signals

123

Vee

45.6

GND

=

{

CLK

8

LE

9

OE

10

Data-in

Figure 8-3: Connector Information

Figure 8-4: Toplevel of the PCB

PINS diameter | distance between pins
10 pin connectors 0.65mm | 1.27 mm

32 data in pins 0.75mm | 2.5 mm

Vece and ground pins | 0.75 2.5 mm

Figure 8-5: Pin Information

Sidharta Prahladsingh

Dennis Rutten

Bachelor of Science Thesis

8-2 Flexible PCB 33

8-2 Flexible PCB

For some applications (like globes or other round forms) flexible PCB technology is needed. To
produce such flexible PCBs other materials are used. For this technology materials like PEEK,
polyimide or transparent conductive polyester are used. For some applications transparent
materials would be very good because if the display is turned off it would be almost entirely
transparent. [20]

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

Chapter 9

Conclusion

Tn this chapter we will draw some conclusions and discuss our findings and experience during
the process of development of the different blocks we had our parts in.

9-1 Android

Android is generally easy to use and a very cheap and user-friendly debut platform to build
apps on. The only problem with this OS is the fact that your are very limited in commu-
nicating with other apps. So for instance, if you wanted to create an app that reads your
mood according to the music you play or the messages you sent or post, you would find this
is virtually impossible due to Androids Dalvik process virtual machine system.

Other than that, the Android OS system is great for developing apps, especially when you
want to use most of the Android Device’s integrated sensors and modules like the altitude
sensors or WiFi module. That combined with the fact that the apps are Java based and that
most engineers have the capability to write code in Java Environment.

The scalability of Android is also quite nice. If written correctly the app should be able to be
used on a variety of Android devices, however there is one problem with this. Every Android
device’s infrastructure is different so there possibility that an app might not work on some
devices is possible and needs to be debugged when problems arises.

The developed app works nicely for what we wanted to achieve with it. We are able to
successfully send images to a screen as seen in Figure 9-1. In the Figure yvou can even see the
App controlling the screen here. The app includes some extra features in which we can display
images obtained from other means than from the device’'s memory. One way is by putting in
a text and returning an image containing that text and a way by grabbing information [rom
the internet, as seen in Figure 9-2

In Figure Y-2 the rescaling ellect is also seen in action. This shows that our algoritm to get

as much of the picture in the screen is working correctly.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

9-1 Android 35

N twg 21KBa oo pyry =
[+ OB :H © .4 O MoN0TIULT:52 PN [+ RON +) ‘t ® 44 Q Mono7IuL8:10PM

W FlexLED %" FlexLED

Text Disnlav Text Disnlav

Share from URL: Share from URL:

cc_EU_logo.png Share...
— e
Share from phone: Share from phone

Select a Picture to Display... Select a Picture to Display...

Display Selected Picture Display Selected Picture

Figure 9-2: Left shows the custom text feature at work, in the mid-
dle the rescaling (32x32) and internet feature is shown with it's input image
(944x694,connectedcities.eu/downloads/coordination/cc_eu_logo.png) on the right.

The last extra feature is Animation. This was very early in development and was not finished
at the end of the project, however we were able to show a moving dot from one side of the
screen to the other side with a nice framerate, although we could not set this to optimal due
to some communication issues existing between the IOIO-OTG and the FPGA. The FPGA
design to accept SPI data flow was not optimal and was very hard to debug. Also in the FPGA
we saw that rewriting an image to the RAM wasn’t optimal with it’s result for seqquences
of images and needed to be developed further to make animations an casier task. Either we
needed to debug this, which required more time, or, like mentioned in Section 9-5, wrote the
firmware of the IOIO-OTG to replace the FPGA board so timing and storage would be easier
to account for.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

36 Conclusion

9-2 1010-0TG

The IOIO-OTG proved to be very useful for the project as a communication device between
Android and hardware. The only problem that arised with it is the fact that the device does
not have the best documentation and support. Meaning when there is a problem with the
device, there is little support you can expect. In our experience we saw that our developed
app was not sending information back from the TOTO-OTG. The cause of this problem could
not be identified by the creator of the device, forcing us to figure out the solution ourselves.
This solution was found by us later to be a problem of not having included the build path to
the TOIO libraries. This library was being called externally so if there was any request for a
variable, it wouldn’t arrive to the app.

This allowed us to finally check if the SPI protocol was working. The result for this would
be to big to produce in this Thesis. What we did is have the IOIO-OTG loop back the
information it was sending and make a file with the bytes received and compared that with
the input. This proved to be succesful.

If we want to use this system to use Wi-F'i communications, then the 1010-OTG would not
be needed or it’s firmware would have to be mostly rewritten to accomodate for Wi-Fi. So to
do this, more time needs to be invested in creating Android libraries and writing a firmware
for the android. Like we saw in Chapter 3 we would then be able to accomodate for more
users at once and have bigger signal range.

9-3 PCB

For desigining a PCB, it is advisable to make your design ahead of time so there is enough time
to either show your design to someone with more experience or have the design be checked
by the involved producers, so changes can be made carly on and the board will be finished
on time. This process was not known to us and taken for granted, leading to the board being
ready to use at the last moments of the project.

While our designed PCB works correctly as proven in Figure 9-1, we soon realized that the
signal for LE and CLK was decaying in power due to the load of the strips. This means that
that more strips are counected, the weaker the two signals will be. To compensate for this we
would have to have a seperate LE and CLK signal per approx. 5 strips or we would have to
make seperate PCBs for 5 strips seperately. Next to the LE and CLIK we experienced some
power issue with for instance displaying full white screen. This would result into a red screen
since there isn’t enough power available for the full 32x32 screen. To compensate for this
we would as mentioned earlier have to probably power the strips per 5 strips with the same
power supply or seperate PCBs per 5 strips with their own power supply.

9-4 Power Supply

Due to various time constraints and, in hind sight, bad time scheduling, we could not finish
the design on the power supply and couldn’t order a premade one. Instead we used a standard
power supply with a rating of 7V and 6A. The LEDs worked at a voltage of 3.3-3.9V and the

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

9-5 Qverall System 37

current stayed around 1.80A for the full 32x32 matrix. This was not enough power to fully
display a white screen. Either the power supply needs to be more persistent (not recommended
due to compounent safety) or we need to integrate power supplies into the PCBs per 5 strips
as mentioned in Section 9-3.

9-5 OQverall System

Ultimately to have a complete and much smoother working system than our current system,
we would have to integrate everything from the IOIO-OTG functions and the FPGA functions
into one module. We need to have the IOIO-OTG firmware be written in such a way that the
FFPGA would be replaced and therefor the communication between IOIOQO-OTG circuit board
and FPGA would be nullified. This last mentioned communication was giving us the most
problems so if that communication does not exist, our system would give much bhetter result
and would even allow animations to be an easier implementable feature, assuming you install
a memory to the IOIO-OTG circuit board. Another option is to create a system that would
integrate both the wireless communication option and the driving of the LED-Matrix into
one chip. In both these cases we can use the same Android app and the modified version of
the PCB and Power Supply to have a robust, fast and power efficient system overal.

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

1T e W

S e el il e e T
[T =T SRR I - VU M =)

Appendix A

Android Codes

Below vou will find all codes mentioned throughout Chapter 6 "Android".

A-1 Basic Functionality Program Code

For better readability the code is split in separate paragraphs with their own respective titles
as referenced in the Chapter 6 "Android". All paragraphs together make up the full code for
basic functionality. This does not include the extra features.

A-1-1 Library Imports
package com.flexled.main:

import java.io.BufferedInputStream;
import java.io.File:

import java.io.FileOutputStream;
import java.io.IOExcepticn;

import java.io.InputStream:

import java.net.MalformedURLException;
import java.net.URL:

import java.net.URLConnection;

import java.nio.ByteBuffer:

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.concurrent. ExecutionException;

import ioio.lib.api.exception.ConnectionlLostException;
import ioio.lib.spi.Log;

import ioio.lib.util.BaseIOIOLooper;

import ioio.lib.util.IOIOLooper;

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

36

A-1 Basic Functionality Program Code

39

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

A-1-2

ioio.lib
android.
android
android.
android.
android.
android
android.
android.
android
android.
android.
android.
android
android.
android.
android
android.
android.
android.
android.

iocio.1lib.
icio.1lib.

ic0io.1lib

ioio.lib.
ioio.1lib.

android.
android.
android
android.
android.
android
android.
android.
android.
android
android.
android.
android
android.
android.
android
android.
android.
android

.util.android.I0I0Activity;
R.style;

.graphics .Bitmap;

graphics .Bitmap.Config;
graphics.BitmapFactory;
graphics.Canvas;

.graphics.Color;

graphics.Matrix;
graphics.Paint;

.graphics.Rect;

graphics.Paint.Style;
os.AsyncTask;
os.Bundle:

.08.Environment ;

view.Menu:
view.MenulInflater;

.view.Menultemnm;

view.MotionEvent;
view.VelocityTracker;
view.View:
view.WindowManager ;
api.Digitallnput;
api.Digitallnput.Spec.Mode;
.api.DigitalQutput;
api.SpiMaster;
api.SpiMaster .Rate;
view.View.OnClickListener;
annotation.TargetApi;

.app.AlarmManager;

app.Dialog;
app.Pendinglntent;

.content .Context;

content . Intent;
database.Cursor;
net.Uri;

.0s.Build;

provider .MediaStore;
widget.ArrayAdapter;

.widget .Button;

widget .CheckBox;
widget .EditText;

.widget.ImageView,

widget .LinearlLayout;
widget.Spinner;

.widget.TextView;

The Main Activity

Initiation global variable and start of app.

/x%

* This is the main activity of the FlexLed app.

Bachelor of Science Thesis

Sidharta Prahladsingh
Dennis Rutten

=1 D Tt

=l

TS W N -

©° ®

o
= o

40

Android Codes

*/
public class MainActivity extends I0IOActivity{
//initiation attributes
private Button picdisplayButton:
private Button rstButton:
private ImageView pictest;
private static TextView test;
private static TextView test2;

//intiation wvariables
//width and height of the LED-matrix
private static int picw =32;

private static int pich = 5;
private static byte || buffer = new byte |[picw#pich#3];
private static byte[]| bufferin= new byte|[picwxpich=*3];
private static boolean picdone — true;
/* %

* Get attributes from layout.

*/
@O0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
//show splashscreen for atleast 1 second.

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
e.printStackTrace () ;

}

setTheme (style.Theme_Holo);
setContentView(R.layout.fin_main);

//create all listners for buttons.
addListenerOnButton();

A-1-3 Add Listeners to Button

Adds onClickListeners to button. Asks user to choose an image.

/xx

* Setting all onClickListeners() for buttons
*/

public void addListenerOnButton() {

//Buttons

picdisplayButton = (Button) findViewById(R.id.button3);

//end Buttons

//ImageViews

Sidharta Prahladsingh
Dennis Rutten

Bachelor of Science Thesis

A-1 Basic Functionality Program Code 41

12 pictest = (ImageView) findViewById(R.id.imageViewl);

13 //end ImageViews

14

15

16 this.getWindow () .setSoftInputMode (WindowManager.LayoutParans.
SOFT_INPUT_STATE_ALWAYS_HIDDEN);

17 //start setting of onClickListners() for Buttons

18 /**

19 * Button should take a picture chosen from phone and

20 * pass it to onActivityResult()

21 ®/

22 picdisplayButton.setOnClickListener (new OnClickListener() {

23 @0verride

24 public void onClick(View v) {

25 if (v.getId() = picdisplayButton.getId()) {

26 if (picw — 0){

27 picw = 32;

28 }

29 if (pich = 0){

30 pich = 32;

31 }

32 buffer = new byte|[picwxpich#*3];

33 Intent intent = new Intent(Intent.ACTION_PICK,

34 android.provider.MediaStore.Images.Media.

EXTERNAL CONTENT URI);

35 startActivityForResult(Intent.createChooser(intent, "Select
Picture"), 0);

36 }

37

38 +

39 jo%

40 }

A-1-4 Processing of Chosen Picture

Takes chosen picture and distinguishes if animation or not. Prepares picture to be send.

/**
* Further processing of Pictures or GIFs gotten from phone storage.
* Picture and GIF processing is done separated.

[o

* Extension check is done to distinguish.

6 i

7 @TargetApi(Build.VERSION_CODES.GINGERBREAD_MR1) @SuppressWarnings("
deprecation") @Override

8 protected void onActivityResult(int requestCode, int resultCode, Intent
data) {
9 super.onActivityResult (requestCode, resultCode, data);
10 if (requestCode ==0){
11 if (resultCode — RESULT_0K) {
12 Uri targetUri = data.getData();
13
Bachelor of Science Thesis Sidharta Prahladsingh

Dennis Rutten

14
15
16

)

Q0 Q0 L0 W oW W N NN NN NN
L= I B e = =« I = B A R S T

rd

38
39
40
41
42
43
44
45
46
48
49
50

51
52
53

42

Android Codes

String[] proj = { MediaStore.Video.Media.DATA };

Cursor cursor = managedQuery(targetUri, proj, null, null, null);

int column_index :'cursor.getColumnIndeXDrThrow(MediaStore.Video.
Media.DATA);

cursor.moveToFirst () ;

//Check if chosen picture is a gif.
if (cursor.getString(column_index).substring(cursor.getString/(
column_index).lastIndex0f(".")).equals(".gif"))
{//GIF File
gifView.setGif (cursor.getString(column_index));

decoder = new GifDecoder();
decoder .read(gifView.getInputStream());

for(int i = 0;i< decoder.getFrameCount () ;i++){
//check if GIF is animation
if (!(decoder.getDelay(i)<= 0))
{
for (int j = 0 ;j< decoder.getDelay(i);j++)
{

bmlist.add(RGBdrive.rescale (decoder.getFrame(i) ,0,0));

try {
RGBdrive.rgbDrive (RGBdrive.rescale(decoder.getFrame (i)

0,0));
} catch (ConnectionLostException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
I
i

else

{

bmlist.add(RGBdrive.rescale(decoder.getFrame (i) ,0,0));
try {
RGBdrive.rgbDrive (RGBdrive.rescale(decoder.getFrame (i)
,0.,0));
} catch (ConnectionLostException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}

}

try {
Thread.wait (1000);

} catch (InterruptedException e) {
e.printStackTrace () :

h
i

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

A-1 Basic Functionality Program Code 43

63 pictest.setImageBitmap(RGBdrive.rescale(decoder.getFrame(0)
0,01)

64 }

65

66 else

67 {//Image File

68 Bitmap bitmapb;

69 Bitmap tempbm = BitmapFactory.decodeFile(cursor.getString(
column_index));

70 int h = tempbm.getHeight ();

71 int w = tempbm.getWidth();

T2 //save last chosen picture. TODO: remember picture path instead
of picture.

73 if (h>w)

74 {

75 lastfullbm = Bitmap.createScaledBitmap(tempbm,(int) (w=500/h)

,500, true);

76 }

7 if (h<w)

78 {

79 lastfullbm = Bitmap.createScaledBitmap (tempbm, 500,(int) (h

*500/w), true);

80 }

81

82 bitmapb = RGBdrive.rescale(tempbm,0,0) ;

83 lastpic = bitmapb;

84 pictest.setImageBitmap(bitmapb);

85 try {

86 RGBdrive.rgbDrive (bitmapb);

7 } catch (ConnectionLostException e) {

88 e.printStackTrace () ;

89 } catch (InterruptedException e) {

90 e.printStackTrace () ;

91 }

92 }

93 +

94 }

95 }

A-1-5 Custom Processing Methods for Bitmaps

First method: Rescaling of bitmaps to requested size, while avoiding stretching.
Second Method: Comparing two Bitmaps.
Third Method: Transforming Bitmap using requested settings.

Last Method: Turning Bitmap in byte array containing RGB information. Array is ready to
be split and send.

2 VAT
* Custom Bitmap processing

Bachelor of Science Thesis Sidharta Prahladsingh
Dennis Rutten

=1 D Tt

<

10

46

er v
b = O

[l
«

44

Android Codes

* @author DeviousSiddy

*

*/

static class RGBdrive{

[x*

* bm is cropped to a square and then rescaled to requested size

picwxpich
* Also crops to center of picture when picture is not 1:1 ratio.
* @param bm
* Q@return

*/

public static Bitmap rescale(Bitmap bm,int d_x,int d_y){
if (bm!=null){
float scale;

}

if (bm.getWidth() < bm.getHeight()) {
scale = picw / (float) bm.getWidth();
1 else {
scale = pich / (float) bm.getHeight () ;
}

Matrix matrix = new Matrix();
matrix.setScale(scale, scale);

Bitmap thumbnail = transform(matrix, bm, picw, pich,

0x1 | 0x0, d_x,d_y);
return thumbnail;

return bm;

}

public static boolean bmEquals(Bitmap bitmapl, Bitmap bitmap2) {
ByteBuffer bufferl = ByteBuffer.allocate(bitmapl.getHeight() x

bitmapl.getRowBytes());

bitmapl.copyPixelsToBuffer (bufferl);

ByteBuffer buffer2 = ByteBuffer.allocate(bitmap2.getHeight () =

bitmap2.getRowBytes());

bitmap2.copyPixelsToBuffer (buffer2);

return Arrays.equals(bufferl.array(), buffer2.array());

}

private static Bitmap transform(Matrix scaler,

Bitmap source,

int targetWidth,

int targetHeight ,

int optiomns,

int xdev,

int ydev) {
boolean scaleUp = (options & 0x1) != 0;
boolean recycle = (options & 0x2) != 0;

int deltaX = source.getWidth(

— targetWidth;

)
int deltaY = source.getHeight() — targetHeight;
|

if (!scaleUp && (deltaX < 0 |
/*

Sidharta Prahladsingh

Dennis Rutten

deltaY < 0)) {

Bachelor of Science Thesis

54

55

56

I N

QW Y ¢ Vv O O QO O O WX ® o 0 0 g0 00 G g 1 1 -1 O
=R B A SO NGRS U (R R S | <

100
101

A-1 Basic Functionality Program Code 45

}

¥ In this case the bitmap is smaller, at least in one
dimension,

*¥ than the target. Transform it by placing as much of
the image

* as possible into the target and leaving the top/bottom
or

* left/right (or both) black.

*/

Bitmap b2 = Bitmap.createBitmap(targetWidth, targetHeight

Bitmap.Config.ARGB_8888);
Canvas ¢ = new Canvas(b2);

int deltaXHalf = Math.max (0, deltaX / 2);

int deltaYHalf = Math.max (0, deltaY / 2);

Rect src = new Rect(

deltaXHalf ,

deltaYHalf .

deltaXHalf + Math.min(targetWidth, source.getWidth()),
deltaYHalf 4+ Math.min(targetHeight, source.getHeight()));
int dstX = (targetWidth — src.width()) / 2;

int dstY = (targetHeight — src.height()) / 2;

if (Math.abs(xdev)>dstX)

if (xdev<0)

{

xdev = —dstX;

¥

else

{

xdev = dstX;

}

if (Math.abs(ydev)>(dstY))

;

b

if (ydev<0)

ydev = —dstY;
)

else

{

ydev

¥

Rect dst = new Rect(
dstX+xdev,
dstY+ydev,
targetWidth — dstX,
targetHeight — dstY);
Log.d("Rudy" ,Integer.toString(dstX+xdev)+Integer.
toString (dstY+ydev)):
c.dravwBitmap(source, src, dst, null);
if (recycle) {

dstY;

Bachelor of Science Thesis Sidharta Prahladsingh

Dennis Rutten

46 Android Codes

102 source.recycle();
103 }
104 c.setBitmap(null);
105 return b2;
106 1
107 float bitmapWidthF = source.getWidth() ;
108 float bitmapHeightF = source.getHeight () ;
109
110 float bitmapAspect = bitmapWidthF / bitmapHeightF;
111 float viewAspect = (float) targetWidth / targetHeight;
112
113 if (bitmapAspect > viewAspect) {
114 float scale = targetHeight / bitmapHeightF;
115 if (scale < .9F || scale > 1F) {
116 scaler.setScale(scale, scale);
117 } else {
118 scaler = null;
119 }
120 } else {
121 float scale = targetWidth / bitmapWidthF;
122 if (scale < .9F || scale > 1F) {
123 scaler.setScale(scale, scale);
124 } else {
125 scaler = null;
126 }
127 1
128
129 Bitmap bil:
130 if (scaler != null) {
131 // this is used for minithumb and crop, so we want to
filter here.
132 bl = Bitmap.createBitmap(source., 0, 0,
133 source.getWidth() , source.getHeight (), scaler, true);
134 } else {
135 bl = source;
136 ¥
137
138 if (recycle && bl != source) {
139 source.recycle();
140 }
141
142 int dx1 = Math.max(0, bl.getWidth() — targetWidth);
143 int dyl = Math.max(0, bl.getHeight() — targetHeight);
144 if (Math.abs(xdev)>(dx1/2))
145 {
146 if (xdev<0)
147 {
148 xdev = —dx1/2;
149 }
150 else
151 {
152 xdev = dx1/2;
153 }
Sidharta Prahladsingh Bachelor of Science Thesis

Dennis Rutten

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

A-1 Basic Functionality Program Code

47

Bachelor of Science Thesis

if (Math.abs(ydev)>(dy1/2))

{

if (ydev<0)

ydev = —dyl/2;

)
else
{
ydev = dy1/2;
¥
}
Bitmap b2 = Bitmap.createBitmap(
bl
dxl / 2 + xdev,
dyl / 2 + ydev,
targetWidth,
targetHeight) ;
if (b2 != b1l) {
if (recycle || bl != source) {
bl.recycle();
}
}

return b2:

t

bm is converted to a byte array that stores
Green values in entries 1 to 16, 49 to 65...
Red values in entries 17 to 32, 66 to 81...
Blue values in entries 33 to 48, 81 to 96...
@param bm

@throws InterruptedException

* Q@throws ConnectionLostException

*/

* O O X ¥ ¥ *

, InterruptedException{
if (bm !=null){

int width = bm.getWidth():
int height = bm.getHeight () ;

int [] pix = new int|[picw x pich];
bm.getPixels(pix, 0, picw, 0, 0, picw, pich);
for (int stripn = 0;stripn<pix.length/16;stripn++) {
for (int pixn = 0;pixn<16;pixn++){
byte r = (byte) ((pix[pixn+(stripnx16)] >> 16)&0x£ff);
byte g = (byte) ((pix|[pixn+(stripnx16)] >> 8) &0xff);

byte b = (byte) (pix[pixn+4(stripn+16)]&0xff);

buffer [((16) +(stripn%3))+pixn]| = g;//Green assignment
buffer [((16) *((stripn=+3)+1))+pixn] = r;//Red assignment
buffer [((16) *((stripn=3)+2))+pixn| = b;//Blue assignment

public static void rgbDrive(Bitmap bm) throws ConnectionLostException

Sidharta Prahladsingh

Dennis Rutten

206
207
208
209
210
211

— =
= O © oS W

[R
STk W

16

29

34

35
36
38
39

48 Android Codes

}
}
picdone = false;
t
}
}

A-1-6 Sending Information

Class to communicate with the IOIO-OTG. Splits array from last mentioned method in
sendable packages.

Sk
* TO0IOLooper class. Repeats continuously as I0OI0 is connected.

* Qauthor DeviousSiddy
k

*/
static class Looper extends BaseIOIOLooper {
//initiation of SPI protocol wvariable

private SpiMaster spi_;
private DigitalOutput pin8;

%

Called every time a connection with IOIO0O has been established.
Typically used to open pins.

@throws ConnectionLostException
When IOI0 connection is lost.

¥ oK X X X X ¥

*

@see ioio.lib.util.AbstractI0IOActivity.IDIOThread#setup()
*/

@Override

protected void setup() throws ConnectionLostException {

pin8 = ioio_.openDigitalOutput (8, false);//image_enable

}

Called repetitively while the IOIO0O is connected.

¥*

Takes created bytel[] buffer and splits the it into byte[] of size
64
since spi can only send 64 bytes per time.

@throws ConnectionLostException
When IOIO connection is lost.
@throws InterruptedException

LR S S

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

40
41
42

44

[B R S s S e I B, B e e e B L
[= =T R =, BT U N R e R e A = =4

O 0 G o 0 00 00 g 1 1 -1 1 1
B = I B U A e — B =B B B R S BTN

A-1 Basic Functionality Program Code 49

*

* @see ioio.lib.util.AbstractI0I0Activity.IDIOThread#loop()

*/

@O0verride
public void loop() throws ConnectionLostException,

InterruptedException {

if (picdone == false)

{

t

}

//picture send process
spi_ = ioio_.openSpiMaster(new DigitalInput.Spec(1,
Mode .PULL_UP), new DigitalQutput.Spec(5),
new DigitalOutput.Spec(3),
new DigitalOutput.Spec|] { new DigitalOutput.Spec(2) },
new SpiMaster.Config(Rate.RATE_1M, false, true));
byte [] buffer_—= buffer;
int buffernum = (int) Math.ceil (buffer_.length/48);

byte [] bufferl_= new byte [48];
pin8.write(true):

Thread.sleep (200);

for (int i =0;i<buffernum;i++){

System.arraycopy(buffer_, ix48, bufferl_, 0, 48);

spi_.writeRead(bufferl_, bufferl_.length,
bufferl_.length, null,0);

Thread.sleep(50);

t

Thread.sleep (200);
pin8.write(false);
spi_.close();

picdone =true;//must be true to send 1 image per time.

protected I0IOLooper createIOIOLooper() {
return new Looper();

}

Bachelor of Science Thesis Sidharta Prahladsingh

Dennis Rutten

[

[11]

[12]

Bibliography

“Bluetooth fast facts.” http://www.bluetooth.com/Pages/Fast-Facts.aspx, visited
on 2014-6-10.

“Bluetooth basics.” http://www.bluetooth.com/Pages/Basics.aspx, visited on 2014-
6-10.

“Wi-fi - webopedia” http://wuw.webopedia.com/TERM/W/Wi_Fi.html, visited on 2014-
6-10.

“Wireless network explained.” http://www.webopedia.com/DidYouKnow/Computer_
Science/wireless_networks_explained.asp, visited on 2014-6-10.

“Bluetooth vs wi-fi - difference and comparison.” http://www.diffen.com/difference/
Bluetooth_vs Wifi, visited on 2014-6-10.

“Spi.” https://github.com/ytai/ioio/wiki/SPI, visited on 2014-5-10.

“Twi.” https://github.com/ytai/ioio/wiki/TWI, visited on 2014-5-10.

“I2¢ - wikipedia.” http://en.wikipedia.org/wiki/I%C2%B2C, visited on 2014-5-10.
“Uart.” https://github.com/ytai/ioio/wiki/UART, visited on 2014-5-10.

“Uart - wikipedia” http://en.wikipedia.org/wiki/Universal_asynchronous_
receiver/transmitter, visited on 2014-5-16.

Wikipedia, “Android - wikipedia.” http://en.wikipedia.org/wiki/Android_
(operating_system), visited on 2014-6-6.

L. Mahapatra, “Android vs. ios: What’s the most popular mobile operating system
in your country?.” http://www.ibtimes.com/android-vs-ios-whats-most-popular-
mobile-operating-system-your-country-1464892, visited on 2014-6-6, Nov 2013.

Sidharta Prahladsingh Bachelor of Science Thesis
Dennis Rutten

51

[13]

[14]

[16]
[17]

[18]

[19]

[20]

[21]
22]

23]

Phonearena.com, “Android’s google play beats app store with over 1 million apps, now
officially largest.” http://www.phonearena. com/news/Androids-Google-Play-beats-
App-Store-with-over-1-million-apps-now-officially-largest_id45680, visited
on 2014-6-6, Jul 2013.

J. Patel, “Key difference between submitting your app on google play store and
apple app store” http://www.whatech.com/mobile-apps/21330-key-difference-
between-submitting-your-app-on-google-play-store-and-apple-app-/store,

visited on 2014-6-6, Jun 2014.

R. Amadeo, “Google’s iron grip on android: Controlling open source by any
means necessary.” http://arstechnica.com/gadgets/2013/10/googles-iron-grip-
on-android-controlling-open-source-by-any-means-necessary/, visited on 2014-
6-6, Oct 2013.

Wikipedia, “ios - wikipedia.” http://en.wikipedia.org/wiki/I08, visited on 2014-6-6.

Y. Ben-Tsvi, “Go, go, ioio-on-the-gol” http://ytai-mer.blogspot.nl/2013/01/go-
go-ioio-on-go.html, visited on 2014-5-6.

Y. Ben-Tsvi, “Ioio users google group.” https://groups.google.com/forum/#! forum/
ioio-users, visited on 2014-5-10, Oct 2013.

“Description of used powersupply.” http://www.eztronics.nl/webshop2/catalog/
PowerSupplies/MiscPower?product_1id=278, visited on 2014-6-10.

D. Shavit, “The developments of leds and smd electronics on transparent conductive
polyester film,” Vacuum International, 2007.

“Stack overflow.” http://stackoverflow.com/, visited on 2014-3-6.
“Android developers.” http://developers.android. com, visited on 2014-5-6, Jan 2013.

Y. D. Liang, Introduction to Java Programming, sizth edition. 2004.

Bachelor of Science Thesis Sidharta Prahladsingh

Dennis Rutten

