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ARTICLE

Photobiocatalytic synthesis of chiral secondary
fatty alcohols from renewable unsaturated
fatty acids
Wuyuan Zhang 1,2,6, Jeong-Hoo Lee3,6, Sabry H. H. Younes1,4, Fabio Tonin1, Peter-Leon Hagedoorn 1,

Harald Pichler 5, Yoonjin Baeg3, Jin-Byung Park3✉, Robert Kourist 5✉ & Frank Hollmann 1✉

En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is

of particular interest. Enzymatic routes, occurring under mild conditions and excelling by

intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade

reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty

alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate

hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation

mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step

comprises decarboxylation of the intermediate hydroxy acids by the photoactivated dec-

arboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids

can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach.
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Envisioning a biobased chemical industry, there is an
increasing interest in the transformation of biomass-derived
starting materials into chemical building blocks1,2. Natural

fatty acids are particularly interesting building blocks, especially if
derived from agricultural wastes or non-edible sources. Until
recently, chemical methodologies for the conversion of fatty acids
or their glycerides have been largely restricted to their (trans)
esterification for the production of biodiesel3 or cosmetic esters4.
This situation is changing dramatically with various research
groups developing new chemistries to valorise fatty acids (Fig. 1).

For example, with the discovery of the fatty acid decarboxylase
OleT5–7 or UndA/B8, synthesis of terminal alkenes from fatty
acids has come into reach6,9–12 giving access to chemical building
blocks13,14. Also the hydroxylation of fatty acids using P450
monooxygenases15, per-oxygenases16,17 or dioxygenases18 is
receiving increasing attention. The resulting hydroxy acids may
be interesting building blocks for biobased and biodegradable
polyesters. Oxyfunctionalisation of unsaturated fatty acids can
also be achieved via selective water addition to the cis-C=C-
double bond19,20 or via allylic hydroperoxidation21 followed by
C–C-bond cleavage22–27 or isomerisation to diols28,29. Also the
selective reduction of the carboxylate group to either the alcohol
or aldehyde moiety is possible30,31. Finally, the chemoenzymatic
epoxidation of unsaturated fatty acids exploiting the ‘perhy-
drolase’ activity of lipases is worth mentioning32,33.

Long-chain secondary alcohols, which may be active ingre-
dients in cosmetic formulations34,35, performance additives in
oleochemicals or building blocks in natural product synthesis36

and for organic photosensitisers37, are currently not accessible
from natural fatty acids. Established synthetic routes almost
exclusively build on Grignard-type reactions of halide-derived
nucleophiles with aldehydes or formic acid esters37, thereby
necessitating multistep syntheses, leading to racemic products
and generating significant amounts of salt wastes.

Recently, a decarboxylase from Chlorella variabilis NC64A
(CvFAP) has been reported38, enabling the synthesis of alkanes
from fatty acids39,40 or the kinetic resolution of α-substituted

acids41. Compared to existing chemical decarboxylation path-
ways42, CvFAP appears particularly attractive due to the high
chemoselectivity of the CvFAP-reaction under mild reaction
condition and its high-functional group tolerance (leaving C=C-
double bonds and OH-groups present in the starting material
unaltered). CvFAP is a photoenzyme, i.e., its catalytic activity
depends on the activation by light. More specifically, only the
photoexcited flavin prosthetic group is sufficiently reactive for a
single electron-transfer from the enzyme-bound carboxylate and
thereby to initiate the decarboxylation reaction38.

Fascinated by the synthetic possibilities offered by CvFAP we
became interested in further elucidating its substrate scope and
used it for the synthesis of functionalised alkane products
(Scheme 2). We envision starting from unsaturated fatty acids,
first introducing the alcohol functionality using either a fatty acid
hydratase (Fig. 2, Cascade 1 or a diol synthase (Fig. 2, Cascade 2)
followed by CvFAP-catalysed decarboxylation.

Results
Design of the photoenzymatic cascades. The photoactivated
carboxylic acid decarboxylase CvFAP was produced by recom-
binant expression in Escherichia coli following established pro-
tocols38 (see Supplementary Methods) and used either as cell-free
extracts or in whole cells. For the hydration of unsaturated fatty
acids we first chose the oleate hydratase from Lactobacillus reuteri
(LrOhyA). The synthetic gene encoding LrOhyA (Accession
number: WP_109913811) was cloned into a pET28 vector and the
enzyme was recombinantly expressed in E. coli BL21 (DE3) cells
(Supplementary Fig. 1). Lyophilised cells containing LrOhyA
were used for further reactions. It is worth mentioning here that
empty E. coli cells (not containing any of the plasmids mentioned
above) exhibited neither hydratase nor decarboxylation activity
(Supplementary Fig. 5).

We first drew our attention to the hydratase/decarboxylase
cascade, which indeed proceeded as envisioned. LrOhyA
catalysed the hydration of oleic acid (Supplementary Fig. 6)
followed by CvFAP-catalysed decarboxylation of the intermediate
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Fig. 1 Natural fatty acids as building blocks. In recent years, biocatalytic methodologies for the transformation of fatty acids have practically exploded.
For example: a hydrolase-catalysed esterification of amidation4, b reductase-catalysed reduction of the carboxylate group to the corresponding aldehyde
and alcohol30,31, c P450-peroxygenase-catalysed oxidative decarboxylation yielding terminal alkenes5–7, d photodecarboxylase-catalysed decarboxylation
yielding alkanes38,39, e hydratase-catalysed water addition to C=C-bonds50, f lipoxygenase-catalysed allylic hydroperoxidation21, g use of mono-, di- and
per-oxygenases for the terminal hydroxylation and further transformation into acids or amines as polymer building blocks15–18,51, and h multi-enzyme
cascades yielding short-chain acids22–27.
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hydroxy acid to yield 9-heptadecanol (Supplementary Fig. 7). To
identify the factors influencing the product formation of the
photoenzymatic cascade we further used oleate as model
substrate. Using cell-free preparations of LrOhyA gave only
low-product formation (0.4 mM of the desired 9-heptadecanol
starting from oleic acid). We attribute this to a relative poor
stability of LrOhyA under these conditions and therefore focussed
using LrOhyA in lyophilised whole cells. It is also worth
mentioning here that one-pot one-step procedures (i.e., perform-
ing the hydration and the decarboxylation reaction at the same
time) predominantly yielded the decarboxylation product of oleic
acid ((Z)-heptadec-8-ene). Wild-type oleate hydratase requires a
carboxylic acid function, which precludes hydration of ((Z)-
heptadec-8-ene43. Therefore, for all further experiments we
followed a one-pot two-step procedure, i.e., first performing the
hydration reaction followed by the addition of CvFAP to the
reaction mixture and illumination to promote the decarboxyla-
tion reaction.

Full hydration of 7 mM oleic acid (1a) was achieved within 11 h
while the subsequent photoenzymatic decarboxylation was con-
siderably faster (Fig. 3). A systematic variation of the reaction
parameters (Supplementary Fig. 53) confirmed our initial
assumption that LrOhyA represents the limiting factor in the
catalytic cascade. Relatively high LrOhyA concentrations (lyophi-
lised cells, 15–20 g L−1) were necessary to obtain full conversion of
oleic acid into the desired product (1c) within the time frame of
the experiment.

Investigating the substrate scope. Encouraged by this proof-of-
concept, we further investigated the substrate scope of the pho-
toenzymatic cascade reaction. A broad range of (poly)unsaturated
fatty acids were converted into the corresponding alcohols (Fig. 4
and Supplementary Figs. 8–48). Especially, Δ9-unsaturated fatty
acids were converted in acceptable to good yields (24–74%) into
the corresponding alcohols. In those cases where poor conversion
into the desired alcohols was observed, the hydration step was
overall limiting (Supplementary Tables 1 and 2) and the corre-
sponding unsaturated alkenes were the main products. We also
investigated the optical purity of the corresponding products.
Since commercial standards for most of the products were not
available, we performed O-acylation of the alcohol product using
(S)-(+ )-O-acetylmandelic acid for NMR analysis to determine
their optical purity (Supplementary Fig. 49). Very pleasingly, in

most cases, essentially enantiomerically pure products were
obtained.

The cascade using linoleic acid (4a) was scaled-up (for details
see preparative-scale synthesis in Supplementary Methods). From
a semi-preparative transformation, overall 82.5 mg (32.5% isolated
yield) of the desired optically pure alcohol (4c) was obtained.

At this stage, we identified three major limitations of the
current reaction system: (1) poor substrate loadings due to the
poor solubility of the lipophilic fatty acid starting materials, (2)
low overall reaction rates, especially of the hydration step, and (3)
the need for two individual catalyst systems (OhyA and CvFAP).

Use of two-liquid phase reactions. To address the solubility
issue, we evaluated the well-established two-liquid system
wherein a hydrophobic organic phase serves as substrate reservoir
and product sink39. Given the fact, that the fatty acid substrates of
interest are generally obtained from natural trigycerides, this
appeared a suitable organic phase (Fig. 5). We evaluated this
approach by using triolein as organic phase containing 20 mM
oleic acid. In this way, 17.4 mM of 9-heptadecanol was obtained
starting from 20mM of oleic acid dissolved in triolein (87% yield,
see Supplementary Table 3). The obvious next step was to extend
the cascade by a hydrolase step to enable triglycerides as starting
materials (Fig. 5). Again using triolein as organic phase the lipase
from Candida rugosa (CrLip) catalysed the hydrolysis of the tri-
glyceride while LrOhyA mediated the hydration of the C=C-
double bond. After the illumination of the reaction mixture in the
presence of CvFAP, 6.9 mM of 9-heptadecanol was observed in
the organic phase. In the current setup (devoid of external pH
control), the hydrolysis of triolein was very fast, leading to an
acidification of the aqueous layer, as confirmed by a pH paper
test. As a consequence, the CvFAP-catalysed decarboxylation
slowed down considerably and the intermediate hydroxy acid
represented the main product. We expect that higher product
concentrations will be possible by controlling the pH of the
reaction more stringently39.

Co-expression of both enzymes. Next, we addressed the low
productivity issue as well as the need for two individual catalysts
by constructing a co-expression system in E. coli. Instead of
using LrOhyA we used the fatty acid hydratase from Steno-
trophomonas maltophilia (SmOhyA), which had been reported to
exhibit a very promising specific activity of 2.7 Umg−1 (refs. 44,45).
A previously optimised SmOhyA expression system in E. coli (i.e.,
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Fig. 2 Proposed photoenzymatic cascades to transform unsaturated fatty acids into secondary alcohols. a Cascade 1 comprises the (stereoselective)
addition of water to C=C-double bonds catalysed by fatty acid hydratases (FAHs) followed by the decarboxylation mediated by the photoactivated
decarboxylase from Chlorella variabilis NC64A (CvFAP) generating secondary long-chain alcohols; b cascade 2 combines 5,8-diol synthase from Aspergillus
nidulans (AnDS) with CvFAP yielding diols.
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pACYC-PelBSS-OhyA)46 was used as chassis for the recombinant
expression of CvFAP (yielding a recombinant E. coli BL21 (DE3)
pACYC-PelBSS-OhyA/pET28a-CvFAP). Indeed co-overexpression
of both enzymes was possible (Supplementary Fig. 4). We, there-
fore, used this catalyst for the combined hydration/decarboxylation
of oleic acid yielding 9-heptadecene (1c, Fig. 6).

Despite the lower catalyst loading as compared to the
experiment shown in Fig. 3 (7 gCDWL−1 instead of 15 gCDW L−1)
a much higher hydration rate of oleic acid (86 U g−1

CDW) was
observed resulting in more than 90% conversion of oleic acid into
10-hydroxyoctadecanoic acid (1b) within 7.5 min after which the
decarboxylation reaction was initiated by commencing illumina-
tion of the reaction mixture with blue light. The rate of the
decarboxylation was comparable with the rate shown in Fig. 3. It is
worth mentioning that non-converted oleic acid was decarboxy-
lated to (Z)-heptadec-8-ene.

Enlarging the scope of hydratases. In addition to the above-used
fatty acid hydratases, a range of further fatty acid hydroxylating
enzymes (e.g., linoleate 9S-lipoxygenase from Myxococcus xan-
thus47, 7,10-diol synthase from Pseudomonas aeruginosa29, and
5,8-diol synthase from Aspergillus nidulans28) have been repor-
ted. The 5,8-diol synthase from A. nidulans (AnDS) for example
caught our attention as this bifunctional enzyme adds two instead
of only one OH functionalities into oleic acid by a two-step
reaction (Fig. 7). Thereby, a three step cascade mediated by two
enzymes was established for the preparation of (Z)-heptadec-8-
ene-4,7-diol (1e) from oleic acid.

For the dihydroxylation of oleic acid, 5,8-diol synthase from A.
nidulans (AnDS) was used. The first recombinant E. coli
expressing AnDS (E. coli BL21(DE3) pET21a-AnDS48, however,
showed only poor AnDS-activity (Supplementary Fig. 54(A)).
Introduction of the signal sequence of PelB directed the enzyme

into the periplasm46,49. Notably, E. coli BL21(DE3) pACYC-
PelBSS-AnDS displayed approximately 10-fold greater transfor-
mation rates and 2.3-fold higher final product concentration, as
compared to the original strain E. coli BL21(DE3) pET21a-AnDS
(Supplementary Fig. 54(B)). Having a suitable diol synthase and
the photodecarboxylase at hand, we performed the conversion of
oleic acid (Fig. 7). Already after 1 h, 95% of the starting material
had been converted into the diol (1e). Initiating the decarboxyla-
tion reaction by illumination of the reaction mixture led to an
abrupt decrease in all carboxylic acids present to the correspond-
ing alkanes. The chemical identity of the final product as well as
the intermediate hydroxy acid were confirmed via GC/MS
(Supplementary Fig. 51) and NMR analytics (Supplementary
Fig. 50).

Overall, in this contribution we have demonstrated that
secondary fatty alcohols can be obtained from unsaturated fatty
acids using a cascade of fatty acid hydratase or diol synthase and
fatty acid decarboxylase. The substrate scope of the current
system is fairly broad giving access to enantiomerically pure
alcohols from renewable starting materials. Admittedly, the
product titres achieved in this proof-of-concept study are too
low to be economically and environmentally attractive. Further
work in our groups will focus on the expansion of this proof-of-
concept experiments for synthetic application, increasing the
product yields and the investigation of their biological properties
such as anti-microbial activity.

Methods
Preparation of the biocatalysts. Oleate hydratase from Lactobacillus reuteri
(LrOH) was produced via recombinant expression in E. coli BL21 (DE3) cells
harbouring pET28a(+) LrOH (Supplementary Fig. 4). These cultures were grown
overnight in lysogeny broth (LB) medium, containing 30 μg mL–1 kanamycin. The
pre-cultures were used to inoculate large cultures (1000 mL LB+ 50 μg mL–1

kanamycin in 5 L shake flasks). Cells were grown at 37 °C, 180 rpm, until an OD600
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Fig. 3 Proposed photoenzymatic cascade to transform oleic acid into 9-heptadecanol. a: Recation scheme. b shows a representative time course of the
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NaCl), illumination with blue light (λ= 450 nm; intensity= 13.7 mE L−1 s−1): oleic acid (black squares), 10-hydroxystearic acid (green circles), 9-
heptadecanol (blue diamonds). Values represent the average of duplicates (n= 2). Error bars indicate the standard deviation.
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between 0.6 and 0.8 was reached. Protein production was induced by the addition
of 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) (final concentration) and
the cells were left at 20 °C, 180 rpm, for overnight (18 h). Cells were harvested by
centrifugation (11,000 × g at 4 °C for 10 min), washed with Tris-HCl buffer (50
mM, pH 7.5, 100 mM NaCl) and centrifuged again. The cell pellets were collected
and stored at −80 °C for further use. The expression level of LrOH was found to be
rather reproducible (9.7 ± 1 mg LrOH per gram cell dry weight) from various
expression experiments at different scales (50 mL to 9.6 L).

5,8-Diol synthase from Aspergillus nidulans (AnDS) was expressed in E. coli
BL21(DE3) by using the recombinant plasmids (i.e, pET21a-AnDS33 and pACYC-
PelBSS-AnDS) (see the SI for details). The recombinant E. coli cultures were grown
overnight in terrific broth (TB) medium containing the appropriate antibiotics. The
pre-cultures were used to inoculate large cultures (500 mL in 2 L shake flasks). The
cells were grown at 37 °C, 180 rpm until an OD600 between 0.6 and 0.8 was reached.
Protein production was induced by the addition of 0.1 mM IPTG and the cells were
left at 16 °C, 150 rpm for overnight. The resulting cells were harvested by
centrifugation and used as the biocatalysts for dihydroxylation of oleic acid (Fig. 7).

The fatty acid photodecarboxylase from Chlorella variabilis NC64A (CvFAP)
was produced in E. coli BL21 (DE3)27. In short, 10 mL pre-cultures of E. coli BL21
(DE3) cells harbouring the designed pET28a-His-TrxA-CvFAP plasmid were
grown overnight in TB medium, containing 50 μg mL–1 kanamycin. From these,
500 mL cultures (TB+ 50 μg mL–1 kanamycin in 2 L shake flasks) were prepared
(cell growth at 37 °C, 180 rpm, until an OD600 between 0.7 and 0.8 followed by
induction by the addition of 0.5 mM IPTG). The cultures were incubated at 17 °C,
180 rpm, for another 20 h. Cells were harvested (centrifugation at 11,000 × g, 4 °C
for 10 min) and resuspended directly into the AnDS reaction medium. Otherwise,
the cells, which were harvested (centrifugation at 11,000 × g, 4 °C for 10 min), were
washed with Tris-HCl buffer (50 mM, pH 8, 100 mM NaCl) and centrifuged again.
The cell pellet was suspended in the same buffer, and 1 mM PMSF was added. Cells
were lysed by passing them passed twice through a Multi Shot Cell Disruption

System (Constant Systems Ltd, Daventry, UK) at 1.5 bar, followed by
centrifugation of the cell lysate (38,000 × g at 4 °C for 1 h). After centrifugation, 5%
glycerol (w/v) was added to the soluble fraction, the cell extract was aliquoted,
frozen in liquid nitrogen and stored at −80 °C.

The total protein content of the cell extract was determined by a BCA Assay
(Interchim), using BSA as a standard. CvFAP production was analysed by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis using a Criterion™ Cell
electrophoresis system (Bio-Rad).

The recombinant E. coli BL21(DE3) pACYC-PelBSS-OhyA/pET28a-CvFAP co-
expressing SmOhyA and CvFAP were grown overnight in TB medium, containing
appropriate antibiotics. From these, 500 mL cultures (TB+ appropriate antibiotics
in 2 L shake flasks) were prepared (cell growth at 37 °C, 180 rpm, until an OD600

between 0.7 and 0.8 followed by induction by the addition of 0.5 mM IPTG). The
cultures were incubated at 20 °C, 180 rpm, for another 20 h. Cells were harvested
(centrifugation at 11,000 × g, 4 °C for 10 min) and resuspended directly into the
Tris-HCl buffer (50 mM, pH 8, 100 mM NaCl) for biotransformation.

General procedures for cascade reactions. Experiments were performed as
independent duplicates. In all, 2.5–20 mg of lyophilised E. coli cells of oleate
hydratase, and 2.0 mg of oleic acid were added into 980 µL of Tris-HCl buffer
(100 mM, with 50 mM of NaCl) for the hydratase-decarboxylase cascade reaction
(Fig. 2). The resultant suspension was stirred at 30 °C for 11 h. 20 µL of photo-
decarboxylase (from stock solution with a concentration of 102 µM) was added
afterwards and the suspension was illuminated with blue LED light and stirred for
another 6 h. The final reaction conditions were: Reaction condition: [substrate] =
7 mM, [lyophilised LrOH cells]= 2.5–20 mgmL−1, [CvFAP]= 2 µM, Tris-HCl
buffer (pH 8.0, 100 mM, with 50 mM of NaCl), blue light (intensity= 13.7 mE L−1

s−1), total volume 1.0 mL. To analyse the product, 1 mL of ethyl acetate (con-
taining 5 mM of 1-octanol) was added to the above reaction suspension (1:1
volume ratio) -> 3 mL of ethyl acetate (containing 5 g/L of palmitic acid) was
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Fig. 4 Preliminary product scope of the proposed photoenzymatic reaction system. Reaction conditions: [substrate]= 5mM, [LrOhyA-cells]= 20 g L−1,
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added to the above reaction suspension (3:1 volume ratio) The organic phase
was collected by centrifugation and was dried over MgSO4. The obtained sample
was analysed by gas chromatography (GC) (Cp sil 5CB, column 50m × 0.53 mm ×
1.0 µm).

For the photoenzymatic SmOhyA-hydration and CvFAP-decarboxylation of
oleic acid, recombinant E. coli BL21 (DE3) pACYC-PelBSS-OhyA/pET28a-CvFAP
was added into 50 mM Tris-HCl buffer (pH 6.5) containing 5 mM oleic acid. For
the reaction, first the SmOhyA-catalysed hydration reaction was performed for
0.125 h followed by CvFAP-catalysed decarboxylation under illumination for
another 1.625 h. The final reaction conditions were: reaction condition: [oleic
acid]= 5 mM, [E. coli co-expressing SmOhyA and CvFAP]= 7 g L−1, Tris-HCl
buffer pH 6.5 (50 mM), illumination with blue light (λ= 450 nm; intensity=
13.7 mE L−1 s−1).

For the photoenzymatic diol synthesis-decarboxylation of oleic acid (Fig. 7), 7 mg
E. coli cells containing 5,8-diol synthase (AnDS cells) and 7mg of oleic acid were added
into 980 µL of HEPES buffer pH 7.5 (50mM, with 10% (v/v) DMSO). The resultant
suspension was stirred at 40 °C for 2 h. Afterwards, 7mg E. coli cells containing
photodecarboxylase (CvFAP cells) was added and the suspension was illuminated with
blue LED light and stirred for another 7 h. The final reaction conditions were: [oleic
acid]= 15mM, [AnDS cells]= 7 g L−1, [CvFAP cells]= 7 g L−1, HEPES buffer pH 7.5
(50mM, with 10% (v/v) DMSO), blue light (intensity= 13.7mE L−1 s−1), total
volume 1mL. To analyse the product, 3 mL of ethyl acetate (containing 5 g L−1 of
palmitic acid as internal standard) was added to the above reaction suspension (3:1
volume ratio) and vigorously mixed. The organic phase was collected by centrifugation
and was dried over MgSO4. The obtained sample was analysed by gas
chromatography/mass spectrometry (GC/MS)15,35. The results are included in the
Supplementary Fig. 51).

Preparative-scale synthesis starting from linoleic acid. 98 millilitres of Tris-
HCl buffer (pH 8.0, 100 mM, with 50 mM of NaCl) containing 10 mM of substrate
and 2 g of lyophilised LrOH cells were mixed in a beaker and stirred at 30 °C for
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48 h. The beaker was sealed by using parafilm. Two millilitres of photo-
decarboxylase (from stock solution with a concentration of 102 µM) was added
afterwards and the suspension was illuminated by blue LED and stirred for 48 h.
The final reaction condition was: [linoleic acid]= 10 mM, [lyophilised LrOH cells]
= 20 mgmL−1, [CvFAP]= 2 µM, Tris-HCl buffer (pH 8.0, 100 mM, with 50 mM
of NaCl), blue light (intensity= 13.7 mE L−1 s−1), total volume 1.0 mL. At the end
of the cascade reactions, the mixture was extracted with ethyl acetate (75 mL, 2×).
The extraction solvent of the combined phases was removed under reduced
pressure. The crude product was purified via flash chromatography (liquid loading)
on silica gel using heptane/ethyl acetate 40:1 as eluent for 15 min, followed by a
programmed gradient for 10 min (ethyl acetate/heptane (2.5 to 80% ethyl acetate/
heptane gradient). 82.5 mg (32.5% isolated yield) of the corresponding alcohol was
obtained starting from linoleic acid.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request. The source data underlying Figs. 3, 6, 8 and
Supplementary Figs. 7 and 25 are provided as a Source data file.
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