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Oğuzhan Kaya

M
as

te
ro

fS
cie

nc
e

Th
es

is





Hierarchical MPC for Energy
Management of Multi-Energy Systems

Case Study Based on a Power-to-X Concept

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Oğuzhan Kaya

February 8, 2020

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



KWR Watercycle Research Institute supported the work in this thesis. Their cooperation is
hereby gratefully acknowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

All over Europe, the expansion of renewable energy sources is quickly proceeding, fueled by
environmental and political motives. The power generated by renewables is heavily subject to
the intermittency of the source, e.g. the availability of wind or solar irradiance. Consequently,
electrical grids that rely on renewable sources alternate between periods of excess power
availability and periods with lack of power production. Excess power is often curtailed or
exported, whereas the shortage of power production must be imported or produced through
the deployment of more expensive production units.

Power-to-X strategies aim to utilise the excess power from renewables more effectively, by
converting power to another energy carrier within the grid, e.g. heat or hydrogen. By
allowing the transition of power to another energy carrier, the system is transformed into a
so-called multi-energy system. Therefore, the system takes into account the multiple energy
carrier’s system characteristics and loads in an integrated way. This formulation allows for
optimal scheduling of energy flows in the system while taking into account characteristics of
each energy carrier, e.g., storage characteristics, time-varying costs or production emissions.

The main focus of this thesis to deal with the tasks of an energy management system for
the aforementioned system using Model Predictive Control. The Model Predictive Control
framework allows real-time optimal scheduling while incorporating data-driven forecasts of
future loads and generation in the grid. Due to the stochastic nature of these forecasts, this
thesis also looks into extensions of Model Predictive Control that can cope with uncertainties.
Furthermore, to handle the different timescales of the grid dynamics, Model Predictive Control
for multi-timescale systems is investigated. In particular, the performance of a Heuristic
Model Predictive Control scheme and a Hierarchical Model Predictive Control scheme on
the control of a simulated Power-to-X based energy system are compared. The simulation
is based on a conceptual Power-to-X system based on historical data of the Dutch energy
sector. Based on this case study, a statement is made about the suitability of the Power-to-X
principles to future Dutch sustainable neighbourhoods. Moreover, a statement regarding the
economic viability of the presented concept is made based on the simulations.
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Chapter 1

Introduction

The Paris Climate Agreement is a collective effort of more than 190 countries to take measures
to counter global climate change. One of its main goals is to keep the global average tem-
perature increase to well below 2 degrees Celsius above ’pre-industrial’ levels [1]. The Paris
Climate Agreement and other European agreements shape the national policies of European
countries, including the Netherlands. The coalition agreement of the Third Rutte cabinet,
formed after the Dutch general elections of 2017 states, that the Netherlands must reach the
goals set in the Paris Climate Agreement. The national targets of the Netherlands also state
that emissions of greenhouse gasses should be reduced by 49% in 2030 compared to 1990 [2].
The transition from fuel-based energy generation (e.g. coal and diesel) to Renewable Energy
Sources (RESs) (e.g. photovoltaic (PV) and wind generation) is expected to contribute to a
reduction of 17 Mt of CO2 in 2030 [2].
In general, residential energy consumption may be divided into electrical energy, thermal
energy, and energy for mobility. The electrical energy demand is traditionally met through
centralised power infrastructures, where transmission and distribution lines provide connec-
tions between large power plants and residential areas. With the steadily increasing demand
for energy and the increasing penetration of RESs, the traditional electricity infrastructures
make space for distributed generation solutions, see Figure 1-1. These developments are
also possibly caused by the shift from monopolistic frameworks to liberalised markets, which
provide open access for various (new) participants and introduce benefits for multiple stake-
holders [4]. When a local distribution grid is transformed into an active network, this system
is called a microgrid [5]. Microgrids have proven to be quite effective for the implementation
of RESs in the grid. The microgrid allows for interconnecting multiple local distributed power
generation and loads, which makes them highly suitable for control [5]. However, due to the
intermittent generation of power from RESs, many microgrids still rely on the use of backup
fossil fuel generators. This increase of RESs in the grid means that the generation of power
is dominated by uncertain weather forecasts and seasonal generation discrepancies. Recently,
in Germany, consumers in the electricity market were paid to use electricity because wind
generation created more output than needed [6]. Furthermore, in the case of PV generation,
apart from the day and night differences, surplus power is generated in the summer, where
less power is generated in the winter.
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2 Introduction

Figure 1-1: Centralised and distributed generation in power infrastructures [3].

Formally, surplus electricity production (SEP) is defined by the authors of [7] as situations in
which electricity production exceeds the demand in a given area. Surplus production, which
can be exported, is defined as exportable surplus electricity production (ESEP). Lately,
a designated power line for the export of the surplus ’green’ energy from Germany to the
Netherlands has been established [8]. However, in the near future when the Netherlands
increases its share of RES generation, a scenario could occur where the surplus electricity
cannot be exported due to operational or economic limitations.

Fueled by the need to reduce greenhouse gas emissions to mitigate the effects of global climate
changes and political factors, it is of great importance to utilise surplus energy from RESs
optimally. One solution investigated in this thesis is Power to X. Generally, Power to X refers
to the utilisation of surplus energy from RESs. Here, X stands for the energy service to which
this excess is converted to, e.g. thermal energy, hydrogen, gas or mobility [9]. Furthermore,
Power to X refers to conversion that allows for the decoupling of power from the electricity
sector for use in other sectors. Systems that take into account several energy sectors as a
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1-1 Power to X: Motivation 3

whole are referred to as Multi-Energy Systems (MESs) [10] or multi-carrier systems. The
integration of multiple energy carriers may increase the system’s reliability, load flexibility
and provide synergy effects [11].

1-1 Power to X: Motivation

As mentioned before, traditionally, the operation and planning of energy sectors (e.g. elec-
tricity, heating, gas, and mobility) have been decoupled. However, many interactions between
these sectors are already present in the form of co- and tri-generation, e.g. combined heat
pump technologies, electric heat pumps and so on [12]. These systems combine several en-
ergy carriers such as electricity, thermal energy, natural gas, etc. Coordinating these energy
carriers in an integrated way may result in a vital aspect for cleaner and more efficient energy
systems, which are called MESs [10]. Potential benefits of the integration of multiple energy
carriers may be [10, 11]:

• Increased Reliability: Considering multiple inputs which can be used to meet output
demand of a particular energy carrier makes it clear that integrated energy structures
increase reliability by increasing the availability of the energy for that load;
• Increased Load Flexibility: Several different input paths may supply certain energy
loads. For instance, the demand for electricity may be met by consuming power from
the corresponding input. However, it may also be supplied by combusting natural gas
in a gas turbine. Depending on the availability, or the energy tariffs at a specific time
one or the other may be more attractive to utilise, from a system point of view;
• Optimisation Potential: The fact that various inputs and different combinations of
them can be used to meet the output requirement yields to the question of optimal
supply. The different inputs can be characterised by different costs, related emissions,
availability, and other criteria. Therefore, the system’s operation is highly suitable to
be solved as an optimisation problem;
• Synergy Effects: The MES consists of different energy carriers, each showing specific
characteristics. Electricity, for example, can be transmitted over long distances with
comparably low losses. However, generally, electricity is only stored in the order of
hours to weeks. Thermal energy or hydrogen, however, can be stored over multiple
seasons. Several characteristics of various energy carriers can be combined to provide
desired synergy effects.

Furthermore, the increase of RES in the power grid and their intermittent generation caused
problems related to grid operation and planning [13]. On the one hand, supply flexibility
is required to counter limited RES predictability to cover short-term deviations from the
forecasted feed-in schedule. For example, units capable of responding quickly to changes in
residual loads are battery energy storage system (BESS) units and gas-fired power plants.
On the other hand, RES production is subject to seasonality, for instance, PV generation
differences in winter and summer. During specific periods, excess energy from RES is curtailed
or exported, while during periods of lack of production, more expensive units are deployed to
produce electricity.
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4 Introduction

Power to X is the family of technologies regarding the utilisation of the surplus energy pro-
duced from RES during periods where excess is available. The following Power to X solutions
are the current field of interest for many research papers:

• Power to Heat: Focuses on converting excess energy to heat, which could either
be stored or consumed [14, 15]. Power to heat may bridge the seasonal difficulties
RES generation faces since highly effective seasonal thermal storage units exist [16].
Generally, electrical heat pumps are considered to be the link between electrical power
and heat generation;
• Power to Gas: In the power-to-gas approach excess energy is converted into gas prod-

ucts [13, 17], i.e. hydrogen or methane, see Figure 1-2. Gas products are generally
highly suitable for seasonal storage purposes due to their relatively large storage ca-
pacity, see Figure 1-3 where multiple storage technologies are compared in terms of
their discharging rates and typical capacity. Subsequently, gas products may benefit
from already existing gas transportation networks, saving both operational and invest-
ment costs [13, 18]. Furthermore, with the use of fuel cells, hydrogen can be used to
shift excess energy to periods of shortage and thereby contribute to the power supply.
Reusing hydrogen for example for electricity supply, mobility (e.g. hydrogen vehicles)
or chemical industrial purposes is called hydrogen-to-X [19];
• Power to Mobility: May refer to utilising power for the mobility of vehicles, e.g.
electric or hydrogen. Power to Mobility may result in an overlap with power-to-gas or
power-to-power systems. An interesting scenario arises when vehicles are allowed to
contribute to the grid’s power balance, resulting in vehicle-to-grid systems [20, 21];
• Power to Power: Occurs, for instance, when excess power is stored in batteries or
capacitors.

Note that, in this work, Power to X as a family of the techniques above is used interchangeably
with the fact that multiple techniques could exist in a single Power-to-X system. Subsequently,
in this work, a Power-to-X system is viewed as an MES. In Chapter 2, the Power-to-X system
considered in this work will be further elaborated.

Oğuzhan Kaya Master of Science Thesis



1-1 Power to X: Motivation 5

Figure 1-2: Typical power-to-gas system based on methane and hydrogen, very obvious is the
fact that this system is unwittingly also a power-to-mobility and power-to-heat system [17].

Figure 1-3: Energy storage potential presented as discharging rate vs. storage capacity [13].
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6 Introduction

1-2 Power to X: Challenges

Practically all Power-to-X systems consist of multiple RESs, storage elements, and conversion
units. The energy flows within the system are determined by the Energy Management System
(EMS) taking into account multiple technical and economic considerations. EMSs for Power-
to-X systems may have to make decisions about:

• How much of a particular energy carrier should be generated/produced to meet that
energy carriers load at minimum economic or environmental cost (energy dispatch);
• When each generation unit should be started and stopped (unit commitment);
• Whether and how much of a certain energy carrier is exchanged with an external party,
e.g. the utility grid;
• How much of a particular energy carrier is stored or taken from the corresponding
storages, taking into account seasonal differences.

In recent literature, Model Predictive Control (MPC) had already gained attention for energy
management purposes in power systems. This popularity arose mainly due to its ability to
easily integrate predictions, system constraints and decision making based on feedback [22].
MPC solves an optimal control problem with the desired goal as objective function and sys-
tem inputs as its decision variables. The system dynamics are predicted N steps ahead with
a prediction model. The first input vector of the computed sequence of N input vectors is
applied. Next, the system states are measured and the procedure is repeated. Relevant theo-
retical background on MPC will be introduced in Chapter 2. MPC for energy management of
Power-to-X systems is mainly subject to challenges regarding the computational complexity
from the prediction horizon and stochastic behaviour of uncertainties acting on the system,
such as uncertain RES generation or demand profiles.

1. Computational Complexity: The computational complexity of the optimal control
problem is mainly dominated by the number of system inputs and the prediction horizon
N . Since we are dealing with seasonal discrepancies in demand and generation in Power-
to-X systems we should formulate an optimal control problem that is able to capture
these seasonal differences in the prediction, see Figure 1-4. This can be achieved by
increasing the prediction horizon; however, if we are dealing with a system with an
hourly sampling interval the complexity of the system has gone far beyond tractability.
Relevant literature has proposed a move-blocking scheme [23] or multi-layered control
schemes [24, 25], i.e. Hierarchical Model Predictive Control (HiMPC).

2. Dealing with Uncertainties: The deterministic framework is the most straightfor-
ward framework of MPC. The main assumption of this framework to cope with uncer-
tainties relies on the so-called certainty-equivalence property [26]. In general, this means
that imperfect load and weather forecasts are assumed to be correct, i.e. which in the
case of the MPC framework results in a perturbed nominal MPC controller [22, 26–29].
On the contrary, the stochastic MPC framework includes probabilistic information on
the uncertain variables in the optimal control problem formulation. In real applications,
it might not be practical to use this approach because it is not trivial to know the prob-
abilistic distribution beforehand. Nevertheless, historical data may form a sound basis
for scenario-based MPC in a stochastic setting.
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Figure 1-4: Temporal mismatch of energy availability and energy demand.

Figure 1-5: Power-to-X system as conceptualised by KWR, including electricity, heat, hydrogen
and (demineralised) water supply, demand and generation [30].
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8 Introduction

1-3 Research Objectives

This research is concerned in giving insight into the economic viability of a Power-to-X system
incorporated in the present-day grid subject to suitable MPC frameworks, namely determin-
istic and stochastic. This study will contain a case study on a Power-to-X system concept of
KWR, see Figure 1-5. Though, the work conducted in this thesis should be widely applicable
for microgrids, MES, and other Power-to-X configurations than the presented case study.

1-4 Thesis Contribution

The main contributions of this thesis are presented below:

1. Performed a case-study on the viability of MPC as the EMS of a Power-to-X system
concept consisting of electricity, thermal energy, hydrogen, and water. MPC in a deter-
ministic and stochastic framework using real datasets are compared in this case study.

2. Proposed, tuned, and assessed the performance of the following three MPC formulations
for Power-to-X systems:

(a) Heuristic Model Predictive Control (HMPC): An economic-MPC including
heuristic terminal cost assignment resulting in a single-layer control framework for
MPC for Power-to-X systems;

(b) HiMPC: A two-layer control framework consisting of two separate economic-
MPC problems for different time-scales. Two variants are proposed for controller
interactions, one based on linear interpolation variant and another with a heuristic
reference assignment.

3. Proposed a control-oriented Mixed Logical Dynamical (MLD) model for Aquifer Ther-
mal Energy Storage (ATES) systems integrated as seasonal heat storage in district
heating networks based on thermal energy only.

Oğuzhan Kaya Master of Science Thesis



1-5 Thesis Outline 9

1-5 Thesis Outline

This thesis consists of five chapters which are ordered as such:

Chapter 2 discusses the system components and relevant subsystems of the Power-to-X con-
cept as conceptualised by KWR. Control-oriented models will be presented, accompanied by
a relevant theoretical background on hybrid systems modelling. The exogenous disturbances
acting on the system will be analysed, and forecasting will be discussed.

Chapter 3 introduces relevant MPC frameworks for MPC of any Power-to-X system, in-
cluding HMPC, HiMPC, and the deterministic and stochastic-MPC (SMPC) frameworks.
The mathematical formulations of MPC optimal control problems will be presented for the
current case study. However, these MPC formulations are meant to be easily applicable for
any Power-to-X concept design.

Chapter 4 provides a detailed approach to the simulation choices and relevant assumptions
of the proposed controllers in Chapter 3 and presents appropriate tuning methods applied to
these controllers. Then, based on these simulations, controllers will be assessed and compared
based on performance indices.

Chapter 5 is the concluding chapter of this thesis, including a summary, concluding remarks,
recommendations and future work.
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Chapter 2

System Description and Modelling

2-1 Introduction

Control theory mainly focuses on systems whose state transitions are described by smooth
linear or nonlinear state transformation functions. For Model Predictive Control (MPC),
these models are used to predict future states in an open-loop optimal control fashion [22].
The choice of the modelling structure of the dynamic system is influenced by the physical
system properties and dynamic behaviour, coupled with the intended control application in
mind. Generally, there exists a trade-off between capturing the system’s dynamics as detailed
as possible versus keeping computational effort low. Consider the general continuous-time
dynamical system given by:

ẋ(t) = fc(x(t), u(t), ω(t)), (2-1)
where t indicates the time, x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and ω(t) ∈W ⊆ Rw, represent the
state vector, manipulated input vector and disturbance vector respectively.
While continuous-time dynamics generally govern real-world physical systems, control tech-
niques are usually deployed through computers. Hence this thesis focuses on discrete-time
system models. In the next chapters, the reader may assume that the presented discrete-
time systems were achieved through zero-order-hold discretisation unless stated otherwise.
Subsequently, the generic discrete-time state-space model is governed by general difference
equations of the form:

x(k + 1) = fd(x(k), u(k), ω(k)), (2-2)
where x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm, ω(k) ∈ W ⊆ Rw, denote discrete-time state vector,
manipulated input vector and disturbance vector respectively. Typically the input vector
u(k) is constrained by the available control energy indicated by the set U. Furthermore, the
disturbance vector ω(k) may include modelling errors, uncontrollable exogenous inputs, and
unknown external forces and is assumed to be bounded by the disturbance set W. Further-
more, index k denotes the discrete-time instant.
Hybrid systems are systems constituted by both continuous-valued and discrete-valued vari-
ables. The states of hybrid systems are governed by equations of motion that contain mixtures
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12 System Description and Modelling

of logic and discrete-value dynamics and continuous-variable dynamics [31]. These systems
have been proven to be useful for accurately representing systems with distinct modes, such as
charging/discharging in batteries, on/off modes for generators and heating/cooling in thermal
energy storages. In literature there exist multiple subclasses of hybrid dynamical systems.
Some examples of such systems are Piecewise-Affine (PWA) systems [32], Mixed-Logical-
Dynamical (MLD) systems [33] and Linear-Complementarity (LC) systems [34]. Each of
these subclasses may have its advantage over the others. This thesis will mainly focus on
PWA and MLD systems because stability criteria were proposed for PWA systems [35] and
control and verification techniques exist for MLD hybrid models [33]. In past literature, the
equivalence of several subclasses of hybrid systems has been proven under mild assumptions
[36]. These results are important because the individual analysis and synthesis tools of each
subclass can be applied to any of the equivalent subclasses of the hybrid modelling framework.

PWA Systems

PWA systems have been considered by several authors to form the ’simplest’ extension of
linear systems that can capture non-linear and non-smooth processes with arbitrary accuracy
in the hybrid modelling framework [36]. PWA systems are described by [32]:

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for
[
x(k)
u(k)

]
∈ Ωi, (2-3)

for i = 1, . . . , V where Ω1, . . . ,ΩV are convex polyhedra (i.e. given by a finite number of
linear inequalities) in the input/state space with non-overlapping interiors.

MLD Systems

MLD systems were first introduced by Bemporad et al. in [33] as a class of hybrid systems
in which logic, dynamics and constraints are integrated. MLD systems are described by:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k), (2-4a)
y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k), (2-4b)

E1x(k)+E2u(k) + E3δ(k) + E4z(k) ≤ g5, (2-4c)

where x(k) is the state vector containing both real and binary-valued states (y(k) and u(k)
have similar structures), and where vectors z(k) and δ(k) contain real and binary auxiliary
variables, respectively.
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2-2 Case Study: Power-to-X System Description and Elements

The case-study studied in this thesis originates from a concept of KWR’s sustainable city area
in the future [30]. This concept is a Power-to-X system sized to supply a neighbourhood of its
electricity, heating, hydrogen and water demands, see Figure 1-5. The underlying electrical
system is a grid-connected microgrid consisting of Renewable Energy Sources (RESs) and a
battery energy storage system (BESS). Contrary to the concept depicted in Figure 1-5 the
case-study considered in this thesis is slightly adjusted. The energy flowchart of the adjusted
concept is shown in Figure 2-1. These elements in the diagram are described in Table 2-1.

Figure 2-1: Schematic energy flow diagram of the Power-to-X system. Energy flows in yellow
correspond to electricity, blue to water, and green and red to hydrogen and heat, respectively.

The remainder of this section provides a description and mathematical model of all the sub-
systems of the Power-to-X system. These subsystems are the microgrid, district heating
network and hydrogen and water utilities. For each of these subsystems, the components will
be elaborated and dynamical storage models will be presented. From this point on vectors
are denoted with bold style, e.g. x and scalars with non-bold text style. Furthermore, the
generic discrete-time instant is denoted by k and τ is the sampling time.
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14 System Description and Modelling

Technology Principle Description
Conversion

Heat Pump Power to Heat Converting power to heat by extracting
heat from a source, e.g. water.

Electrolyser Power to Gas Generating hydrogen from water using power for
an electrolyser.

Reverse Osmosis Power to Water Purifying rainwater for residential consumption.
Storage

BESS Power to Power Quickly dispatchable short-term electricity storage.
Aquifer Thermal - Long term storage element for storing thermal energy
Energy Storage (ATES) underground in porous formations.
Hydrogen Tank - Storing large quantities of hydrogen for a short amount

of time.
Water Tank - Large capacity storage of purified rainwater.

Table 2-1: Power-to-X system elements, principles and description.

2-2-1 Microgrid

The power system under study in this thesis consists of a neighbourhood-sized microgrid
whose energy is generated by a local solar farm. For this work, we assume that no power is
curtailed from RES generation and any surplus energy can be either converted into another
energy sector or stored in a BESS. Furthermore, the microgrid operates in grid-connected
mode, which makes electricity exchange between the system and the utility grid possible.

Battery Energy Storage System (BESS) Modelling BESSs are becoming an essential com-
ponent in microgrids management. The technology is becoming more efficient and economi-
cally viable than it has been in the past. BESSs provide great flexibility for the supply-demand
matching in the short term and present an additional tool for integration of RES. A hybrid
BESS model as described by Parisio et al. in [37] will be adopted in this thesis. Due to
the hybrid nature of the model, simultaneous charging and discharging are obstructed. The
BESS is governed by the following PWA system:

xb(k + 1) = ηb1xb(k) + ηb2Pb(k)τ, (2-5)
where xb is the current state of charge (SoC) of the battery [kWh], ηb1 the storage loss
efficiency, Pb is the power exchanged with the storage [kW], and

ηb2 =
{
ηch, if Pb(k) > 0 (charging mode),
ηdch, otherwise (discharging mode),

where ηch< 1 and ηdch = 1/ηch are system characteristics accounting for charging and dis-
charging efficiencies. Furthermore, the BESS are subject to the following operating state and
input constraints:

xmin
b ≤xb(k) ≤ xmax

b , (2-6a)
Pmin
b ≤Pb(k) ≤ Pmax

b , (2-6b)
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2-2 Case Study: Power-to-X System Description and Elements 15

which limit the minimum and maximum battery SoC and magnitude of power exchange re-
spectively.

Following the standard approach described in [33], a binary variable δb(k) and an auxiliary
variable zb(k) := δb(k)Pb(k) are introduced to transform the system into the following MLD
model:

xb(k + 1) = ηb1xb(k)− (ηdch − ηch)zb(k)τ + ηdchPb(k)τ, (2-7a)
s.t. Eb1δb(k) +Eb2zb(k)τ ≤ Eb3Pb(k)τ +Eb4 (2-7b)

The system matrices of the BESS system can be found in Appendix A-1.

External Grid Interaction The microgrid under consideration will exclusively operate in
grid-connected mode. Thus it is always possible to exchange energy with the external utility
grid. The energy exchanges are carried out at the Point of Common Coupling (PCC), where
the microgrid is connected to the external utility grid. We assume that different prices are
governed for import and export and that these prices are time-varying. Furthermore, it is
assumed that at each time instant, the import price is larger than the exporting price. The
variable Cgrid represents the cost or revenue due to interaction with the utility and is given
by:

Cgrid(k) = max(ce,imp(k)Pgrid(k)τ, ce,exp(k)Pgrid(k)τ), (2-8)

where Cgrid is the ’cost’ of interaction with the grid [e], ce,imp and ce,exp the import and
export price of electricity [e/kWh] and ce,imp ≥ ce,exp.

2-2-2 District Heating Network

Aquifer Thermal Energy Storage Modelling ATES is a cost-efficient seasonal storage sys-
tem that can be used to store large quantities of thermal energy underground [38]. In its
purest form, two wells are formed underground as porous formations, also known as aquifers.
The system consists of a warm and cold well to store warm and cold water depending on the
season. The heat from the stored water in the warm well can be extracted by pumping the
water from the warm well to the cold well through a heat exchanger, see Figure 2-2. Similarly,
heat can be stored by pumping water from the cold well to the warm well while providing the
water with thermal energy from a heat pump.
The authors of [39] propose a control-oriented model of the ATES by describing the system
using the stored volume of the water together with the thermal energy content in each well.
We have chosen to adopt this model based solely on the dynamics of the thermal energy
content of the water stored. Let us define the states of an ATES with the thermal energy of
the hot and cold well Sh ∈ R and Sc ∈ R, respectively. The subscript h and c denote the
variables belonging to the hot and the cold well, respectively. Now the ATES dynamics are
given by:

Sh(k + 1) = ηh(k)Sh(k)− αhua(k)τ, (2-9a)
Sc(k + 1) = ηc(k)Sc(k) + αcua(k)τ, (2-9b)
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16 System Description and Modelling

Figure 2-2: Operational modes of an ATES system during warm (left) and cold (right) seasons
[39].

where ηh(k) ∈ (0, 1) and ηc(k) ∈ (0, 1) are the lumped coefficients of thermal energy losses
in the aquifers and ua is the control variable corresponding to the pump flow rate of ATES
system. The control input ua takes positive values when the heat is withdrawn from the
warm well and negative values when the heat is stored in the warm well. Furthermore,
αh(k) = ρhcpw(Th(k)− Tamb(k)), and αc(k) = ρhcpw(Tamb(k)− Tc(k)) are the thermal power
coefficients of the warm and cold wells, respectively. Here, the parameters ρh [kg/m3], cpw
[J/(kgK)] are the density and specific heat capacity of water, respectively. Additionally, Th(k)
[K], Tc(k) [K] and Tamb(k) [K] denote the temperature of the water inside the hot well, cold
well and the ambient temperatures, respectively. Moreover, the thermal energy that can be
supplied to or taken from the district heating system, QATES, can be defined as:

QATES(k) = α(k)ua(k)τ, (2-10)

where α(k) = αh(k)+αc(k), is the total power coefficient. The dynamics of the ATES system
can be written in the following compact linear-time-varying state-space representation:

xa(k + 1) = Aa(k)xa(k) +Ba(k)ua(k)τ, (2-11)

where, xa(k) =
[
Sh(k) Sc(k)

]T
∈ R2 and ua(k) ∈ R are the state vector and input, respec-

tively. Hence the state vectors of the ATES system can be derived to be:

Aa =
[
ηh 0
0 ηc

]
, Ba =

[
−αh
αc

]

Furthermore, ATES is subject to the following state and input constraints:

Smin
h ≤Sh(k) ≤ Smax

h , (2-12a)
Smin
c ≤Sc(k) ≤ Smax

c , (2-12b)
umin
a ≤ua(k) ≤ umax

a , (2-12c)

where the max and min superscript notation denote the maximum and minimum value of the
corresponding variable.
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2-2 Case Study: Power-to-X System Description and Elements 17

Heat Pump Modelling A heat pump is a device that transfers heat from a low-temperature
zone to a higher temperature zone using mechanical work. Generally, a heat pump draws heat
from the air, ground or water and uses a vapour compression refrigeration cycle. Recently,
heat pumps are gaining more popularity in heating systems due to their high efficiency,
characterised by the Coefficient of Performance (COP), which is generally larger than 3 [29].
The output thermal energy of the heat pump delivered at each time step can be calculated
by [27]:

Qhp(k) = COP(k) · Php(k)τ, (2-13)

where Qhp(k) is the output thermal energy of the heat pump [kWh] at time k, Php is the
power to the heat pump [kW] and COP(k) is the forecasted COP. The COP in the case of
the water heat pump used in this thesis is dominated by the difference between the output
temperature of the heat pump and the input temperature, which originates from a water
source, the Lek river. The following equation is used for calculating the COP (E. Roest van
der, personal communication):

COP(k) = 0.0028(Tout + 5− (Tin(k)− 6)2)− 0.3276(Tout − Tin(k) + 11) + 13.021, (2-14)

where Tout is a constant preferred output temperature [K] and Tin(k) is the temperature of
the water source [K].

Thermal Energy Balance At each time instant, the thermal energy in the district heating
system must be equal or larger than the thermal demand of its users. The following constraint
captures the thermal energy balance:

Qhp(k)−QATES(k)−Qd(k) ≥ 0, (2-15)

where Qd(k) is the uncertain variable denoting the thermal energy demand of the system
[kWh] at each time instant k. Furthermore, the thermal energy from or to the ATES system
depends on the total power coefficient α(k), recall (2-10). We assume that temperature in the
wells and the ambient temperature are constant, which means the system is no longer time-
varying. Furthermore, it is assumed that we can continue extracting water from the wells
when they are fully depleted. This means we are extracting water with ambient temperature.
Therefore the total power coefficients depend on the flow direction of the pump and the
current thermal energy contents of the well, resulting in:

QATES(k) =


α1(k)ua(k)τ, if Sh(k) > 0 &Sc(k) > 0 &ua(k) > 0,

...
α9(k)ua(k)τ, if Sh(k) < 0 &Sc(k) < 0 &ua(k) < 0,

(2-16)

Subsequently, (2-11), (2-15) and (2-16) can be transformed into the following MLD system:

xa(k + 1) = Aa(k)xa(k) +Ba(k)ua(k)τ, (2-17)
Qhp(k) = Daza(k) +Qd(k), (2-18)
Ea1xa(k) +Ea2ua(k)τ +Ea3za(k) +Ea4δa(k) +Ea5ba(k) ≤ Eaff, (2-19)

where za ∈ R3, δa ∈ R4 and ba ∈ R3 denote the vectors of auxiliary, binary and auxiliary
binary variables. The full derivation of this system is given in Appendix A-2.
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18 System Description and Modelling

2-2-3 Hydrogen and Water Distribution System

Modelling Hydrogen Trades Similarly to the electricity utility interaction, hydrogen may
also be imported or exported. The hydrogen prices are assumed to be constant, and again
the importing price is larger than the exporting price.

Chy(k) = max(chy,impHtrade(k), chy,expHtrade(k)), (2-20)

where Chy(k) is the cost or revenue of trading hydrogen in [e], chy,imp and chy,exp the import
and export price of hydrogen, respectively in [e/kg] and Htrade(k) is the amount of hydrogen
traded per time instant k in [kg].

Hydrogen Production and Storage Modelling A water electrolysis system is responsible for
providing the hydrogen needed for mobility purposes in the neighbourhood. The produced
hydrogen is assumed to be stored directly in a connected reservoir. The amount of hydrogen
stored is considered a dynamic state of the system, xel(k) [kg]. We assume that the energy
consumption of the electrolysis system, Pel(k) is a linear function of the produced hydrogen,
i.e.

Hel(k) = ηhy,elPel(k)τ, (2-21)
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Figure 2-3: Electrolyser efficiency vs. input power.

The efficiency of the PEM electrolyser ηhy,el
denotes the amount of power needed per kilo-
gram of hydrogen produced [kW/kg]. The
efficiency depends on the maximum power
of the electrolyser and the percentage of op-
eration, see Figure 2-3 (E. van der Roest,
personal communication). As Figure 2-3 il-
lustrates, the efficiency can be approximated
as a PWA function of the current power of
the electrolyser, Pel and implemented as a
lookup table. Furthermore, if surplus energy
is absent, hydrogen can be imported from ex-
ternal suppliers as modelled in (2-20). Now
the hydrogen storage’s dynamics are given by:

xel(k + 1) = xel(k) +Hel(k) +Htrade(k)−Hd(k), (2-22)

where xel denote the state of the electrolyser’s hydrogen buffer, the inputs to the system could
be concatenated into uel(k) =

[
Hel(k) Htrade(k)

]T
and process noise ωel(k) = −Hd(k). Note

that the hydrogen mass balance is incorporated in the dynamics of the storage model since
it acts as a buffer between production and consumption.
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2-2 Case Study: Power-to-X System Description and Elements 19

Demineralised Water Production and Storage Modelling Demineralised water is used in
the system for the production of hydrogen and residential use e.g. dishwashers and washing
machines. A high-pressure pump, a membrane module, and a water storage tank form the
reverse osmosis system for the production of demineralised water. Generally, water is pres-
surised and fed into the system where it is separated into a low-salinity product (permeate),
and a high-salinity brine (retentate). The demineralised water can now either be used to
meet the demineralised water demand or stored in the water tank. The demineralised water

Figure 2-4: Reverse osmosis process for purifying rainwater, water flows depicted as solid arrows
and electricity as dashed arrows.

demand is given by, Fd(k), the demineralised water going to the electrolyser by, Fel(k), the
produced demineralised water from the reverse osmosis system by, Fro(k). The demineralised
water mass balance is now given by:

Fro(k)− Fel(k)︸ ︷︷ ︸
ηdw,hy·Hel(k)

−Fd(k) = Fs(k) (2-23)

Note that the water storage demand Fs can take positive or negative values. Furthermore,
note that the electrolyser demand is expressed as the product of an efficiency and electrolyser
hydrogen output, i.e. Fel(k) = ηdw,hy ·Hel(k) . Subsequently, the consumed electricity of the
reverse osmosis system is expressed as Pro(k)τ = ηel,dw · Fro(k) [kW].

Based on the latter equations, the dynamics of the volume in the storage tank, xdw, is given
by:

xdw(k + 1) = xdw(k) + Fro(k)− ηdw,hy ·Hel(k)− Fd(k), (2-24)

where xdw(k) is the storage volume [m3].
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20 System Description and Modelling

2-2-4 System Constraints

Energy Balances in the Microgrid Supply and demand matching for all considered energy
carriers in the system must be met at every time instant k. For electrical energy this balance
is given by the following constraint:

Pb(k)τ = Epv(k) + (Pgrid(k)− Php(k)− Pro(k)− Pel(k)) τ, (2-25)

where Epv is the aggregate PV generation [kWh]. Now, (2-25) can be substituted in (2-5),
and thereby the aggregate input vector of the Power-to-X system can be defined as:

u(k) =
[
Pgrid(k)τ Qhp(k) Fro(k) Hel(k) Htrade(k) ua(k)

]T
(2-26)

Operational Constraints The system is subject to storage capacity constraints, decision
variable psychical limits, and ramping rate limits. For the BESS and the ATES state con-
straints and input constraints were given by (2-6) and (2-12), respectively. Similar constraints
could be derived for the subsystems for which these constraints were not provided, and could
be concatenated into the following constraints:

• Storage capacity constraints:

xmin ≤ x(k) ≤ xmax; (2-27)

• Decision variable physical limits:

vmin ≤ v(k) ≤ vmax; (2-28)

• Ramping rate limits:

∆vmin ≤ ∆v(k) ≤ ∆vmax, (2-29)

these upper and lower bound values will eventually be presented in Table 4-1 in Section 4-1.

2-2-5 Overall System Model

The individual dynamics of each subsystem can be concatenated in a single compact model,
which is suitable for a centralised MPC framework. The resulting overall MLD model is able
to capture all dynamics, logic, and constraints of the BESS, ATES, hydrogen storage tank
and demineralised water storage tank. One may resort to freely available software HYSDEL
[40] for generating the system matrices of the following MLD model:

x(k + 1) = f(x(k),u(k), z(k),ω(k)), (2-30a)
Qhp(k) = Daza(k) +Qd(k), (2-30b)
g(x(k),u(k), z(k)), δ(k))) ≤ d, (2-30c)
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2-3 Demand and Generation Forecast 21

where,

f(x(k),u(k), z(k)),ω(k)) = Ax(k) +B1u(k) +B2z(k) +B3ω(k), (2-31a)
g(x(k),u(k), z(k)), δ(k))) = E1x(k) +E2u(k) +E3δ(k) +E4z(k), (2-31b)

x(k) =
[
xb(k) xa

T (k) xel(k) xdw(k)
]T
,

u(k) =
[
Pgrid(k) Qhp(k) Fro(k) Hel(k) Htrade(k) ua(k)

]T
ω(k) =

[
Epv(k) Qd(k) Tin(k) Hd(k) Fd(k)

]T
,

δ(k) =
[
δb(k) δTa (k) bTa (k)

]T
,

z(k) =
[
zb(k)τ zTa (k)τ

]T
,

are the linear dynamical model, states, inputs, disturbances, and MLD variables. Full details
on the systems matrices are to be found in Appendix A-3.

2-3 Demand and Generation Forecast

2-3-1 Background

In order to apply MPC strategies for the energy management of a Power-to-X system, the first
step is to build forecasting models of the uncertain processes affecting the system. Forecast-
ing state of the art is generally distinguished into two classes, namely, point forecasting and
probabilistic forecasting [41–43]. This thesis will further elaborate on point forecasting tech-
niques since it is the most convenient and most applied class of both. In point forecasting, the
predicted output at a future time is represented by a single numeric value, which represents
the most probable event. Point forecasting methods can be generally classified according to
the origin of inputs. Thus, the following two main approaches are considered: models that
use endogenous data, i.e. data formed by current and/or lagged time-series input data, and
models that make use of exogenous data, which may come from local measurements, e.g.
temperature, information from satellite images, Numerical Weather Predictions, and so on
[43]. The following point-forecasting methods are considered in the literature:

• Persistence Models: These are the simplest models, which are commonly used as a
benchmark for more developed models. They assume that conditions (e.g. irradiance,
power output, etc.) remain the same between subsequent time steps. An example of a
persistence model is ’naive persistence’, where the forecasted power will be the same as
the last value measured.

• Time Series Models: In time series analysis methods are considered which analyse
time-series data, where models to predict the future assume that future values are based
on previously observed values.
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22 System Description and Modelling

– Linear stationary models:
∗ Auto-Regressive (AR) models
∗ Moving-Average (MA) models
∗ Auto-Regressive Moving Average (ARMA) models
∗ Auto-Regressive eXogenous (ARX) models
∗ Auto-Regressive Moving Average with eXogeneous variables (ARMAX) models

– Linear non-stationary models:
∗ Auto-Regressive Integrated Moving Average (ARIMA) models
∗ Seasonal ARIMA (SARIMA) models

– Non-linear stationary models:
∗ Non-linear AR-eXogenous (NARMAX) models

• Artificial Neural Networks: These are proven to be the most used machine learning
techniques in the forecasting of PV generation and load demands. Artificial neural net-
works do not require the forecaster to model the underlying physical system explicitly.
The demand forecast is generated by learning patterns from historical data by mapping
the input variables to the output through layers of hidden neurons. Artificial neural
networks are highly suitable for discovering non-linear relations between input and out-
put, and the most popular way to train such network is through backpropagation.

• Support Vector Machines: These are supervised learning models with associated
learning algorithms. Data is analysed and patterns are recognised, which are then used
for classification and regression analysis. Support vector machine solutions have proven
to be very resistant to overfitting and stand out for their strong generalisation capacity
and ability to deal with non-linear problems.

2-3-2 Persistence Forecasting

The uncertain processes that have an effect on the system are contained in disturbance vector
ω(k). This vector includes the solar energy generation Epv, heat demand Qd, heat pump
input temperature Tin, hydrogen demand Hd and demineralised water demand Fd. Another
exogenous input to be forecast is the electricity price of the utility grid. Figure 2-5 shows
these exogenous disturbances on a chosen representative day, i.e. March 3rd. The controller
has to make daily decisions about the optimal energy flow in the system; therefore, at most,
24 hours ahead should be forecasted.

Since developing forecasting techniques is not in the scope of research goals, and many exoge-
nous disturbances exist in the system, the choice has been made to use a persistence forecast
method, i.e.

ω̄(k) = ω(k − γ

τ
), (2-32)

where ω̄ is the point forecast of the exogenous disturbance, k the discrete-time instant, γ the
lag in hours and τ is the sampling time in hours. A quick analysis of the autocorrelation
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Figure 2-5: Exogenous disturbances on Power-to-X system for the typical day March 3rd.

functions of the historical data time series is required to determine a suitable lag larger than
or equal to 24 hours for the persistence method (2-32). Figure 2-6 shows the autocorrelation
function of the exogenous disturbances acting on the system. The chosen ’persistence lag’
γ for solar power generation, heating demand, water demand, and hydrogen demand is 24
hours. For electricity prices, this value is 28 hours and in the case of water temperature,
another persistence model is used, namely using the last measured value of the temperature
for the whole forecast horizon.
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Figure 2-6: Autocorrelation function of exogenous disturbances acting on the system.
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Chapter 3

Model Predictive Control for Energy
Management of Power-to-X Systems

This chapter presents the main principles and state of the art of the Model Predictive Con-
trol (MPC) framework and is structured as follows: First, an introduction of the main princi-
ples of MPC is given in Section 3-1; In Section 3-2 an economic MPC formulation is developed
for the Power-to-X case study; Then, in Section 3-3 and Section 3-4 a Heuristic Model Pre-
dictive Control (HMPC) and Hierarchical Model Predictive Control (HiMPC) schemes are
introduced, respectively. Section 3-5 introduces the certainty-equivalent and stochastic frame-
works for dealing with uncertainties in the optimal control problem.

3-1 Introduction

In the MPC framework, a finite horizon optimal open-loop control problem is solved online
at each sampling time instant, using as an initial condition of the state, the measurement of
the state at current time instant [22]. The problem is solved for a fixed range of time in the
future, also known as the prediction horizon, see Figure 3-1a. The first control action of the
finite control sequence is then applied to the system, after which the control loop is closed.
At the next time instant, the described control problem is repeated, and thus MPC is also
known at times as Receding Horizon Control. For the employment of MPC, the following
information is required [22, 44], as illustrated in Figure 3-1b:

• An objective function expressing which system behaviour and actions are desired;
• A prediction model describing the behaviour of the system subject to actions;
• Constraints on the states, the inputs, and the outputs of the system;
• The possibly known information about future disturbances, e.g. prices or weather fore-
casts;
• Measurements of the state of the system at the beginning of the current control cycle.
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(a) MPC cycle retrieved from
https://en.wikipedia.org/wiki/
Model_predictive_control.

(b) MPC implementation algorithm [44].

Figure 3-1: MPC main principles and implementation algorithm.

Although MPC has its origins in industrial process applications, due to its advantages over
other control structures, many other fields have adapted MPC. Nowadays, MPC is gaining
increased attention in areas like power networks, road traffic networks, supply chain manage-
ment and many more. Some of these advantages which make MPC preferable over ordinary
feedback control are [4, 22]:

• MPC can be used to control a great variety of processes, from those with simple dynam-
ics to systems with relatively complex dynamics, e.g. systems with long delay times,
non-minimum phase systems or unstable systems;
• The MPC framework can effectively deal with multi-variable processes, compared to
conventional control methods;
• The satisfaction of hard input and state constraints for the closed-loop system can be
guaranteed, and are easily included in the design phase;
• It is advantageous when future reference values are known;
• Optimisation of some performance criterion is directly incorporated in the controller
design;
• It is an open methodology based on certain fundamental principles that allow for future
extensions.

Of course, there are also drawbacks to the MPC framework. The greatest drawback is the need
for an appropriate model of the process to be available [22]. The design algorithm is based on
a-priori knowledge of the system, which can make the controller derivation quite complicated.
It is obvious that the benefits obtained will be affected by the discrepancies existing between
the real process and the model used. Therefore, the computational complexity may be very
demanding, depending on the model complexity [22].

Oğuzhan Kaya Master of Science Thesis

https://en.wikipedia.org/wiki/Model_predictive_control
https://en.wikipedia.org/wiki/Model_predictive_control


3-1 Introduction 27

The standard MPC problem solves the described MPC cycle by minimising objective function
JMPC. In regulating MPC the goal is to ensure asymptotic stability of the system for the
desired sequence of references x̃ref:

x̃ref(k) =
[
xref(k|k) . . . xref(k +N − 1|k)

]T
, (3-1)

where N is the prediction horizon of the MPC controller. Furthermore, the system follows
a discrete-time dynamic state evolution given by, i.e. (2-2), where for this case, for the sake
of ease, a singe-input single-output system is considered and disturbances are not included.
The control sequence computed as a result of the optimisation is contained in vector ũ, i.e.:

ũ(k) =
[
u(k|k) . . . u(k +N − 1|k)

]T
, (3-2)

The general MPC optimal control problem is defined as follows:

min
ũ(k)

JMPC(x(k), x̃ref(k), ũ(k)) (3-3)

s.t. x(k + i|k) = f(x(k), ũ(k)), ∀i ∈ Z[0,N−1], (3-4a)
u(k + i|k) ∈ U, x(k + i|k) ∈ X, ∀i ∈ Z[0,N−1], (3-4b)
x(k +N |k) ∈ Xf , (3-4c)

where,

JMPC(x(k), x̃ref(k), ũ(k)) =
N−1∑
i=0

(l(x(k), xref(k + i|k), u(k + i|k))) (3-5)

+ Vf (x(k +N |k), xref(k +N − 1|k)), (3-6)

where the objective function JMPC consists of stage cost function l and terminal cost function
Vf (x(k + N |k)), where the latter only depends on the terminal state which is contained in
the terminal set, i.e. x(k+N |k) ∈ Xf . Time increment i exists in the set of integer numbers
in the interval [0, N − 1], i.e. i ∈ Z[0,N−1] and the control input and state are constrained by
sets U and X, respectively. The first entry of the vector ũ is the only control input applied to
the system in this time instant. After that, new state measurements will be available. Then
the optimisation is repeated using the updated state measurement.
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3-2 Optimal Control Problem Formulation for Energy Management

The Energy Management System (EMS) of a Power-to-X system has the purpose of making
decisions about the system’s energy flows while taking into account uncertainties, control
objectives (Section 3-2-1) and system constraints (Section 3-2-2). The interaction of the EMS
with the Power-to-X system is visualised in Figure 3-2. The ordinary EMS tasks are to
determine the energy flows of storage, generation and production units within the system on
an hourly base. However, for Power-to-X, the main control challenge arose from the fact there
is a temporal mismatch between electrical energy production and thermal energy demand, as
shown in Figure 1-4. The Aquifer Thermal Energy Storage (ATES) system is suitable to solve
this mismatch since it allows for thermal energy storage for multiple months. However, this
leaves us with multiple timescales, the ’slow’ ATES system and the hourly tasks of the EMS
for the rest of the Power-to-X system. Thus another task for the EMS is to schedule long-term
heat storage planning. In the remainder of this section, MPC as EMS for Power-to-X systems
will be elaborated on.

Energy 
Management 

System 
(EMS)

Hourly
control inputs

Measurements

Power-to-X 
System

Forecasts

Control objectives

Figure 3-2: Interaction of the EMS with the Power-to-X system.

3-2-1 Objective Function

MPC optimal control formulations where a certain desired objective is directly incorporated
in the objective function is called Economic MPC [4, 45]. The Economic MPC objective
functions suitable for any optimal control problem concerning optimal energy flows within
an energy system are concerned with minimising operational expenses, environmental con-
cerns, maintaining generator and storage life-cycles, and seasonal energy plan tracking. Any
combination of these objective functions may be considered, which may eventually result in
multi-objective optimisation.
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Bill Minimisation: This objective is concerned with minimising the operational expenses of
the system. Generally, it consists of revenues and costs due to importing or exporting of
energy vectors, generator costs, and converter costs. In this thesis, we neglect the costs of
generators and converters. Consequently, an objective function suitable for bill minimisation
is described by the following equation [37, 46]:

lbill(k) = Cgrid(k) + Chy(k), (3-7)

where Cgrid and Chy are the costs of external grid interaction of electricity and hydrogen [e],
respectively. The external grid interaction costs and hydrogen trading costs were given by
(2-8) and (2-20), respectively

Carbon Dioxide Emission Reduction: This objective function is an environmental one and
is concerned with minimising the carbon dioxide emissions originating from the Power-to-X
system. The system may be responsible for carbon dioxide emissions by importing energy
from non-renewable energy sources or can contribute to saving carbon dioxide emissions by
producing hydrogen for zero-emission hydrogen vehicles. The environmental stage cost func-
tion is:

lenv(k) = max(selPgrid(k)τ, 0)− shyHel(k), (3-8)

where Pgrid is the power imported or exported from the utility grid [kW], sel the estimated
carbon dioxide contribution per energy imported from the grid [kg/kWh], Hel(k) the produced
hydrogen in the system and shy the estimated saved carbon dioxide emissions from driving a
hydrogen-fueled vehicle as contrary to a conventional vehicle.

Maintaining Asset Life Time: Electrolysers, heat pumps and battery energy storage sys-
tems (BESSs) are subject to life-time deterioration due to switching of modes, i.e. on/off,
charging/discharging. An objective function minimising these phenomena is given by [46]:

llife(k) =0.5 · |∆sgn(Pb(k))|+ |∆sgn(Php(k))|+ |∆sgn(Pel(k))|+ |∆sgn(Pro(k))|, (3-9)

where Pb is the power to or extracted from the battery [kW], Php the power to the heat pump
[kW], Pel the power input of the electrolyser [kW] and Pro is the power to the reverse osmosis
system [kW]. Note that the term with Pb is multiplied by a factor of 0.5 since it is the only
power input that can take negative and positive values.

Energy Plan Tracking: In EMS of microgrids, it is common to implement pre-scheduled
targets for manipulated inputs and/or states in the MPC objective [47–49]. These targets
may follow from pre-schedulers acting on slower time-rates, i.e. day ahead vs hourly, or
from day-ahead market agreements. The pre-scheduler problem is either formulated as a
common optimisation problem or in some cases, implemented as an MPC controller. The
goal attained by the objective is to penalise the deviation from the schedule by assigning a
cost to the difference, i.e.:

lsched(k) = ‖(vsched(k)− v(k)‖2 + ‖(xsched(k)− x(k)‖2, (3-10)

where vsched is a vector containing the optimal operation limits and xsched the optimal states
passed by the pre-scheduler. By introducing such terms in the objective, the MPC controller
aims to minimise deviations by changing settings of the storage devices.
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Multi-Objective Optimisation: For this case study, an economic objective function is chosen,
i.e. (3-7). Furthermore, in the HiMPC framework, some reference has to be tracked, i.e. (3-10)
which will result in a multi-objective optimisation problem. The environmental objective of
carbon dioxide reduction is not explicitly taken into account since the Power-to-X system is
already highly optimised for environmental design objectives.

The dynamical model of the Power-to-X system is a hybrid one. Therefore a Mixed-Integer
Optimisation has to be solved. In the case of a quadratic norm minimisation (3-10), this
problem is a Mixed Integer Quadratic Programming (MIQP) problem which is generally
harder to solve than a Mixed Integer Linear Programming (MILP) problem. Therefore the
tracking objective is reformulated using the first norm, i.e.

lsched(k) = ‖(vsched(k)− v(k)‖1 + ‖(xsched(k)− x(k)‖1, (3-11)

When the earlier introduced economic MPC objective functions, (3-7) and (3-11) are com-
bined, the optimisation problem results in a multi-objective optimisation problem, with the
following cost:

JEMPC =
N−1∑
k=0

(lbill(k) + wschedlsched(k)), (3-12)

where wsched are the costs/weights assigned to the deviation of the schedule. These weights
can be tuned to assign importance to the corresponding goal.

3-2-2 Optimisation Constraints and Feasibility

The MPC formulation of the EMS problem of Power-to-X systems is subject to constraints,
composed of the Mixed Logical Dynamical (MLD) model’s constraints, energy balance con-
straints, operational constraints and input/state constraints. In Section 2-2-5, the system’s
dynamics were compactly written in an MLD formulation (2-30a). The operational constraints
are combined into (2-30c). Due to the ability of some energy carriers to be imported/exported
from an external party, the problem would not quickly become infeasible in the sense that the
grid can account for any unaccounted imbalances of the energy carriers. In the case that the
problem becomes infeasible, the storage limit constraints could be recast into soft constraints
with the introduction of slack variables [22], i.e.:

xmin − ρ(k) ≤x(k) ≤ xmax + ρ(k), (3-13)
0 ≤ρ(k) ≤ ρmax, (3-14)

and,

lslack(k) = ‖diag(wρ)ρ(k)‖1, (3-15)

where (3-13) and (3-14) are the newly introduced constraints and (3-15) is the objective
function for slack variable minimisation and ρ the vector containing the slack variables. The
weight vector wρ is tuned accordingly to allow some constraint violations of the corresponding
storage element.
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3-3 Heuristic MPC

3-3-1 Introduction

The HMPC controller is the first approach to solving a Power-to-X optimal control problem
for energy management purposes as highlighted before. The proposed scheme will solve
this problem within a single control layer, as opposed to HiMPC which consists of multiple
interacting control layers. The proposed HMPC will act as the EMS of the Power-to-X
system. Therefore, the decision variables computed by the HMPC scheme will be provided
to the system as hourly set-points for local regulating controllers. The HMPC sampling
time τh = 1hour with a prediction horizon of Nh = 24 hours. Though, this horizon is too
short of anticipating for seasonal differences and making use of the long-term ATES system.
Therefore the proposed HMPC controller will provide a solution to the short horizon by
including a terminal cost on the thermal energy content of the ATES hot well.
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Figure 3-3: Average heat production prices for the year 2013.

Figure 3-3 shows the average heat production prices Cheat for a representative year. Obvious
is that in the warmer months, the price per kWh of heat is much lower than in the colder
winter months. The value of Cheat can also be viewed as the value of heat at a certain time.
Therefore, a terminal cost incorporating the phenomenon that producing heat in the summer
is more beneficial than in the winter is given by:

V h
f = ∆Cheat(kh +Nh|kh) · (ηa)κ · Sh(kh +Nh|kh), (3-16)

where ∆Cheat(kh +Nh|kh) = Cheat(kh +Nh|kh)−Cheat(kh +Nh + 720 ·κ|kh) is the difference
value of produced heat of present-day versus κ months ahead, ηa is the storage efficiency of
heat for the ATES system, and Sh(kh +Nh|kh) is the terminal state of the ATES warm well.
Furthermore, if ∆Cheat is smaller than zero, it would mean that heat storage is minimised,
which is never desirable. Therefore some rules have to be included. Furthermore, note that
it was assumed that a month contains 720 hours.
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The HMPC controller has three tuning variables, namely, the horizon κ determining how many
months in the future the heat energy is estimated to be used, threshold ψ roughly determines
in which month heat should be started to be produced and λ the variable preventing greedy
use of the heat storage in months where heat is used. These rules are summarised in Algorithm
1.
Algorithm 1: Heuristics in single-layer MPC
Calculate difference of heat energy value i.e.
∆Cheat(kh +Nh|kh) = Cheat(kh +Nh|kh)− Cheat(kh +Nh + 720 · κ|kh)
if ∆Cheat(kh +Nh|kh) > ψ then

∆Cheat(kh +Nh|kh) = Cheat(kh +Nh|kh)− Cheat(kh +Nh + 720 · κ|kh)
else

∆Cheat(kh +Nh|kh) = λ
end

3-3-2 Problem Formulation

The HMPC optimisation problem is given by the following equations:

min
ṽh(kh),ρ̃h(kh)

Nh−1∑
i=0

(
Ch
grid(kh + i|kh) + Ch

hy(kh + i|kh) + wh
slack · ‖diag(wh

ρ)ρh(kh + 1 + i|kh)‖1
)

+ ∆Cheat(kh +Nh|kh) · (ηa)κ · Sh(kh +Nh|kh) (3-17)
s.t. MLD system dynamics (2-30), (3-18a)

xmin − ρh(kh + i|kh) ≤ x(kh + i|kh) ≤ xmax + ρh(kh + i|kh), (3-18b)
vmin ≤ vh(kh + i|kh) ≤ vmax, (3-18c)
0 ≤ ρh(kh + i|kh) ≤ ρmax, (3-18d)
∀i ∈ Z[0,Nh−1],

where (3-17) is the objective function, including slack variable (ρh ∈ R5) minimisation, (3-18a)
- (3-18d) are the system constraints containing the MLD system model and state, input and
slack variable constraints. The HMPC decision vector is given by:

vh =
[
uT (k) δT (k) zT (k)

]T
, (3-19)

where the input vector, binary input vector and vector of auxiliary variables were introduced
in Section 2-2-5.
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3-3-3 Tuning

For the use of the latter introduced HMPC scheme, three parameters have to be tuned. First
of all, we have found that κ, the horizon of ∆Cheat is best suitable as κ = 6. This can be
chosen beforehand because it is likely that heat energy is going to be utilised six months
in advance in a Power-to-X system. Illustrative comparison of tunable parameters is shown
in Figure 3-4. The threshold ψ determines when the controller should start accounting for
storing heat. The figure below compares three cases of ψ for constant κ and λ. As expected,
smaller values of ψ cause the controller to act in earlier months in terms of storing heat.

On the other hand, the parameter λ accounts for the ’greediness’ of using heat energy in
months that heat is not stored. This is again illustrated in the figure below, now for varying
λ and constant κ and ψ. What we observe is that in the case of the smallest value of λ = 40,
the stored heat is depleted as quick as March, which is not desirable. Subsequently, too large
values of λ result in too little stored heat withdrawal, e.g. for λ = 60.
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Figure 3-4: Tuning of the HMPC control scheme, upper plot varies φ and the lower plot varies
λ while keeping other parameters constant.
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3-4 Hierarchical MPC

3-4-1 Introduction

In the previous section, a heuristic approach was presented for MPC of the Power-to-X sys-
tem. Though, the most straightforward way to deal with multiple timescales in the plant or
disturbance processes is time-scale decomposition [24, 50]. Time-scale decomposed systems
are controlled by a cascade of MPC controllers, each assigned to a layer in the hierarchy. Con-
sequently, control schemes of this form are often referred to as multi-layer control schemes
or hierarchical control schemes. The higher layer in the hierarchy generally computes state
and/or manipulated variable set-points for the layer below. An example of such a time-scale
decomposed control scheme is visualised in Figure 3-5. In this case, we see that the con-
trol scheme is decomposed into three timescales, where intermediate layer communication is
present, i.e. passing of set-points and state measurements. Information from interlayer objec-
tives can be utilised at adjacent lower layers as setpoints to be tracked. This can be achieved
by conventional setpoint tracking in the objective function, introducing terminal states to be
reached or average tracking. This is visualised in Figure 3-5 with arrows interconnecting the
interlayer connections.

Figure 3-5: Example of a time-scale decomposition into three layers [50].

Even though time-scale decomposition may seem like an intuitive solution for dealing with
multi-timescale systems, it is not straightforward to come up with models for each control
layer. What is very often seen in the literature is time-scale decomposition models based on
singular perturbation theory, which provides a natural framework for modelling, analysing
and controlling these multiple time-scale processes [24]. Other methods for coming up with
models for separate layers may be by resampling an existing model [51], by assuming static
models [44, 51], i.e. assuming that the reference passed to a lower level is reached in the
higher-level time interval, or by approximating the lower level’s closed-loop system [52].
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3-4-2 Problem Formulation

A HiMPC control scheme suitable for the current case-study suffices with two layers, where
the upper-layer should encapsulate seasonal differences, and the lower-layer interacts with the
Power-to-X system. This scheme results in one as depicted in Figure 3-6. The lower-layer
problem acts on an hourly base with a daily prediction horizon, whereas the upper-layer has
a sampling time of τu = 720 hours and a prediction horizon of a year, i.e. Nu = 12months.
The lower-layer MPC (LL-MPC) acts as the EMS of the Power-to-X system, whereas the
upper-layer MPC (UL-MPC) scheme acts as a supervisory control layer providing ATES hot
well references for the lower-layer.

Upper-Layer MPC

Lower-Layer MPC

Power-to-X 
System

Control inputs

Measurements

Measurements

State 
reference

Figure 3-6: Proposed HiMPC scheme. Consists of two interacting layers, the UL-MPC providing
ATES hot well reference values for the LL-MPC which acts as EMS

Upper-Layer Problem The UL-MPC is concerned with providing monthly set-points of the
heat storage for the LL-MPC to track. Therefore the upper-layer is an anticipatory controller
taking into account seasonal differences of the solar power availability and thermal energy
demands. The prediction model of the upper-layer problem only consists of the ATES system
dynamics, resampled at sampling time τu. Since the dynamics of the other storage elements
are not taken into account of the optimisation problem, the electrical energy balance, hydro-
gen mass balance and demineralised volume balance have to be implemented as constraints
explicitly. These balances must be fulfilled in an aggregated manner for one month, i.e. by
scaling with τu
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The upper-layer optimisation problem is given by:

min
ṽu(ku),ρ̃u(ku)

Nu−1∑
i=0

(Cu
grid(ku + i|ku) + Cu

hy(ku + i|ku) + wu
slack · ‖diag(wu

ρ) · ρu(ku + 1 + i|ku)‖1)

(3-20)
s.t. District Heating System (2-17), (2-18) and (2-19), (3-21a)

xmin
a − ρu(ku + 1 + i|ku) ≤ xa(ku + 1 + i|ku) ≤ xmax

a + ρu(ku + 1 + i|ku),
(3-21b)

vminτu ≤ v(ku + i|ku) ≤ vmaxτu, (3-21c)
0 ≤ ρu(ku + 1 + i|ku) ≤ ρmax, (3-21d)

Epv(ku + i|ku)− (Pgrid(ku + i|ku)− Qhp(ku + i|ku)
COP(ku + i|ku) (3-21e)

− ηel,dw · Fro(ku + i|ku)− 1
ηhy,el

·Hel(ku + i|ku))τu ≥ 0,

Hel(ku + i|ku) +Htrade(ku + i|ku)−Hd(ku + i|ku) ≥ 0, (3-21f)
Fro(ku + i|ku)− ηdw,hyHel(ku + i|ku)− Fd(ku + i|ku) ≥ 0, (3-21g)
∀i ∈ Z[0,N−1],

where (3-20) is the objective function to be minimised, (3-21a) is the heat system’s MLD
system for a monthly sampling time, (3-21b)-(3-21d) are the state, input and slack variable
bounds. The monthly energy balance is captured in (3-21e), the hydrogen mass balance by
(3-21f) and the demineralised water balance is given by (3-21g). The vector containing the
slack variables is defined as ρu ∈ R2 for transforming the state xa ∈ R2 limit constraints into
soft constraints. Decision vector vu looks similar to the HMPC controller’s decision vector
(3-19) with the exception of all decision variables related to the battery storage.

Lower-Layer Problem The LL-MPC is concerned with the same tasks as described for the
EMS of Power-to-X systems, while now also tracking monthly set-points from the upper-layer
optimisation. The lower-layer problem is given by:

min
ṽl(kl),ρ̃l(kl)

N l−1∑
i=0

(C l
grid(kl + i|kl) + C l

hy(kl + i|kl)) + wl
slack · ‖diag(wl

ρ) · ρl(kl + 1 + i|kl)‖1

+ ‖Sref(kl + i|kl)− Sh(kl + 1 + i|kl)‖1) (3-22)
s.t. MLD system dynamics, (2-30), (3-23a)

xmin − ρl(kl + 1 + i|kl) ≤ x(kl + 1 + i|kl) ≤ xmax + ρl(kl + 1 + i|kl), (3-23b)
vmin ≤ v(kl + i|kl) ≤ vmax, (3-23c)
0 ≤ ρl(kl + i|kl) ≤ ρmax, (3-23d)
∀i ∈ Z[0,N l−1], (3-23e)

which is defined by the objective function (3-22) and its optimisation constraints (3-23).
Furthermore, the decision vector and vector containing slack variables are similar to the ones
introduced at the HMPC problem.
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3-4-3 Controller Coupling

Two controller coupling schemes will be discussed in this section, a linear interpolation and a
heuristic variant. The goal is to divide the monthly ATES hot well state reference the upper-
layer provided, and to transform this monthly reference into hourly reference values for the
LL-MPC to track. The linear interpolation set point tracking fixes the intermediate reference
at each time step within that month to a linear interpolation from the initial storage state to
the end value of the storage, i.e. the reference. This means that at each time step, the same
amount of heat has to be stored for the duration of a month. This implementation may clash
with the Power-to-X principles to utilise excess energy into other energy carriers. Therefore
another approach may be the introduction of a proportional scaling factor for each time step
within that month based on Power-to-X principles. This would mean that in months that
heat energy has to be stored, a scaling factor based on PV generation may provide such
a goal. In the colder months, when the ATES system supplies heat, the reference may be
proportionally scaled by the thermal energy demand forecasts.

Naming the linear interpolation controller HiMPC - Linear and the scaled approach HiMPC
- Heuristic, these working principles are compared for a year in Figure 3-7. Note that the
reference trajectory is only plotted once since both simulations have identical references.
Figure 3-8 shows a more detailed insight into the working principles of both controllers for
some summer days. This figure shows that the HiMPC - Heuristic controller stores heat
proportionally to solar power availability. Figure 3-9 illustrates the reference implementation
for three winter days, where we see that more heat is extracted when there is a higher demand.
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Figure 3-7: Comparison of the thermal energy storage of the ATES warm well for a year.
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Figure 3-8: Comparison of the district heating system in the summer, where the HiMPC -
Heuristic controller is driven by PV generation.
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Figure 3-9: Comparison of the district heating system in the winter, where the HiMPC - Heuristic
MPC is driven by the heating demand.
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The upper-layer problem is repeated at the start of every month. The computed input
sequence of the first time step is implemented on the ATES system model (2-17), and the
prediction S∗

h(ku + 1|ku) serves as the reference for the LL-MPC. The two variants discussed
are:

1. Linear Interpolation: This is the simplest method to deal with the reference of the
upper-layer problem, and has also been used in the literature [53]. The principle is
to interpolate linearly between the current state of the ATES hot well Sh(kl) and final
ATES state S∗

h(ku+1|ku) to be reached at the end of the month. The following reference
calculation is repeated at every time step kl:

Sref(kl + i|kl) = Sh(kl|kl) + i+ 1
720 · ku − kl · (S

∗
h(ku + 1|ku)− Sh(kl|kl)) (3-24)

∀i = 0, . . . , N l − 1

2. Heuristic Assignment: This method achieves to fully employ the Power-to-X princi-
ples for heat generation. As mentioned before, the principle is to divide the solar power
at each time step Epv(kl) by the total solar power in that month, i.e Epv(ku). Therefore,
heat for storage purposes will be generated using solar energy only. However, this rule
only applies for months when heat is generated and stored, i.e. S∗

h(ku + 1|ku) > Sh(kl).
Then the reference is calculated as follows:

Sref(kl + i|kl) = Sh(kl|kl) +
∑i+1
j=0Epv(kl + j|kl)

Epv(ku) · (S∗
h(ku + 1|ku)−Sh(kl|kl)) (3-25)

∀i = 0, . . . , N l − 1

For months when heat is utilised, i.e. in the winter, another reference update rule is
developed. Now, the storage depletion is steered by the amount of heating demand. At
every time step kl the following equation is used to update the hourly references:

Sref(kl + i|kl) = Sh(kl|kl) +
∑i+1
j=0Qd(kl + j|kl)

Qd(ku) · (Sh(kl|kl)−S∗
h(ku + 1|ku)) (3-26)

∀i = 0, . . . , N l − 1
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3-5 Dealing with Uncertainties

When considering uncertainties acting on Power-to-X systems, one may think of uncertainties
introduced by the stochastic nature of atmospheric processes, uncertain demands, prices,
imperfect measurements of initial conditions, and modelling errors. In this thesis uncertainties
induced by exogenous disturbances will be considered, i.e. uncertain generation, demands
and prices. These disturbances acting on the system for the case study in this thesis were
investigated in Section 2-3. This section also dealt with the design of persistence methods for
forecasting of the exogenous disturbances. Let us now introduce the following decomposition
for the actual disturbance:

ω(k) = ω̄(k) + ω̂(k) (3-27)

where ω̄(k) is the nominal part of the disturbance provided by forecast (e.g. load demand or
photovoltaic (PV) generation) and ω̂(k) is the stochastic prediction error at each time step
k. Generally, the stochastic part is either modelled as a discrete variable with an assumed
distribution [26], or as a bounded uncertainty.

3-5-1 Deterministic Framework

The main assumption of deterministic MPC to cope with uncertainties relies on the so-called
certainty-equivalence property [26]. Subsequently, the resulting deterministic MPC controller
is often called certainty-equivalent MPC (CEMPC). In the setting of this thesis, it means that
imperfect forecasts are assumed to be correct [22, 26–29]. A certainty-equivalence strategy to
deal with disturbances is reducing the disturbance vector to its expected value with ω̂(k) = 0„
i.e.

ω(k) = E (ω̄(k)) , (3-28)

where ω(k) is the real disturbance vector, ω̄ is the predicted disturbance vector, and E [·]
is the expectation operator. Alternatively, other certainty-equivalent strategies may include
choosing ω(k) as the value with maximum probability, as a random sample of ω(k) or as a
nominal value. The disturbance realisation in the prediction horizon of the MPC cycle can
be compactly written as:

ω̃(k) =
[
(ω(k|k))T . . . (ω(k +N − 1|k))T

]T
(3-29)

Generally, deterministic MPC on a stochastic system leads to average-performing systems,
and guarantee no constraint satisfaction. Consequently, this would mean that in the case
of large constraint violations, the computed control input has to be recomputed within the
controller time interval by a recovery strategy. In the setting of this thesis, it would mean
that we must assume that the heat pump and utility grid interaction may react fast enough to
ensure thermal and electrical energy balance satisfaction. The necessity of a recovery strategy
may greatly reduce the economic operation of the system. The practical implementation of
this framework is discussed in Section 4-1.
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3-5-2 Stochastic Framework

In the stochastic MPC (SMPC) framework, a chance-constrained optimisation problem is
solved [54]. These are obtained by the substitution of constraints, by chance constraints, i.e.

P [g(x(k), u(k)) ≤ 0] ≥ 1− p, (3-30)

which allows for some degree of constraint violation bounded by a predefined ’violation risk’, p
and, generally by replacing the objective function by the expectation of the objective function.
Nowadays, there exist many methods and extensions on stochastic MPC [54]. This thesis will
only cover a randomised method, called scenario-based MPC [37].

Randomised approaches are founded on the assumption that several scenarios with possible
evolutions of the disturbance are known, i.e. (ω̃(k))(j), with superscript j denoting the jth
scenario. These approaches’ main idea is to reformulate the problem for a finite number of
scenarios, sufficient enough to reformulate the stochastic optimisation problem into a tractable
deterministic problem. The sufficient number of scenarios is based on the following condition:

Ns ≥
2
p

(
ln 1
β

+ d

)
(3-31)

that guarantees constraints such as (3-30) lead to feasible solutions, with a confidence level
(1− β) with β a user-defined parameter [55]. However, most constraints due to scenarios are
redundant. Therefore, the following implementation is used [37]:

max
j=1,...,Ns

(ω̃(k))(j), (3-32)

where Ns is the number of scenarios and the max operator applies element-wise.

In the setting of this thesis, the uncertain PV generation Epv and heating demand Qd will
be implemented as their scenario realisations. The remaining exogenous disturbances do not
affect the system as much as the earlier mentioned PV generation and heating demand. The
forecasting errors of the solar power generation and heat demand are fitted with a kernel
distribution, see Figure 3-10 for heat demand. This choice was based on the histograms of
the errors. It appears that these do not come from any obvious distribution, so the kernel
distribution was fit to nonparametrically estimate the probability density function of the
errors.

Scenarios will be generated by randomly sampling errors from the inverse empirical cumula-
tive distribution function with a random variable (0, 1) from a uniform distribution. These
sampled errors and the point forecasts are used to calculate the scenarios by employing (3-27).
Then a desired number of scenarios is generated and reduced through probability matching,
see Figure 3-11. This figure shows 20 scenario realisations for the heating demand for a day,
along with the real demand and the forecast. Furthermore, (3-32) is used for implementation
in the optimal control problem. Note that for PV generation (3-32) is reformulated as an
element-wise minimum.
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Figure 3-10: PDF heat demand forecast error and inverse CDF, dashed in green is a sample
from a uniform distribution and corresponding error sample.
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Figure 3-11: Scenario generation example for heat demand.
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Chapter 4

Case Study: Hierarchical MPC for a
Power-to-X Concept

This Chapter performs a simulation of a year for the case study of the Power-to-X system
described in Section 2-2. First, the simulation setup will be given in Section 4-1 along with
all prerequisites for its implementation. Then, in Section 4-2 a basis is formed for assessing
the proposed controllers in Chapter 3. At last, in Section 4-3 the simulation results are
illustratively presented along with controller performance metrics.

4-1 Introduction

The controllers assessed as the Energy Management System (EMS) of the Power-to-X case
study provide hourly set-points for the low-level controllers at the corresponding unit in the
system. This chapter aims to compare Model Predictive Control (MPC) controllers presented
in Chapter 3 by simulation with historical data of the year 2013. We will only consider
certainty-equivalent MPC (CEMPC) and scenario-based MPC in the comparison since these
are the only control methods that can be implemented in reality. Additionally, a rule-based
controller and prescient MPC (PMPC) controller will be introduced to assess the theoretical
and practical potentials of the following control schemes:

• Heuristic Model Predictive Control (HMPC): The single-layer MPC scheme
based on heuristic rules (Algorithm 1) and optimal control problem characterised by
objective (3-17) and constraints (3-18a)-(3-18d);

• Hierarchical Model Predictive Control (HiMPC) - Linear: Two-layered con-
trol scheme characterised by an upper-layer MPC (UL-MPC) ((3-20) and (3-21)) and
lower-layer MPC (LL-MPC) ((3-22) and (3-23)). The reference is calculated by linear
interpolation, i.e. (3-24);
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44 Case Study: Hierarchical MPC for a Power-to-X Concept

• Hierarchical Model Predictive Control (HiMPC) - Heuristic: Attempt to im-
prove the linear interpolation variant of the HiMPC scheme given by using update rules
(3-25) or (3-26).

The constants, parameters and optimisation variables are presented in Table 4-1 along with
their respective bounds and units. Due to the addition of slack variables in the optimal
control problem, we may assume that constraint violations will occur. When a constraint
is violated in the electricity system, we assume that the utility grid will compensate for any
imbalances. When the imbalance causes more electricity to be exported than the lower bound
value Pmin

grid = −4500 kW, the excess is curtailed, i.e. no economic benefit. We assume this
curtailment occurs in the inverter of the photovoltaic (PV) installation. On the other hand,
power imports larger than the utility grid limit will be charged double.

Furthermore, we assume that the heat pump can react fast enough to compensate for heat
demand/supply imbalances. Regarding the demineralised water and hydrogen systems, we
impose a conservative lower bound to the storage systems to ensure imbalance prevention,
i.e.:

xmin
hy = Hmax

d (4-1)
xmin
dw = Fmax

d , (4-2)

where superscripts min and max denote the minimum and maximum values. Furthermore, Hd
and Fd are hydrogen and demineralised water demands, respectively. The lower and upper
bounds can be found in Table 4-1. When the upper limits of the hydrogen and demineralised
water storages are exceeded, the excess will be dissipated. Moreover, the battery energy
storage system (BESS) requires a lower bound of at least 10 per cent of its maximum capacity,
i.e.

xmin
b = 0.1 · xmax

b , (4-3)

this constraint is imposed to limit the BESS life time detoriation.

The optimisation problems to be solved were formulated as Mixed Integer Linear Program-
ming (MILP) problems. Hence the GUROBI solver is used along with the YALMIP toolbox
[56] in Matlab 2019a.
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Symbol Description Value/Bounds Units
States

xb Battery State of Charge
[
500 5000

]
kWh

xa Thermal energy content warm and cold well
[
0 3

]
MWh

xhy Content hydrogen storage
[
0 200

]
kg

xdw Volume demineralised water storage
[
0 150

]
m3

Decision Variables
Pb Energy to or from BESS

[
−1650 1650

]
kWh

Pgrid Energy imported or exported
[
−4500 4500

]
kWh

Qhp Heat output of heat pump
[
0 9000

]
kWh

ua Water volume pumped from ATES wells
[
−75 75

]
m3

Hel Hydrogen produced by the electrolyser
[
0 25

]
kg

Htrade Hydrogen imported or exported
[
−25 25

]
kg

Fro Volume of demineralised water purified by reverse osmosis
[
0 150

]
m3

ρ Slack variables - -
MLD Decision Variables

zb Auxiliary variable, zb = δbPb
[
0 1650

]
kWh

δb Binary variable, BESS {0, 1} -
za Auxiliary variable, heat system

[
−3000 3000

]
kWh

δa Binary variable, heat system {0, 1} -
Disturbances

Epv Solar energy generation
[
0 9000

]
kWh

Qd District heating demand
[
100 3.5 · 103

]
kWh

Hd Hydrogen demand
[
0 26

]
kg

Fd Demineralised water demand
[
0 12

]
m3

Constants
ηb1 Battery storage loss efficiency 1 -
ηch Battery charging efficiency 0.95 -
ηdch Battery discharging efficiency 1/0.95 -
ηa ATES heat loss 0.951/720 -
αh Thermal power coefficient warm well 39.8 kWh/m3

αc Thermal power coefficient cold well 3.5 kWh/m3

ηel,dw Conversion efficiency from demineralised water to energy needed 0.191 m3/kWh
ηdw,hy Conversion efficiency from hydrogen to demineralised water 13.75 m3/kg
chy,im Importing price hydrogen per kilogram 10 e/kg
chy,im Exporting price hydrogen per kilogram 6 e/kg

Table 4-1: States, decision variables, disturbances and constants with their unit, respective
bounds and values.
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4-2 Controller Assessment

4-2-1 Benchmark: Rule-Based Control

A Rule-Based Controller (RBC) will be used as a performance benchmark to compare the
proposed MPC controllers against. Such a controller acts directly as the EMS and exists of
if-else statements based on available information within a single control time interval. The
RBC will not make use of predictions within its decision-making process. In its simplest form
as developed for this thesis, the RBC makes its decision to generate, produce or import when
a certain lower-limit threshold is passed, e.g. (4-1) or (4-2). Moreover, the main principle of
this controller is to utilise excess power into heat. The main principles of the developed RBC
for this thesis are given by Algorithm 2 in Appendix B.

4-2-2 Theoretical Potential: Prescient MPC

PMPC is when a given MPC framework is simulated with full knowledge of future distur-
bances. Hence such a controller can be used to assess the theoretical potential of an MPC
scheme when compared to the RBC. Furthermore, such PMPC is also used to determine
the slack variable minimisation weights, which are summarised in Table 4-2. First of all,
the ATES system states trajectories, do most of the time, not operate close to their bounds.
Therefore, the slack variables corresponding to the ATES states are relatively small. Further-
more, the hydrogen storage tends to show constraint violations relatively quick, which is why
the slack variable corresponding to the hydrogen storage is relatively large.

Controller States wρ wslack

HMPC
[
xb xTa xel xdw

]T [
1 0.1 0.1 10 1

]T
1

LL-MPC
[
xb xTa xel xdw

]T [
1 0.1 0.1 10 1

]T
0.1

UL-MPC xa
[
1 1

]T
0.01

Table 4-2: Weighing parameters for the slack variable minimisation for each proposed MPC
controller.

4-2-3 Performance Indices

The MPC schemes compared in this case study will be assessed according to the following
performance indices:

• Yearly Revenue: This performance index is directly implemented within the control
objective function of the MPC controllers. This metric is calculated by summing Cgrid
and Chy over a year of simulation;

• Practical Potential: The practical potential is the percentage gain of the yearly
revenue against the RBC;
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• Theoretical Potential: The theoretical potential of the controllers is the percentage
gain of the yearly revenue of the PMPC against the RBC’s yearly revenue;

• Carbon Dioxide Emission Savings: The emission savings metric is not directly
incorporated in the objective function. However, it is still an important metric to look
at and is calculated by i.e., (3-8);

• Heat Storage: This metric looks at the amount of thermal energy left in the ATES
hot well. Since this heat may be used in the future this metric represents an economic
value.

4-3 Results

The performance metrics for the proposed control strategies for a simulation of the year 2013
are given in Table 4-3. Since the performance metric of operational expenses is explicitly in-
corporated in the cost, this metric should be actually compared. Note that all controllers are
tuned for maximum yearly revenue. The HiMPC - Heuristic controller in the deterministic
framework performs best on economic cost optimisation, followed by its stochastic counter-
part. What we observe is that the deterministic controllers are more aggressive in terms of
constraint violations, whereas scenario-based MPC controllers are more conservative. This
conservativeness is also seen in the yearly revenue of the scenario-based MPC controllers,
which perform less compared to the deterministic counterparts. Furthermore, almost all sim-
ulations end with a comparable amount of heat left in the ATES hot well, except for the
deterministic HMPC controller.

HMPC HiMPC - Linear HiMPC - HeuristicControl Strategy CEMPC SMPC CEMPC SMPC CEMPC SMPC
Yearly Revenue in e 1.74 · 105 1.56 · 105 2.19 · 105 1.73 · 105 2.22 · 105 2.12 · 105

(practical potential) (84.59%) (65.50%) (132.33%) (83.54%) (135.52%) (124.91%)
Emission Savings in tonnes 4.37 · 102 3.44 · 102 3.29 · 102 3.29 · 102 3.73 · 102 2.92 · 102

Heat Storage in MWh 0.293 0.611 0.626 0.612 0.626 0.627
Constraint Violations 13.52% 9.33% 7.63% 7.13% 7.59% 6.89%

Table 4-3: Comparison of control strategies based on performance indices.

Figure 4-1 compares the ATES hot well utilisation for each proposed controller presented
in the deterministic and stochastic framework. As highlighted before, we see the working
principles of both HiMPC controllers; this time, however, the HiMPC - Heuristic controller
may not always reach the setpoint provided by the upper-layer controller due to forecast
inaccuracy. The linear interpolation variant is less sensitive to the forecast errors on the
system since time is certain. Moreover, comparing the HiMPC controllers for the stochastic
and deterministic frameworks no evident differences are present. The reason for this is that
the recovery strategies for both control frameworks ensure that the references are reached.
Looking at the HMPC controllers’ storage trajectories we must note that these controllers
are tuned for maximum revenue, and not for resemblance to the HiMPC controllers.

Other simulation results will be illustratively assessed for three days in July 2013. The energy
flows in the microgrid are depicted in Figure 4-2 and Figure 4-3 for the CEMPC and SMPC
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Figure 4-1: Simulation result of the ATES hot well utilisation for one year.

controllers, respectively. To assess the microgrid energy flows, we introduce a new variable,
the utilised energy, i.e.

Pu(k) = Php(k) + Pro(k) + Pel(k), (4-4)

where Pu(k) is the utilised power, Php(k) the power to the heat pump, Pro(k) power utilised for
the reverse osmosis process and Pel(k) the power to the electrolyser system. We can observe
that the battery is filled up during the day, and is discharged during the night for constant
energy utilisation. The electrolyser’s power input is most of the time maximised because it is
most efficient operating at maximum capacity. Furthermore, the HiMPC - Heuristic has peaks
of energy utilisation during the day accounted for by the heat production during those times.
Most of the time there is too much excess energy. Therefore some generated energy still has to
be exported during the day, sometimes even leading to curtailments. During the simulation,
we have never experienced an upper-bound violation of the grid capacity Pgrid, therefore no
controller has faced adverse penalties. Furthermore, when the BESS had exceeded its limits,
the utility grid had restored the storage’s energy to that limit, i.e. no windup effects.

Figure 4-4 and Figure 4-5 give more insight about storage utilisation in the system for the
deterministic and stochastic frameworks, respectively. We may directly observe that the
battery and demineralised water storages are filled up during the day to utilise in the night
times. Hence all controllers have made smart decisions about utilising energy for storage
purposes when there is ’free’ solar energy available. Furthermore, some constraint violations
occur, however these are anticipated for by the conservative lower bounds. What is also
directly visible from these figures is that the amount of hydrogen in the storage is never at
full capacity. Therefore, one may suggest reducing the total capacity of the hydrogen storage
to limit expenses.
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HMPC HiMPC - Linear HiMPC - HeuristicControl Strategy PMPC PMPC PMPC
Yearly Revenue in e 2.49 · 105 3.00 · 105 3.44 · 105

(theoretical potential) (164.17%) (218.27%) (264.95%)
Emission Savings in tonnes 4.25 · 102 6.32 · 102 8.50 · 102

Heat Storage in MWh 0.325 0.613 0.612

Table 4-4: Comparison of PMPC control to assess the theoretical potential of each controller.

Table 4-4 shows the results for the same simulation set up for PMPC when full knowledge
of disturbances are available. These results give us an insight into the theoretical potential
of the control schemes that are designed. Again the HiMPC - Heuristic controller is the best
performing based on economic cost and emission savings. However, when we compare the
PMPC and CEMPC counterparts of the HiMPC - Heuristic controller, we conclude that this
control scheme suffers most from uncertainties regarding the economic objective.
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Figure 4-2: Microgrid energy flows, utilised energy and battery storage dynamics for several days
in the summer for controllers in the deterministic framework
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Figure 4-3: Microgrid energy flows, utilised energy and battery storage dynamics for several days
in the summer for controllers in the stochastic framework
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Figure 4-4: Storage utilisation comparison for the deterministic MPC framework.
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Figure 4-5: Storage utilisation comparison for the stochastic MPC framework.
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Chapter 5

Conclusions and Recommendations

5-1 Summary

The idea behind the Power-to-X system comes from the intermittency of RES and the discrep-
ancy between the generation and demand of energy carriers within a system. The physical
system of Power-to-X setup is generally a microgrid extended with the availability of multiple
energy carriers, resulting in a Multi-Energy System (MES). The Power-to-X principle is to
utilise the excess of generated electrical energy at a particular time into another energy car-
rier, i.e. hydrogen (Power to Gas) or heat (Power to Heat). Therefore such a system provides
load flexibility and synergy effects between multiple energy carriers. Furthermore, temporal
discrepancies can be solved since energy carriers such as heat or gasses may be stored for long
periods quite efficiently in contrast to electrical energy.

The Power-to-X system concept studied in this thesis consists of electrical energy, thermal
energy, hydrogen for mobility and water. The goal of this research was to investigate the
economic viability of this system based on a case study. This case study was supported by
simulation with historical data from the Netherlands. The system under consideration allows
for electricity and hydrogen imports and exports. Moreover, all energy carriers can be stored
and utilised within short periods, increasing flexibility. Though, thermal energy may only
be stored for larger periods of time in the seasonal storage, the Aquifer Thermal Energy
Storage (ATES). The dynamics of the storage elements were modelled and concatenated into
an overall Mixed Logical Dynamical (MLD) model, capturing both continuous and binary
states and inputs. This modelling decision was necessary to capture ’operating modes’ of the
storage elements, for instance charging or discharging of the battery energy storage system
(BESS).

The Power-to-X system’s energy flow decisions are made by the Energy Management System
(EMS). The EMS decides the amount of energy to or from storage elements, importing
and exporting decisions, generator deployment, etc. The MPC framework was chosen for
serving the role of the EMS of the Power-to-X system. First, decisions about the forecast of
exogenous disturbances were made. After some analysis, appropriate persistence models for
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each of the exogenous disturbance acting of the system were formulated. The first approach
to deal with the temporal discrepancy within the system was the development of a Heuristic
Model Predictive Control (HMPC) scheme. This controller incorporated heuristics in the
form of a terminal objective function. This objective serves the purpose of incorporating the
economic value of heat when used some months ahead. Another approach to solving the energy
management problem of the case study was by some temporal decomposed optimisation
formulation. This solution took the form of a two-layered Hierarchical Model Predictive
Control (HiMPC) scheme. Where the lower-layer controller dealt with the ’regular’ hourly
EMS tasks, and the upper-layer was an anticipatory control problem for the long-term heat
storage. The upper-layer’s task was to sent computed ’optimal’ references to the lower-layer
to track.

The illustrative case study performed in this thesis was based on historical data from 2013.
The proposed controllers were assessed within the deterministic and stochastic frameworks
based on performance indices. The benchmark values for these performance indices were
accessed from an Rule-Based Controller (RBC). These controllers were the HMPC controller
and two variants of the HiMPC controller, a linear interpolation and a heuristic variant.
The latter makes use of proportionally dividing the reference by the uncertain solar power
availability or heat demand. The economically best performing controller was the HiMPC -
Heuristic scheme implemented within the deterministic certainty-equivalence framework.

5-2 Conclusions

The illustrative case study for the conceptual Power-to-X system has led to some insights
about its suitability for the Dutch energy-transition scenario. For the Power-to-X concept
to fully exploit its fundamental principles, surplus energy had to be available in the grid.
Therefore the first conclusion of the simulation is that there was enough surplus to fully
employ the Power-to-X principles, based on 2013 historical data. What is also shown is
that the excess was too significant, meaning that there was still a large amount of electricity
export to the utility grid. This phenomenon only occurred when the BESS was at its full
capacity. Therefore one may also consider increasing the BESS capacity or introducing a
second electricity storage unit. Furthermore, it can be stated that the Power-to-X system
brings a lot of flexibility in the microgrid since electricity was always utilised in any form
of conversion, leading to more flexibility and less curtailment. These insights result to the
second conclusion that the implementation of PV technology is highly beneficial for the Dutch
scenario.

The case study also served to assess the economic viability of the presented Power-to-X
system. The simulations of the proposed MPC schemes as EMS of the system, answer this
question. Indeed, the Power-to-X system is deemed economically viable, at best, the system
is approximated to have a payback time of 11.1 years. This result was achieved by the
HiMPC - Heuristic control scheme in the deterministic framework. What has to be noted is
that the deterministic framework yields better results, with the downside that the aggressive
decisions result in more constraint violations of the grid capacity. What is significant to note
is that the grid capacity for importing was never exceeded. Hence no adverse penalties on
grid capacity violation were imposed on the controllers. What is important to note is that
the more ’aggressive’ deterministic controller may gather significant economical penalties in
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a slightly different Power-to-X system setup. Moreover, we can state that the Power-to-X
system leads to very compelling carbon dioxide emission savings, even when it is not directly
optimised in the EMS’ decisions.

The optimal control problem of the EMS is highly influenced by uncertainties in the forecast of
exogenous disturbances. This is seen in the results when prescient MPC (PMPC) is compared
to the approaches including uncertainties. For the best controller, the HiMPC - Heuristic,
there is still as much as 55% to improve in yearly revenue, meaning it is highly susceptible
to forecast errors. Therefore it is recommended to improve forecasting based on techniques
presented in Section 2-3 or to resort to probabilistic forecast methods.

5-3 Future Work

This section lists the recommendations for future work.

1. In Figure 2-1 the first conceptual design of the Power-to-X system in the considered
case study was illustrated. What is seen, but not implemented in the case study are
the electrical demands and photovoltaic (PV) generation of the residential area. This is
done intentionally because there are no tractable laws yet in the Netherlands to resupply
electricity to a neighbourhood originating from a BESS, (partly) filled with electricity
of that neighbourhood. Therefore to fully employ Power-to-X strategies and principles,
new case studies may prove valuable when those laws exist.

2. An Aquifer Thermal Energy Storage (ATES) model was presented based on energy only
and then extended to a Mixed Logical Dynamical (MLD) district heating model. Real
measurements, or simulations did not validate this model. Furthermore, the application
of MODFLOW, a simulation tool for ATES systems is recommended as future work.

3. The objective of the EMS in this thesis’ case study was an economic one. This was done
by explicitly minimising the operational expenses of the system. The resulting problems
were a unit commitment problem and a dynamic energy dispatch problem. However,
the same goal could also be attained or improved by implementing demand response
techniques. This enables flexibility in the energy loads, resulting in a more significant
decision space for the controllers.

4. The presented HiMPC schemes may be improved. A suggestion would be the imple-
mentation of event-driven updates of the upper-layer optimisation or faster update rates
for this layer. These solutions would result in a more frequently updated reference layer
for the lower-layers to track.
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Appendix A

Detailed Model Derivation

A-1 Battery Energy Storage System (BESS) Dynamics

The Mixed Logical Dynamical (MLD) system matrices of the dynamic battery energy storage
system (BESS) model (2-7a) are given by:

Eb1 =
[
Pmax

b −(Pmax
b + ε) Pmax

b Pmax
b −Pmax

b −Pmax
b

]T
,

Eb2 =
[
0 0 1 −1 1 −1

]T
,

Eb3 =
[
1 −1 1 −1 0 0

]T
,

Eb4 =
[
Pmax

b −ε Pmax
b Pmax

b 0 0
]T
,

where Pmax
b is the maximum value of BESS power Pb and ε denotes the machine precision.

A-2 Heat System Model Derivation

The district heating system consists of a heat pump for thermal energy generation and an
Aquifer Thermal Energy Storage (ATES) for long-term thermal energy storage. The system’s
goal is to ensure the Power-to-X system’s heating demands. The district heating system
model was based on the assumptions of constant ATES well temperatures and constant am-
bient temperature. Hence based on these three temperatures, there are three constant power
coefficients, αh, αc and αamb = 0. Consequently, total power coefficient α could take the val-
ues of α1 = αh + αc, α2 = αc, α3 = αh based on the ATES well states and ATES pump flow
direction. These different operating modes were introduced by piecewise affine (PWA) system
(2-16). We must note that we do not have to incorporate these different power coefficients
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into the ATES system dynamics (2-11), because the ATES states will be reset to zero each
time the state reaches negative values. First let us define the vector of auxiliary variables:

za(k) :=

α1 0 0
0 α2 0
0 0 α3

 δa(k)ua(k), (A-1)

where za ∈ R3 contains the auxiliary variables and δa ∈ R3 denotes the vector of binary
variables. Furthermore, resorting to HYSDEL [40], the auxiliary binary vector ba ∈ R4 is
introduced to incorporate the logic. Now the MLD system model of the district heating
system is given by:

xa(k + 1) = Aa(k)xa(k) +Ba(k)ua(k)τ, (A-2)
Qhp(k) = Daza(k) +Qd(k), (A-3)
Ea1xa(k) +Ea2ua(k)τ +Ea3za(k) +Ea4δa(k) +Ea5ba(k) ≤ Eaff, (A-4)

where, xa(k) =
[
Sh(k) Sc(k)

]T
∈ R2 and ua(k) ∈ R are the state vector and input, respec-

tively. Let us first introduce the notation of the zero matrix with n columns and m rows 0n,m
as a matrix whose entities are zero. Now, the MLD system matrices are:

Da =
[
1 1 1

]
, Ea1 =

[
01,8 1 −1 −1 1 01,24
01,8 −1 1 1 −1 01,24

]T

,

Ea2 =
[
01,12 1 −1 −1 1 01,8 α1 −α1 0 0

α2 −α2 0 0 α3 −α3
]T
,

Ea3 =

01,2 −1 1 01,20 −1 1 −1 1 01,8
01,4 −1 1 01,22 −1 1 −1 1 01,4
01,6 −1 1 01,25 0 −1 1 −1 1

T

Ea4 =

 −1 1 01,14 −1 1 01,6 umax
a (α1 + α2)

01,18 −1 1 1 01,7 umax
a (α2 + α3) −umin

a (α2 + α3)
01,21 −1 1 1 01,6 0 0

−umin
a (α1 + α2) umin

a (α1 + α2) −umax
a (α1 + α2) 01,8

umax
a (α2 + α3) −umin

a (α2 + α3) 01,3 0
umin
a (α1 + α3) −umax

a (α1 + α3) umin
a (α1 + α3) −umax

a (α1 + α3)

T

Ea5 =


01,8 −xmax

a + ε xmin
a − ε 01,6 1 −1 01,18

01,10 xmin
a − ε xmax

a + ε 01,6 1 −1 01,16
01,12 umin

a − ε umax
a + ε 1 0 −1 01,19

01,14 umin
a − ε umax

a + ε 0 0 0 01,19


T

,

Eaff =
[
0 1 −umin

a (α1 + α2) umax
a (α1 + α2) −umin

a (α2 + α3) umax
a (α2 + α3)

−umin
a (α1 + α3) umax

a (α1 + α3) −ε −xmin
a −ε xmax

a −ε umax
a −ε umax

a

0 0 1 0 0 1 0 0 umax
a (α1 + α2)

−umin
a (α1 + α2) 0 0 umax

a (α1 + α3) umin
a (α1 + α3) 0 0

]T
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A-3 Overall System Matrices

The system matrices of the overall system MLD model (2-30) are given by:

A =


ηb1 0 0 0
0 Aa 0 0
0 0 1 0
0 0 0 1

 , B1 =


ηdch − ηdch

COP(k) ηdchηel,dw
ηdch
ηhy,el

0 0
02,1 02,1 02,1 02,1 02,1 Ba

0 0 0 1 1 0
0 0 0 ηdw,hy 0 1

 ,

B2 =


−(ηdch − ηch) 01,3

02,1 02,3
0 01,3
0 01,3

 , B3 =


1 0 0 0 0

02,1 02,1 02,1 02,1 02,1
0 0 0 −1 0
0 0 0 0 −1

 ,
E1 =

[
06,1 06,2 06,1 06,1
036,1 Ea1 036,1 036,1

]
,E2 =

[
06,1 06,2 06,1 06,1 06,1 06,1
036,1 Ea2 036,1 036,1 036,1 036,1

]

E3 =
[
Eb1 06,3 06,4
036,1 Ea4 Ea5

]
,E4 =

[
Eb2 06,3
036,1 Ea3

]

d =
[
Eb4
Eaff

]
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Appendix B

Rule-Based Control Strategy

The Rule-Based Controller (RBC) algorithm is given on the next page.
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Algorithm 2: Rule-Based Control
Hydrogen:
if xel(k) < Hmax

d then
Hel(k) = Hmax

el
else if xel(k) +Hmax

el < Hmax
d then

Hel(k) = Hmax
el

Htrade(k) = Hmax
trade

else
Hel(k) = 0
Htrade(k) = 0

end
Demineralised Water:
if xdw(k)− ηdw,elHel(k) < Fmax

d then
Fro(k) = Fmax

ro
else

Fro = 0
end
District Heating System:
if Epv(k)− Pel(k)− Pro(k) > Pmax

hp then
Php(k) = Pmax

hp
else

Php(k) = Epv(k)− Pel(k)− Pro(k)
end
Microgrid:
if Epv(k)− Pel(k)− Pro(k)− Php(k) > Pmax

b then
if xb(k) + Pmax

b > xmax
b then

Pb(k) = (xmax
b − xb(k))

Pgrid(k) = Epv(k)− Pel(k)− Pro(k)− Php(k)− Pb(k)
else

Pb(k) = Epv(k)− Pel(k)− Pro(k)− Php(k)
end

else
if xb(k) + Epv(k)− Pel(k)− Pro(k)− Php(k) > xmax

b then
Pb(k) = (xmax

b − xb(k))
Pgrid(k) = Epv(k)− Pel(k)− Pro(k)− Php(k)− Pb(k)

else
Pb(k) = Epv(k)− Pel(k)− Pro(k)− Php(k)

end
end
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Glossary

List of Acronyms

ATES Aquifer Thermal Energy Storage

BESS battery energy storage system

COP Coefficient of Performance

CEMPC certainty-equivalent MPC

EMS Energy Management System

ESEP exportable surplus electricity production

HiMPC Hierarchical Model Predictive Control

HMPC Heuristic Model Predictive Control

LC linear complementarity

LL-MPC lower-layer MPC

MES Multi-Energy System

MILP Mixed Integer Linear Programming

MIQP Mixed Integer Quadratic Programming

MLD Mixed Logical Dynamical

MPC Model Predictive Control

PCC Point of Common Coupling

PMPC prescient MPC

PV photovoltaic

PWA piecewise affine
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RBC Rule-Based Controller

RES Renewable Energy Source

SEP surplus electricity production

SMPC stochastic MPC

SoC state of charge

UL-MPC upper-layer MPC
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List of Symbols

T Transpose of a vector
h Variables related to the Heuristic MPC optimal control problem
l Variables related to the Hierarchical MPC’s lower-layer optimal control problem
max Maximum value of a variable
min Minimum value of a variable
u Variables related to the Hierarchical MPC’s upper-layer optimal control problem

α Power coefficient of water
δ Binary input
η Efficiency
γ Persistence model lag
κ Heuristic MPC tuning variable denoting the number of months ahead when heat

is going to be used
λ Heuristic MPC tuning variable representing the greediness of heat storage de-

pletion
R Set of real numbers
U Set of feasible inputs
W Set containing disturbance vector
X Set of feasible states
Z Set of integer numbers
Z≥a Set of integer numbers greater than or equal to a ∈ R
ω Disturbance
ψ Heuristic MPC tuning variable for determining the start of heat production
ρ Slack variable
τ Sampling time
COP Coefficient of Performance, the efficiency of a heat pump
C Cost of interaction with an external party
E Electrical Energy
E[·] Expectation operator
F Volume of demineralised water
H Amount of hydrogen
J MPC cost function over the prediction horizon
l Stage cost function
N Prediction Horizon
Ns Number of scenario realisations
P Power
P [·] Probability operator
Q Thermal Energy
u Input
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v Decision variable
Vf Terminal cost function
x State
z Auxiliary variable introduced by MLD modelling framework
[a, b] Interval {y ∈ R : a ≤ y ≤ b} for constants a, b ∈ R
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