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Abstract 
This thesis studies the design of near-bed structures, more specifically horizontal bed 

protections and pipeline covers. The present design methods are all based on the 

approach developed by Shields (1936), which has three major shortcomings: it is not 

directly applicable for non-uniform flow (waves and accelerations/decelerations around 

structures), it assumes a threshold of motion and is therefore not suitable for damage-

based design, and it is not based on a complete understanding of the physical processes 

that destabilise a stone. In literature, many suggestions to overcome these issues have 

been put forward, especially in the last decade or so. This thesis reviews a selection of 

these suggestions, and contains a quantitative analysis of the most promising among 

them against a dataset of scale model tests. The main research goal is to find a design 

formula, expressing the damage to a near-bed structure as a function of the stability of 

the individual stones, that can be used for a damage-based design of horizontal bed 

protections and pipeline covers under a wide range of flow situations (including a 

combination of current and waves). A secondary goal is to test some elements of the 

present ‘critical stability’ design approach against the same datasets and give practical 

recommendations on their use. 

The damage to horizontal bed protections is likely to be related to the transport of the 

stones that make up the protection; this transport is caused by the current and enhanced 

by the presence of the waves. Unfortunately nearly all existing (morphological) transport 

formulas have been developed to predict transport rates of sand, not stones. The 

transport of stones is essentially different: occasional rolling or sliding along the bed as 

opposed to bulk transport in suspension. Only the formula by Paintal (1969) was found 

to be suitable to describe the transport of stones, but it has been developed for currents 

only. This formula uses the bed shear stress as the governing parameter, so in order to 

make it work for a combination of waves and a current the combined bed shear stress 

must be calculated. This is not straightforward as the current and the waves influence 

each other in a nonlinear way and the resulting bed shear stress can only be calculated 
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using (sometimes rather complex) wave-current interaction models. Several of these 

models are described and tested in this thesis. The conclusion is that the Paintal formula 

can also be used in the case of a combination of waves and a current, provided that the 

bed shear stress is replaced by the combined shear stress using the wave-current 

interaction model by Fredsøe (1984). The final step in the design process, the translation 

from transport to the actual damage to the structure could not be made in this thesis 

because the dataset that was used did not contain this information. This leaves room for 

further research. 

For pipeline covers no relation between transport and damage could be found at all. The 

conclusion is that an alternative design approach must be followed, in which the damage 

to the structure is expressed as a dimensionless erosion area and directly linked to the 

hydraulic boundary conditions. Several design formulas of this type have been forward in 

literature, but there is little consensus on which (structural and hydraulic) parameters 

must be included in such a formula and the overall goodness-of-fit of these formulas on 

a dataset of scale model tests is low. In this thesis the individual (sometimes conflicting) 

elements of these formulas are all tested against the dataset using a regression 

analysis; eventually a new design formula is presented that shows less scatter. This 

formula can be used for the preliminary design of pipeline covers for waves only, or for 

waves combined with a relatively weak current. In addition, this thesis presents methods 

to relate the thus obtained erosion area to practical measures of damage to the 

structure, both qualitatively (in terms of a description of the expected damage) and 

quantitatively (in terms of the expected reduction in crest height of the structure). 

For the critical stability approach it was found that the recommendations in CIRIA/CUR 

(1991) could best be followed, also for the combination of waves and a current, and 

always with a critical Shields parameter of cr = 0.03. Other methods, like the method 

used by the software programme BPP, are not recommended. For pipeline covers it was 

found that the 1%-exceedance wave height in an irregular wave field (H1%) must be used 

in these calculations, in combination with the peak wave period and the (enhanced) 

velocity at the crest of the structure. Other combinations were found to underestimate 

the resulting shear stress. 

Finally, two recent alternatives to the shear-stress based Shields approach are 

discussed: an approach based on velocities and accelerations (Morison approach) and 

an approach based on turbulence characteristics of the flow. Although these methods 

provide a better insight in the actual physical processes involved and especially the 

second method is considered very promising for the future, they are not far enough 

developed (yet) to be applicable for practical design purposes. 
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Readers’ guide 
This study breaks down into two parts. The first part (chapters 1 – 4) takes the form of a 

literature review. It describes the present approach to the design of granular near-bed 

structures, the problems and shortcomings associated with this approach and the 

various solutions to these shortcomings that have been put forward in literature; it ends 

with a qualitative review of these solutions and the identification of the most promising 

concepts among them. The second part (chapters 5 – 8) is aimed at further quantifying 

these concepts and see whether they can be used in a practical design formula for near-

bed structures; this part takes the form of a data analysis. It ends with recommendations 

on which parameters should be used in a design formula and a few suggestions on what 

such a formula should look like. 

This report was written for an intended audience of design engineers. Apart from 

providing practical guidance on which parameters should be used in the design of near-

bed structures it is also serves as a reference work for those engineers interested in a 

general overview of the latest (scientific) developments in this field and the physical 

backgrounds to most of the methods that are discussed. This latter aspect explains most 

of the bulkiness of the report: a lot of background information is provided in a reasonable 

amount of detail. 

Those readers who are only interested in the practical guidance aspect of this report 

should not be put off by this: they are advised to read only the chapters 1 (introduction), 

4 (review), 7 (conclusions) and 8 (recommendations). These chapters can be seen as a 

‘quick tour’ through the report; they contain the main story and were written in such a 

style that they can be read without loss of continuity. 

Readers who are interested in the broader picture and the physical backgrounds are 

encouraged to read the other chapters as well: especially chapter 3, which contains the 

main part of the literature review, and chapter 6, which contains the main part of the 

quantitative analysis. Reading this last chapter will not only provide information on the 
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concepts that work well in a design formula, but also (perhaps equally importantly) on 

concepts that were tested and were found not to work well.  

Finally, chapter 2 describes the present (critical stability) design method for near-bed 

structures and forms the starting point for most of the discussions in this report. It is 

mainly intended for those readers who are not familiar with this method. 

The outline of this thesis is illustrated in the flow chart below. The chapters that make up 

the ‘quick tour’ are marked with an asterisk (*). 

Chapter 1
INTRODUCTION

General research questions

Chapter 2
PRESENT DESIGN PRACTICE

Current only
Waves only

Current and waves

Chapter 3
LITERATURE SEARCH

Stability parameters (shear stress,
Morison and turbulence)

Damage parameters
Design methods

Chapter 5
DATA SETS

Flat bed protections
Pipeline covers

Chapter 4
REVIEW

Summary and discussion of topics
from chapter 3

Selection of most promising
concepts

Detailed research question

Chapter 6
QUANTITATIVE ANALYSIS

Test of most promising concepts
against datasets

Goodness-of-fit analysis
Design formulas

Chapter 7
CONCLUSIONS

Chapter 8
RECOMMENDATIONS

*

*

*

* 
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defined as 
L

k
2

 

rad/m 

ka apparent roughness height m 
ks physical roughness height m 
lm mixing length m 
1:m0 side slope of a pipeline cover - 
1:md side slope of a pipeline cover after damage - 
M50 mean stone weight (mass) kg 
N number of waves  - 
Ns Hudson number; stability parameter based on wave height,  

defined as 
50n

s
s d

H
N

 

- 

qs volume transport through a cross section per unit of time and 
width 

m3/ms or 
m2/s 

r turbulence intensity 

defined as 
u

u

u

u
r

' 

- 

Re flow Reynolds number, 

defined as 
hu

Re 

- 

Re

 

particle Reynolds number, 

defined as 
du

Re 

- 

Rew wave Reynolds number, 

defined as 00ˆ
Re

au
w

 

- 
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S damage number (dimensionless erosion area) 

defined as 
2
50n

e

d

A
S

 

- 

S* damage number per unit crest width 

defined as 
50

*

nc

e

dB

A
S

 

- 

Sa Saers number, 

defined as 
0

0

â

mz
Sa c

 

- 

t time s 
T wave period s 
û0 amplitude of horizontal near-bed orbital velocity m/s 
u flow velocity m/s 
u or uda depth-averaged flow velocity 

defined as 
h

z

dzzu
h

u
0

)(
1 

m/s 

u

 

shear velocity,  

defined as 0u 

m/s 

X relative current strength 

defined as 
wc

cX
ˆ

 

- 

Y dimensionless average combined bed shear stress 

defined as 
wc

avwcY
ˆ

,

 

- 

z vertical coordinate, distance from bottom m 
z0 integration constant, height above bottom where u = 0 in 

logarithmic velocity profile 
m 

zc crest height of a pipeline cover  m 
zd crest height of a pipeline cover after damage m 
Z dimensionless maximum combined bed shear stress 

defined as 
wc

wcZ
ˆ

max,

 

- 

Z dimensionless boundary layer parameter  - 

 

slope angle rad or o 

 

boundary layer thickness m 
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specific density,  

defined as 
w

ws

 

- 

 

dissipation rate of turbulent kinetic energy (per unit of mass) m2/s3 or 
W/kg 

 

stability parameter based on wave orbital velocity,  

defined as 
50

2
0ˆ

ngd

u

 

- 

 

stability parameter based on velocity and acceleration (Morison), 

 

defined as 
50

50
2

2

1

n

nMB

dg

adCuC

 

- 

 

Von Kármán constant, 

 

˜ 0.4 - 

 

relative current strength, 

defined as 
w

c

ˆ

 

- 

 

kinematic viscosity of the fluid (water) m/s2 

t turbulence viscosity (eddy viscosity) of the fluid (water) m/s2 

 

or w density of the fluid (water) kg/m3 

s density of stone material kg/m3 

 

shear stress Pa 

0 bed shear stress  

 

angle between direction of the current and propagation direction 
of the waves 

rad or o 

q dimensionless transport parameter,  

defined as 
3
50n

s
q

gd

q

 

- 

Hall dimensionless transport parameter (after Hallermeijer 1982) 

defined as 
2
50n

s
Hall d

q

  

E dimensionless entrainment parameter,  

defined as 
50n

E
gd

E

 

- 

En dimensionless number entrainment parameter,  

defined as 
g

d
dE n

nnEn
502

50 

- 
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Shields parameter (stability parameter based on bed shear 
stress), 

defined as 
50

2

50 nns

b

gd

u

gd

 

- 

t stability parameter based on turbulence parameters of the flow  - 

 

angular wave frequency, 

defined as 
T

2

 

s-1 or Hz 

 

Frequently used subscripts:  

For bed shear stress: 
c for currents alone 
w for waves alone 
wc waves and currents combined  
av average (of the absolute values) 
avx average (of the projection) in the current direction 
T averaged over full wave period 
1/2T averaged over half wave period 
max maximum value (in full wave period) 

 

In wave parameters 
p based on peak period 
m based on mean period 

 

Other subscripts 
cr critical value 
hc based on enhanced velocity at crest (fig 3.22) 
c based on undisturbed velocity at crest level (fig 3.22) 
0 based on undisturbed velocity at bed (fig 3.22) 
1% based on H1% (and Tp) 

 



        

page xx  

Coordinate system  

In this thesis a coordinate system is used in which  

x = the horizontal coordinate in the direction of the flow 
y = the horizontal coordinate perpendicular to the flow 
z = the vertical coordinate, positive upwards     

Other notations  

f(pars) an unknown function of the parameters pars  

h
x spatial average of x over distance h 

x

 

amplitude of an oscillatory variable x 
x

 

ensemble averaged (Reynolds averaged) value of x 
'x (turbulent) fluctuation of x 

bottom

 

z = 0 

free surface 

 

z = h 

flow

  

O

 

x

 

y

 

z
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1 Introduction  

1.1 Design of granular near-bed structures: three main problems 

Granular near-bed structures are among the more common hydraulic structures. 

Examples include bottom protections to prevent scour near bridge piers, offshore 

structures, weirs and sluices and at the toe of bank protections or breakwaters, but also 

stabilisation/protection covers on offshore pipelines. 

The cornerstone of the theory behind the design of these structures was laid by Izbash 

(1930, cf Schiereck 2001) and, most notably, Shields (1936), who linked the stability of a 

stone in the near-bed structure to the shear stress exerted on the bottom by a flow. Even 

today, some 70 years later, the design of near-bed structures is still largely based on 

Shields’s work, despite some apparent shortcomings.  

The three most prominent of these shortcomings are: 

 

Shields based his results on experiments with uniform (gravity driven) flows. This 

means that his results are not, or not directly, applicable to non-uniform flow 

situations such as waves and accelerating/decelerating flow around structures. 

Unfortunately these are quite common situations in hydraulic engineering 

practice (not in the least place since the existence of such structures is usually 

the very reason that a near-bed structure is designed). 

 

Shields postulated that for values of his stability parameter below a certain critical 

value (the so-called 'threshold of motion') the stones in the bed would not move 

at all. In reality stones do not exhibit this kind of behaviour; stones have been 

shown to move at any value of the Shields parameter, also below the 'threshold 

of motion'. The mobility of the stones does increase with higher values of the 

Shields parameter, indicating that this is really a mobility parameter rather than a 

stability parameter.  
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In practice, this concept has given rise to a rather 'black and white' design 

approach: a threshold of motion is selected and the size and weight of the stones 

are chosen such that the Shields parameter does not exceed the critical value. 

This means that alternative, "dynamically stable" design approaches (in which 

some movement of stones is allowed in combination with an appropriate 

maintenance programme) cannot be adopted because the true transport of the 

bed protection material cannot be predicted and thus the rate of deterioration and 

the required intensity of the maintenance programme cannot be assessed. 

 

Shields chose the forces that are proportional to the bottom shear stress as the 

mechanism that determines stone stability (these include shear, drag and lift 

forces on the stones). This is an arbitrary choice that left other possible 

mechanisms such as inertia forces and turbulent flow structures disregarded. 

There are indications that these mechanisms do play an important role in 

destabilising stones in a bed protection, which would suggest that the Shields 

theory is not based on a complete physical understanding of the destabilising 

mechanisms. 

In the present design practice some of these shortcomings have been circumvented: 

influence factors have been found to account for the effects of non-uniform flow around 

structures, some researchers have proposed ways to include the effects of waves and 

attempts have been made to find empirical relationships between the Shields parameter 

and bed transport.  

Still, all this has not lead to a satisfactory design practice. First of all, the issue of limited 

physical understanding of the actual destabilising mechanisms remains unsolved. 

Secondly, the use of empirical factors inevitably leads to arbitrary choices and a wide 

range of possible design outcomes for a given flow situation. There appears to be no 

real consensus within the engineering community as to which factors to use in which 

situation. Thirdly, the stability of bed material under a combination of current and waves 

is not completely understood yet, whereas in hydraulic engineering practice this one of 

the more common situations. Finally, the few mobility-transport equations that exist (eg 

Paintal) have not attracted a large following, mainly because of their apparent lack of 

empirical evidence, limited applicability (flow only, no waves) and potentially large 

inaccuracies (in the Paintal formula the stability parameter 

 

appears to the 16th power, 

so a small error in estimating 

 

leads to a large error in the prediction of the bed-load 

transport).  

For these reasons, it can be stated that the engineering community is in search of: 

"A design formula, based on the true physics of the destabilising mechanisms, 

that can be used for the preliminary design of near-bed structures under a wide 
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range of flow situations, including waves; the formula should enable the 

assessment of the damage to the structure under design conditions as well as its 

deterioration over time." 

Is such an all-encompassing design formula available at this moment? The answer is 

almost certainly ‘no’. But if that is true, what are the latest theoretical ideas concerning 

stone stability? Can they be used and combined into a new design method? And to what 

extent would such a method bring us closer to this ‘ultimate’ goal? This is the main 

question this thesis seeks to address. 

1.2 Positioning of the subject and limitations 

In a broad sense, this thesis is about transport of granular bed material, and in that 

aspect it follows in a long legacy of theses and publications on that subject. The majority 

of these publications, however, were written from a morphological point of view and 

consequently focussed on sand transport. This thesis is about coarse-grained material 

(rock), which sets it apart from most of the other publications. This focus has a few 

important implications, including: 

 

a larger grain size leads to a larger bottom roughness, which is an important 

scaling parameter for the flow in the bottom boundary layer. This could mean that 

some of the assumptions on which theoretical flow models are based are no 

longer valid when they are scaled from sand (for which they were originally 

derived) to rock.  

 

sand is transported as bulk transport, partly as bed-load and partly in 

suspension; consequently sand transport formulas only predict large-scale (bulk) 

properties. In contrast, the transport of rock is characterised by low mobility and 

transport rates: there is occasional movement of a stone, rolling or sliding over 

the bed for a short distance. Design engineers are not interested in bulk 

properties: the individual movement of a single stone, or a few stones, can 

determine the functional stability of a structure. This requires a more detailed 

level of analysis.  

 

maybe even transport as such, in terms of volume of moving ‘particles’ per unit of 

time, may no longer be of primary interest. Designers of near-bed structures are 

potentially more interested in other indicators of damage to the structure (like 

pickup rates, entrainment or erosion area). Once a stone has been moved from 

its position in the bed (ie in the structure), it is of lesser importance to know 

where it will be transported. 
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The flow situations that are studied in this thesis are combinations of currents and non-

breaking waves. There are no a priori limitations to the relative strength of the current 

(so both wave dominated situations and current dominated situations will be studied) or 

to the angle between current and wave propagation.  

The term ‘near-bed structures’ as used in this thesis refers to two types of structure: bed 

protections (a layer of stones on a horizontal bed) and pipeline covers (a rubble mound, 

characterised by a certain crest height, crest width and side slope). The crest height is 

such that waves do not break over the structure. 

Other flow situations like flow after weirs or backward-facing steps, jet flow or breaking 

waves are not studied; neither are other near-bed structures such as bed protections 

around gravity-based structures or vertical piles. 

1.3 General background: design approaches 

Like any mechanical structure, the behaviour of a granular near-bed structure can be 

described in terms of a response to a certain load. For rubble mound structures it is 

more common to use the stability as a governing parameter instead of the load, where 

stability is defined as the ratio of load over strength. When mechanisms like interlocking 

are neglected, the strength of a rubble mound structure is entirely due to the weight of 

the individual stones in the structure, so stability can also be defined as the ratio of load 

over stone weight. When this definition is adopted, it would be appropriate (though not 

absolutely necessary) to express the load also on the level of an individual stone.  

The response of a rubble mound structure can be thought of in terms of a certain degree 

of damage, expressed for instance as an erosion area or a number of displaced stones. 

For the time being, the exact way of expressing both load and damage are not of 

importance yet, and we will only use the general terms. 

The relationship between load and response can be depicted graphically in a diagram, 

for instance the well-known stress-strain diagram ( -

 

diagram) for steel and concrete 

structures. Given the above considerations, the appropriate analogy for rubble mound 

structures would be a stability-damage diagram. 

In the present design practice a rather crude schematisation of the structure response is 

made. It is assumed that a certain critical stability level exists, called the threshold of 

motion, below which the stones do not move (so the response is zero). Above this 

threshold the stones are assumed to move, which is considered unacceptable. 

Designing a structure then comes down to selecting a stone size and weight such that 

this threshold of motion is not exceeded. This is an iterative process because the load 

parameters are partly influenced by the choice of stone size, too, as will be described in 
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more detail in Chapter 2. A flow chart describing this process and the corresponding 

stability-damage diagram are given in Figure 1.1 and Figure 1.3, respectively. 

As mentioned earlier, the threshold of motion concept is too crude an approximation. In 

reality, stones move at any degree of the stability parameter, also below the critical 

value, so the damage to the structure is more likely to be a smooth (and rising) function 

of stability. When this is acknowledged an alternative design approach can be adopted, 

in which an acceptable degree of damage is set and the stone size and weight are 

chosen such that this damage is not exceeded. This approach will have some 

advantages, including: 

 

when some damage is accepted a smaller stone size can be selected. This could 

result in the choice of lighter and cheaper construction equipment, leading to 

substantial construction cost savings. Although allowing for some damage will 

probably lead to larger construction dimensions (layer thickness) and therefore 

increased materials cost, this cost increase is likely to be out-weighed by the 

savings achieved by selecting different construction equipment. 

 

when the damage can be predicted to a reasonable degree of accuracy, the 

deterioration of the structure over time can be estimated and the need for 

maintenance can be assessed beforehand (ie during the design stage). With this 

knowledge the reduced construction costs for smaller stone sizes can be 

balanced against the increased maintenance costs and the design can be 

optimised in terms of total life-cycle costs. 

For a successful implementation of this design approach three things are important: the 

relation between stability and damage (the design curve) must be known, the damage 

must be predicted reasonably accurate, and the damage must be expressed in such a 

way that the need for maintenance can be easily assessed. 
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Figure 1.1 – Flow chart ‘critical stability’ design approach 



        

page 6  

This alternative design method is depicted graphically here, in a flow chart (Figure 1.2) 

and in a stability-damage diagram (Figure 1.3). As Figure 1.3 shows, when the design 

curve is known, a critical value of the stability parameter can be found by extrapolating 

the damage to zero. (This is more or less analogous to the way Shields originally found 

his ‘threshold of motion’ values).  

1.4 Research goal and outline of thesis 

With this is mind, the research goal of this thesis can be re-phrased as follows: 

To find a design curve, expressing damage to a near-bed structure as a function 

of the stability of the individual stones, that can be used for the preliminary 

design of such structures based on an ‘allowable damage’ design approach. The 

stability parameter should be expressed in such a way that it represents the true 

physics of the destabilising mechanisms and includes a wide range of flow 

situations, including waves” 
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Figure 1.2 – Flow chart ‘allowable damage’ design approach  
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Reaching this goal takes two steps. The first step is to find suitable ways to express the 

stability and damage parameters; the second step is to try and find a relationship 

between them. For this reason, this thesis breaks down into two main parts: a literature 

study (to find expressions for stability and damage) and a quantitative analysis (to find a 

design curve).  

Throughout both parts a practical engineering (designer's) point of view will be adopted. 

This is a key element in this thesis. All new theoretical ideas will be described against 

the background of the present design practice, and new concepts will be translated into 

practical terms as much as possible. 

1.4.1 First part: literature review 

The first question that needs to be answered is how the stability and damage 

parameters can be expressed. A lot of scientific research has been carried out to find 

such expressions, especially in the last decade.  

Stability parameters: some researchers have followed in Shields’s steps and have 

sought ways to calculate the bottom shear stresses caused by a combination of currents 

and waves. Others, including various MSc-students at Delft University have abandoned 

the shear-stress approach in favour of a ‘Morison-type’ approach in which fluid velocities 

and accelerations in the direct vicinity of the stone are the governing load. Recently a 

PhD thesis by Hofland (2005) introduced a third way: Hofland used state-of-the-art 

techniques to investigate the real destabilising mechanisms in a flow, found evidence for 

a large role played by turbulence structures and proposed an alternative stability 

parameter in which turbulence characteristics are used as direct input. Other 

researchers have adopted yet a different approach; they do not go into the details of the 

stability of an individual stone but have suggested formulas that predict the erosion 

profile of a near-bed structure as a whole, as a direct ‘black box’ function of the hydraulic 

load and time. These formulas do not generally apply to all near-bed structures, but are 

aimed specifically at pipeline covers. 

Damage parameters: most of the wave-current interaction research has been carried 

out to find sand transport formulas in coastal areas. For this reason, the damage is 

usually expressed in terms of transport rates. Also some of the earlier research 

specifically aimed at coarse-grained material has followed this approach. However, this 

may not be the most appropriate choice for granular bed protections, where designers 

are more interested in ‘direct’ damage indicators like entrainment or erosion area. In 

recent years some alternative entrainment/erosion parameters have been proposed. 
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Chapter 2 will briefly describe the present design practice and the underlying theoretical 

concepts. This will form the starting point for a description of various stability parameters 

and damage parameters (in Chapter 3), based on an overview of the scientific research 

that has been carried out over the years. All four types of stability parameters that were 

introduced above (wave-current bed shear stress, Morison type, turbulence-based and 

‘black box’) will be explored, and cross-links between concepts will be sought as much 

as possible. This part of the thesis will be closed with a summary and review of the most 

promising results, in Chapter 4. 

1.4.2 Second part: quantitative evaluation and conclusions 

In the second part of the thesis the most promising ideas, including the ones used in the 

present design practice, will be worked out in a more quantitative way. It will be 

investigated to what extent these ideas can really be used in the design of near-bed 

structures; in other words, for each combination of damage parameter and stability 

parameter it will be investigated how well a design curve can be fitted through data 

points expressed in these parameters. 

For this purpose datasets are needed that are flexible enough to allow both stability and 

damage parameters to be expressed in various ways, extensive enough to cover the 

wide range of flow situations (waves and current) that we are interested in and, of 

course, originating from experiments with coarse-grained material. These datasets were 

taken from literature sources and previous MSc researches at Delft University. Chapter 5 

will describe these datasets in more detail. 

The dataset will be expressed in terms of a combination of a stability parameter and a 

damage parameter. For this combination, a curve will be fitted through the data points 

(by regression methods) and the goodness-of-fit will be assessed by statistical methods. 

This is described in Chapter 6. 

The results obtained from the quantitative evaluation can be used to answer the 

research question of which way of expressing the stability and damage parameters is 

the best way for the design of granular near-bed structures: this is simply the 

combination that yields the best goodness-of-fit. If this best method yields a design curve 

that is accurate enough (ie that has a high enough goodness-of-fit), than the ‘ultimate’ 

goal has been reached and this design curve can be used for the design of near-bed 

structures. In any other case the ‘ultimate’ goal cannot be reached, but at least it can be 

quantified how far we are still away from this goal, what improvements are needed to 

bring it any nearer, and, perhaps most importantly, how well the best alternative method 

performs compared to the present design method. This is described in Chapter 7, after 

which Chapter 8 will contain some recommendations for further research. 
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2 Present design practice 

2.1 Currents (uniform flow) 

2.1.1 Theoretical backgrounds 

An important concept in the design of granular structures is the so-called threshold of 

motion, which can be defined as the load at which the stones first start to move. The first 

researcher to publish a result in these terms was Izbash (1930, cf Schiereck 2001), who 

postulated that the threshold of motion could be expressed as a critical velocity uc given 

by 

gduc 22.1 (2.1) 

in which d is the diameter of the stone [m] and 

 

= ( s - w)/ w is the specific density of 

the stone [-]. 

Stones will start to move when the critical velocity is exceeded. The disadvantage of this 

formula is that it is not clear exactly how and where the velocity should be specified. In 

general terms, uc can be thought of as a velocity “in the vicinity of the stone”.  

A more thorough investigation into the threshold of motion was conducted by Shields 

(1936). His work is still one of the cornerstones of any morphological theory, and the 

design of granular structures is still largely based on his results. Shields reasoned that 

the destabilising forces on a grain could be represented by 

22

2

1
kudaF

 

(2.2) 

where ½ uk

2 is the dynamic pressure related to a local velocity in the vicinity of the 

stone. The forces that can be represented in this way include drag, shear and lift forces, 
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so 

 

can be thought of as a combined drag/shear/lift coefficient. The constant of 

proportionality a in this formula depends, among other things, on the grain shape.  

The velocity uk is assumed to be the velocity at a level z = c·d, with c a constant of order 

1. Further assuming a logarithmic velocity profile near the bed, Shields is able to show 

that  

)(Re*1*
*

1* fu
du

fuuk

 

(2.3) 

where u
* 
= v( 0/ ) [m/s], 0 is the bed shear stress [Pa], 

 

is the dynamic viscosity [m2/s], 

Re

 

=u d/

 

is the particle Reynolds number and the (unknown) function f1 depends on the 

grain shape.  

This is a crucial step in Shields’s analysis, for it links the destabilising forces to the bed 

shear stress (which is well-defined and – albeit indirectly – measurable in experiments), 

rather than to the ill-defined, mysterious ‘velocity in the vicinity of the stone’ uk. 

In general, the drag/shear/lift coefficient 

 

will be a function of the Reynolds number of 

the flow around the grain:  

*3
*1*

22 Re
Re

f
dfu

f
du

f k

 

(2.4) 

By (2.3) and (2.4) we have shown that all unknown variables in (2.2) are functions of Re
* 

and the grain shape, so we can write: 

*4
2
*

2 RefudF

 

(2.5) 

The resistance of the grain against movement is caused by its own (under water) weight:  

3gdG s

 

(2.6) 

It is assumed that the threshold of motion is defined by F = G, so in this critical situation 

the destabilising forces are equal to the resistance. Equating (2.5) and (2.6) and writing 

0 =

 

u 2 gives 

*

2
*0 Ref
gd

u

gd
cr

s

cr

 

(2.7) 
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which is the classic Shields formula. The subscript ‘critical’ (cr) has been applied to 

denote the critical situation F = G. In Shields’s honour the left-hand side of this equation 

is usually referred to as the Shields parameter .  

Shields conducted a series of measurements in a laboratory flume to find the unknown 

function f. He presented these results in a graph, which is reprinted in Figure 2.1 in its 

original form (Shields 1936). 

The disadvantage of this original presentation is that both u

 

and d appear on both axes 

of the graph, so in practical applications, when a question like ‘what is the critical shear 

stress for a given grain size’ must be answered, iteration is necessary. This 

disadvantage can be circumvented when a dimensionless grain diameter d

 

is used: 

3/1
* gdd

 

(2.8) 

This expression was originally proposed by Van Rijn (cf Schiereck 2001). The Shields 

graph can now be re-drawn as shown in Figure 2.2 (the values for d on the top end of 

the graph are equivalent to d

 

for the ‘standard’ parameter values 

 

= 1.33*106 and s = 

2650 kg/m3)  

 

Figure 2.1 – Original presentation of Shields curve (Shields 1936) 
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An important result for the design of granular bed structures can be seen from this 

graph: for larger grain sizes, say for d > 10 mm, the Shields parameter becomes a 

constant with a value of approximately cr = 0.055.  

It may be interesting to note that in his original publication (Shields 1936) Shields never 

measured c to become constant for large values of Re , he only predicted it to become 

constant eventually (from Re

 

~ 1000), mainly because both functions f1 and f3 in (2.3) 

and (2.4) tend to become constant for large Reynolds numbers. Shields predicts cr ˜ 

0.06, but mentions explicitly that this value is obtained “nur durch eine sehr unsichere 

Extrapolation” (quote from Shields, 1936). This is also illustrated in Figure 2.1, where the 

horizontal line for large Re

 

values does not feature as prominently as in Figure 2.2.  

2.1.2 Design practice 

One way to interpret the Shields formula (2.5) is ‘for a given type of sediment, 

represented by d and , there is a certain critical bed shear stress 0c. When the acting 

bed shear stress 0 is below this critical value, the sediment will not move’.  

For design purposes the inverse reasoning is more appropriate: ‘for a given acting bed 

shear stress 0 and stone properties a stability parameter 

 

can be defined as: 

gds

0 (2.9) 

When 

 

is lower than the critical value cr the stones will not move. Therefore the design 

stone size is the smallest stone size for which 

 

= cr (being the stone size for which 

 

= 

cr)’. This means that a design formula can be formulated by re-writing (2.9) as: 

  

Figure 2.2 –Alternative presentation of Shields curve by Van Rijn (Schiereck 2001) 
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cs

d 0 (2.10) 

In uniform, gravity driven flow the bottom shear stress follows from a momentum 

balance: 

bgRi0 
(2.11) 

in which R is the hydraulic radius [m] and ib is the slope of the free surface (or the bottom 

slope, as these are equal for uniform flow). When a logarithmic velocity profile is 

assumed over the complete water depth, the Chézy relationship also holds for these 

types of flow: 

bRiCu

 

(2.12) 

in which C is the Chézy parameter and u is the depth averaged flow velocity. Combining 

(2.11) and (2.12) gives two important relationships that will be used frequently 

throughout this thesis: 

u
C

g
u*  

(2.13) 

and 

2
2

2
*0 u

C

g
u

 

(2.14) 

Combined with (2.10) this gives the well-known design formula: 

2

2

C

u
d

cr

 

(2.15) 

When a design value for cr is set, equation (2.15) can be used to calculate the required 

stone size for a structure. It should be noted that this requires an iterative process, since 

C is dependent on d, as in: 

sk

h
C

12
log18 (2.16) 
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in which ks is the bottom roughness [m] (which is proportional to d) and h is the water 

depth [m]. 

The use of the Chézy coefficient in (2.14) is common practice in design engineering. In 

some sources (eg Soulsby 1997) a theoretically more correct, but otherwise completely 

equivalent alternative is used, in which a current friction coefficient CD is formally defined 

as: 

2uCDc

 

(2.17) 

and CD can be calculated (for a logarithmic velocity profile) as: 

2

0ln1

40.0

hz
CD  

(2.18) 

With CD = g/C2 (as follows from a comparison of (2.14) and (2.17)) and z0 = ks/30 

expression 2.16 can be found again, which shows that these two methods are indeed 

equivalent. (This friction coefficient CD must not be confused with the drag coefficient CD 

introduced in paragraph 3.3; usually the intended meaning will be clear from the 

context). 

A few issues remain to be solved. First of all, Shields conducted his experiments for 

uniform grains, so he simply used the grain size d in his formula. In reality granular near-

bed structures are always built with a certain stone grading, in which smaller and larger 

stones are present. A stone grading is commonly represented by its dn50, which is defined 

as 

3
50

50
s

n

M
d

  

(2.19) 

where M50 is the median stone weight [kg], ie exactly 50% (by weight) of all the stones in 

the grading are lighter than M50. It is commonly assumed that it is justified to simply 

replace d in Shields’s formula by dn50.  

Another important issue is, of course, the value of the critical stability parameter c. 

From Shields’s experiments one could conclude that c = 0.055, but it should be noted 

that this is a matter on ongoing debate among researchers and designers. The 

‘threshold of motion’ is not a simple phenomenon that can be objectively and univocally 

observed, like stones all staying motionless on the bottom at one point, and moving all of 
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a sudden when the load is increased. In reality, some stones will always move, even for 

Shields parameters below the threshold of motion. Defining the threshold of motion is 

really a matter of – arbitrarily - distinguishing between such notions as ‘some movement’, 

‘frequent movement’, ‘continuous movement’ and so on, for which various researchers 

all have their own definitions. It is commonly accepted that the original Shields criterion 

relates to a situation in which quite a lot of stones are actually moving, so for design 

purposes it is considered a safe choice to use a lower c value. Both Schiereck (2001) 

and CIRIA/CUR (1995) recommend c = 0.03. 

The fact that the threshold of motion is not a clear, well-defined boundary is further 

illustrated by Shields’s original presentation (Figure 1), which shows the critical stability 

parameter as a hatched area rather than a sharp line. In most modern representations 

(eg Figure 2, or CIRIA/CUR 1991 p 297) this feature has been dropped, which could 

potentially be misleading. 

The bottom roughness to be used in design is another much debated issue. Schiereck 

(2001) recommends ks = 2·dn50. Other sources may give different values, eg CIRIA/CUR 

(1995) gives ks = (1 to 3)·d90. Lammers (1997) found much higher values based on model 

tests and proposes ks = 6·dn50. In morphological research (eg Nielsen 1992) ks = 2.5·dn50 is 

a common choice, but even more exotic values like ks = 5.1·d84 have been proposed.  

The value of ks is not only related to the grain size but also to macroscopic bed forms like 

ripples or bumps; in practice these ‘bed forms’ are the result of inaccuracies during 

construction. These inaccuracies increase the bed roughness and thus the shear stress, 

leading to lower stability of the stones. However, Lammers (1997) concludes that for 

design purposes this is not a relevant issue. His model tests showed that the higher 

shear stress due to the increased bed roughness will move some stones, which will find 

a more favourable position elsewhere on the bed. This process, called ‘ripening’, has the 

tendency to flatten out the bed and increase its strength (or, perhaps more correctly 

formulated, decrease its initial weakness). Only the situation after ripening is important 

and the ‘flat bed’ values for ks can be used in design. 

Schiereck (2001) remarks – not unimportantly - that the choice of ks and c are related. 

He states that the result of a design process “is not very sensitive to the choice as long 

as reasonable combination of the two values is used” (quote from Schiereck, 2001). He 

recommends to use the combination ks =2·dn50 and cr = 0.03.  

2.1.3 Influence factors 

Strictly speaking, the design procedure described above is only valid for the conditions 
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for which Shields conducted his tests. In practice many situations can be found for which 

the conditions are different, including: 

 
non-developed flow, ie the assumption that the logarithmic velocity profile holds 

for the entire water depth is not valid – this may be the case in tidal flow; 

 

non-uniform flow, ie the flow accelerates or decelerates, for instance because of 

the presence of structures;  

 

there are increased turbulence levels to be expected. for instance in flow behind 

a backward facing step or flow caused by propeller jets; 

 

the bed is not flat but sloping. 

This paragraph briefly discusses the ways in which designers most commonly account 

for these deviating circumstances. 

Non-developed flow: In open channel flow with limited water depths, like flow in rivers 

and canals, the flow is usually fully developed. In marine applications, where the 

dominant flow is tidal flow, the situation may be different. Soulsby (1997) gives the 

following empirical velocity distribution for tides, based on measurements in the shallow 

seas around the British Isles: 

u
h

z
zu

7
1

32.0
)(

 

for 0 < z < h/2 (2.20) 

uzu 07.1)(

 

for h/2 < z < h 

When large deviations from the logarithmic profile are expected, the bed shear stress 

may have to be calculated in a different way, for instance by using the more general 

expression given in the Coastal Engineering Manual (US Army Corps of Engineers 

1995): 

2
0 ))((

2

1
rc zuf

 

(2.21) 

in which u(zr) is the velocity at an arbitrary level zr above the bed [m/s], which can for 

instance be obtained from (2.20) or from direct measurements if these are available. The 

friction factor fc follows in this case from: 
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(2.22) 

where z0 is the integration constant for the logarithmic profile [m], which is related to the 

bed roughness and commonly taken as z0 =ks/30. The ‘clean’ factor 4 in this formula may 

be misleading: it is not a theoretical factor, but follows from ln(10)/ 2 = 4.07… This 

expression provides a more versatile way of calculating the bed shear stress than the 

classic “Chézy-based” way using the depth-averaged velocity, and has the added 

advantage that it is does not build on the assumption of a fully developed logarithmic 

profile, which as we have seen is not always necessarily the case. For u(zr) = u and zr = 

0.37·h the two methods are equivalent. 

Another situation in which a logarithmic velocity profile cannot be assumed beforehand is 

when analysing data from laboratory experiments, especially those conducted in 

relatively narrow flumes.  

Non-uniform flow: In accelerating flow the stability of stones in a bed is no less than in 

a uniform flow, provided that the local flow velocity is used (Schiereck, 2001). In 

decelerating flow the situation is different, because the associated loss in kinetic energy 

causes an increase in turbulence levels. This effect can be accounted for by the 

multiplying the design flow velocity by an influence factor Kv. Note that this influence 

factor works in the flow velocity, and so the shear stress is increased by Kv squared. The 

value of Kv depends on the type of structure that causes the deceleration (eg a bridge 

pier or a river groyne) and on the location where the flow velocity u is defined. The 

appropriate Kv values for a given situation can be found in design handbooks, eg 

Schiereck 2001. 

Increased turbulence: Every flow in hydraulic engineering practice is turbulent, 

including the flows in Shields’s experiment, so ‘normal’ turbulence is already implicitly 

present in the design rules. Only when the expected turbulence intensities are higher 

than ‘normal’ must this be accounted for. The most common way to do this is by 

describing the flow velocity in terms of turbulent fluctuations around a mean value. The 

turbulence intensity is then defined as 

u

ur

 

(2.23) 

in which u is the mean flow velocity and u is its standard deviation, expressing the 

magnitude of the turbulent fluctuations. It is then assumed that an extreme velocity, 
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defined as the mean plus three standard deviations, is responsible for moving a stone 

from the bed. This gives a design velocity 

uuu ru )31(3

  

(2.24) 

This means that when the turbulence intensity r is increased from rnormal to rincreased for the 

same mean velocity u we can define a Kv factor (as introduced above) as: 

normal

increased
v r

r
K

31

31

  

(2.25) 

The ‘background’ turbulence intensity rnormal is directly related to the bottom roughness 

and can be calculated as a function of C (see appendix 1). As a first estimate rnormal = 0.1 

is a common choice, so the denominator in (2.25) is usually written as 1.3 

Sloping bed: When the stones of a bed protection are situation on a slope rather than 

on a flat bed their stability decreases. This effect can be accounted for by the use of a 

slope factor:  

sin

)sin(
sK for flow up or down the slope (2.26) 

2

2

sin

sin
1sK for flow perpendicular to the slope (2.27) 

in which 

 

is the slope angle and 

 

is the angle of internal friction of the bed material (for 

most situations 

 

˜ 40o). These factors follow from a theoretical analysis of the direction 

of the forces on the stones on a sloping bed. Please note that these Ks factors must be 

used on the stone diameter, not on the flow velocity. Ks is always less than one, so the 

required stone diameter must be calculated as the stone diameter for a flat bed 

(obtained from the normal design procedure) divided by Ks.  

2.2 Waves (oscillating flow) 

2.2.1 Theoretical backgrounds 

Shields’s concept of a critical bed shear stress is also used for oscillatory flow situations, 

even though his original analysis and experiments only considered uniform flow. For very 

slowly oscillating flows, like tidal flows, the flow is usually considered as quasi-steady 
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and the procedure described in the previous paragraph is used. 

For rapidly oscillating flows like waves a different procedure is followed. The bed shear 

stress under a wave can be linked to the horizontal orbital velocity close to the bed. This 

orbital velocity varies over the wave period, and consequently so does the shear stress. 

This introduces the need to define an ‘overall’ value for the wave shear; this could either 

be the maximum value wˆ or the average value w . 

The maximum shear stress can be expressed as (Jonsson 1966) 

2
0ˆ

2

1
ˆ uf ww

 

(2.28) 

in which fw is a friction factor [-] and û0 is the amplitude of the horizontal near-bed orbital 

velocity [m/s]. When it is assumed that the orbital velocity varies sinusoidally in time, it 

follows that w = ½ wˆ (the average of a sine squared equals ½)  

The required horizontal orbital velocity near the bed can be calculated with an 

appropriate wave theory. In linear wave theory this velocity is given by 

khT

H
u

sinh

1
ˆ0

  

(2.29) 

in which T is the wave period [s], H is the wave height [m], k =2 /L is the local wave 

number [rad/m], L is the local wave length [m] and h is the water depth [m] 

An empirical relationship for the friction factor fw was given by Jonsson, and later re-

written by Swart (1974, cf CIRIA/CUR 1991) as: 

19.0
02.50.6exp sw kaf  for a0/ks 

 

1.57 (2.30) 

3.0wf                       for a0/ks 

 

1.57 

in which a0 = û0/

 

is the maximum horizontal excursion of the water particles near the 

bed [m] and ks is the bottom roughness [m]. Many other expressions for fw exist (see box 

2), all of which are functions of the ratio a0/ks. Apparently this is an important scaling 

parameter. 
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2.2.2 Design practice 

Sleath (1978) compared scale measurements from different sources and was able to 

assemble a ’modified Shields curve’ showing the threshold of motion (or critical c 

values) as a function of d
* 

(using the Van Rijn definition, eq 2.8). This curve, given in 

Figure 2.3, shows that c becomes a constant for larger grain sizes for oscillatory flow, 

too. This means that once the bed shear stress under the wave load has been calculated 

a design procedure analogous to the procedure for currents only can be followed, and 

thus the same choices concerning the values of ks and c must be made.  

From the Sleath curve it seems that c ˜ 0.055; but, keeping in mind the discussion in 

the previous paragraph, this may not be the right value to use for design purposes. 

Rance and Warren (1968) were one of the few researchers that conducted laboratory 

measurements on the stability of (very) coarse material under oscillatory flow. Their 

results can be used to ‘tune’ the threshold of motion. Both CIRIA/CUR (1995) and 

Schiereck (2001) state that when wˆ is evaluated according to Jonsson/Swart, c = 

0.056 must be used to get good agreement with the results of Rance and Warren.  

When the average shear stress w is used, CIRIA/CUR (1995) recommends c = 0.03. 

2.3 Waves and current combined  

2.3.1 Theoretical backgrounds 

The most common hydraulic load for near-bed structures, especially in marine 

environments, is a combination of waves and a current. Unfortunately, this is a 

  

Figure 2.3 – Sleath curve (taken from Schiereck 2001) 
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hydrodynamically very complex situation that is still not very well understood. The main 

problem is that the current and the waves affect each other in a highly nonlinear way, so 

an approach in which shear stresses for waves and currents are first calculated 

separately and then simply added, does not yield correct results. The details of wave-

current interaction are described in Chapter 3, along with a discussion of a few theories 

that have been developed to tackle this issue. For the moment, it is convenient to 

observe that the current bed shear stress is related to u , and the wave shear stress to 

û0. These two velocities occur at different heights in the water column, so that is why the 

respective shear stresses cannot be added. 

The wave-current interaction model that is presently used in design is the model of Bijker 

(1967). Bijker postulated that the combined shear stress wc could be related to a certain 

combined flow velocity ur which in turn could be a (vector) addition of the current velocity 

and the wave orbital velocity, as long as these two velocities were evaluated at the same 

level above the bed.  

The result from Bijker’s analysis (which is described in detail in Chapter 3) is that the 

instantaneous combined bed shear stress can be expressed as (Schiereck, 2001): 

22 )()( tut rwc

  

(2.31a) 

where the combined velocity ur is given by: 
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(2.31b) 

in which 

 

is Von Kármán’s constant (

 

= 0.40), t is the phase of the wave cycle and 

 

is the angle between the direction of the current and the propagation direction of the 

waves. Substituting (2.31b) into (2.31a) and working out using (2.14) and (2.28) gives: 

)cos()sin(ˆ2)(sinˆ)( 2 ttt wcwcwc

  

(2.32) 

2.3.2 Design practice 

The design practice for a combination of waves and a current is based on the Shields 

approach, in which the bed shear stress is evaluated according to Bijker (2.31 or 2.32). 

The same questions as in the pure wave case arise, ie: which measure of 0 (maximum 

or average) should be used, and what is the value of c? 
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The maximum value of 0 occurs when ur( t) is maximum, which is at sin( t) = 1. 

Substituting this in (2.32) gives 

)cos(ˆ2ˆˆ0 wcwc

 

(2.33) 

The average shear stress can be evaluated in two different ways. When the shear stress 

is averaged over the full wave period, the second term in (2.32) gets an extra factor ½ 

(since the average of sin2( t) = ½) and the third term vanishes (since the average of 

sin( t) = 0). This leads to 

wc ˆ
2

1
0

 

(2.34) 

When the shear stress is averaged over half a wave period, the second term in (2.32) 

still gets an extra factor ½ (since the average of sin2( t) over half a wave period is ½ as 

well), but the third term gets an extra factor 2/ , which is the average of sin( t) over half 

the period. This gives 

)cos(ˆ
4

ˆ
2

1
2/1,0 wcwcT

 

(2.35) 

The recommendations on which measure (maximum or average shear stress) to use in 

design are not clear. Schiereck (2001) states that the average shear stress is an 

interesting measure for sediment transport, but the maximum shear stress causes the 

damage to a structure. This could be interpreted as a recommendation to use eq (2.33) 

in design. Another important source, CIRIA/CUR (1995) explicitly recommends to use 

(2.34), along with c = 0.03. However, this section of the CIRIA/CUR manual is a little 

obscure. First of all, it states that (2.34) is only valid for waves and currents propagating 

in the same direction, whereas we have seen that the term containing the angle between 

waves and currents vanishes completely because of the averaging procedure, so in fact 

(2.34) is valid for any angle. Secondly, it states that c = 0.03 should be used when 

(2.34) is applied “in order to agree with the results of Rance and Warren” (quote from 

CIRIA/CUR 1991). This is a strange recommendation, as the experiments of Rance and 

Warren were conducted for waves alone (Rance and Warren 1968) so a formula 

containing both waves and currents like (2.34) can never be ‘tuned’ to their results. 

Finally, a software package that is often used for the design of bed protections called 

BPP (from WL|Delft Hydraulics) uses the formula 
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)cos(ˆ4.1ˆ)49.0(
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(2.36) 

in its calculations, as can be (implicitly) made up from the manual accompanying the 

software package (WL|Delft Hydraulics 1985?). This formula is very close to the Bijker 

shear stress averaged over half a period, which can be written as (see 2.35) 

)cos(ˆ27.1ˆ50.0
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(2.37) 

Apparently BPP uses this method, but the two theoretical values ½ and 4/

 

have been 

replaced by empirical values based on what the manual calls an ‘experimental 

experience value’ of 0.7. Regardless of the differences in determining 0, BPP still uses 

c = 0.03. BPP also uses ks = 2·dn50. 

2.3.3 Irregular waves  

The discussion so far has been about regular waves. There appears to be little guidance 

in literature on which wave height and wave period to use in the case of irregular waves 

(wind waves). Both Schiereck (2001) and CIRIA/CUR (1995) simply use ‘H’ and ‘T’ in 

their formulas without further specification. BPP uses H1% and Tp, probably against the 

background of the idea that the highest waves causes the damage; in deep water the 

ratio H1%/Hs is constant, but in shallower water this ratio is dependent on the water depth 

h as the wave height distribution deviates more and more from the theoretical Rayleigh 

distribution. BPP calculates H1% from the significant wave height at a given water depth h 

as (WL|Delft Hydraulics 1985?): 
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(2.38) 

Other, more recent formulas exist to calculate H1% for a given Hs in shallow water; the 

method by Battjes and Groenendijk is commonly considered to be the state-of-the-art. 

This method involves a whole calculation procedure and cannot be written as an explicit 

formula. Interested readers are referred to literature (Battjes and Groenendijk 2000). 
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2.4 Conclusion 

This chapter has described the present practice regarding the design of near-bed 

structures under various hydraulic situations: current only, waves only and a combination 

of these two. The most important theoretical backgrounds to the applied methods have 

been discussed, and some unresolved issues (such as the definition of the threshold of 

motion and the appropriate value of c, the use of ks and the way in which currents and 

waves must be combined) have been mentioned. In the next chapter we will discuss 

alternative design approaches. First, alternative (more complex) theories regarding the 

determination of the bed shear stress under waves and currents will be discussed. After 

that we will introduce completely different design approaches that are no longer based 

on bed shear stress.  

The design method described in this chapter is based on a ‘critical stability’ approach as 

defined in the introduction (chapter 1). It will be clear that there is no agreement on the 

definition of ‘critical stability’, and there is certainly a lot of debate about the exact value 

that a critical stability parameter should have. This debate is already prominent in the 

simple case of a pure current load and becomes even fiercer when a more complex load 

situation like a combination of waves and a current is considered. 

In the next chapters, the step to an ‘allowable damage’ approach will be taken. Apart 

from the potential cost savings that can be achieved by this method, an added 

advantage is that does not use the critical stability concept and therefore avoids much of 

the discussion involved.  
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Figure 2.4 – Wave friction factors  
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Box 2.1 –

 

Wave friction factors

 

The empirical wave friction factor by Jonsson/Swart (eq 2.18)

 

is the one most commonly 
used in design, but it is certainly not the only one. Grant and Madsen (1986) have 
developed a theoretical model for the fluid motion in a wave boundary layer from which 
they deduced the implicit relationship:         
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for a0/ks < 100, this relationship either very slowly converging or no longer valid, and fw

 

can 
be read from a graph given in the Coastal Engineering Manual (USACE 1995).  

Fredsøe (1984) also developed a theoretical model for the fluid motion which yields a 
different relationship for fw. This relationship cannot be expressed analytically, but Fredsøe 
gives the following approximation of his results:          

25.0
004.0 sw kaf    for (a0/ks) > 50 

More information on wave boundary layers and

 

the theories of Grant and Madsen, and 
Fredsøe can be found in chapter 3. 

Other authors have proposed empirical friction factors based on measurements, including: 

Kamphuis (1975): 
75.0

04.0 sw kaf  for (a0/ks)<50  (cf Fredsøe 1992)

 

Nielsen (1992):  3.65.5exp 2.0
0 sw kaf for all (a0/ks) (cf Soulsby 1997)

 

Soulsby (1992):  
52.0

0237.0 sw kaf  for al (a0/ks) 

All these friction factors are plotted here as functions of a0/ks.(See Figure 2.4) It can be 
seen that all values are in reasonable agreement

 

with each other, except for the Soulsby 
formula that clearly deviates for large (a0/ks). Fredsøe and Nielsen also predict lower 
values than the other methods at large a0/ks. However, for normal waves in coastal areas 
a0 is typically in the range 1-3 metres, so for rock structures with d (and thus ks) in the order 
O(0.1 m) we would expect a0/ks

 

to be of the order O(10). Especially in this range the 
agreement between the various wave friction factors is good. Interestingly, the 
Jonsson/Swart method is the only method that prescribes a maximum value at fw = 0.03.  

From this comparison it can be seen that although many formulations for fw

 

exist, it does 
not really matter which one is used, so the widespread use of Jonsson/Swart seems 
justified 
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3 Literature search  

3.1 Introduction 

This chapter describes the various stability parameters and damage parameters that 

have been put forward in literature. In terms of stability parameters, we can discern three 

main groups.  

First group: the first group of stability parameters is the closest to the present design 

methods (see chapter 2). These parameters are all based on the bed shear stress as the 

governing parameter, and are therefore of the form: 

50ndg

  

(3.1) 

In order to be valid for a combination of waves and currents (the area of interest of this 

research), the shear stress 

 

must be the combined wave-current shear stress wc. 

Calculating this combined shear stress is not a straightforward task. In paragraph 3.2 we 

will introduce various calculation models that have been put forward in literature, select a 

few of them and discuss these selected models in some detail.  

Second group: the second group of stability parameters relates directly to the forces 

that act on the stones. These forces can be linked to the fluid velocities and 

accelerations in the direct vicinity of the stone. The basic idea behind this method is that 

not only drag, shear and lift forces (which are proportional to u2 and d2) but also inertia 

forces (which are proportional to a and d3) play a role. In principle the drag and lift forces 

can be translated to bed shear stresses again (see chapter 2), but the inertia forces and 

fluid accelerations form a new element in the analysis. 

In general, stability parameters of this kind take the form: 
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in which CB and CM are two coefficients that describe the relative influence of the drag 

and lift forces over the inertia forces. We will use the Greek capital theta ( ) to denote 

this type of stability parameters in order to distinguish it from the shear stress-based 

stability parameters. 

This method is inspired by the Morison formula for wave forces on piles (Morison et al 

1950) which is also a combination of drag forces and inertia forces. For this reason the 

ideas behind this second group of stability parameters are commonly referred to as the 

Morison-type approach. This second group of stability parameters is discussed in 

paragraph 3.3. 

Third group: the third group of stability parameters is based on the idea that the 

entrainment of an individual stone is not caused by average parameters like velocity, 

shear stress or accelerations, but by rare extreme events, like a bypassing eddy, which 

can in turn be related to the turbulence of the flow. This crucial role played by turbulence 

must be represented in the stability parameter, which will therefore be of the general 

form: 
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(3.3) 

in which u is the Reynolds-averaged flow velocity and k, 

 

and lm are turbulence 

parameters (see appendix A for a brief introduction to these and other concepts from 

turbulence theory). Paragraph 3.4 discusses this type of stability parameters in more 

detail. 

The various damage parameters that have been proposed in literature are introduced in 

paragraph 3.5. Traditionally, damage has been expressed in terms of a transport rate, 

and a large section of this paragraph will be devoted to a discussion of various transport 

formulae, after which a short introduction to alternative damage parameters such as 

entrainment will be given.  

This thesis is about the design of near-bed structures, so all the concepts introduced 

above will – somehow – have to be translated to a practical, damage-based design 

method. Some methods have been proposed in literature, either based on transport or 

on other damage parameters. These methods will be introduced in paragraph 3.6. 
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3.2 Shear stress based stability parameters 

3.2.1 Adding shear stresses without wave-current interaction 

The bed shear stress under a current and the bed shear stress under waves can both be 

calculated separately using the methods described in Chapter 2. When a structure is 

loaded by a combination of a current and waves we are interested in the resulting 

combined bed shear stress. The most straightforward way of calculating this is by a 

simple addition of the current-only bed shear stress c and the instantaneous wave-only 

bed shear stress w; when the current and the waves meet at an angle 

 

we must use a 

vector addition as in Figure 3.1.  

This instantaneous combined bed shear stress wc varies over time as sketched in Figure 

3.2 (for the case 

 

= 0o; when 

 

> 0o we must reduce wˆ by a factor cos( )). For practical 

design purposes we need to translate this time-variant parameter to one single 

characteristic value; for this purpose we can either use the maximum value wc,max 

(indicated in Figure 3.2) or an average value.  

Unfortunately ‘the’ average value is not uniquely defined, but depends on the outcome of 

two choices: 

 

c

 

w

 

^

 

w
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+

  

Figure 3.1 – Vector addition of bed shear stresses (without wave-current interaction) 
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Figure 3.2 –Combined shear stresses (without wave-current interaction) as a function of time 
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with or without directional information: the shear stress itself is, by definition, a 

positive quantity; the sign of the shear stresses depicted in Figure 3.2 is purely related to 

the direction of the stress: a stress against the direction of the current is shown as 

negative. We can now choose to include this directional information in our averaging 

procedure, or not. Mathematically this difference comes down to averaging the projection 

of the combined shear stress in the current direction (the x-axis in Figure 3.1), or 

averaging the modulus (absolute value) of the combined shear stress, respectively. 

Though this is perhaps counter-intuitive, we must realise that when we take a 

straightforward mathematical average of the combined shear stress, we are effectively 

doing this last thing: we are averaging the absolute values. When 

 

> 0o these two 

procedures will obviously lead to different results, but also in the case 

 

= 0o there will be 

a difference. This can be explained as follows: when the waves are dominant (ie wˆ > c) 

there will be a period during the wave cycle that the combined shear stress is negative 

(ie against the direction of the current). When we do not disregard the directional 

information this negative contribution is taken into account in the averaging procedure, 

and so in general the resulting average shear stress will be lower. Only in the case 

 

= 

0o and current dominance ( c > wˆ ) there will be no difference between these two 

methods. 

averaging period: we can either average the instantaneous combined shear stress over 

the full wave cycle or over half the wave cycle. The latter approach is inspired by the fact 

that the software program BPP uses it (see chapter 2). The combined shear stresses 

0
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whole period

half period
absolute values with direction information

wc avx
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absolute values
whole period
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0
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Figure 3.3 –Averaging procedures for the combined bed shear stress 
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during the first half wave cycle (when the wave shear stress and the current shear stress 

work in the same direction) will be higher than the combined shear stress during the 

second half wave cycle (when the two components work in opposite directions). For this 

reason the averaged shear stress over half the wave cycle will always be higher than the 

averaged shear stress over the full wave cycle. 

These two choices, direction and averaging period, can be combined to give rise to (2x2) 

= 4 different average shear stresses. These are illustrated in Figure 3.3 (again for 

 

= 

0o). We see that in this case the ‘average absolute shear stress over half the wave cycle’ 

is equal to the ‘average shear stress over half the wave cycle with direction information’. 

In the present research we will always deal with collinear flow (

 

= 0o), simply because 

our analysis will be based on scale model tests in which 

 

has not been varied (see 

Chapter 5). For this reason there is no further need to distinguish between the two ‘half 

cycle’ averaging procedures within the context of this thesis.  

Also, to avoid long and cumbersome phrases, we will refer to the “average of the 

absolute values of the shear stress “ simply as the “average” shear stress, because it is 

related to the mathematical average. The “average of the shear stress with direction 

information” will be called the “average in the direction of the flow” since it is essentially 

just that: the average of the projection of the combined shear stress in the flow direction. 

In short, there are four remaining ways to express ‘the’ combined shear stress: 

 

the maximum shear stress wc,max. This parameter is used in the analysis because 

it is suggested by Schiereck (2001) that the maximum shear stress causes the 

damage to a structure. 

 

the average shear stress over the whole period wc,av This parameter is used in 

the present design method recommended by CIRIA/CUR (1995). 

 

the average shear stress in the direction of the flow wc, avx. This parameter is 

often used in morphological research into sand transport under combined wave-

current load;  

 

the average shear stress over half the period wc av 1/2. This parameter is used in 

the present design method with the software package BPP. 

In this thesis we will use all four parameters and investigate which one can best be used 

in the design of granular near-bed structures. 

Mathematically we can work this out a little further. The instantaneous combined bed 

shear stress follows from a vector addition of c and w( t) = wˆ sin( t) using the cosine 
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rule. Again we see that this is essentially the modulus of the combined shear stress: 

)cos()sin(ˆ2)(sinˆ)( 222 ttt wcwcwc

 

(3.4) 

The maximum shear stress occurs when sin( t) = 1, so  

)cos(ˆ2ˆ22
max, wcwcwc

 

(3.5) 

For collinear flow cos( ) = 1 so equation (3.5) reduces to: 

wcwcwcwcwc ˆ)ˆ(ˆ2ˆ 222
max,

 

(3.6) 

which is also intuitively clear.  

The average shear stress over the full period and the average shear stress over half the 

period follow theoretically as: 

)()cos()sin(ˆ2)(sinˆ
2

1 2

0

222
, tdtt wcwcavwc

 

(3.7) 

)()cos()sin(ˆ2)(sinˆ
1

0

222
2/1,, tdtt wcwcavwc

 

(3.8) 

Neither integral can be solved analytically (because of the presence of the square root) 

and so the average values must be found with a numerical averaging procedure. 
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wsin( t)cos( ) 

wcx( t)

   

Figure 3.4 – Instantaneous combined shear stress in the direction of the current 
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Finally, the instantaneous shear stress in the direction of the current can be simplified to 

(see Figure 3.4): 

)cos()sin(ˆ)( tt wcwcx

 

(3.9) 

and so the average shear stress in the direction of the current follows from: 
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cwcavxwc tdt (3.10) 

which can also be seen from the graphical representation in Figure 3.2. At the moment 

the fact that wc,avx = c may seem trivial and the inclusion of wc,avx in our analysis may 

appear to make little sense, but we will see later (when we discuss the phenomenon of 

wave-current interaction) that it is an important parameter. 

In (3.10) we have used the fact that the average of sin( t) over the full wave cycle 

equals zero. We will use these kind of mathematical averaging procedures throughout 

this thesis, so for completeness’ sake we will introduce the most important basic 

formulae here: 
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(3.11) 

3.2.2 Wave-current interaction: general remarks 

In the previous paragraph we have simply added the bed shear stress caused by the 

current and the bed shear stress caused by the waves. Physically speaking this is not a 

correct approach, because the current and the wave influence each other. This effect, in 

general terms called wave-current interaction (WCI) is so strong that its influence must 

be accounted for. 

Soulsby (1997) lists three ways in which the waves and the current interact: 
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a) modification of the phase speed and wavelength of the waves by the current, 

leading to refraction of the waves 

b) interaction of the wave and current boundary layers, leading to enhancement of 

both the steady and oscillatory components of the bed shear stress 

c) generation of currents by the waves, including longshore currents, undertow and 

mass transport (streaming) currents 

In design practice the current and wave climate are usually given as boundary conditions 

and are either taken from site measurements or a computer model. In these 

measurements or calculations the interactions mentioned under a) and c) are already 

(implicitly) present; with the possible exception of undertow and streaming currents 

mentioned under c). This effect will be neglected and only the second way of wave-

current interaction, the enhancement of the bed shear stress, will be treated in this 

thesis.  

Wave-current interaction is a nonlinear phenomenon: the presence of the current 

influences the waves (leading to an enhanced wave shear stress), but the presence of 

the waves also influences the current (leading to an enhanced current shear stress). The 

details of this phenomenon and its physical background are described in paragraph 

3.2.3. Many models to describe this wave-current interaction have been put forward in 

literature; unfortunately they all differ in their predictions of the enhanced shear stresses 

and the resulting combined shear stress. 

 

Figure 3.5 - Vector addition of bed shear stresses with wave-current interaction (Souslby et al 1993) 
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A general illustration of the resulting instantaneous bed shear stress when wave-current 

interaction is taken into account is given in Figure 3.5 (Soulsby et al, 1993) and Figure 

3.6. It is illustrative to compare these figures to Figure 3.2 and Figure 3.3, respectively. It 

must be said that most wave-current models do not follow the explicit steps as sketched 

in Figure 3.6; this figure must be seen as an idealised illustration of the basic idea behind 

wave-current interaction. 

After the instantaneous combined bed shear stress has been obtained, the same 

maximum/averaging procedures can be applied as discussed in the previous paragraph. 

In particular we see now that wc,avx is no longer equal to the pure current shear stress c, 

but to the enhanced current shear stress c+. This is why wc,avx is such an important 

parameter: it shows how the current shear stress (which features in many morphological 

transport formulae) is enhanced by the presence of the waves. 

A useful overview of existing wave-current interaction models is given by Soulsby et al 

(1993). They mention having compiled a list of 21 different models, and explicitly discuss 

the models of Grant and Madsen (1979), Christofferson and Jonsson (1985), Bijker 

(1967), Van Kesteren and Bakker (1984), Fredsøe (1984), Myrhaug and Slaattelid 

(1990), Davies, Soulsby and King (1988) and Hyunh-Thanh and Temperville (1991).  

Soulsby et al compared these eight models in terms of their prediction of the mean and 

maximum combined shear stress for the same input parameters (exactly how ‘mean’ is 

 

c 

w 

0 0 

+

 

wc, max 

c+ 

0 

w+ 

0 0 
=

 

WCI

 
current shear 
stress 

enhanced 
wave shear 
stress 

enhanced 
current shear 
stress 

wave shear 
stress 

combined 
shear stress 

 

Figure 3.6 –Combined bed shear stresses with wave-current interaction as a function of time 
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defined will be discussed later). The input parameters are the same for all models: the 

relative bottom roughness z0/h, the relative wave excursion a0/z0 and the angle between 

the current and the wave propagation direction . Soulsby et al devised a useful 

dimensionless way of plotting their results that will be used in this thesis as well. They 

defined a dimensionless input parameter X 

wc

cX
ˆ

 

(3.12) 

in which c and wˆ are the current-only and maximum wave-only bed shear stresses (for 

instance calculated with eq 2.14 and 2.21), respectively. This parameter can be seen as 

a measure for the relative strength of the current and wave components, for X = 0 there 

are only waves, for X = 1 there is only a current. In this respect this parameter X is more 

 

Figure 3.7 - Comparison of eight different wave-current interaction models (Soulsby et al 1993) 
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practical than the other commonly used current strength parameter 

 

= c/ wˆ which 

scales between 

 

= 0 and 

 

= . 

The average combined shear stress in the direction of the flow is defined in a similar 

way: 

wc

avxwcY
ˆ
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(3.13) 

and so is the maximum combined shear stress: 

wc

wcZ
ˆ
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(3.14) 

In their original publication Soulsby et al do not use the term wc, avx. Instead they refer to 

the ‘mean’ combined shear stress without explicitly defining what ‘mean’ means. A 

comparison of the results from Soulsby et al with the results obtained in the present 

research shows that their wc,mean is equal to our wc,avx. 

A typical plot from the comparison in Soulsby et al is given in Figure 3.7. The dashed 

lines in this figure are the combined shear stresses without wave-current interaction. 

Dividing equations (3.6) and (3.10) by ( c + wˆ ) shows that in these cases we have Z = 1 

and Y = X (note that Figure 3.7 has been obtained for 

 

= 0o). As can be seen from this 

plot, the predicted combined shear stresses with wave-current interaction differ a lot from 

the situation without wave-current interaction; in addition, there are quite some 

differences between the various models. 

It appears that, roughly speaking, three groups of models can be discerned (Bijman 

2000): 

a) the first group, containing Bijker, and Van Kesteren and Bakker, give strikingly 

larger maximum shear stresses than the other models, and also higher mean 

stresses than the other models for wave dominated situations (low X values);  

b) The second group is formed by Grant and Madsen, Myrhaug and Slaattelid, and 

Christofferson and Jonsson, who predict higher values than the other models for 

current dominated situations;  

c) Finally, Fredsøe, Davies et al and Huynh-Thanh and Temperville predict lower 

values than the other models for all situations (and their predictions appear the 

match each other closely). They form the third group. 
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Another useful result from Soulsby et al is a parameterisation of Y and Z as a function of 

X and the input parameters z0/h, a/z0 and . With this parameterisation the mean and 

maximum shear stresses predicted by the various models can be approximated without 

having to go into the details of the models themselves. A disadvantage of this method is 

that it only gives wc,max (through Z) and wc,avx (through Y). In order to obtain the other 

parameters that we are interested in in the present research ( wc,av and wc,av,1/2), we will 

have to use the full models. The Soulsby parameterisation will only be used in this thesis 

as a means of comparison to the values obtained from the ‘real’ models. Appendix 2 

contains some more information on this method. 

In another publication (Soulsby 1997) Soulsby reports to have matched the performance 

of these models against a dataset of laboratory and field measurements. He concludes 

that no single model gave the best overall performance, but mentions four models that 

performed well and/or are widely used: Grant and Madsen, Fredsøe, Davies et al and 

Huynh-Thanh and Temperville. This would suggest that we would only include only 

these four models in our present research, with the addition of the Bijker model (given 

our knowledge that the present design practice of granular near-bed structures is based 

on this model, see Chapter 2). 

Bijman (2000), who did valuable research on transport of coarse material under 

combined wave-current flow and whose work can be seen as a precursor to the present 

research, follows this suggestion. In addition, he uses the broad categorisation of models 

given above and includes one member from each group (in casu Bijker, Grant and 

Madsen, and Fredsøe) in his research.  

Van Rijn also gives an overview of wave-current interaction models (Van Rijn 1993). He 

mentions more or less the same models as Soulsby et al, but includes models by 

Lundgren (1972) and Smith (1977). Van Rijn does not really compare the performance of 

all these models, but refers to Soulsby and a research by Visser (1986), who measured 

velocity profiles for a combination of waves and a current at an angle of 900. Based on 

these two sources Van Rijn states that the Fredsøe model gives reasonable results.  

Altogether, given the conclusions of Soulsby (1997), Van Rijn (1993) and Bijman (2000) 

we decide to use the following five models in our research: Bijker; Grant and Madsen; 

Fredsøe; Davies, Soulsby and King; and Huynh-Thanh and Temperville. We will support 

this choice with further arguments based on the physical background of the various 

models in the next paragraph. 
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3.2.3 Wave-current interaction: physical background 

For a physical explanation as to why and how the current and the wave motion influence 

each other, we need to know something about boundary layers and turbulence. A brief 

introduction to these topics is given below.  

Shear stresses in a fluid can either be caused by viscosity or by turbulent mixing; the 

turbulent shear stresses (so-called Reynolds stresses) are much larger than the viscous 

stresses. This means that, if we want to understand something about the bed shear 

stresses caused by a flow, we need to understand the turbulence characteristics of that 

flow (for a background to the concepts from turbulence theory used in this thesis see 

appendix A). 

Any fluid flowing along a fixed boundary (be it the bottom, or a wall) will develop a 

boundary layer in which the friction with the boundary influences the fluid motion, shear 

stresses develop and turbulence is generated. This boundary layer needs to grow, and 

so the boundary layer thickness is time-dependent. For a steady current, the boundary 

layer extends over the full water depth. For tidal currents this is not necessarily the case 

because they change direction every six hours or so and the boundary layer does not 

get enough time to grow all the way. For rapidly oscillating flow, like waves, the boundary 

layer thickness is only a few centimetres; only inside this wave boundary layer do shear 

stresses and turbulence play a role. Outside the wave boundary layer the fluid motion 

can be regarded as frictionless and can be described by potential flow theory (eg linear 

wave theory). The reverse also holds: when we apply linear wave theory we can only 

describe the fluid motion outside the wave boundary layer; the orbital velocity “at the 

bottom” (equation 2.24), is really the orbital velocity at the edge of the wave boundary 

layer. Inside this layer we need other theories to describe the fluid motion. 

The existence of the wave boundary layer, and the extra turbulence it generates, is felt 

by the current as increased resistance which explains the enhanced current-only bed 

shear stress. On the other hand, the existence of a steady current influences the growth 

of the wave boundary layer, so this effect in nonlinear. Also, inside the wave boundary 

layer, the turbulence generated by the current interacts with the turbulence generated by 

the waves, which has the effect of enhancing both the current and the wave bed shear 

stress. This effect is also nonlinear, because turbulence is a nonlinear phenomenon 

(Soulsby et al, 1993).  

We have seen that the boundary layers, the dominating length scales and the turbulence 

characteristics are different for uniform currents and for waves; this is one of the main 

reasons why simply adding the resulting shear stresses is not a valid approach. A 
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physically more correct approach would be to: 

 
assume a combined wave-current wave boundary layer and see the flow inside 

this layer as a separate flow problem; 

 

find the correct boundary conditions for this flow problem, given the 

characteristics of the current and the waves; 

 

solve the equations of motion (Navier-Stokes equations) inside this layer with 

these boundary conditions; since the flow in the layer is turbulent this means that 

a closure scheme for the Reynolds equations must be adopted; and finally, 

 

deduce the resulting combined bed shear stress from there.  

This is exactly what the various wave-current interaction models seek to do. The 

differences between the models are mainly caused by the way in which they incorporate 

turbulence inside the boundary layer (ie the way in which they close the Reynolds 

equations). A general illustration of wave-current interaction is given in Figure 3.8. 

The fact that the various wave-current interaction models differ by the way in which they 

incorporate the turbulence in the boundary layer provides us with a way to categorise the 

wave-current interaction models, which is inspired by the overview of wave-current 

interaction models by Van Rijn (1993).  

generation of currents
by breaking waves

BOUNDARY
LAYER

increased apparent
roughness

influenced boundary
layer growth

change in phase speed
and wave length

MACRO
SCALE

TURBULENCE
over full water

depth

TURBULENCE
in boundary
layer only

TURBULENCE

separate flow problem
(turbulence closure and

boundary conditions)

CURRENT WAVES

u0

u

 

Figure 3.8 - General illustration of wave-current interaction 
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All wave-current interaction models discussed in this thesis use the eddy viscosity 

concept in their turbulence closure. As is described in appendix A, there are four ways to 

apply this concept which are, in order of increasing complexity: 

 

assuming a constant eddy viscosity, which is equivalent to using the mixing 

length hypothesis and assuming that lm is constant. This leads to a linear velocity 

profile in the wave boundary layer. This is the basis of the Bijker model. 

 

using the mixing length hypothesis and assuming that lm varies with the distance 

from the bottom, which leads to a logarithmic velocity profile in the boundary 

layer. Both Grant and Madsen, and Fredsøe use this concept in their models, the 

main difference being that Grant and Madsen assume the boundary layer 

thickness and eddy viscosity to be constant in time, while Fredsøe allows these 

parameters to vary with the wave cycle. 

 

using a balance equation for the turbulent kinetic energy and an estimated length 

scale (one-equation model). This approach was adopted by Davies, Soulsby and 

King. 

 

using a balance equation for the turbulent kinetic energy and an (assumed) 

balance equation for the dissipation rate of the turbulent kinetic energy (k-

 

closure), as was done by Huynh-Thanh and Temperville. 

So we can see that against this background we can further support our choice of five 

wave-current interaction models: each model represents another turbulence closure 

method. Also, we can conclude that these five models form a complete set, as each 

turbulence closure method is represented (at least each method based on the eddy 

viscosity concept; to our knowledge there are presently no wave-current interaction 

models based on more advanced turbulence closure methods such as Direct Numerical 

Simulation or Large Eddy Simulation). Finally, this turbulence-based description gives us 

the opportunity to apply a ranking in our wave-current interaction models, in order of 

increasing complexity: Bijker - Grant and Madsen - Fredsøe - Davies, Soulsby and King 

– Huynh-Thanh and Temperville. 

These five models will now be described in more detail in the next paragraphs. In order 

to illustrate the effects of wave-current interaction we will always compare the results 

from these models with a situation in which wave-current interaction is not taken into 

account.  
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3.2.4 Wave-current interaction models: Bijker (1967) 

Bijker postulated that the combined shear stress wc could be related to a certain 

combined flow velocity ur which in turn can be a (vector) addition of the current velocity 

and the wave orbital velocity, as long as these two velocities were evaluated at the same 

level above the bed. As described in Appendix 1, an assumption regarding the 

turbulence in the boundary layer is needed to relate this combined velocity to the bed 

shear stress. Bijker assumes in this case a constant mixing length lm, which leads to a 

linear velocity profile (see Appendix 1): 
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Outside the boundary layer Bijker assumes a classic logarithmic velocity profile 
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At some point, this logarithmic profile must turn into the linear profile of equation (3.15), 

until u = 0 is reached at z = 0. (A definition sketch for the Bijker model is given in Figure 

3.9) If we require that both the velocity and the velocity gradient are continuous at the 

point of intersection, we can show mathematically that these two profiles intersect at z 

=ez0 (e = 2.718…) and, consequently, that the (constant) mixing length is equal to  

0ezlm

 

(3.17)  

Bijker chose to evaluate ur at the level of intersection of the two profiles, so ur = u(ez0). 
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Figure 3.9 – Definition sketch for the Bijker model 
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The fact that lm = ez0 means that, apparently, Bijker assumes the size of the turbulent 

eddies in the entire boundary layer to be equal to the size they would have had near the 

top of the boundary layer (z = ezo) if the Von Kármán hypothesis had been used. It is 

clear that – physically speaking – this is a very crude schematisation.  

Substituting z = ez0 and lm = ez0 in equation (3.15), and using the definition of the shear 

stress velocity u
* 
gives the resulting bed shear stress: 
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(3.18) 

So, when ur is a vector addition of the current velocity and the wave velocity, both 

evaluated at z = ez0, equation (3.18) can be used to find the combined bed shear stress. 

From (3.16) it follows that the current component at this level equals 
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The wave velocity profile is given by linear wave theory throughout the water column, 

except for the wave boundary layer. At the top of this layer we have the ‘near-bed’ orbital 

velocity û0. Inside this layer Bijker again assumed a linear profile, from u = 0 at z = 0 to u 

= u0 at z = . The point ez0 is within this boundary layer, so the wave-induced component 

at level z = e·z0 equals 
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with p a constant < 1. Note that u0 is the instantaneous orbital velocity, with u0 = û0 

sin( t).  

Entering this wave component in equation (3.18) gives 0 = 2p2 û0
2. A comparison with 

the formulation by Jonsson (2.28) shows that ½fw = 2p2, so p = 1/ *v(fw/2), and the 

wave component of ur becomes:  
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The combined velocity ur now follows as a vector addition of uc(ez0) and uw(ez0), as in: 
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in which 

 

is the angle between the direction of the current and the propagation direction 

of the waves.  

Inserting equations (3.19) and (3.21) gives (Schiereck, 2001): 
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(3.23) 

Finally, we can use (3.18) to get the combined bed shear stress: 

22
0 )()( tut r

 

(3.24) 

In chapter 2 is has already been shown that working out these equations (ie substitute 

(3.23) into (3.24) and use the expressions for the current shear stress (eq 2.14) and 

wave shear stress (eq 2.28) leads to simplified expressions for the maximum shear 

stress, the average shear stress over the whole wave period and the average shear 

stress over half the wave period (eqs 2.33, 2.34 and 2.35; see also table 3.1). For the 

average shear stress in the direction of the current no simplified expression exists.  

The simplicity of equations (2.33), (2.34) and (2.35) suggests that wc follows from a 

straightforward additions of the pure current shear stress c and the pure wave shear 

stress w, without accounting for wave-current interaction. We emphasise here that this 

simplicity is deceptive; the Bijker method does take wave-current interaction into 

account. This may be illustrated further by comparing the equations involved (see table 

3.1), or by looking at Figure 3.7. 

Table 3.1 – Equations for Bijker model and model without wave-current interaction 

combined 
shear stress Without wave-current interaction Bijker model 

instantaneous 
2 2 2

( )

ˆ ˆsin ( ) 2 sin( ) cos( )

wc

c w c w

t

t t

 

2ˆ( ) sin ( )

ˆ2 sin( ) cos( )

wc c w

c w

t t

t

 

maximum 2 2

,max
ˆ ˆ2 cos( )

wc c w c w

 

,max
ˆ ˆ2 cos( )

wc c w c w

 

average no closed form 
1

ˆ
2

wc c w

 

average in 
current direction ,wc avx c

 

no closed form 

average over 
half period no closed form 

(1/ 2 )

1 4
ˆ ˆ cos( )

2
wc T c w c w
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For the present research, the Bijker model was implemented in a simple computer model 

(in Microsoft Excel). The results can be presented in dimensionless form in the way 

introduced by Soulsby et al (1993). An example of such a plot is given in Figure 3.10. In 

this plot the same dimensionless input parameters z0/h = 10-4, a0/z0 = 104 and 

 

= 00 

have been used as in the original Soulsby plot (Figure 3.7), so the two plots can be 

directly compared. In our plot (Figure 3.10) we show the maximum shear stress and the 

three different ways of averaging the shear stress as described in paragraph 3.2.1. 

These average values were obtained by calculating wc( t) for various values of t and 

then numerically averaging the results. When an average in the direction of the flow was 

required the values of wc( t) were multiplied with cos( ( t)), in which ( t) is the 

instantaneous angle between wc( t) and the direction of the flow.  

In addition to the results from the Bijker model we have plotted the results if no wave-

current interaction would be taken into account. For the maximum combined shear 

stress and the average shear stress in the direction of the current we have Z = 1 and Y = 

X, as follows from equations (3.6) and (3.10), respectively, in combination with the 

definitions of Z and Y (equations 3.14 and 3.13, respectively). The average combined 

shear stress over the full period and over half the periods cannot be calculated 

analytically (as described in paragraph 3.2.1) so these results were obtained from a 

numerical averaging procedure.  

Finally, the results from the CIRIA/CUR method (eq 2.34) and BPP method (eq 2.36), as 

well as the Soulsby parameterisation for the maximum shear stress (see appendix 2) are 

also plotted in Figure 3.10. 

From a comparison of Figure 3.7 and Figure 3.10 we can see that our results for the 

combined shear stress in the current direction, averaged over the whole period match 

the Y-values as plotted by Soulsby. This again confirms our observation that this is the 

way in which Soulsby defined his ‘mean’ shear stresses. Further, we see that our results 

for the maximum shear stress match the theoretical curve exactly. Also, our results for 

the averaged shear stress over the whole period match the results calculated by the 

CIRIA/CUR method exactly, and our results for the averaged shear stress over half the 

period match the results calculated by the BPP method reasonably well. This is in line 

with our conclusion from Chapter 2 that these methods are closely related. 

Figure 3.10 clearly illustrates how both the maximum and averaged shear stresses (for 

all averaging methods) are enhanced compared to the situation when no wave-current 

interaction is taken into account, except in strongly wave-dominated situations. 
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This last observation can be explained because Bijker adds velocities, and the shear 

stress is proportional to the velocity squared, whereas without wave-current interaction 

shear stresses are added. This means that, in the limit case of pure wave motion (X = 0), 

the Bijker method contains a factor sin( t) squared, which when averaged gives Y(0) = 

½, and without wave-current interaction we only have sin( t) which when averaged 

gives Y(0) = 2/

 

= 0.64.  

3.2.5 Wave-current interaction models: Grant and Madsen (1979) 

The wave-current interaction model of Grant and Madsen is best described by first 

looking at their description of wave-only situations, and then adding a current. The 

Coastal Engineering Manual (USACE1995, chapter III-6) is a very useful source of 

information on this model, as it describes it in a more practical (and more readable) way 

than the publications of Grant and Madsen themselves (Grant and Madsen 1979, Grant 
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Figure 3.10 – Dimensionless results for the Bijker model, with z0/h = 10-4, a0/z0 = 104 and 
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and Madsen 1984). The discussion below broadly follows the outline of the CEM. 

Grant and Madsen close the Reynolds equations with the eddy viscosity concept, which 

they assume to vary linearly with the distance from the bed. As discussed in appendix A 

this leads to a logarithmic velocity profile in the boundary layer. For current only this is a 

commonly accepted, almost classic approach. For pure wave motion the bed shear 

stress varies with time, so strictly speaking the eddy viscosity should also be time-

dependent. The problem is that this choice would make the analysis a lot more 

complicated and would lead to a result that cannot be expressed analytically (Grant and 

Madsen 1979). Grant and Madsen decided to neglect the time dependence of the eddy 

viscosity and use a time-invariant eddy viscosity based on the maximum bed shear 

stress under waves. This still gives reasonable results when compared to more complex, 

time-dependent eddy viscosity closure models (CEM 1995).  

When a combination of waves and currents is involved, the basic idea does not change. 

The eddy viscosity is now based on the shear stress related to the maximum combined 

shear stress. This is, again, a simplification. As we have seen before, the turbulence in 

the current boundary layer and the turbulence in the wave boundary layer are dominated 

by different length scales, so defining a mixing length for the combined case is a little 

awkward. This is why Grant and Madsen expressed their eddy viscosity in a way that is 

slightly different from the classic mixing length-based expression used in Appendix A, 

and do not use the mixing length explicitly. It can be shown that for the current-only case 

the two expressions are analogous, and it is assumed that this analogy also holds for the 

combined case (Grant and Madsen 1979). 

Grant and Madsen found friction factors for waves only as well as for the combined case, 

in a way that is, in principle, analogous to the way in which a friction factor for a steady 

current can be found from the velocity profile (as is explained in many textbooks on open 

channel flow); only the resulting equations tend to become a little more complex. 

For waves only, the friction factor in the Grant and Madsen model is defined similarly to 

the definition of Jonsson: 

2
0ˆ

2

1
ˆ ufww

  

(3.25) 

where û0 can be evaluated with linear wave theory. In the case if irregular waves, the 

CEM recommends to use the root-mean-square wave height (Hrms = Hs/ 2) and the 

significant wave period (Ts ˜ 0.9Tp), following a later publication by Madsen (1993, cf 

CEM 1995). 
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The full theoretical expression for fw is fairly complicated, but it can be approximated by 

the following implicit function: 

w

sww

f
k

a

ff
424.017.0log

4

1
log

4

1 0

 

(3.26) 

This approximation is roughly valid for (a0/ks) < 100. The exact solution for fw can be read 

from the Figure 3.11. A comparison between this friction factor and others can be found 

in Box 2.1.  

For given wave conditions (û0, 

 

and ks) the problem is now solved and the bed shear 

stress can be found. In addition, it can be shown that the boundary layer thickness is: 

mu*

  

(3.27) 

in which u*m is the shear stress velocity associated with the maximum shear stress and 

 

is the wave angular frequency (

 

= 2 /T). 

For the combined case, the bed shear stress can be written as a vector addition of the 

current bed shear stress and the wave bed shear stress: 

cosˆ2ˆˆ 22
wcwcwc

  

(3.28) 

It must be emphasised that in order to account for the wave-current interaction the 
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Figure 3.11 - Wave shear stress coefficient for the Grant and Madsen model (adapted from CEM 1995) 
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enhanced current bed shear stress and the enhanced wave bed shear stress must be 

used here (as in Figure 3.6; as a matter of fact the Grant and Madsen model is the only 

WCI model that explicitly follows these steps). When we define two parameters 

 

and C

 

as 

2
*

2
*

ˆ wm

c

w

c

u

u

  

(3.29a) 

and 

cos21 2C  (3.29b) 

equation (3.28) can be written as  

Cwwc ˆˆ

  

(3.30) 

The enhanced wave shear stress can be found using a combined friction factor 

2
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1
2

ˆ ˆw wcf u

 

(3.31) 

where fwc is taken from 
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(3.32) 

This expression is equivalent to (3.26), so values can be found from Figure 3.11 when 

the x-axis is replaced by C (a0/ks) and the y-axis by fw/C . 

The (combined) boundary layer thickness is 

wc
wc

u*

 

(3.33) 

where u*m is calculated using the combined shear stress (3.30)1 

                                                

 

1 The notation used here (subscripts ‘w’, ‘c’ and ‘wc’) deviates slightly from the original notation by Grant and Madsen; this 
is done to bring it in line with the notation used elsewhere in this thesis. 
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wc
wcu

ˆ
*

 

(3.34) 

The current shear stress can be calculated with the classic Chézy-based equation 

(2.14), but the CEM recommends to use the more general equation (2.21), where the 

bed shear stress is related to a (known) velocity uc(zr) at a certain reference level zr. The 

enhanced current bed shear stress can be calculated in the same way, keeping in mind 

that the effect of the wave boundary layer is felt by the current as an increased bed 

resistance; so the friction factor is no longer related to the physical bed roughness z0 

(=ks/30) but to the so-called apparent bed roughness, which in turn is related to wc. 

Altogether, it can be shown that the enhanced current bed shear stress velocity is: 
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(3.35) 

A derivation of this formula can be found in CEM (1995). 

So we see that these equations form a loop: the combination of the enhanced wave and 

current shear stresses determines 

 

and C , which determines fwc and thus the 

enhanced wave shear stress; secondly the enhanced wave shear stress determines wc 

and this in turn determines the enhanced current shear stress. It is clear that iteration is 

required to solve this loop. This feedback loop, expressing the fact that the waves (by 

the apparent roughness caused by the wave boundary layer) influence the current is an 

important improvement of the Grant and Madsen method compared to the Bijker 

method; in this last method this influence is not accounted for. 

The CEM suggests the following procedure to solve this loop: 

 

start with pure wave conditions, so 

 

= 0 and C

 

= 1; 

 

Solve for the wave shear stress (equations 3.31 and 3.32), the combined shear 

stress (3.30) and for the boundary layer thickness (3.33), and use these values, 

along with a given uc(zr) and zr to calculate the enhanced current shear stress 

according to (3.35); 

 

with the obtained values for the enhanced current and wave bed shear stresses, 

update 

 

and C

 

according to (3.29); 
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Repeat steps 2-4 until the obtained values for C

 

converge. Then, calculate the 

combined bed shear stress from (3.30). 

In this research we have implemented the Grant and Madsen model in a computer 

programme. We have chosen to use this approach rather than the Soulsby 

parameterisation (see appendix 2), because we are interested in the maximum shear 

stresses as well as the four distinct average shear stresses, which Soulsby does not 

give. Also, we prefer to work with the ‘real’ models rather than with the artificial, non-

physical parameterisation. 

We have used the procedure described above to obtain the maximum shear combined 

shear stresses. The average shear stresses were obtained by first calculating the 

enhanced current shear stress c

 

and maximum enhanced wave shear stress ˆw

 

and 

then assuming that 

Y

without WCI
full model results

without WCI
full model results

Average shear stress in
the direction of the current

Average shear stress
over the full period

Average shear stress
over half the period

0,0 0,2 0,4 0,6 0,8 1,0

X current
only

waves
only

without WCI
Soulsby
parameterisation
full model results

Maximum shear
stress

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 0,2 0,4 0,6 0,8 1,0
X current

only
waves
only

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 0,2 0,4 0,6 0,8 1,0
waves
only

X
current

only

Y

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 0,2 0,4 0,6 0,8 1,0
current

only
waves
only

X

Y

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Z without WCI
Soulsby
parameterisation
full model results

 

Figure 3.12

 

-

 

Dimensionless results for the Grant and Madsen model, with z0/h = 10-4, a0/z0
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2 2 2ˆ ˆ( ) sin ( ) 2 sin( ) coswc c w c wt t t

 

(3.36) 

and 

ˆ sin( )coswcx c w t

 

(3.37) 

after which the appropriate averaging procedures were followed. Our results are plotted 

in Figure 3.12, along with the Soulsby parameterisations for the maximum and the 

‘mean’ shear stress. Again, we see that the ‘mean’ shear stress according to Soulsby 

corresponds to our ‘average over the whole period in the direction of the current’. Also, 

we see that our values for the maximum shear stress deviate slightly from the Soulsby 

parameterisation.  

Finally, the Grant and Madsen calculation method is summarised in Box 3.2.  

3.2.6 Wave-current interaction models: Fredsøe (1984) 

As we did for the Grant and Madsen model, we will start the discussion of the Fredsøe 

model by looking at a wave-only situation and then adding a current. There are two main 

sources of information on this method: a journal article (Fredsøe 1984) and a book 

(Fredsøe and Deigaard 1992). Of these two, the book is more readable and explains the 

theory on a step-by-step basis. The outline below is based on this book; only the most 

important results and the theoretical ideas behind it will be presented here. Full 

derivations of the formulae used in the model can be found in the book. 

Similarly to Grant and Madsen, Fredsøe assumes that the eddy viscosity varies linearly 

with the distance from the bottom, but in contrast to Grant and Madsen he does not 

assume that it is constant in time. The result is a logarithmic profile in the boundary layer 

in which u* varies with time: 

*

0

( )
( ) ln

u t z
u t

z

 

(3.38) 

At the edge of the boundary layer, which Fredsøe assumes to be at a level z = z0 + (t), 

the boundary condition is that this velocity is equal to the bed orbital velocity u0. Note 

that u0 is also a function of time, since u0 = û0sin( t), and so is the boundary layer 

thickness (t).  

Fredsøe defines a (time dependent) dimensionless variable Z as 
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(3.39) 

With this definition the boundary condition can be written as: 
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(3.40) 

Having defined these parameters, Fredsøe now proceeds in the following way. The fluid 

motion inside and outside the boundary layer is governed by the Navier-Stokes 

equations. In an extremely simplified way these equations read: 

u p

t x z

 

(3.41) 

Or, in other words: the fluid inertia (du/dt) is balanced by a normal pressure gradient 

dp/dx and a shear stress gradient d /dz. Outside the wave boundary layer u = u0, and 

the fluid in frictionless so the shear stress term drops out: 

0u p

t x

 

(3.42) 

Inside the wave boundary layer we cannot neglect the friction term, but we can assume 

that the normal pressure gradient is equal to the normal pressure gradient outside the 

boundary layer. This means that we can substitute (3.42) into (3.43) to get: 

0u u
z t

 

(3.43) 

‘The’ bed shear stress is now defined as the shear stress according to (3.43) integrated 

over the whole wave boundary thickness, so: 

0
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(3.44) 

This integral is known as the momentum integral, and forms the basis of the Fredsøe 

method. This integral can be solved analytically; the result is a differential equation for 

(u0 – u). With the help of some clever algebra it is possible to write this result as a 
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differential equation in the previously defined variable Z, as a function of the wave phase 

( t): 

sk

a
tZf

td

dZ 0,,

 

(3.45) 

We will not give the full differential equation for Z( t) here; interested readers are 

referred to (Fredsøe 1984) or (Fredsøe and Deigaard 1992). It can be shown that for a 

flow problem (with given û0, 

 

and ks (or z0 = ks/30)), the solution of Z( t) depends on 

(a0/ks) only. 

The differential equation (3.45) can be solved (unfortunately this has to be done 

numerically) for any given flow problem to give Z as a function of the wave phase. Now 

that Z is known, we can also calculate u*( t) and thus the wave shear stress ( t) from 

the definition of Z (equation 3.39) for any given moment within the wave cycle. This 

means that we can also find the maximum shear stress or any averaged shear stress at 

will. Finally, we can obtain a wave friction factor fw by relating the maximum shear stress 

to the amplitude of the orbital wave motion like before (equation 3.25). 

When we know Z, the boundary layer thickness follows from (3.40). This boundary layer 

thickness is still a function of time. Fredsøe defines ‘the’ boundary layer thickness as m 

= ( /2). In other words: the calculated boundary layer thickness m is defined as the 

thickness halfway through the first half wave cycle. This is because for pure wave motion 

the problem is symmetrical: after the first half wave cycle the flow reverses and the 

boundary layer is destroyed; a new boundary layer starts to grow just like the first one. In 

other words: only the first half wave cycle has to be calculated. 

In principle, for any given flow problem the differential equation (3.45) must be solved. 

However, Fredsøe has given approximations for the friction factor fw and the boundary 

layer thickness m, based on his own results. They are function of a0/ks only: 

0.25
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(3.46) 
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k k

 

(3.47) 

In this approximation the wave shear stress is calculated using (3.25) with the friction 
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factor according to (3.46). 

These approximations are valid for (a0/ks) > 50. Fredsøe states that for lower values the 

theory breaks down because the relative size of the grains gets so large that the flow 

around the individual grains must be modelled in detail; a ‘bulk’ method like this one is 

no longer applicable. Interestingly, for rock structures in shallow water values of a0/ks are 

typically in the order of 10 (see also Box 2.1); this indicates that this theory has only 

limited validity for the purposes of the present research. In fact, this is not just a limitation 

to this particular theory, but to all Shields-based stability parameters because, almost by 

definition, they are all based on ‘bulk’ modelling of shear stresses and not on the flow 

around individual grains. 

Just like in the Grant and Madsen method, the basic idea behind the Fredsøe model 

does not change when a current is added to the situation: it only gets a little more 

complex. The treatment of this part of the theory in (Fredsøe and Deigaard 1992) is 

rather difficult; a simplified version is given below. 

It is assumed that, just like in the pure wave case, the velocity profile in the combined 

boundary layer is logarithmic, and all relevant parameters are allowed to vary in time as 

in equation (3.38). The shear stress velocity in this case is the combined shear stress 

velocity u*wc The boundary condition in this case is that at the edge of the boundary layer 

the total velocity utot(t) is equal to the (vector) addition of the wave orbital velocity u0(t) 

and a – still unknown – current velocity u .  

2 2 2
0 0ˆ ˆ( ) sin ( ) 2 sin( )costotu t u u t u u t

 

(3.48) 

Note that u

 

is not a function of time, as the currents is assumed to be steady. The 

parameter Z is now defined, analogously to the pure wave situation, as  
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(3.49) 

With these choices the formula for the boundary layer thickness, equation 3.40, does not 

change. 

Again, the equations of motion can be used to obtain a differential equation for Z( t), just 

like in the pure wave case. In the combined case, the function f in (3.45) is a function of 

both a0/ks and the relative current strength u / û0 (and the angle ). 
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When the current velocity at the edge of the boundary layer u

 

is known the combined 

wave-current problem can be solved, in the same way as for a pure wave problem: find 

Z( t) by solving the differential equation and use (3.49) and (3.40) to find the combined 

shear stress wc( t) = (u*wc( t))2 and the boundary layer thickness ( t). The only 

difference is that the problem is no longer symmetrical: during one half wave cycle the 

orbital velocity and the current work in the same direction, in the second half wave cycle 

they work in opposite directions. This means that the problem must be solved for the 

complete wave cycle; in this case ‘the’ boundary layer thickness is defined as the 

average of the values halfway through both half cycles, so m = ½ ( ( /2)+ (3 /2)). 

The problem is, of course, that u

 

is not known beforehand, so we need to calculate the 

combined bed shear stress and boundary layer thickness with an assumed value of u , 

after which we need to take a second step. The velocity profile for the current alone, 

outside the wave boundary layer, is given by: 

* lnc
c
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u z
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z

 

(3.50) 

in which u*c is the shear stress velocity related to the (combined) bed shear stress as felt 

by the current and zA is the apparent bed roughness (expressing the fact that the 

existence of the wave boundary layer is felt by the current as an increased roughness 

height). 

The bed shear stress as felt by the current can be calculated from the previous results; it 

is the averaged bed shear stress in the direction of the current 

 

wc avx, so 

avxwc

cu* 
(3.51) 

where 

 

wc avx is calculated as the average over the whole wave period of  
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(3.52) 

in which ( t) is the angle between the instantaneous direction of the combined shear 

stress and the current direction. This angle can be found from the geometry of the 

situation (see appendix 3). 
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The apparent bed roughness zA can now be found by matching the profile (3.50) with the 

assumed value of u

 

at the edge of the boundary layer: 
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mc ezz
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(3.53) 

In equation (3.53) zA is now the only unknown variable and can be calculated. Now that 

zA and u*c are known the current velocity profile outside the boundary layer is solved; we 

can for instance calculate the depth-averaged current velocity: 

* ln 1c

A

u h
u

z

 

(3.54) 

Usually, a flow problem is characterised by a given depth-averaged flow velocity. In that 

case, the value resulting from (3.54) can be compared to a given value. When they are 

not the same, the whole procedure, ie assume a new u , solve for Z( t), find wc and 

 

wc avx, find the velocity profile outside the boundary layer and find u must be repeated 

(iterated) until the right value of u has been obtained. 

So, we see that working with the Fredsøe model is quite laborious: for every flow 

problem we need to iterate to find the right solution, and within that iteration we need to 

(numerically) solve a – rather complicated – differential equation. In addition, we must 

always calculate the average bed shear stress in the direction of the flow 

 

wc avx, even 

when we are not interested in this parameter for our design (but, for instance, in the 

maximum shear stress). This means that this method is not very useful in practical 

design. 

Like for the Bijker and Grant and Madsen methods we have implemented the Fredsøe 

method in a computer programme, which we prefer to using the Soulsby 

parameterisation as explained before. Our results are plotted in figure 3.13. Again we 

see a very reasonable comparison between our results and Soulsby’s. Our results tend 

to be a little unstable/inaccurate for very low X values (wave dominated situations). 

It is noted that this computer programme is based in the full Fredsøe method (Fredsøe 

and Deigaard 1992), and not on the simplified version given above. Unfortunately there 

appear to be a few typing errors in the formulae as they are given in Fredsøe and 

Deigaard (1992), which we have corrected. The structure of the computer programme 

used in this research, and the way it deviates from the description given by Fredsøe and 

Deigaard, is explained in appendix 3.  
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In our programme, the differential equation that features in the method is solved with the 

simplest possible numerical scheme: Euler explicit. It is understood that some accuracy 

could be gained with a more advanced numerical scheme, but given the already quite 

reasonable results that were obtained with Euler explicit (see figure 3.13) this has not 

been implemented. 

3.2.7 Wave-current interaction models: advanced turbulence closures 

Both Davies, Soulsby and King (1988) and Huynh-Thanh and Temperville (1991) have 

presented a wave-current interaction model based on more advanced turbulence 

closures (but still based on the eddy viscosity concept). Davies, Soulsby and King have 

used the one-equation model (k-model); Huynh-Thanh and Temperville have gone one 

step further; they have used the k-

 

closure model (for detail on these turbulence closure 

models see appendix A). Both these wave-current interaction models are purely 
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Figure 3.13 - Dimensionless results for the Fredsøe model, with z0/h = 10-4, a0/z0 = 104 and 
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numerical; there is no physical background to explain so the treatment of these models 

in this thesis will be brief. We have not used these models in their full form in a computer 

programme, as we did for the previous three models, because of their numerical 

character. We will have to rely on the Soulsby parameterisation to get predictions of the 

combined shear stress. 

When we look at Figure 3.7 it appears that the maximum and mean shear stresses 

predicted by these two models are very similar to the predictions given by the Fredsøe 

model, so little is gained when these more sophisticated models are used. Calculations 

of our own, based on Soulsby parameterisation for various input parameters z0/h, a0/z0 

and , have confirmed this (see also the graphs in chapter 4). Fredsøe and Deigaard 

(1992) draw a similar conclusion when they compare the wave friction factors obtained 

from their own model with those obtained from more complex models (without explicitly 

mentioning which models; they talk in general terms of ‘one equation models’ and ‘two 

equation models’). 

3.2.8 Wave-current interaction models: conclusions 

When a combination of waves and a current is considered, the resulting combined shear 

stress can not be calculated as a simple (vector) addition of the shear stress caused by 

the waves and the current separately. The waves and the current influence each other in 

a non-linear way, which results in an enhancement of the resulting shear stresses. For 

this wave-current interaction various models have been proposed in literature; five of 

these have been found to be of interest to this research. We have shown how these 

models can be ranked in increasing order of complexity in terms of the turbulence 

closure schemes they apply: Bijker (1967) – Grant and Madsen (1979) – Fredsøe (1984) 

– Davies, Soulsby and King (1988)– Huynh-Thanh and Temperville (1991).  

The first three models have a physical background, and we have used this to implement 

them in a computer programme that calculates the resulting combined shear stress for a 

given flow problem. The results from this programme closely match similar results 

obtained by Soulsby (1997).  

This programme will be used to analyse the datasets in a later stage of this research 

The last two models are purely numerical and have no physical basis (other than the 

physics behind the assumed turbulence closure scheme). They have not been 

implemented in a computer programme. However, results obtained from a 

parameterisation of these models given by Soulsby (1997) indicate that they models 

predict results that are very close to those predicted by the Fredsøe model. We conclude 
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that, because these models are more complex and require a lot of computer capacity, 

but their results are indistinguishable from simpler models, they are of little practical use. 

For this reason only the models of Bijker, Grant and Madsen, and Fredsøe will be used 

in the remainder of this thesis. 

The Bijker model, Grant and Madsen model and simplified Fredsøe model are 

summarised in the boxes on the next pages for convenience. A summary of the full 

Fredsøe model is not easily given. The way in which the Fredsøe model is used in this 

research is described in appendix 3. 

Box 3.1 Summary of the Bijker model  

Input:  u depth averaged current velocity [m/s] 

h water depth [m] 

û0 amplitude of the horizontal orbital velocity near the bed [m/s] 

 

wave angular frequency ( =2 /T) [rad/s] 

a0 maximum excursion of the wave orbital motion (a0 = û0/ ) 

ks bottom roughness [m] or z0 = ks/30 [m] 

 

angle between directions of current and wave propagation [deg or rad] 

 

fluid density [kg/m3] 

Current friction:   
sk

h
C

12
log18  or  

2

0ln1

40.0

hz
CD  

 

Current shear stress:  2
2

u
C

g
c

  

or  2uCDc

    

Wave friction:  19.0
02.50.6exp sw kaf  for a0/ks > 1.57  

3.0wf    for a0/ks = 1.57 

Wave shear stress: 2
0ˆ

2

1
ˆ ufww

       

Combined shear stress: )cos()sin(ˆ2)(sinˆ)( 2 ttt wcwcwc
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Box 3.2 Summary of the Grant and Madsen model  

Input: uc(zr) flow velocity at reference height [m/s] 

zr reference height [m] 

û0 amplitude of the horizontal orbital velocity near the bed [m/s] 

 

wave angular frequency ( =2 /T) [rad/s] 

a0 maximum excursion of the wave orbital motion (a0 = û0/ ) 

ks bottom roughness [m] 

 

angle between directions of current and wave propagation [deg or rad] 

 

fluid density [kg/m3]  

Start iteration assuming pure wave conditions: 

 

= 0 and C

 

= 1 

Iteration 
Wave friction factor:  

Cf
k

a
C

CfCf
w

sww

424.017.0log
4

1
log

4

1 0

  

(solve by iteration or read from Figure 3.5) 

Enhanced wave shear stress (velocity):  2
0ˆ

2

1
ˆ ufwcw

 

   w
wu

ˆ
*

 

Maximum combined shear stress (velocity): Cwwc ˆˆ

 

   wc
wcu

ˆ
*

  

Boundary layer thickness:    wc
wc

u*

    

Enhanced current shear stress (velocity): 

2
0

*

0

**

ln

ln
)(

4

1

2

1

ln

ln

wc

r

wc

wc
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wc
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r
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z

z

u

zu

z

z

uu

  

   2
*ˆ cc u

 

Update relative current strength factors:   
2
*

2
*

ˆ wm

c

w

c

u

u

  

cos21 2C    

Instantaneous combined shear stress: 2 2 2ˆ ˆ( ) sin ( ) 2 sin( ) coswc c w c wt t t
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repeat iteration until values converge 

Box 3.3 Summary of the (simplified) Fredsøe model  

Input: u depth-averaged flow velocity [m/s] 

h water depth [m] 

û0 amplitude of the horizontal orbital velocity near the bed [m/s] 

 

wave angular frequency ( =2 /T) [rad/s] 

a0 maximum excursion of the wave orbital motion (a0 = û0/ ) 

ks bottom roughness [m] 

 

angle between directions of current and wave propagation [deg or rad] 

 

fluid density [kg/m3]  

Start iteration assuming a current velocity at the edge of the combined boundary layer u

 

Iteration 
Calculate instantaneous values for t 

 

[0,2 ] of:    

2 2 2
0 0ˆ ˆ( ) sin ( ) 2 sin( ) costotu t u u t u u t

       

solve ,
ˆ

,
)( 0

0

u

u

k

a
f

td

dZ

s 

Combined shear stress velocity:  
)(

)(
)(* tZ

tu
tu tot

wc

 

Boundary layer thickness:  1)( )(
0

tZezt

        

)(

cos)sin(ˆ
)(cos 0

tu

tuu
t

tot

 

Enhanced current shear stress:  )(cos)()( 2
* ttut wcwcx

  

Then calculate average properties: 

Enhanced current shear stress:  
2

0

)()(
2

1
tdtavxavxwc 

avxwc

cu* 

Combined boundary layer thickness: 
2

3

22

1
m  

Apparent roughness:   cu

u

mA ezz *
0

 

Depth-averaged flow velocity:  1ln*

A

c

z

hu
u

  

Angle between combined 

 

shear stress and current  direction:

 

Boundary layer parameter:

 

(see appendix 3 for full expression) 

iterate (choose new u ) until the calculated depth-averaged  
flow velocity matches the given value 

Combined velocity:
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3.3 Morison-type stability parameters 

3.3.1 Introduction 

In the previous paragraphs we have introduced stability parameters that use the bed 

shear stress to represent the load on the bed material. Physically speaking this is not a 

(completely) correct approach: shear stresses do not set a particle into motion, forces 

do. In addition, the theory behind shear-stressed based stability is only valid when the 

flow is steady and uniform, in other words: when there are no accelerations in the flow. 

In this paragraph we will study a stability parameter that is directly based on an analysis 

of the (stabilising and destabilising) forces on an individual bed particle, and that does 

take the acceleration of the flow into account. Because of these features this approach is 

commonly referred to as the Morison approach, after the theory for wave forces on piles 

(Morison et al 1950). Recently this approach has attained some attention in hydraulic 

engineering research, in an attempt to overcome some of the limitations of the shear-

stress based approach and find a design formula that is also valid in accelerated flow. 

Three MSc students devoted their theses to this subject: Dessens (2004) who 

investigated the stability of stones in accelerated flow through a contraction, and Tromp 

(2004) and Terrile (2004) who studied the stability of stones under shoaling waves. The 

following paragraph is mainly based on their work. 

Both Tromp and Terrile found that the threshold of motion of stones under pure wave 

attack could be described with a Morison-type stability equation in which both velocities 

and accelerations were included; their experiments show that for situations with the 

same velocities, but different accelerations, the behaviour of the stones is distinctively 

different. Unfortunately neither Tromp nor Terrile compares this approach to a more 

classic approach based on shear stresses, so we cannot conclude whether the Morison 

approach works better than a shear stress based approach, or not. 

Dessens drew a similar conclusion for accelerated flow through a contraction. Dessens 

did also use a shear-stress based approach, and plotted 

 

(using the local velocity and 

disregarding the accelerations) against transport (defined as a percentage of stones 

moved from a cross section). The result is given in Figure 3.14. It appears that cr = 

0.025 - 0.030 is a reasonable measure to describe the threshold of motion, which is 

considerably lower than the Shields value for uniform flow ( cr = 0.055). This result 

appears to contradict Schiereck (2001) who states that the stability in an accelerated 

flow is no less than the stability in uniform flow.  
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3.3.2 Forces on a single stone 

Figure 3.15 illustrates the forces that act on a bed material particle that is subjected to a 

passing flow. We can distinguish four different forces: 

Gravity: G. The first force on the stone is its own (underwater) weight G: 

gVG s )(

 

(3.55) 

in which V is the volume of the stone. 

 

Figure 3.14 – Pick-up rate against 

 

for accelerating flow (from Dessens 2004).  
Top: small stones. Bottom: large stones 
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Drag force: FD. Any body that is subjected to a flow will experience a drag force in the 

direction of the flow. In general this force can be calculated as: 

1
2

2

1
AuCF DD

 

(3.56) 

in which CD is an (empirical) drag coefficient that depends on the shape of the object, u 

is the local flow velocity and A1 is the cross sectional area of the object in the direction of 

the flow. It is immediately clear that using (3.56) for stones in a near-bed structure is not 

straightforward, since the shape of the stones will be irregular (which gives difficulties in 

determining CD), the ‘local’ velocity is not clearly defined (because the flow velocity will 

not be uniform over the water depth but follow some kind of velocity profile) and the 

cross sectional area A1 is not easily determined (stones will be partly embedded in the 

structure, partly shielded by other particles and partly protruding into the flow). 

Lift force: FL. When the flow passes the stone the presence of the stone will deflect the 

streamlines, as illustrated in Figure 3.15. This streamline contraction results in locally 

higher velocities on top of the stone and consequently a reduction in pressure (Bernoulli-

effect). The net result is a lift force perpendicular to the direction of the flow, calculated 

as: 

2
2

2

1
AuCF LL

 

(3.57) 

In this case CL is the lift coefficient and A2 is the cross sectional area of the stone 

perpendicular to the stone. Calculating the lift force on a stone in the bed protection is 

 
flow 

FL FR 

FD 

FM

 

G 

  

Figure 3.15 – Forces on a bed particle 
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just as difficult as calculating the drag force, for the same reasons. Because of the 

similarity in (3.57) and (3.58) it is common practice to combine FL and FD into one 

resultant force FR: 

AuCF BR
2

2

1

 

(3.58) 

in which the bulk coefficient CB combines the effect of the lift and drag forces, and it has 

been (implicitly) assumed that A1 = A2. In figure 3.15 we can see that FR = (FL
2 + FD

2), 

so we have CB = (CL
2 + CD

2). The resultant force acts at an angle 

 

to the horizontal. 

The magnitude of 

 

depends on the relative contributions of the drag and lift forces.  

Inertia force: FM. When the flow accelerates there will be a pressure gradient over the 

stone (again: Bernoulli-effect) that causes an extra force in the direction of the flow. 

Theoretically this force is equal to: 

dx

dp
Vdxdydz

dx

dp
FM 

(3.59) 

In (3.59) it is assumed that dp/dx is constant (over a stone diameter), which seems a fair 

approximation as long as the size of the stone is small compared to the spatial length 

scale of the pressure fluctuation. 

From the simplified equations of motion (1-D Euler equation) we know: 

x

u
u

t

u

Dt

Du

dx

dp

 

(3.60) 

Note that we have to use the material derivative Du/Dt here, in other words: the 

acceleration that causes the inertia force can be due to a temporal acceleration u/ t 

(non-steady flow, for instance waves – this is what Tromp measured) or a spatial 

acceleration u( u/ x) (non-uniform flow, for instance flow over a contraction – this is what 

Dessens measured). 

In practice stones will not behave exactly according to equation (3.59), because the 

stones are partly embedded and partly protruding so not the full volume V will be active; 

secondly it is not just the stones that will be accelerated but also a certain volume of 

water ‘hanging onto’ the stone, the so-called added mass. These two effects require the 

introduction of an empirical added mass coefficient CM. Using this coefficient, and 

substituting (3.60) into (3.59) gives for the inertia force: 
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Dt

Du
VCF MM

 

(3.61) 

Final remark: In this analysis the shear force (caused by the skin friction on the stones) 

is not included – it is not mentioned in any of the sources that we used for this overview 

(Dessens 2004, Tromp 2004, Terrile 2004). We assume that the shear force has been 

implicitly included in the drag force FD (since it is also proportional to u2 and also works 

in the horizontal direction). 

3.3.3 Stability 

The stability of an individual stone can now be assessed with the help of Figure 3.16, in 

which we have grouped FD and FL into FR for convenience. 

The stone will move about the support point S. It is assumed that the stone will start to 

move at a certain angle to the horizontal, called the escape angle . The magnitude of 

 

is determined by the position of the stone in question and the stone immediately next to 

it; the more exposed the stone is, the smaller 

 

will be. In general 

 

is found to be in the 

range 30o – 45o (Kirchner 1990, cf Dessens 2004, Tromp 2004). 

The stability of the stone can be found from a force balance in the direction of motion 

(Dessens 2004, Tromp 2004):  

sincos)cos( GFF MR

 

(3.62) 

so we can define a stability parameter : 

 

FR 

FM 

G 

 

-

  

S 

Direction of 
movement  

Figure 3.16 – Stability of a bed particle (after Dessens 2004) 



        

page 68  

G

FF

G

F MR sin

cos

sin

)cos(

 

(3.63) 

Substituting (3.55), (3.58) and (3.61), and letting A = (dn50)
2 and V = (dn50)

3 gives: 

50

50
2

sin

cos

sin

)cos(

2

1

n

nMB

gd

d
Dt

Du
CuC

 

(3.64) 

Usually the effects of 

 

and 

 

are implicitly included in the coefficients CB and CM 

(Dessens 2004, Tromp 2004) to give: 

50

50
2

2

1

n

nMB

gd

d
Dt

Du
CuC

 

(3.65) 

which is also the form that we will use in this thesis. It must be borne in mind that 

including the effects of 

 

and 

 

in CM and CB again emphasises that these parameters 

are a function of the position of the stone in the bed. In other words: CM and CB are 

related to the bed and not to an individual stone. This means that they cannot be found 

by laboratory measurements on a single stone (as for instance the drag coefficient on a 

cylinder can be experimentally determined). 

3.3.4 Magnitude of coefficients CB and CM 

The applicability of the Morison approach depends to a large extent on the accuracy with 

which we can determine the coefficients CB and CM. Dessens (2004) notes in his thesis 

that there is not a lot of literature to be found on this subject. The only coefficients that 

have been investigated extensively by others are the drag and lift coefficients CD and CL. 

Tromp (2004) gives the following ranges: CL = 0.15 – 0.22 and CD = 0.25 – 0.35. Since 

CB = (CL
2 + CD

2) we would expect a range for CB = 0.30 – 0.40.  

For CM there is even less information. The only source that both Dessens and Tromp 

refer to is Dean and Dalrymple (1991) who give a theoretical added mass coefficient for 

a cylinder with an ellipsoidal cross section:  

MM kC 1 (3.66) 

in which kM = b/a is (the inverse of) the length over width ratio of the ellipsoid. See also 

figure 3.17. 
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Figure 3.17 shows that the value of CM is quite sensitive to the orientation of the stone. A 

normal L/B ratio for stones in a bed protection is roughly L/B = 2 – 3. If the stone has a 

‘flat’ orientation we have kM = 1/2 - 1/3 (see definition of a and b in figure 3.17) and CM = 

1.33 - 1.50; when the stone is standing upright we get kM = 2 – 3 and CM = 3 – 4. So, a 

different orientation easily leads to a change in CM by a factor 3.  

There are a few reasons why the ‘real’ value of CM may deviate from this theoretical 

value. Firstly, the real value will include an angle factor depending on the escape angle 

. Secondly, equation (3.67) is assumes flow on both sides of the object. This is not the 

case for a partly embedded stone in a bed protection. For this reason Tromp (2004) 

proposes to use only half the value of kM. In that case we would expect kM to be roughly 

0.16 – 1.50, depending on the orientation of the stone. It is not clear why exactly we 

should take half the value, but in any case it is evident that kM may be reduced a little. 

Finally, (3.67) is a theoretical expression that assumes potential (inviscid) flow around 

the object; in other words that the development of boundary layers and a wake behind 

the object will not occur. In reality these viscous effects can not be neglected which 

leads to different kM-values. For circular pile sections in a real fluid Dean and Agaard 

(1970, cf Dean and Dalrymple 1991) measured kM = 0.33 (instead of kM = 1 as would 

follow for potential flow). So we see that kM can be reduced even further.  

All things considered, the best estimate for CM we can expect for theoretical reasons is 

somewhere in the range 1.2 – 3. Given the reasons for reduction of kM discussed above, 

and the empirical knowledge that stones in a bed protection are more likely to have a flat 

 

Figure 3.17 – Theoretical inertia coefficient CM for cylinders of ellipsoidal cross section (from Dean and 
Dalrymple 1991) 
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orientation we expect the lower end of this range to be more probable. 

Both Dessens and Tromp measured CM and CB in their experiments. Tromp placed 

stones on a gently sloping bed (1:30) in a laboratory flume and let (regular) waves run up 

the slope. The idea behind this set-up is that the sloping bed allows measurements at 

various water depths, and thus various combinations of velocities and accelerations, to 

be made in the same experiment without having to adapt the generated wave height and 

wave period. The disadvantage is of course that the stability of the stones is influenced 

by the slope; this effect is not mentioned explicitly in Tromp (2004). However, given the 

gentle slope (1:30 

  

= 2o) this effect will be limited.  

Tromp used video observations to study the threshold of motion of the stones at two 

different locations and simultaneously measured the ‘near-bed’ velocities (in fact 

velocities at some 4 cm above the bed) with an Electromagnetic Flow Sensor (EMS). 

The accelerations were obtained by differentiation of the velocity signal. In this way the 

exact values of the velocity and accelerations at the moment the stone starts to move 

can be determined and the force balance (3.63) can be made up. In principle this leaves 

two equations (the force balances at the two measurement locations) and four unknowns 

( , , CB and CM). It is assumed that 

 

˜ 

 

(which seems reasonable) so cos(

 

- ) ˜ 1. 

This eliminates the influence of . Solving these equations gives the sought values for 

CB and CM, depending on an estimate of the escape angle . For 

 

= 30o, Tromp found 

CB = 0.4 and CM = 2.7; for 

 

= 45o the values were CB = 0.55 and CM = 3.75. So we see 

that the exact values of CB and CM cannot be accurately measured but require an 

estimate of the escape angle. In any case, we observe that for both escape angles the 

ratio CM/CB = 6.8.  

Dessens (2004) performed similar experiments; he used the classic ‘coloured strips’ 

experimental set-up and defined the threshold of motion as a certain percentage of 

stones moving from a strip. Applying a similar technique as Tromp (ie directly solving the 

force balance at two locations) Dessens found CB = 0.10 and CM = 3.92 for 

 

= 30o 

(CM/CB = 39.2) and CB = 0.4 and CM = 5.55 for 

 

= 45o (CM/CB = 13.8). We see that both 

the absolute values of the parameters and the ratio CM/CB differ greatly from the results 

by Tromp. It is not clear how this difference in parameter values comes about; this may 

be a subject for further research. At the moment, all we can say is that the values 

reported by Tromp are more within the expected ranges.  

3.3.5 Concluding remarks 

It is interesting to note that because Tromp used a sloping bed his waves were 

asymmetrical (shoaling). Because of this asymmetry the wave velocity and the wave 



Design of granular near-bed structures in waves and currents 
CHAPTER 3 LITERATURE SEARCH     

THESIS March 2006  page 71 
3/24/2006 

acceleration are not 90o out of phase as they would be if we apply linear wave theory; 

instead there is a moment in the wave cycle (just before the passage of the wave crest) 

in which the velocity and the acceleration are both large. It is at this point that the stones 

start to move (Tromp 2004). A similar analysis, with similar results, was later performed 

by Terrile (2004). Terrile proposes a way to include this asymmetry in the Morison 

parameter, unfortunately this method requires knowledge of the variation of the 

acceleration in time (during the wave cycle). We do not have this information in the data 

sets that we will use in this present thesis, so we can not use this method. Theoretically 

we could obtain this temporal information by using a higher-order wave theory, but 

Terrile has not given any validation of his asymmetry parameter against such theoretical 

results (his proposal is solely based on his own velocity and acceleration 

measurements). Therefore we will consider this method outside the scope of our present 

research, and we will only use linear wave theory in our analysis (and thus necessarily 

neglect the effects of wave asymmetry). Interested readers are referred to Terrile (2004) 

or Terrile et al (2006) for more information on this topic. 

Finally, we remark that in the previous discussions it has been (implicitly) assumed that 

CB and CM are constants. There is no reason to believe that this is necessarily the case. 

In fact, in the design of vertical piles under wave action (the field of origin of the Morison 

approach) the values of these coefficients are functions of the fluid motion and the size 

of the object, expressed in parameters like the relative orbital excursion a0/d or the 

Keulegan-Carpenter number (KC =û0T/d). This is also suggested by Terrile et al (2006). 

3.4 Turbulence-based stability parameters 

3.4.1 Introduction 

Turbulence is an important phenomenon in the design of hydraulic structures. Intuitively 

it will be clear that in a more turbulent flow the water motion is more ‘violent’ and the 

damage to a structure will be larger. In the present design practice this phenomenon is 

not neglected; increased turbulence levels can be accounted for by the use of a KV factor 

(see chapter 2 and appendix 1). For many types of structure the increased turbulence 

levels (in terms of the turbulence intensity r) can be calculated, for instance with the 

formula of Hoffmans for flow after a weir or backward-facing step (see Schiereck 2001).  

This approach has one major disadvantage: the KV factor acts as a multiplier to the 

current velocity u, so when u = 0 the resulting stability parameter will also be zero, 

indicating that there can be no damage. Physically, this is not true. The classic example 

in this case is the reattachment point in the complex flow pattern after a weir or a 
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backward-facing step, where we know from experience that severe damage to the bed 

protection occurs even though theoretically the mean flow velocity is zero.  

This insight has led researchers to believe that it could be a sensible approach to find a 

stability parameter that explicitly incorporates the turbulence characteristics of a flow. 

This paragraph will briefly introduce the most recent advances that have been made in 

this field. Most of the theoretical concepts in turbulence theory, that the reader may not 

be familiar with, are explained in appendix 1. 

3.4.2 Turbulence forces 

Hofland (2005) describes two different sources of turbulent forces: quasi-steady forces 

(QSF) and turbulence wall pressures (TWP). These will be discussed next. 

Quasi-steady forces: In a turbulent flow the instantaneous flow velocity can be 

described as a fluctuation around a mean value: u = u

 

+ u’. Since the dominant forces 

(drag force and lift force) are related to the flow velocity these, too, will have a mean and 

a fluctuating part. This means that the forces on a stone are not constant, even when the 

mean velocity u is constant; instead the magnitude of the forces will have a certain 

probability distribution. It is assumed that rare events with high forces are responsible for 

the damage to a structure. (This is also the main idea behind the present use of KV-

factors).  

These fluctuations are not random (even though they are often described as such); 

instead, they are related to certain coherent structures in the flow (ie vortices). When we 

look at the definition of turbulent shear stresses: 

''vu

 

(3.67) 

we see that we must have both a fluctuation in the horizontal velocity (u’) and a 

fluctuation in the vertical velocity (v’) occurring at the same instant (strictly speaking 

turbulence is essentially a three-dimensional phenomenon; however we will only discuss 

two dimensions here). In addition u’ and v’ must have an opposite sign in order for 

 

to 

be positive. In other words: we must either have a fluid package with a higher velocity 

than the surrounding fluid moving down, or a package with a lower velocity moving up. 

The first phenomenon is called a sweep, the second phenomenon an ejection. Hofland 

(2005) states that sweeps are more important for the stability of stones in a bed 

protection than ejections are. This provides us with a good mental picture of what causes 

quasi-steady forces: an instability in the flow makes fluid from higher up in the water 

column, where the velocities are higher, come ‘crashing down’ onto the bed. This also 
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means that the origin of the quasi-steady forces are to be found in the entire water 

column, outside the immediate influence of the bed itself. 

Turbulence wall pressures: when a turbulent velocity fluctuation occurs, anywhere in 

the fluid, it causes a fluctuation in pressure (Bernoulli effect). These pressure fluctuations 

are propagated through the water column and eventually reach the bed, causing a 

fluctuating force on the stones. This phenomenon is not related to the bed at all, even for 

a completely smooth wall TWP can occur. The pressure forces work on the entire 

volume of the stone and are thus related to the inertia forces that were discussed in the 

previous paragraphs. In other words, TWP relate to fluctuating accelerations (a’) 

whereas QSF relate to fluctuating velocities (u’).  

Hofland (2005) studied these phenomena and found that both QSF and TWP were 

responsible for the motion of stones in a bed protection: the former have the capacity to 

actually transport a stone over some distance, the latter have a much shorter duration 

and only seem to make a stone rock. However, this rocking motion caused by TWP 

makes a stone more vulnerable to flow attack (by QSF) because its exposed area (A) is 

increased and its escape angle ( ) reduced. Hofland suggests that stones are entrained 

in the (exceptional) case that the two forces occur simultaneously – the turbulence wall 

pressures give a stone an initial push, after which the quasi-steady forces carry it away: 

“rock and roll”. 

3.4.3 Stability parameters 

With these two new phenomena we can write a theoretical, all-encompassing stability 

parameter that includes all of the previously described theory (Hofland, 2005)  

gd

aadCuuC MB )'(' 2 

(3.68) 

This parameter must be seen as a theoretical end-goal of the currently ongoing research 

in this field. Before we can use this expression in practice a lot of questions need to be 

answered, most notably: 

 

how must we define u, u’, a and a’ and how must we calculate these parameters 

for a given flow problem? Can we use analytical expressions or do we need to 

refer to numerical modelling techniques? 

 

What should the value of the coefficients CB and CM be? (in this aspect it is 

interesting to note the absence of the factor ½ in front of CB in equation 3.68) 
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At the moment the research in this field is still ongoing; it has not advanced far enough to 

answer these questions completely. It will take a few more years before a stability 

parameter like (3.68) can be used for design. 

Despite all that, a few researchers have proposed parameters that include turbulence 

characteristics. In these parameters the acceleration part of (3.68) is omitted (and 

implicitly included in the velocity part). In other words: these parameters only model 

quasi-steady forces, not turbulent wall pressures. 

All parameters are based on numerical models of the flow. In these models the 

turbulence parameters (like lm, k, 

 

and so on, see appendix 1) can be calculated 

anywhere in the flow. The two formulas that we will introduce here are both based on the 

output of a k-

 

model; they differ only in the way in which they incorporate the output of 

such a model in a stability parameter. This immediately reveals a clear disadvantage of 

these methods: they require a numerical fluid model to be run for each designed 

structure. Building and running such a model is no easy task and requires some skill and 

experience (and of course specialist computer software). This may be another reason 

why it is expected that it will take a while before these methods will be fully accepted for 

design purposes. 

The first stability parameter was proposed by Jongeling et al (2003): 

gd

ku
mh

2)(

 

(3.69) 

in which k is the turbulent kinetic energy calculated from the k-

 

model and the brackets 

denote that (u

 

+ k)2 must be averaged over an influence height hm. In this case k is a 

function of the height above the bed and follows immediately from the output of the k-

 

model. Appendix 1 shows that k ˜ ½ u, so the term (u

 

+ k) effectively means “add 

½·

 

times the standard deviation to u”. 

Jongeling et al propose to use 

 

= 6 and hm = 5d + 0.2h (in which d is the stone diameter 

and h is the water depth). Both these proposals follow from a curve fitting procedure and 

do not seem to have any physical meaning. The use of 

 

= 6 is not surprising, this 

means that the forces responsible for the motion of the stones are roughly three 

standard deviations larger than the mean value. This is the same assumption as in the 

presently used theory behind the use of KV factors. 

Hofland (2004, 2005) proposes another stability parameter: 
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(3.70) 

This parameter also has the term (u

 

+ k), again with 

 

= 6. The main difference with 

Jongeling’s parameter is the use of the mixing length lm (remember that lm is a measure 

of the size of a turbulent eddy – see appendix 1). Here lm is understood to be a function 

of the level above the bed: lm = lm(z). So, the ‘recipe’ expressed in the numerator of 

(3.70) is: at any height z, take the local increased velocity (u

 

+ k) and average that 

over the local mixing length (from z - ½·lm to z + ½·lm). This gives an average velocity 

over the whole eddy that occurs at the level z, in other words the Hofland formula 

explicitly accounts for the fact that the entrainment of the stones in the bed protection is 

related to coherent structures and not to individual velocity fluctuations. The result is 

then weighed with a factor lm/z, so larger eddies are given more influence than smaller 

ones, and eddies that are further away from the bed are given less influence than eddies 

that are close to the bed. After this has been done for all z (so for the entire water 

column) it is assumed that the maximum of the thus obtained velocities (squared) is 

responsible for the entrainment of the stones and this value is used in the stability 

parameter. 

The factor k in (3.70) is a function of z, and follows immediately from the k-

 

model as 

before. The only remaining problem in (3.70) is the determination of the mixing length lm. 

The most obvious way to do this is to let lm follow from the output of the k-

 

model as 

well: 

)(

)(
~)(

2/3

z

zk
zlm

 

(3.71) 

If we would use this relationship we would have a measure of the mixing length that 

corresponds to the actual flow pattern around the structure that we have modelled. 

Unfortunately, Hofland reports that a mixing length calculated in this way does not fit his 

data well; instead he proposes to use the standard Bakhmetev distribution: 

h

z
zzlm 1)(

 

(3.72) 

However, we must realise that the Bakhmetev mixing length distribution is related to fully 

developed turbulent flows with a logarithmic velocity profile; this is not necessarily the 

case in the flow around the structure that we are trying to model – in fact, it is an 



        

page 76  

assumption that we want to drop, which is why we set out to do complicated turbulence 

modelling in the first place. This is a possible weak point in this model. Hofland (2005) 

even goes as far as to state that this is a shortcoming of the k-

 

model as such: 

apparently k is predicted reasonably well, but 

 

(and consequently lm) is not. 

Hofland (2004, 2005) presents a relation between his stability parameter and the 

entrainment rate of stones from a bed protection E (see paragraph 3.5.5) as the 

(conservative) result of a curve fitting procedure on experimental data for a wide range of 

non-uniform flow situations like long sills, short sills, gates and backward-facing steps: 

2
,

8105 crlmlmE

 

(3.73) 

in which the critical value of lm is equal to lm,cr = 1.2. A plot of equation (3.73) along 

with the data on which it is based, are given in figure 3.18. As can be seen, the scatter is 

still large. 

3.5 Damage parameters 

3.5.1 Transport 

One way to look at damage to near-bed structures is to acknowledge the broad similarity 

between movement of stones and sand transport as studied by the adjacent field of 

morphology, and to see to which extent morphological sand transport formulas can be 

used to predict stone movement. Transport is then defined as a certain volume of 

material moving through a cross section per unit width and unit time, denoted qs (units 

m3/m2s or m2/s). In dimensionless form transport is expressed as a parameter q defined 

 

Figure 3.18 – Dimensionless entrainment against lm (from Hofland, 2005) 
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as 

3
50n

s
q

dg

q

  

(3.74) 

This dimensionless transport can be linked to the (also dimensionless) bed shear stress 

 

by a variety of transport formulas. It is important to realise that in morphology a 

distinction is made between bed-load transport (rolling and/or sliding movement of bed 

material along the bottom) and suspended transport (movement of particles higher up in 

the water column); these two phenomena are usually described by different formulae. Of 

course, only bed-load transport is of interest to us here, and we should only seek to 

apply morphological bed-load formulas. 

When applying these formulas, it must be borne in mind that they were originally derived, 

and tested, for applications in river morphology. This means the translation to our 

purposes leads to four problems:  

 

the diameters of stones in a granular near-bed structure is well outside the range 

of validity of these formulas 

 

stones in near-bed structures are more angular than river sand grains, so these 

formulas may under-predict their stability and thus over-predict transport rates. 

This is probably not a very large effect given Shields’s original conclusion that the 

grain shape did not influence stability much (Shields 1936). 

 

most formulas were derived for currents only; there are only a few that 

incorporate the effects of waves.  

 

all formulas assume, explicitly or implicitly, that there is a threshold of motion and 

are all based on data with -values above this threshold. As we have seen 

before, when we are designing near-bed structures we want to reject the 

assumption of a threshold of motion, and we are interested in transport rates at 

low -values. This problem, though perhaps the least obvious of the four, could 

be the main reason why morphological transport formulas are not directly 

applicable to our purposes. 

3.5.2 Transport by currents: Paintal  

Important research in this field was conducted by A.S. Paintal in the late 1960s (Paintal 

1969). Paintal was one of the first to recognise the importance of rejecting the assumed 

existence of a threshold of motion, or in his own words:  
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“There does not appear to be any limit below which there is no movement. At 

very, very low shear values one has to wait for a longer time to see the 

movement, as the probability of movement becomes very small. But this 

probability of movement is never zero except in still water” (quotation from Paintal 

1969).  

He set out to analyse and measure transport rates at low hydraulic loads (ie low -

values). As an added advantage, he conducted his experiments on relatively coarse-

grained and angular material, thus solving the first, second and last of the problems 

mentioned above; only the influence of waves remained un-investigated. 

Paintal recognized that the movement of stones at low -values is essentially stochastic 

in nature; stones move in discrete ‘steps’, rolling and sliding a short distance along the 

bottom before being re-deposited again. The distribution of these steps is random in time 

and space, and there is no general ongoing movement. In the first part of his PhD thesis 

Paintal sets up a theoretical, probabilistic model describing this type of movement, from 

which he was able to show that the dimensionless transport rate 

 

is a function of 

 

only. For more details about Paintal’s model and the assumptions behind it, see 

appendix 4.  

After completing this model, Paintal conducted laboratory experiments to find empirical 

values for the remaining unknowns is his model. The result is the following transport 

formula: 

16181056.6q   
for 

 

< 0.05  (3.75a) 

5.213q        
for 

 

> 0.05  (3.75b) 

The first formula is based on Paintal’s own research, the second formula is based on 

data sets from other researchers (Paintal 1969).  

This formula was later corrected by WL|Delft Hydraulics for temperature effects and the 

apparently false assumption of a hydraulically rough bottom by Paintal in one of his test 

series. The corrected formula yields: 

11101064.1q    
for 

 

< 0.085  (3.76a) 

5.213q          
for 

 

> 0.085 (3.76b)  
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So the second formula remains unaltered, only the transition point (

 

= 0.085) has 

moved to ensure a correct transition between the two formulas. 

Perhaps confusingly, the Paintal formula was corrected a second time by Mosselman 

and Akkermans (1998, cf Hofland 2005), also -mainly- for the effects of the bed not 

being hydraulically rough. This second correction yields the following formula: 

9.87103q      
for 

 

< 0.05  (3.77) 

In this thesis we will accept this last version of the Paintal formula as the ‘correct’ one. 

Promising as they may seem, these formulas have not yet been very commonly applied 

in engineering practice. Looking at the exponent of 

 

in these formulas (and especially 

the original Paintal formula) may explain why: the transport rate varies with the 16th 

power of the shear stress, and since 

 

~ u2, it varies with the 32nd power of the velocity. 

Apart from the strange, perhaps unfamiliar and ‘suspicious’ magnitude of this exponent 

(more classic morphological formulas, for higher -values, predict transport rates 

varying with the 5th power or so to the velocity) this also means that a small inaccuracy in 

the estimate of the velocity results in large deviations of the predicted transport. Paintal 

himself seems to be aware of this consequence of his formula when he writes that  

“the 16th power correlation […] stipulates that a small increase in shear stress 

causes a noticeable change in bed load transport” (quotation from Paintal, 1969) 

Because Paintal’s formula is potentially still very useful in engineering, these matters 

have been investigated further. De Boer (1998) also conducted transport measurements 

for low hydraulic loads and found much lower values than Paintal did. His formula is (De 

Boer 1998): 

5.77800q      
for 

 

< 0.1  (3.78) 

The differences between Paintal and De Boer have, at least partly, been explained by 

Forschelen (1999), who found that they could to a large extent be attributed to a different 

definition of bottom roughness by the two researchers (again indicating how important 

this parameter can be, see also Chapter 2), and to an underestimation of friction effects 

caused by the side walls of the flume in De Boer’s experiments. Forschelen also did 

some transport measurements of his own, which seem to be more in line with Paintal’s 

original findings. Unfortunately Forschelen’s data set is too small to fit a transport 

formula to.  
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All transport formulas discussed above, and the datasets they are based on, are given in 

Figure 3.19. Datasets were obtained from Paintal (1969) and Forschelen (1999). 

Paintal, de Boer and Forschelen conducted their respective researches for currents only. 

The combined effect of a combination of a current and waves was studied by Bijman 

(2000). He did transport measurements in a laboratory flume and concluded that, for his 

experiments, the transport rate could best be expressed as a Paintal-type formula in 

which 

 

is calculated using the mean combined wave-current shear stress according to 

Grant and Madsen (see paragraph 3.2): 

49.454.1 GMq

  

(3.79) 

Bijman also studied other wave-current interaction models and found that the Bijker 

model did not fit his data very well, whereas there was hardly any difference between the 

models of Fredsøe and Grant and Madsen. Bijman based his analysis on Soulsby 

parameterisation only, he did not use the complete models as described in paragraph 

3.2.  

3.5.3 Transport by waves 

Bijman’s extension to Paintal’s work appears to be the only source of information on 

transport by waves and currents for low -values. In coastal morphology literature we 
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Figure 3.19 - Transport formulas and the data on which they are based 
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can find some formulations for transport by waves, or waves and currents combined, but 

they all assume – either implicitly or explicitly – the existence of a threshold of motion 

and are only tested for -values above this threshold. For completeness we will briefly 

introduce the best-known (and most commonly applied) of these transport formulas 

below. 

When waves are symmetrical they will cause no net transport in the wave propagation 

direction; they will only move the bed material back and forth. The amount of material 

that is moved during half a wave cycle qw1/2 can be estimated, for instance with the 

formula given by Madsen and Grant (1976, cf Soulsby 1997): 

50

3

50

2/1

ˆ

5.12

n

w

ns

w

dg

dw

q

  

(3.80) 

in which ws is the particle fall velocity and wˆ is the maximum wave-related bed shear 

stress (eg calculated with Jonsson’s equation (2.23). When waves are not symmetrical 

this formula can be used to estimate the net transport as the difference between q1/2 

under the wave crest and q1/2 under the wave trough. 

Van Rijn (1993) gives the following validity ranges for this formula: 300 m 

 

dn50 

 

2800 

m and 1 s 

 

T 

 

6 s (without further specifying how T is defined – as Tm or Ts or 

otherwise). This means that its applicability for design of granular near-bed structures is 

limited, both in terms of grain size as in terms of load parameter (common design waves 

have periods that are far larger than six seconds). 

Another formula that can be used for this purpose is Hallermeier (1982, cf Levit 1996) 

50
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(3.81) 

in which 

 

is the wave angular frequency and 0û is the maximum orbital velocity at the 

bed. The ranges of validity are given by Van Rijn (1993) as 150 m 

 

dn50 

 

4200 m 

and 1 s 

 

T 

 

9 s. These ranges are a little closer to what we need for design purposes, 

but still not close enough; especially in terms of grain size. In addition, Van Rijn warns 

that this formula tends to over-predict transport rates for 

 

< 30 – which is unfortunate for 
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our purposes, since we are mainly interested in low-mobility transport.  

Hallermeier uses a stability parameter that is not based on the shear stress 

 

but directly 

on the near-bed velocity û0. We will see this type of stability parameter again when we 

discuss erosion profiles for near-bed structures in paragraph 3.6. In order to avoid 

confusion we will denote this type of stability parameter with the Greek symbol theta ( ) 

in this thesis; we will reserve the symbol 

 

exclusively for shear-stress based stability 

parameters. Since we know that w = ½fwû0
2 we see that the only difference between this 

parameter and a (wave) shear stress based parameter is the absence of the wave 

friction factor fw. This friction factor is only dependent on ks/a0 = 2dn50/(û0/ )) and so the 

only ‘missing’ parameter in this formulation is the angular frequency . In this light it is 

not surprising that 

 

appears separately in Hallermeijer’s formula. 

Despite the fact that these two equations use two different dimensionless transport 

parameters and two different dimensionless stability parameters, we do see that they are 

both of the form (transport) = a·(stability)b, which is similar to Paintal’s formulation.  

The ‘Madsen and Grant’-type transport parameter uses the particle fall velocity and 

therefore looks different from the way we previously defined dimensionless transport 

(see equation 3.75). However, when we realise that for coarse particles the fall velocity 

can be written as (Van Rijn (1984), cf Soulsby 1997) 
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(3.82) 

we can write the transport parameter as 
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(3.83) 

so the difference comes down to a factor 1.1 which is of no practical interest (and will 

implicitly be present in the fit parameter a in 

 

= a b, anyway) 

3.5.4 Transport by currents and waves 

Perhaps the best-know bed-load transport formula for a combination of waves and 

currents is Bijker (1971, cf Van Rijn 1993): 
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1
27.0exp50* ns dbuq  (3.84a) 

in which 

 

= (C/C90)
1.5 is the ripple factor, C is the Chézy coefficient, C90 =18log(12h/d90) 

is a ‘Chézy coefficient’ based on d90, and 

 

and u* are defined in the ‘standard’ way as 

 

= wc/( g dn50) and u* = ( c/ ). The value of the fit parameter depends on the 

circumstances, commonly used values are b = 5 for breaking waves and b = 1 for non-

breaking waves. We can write equation (3.85a) in dimensionless form by dividing by 

(g d3)1/2: 

wc
cq b

1
27.0exp  (3.84b) 

which brings the formula in line with other formulations (eg the Paintal formula).  

Van Rijn (1993) notes that Bijker based this formula on earlier work by Kalinske (1947), 

who developed a theoretical expression for the bed load based on a probabilistic 

analysis of the flow characteristics, and Frijlink (1952) who fitted Kalinske’s formula to 

experimental data. The factor (b ) is commonly called the “transport part”, while the 

exponential part on the right hand side of the equation is called the “stirring up part”. 

Note that the first part of the equation is based on the current shear stress alone, while 

the second part is based on the combined shear stress. This leads to the often-quoted 

dictum “the waves stir up the sediment while the current transport it”.  

3.5.5 Entrainment 

In more recent reports like the MSc theses of Tromp (2004), Dessens (2004) and Terrile 

(2004), and the PhD thesis of Hofland (2005), damage is not expressed in terms of 

transport at all, but in terms of the entrainment E. This parameter is defined as the 

volume of displaced stones per unit of bed area and time and has the units m3/m2s or 

m/s; alternatively it can be defined as the number of displaced stones per unit of bed 

area and time: this is called number entrainment En and has the units 1/m2s.  

Compared to transport, entrainment can be seen as a more direct measure of damage: 

in simple terms it measures the ‘hole that is left behind’ after the stones have moved. 

Exactly how far the stones move and where they end up is not of interest. It can be 

argued that, for this reason, entrainment is a more useful damage indicator than 

transport for design purposes. 

Both entrainment and number entrainment can be made dimensionless, in the following 
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ways: 
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(3.85) 

and 
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50  
(3.86) 

In classic transport measurements (such as the ones conducted by De Boer, Forschelen 

and Bijman) transport is defined as the product of pickup and a displacement length. 

Entrainment is related to the first of these two, and can be calculated from these 

experiments even when the original results were presented in terms of transport. A way 

to do this, based on an assumed displacement length distribution, is given by Hofland 

(2004, 2005). Hofland derived this method for currents only, the validity of this method 

for experiments with waves and currents (ie Bijman) has not been shown; it can be 

expected that the displacement length distribution under waves deviates strongly from 

the assumed displacement length distribution under currents. 

3.5.6 Erosion area 

A third way to express damage takes its inspiration from the design of breakwaters and 

revetments, where the damage is expressed in terms of the dimensionless erosion area 

S (eg in the Van der Meer formulas, cf Schiereck 2001). 

The erosion area Ae is measured from experiments and is defined as the area of 

‘missing’ material in a cross section after the load has been applied. The parameter S is 

then defined as: 

2
50n
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d
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(3.87) 

Time is no longer present in this parameter. When a measure of time is also needed in 

the damage indicator, the most common way is to divide by the square root of the 

number of waves N instead of some absolute measure of time. This already indicates 

that this parameter strongly related to wave-dominated situations. It is not clear 

beforehand how this parameter can be used in the combined case of waves and a 

current. 



Design of granular near-bed structures in waves and currents 
CHAPTER 3 LITERATURE SEARCH     

THESIS March 2006  page 85 
3/24/2006 

The advantage of using this stability parameter is that it links the design of near-bed 

structures to the related field of breakwaters and revetments. 

3.6 Design methods 

3.6.1 Critical scour method (De Groot et al 1988) 

Many authors have brought forward theoretical concepts and ideas related to the design 

of granular near-bed structures; only a few have proposed practical design methods 

based on these concepts. One interesting exception is a publication by De Groot et al 

(1988), who propose a design method based on transport.  

De Groot et al reason that the most important parameter in the design of near-bed 

structures is a layer thickness (eg the thickness of the armour layer of a bed protection, 

or the effective cover thickness on top of an offshore pipeline), and so damage can best 

be expressed as the reduction (over time) of this layer thickness. The core of their 

design method is that this reduction can be related to a gradient in the transport capacity 

along a structure. This gradient can be estimated by realising that the transport (of 

stones!) is zero in front of the structure and rises to some maximum value which can be 

calculated by a suitable transport formula, eg Paintal. The length over which the 

transport rises from zero to the maximum value, called the scour length Ls, must be 

estimated. De Groot et al give a few examples of scour length estimates in common 

situations, depending on the type of structure; see figure 3.20. 

The scour velocity (SV), describing the rate at which the layer thickness decreases, can 

now be defined as: 

s

ss

L

q

dx

dq
SV max,

  

(3.88) 

Note: even though De Groot et al do not mention this in their publication, this formula is a 

direct analogy of the basic morphological balance equation ?z/?t + ?S/?x = 0. 

The total scour SC now follows as the scour velocity multiplied by the period of interest 

(often the lifetime of the structure); or, assuming that the load and thus the scour velocity 

is time-dependent, as the integral  

SVdtSC
lifetime

  

(3.89) 
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When we assume that the damage occurs gradually during a storm with duration D 

equation (3.89) reduces to SC = SV·D. 

The structure must be designed in such a way that this total scour is less than a certain 

critical value; this is why De Groot et al refer to their method as the critical scour method. 

This critical scour can for instance be taken equal to the thickness of the armour layer.  

De Groot et al report to have used this method in a probabilistic calculation, in other 

words they have evaluated that probability that the total scour is less than a critical scour 

depth D. (In common probabilistic design terms this means evaluating the limit state 

function Z = D – SC). In this way they have evaluated the stability of a rubble mound sill 

in a tidal area (in casu the Eastern Scheldt Storm Surge Barrier), using a time-dependent 

load based on a probability distribution of tidal differences and the Paintal formula to 

calculate transport.  

 

Figure 3.20 - Scour length Ls in various circumstances (taken from De Groot et al 1988) 
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Their calculation is done with a Monte Carlo analysis (level III), in which all relevant 

parameters were varied, also the fit parameters in the Paintal formula. Their results are 

somewhat surprising: the uncertainty in the final result was mainly dominated by the 

uncertainty in the current velocities and by the uncertainty in the bottom roughness. The 

fit parameters of the Paintal formula were varied with a factor 100 in this analysis, in line 

with the large uncertainty surrounding these values as discussed in the previous 

paragraph; still, the final result did not depend much on a variation of these parameters. 

This is a promising result, which means that this design method can be applied even 

though its ‘main engine’, the transport formula, is not completely understood. Also the 

uncertainty in the estimate of the scour length was found to be of little influence, so the – 

at fist glance rather rough – estimates obtained from figure 3.20 can be used without 

much trouble. 

The greatest advantages of the design method proposed by De Groot et al are: 

 

it uses damage as a design criterion instead of a critical load 

 

it predicts the damage to a structure in a understandable and practical way, and 

enables the evaluation of the development of this damage over time 

 

it relates to known concepts from morphology 

 

it is suitable for probabilistic analysis, which seems to be the only appropriate 

design approach given the large uncertainties surrounding the governing 

parameters 

For these reasons, this method is a potentially very powerful design method for near-bed 

structures. Its main disadvantage is that it cannot be performed easily by hand but needs 

a computer program to do the analysis. Secondly, it is dependent on the limitations of 

the transport formula it uses, which means that it is at present not suitable for a 

combination of waves and currents.  

3.6.2 Damage profile design methods 

In offshore engineering, various researchers have studied the stability of rubble mound 

covers for submerged pipelines, and they have put forward some engineering methods 

for the design of these structures. These will be discussed next. A definition sketch of the 

parameters that appear in these methods is given in figure 3.21.  

Lomónaco and Klomp (1997) give the following stability formula for the damage after 

1000 waves, based on scale model tests with a combination of irregular waves 

(JONSWAP spectrum) and a steady current: 
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(3.90) 

in which S is defined as in equation (3.87) and tan( )=1/m0 is the side slope of the 

structure. Lomónaco and Klomp also give additional formulas that express the time 

dependence, ie damage after another number of waves than N = 1000, but these are 

surprisingly complicated.  

Lomónaco and Klomp use a stability parameter based on the velocity only, not on shear 

stresses or a combination of velocity and accelerations; as discussed before we will use 

the Greek symbol theta ( ) to denote this type of parameter. Because, as they state, the 

damage to the pipeline cover starts at the top of the structure, the disturbed water depth 

hc must be taken as the governing water depth (Lomónaco and Klomp 1997) and all 

parameters (including û) must be evaluated as if the water depth were equal to hc 

everywhere. In this thesis we will use the subscript ‘hc’ for parameters defined in this 

way. Lomónaco and Klomp report that this parameter appears to fit their data better than 

other stability parameters. 

Levit (1996, Levit et al 1997) reports something similar: he tried to explain his measured 

damage profiles in terms of existing transport formulae but could not find a good match. 

He also concludes, surprisingly, that structures under a combination of waves and a 

current were more stable than structures under waves alone. This could be due to a 

reduction in near-bed velocities at the top of the structure because of a – yet not very 

well understood – wave-current interaction phenomena. It is not known if this 

phenomenon applies in general or is just a ‘freak’ feature of the model layout used by 

Levit in his tests.  

Vidal et al (1998) performed a small series of scale model tests for regular waves only 

(no current). In contrast to Lomónaco and Klomp, Vidal et al suggest that a shear stress 
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u
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z
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(after damage) 

Figure 3.21 - General definition sketch of damage profiles for pipeline covers 
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based stability parameter can be used to predict the damage to the structure. They 

propose a stability parameter based on the classic wave shear stress according to 

Jonsson/Bijker (equation 2.28), with the roughness taken as ks = 2·dn90 and the wave 

velocity evaluated in the undisturbed profile, at the level of the crest of the structure (see 

Figure 3.22; we will call this velocity ûc).  

In a second article, this approach was compared with the results from prototype tests at 

a sewer outfall on the north coast of Spain, off Santander (Vidal et al 2002). In this 

second article it is suggested to use the average of the 50 highest waves as the design 

load. This last recommendation makes the method less suitable for practical design, 

because in practice a designer usually only knows Hs, from which it is difficult to find the 

’50 highest waves’ (this would a Monte Carlo simulation of the wave climate). 

Van Gent and Wallast (2001, Wallast and Van Gent 2002) did scale model tests on a 

combination of waves and a current, and again found that a velocity parameter better 

explained their data than Shields or Morison parameters (very interesting in the light of 

our present research, but it appears Van Gent and Wallast only tried Shields parameters 

of the form 

 

= c + ½ w, so there may be room for improvement of this conclusion when 

we try more sophisticated wave-current interaction models). Another important, and 

perhaps surprising conclusion is that a stability parameter based on the waves did not 

perform worse than a stability parameter in which the effect of the current was 

incorporated, too; so, in other words, the current could be left out of the equation. In this 

respect it must be noted that Van Gent and Wallast only tested for wave-dominated 

situations. 

Van Gent and Wallast give the following stability formula: 
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(3.91) 

Again we see the use of , and this time û is defined as ûhc, so similar to the way 

Lomónaco and Klomp defined it. The influence of the slope has disappeared in 

comparison to Lomónaco and Klomp.  

Saers (2005) conducted scale model tests for irregular waves (JONSWAP spectrum), 

without a steady current, in the fluid mechanics laboratory of Delft University. He found 

that the Van Gent and Wallast formula (3.91) generally over-predicted his measured 
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data. Saers suggests that the influence of time (ie the number of waves) could better be 

expressed with a logarithmic function instead of the square root function used by Van 

Gent and Wallast. His design formula is: 
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(3.92) 

in which û is defined in the same way as Lomónaco and Klomp, and Van Gent and 

Wallast did.  

A second interesting contribution by Saers is the hypothesis that the main cause of 

damage to a near-bed structure can be related to what he called streamline contraction, 

ie the acceleration of the orbital velocities from a lower value at the bed to a higher value 

at the crest of the structure. He proposes a parameter to account for this effect, defined 

as the ratio of the structure slope length (zd·m0) over the excursion of the wave orbital 

motion (so for steep slopes and high structures the streamline contraction is larger), and 

suggests that damage to a structure occurs when a critical (‘threshold’) value of this 

parameter is exceeded. In this thesis we will call this parameter the Saers number Sa: 

0
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Sa c

  

(3.93) 

In his thesis, Saers does not work out this concept any further. 

3.6.3 Conclusion 

The deformation of near-bed structures in marine conditions has attracted some 

attention among scientists lately; various researchers have conducted scale model tests 

for a variety of flow conditions and structure dimensions. Unfortunately this has not yet 

led to one commonly accepted engineering method for the design of this type of 

structures. Instead, it appears that every researcher has put forward his or her own 

design formula. A first quick comparison of these formulae shows that there does not 

even appear to be consensus on which parameters play a role and how these should be 

defined. The most prominent differences are:  

 

Lomónaco and Klomp include the slope of the structure, others do not;  

 

Van Gent and Wallast suggest a time dependency described by N, Saers insists 

on log(N) and Lomónaco and Klomp do not include N at all;  
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Vidal et al propose a stability parameter based on shear stress, all others prefer 

a stability parameter based on the wave velocity; 

 
The three velocity-based methods differ in the exact way in which they define the 

governing velocity. This is illustrated in Figure 3.22. Vidal et al use the 

undisturbed velocity at the level of the crest of the structure (ûc) and Lomónaco 

and Klomp, Van Gent and Wallast, and Saers use the orbital velocity at the crest 

of the structure as if the water depth were equal to hc everywhere (ûhc). 

Lomónaco et al (2005) compared both ûc and ûhc against measurements at the 

Santander sewer outfall and report that ûhc matches the measured velocities 

better.  

Despite these differences, all researchers in this field appear to draw the conclusion that 

it is not a fruitful approach to try and predict transport rates for these type of structures 

under waves and currents. Instead, they opt for a more direct ‘black box’ approach in 

which the damage to the structure is directly expressed in terms of S and related to very 

basic fluid properties like û0. Another general conclusion is that the damage to these 

structures appears to stop after some time; the waves have reworked the structure into a 

more stable form. We can see broad similarities with berm breakwater design. In any 

case it is clear that this wave-dominated design approach is completely different from the 

current-only approach proposed by De Groot et al. 

h
hc

zc

ûhc
ûc

û0 

Figure 3.22 – Various definitions of wave orbital velocities used in proposed design methods for near-
bed structures 
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4  Review 

4.1 Introduction 

In Chapter 1 we described how this thesis would focus on finding a design formula that 

can be used for the damage-based design of near-bed structures under combined wave 

and current attack. The previous chapter described many, mainly theoretical concepts 

and ideas that could potentially be elements of such a design formula. In this present 

chapter we will briefly review and summarise these, and select a few concepts that will 

be carried on into the next phase of this research. Finally, we will use these results to 

present an outline of the second phase of this research. 

4.2 Stability parameters 

In literature we can find four different groups of stability parameters: 

 

Shields-type stability parameters, based on the bed shear stress; 

 

Morison-type stability parameters, based on the velocities and accelerations in 

the vicinity of the stone; 

 

Turbulence-based stability parameters that explicitly incorporate the effects of the 

turbulence characteristics of the flow; 

 

Other parameters that express the load on the structure in terms of direct wave 

and current parameters such as u, H, and T. 

These will be discussed in the next paragraphs.  

4.2.1 Shields-type stability parameters 

Shields-type stability parameters use the bed shear stress as the governing load and 

have been developed for use in uniform flow. In this thesis we study non-uniform flow 
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(mainly a combination of waves and a current), so we must find ways to extend the use 

of these parameters for these circumstances. The resulting combined bed shear stress 

is not easily determined. In general we have two reasons for this: 

 

The bed shear stress is no longer constant in time2, as it would be for uniform 

flow, but varies with the wave cycle. This means that we will have to translate the 

time-dependent shear stress into one single characteristic value that we can use 

for design (ie we have to use the maximum or some kind of average value). 

There is no consensus in literature on the best way to do this. 

 

The combined bed shear stress can not be calculated as the (vector) summation 

of the current-only shear stress and the wave-only shear stress. Instead, the 

current and the waves influence each other in a non-linear way, leading to an 

enhancement of the shear stresses. This effect (wave-current interaction or WCI) 

must be taken into account. Again, there is no consensus in literature on how to 

do this; in fact, more than 20 WCI models (Soulsby 1997) have been put forward. 

In chapter 3 we have explored various averaging procedures and WCI models. A brief 

summary is given next. 

Averaging procedures: The most straightforward way to obtain a characteristic value 

from a time-dependent variable is to use the maximum value. This could be a 

reasonable choice for the design of near-bed structures since we could argue that the 

maximum shear stress is responsible for causing the damage. However, this is not 

certain a priori, since we can also argue that the maximum shear stress has a too short 

duration for the stone to react to, because of its inertia. In that case an average value of 

the shear stress could be a better parameter to describe the load on the stones.  

There are various ways in which we can average the time-dependent shear stress. 

Firstly, we can decide to average over the whole wave period, or over half the wave 

period. The second case can be seen as ‘middle ground’ between using an average 

value and using the maximum value: we recognise that the first half wave period (when 

the shear stresses are larger because the wave velocity and the current velocity work in 

the same direction) is essentially different from the second half wave cycle (when the 

two velocities are opposite) and assume that the first half wave cycle causes the 

damage. Then, recognising that inertia plays a role, we average over this half cycle. In 

any case it is clear that averaging over half the period results in a higher predicted shear 

stress than averaging over the full period. 

                                                

 

2 We mean the Reynolds averaged shear stress here, so turbulent fluctuations in time are not included 
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Secondly, we can decide to average the absolute value of the combined shear stress 

(disregarding any directional information), or we can average only the component of the 

combined shear stress in the direction of the flow. When the current and the waves meet 

at an angle 

 

the differences between these two methods will be obvious, but even in the 

case of collinear flow (

 

= 0o) there is a subtle difference: if we look in the direction of the 

flow, we will see any combined shear stress that is directed against the flow direction as 

a negative contribution, and consequently the resulting average shear stress will be 

lower than if we take the absolute values. This situation (‘negative’ combined shear 

stresses) occurs for some time during the wave cycle if we have a wave dominated 

situation ( wˆ > c). 

The two choices give rise to (2x2) = 4 different combinations. These are illustrated in 

Figure 3.3 (not repeated here). In the datasets that we will use in the present research 

we always have collinear flow, in which case it can be shown that the ‘average in the 

direction of the current over half the period’ is always equal to the ‘average of the 

absolute value over half the period’ – so in this thesis it is of no use to maintain this 

difference. For that reason we will drop the ‘average in the direction of the current over 

half the period’ from our analyses. 

Wave-current interaction: As for the second difficulty in determining the combined 

shear stress under currents and waves, wave-current interaction, we have seen that 

many theories to describe this phenomenon have been put forward in literature. 

Eventually, we have selected five of them based on their widespread use and/or positive 

reviews by various authors (see paragraph 3.2.2). On a more theoretical level we have 

seen that there are three basic levels at which wave-current interaction occurs 

(illustrated in Figure 3.8): 

 

macro-scale: a current influences the wavelength and direction of a wave, and 

obliquely incident breaking waves cause a longshore current. This phenomenon 

is not studied in this thesis. 

 

boundary layer: the presence of a oscillating boundary layer (caused by the 

waves) is felt by the current as increased bed resistance; and the presence of the 

current influences the growth of the wave boundary layer. 

 

turbulence: the combined shear stress is directly related to the turbulence in the 

wave-current boundary layer, which in turn is a function of the (isotropic, small-

scale) wave-induced turbulence and (anisotropic, large-scale) current-induced 

turbulence. 

We have seen that, in order to account for wave-current interaction correctly, we should 
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treat the flow in the combined wave-current boundary layer as a separate flow problem 

with the appropriate boundary conditions and turbulence closure model.  

This is mainly what the various wave-current interaction models seek to do. The main 

difference between them can be described in terms of the way in which they model the 

turbulence (paragraph 3.2.3) in the wave-current boundary layer. More particularly, we 

can use this insight to rank the five selected models in increasing order of complexity: 

 

Bijker (1967) – uses a constant eddy viscosity (linear velocity profile in the 

boundary layer). 

 

Grant and Madsen (1979) – uses a mixing length model (logarithmic velocity 

profile in the boundary layer) in which the properties are kept constant in time. 

 

Fredsøe (1984) – uses a mixing length model (logarithmic velocity profile in the 

boundary layer) in which the properties are allowed to vary with the wave cycle.  

 

Davies, Soulsby and King (1988) – uses a one-equation numerical model. 

 

Huynh-Thanh and Temperville (1991) – uses a k-

 

numerical model. 

In addition, we have seen that the Bijker model is the only model that does not describe 

the second type of wave-current interaction (boundary layer interaction), which also sets 

it apart as the simplest of all models. 

The first three models have a physical basis and can be expressed in analytical 

formulas, the last two models are purely numerical. From earlier work by Soulsby et al 

(1993) we can see that the last two, most complicated, models predict results that are 

almost indistinguishable from the results predicted by the simpler Fredsøe model. 

Therefore, we conclude that these two models are of little practical use, and we will only 

use the first three models in the second phase of this research. In addition, we will also 

test a design method is which no wave-current interaction is taken in to account, even 

though we have seen in Chapter 3 that this it is physically incorrect to neglect this 

phenomenon; this represents a ‘base case’ against which the performance of the various 

wave-current interaction models can be judged. 

All in all, we will use the following four ways to translate the time-dependent combined 

shear stress into one characteristic value: 

 

the maximum shear stress during the wave cycle 

 

the average shear stress over the whole wave cycle 
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the shear stress in the direction of the current (averaged over the whole wave 

cycle) 

 
the average shear stress over half the wave cycle 

and we can combine these with four WCI-models: 

 

Bijker (1967) 

 

Grant and Madsen (1979) 

 

Fredsøe (1984) 

 

No WCI (base case) 

This gives us a total of 4*4 = 16 different Shields-type stability parameters to be tested. It 

is stressed that these sixteen parameters include the two parameters used in the present 

design practice, being:  

 

the average shear stress over the whole wave cycle according to Bijker (method 

recommended by CIRIA/CUR 1991) 

 

the average shear stress over half the wave cycle according to Bijker (method 

used by the software package BPP) 

as shown in Chapter 2. This gives us the opportunity to compare all new methods to the 

present design practice.  

In addition to the above, a few conclusions from our theoretical analysis of wave-current 

interaction are worth mentioning here: 

 

the effect of wave-current interaction can be quite large and this effect cannot be 

ignored, especially when the maximum shear stress is used 

 

the resulting shear stresses are always the largest for 

 

= 0o, in other words 

collinear flow is the governing situation. This effect is particularly strong for the 

maximum shear stress and the average shear stress over half the period 

(remember that this last parameter is used by BPP), it is less pronounced for the 

average shear stress over the whole period, either in the direction of the current 

or not. For design practice this means that the stones sizes may be reduced 

when the waves and the current meet at an angle, but this reduction should only 

be applied when the designer has a solid reason to assume that the flow will 

never be collinear. 

 

In line with the previous remark: when the waves and the current propagate at an 

angle, the wave-current interaction becomes less pronounced; at 

 

= 90o there is 
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not so much difference between the predictions with or without wave-current 

interaction, or between the various wave-current interaction models. 

 
The wave-current interaction models can be made more easily accessible by a 

parameterisation of these models given by Soulsby (1993). This parameterisation 

approximates the model predictions without having to know the details of the 

respective models. We have shown in chapter 3 that our own calculations, based 

on the full models themselves, match Soulsby’s results closely. In the second 

stage of this research we will only use our own calculations rather than Soulsby’s 

parameterisation, firstly because Soulsby’s parameterisation does not provide 

any insight into the (physical) details of the respective models, and secondly 

because Soulsby only gives the maximum and the ‘mean’ shear stresses (that 

we have found to be equal to our ‘average shear stress in the direction of the 

current’) 

 

The theories behind bed shear stresses are based on a ‘bulk’ approach: ‘the’ bed 

shear stress is in fact an average value over the many individual particles that 

make up a bed. (In that aspect the name bed shear stress is very appropriate, it 

is not a particle shear stress). Fredsøe (1984) warns explicitly that for a relatively 

large bed roughness (a0/ks < 50) this ‘bulk’ approach may no longer be valid, 

because the flow around an individual grain becomes dominant and may have to 

be modelled in detail. Fredsøe makes this warning within the context of his own 

WCI-model, but there is no reason to believe why this should not apply for the 

other models as well. For rock structures in relatively shallow water we can 

expect ao/ks-values of the order 10, so we are outside the range of validity of the 

‘bulk’ bed shear stress approach as indicated by Fredsøe. This means that we 

must be careful when applying shear-stress based parameters. 

4.2.2 Morison-type stability parameters 

The stability of an individual stone is related to the balance of forces that act on it. The 

Shields-type stability parameters discussed above are based on the assumption that all 

forces on a stone can be related to the shear stress (and are therefore proportional to 

the flow velocity u (squared) and the surface area of the stone d2). We have seen in 

paragraph 3.3.2 that this is no longer true when the flow is accelerated: accelerations 

give rise to pressure differences that cause an inertia force proportional to the volume of 

the stone (d3). In recent years some researchers have studied the idea that these 

accelerations, and the forces they cause, can be a major contributor to (in)stability of the 

stones and must be taken into account explicitly. The resulting stability parameter is a 

combination of a contribution by the velocities and a contribution by the accelerations, 
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weighed with the empirical model parameters CB and CM, respectively. In general terms 

this approach is called the Morison approach, after the design method for wave forces 

on vertical piles (Morison et al 1950).  

In flowing water there can be two sources of accelerations: 

 

temporal accelerations (du/dt), also called local accelerations or unsteady flow. 

The most obvious example in this class is oscillatory flow (waves). This 

phenomenon was studied by Tromp (2005) who found that the threshold of 

motion for bed material under waves could be described with a Morison-type 

stability parameter with CB/CM ˜ 7.  

However, in the previous paragraph we have seen that waves can also be 

included in a stability parameter through the bed shear stress that they cause. To 

our knowledge the performance of these two alternative methods has not been 

directly compared yet. 

 

spatial accelerations (u·du/dx), also called convective accelerations or non- 

uniform flow. This occurs for instance near flow contractions and around 

structures and was studied by Dessens (2005). In the current design practice it is 

often assumed that the stability of bed material in accelerated flow is no less than 

the stability in uniform flow (Schiereck 2001); the measurements by Dessens 

appear to contradict this. This would indicate that the application of a Morison 

approach is useful here, too.  

For decelerating flow the stability of bed material is also different from the stability 

in uniform flow (ie the stability is lower, Schiereck 2001), but this is more related 

to the associated increased turbulence levels (a decelerating flow loses energy, 

which is dissipated through turbulence) than to inertia forces. Moreover, if we 

draw a force balance for decelerating flow the inertia force would be oriented 

against the drag force (see eg Figure 3.15, but with FM pointing to the left) which 

would have a stabilising effect on the stones which – by itself – is clearly 

incorrect. To our knowledge there are no studies into the applicability of the 

Morison approach in decelerating flows yet; based on the above, we conclude 

here that this will not be very useful anyway (unless, perhaps, if it is combined 

with a study into increased turbulence levels). 

The Morison approach is a very recent development in this field of research. In general 

terms we can say that the physical basis behind the approach is sound and appears to 

make more sense than the physical basis of the currently applied methods (based on 

shear stresses) – in that aspect the development of the Morison approach has to be 
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encouraged. The physical correctness of the method can be illustrated by looking at the 

theoretical ratio of inertia forces over drag forces on an object under wave load: (Dean 

and Dalrymple 1991) 
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M 12

 

(4.1) 

in which KC is the Keulegan-Carpenter number (KC = û0T/d). Note that this formula is 

derived for vertical piles and therefore does not include lift forces (these cancel because 

of the symmetrical load in that case), hence the use of CD instead of CB. Anyway, we 

have CM/CD = O(1) (Dean and Dalrymple 1991, but this also follows from Tromp 2005) 

and for stones (d ˜ 0.2 m, û0 ˜ 1.5 m/s, T ˜ 10 s) we can estimate that KC ˜ O(10), so 

we get FM/FD = O(1); in other words the drag force and the inertia force are of the same 

order of magnitude. By contrast, if we do the same estimation for sand (with d ˜ 200 m) 

we get KC = O(104) and consequently FD >> FM. Therefore it seems necessary to include 

both drag (/ lift) and inertia forces in a stability parameter for stones; a Shields-type 

approach in which the inertia forces are disregarded seems more appropriate for sand. 

However, there are a three important limitations to a successful application of the 

method in practical engineering: 

 

the method requires a measure of ‘the’ velocity and ‘the’ acceleration in the 

vicinity of the stone. This measure is not clearly defined and not easily obtained 

from main flow properties like u, H, T and so on. In fact, this dilemma can be 

seen as the very reason why shear-stress based methods (that can be 

expressed in main flow properties) have been developed in the first place. This 

dilemma is not solved yet. 

 

This dilemma is even more pronounced in the combination of waves and a 

current; it is not clear how the Morison approach should be applied in that case. 

A suggestion could be to replace the drag-and-lift part of the Morison equation by 

the bed shear stress (for which we can find a combined value in the case of 

waves and currents, see previous paragraph) and keep the accelerations as they 

are. This step is further explored in paragraph 4.2.3. To our knowledge such a 

hybrid parameter has not been suggested in literature yet. 

 

the method requires a reasonable estimate of the value of the coefficients CB and 

CM. As we have seen in paragraph 3.3.4 there are only a few sources of 

information on these values, and they seem to contradict one another to quite a 

large extent. We have seen that the value of these parameters is not easily 

measured and may depend on things like the orientation of the stones and the 
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roughness of the bed. There is also no reason to assume that these parameters 

are constants, they may well depend on flow parameters like a0/d or the 

Keulegan-Carpenter number. 

In the present thesis we will use an adapted form of the Morison parameter in 

order to reduce this problem somewhat. If we divide the Morison parameter (see 

equation 3.2) by CB we get: 
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(4.2) 

We now only have one unknown parameter: the ratio CM/CB (for which we will 

use the value CM/CB = 6.8 found by Tromp). This simplification means that we will 

not find the absolute values of CM and CB in our analysis: this is not considered a 

major problem since our prime interest is to test the applicability of a Morison 

stability parameter in eg a transport formula – in that case the value of CB will be 

implicitly present in the fit parameter of our model. In our notation we will usually 

omit the apostrophe in ‘ and simply write . Please note that strictly speaking 

this simplification is only valid if we assume that CB and CM are indeed constants. 

In the remainder of this thesis we will only study the Morison approach in combination 

with temporal accelerations caused by the waves, in an attempt to make the comparison 

between this method and a shear-stress based method. We will use the orbital velocity 

at the bed û0 as the governing velocity in the Morison equation; the governing 

acceleration then follows from  
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(4.3) 

Spatial accelerations will not be included in the present analysis, even though we study 

pipeline covers where we can expect spatial accelerations to occur. The main argument 

for this is dimensional: for normal wave conditions with, say, T = 10 s and û0 = 1.5 m/s 

we have â0 ˜ 1 m/s2 (equation 4.3). The order of magnitude of the spatial accelerations 

around a near-bed structure can be estimated as u·(du/dx) ˜ u·( u/ x), with u the 

difference between the velocity at the crest and the velocity in front of the structure, and 

x equal to the slope length of the structure: 
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(see Figure 3.21 for definitions). With hc = 10 m and m0 = 2 we get a ˜ 0.1 m/s2. This 

rough estimate shows that the spatial acceleration is about one order of magnitude 

smaller than the temporal acceleration; this is another reason to disregard it. 

Instead of incorporating the spatial accelerations explicitly in a Morison-type stability 

parameter we will investigate the performance of a dimensionless structure parameter 

that includes the accelerations implicitly: the Saers parameter (Saers 2005), see 

equation 3.93. 

Finally it is noted that both studies into the use of a Morison-type parameter in waves 

(Tromp 2004, Terrile 2004) have explicitly linked the effect of the acceleration to wave 

asymmetry. This asymmetry causes a moment during the wave cycle, just before the 

passage of the wave crest, in which both the velocity and the acceleration are large. 

Both Terrile and Tromp note that the entrainment of stones occurs at this point. Terrile 

(2004, Terrile et al 2006) proposes a way to account for this asymmetry in a Morison-

type parameter, but in our view it is not yet possible to apply his method in practice 

because it requires a measured time series of accelerations during the wave cycle; this 

information is not known in the datasets that we intend to use in our analysis (nor, for 

that matter, will it be available to design engineers in practice). It would be more practical 

if Terrile’s acceleration parameter could be linked to large-scale wave parameters such 

as H, T and h (probably in combination with a higher-order wave theory). There is some 

room for further research here.  

We hypothesise here that asymmetric waves may well be (or become) the main area of 

application of the Morison approach; for (approximately) symmetric waves we can also 

apply shear-stress based methods and it is not expected that the Morison approach will 

add a lot of information there. In the present thesis, for lack of other options, we have to 

rely on linear wave theory only in our analysis. This means that any asymmetry effect is 

completely ignored. This may seriously bias our results for the Morison method. 
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4.2.3 Comparison of Shields and Morison stability parameters 

In Chapter 2 we have seen that the simplest stability theory assumes that all 

destabilising forces on a stone are proportional to u2, and so this is the only flow 

parameter that should feature in a stability parameter; this is the Izbash approach. The 

disadvantage of this method is that it is not certain where u must be measured 

(somewhere ‘in the vicinity of the stone’), so we can not simply calculate the stability 

parameter from macroscopic flow properties (such as h and uda). This can be seen as 

the main reason why an alternative approach was introduced by Shields. In this 

approach we do not calculate the velocity but the bed shear stress, which has the 

advantage that it can be calculated from macroscopic flow properties. In addition, as we 

have seen in Chapter 3, this allows us to combine the effect of waves and currents. The 

disadvantage of this method is that it is based on certain simplifications that limit its 

applicability: we can only use this method in uniform flow and (approximately) symmetric 

waves.     
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Figure 4.1 – Overview of stability parameters 
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In non-uniform flow and asymmetric waves the associated accelerations in the flow must 

be taken into account – we can do this with the Morison approach. However, in the light 

of the above discussion this effectively brings us back to the ‘Izbash’ starting point with 

the associated difficulties. It would be an interesting step to try to overcome these by 

taking a similar step as from ‘Izbash’ to ‘Shields’ – in other words to develop a shear-

stress based stability parameter in which the accelerations are explicitly present. Such a 

‘Shields-plus’ stability parameter would in fact fill the remaining gap in a (2x2) matrix that 

can be used to categorise the stability parameters that we discussed so far – see figure 

4.1. 

The general form of such a Shields-plus stability parameter could be obtained by 

replacing u2 in the ‘drag-and-lift’ part of the Morison parameter by u 2, giving: 

g

a
CC

dg

adCC

dg

adCuC

MB
n

nMB

n

nMB

2

12

1

2

1

50

50

50

50
2

*

 

(4.5) 

This new parameter is a very interesting thought, but it leads to a few complications, 

including: 

 

The values of the model parameters CB and CM are no longer related to the 

original values (for velocities instead of shear stresses), since the change from u2 

to u 2 has introduced a new scaling (typically u

 

is one or two orders of magnitude 

smaller than u) – in fact the ratio u 2/u2 is mainly governed by a friction parameter 

(see eg equation 2.21 or 2.28). This friction parameter is not a constant, and 

especially in the combined case of waves and currents it is dependent on the 

situation at hand (eg the relative current strength). This introduces yet another 

complication into the – already quite troublesome – determination of the correct 

values for CB and CM. 

 

A major reason to develop a Shields-plus parameter is the possibility to use this 

parameter in the combined case of waves and currents; in that case 

 

in equation 

4.5 would be wc. However, we must keep in mind that the Morison approach 

(and thus this new Shields-plus approach) is strongly associated with asymmetric 

waves and/or accelerating currents. It is uncertain (in fact: rather doubtful) 

whether the wave-current interaction models that we can use to calculate wc are 

still valid in those cases. 

For these reasons, we will not use the ‘Shields-plus’ parameter in the remainder of this 

thesis; we introduce this parameter here only as a suggestion for further research. 
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4.2.4 Turbulence-based stability parameters 

A second recent development is the study of stability parameters that directly include the 

effects of turbulence. The turbulence in a flow has two effects on the stability of stones: 

Quasi-steady forces: turbulence causes the velocities near the bed and the related 

forces on the stones to fluctuate. This means that there can be rare occasions in which 

the forces become exceptionally large; these events are thought to be responsible for 

the entrainment of the stones. These fluctuations are not random; they can be thought of 

as vortices, originating higher up the fluid column, that come crashing down onto the 

bed: so-called sweeps. 

Turbulence wall pressures: turbulence-induced velocity fluctuations elsewhere in the flow 

that do not reach the bed themselves can still have an influence on the stones in the bed 

because of the pressure fluctuations they cause (by the Bernoulli effect: increased 

velocities cause reductions in pressure). These pressure fluctuations are propagated 

through the fluid and eventually reach the bed causing a (fluctuating) inertia force. This 

means that these forces are related to the acceleration of the fluid. 

Research by Hofland (2005) has shown that these fluctuations are the main cause for 

the entrainment of stones, especially when they work together. A suitable flow structure 

(eg a vortex) can cause turbulence wall pressures that make a stone rock and give it a 

less favourable (more exposed) position, after which the quasi-steady forces associated 

with the same vortex attack the stone and transport it: “rock and roll” 

Again, the physical basis behind these ideas is very sound: not only do these forces 

provide some insight into the actual mechanisms that make a stone move, they also 

describe the ‘random’ nature of the threshold of motion. Stability parameters based on 

these turbulence characteristics could well be the most promising design concept for the 

future. However, before this type of stability parameters can be applied successfully in 

engineering practice, a number of issues must be resolved first: 

 

The calculation of turbulence characteristics requires the detailed modelling of 

the flow around a structure, for instance with a k-

 

numerical modelling. This 

makes application in practice laborious and cumbersome. 

 

There is no consensus yet in literature on how the output of such models must be 

used in a stability parameter, although a few suggestions have been made.  

 

A turbulence-based stability parameter may have to include an estimate of the 

length scale of the turbulence (the mixing length lm). The most common 
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numerical model for turbulent flow, the k-

 

model, appears to be unsuitable to 

predict this length scale correctly (Hofland 2005). This means that more 

advanced modelling (eg with Large Eddy Simulation, see appendix 1) may be 

required. 

 

The turbulence forces can be split into a part related to velocities (the quasi-

steady forces) and a part related to accelerations (turbulence wall pressures). 

This means that a complete stability parameter will be a combination of these 

two, which gives us the same problem that we saw in the discussion of the 

Morison approach: what should the value of the weighing factors CM and CB be? 

The stability parameters that have been proposed so far only include quasi-

steady forces, the turbulence wall pressures are included implicitly. 

 

The turbulence under waves has, to our knowledge, not been investigated yet. 

In the context of the present research we see the turbulence-based stability parameters 

as a promising concept for the future; however, we will not include them in our analysis 

any further. The main reason for this is the need to model the flow situation around a 

structure explicitly: an analysis of the datasets that we will use in the remainder of this 

research would require that we build a numerical flow model for each and every 

individual model test: this is considered too laborious. 

4.2.5 Other stability parameters 

In our literature survey we have found some stability parameters that do not fit any of the 

main groups described above. The first of these stability parameters is based on the 

maximum wave orbital velocity: 
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(4.6) 

This parameter is used in the transport formula of Hallermeijer (paragraph 3.5.3) and by 

most studies into the stability of pipeline covers (paragraph 3.6.2). Theoretically we could 

see this as a “Morison parameter without accelerations”, and thus categorise it in the 

second main group, but we will treat it separately because we prefer to reserve the term 

‘Morison-type parameter’ for those parameters that do include accelerations. In fact, 

(4.6) can be seen as an Izbash-type parameter.  

However, the relationship between the two parameters is made clear in our choice of 

symbols: a small theta ( ) for the direct stability parameter, a capital theta ( ) for a 

Morison-type parameter. In this thesis we will refer to 

 

as the velocity parameter. 
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The second and stability parameter has not been mentioned explicitly in chapter 3, but 

its performance has been investigated by some researchers (eg Van Gent and Wallast 

2001, Vidal et al 1998). It is the Hudson number: 
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(4.7) 

This parameter is used extensively in the design of revetments and breakwaters, in other 

words in the design of structures that cross the water line; perhaps this parameter can 

also be used in the design of near-bed structures. However, there is one important 

limitation in the use of Ns: it does not depend on the water depth. We would expect (by 

intuition) that a near-bed structure in deeper water experiences less damage than a 

similar structure in shallow water, and we would require a stability parameter to account 

for that effect. For this reason it is our opinion that the Hudson number as such can 

never be used in the design of near-bed structures; we will not include this parameter in 

our further analysis. 

4.2.6 Stability parameters: conclusions 

Our literature search has yielded a large number of possible stability parameters that can 

be used in a design formula for near-bed structures. After some discussion we have 

narrowed these down to: 

 

Sixteen Shields-type stability parameters, consisting of all combinations of four 

wave-current interaction models and four averaging procedures; 

 

One Morison-type stability parameter, which will include temporal accelerations 

only. Given the uncertainty with respect to the values of CB and CM we will leave 

these as free parameters in our analysis (their value will follow as a result from 

the curve fitting procedure). We only have to prescribe the ratio CM/CB in order to 

keep the mathematics of the fitting procedure simple; we will use the value found 

by Tromp (1995): CM/CB = 6.8; 

 

One velocity parameter: the dimensionless orbital velocity . 

When we study pipeline covers the situation is a little more complicated, because we can 

use three different definitions for the governing wave orbital velocity: the undisturbed 

velocity at the bed (û0), the undisturbed velocity at the level of the crest of the structure 

(ûc) and the velocity at the crest of the structure, calculated as if the water depth is equal 

to hc everywhere (ûhc). At present, there is no consensus among researchers as to which 

definition can best be used, nor is there a clear physical reason to prefer one over the 
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others. Therefore we will use all three definitions in our analysis and compare the 

results, in an attempt to shed some light on these matters and investigate which 

definition can best be used. 

4.3 Damage parameters and design methods 

Our literature search has yielded three different ways of expressing the damage to a 

structure: 

 

as transport, quantifying the amount of material that is washed away from the 

structure; 

 

as entrainment or number entrainment, quantifying the volume (or number) of 

stones moved away from their original positions; 

 

as erosion area, quantifying the “size of the hole that is left behind” after the load 

has stopped. This parameter is conceptually related to the entrainment 

parameter, but is perhaps easier to understand and closer related to intuitive 

notions about damage to a structure. It also has the added advantage that is 

relates to the design of breakwaters and revetments, a terrain not unfamiliar to 

many designers of near-bed structures. 

Because the present research is about practical applications in design, these damage 

parameters cannot be seen separately but must be studied in conjunction with a 

corresponding design method. From our literature survey it appears that there are two 

different ways of calculating the damage to a structure for a given load: 

 

by first linking the load to transport of material, and then using this transport rate 

to calculate the reduction in layer thickness (transport-based method); 

 

by linking the load directly to the damage expressed as a (dimensionless) 

erosion area (damage profile method). 

The first method uses transport as an (indirect) damage indicator, the second method 

uses the erosion area. This means that only these two damage parameters will be 

studied in the second phase of this research, and the second parameter (entrainment) 

will be dropped. 

Apart from the difference in the use of damage indicators there is a second, more 

fundamental difference between these two design approaches. Transport of bed material 

is essentially a current-related phenomenon; the presence of waves will increase the 
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transport rates but in the absence of a current the (net) transport will always be zero3.  

Waves, by their own right, have a second effect on bed material: a oscillating motion, 

backwards and forwards under each consecutive half wave period. In terms of damage 

to a structure, this wave-induced oscillating motion causes a redistribution of the material 

and a flattening of the structure, as opposed to current-induced transport which causes a 

net loss of material. This essential difference is illustrated in Figure 4.2  

These different mechanisms that cause the damage call for different design methods. In 

essence, the first (transport-based) method introduced above focuses on the first 

mechanism, the second method (damage profile) is related to the second mechanism. 

Both methods can be seen as alternatives to the present design methods that are based 

on the critical stability concept; they are discussed in the next paragraphs. 

4.3.1 The transport-based method 

The first method requires two ingredients: a transport formula linking load to transport 

and a design philosophy linking transport to damage.  

Starting with this last point: once we have found a transport formula, we can use the 

‘critical scour’ design philosophy put forward by De Groot et al (1988) to calculate the 

                                                

 

3 That is, if we assume that the waves are symmetrical. In practice this is never the case: the velocities under the wave 
crest are higher than those under the trough and consequently there will always be a net transport in the propagation 
direction of the waves. 

u

   

Figure 4.2– two different mechanisms that cause damage to a structure. Top: current induced (and 
wave-enhanced) transport and loss of material. Bottom: wave-induced redistribution of material  
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resulting damage to the structure (expressed as a reduction of the layer thickness). This 

is an interesting and potentially very powerful design method that is based on sound and 

proven concepts from morphology, that predicts the development of the damage over 

time and that is suitable for a probabilistic analysis (See paragraph 3.6.1). The 

probabilistic character of the method means that we not only need to find the best values 

for the fit parameters in our transport formula, but also the confidence bounds around 

these values. 

Alternatively, we can link the transport rate to an erosion area (Ae or S) by assuming that 

all transported material is washed away from the structure, and therefore Ae = qs·D with 

D the total duration of the load. This method has two disadvantages when compared to 

the critical scour method: it does not allow for holes caused by the entrainment of stones 

to be filled up by material transported from upstream, and the end result (Ae) is less 

practical than a reduction in layer thickness. Still, this method can be useful in the case 

of pipeline covers where we can safely assume that the structure (crest) is so short that 

all material that is entrained from the crest will be transported away from it (and 

deposited at the base of the structure). We will refer to this method as the ‘simple 

transport method’. 

The remaining problem – in either case – is of course to find an appropriate transport 

formula. Transport formulas can be found in abundance in the literature on morphology. 

To make these formulas applicable to our purposes they have to obey certain criteria. 

The first criterion is obvious: 

 

A transport formula must be suitable to include the combined effects of waves 

and currents. 

In addition it must be realised that most, if not all, morphological transport formulas have 

been derived for prediction of sand transport rates and not for rock. This gives rise to 

three more criteria: 

 

A transport formula must express a type of movement that is consistent with the 

type of movement expected for granular near-bed structures, ie rolling or sliding 

transport rather than suspended transport. This means that only bed-load 

transport formulas can be used; 

 

its range of validity must include the typical size and shapes of the stones used in 

near-bed structures; this is often a problem as most formulas have been 

developed for (fluvial or marine) sands which are much smaller and more 

rounded; 
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it must be suitable to describe loads below the (assumed) threshold of motion, 

because this is the load situation (leading to limited/occasional movement of 

stones) that near-bed structures should be designed for. Many transport formulas 

will not meet this criterion because they explicitly predict zero movement below a 

threshold of motion, others do not use this concept explicitly but have only been 

tested for loads above this threshold (and thus predict a bulk transport rate). 

Unfortunately, no transport formulas have been found that meet all four criteria; so if we 

want to use a transport-based design approach we will have to find a suitable transport 

formula ourselves. It would be logical to base such a new formula on an existing formula 

that comes closest to meeting all four criteria. The two most promising candidates for 

this purpose are the Paintal formula (that has been developed for stones and for loads 

below the threshold of motion, but does not include waves) and the Bijker bed-load 

formula (that does include waves but has not been validated for stones or loads below 

the threshold of motion). In their most general forms, these two formulas can be 

expressed as: 

 

Paintal: 

 

= a· b  

 

Bijker:  

 

= a·( c)
b·exp(c/ wc) 

In the second phase of this research we will fit these two types of formula on existing 

data sets to see which expression gives the best results.  

Both these expressions are based on a (probabilistic) analysis of the complex processes 

that set a sediment particle into motion, performed by Paintal (1969) and Kalinske 

(1947), respectively. Of these two analyses, we believe that Paintal’s model more closely 

resembles the ‘true physics’ of the motion of stones at low mobility values, and we 

expect that his expression will better match the data sets. It must be stated, however, 

that both analyses were originally performed for a situation with current only, and it could 

be expected that some of the underlying assumptions do no longer hold for oscillatory 

flow. So, instead of simply trying to include waves in the resulting expression, as we 

intend to do, it would have been better to completely re-do the original analysis first to 

see if the resulting expression still has the same form for oscillatory flow. However, such 

a very fundamental analysis is beyond the scope of this research. 

As we have seen in Chapter 3, there is an ongoing dispute about the exact values of the 

fit parameters a and b in Paintal’s formula, and his original formulation has been 

‘corrected’ twice after. We believe that this dispute is – of course – an important and 

interesting one, but in our view it must be held with some care and sense of relativity, as 

may be illustrated by the following observations. First of all, it is not clear exactly how 
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Paintal arrived at his formula. In his thesis he writes that “curves can be fitted into the 

data which show that bed load transport varies as the 16th power of fluid shear” (quote 

from Paintal 1969). From his theoretical analysis we may deduce that the exponent of 

 

in the resulting expression is high, but not necessarily 16; depending on the assumptions 

underlying this model we could expect exponents in the order of 7.5 to 14 (see appendix 

4), so there does not appear to be a theoretical basis for this value.  

Also, the stochastic nature of the processes involved make it very difficult to measure the 

‘correct’ transport rates for lower -values, unless the experiments are run for a very 

long time. In this light it is not surprising that similar experiments as conducted by De 

Boer (1998) or Forschelen (1999) gave different results. 

These observations illustrate that it the Paintal formula is based on just one dataset with 

quite a large scatter and that the exact value of the fit parameters is very sensitive to a 

slight change in the analysis. It must be remarked that the true power of Paintal’s 

research does not lie in the exact values of the parameters of his transport formula; it lies 

in his observation that stones also move at hydraulic loads below the threshold of 

motion, in his stochastic analysis of this type of transport and in the fact that he has 

given the engineering community a first tool to analyse this important phenomenon.  

We have also studied some transport formulae that are specifically aimed at predicting 

transport rates under waves only: the formulae by Madsen and Grant (1976) and 

Hallermeijer (1982), see paragraph 3.5.3. We have seen that the main form of the 

Madsen and Grant formula is essentially the same as the Paintal formula: 

 

= a· b, and 

so there is no need to treat this formula separately in this thesis. The Hallermeijer 

formula, though, uses a different way of making transport dimensionless and can be 

seen as an alternative formulation. When appropriate (ie in wave dominated situations) 

this formula will be included in our analysis. 

4.3.2 The damage profile method 

The damage profile method has its roots in offshore engineering, where quite a few 

researchers have measured and studied the development of damage to a specific type 

of near-bed structure: a pipeline cover under wave attack, sometimes combined with a 

small current. Their results can be very interesting for our purposes. 

Unfortunately these studies have led to as many proposed engineering methods: there 

appears to be no consensus on the parameters that should be included in a design 

formula. Some researchers have included the side slope of the structure or propose 

other structural parameters, others have not; some assume a time-dependency 
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proportional to the square root of the number of waves (S ~ N), one study insists this 

should be S ~ log(N) and yet another study does not include the number of waves at all. 

Another disagreement among the various studies is the way in which the governing 

velocities must be defined: as the undisturbed horizontal velocity at the level of the crest 

of the structure (ûc, see Figure 3.22) or as the ‘near-bed’ orbital velocity at the crest of 

the structure as if the water depth were equal to hc everywhere (uhc). Lomónaco et al 

(2005) report that the use of uhc matches their (prototype) measurements better, but they 

measured only one structure and do not show that this agreement should be the case in 

general; it could be a coincidental agreement for the structure (dimensions, layout) that 

they measured (ie the Santander sewer outfall). For this reason we will treat the velocity 

definition as an ‘open issue’ in this thesis; in our analysis we will use both definitions and 

see which one gives the best results. For sake of completeness we will also include the 

undisturbed near-bed velocity û0 in our analysis, giving a total of 3 different velocity 

definitions. 

Most researchers have attempted to use transport formulas to explain the measured 

damages, but they could not find good agreement. Instead, they have opted for a black-

box method in which the measured damage profiles are directly related to load 

parameters. Van Gent and Wallast (2001) have tried various load parameters, more or 

less in line with our intended analysis, and have found that the best agreement was 

obtained with a load parameter that was directly based on the wave orbital velocity. They 

also found, perhaps surprisingly, that the influence of the current could be left out of the 

design formula without compromising the accuracy. However, it must be stated that they 

only tested for wave-dominated situations. 

In short, these studies seem to point to the conclusions that: 

 

no transport formula can be found that accurately predicts damage to near-bed 

structures under combined wave-current attack; 

 

a velocity parameter based on the wave orbital velocity provides better results 

than other parameters that are closer related to the actual physical processes; 

 

given all the uncertainties involved in the stability of near-bed structures, it is 

better to use a black-box design approach than a transport-based approach that 

is, again, closer related to actual physical processes. 

These conclusions may be a little dispiriting in the light of this present research, but the 

number of stability parameters and transport formulas that have been tested in these 

studies is not quite as large as the number of parameters we intend to test (eg: neither 

researcher tested the Paintal formula, or used a more complex wave-current interaction 
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model than Bijker).  

Another disadvantage of these researches into damage to pipeline covers is that all 

researchers have opted to express the damage as a dimensionless erosion area S, as 

defined in paragraph 3.5.6. It is not clear a priori how this measure can be used in 

practical design. This is one of the questions that we will need to answer in the second 

stage of this research. 

4.4 Specific research questions 

This overview completes the first phase of this research. In the second phase we will 

work things out in a quantitative way, by testing the concepts that we have found in 

literature against a data set of measured damage to near-bed structures under combined 

wave-current attack. These datasets will be introduced in more detail in chapter 5, after 

which chapter 6 will describe the actual analysis and the results. 

The datasets contain test data on two different types of structure: horizontal bed 

protections (Bijman 2000) and pipeline covers (Lomónaco (1994), Van Gent and Wallast 

(2001) and Saers (2005)). In combination with the two design methods that we 

discussed in the previous paragraph, and the fact that the present design practice is 

based on the critical stability approach, the outline of the second stage of this thesis 

breaks down into four logical parts: 

The design of horizontal bed protections with a transport-based method: The 

critical scour method predicts reductions in layer thickness for these type of structure 

(see Figure 3.19), and the simple transport method predicts erosion areas. Unfortunately 

Bijman did not measure either of these, so the design philosophy behind these methods 

as such cannot be tested. Bijman explicitly measured transport rates for coarse material 

under various combinations of waves and current attack, so what we can do with the 

Bijman data set is test the second main ingredient of these methods: the transport 

formula. The research question for the second stage is: 

Which combination of transport formula (Paintal-type or Bijker-type) and stability 

parameter (the 18 parameters identified in paragraph 4.2.6) best fits the transport 

rates measured by Bijman? 

The design of pipeline covers with a transport based method: For this type of 

structure the critical scour method predicts reductions in crest level ( z), which are only 

given in part of our intended dataset (tests by Lomónaco 1994). The other two sources 

only give damage in terms of S, so we must find a way to translate S-values into crest 
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height reductions. Various ways of doing so will be investigated; the best one will be 

applied to the full dataset to find z for all tests. Then, with these reductions, the given 

durations D of the tests and an estimate of the scour length we can calculate the 

transport rates that are associated with the critical scour method using: 

D
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z s

s
s

max (4.6) 

(which follows from equations 3.88 and 3.89 with z = SC = SV·D).  

With the simple transport method we can estimate the transport rates as: 
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(4.7) 

We can then proceed as we did before and fit these transport rates to the various 

stability parameters, but we have to keep in mind that for pipeline covers the governing 

velocity can be defined in three different ways. In addition, we discussed in paragraph 

4.3 how the damage to these kind of structures could be related to wave-induced 

transport rather than current-induced transport. For this reason we will also test the 

applicability of a Hallermeijer-type transport formula. With these additions, the research 

question becomes: 

Which combination of transport formula (Paintal-type, Bijker-type or Hallermeijer-

type), stability parameter (the 18 parameters identified in paragraph 4.2.6) and 

velocity definition (see Figure 3.22) best fits the transport rates associated with a 

transport-based design method (Critical scour method or simple transport 

method)?  

The result will be compared to the results obtained for horizontal bed protections; ideally 

the two methods should yield the same transport formula. We will perform this analysis 

first for the tests with waves only (which is the majority of the tests in our dataset), only 

when the results are encouraging we will seek to include the effect of the current. This is 

done because in practice, especially during a design storm, wave-dominated situations 

can be expected; therefore we prefer to develop a design formula that works well in 

these situations, the correct inclusion of the presence of a current, although important, 

has a lower priority. 

The design of pipeline covers with the damage profile method: This method predicts 

the damage to a structure in terms of the dimensionless erosion area S. In our 
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discussion in paragraph 3.6.2 we have seen that, apart from a lack of consensus on 

which stability parameter to use and how to define the governing velocity, there is no 

consensus either on which other parameters should be included in such a design 

formula. So, in this thesis we will adopt a very general approach and try all stability 

parameters and velocity definitions that we used before in combination with a whole 

range of possible other parameters and simply see which one works best (and which do 

not work at all). The ‘other parameters’ in this case include the number of waves, the 

structure slope and the Saers parameter as well as various dimensionless combinations 

of parameters like hc/h, Bc/L and so on. The research question is: 

Which combination of stability parameter (the 18 parameters identified in 

paragraph 4.2.6), velocity definition (see Figure 3.22) and other dimensionless 

parameters best fits the measured erosion areas? 

The result of this analysis will be compared (in terms of its goodness-of-fit) to the existing 

design formulas for S (eg Van Gent and Wallast (2001)) to see if any improvements are 

possible. Finally, we will use the analysis results to see which design method is more 

promising: the critical scour method or the damage profile method. 

The disadvantage of the parameter S is that it does not relate directly to a clear and 

tangible measure of damage. A designer must be able to answer such questions as 

“what does S = 5 mean?” and “When can I expect failure of the structure?” In order for 

the damage profile method to have any practical applicability we must solve this 

problem, so we can ask a second research question:  

Once we know the value of the dimensionless erosion area S, how can we use 

this value to obtain a practical assessment of the damage to the structure? 

The design of near-bed structures with the critical stability method: Although the 

main purpose of this thesis is to discuss damage-based design methods (see chapter 1) 

we can use the datasets to test the correctness of the present design method based on 

critical stability. We will do so for both types of structure. Also, we can shed some light 

on a few questions associated with it. The main research question is: 

How well can we use the critical stability approach for the design of near-bed 

structures? How must we calculate the combined shear stress and what should 

the value of cr be? 
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5 Data sets 

To answer the questions that we asked in the last paragraph of chapter 4 we need 

measurement data. In the present research we have not conducted any scale model 

tests of our own, instead we will refer to measurements by other researchers. The four 

most important data sources for our analysis are: 

 

Measurements by Bijman (2000) who conducted flume experiments at the TU 

Delft for horizontal bed protections (no structures) and measured transport rates 

for coarse bed material under combined current and (regular) wave attack;  

 

Measurements by Saers (2005) who measured damage profiles for pipeline 

covers in the flume at the TU Delft, for (irregular) waves only; 

 

Measurements by Lomónaco (1994) who measured damage profiles for pipeline 

covers in the flume at WL|Delft Hydraulics, for a combination of (irregular) waves 

and a current;  

 

Measurements by Van Gent and Wallast (2001), quite similar to those of 

Lomónaco, conducted in the same flume at WL|Delft Hydraulics.  

These last three sources will be combined into one large dataset. The next paragraphs 

will describe these datasets in more detail. 

5.1 Bijman (2000) 

Bijman conducted classic transport measurements using coloured strips of bed material, 

using a relatively narrow flume (width B = 80 cm). His dataset is described extensively in 

his report (Bijman 2000). The most important results (the ones that were used in this 

present research) are re-printed in appendix 5. The range of parameters that were varied 

in his research is given in table 5.1. This table shows the model scale parameters such 

as h, H and T, but also all relevant dimensionless parameters. Most parameters were 

introduced earlier in this thesis and need no further explanation here, except perhaps for 
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the wave Reynolds number which is defined as: 

00ˆ
Re

au
w

 

(5.1) 

This parameter can be used in combination with the dimensionless bed roughness a0/ks 

to assess the flow regime in the wave boundary layer (smooth or rough, laminar or 

turbulent) with the help of a graph devised by Jonsson (1966). The relevant part of this 

graph (reproduced from Jonsson 1966), with the corresponding data points from the 

Bijman data set, is given in Figure 5.1. In nature, the flow can be assumed to be rough 

turbulent, so ideally we want these same conditions in the scale model tests. It turns out 

that Bijman’s experiments were carried out at the very edge of the rough turbulent zone; 

some of his experiments are actually in the transition zone from laminar to rough 

turbulent. Apparently this was inevitable given the limitations of the flume used in his 

research. This means that viscous effects may play a role in his experiments and that we 

must be careful not to draw too firm conclusions from them. 

The parameters shown in table 5.1 and appendix 5 follow from our own analysis of 

Bijman’s measurement data and may deviate from Bijman’s original values in a few 

ways. These are discussed below. 
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Figure 5.1 – Flow regime for Bijman data set 
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Correction for wall effects: The first deviation arises from the limitations of the test 

facility (a relatively narrow flume, for the given water depths we have approximately B/h 

˜ 2). This results in side effects caused by the wall of the flume that cannot be ignored. 

The most important wall effect that must be accounted for is the fact that the velocity 

profile over the depth is no longer logarithmic, which means that the classic way of 

calculating the current bed shear stress using the Chézy coefficient (equation 2.14) 

cannot be used. Bijman realised this and, after he finished his experiments, he 

measured the actual velocity profiles for depth-averaged flow velocities similar to the 

ones he used in his experiments. These measured profiles indeed proved to be non-

logarithmic; the slower the average flow velocity, the larger the deviation from a 

logarithmic profile. However, the velocity profiles close to the bed did prove to be 

logarithmic, so the actual bed shear stress could be calculated using only these data 

points, in a way similar to the method described in paragraph 2.1.3 under ‘non-

developed flow’. The only problem that remained was that this bed shear stress could 

not be related to the depth-averaged flow velocity which was the only parameter that 

was measured in the earlier tests, so effectively the bed shear stress in these tests could 

not be calculated. Bijman solved this problem by re-defining the roughness of the bed in 

such a way that, for the tests he conducted at the end of his research programme, the 

measured bed shear stress could be calculated using the Chézy-based method, the 

measured depth-averaged flow velocity, the measured water depth and this new 

roughness. This new roughness, expressed as a correction factor to the classic 

roughness value k = 2·dn50, was then also used in the calculations for the previous tests 

and it was assumed that this would lead to –more or less- correct bed shear stresses.  

We do not agree with this method, because we believe that the bed roughness is a very 

important parameter in the determination of the bed shear stress. In addition, using a 

new artificial roughness not only influences the calculation of the current bed shear 

stress, but also the wave bed shear stress! Instead, we have opted for an alternative 

way to solve this problem: by not changing the bed roughness, but the depth-averaged 

flow velocity. In other words, we have re-calculated the depth-averaged flow velocity in 

such a way that, for the tests conducted at the end of his research programme, the 

measured bed shear stress could be calculated using the Chézy-based method, the 

measured water depth, the real bed roughness (k = 2·dn50) and this new flow velocity. 

This new velocity, again expressed as a correction factor to the measured flow 

velocities, was then also used in the calculations for the previous tests. This is explained 

in more detail in appendix 5. This new way of analysing Bijman’s data means that our 

results may deviate somewhat from Bijman’s original results. 

Dispersion relation: Another way in which our results deviate from Bijman’s is caused 
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by the fact that Bijman takes into account the effect that the current has on the wave 

period (a following current means a longer wave, an opposing current means a shorter 

wave. In this experiment Bijman only used following currents). In other words, Bijman 

uses the adopted dispersion relation (including Doppler effects) to calculate the wave 

number k for a given period, water depth and current velocity: 

kukhgkku )tanh(

 

(5.2) 

in which 

 

is the wave angular frequency relative to a fixed reference frame, 

 

is the 

wave angular frequency relative to a reference frame moving with the current (intrinsic 

angular frequency), h is the water depth, u is the current velocity and k is the wave 

number. Bijman then uses this k and 

 

to calculate the orbital velocity near the bed: 
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(5.3) 

Physically correct as this approach may be, we will not use it in our analysis. Instead, we 

prefer to use the standard dispersion relation 

)tanh(khgk

 

(5.4) 

to find the wave number for a given frequency 

 

and water depth, as if there were no 

current, and continue to calculate the orbital velocity as  

)sinh(

1
)2/(ˆ0 kh

Hu

 

(5.5) 

This is mainly done because this is also the standard way of calculating in design 

practice. A comparison between the two methods is made in Figure 5.2; the left pane 

shows the calculated orbital velocity with and without adapted dispersion relation, the 

right pane shows the same comparison for the dimensionless combined shear stress 

 

(we have used the Bijker averaged method wc = c + ½ w here as an example). The 

figure shows that the error made by using (5.4) instead of (5.2) is not very large in 

absolute terms (roughly 20% on û0 and 15% on ), but more importantly the points tend 

to collapse onto a straight line indicating that they are highly correlated. In other words: 

the values obtained by (5.4) differ only by a constant factor from the values obtained by 

(5.2); this will not bias our intended analysis in Chapter 6 as long as we are clear and 

consistent in our definitions.  
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Transport and roughness: Finally there are two more ways in which our analysis 

deviates from Bijman’s. The first reason is the fact that Bijman uses a slightly different 

definition of dimensionless transport than we do (equation 3.74) in the sense that he 

uses d50 and we use dn50. The second reason lies in the definition of the bed roughness: 

we use ks = 2·dn50, Bijman uses ks = 2.5·dn50. 

5.2 Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005) 

Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005) all tested the stability 

of pipeline covers under wave attack, the first two studies also included combinations of 

waves and a steady current. Their respective tests are essentially the same and 

therefore their results will be combined into one large dataset. The parameter ranges 

that were varied in these tests are given in table 5.2 (for the tests with only waves) and 

table 5.3 (for the tests with waves and a current). The flow regimes for these two sub-

sets using the Jonsson plot are given in Figure 5.3. 

The damage that was measured in these tests was expressed as a dimensionless 

erosion area S = Ae/(dn50)
2 as defined in paragraph 3.5.6. The definitions of the other 

(mainly geometric) parameters involved are illustrated in figure 3.20 (repeated here for 

convenience as Figure 5.4). In addition to the measured erosion area S, Lomónaco also 

reports the structure height after damage zd, and gives detailed drawings of all measured 

damage profiles. Especially these drawings are very insightful, interested readers are 

referred to Lomónaco (1994). Van Gent and Wallast only report S for their tests, Saers 

gives some plots of damaged profiles but these are not very clear. 

0,00

0,02

0,04

0,06

0,08

0,00 0,02 0,04 0,06 0,08
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,00 0,10 0,20 0,30 0,40

Bed orbital velocity

W
it

h
o

ut
 a

da
pt

ed
di

sp
er

si
o

n 
re

la
ti

o
n

With adapted
dispersion relation

W
it

h
o

ut
 a

da
pt

ed
di

sp
er

si
o

n 
re

la
ti

o
n

With adapted
dispersion relation

 - Bijker

 

Figure 5.2 – Comparison of parameters with or without adapted dispersion relation for the Bijman data 
set 
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When a structure like a pipeline cover is studied the question arises where the 

characteristic velocities and depths must be evaluated. This has been discussed in 

paragraph 3.6.2. The parameter ranges given in table 5.2 and 5.3 are based on the 

approach in which the water depth is assumed equal to hc everywhere. 

In addition to the above, the following remarks must be made: 

 

Again, the parameter ranges given in these tables are calculated with the 

standard dispersion relation (equation 5.4), thus neglecting the effect that the 

current has on the wave length, just as we did for the Bijman data. This approach 
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Figure 5.3 – Flow regime for the Lomónaco (triangles) – Van Gent and Wallast (crosses) – Saers (dots) data 
set.  Tests with waves only (top) and a combination of waves and a current (bottom) 
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is also followed by Van Gent and Wallast in their analysis, so in this respect all 

analyses are equal. 

 
All three studies used irregular waves (with a JONSWAP spectrum). The wave 

heights were reported in terms of H1/3 (which we consider to be equal to Hs), Hmax 

and Hrms, the wave period as Tm-1,0, Tm, Tp and Ts. Of these, we chose to use Hs 

and Tm, as these are the two parameters most probably encountered in design 

practice. In addition, we will calculate H1% for all tests with equation 2.38 to see if 

this wave parameter (used by the software package BPP) performs better than 

Hs. We will then use H1% in combination with Tp. 

 

In their reports, neither Lomónaco, Van Gent and Wallast, nor Saers make 

reference to water-working prior to their tests. This means that their test results 

may be biased towards over-emphasising small damages (initial movement of 

unfavourably placed stones).  

 

The ranges for Rew and a0/ks indicate that not all tests were performed for fully 

rough turbulent conditions. Apparently using a larger flume than the one Bijman 

used did not completely solve this problem. 

 

The original studies (those by Lomónaco and Van Gent and Wallast) included a 

few tests that were performed with (rather severely) breaking waves (defined as 

Hs/hc > 0.50, in the original dataset values were as high as Hs/hc = 0.76). 

Breaking waves cause a fluid motion that is significantly different from the fluid 

motion under non-breaking waves, and it can be expected that the results from 

the stability analysis may be biased when these are included. In this thesis we 

have chosen to focus on non-breaking waves only (see chapter 1) and therefore 

we will drop the tests with breaking waves from our analysis. This reduces the 

total data set from 142 test to 118 (81 test with only waves, 37 tests with current 

and waves). Tables 5.2 and 5.3 are based on this reduced dataset. 

An overview of the combined data set of Lomónaco, Van Gent and Wallast and Saers, 

as far as used in this present research, is given in appendix 6. 
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Table 5.1 – Parameter ranges for Bijman data set  

parameter symbol range 

stone diameter dn50 4.86 mm 

stone grading dn85/dn15 1.3 

stone density s 2534 kg/m3 

relative density 

 

1.55 

depth-averaged flow velocity uda 0.35 – 0.66 m/s 

wave height (regular waves) H 0.05 – 0.15 m 

wave period (regular waves) T 1.0 – 1.1 s 

model 

parameters 

water depth h 0.275 – 0.317 m 

combined shear stress 

 

0.032 – 0.062 

orbital velocity u0 0.148 – 1.658 

wave height H/h 0.16 – 0.54 

wave length L/h 6.80 – 8.58 

current dominance X 0.09 – 0.55 

bed roughness z0/h 1.15·10-3 - 1.32·10-3  

a0/ks 1.78 – 5.95  

a0/z0 53.4 – 178.6 

wave-current angle 

 

0 deg 

number of waves N 3600 

particle Reynolds number Re

 

279 – 391 

current Reynolds number Re 1.0·106 – 1.9·106 

dimensionless 

parameters 

wave Reynolds number Rew 2150 – 24000 
Remarks 

 

The bed roughness is taken as ks = 2·dn50, z0 = ks/30 

 

Water-working has been applied: 1800 seconds uniform flow followed by 
2400 waves prior to testing 

 

The combined shear stress in this overview was calculated with the Bijker 
method: wc = c + ½· w 

 

The particle Reynolds number is based on the combined shear stress 
velocity 

 

The current dominance parameter X is defined according to Soulsby 
(equation 3.4)  
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Table 5.2 – Parameter ranges for combined Lomónaco – Van Gent and Wallast – Saers data set.  
tests with waves only 

parameter symbol range 

stone diameter dn50 3.10 – 8.33 mm 

stone shape - round – angular –   

irregular 

stone density s 2463 – 2712 kg/m3 

relative density 

 

1.46 – 1.72 

wave height Hs 0.085 – 0.29 m 

wave period Tm 1.1 – 2.1 s 

water depth h 0.375 – 0.900 m 

structure crest width Bc 0.040 – 0.25 m 

structure slope 1:m0 1 – 8 

model parameters 

structure height zc 0.030 – 0.26 m 

shear stress 

 

0.023 – 0.090 

orbital velocity 

 

0.16 – 3.61 

wave height Hs/h 0.24 – 0.50 

wave length L/h 4.36 – 9.32 

bed roughness z0/h 2.8·10-4 – 1.9·10-3  

a0/ks 1.67 – 19.0  

a0/z0 50 – 570 

number of waves N 900 – 6500 

particle Reynolds number Re

 

111 – 745 

wave Reynolds number Rew 3200 – 57000 

structure height hc/h 0.63 – 0.97 

dimensionless 

parameters 

structure width Bc/L 0.013 – 0.12 

Remarks 

 

All parameters were determined as if h = hc and the structure has an 
infinite width 

 

The shear stress in this overview was determined with the 
Jonsson/Bijker approach 

 

The bed roughness is taken as ks = 2·dn50 

 

No reference is made to water-working prior to the tests 
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Figure 5.4 - General definition sketch of damage profiles for pipeline covers 
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Table 5.3 – Parameter ranges for combined Lomónaco – Van Gent and Wallast data set.  
tests with current and waves  

parameter symbol range 

stone diameter dn50 3.10 – 8.33 mm 

stone shape - round – angular 

stone density s 2463 – 2712 kg/m3 

relative density 

 

1.46 – 1.72 

current velocity uda 0.10 – 0.74 m/s 

wave height Hs 0.067 – 0.26 m 

wave period Tm 1.1 – 2.1 s 

water depth h 0.375 – 0.900 m 

structure crest width Bc 0.060 – 0.25 m 

structure slope 1:m0 1 – 8 

model parameters 

structure height zc 0.031 – 0.25 m 

shear stress wc 0.015 – 0.097 

orbital velocity 

 

0.10 – 3.24 

wave height Hs/h 0.20 – 0.49 

wave length L/h 4.57 – 10.7 

current dominance X 0.01 – 0.57 

bed roughness z0/h 2.8·10-4 – 1.9·10-3  

a0/ks 1.32 – 18.4  

a0/z0 39 – 552 

wave-current angle 

 

0 deg 

number of waves N 914 – 3000 

particle Reynolds number Re

 

72 – 383 

flow Reynolds number Re 37500 –370000 

wave Reynolds number Rew 1500 – 55300 

structure height hc/h 0.67 – 0.95 

dimensionless 

parameters 

structure width Bc/L 0.013 – 0.078 

Remarks 

 

All parameters were determined as if h = hc and the structure has an 
infinite width, except for the flow Reynolds number which is based on the 
full water depth 

 

The shear stress in this overview was determined with the Jonsson/Bijker 
approach, wc = c + ½· w  

 

The bed roughness is taken as ks = 2·dn50 

 

The current dominance parameter X is defined according to Soulsby 
(equation 3.4). The value X = 0.57 is an outlier, for the majority of the 
tests X < 0.2 

 

No reference is made to water-working prior to the tests 
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6 Quantitative analysis 

In this chapter we will seek to answer the questions that were asked in the last 

paragraph of chapter 4. We will do so by a quantitative analysis of data sets of scale 

model tests as described in chapter 5. To do so, we will use some statistical concepts 

that the reader may not be familiar with. These concepts are described in appendix 7.  

We emphasise here that we use the adapted forms of the datasets, as was described in 

chapter 5. That is, for the Bijman dataset we will re-calculate both the orbital velocities 

(without the normal dispersion relation, ignoring the influence of the current) and the bed 

roughness; for the combined Lomónaco – Van Gent and Wallast – Saers dataset we will 

discard all tests with breaking waves (Hs/hc > 0.50).  

The Lomónaco - Van Gent and Wallast – Saers data set uses irregular waves. In the 

present analysis we have mainly used Hs and Tm as representative parameters, as these 

are the most practical parameters to use. When applicable we have tested for H1% and 

Tp as well. The Bijman data set uses regular waves only.  

A worked calculation example, based on the results from this chapter, is included in 

appendix 9. 

6.1 Transport of rock under waves and current 

In this paragraph we will focus on the use of a transport-based design method for 

horizontal bed protections. As we discussed in Chapter 4 we can not test these methods 

explicitly given the limitations of the dataset in question, and we had to narrow the 

discussion down to the question of transport of rock. The question we seek to answer in 

this section is: 

Which combination of transport formula (Paintal-type or Bijker-type) and stability 

parameter (Shields-type, for the 16 selected combinations of wave-current 
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interaction models and averaging procedures, Morison-type or velocity-based) 

best fits the transport rates measured by Bijman?   

For completeness we repeat here that the ’16 selected combinations’ include the wave-

current interaction models of Bijker (1969), Grant and Madsen (1979) and Fredsøe 

(1984) and the ‘base case’ without wave-current interaction; for each method we can 

either use the maximum shear stress, the average shear stress in the direction of the 

current, the average shear stress (regardless of current direction) over the whole wave 

period and the average shear stress (regardless of the current direction) over half the 

wave period.  

The procedure is simple. For all tests performed by Bijman (see appendix 5) we have 

calculated the combined wave-current shear stresses with the 16 mentioned methods, 

according to our description in chapter 3; next, we have made all shear stresses 

dimensionless by dividing them by ( g d), which in the case of the Bijman data set is a 

constant with a value of 82.87 Pa.  

In addition, we have calculated the Morison parameters using CM/CB = 6.8 as found by 

Tromp; in that case the Morison parameter becomes (see equation 4.2): 

50

0
2
0 ˆ8.6ˆ

2

1

ndg

dau

 

(6.1) 

In (6.1) the horizontal near-bed orbital velocity û0 is taken as the governing velocity, the 

governing acceleration is simply calculated as the time derivative of the velocity using 

linear wave theory: â0 = û0 (see equation 4.3).  

Finally, we have calculated the velocity parameter 

 

according to equation 4.4, again 

using û0 as the governing velocity. 

These 18 stability parameters and the dimensionless transport rates q measured by 

Bijman have been fitted to the two selected models (Paintal and Bijker) using the 

procedures described in appendix 7. The results are discussed next. 

6.1.1 Paintal-type formula 

The fit of a Paintal-type formula q = a b can be done by simple linear regression on 

two variables and has been performed in Excel. The results, in terms of r2, are given in 

appendix 8 and summarised in table 6.1. The exact values of the regression coefficients 
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a and b are not deemed relevant at this moment. 

Table 6.1 Goodness-of-fit of various stability parameters in a Paintal-type transport formula.  
Based on data of Bijman (2000) 

Model r2 

Maximum 0.22 

Average in current direction 0.65 

Average over full period 0.65 

 

- No WCI 

Average over half period 0.65 

Maximum 0.37 

Average in current direction 0.73 

Average over full period a) 0.53 

 

- Bijker  

Average over half period b) 0.55 

Maximum 0.36 

Average in current direction 0.80 

Average over full period 0.50 

 

- Grant and 

Madsen 

Average over half period 0.52 

Maximum 0.57 

Average in current direction 0.77 

Average over full period 0.80 

 

- Fredsøe 

Average over half period 0.79 

  

0.02 

  

0.03 

Notes: 
a) CUR/CIRIA method 

b) BPP method  

This table shows that  

 

The Morison-type stability parameter and the velocity parameter perform very 

bad as indicators of transport; 

 

For all shear stress models, the stability parameters based on the maximum 

shear stress perform worse than stability parameters based on the average 

shear stress; 

 

For the Fredsøe model the average shear stress in the current direction performs 

(roughly) just as good as the other two averaging procedures, for all other 

models the average shear stress in the current direction provides the best fit; it 

therefore appears the be best parameter to use in a Paintal-type transport 

formula;  
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The goodness-of-fit increases considerably when wave-current interaction is 

taken into account, so this phenomenon cannot be ignored; 

 
The more advanced wave-current interaction models by Grant and Madsen, and 

Fredsøe, fit the data better than the simpler model by Bijker. The Fredsøe model 

performs just as well as the model by Grant and Madsen when the average 

shear stress in the current direction is used; it performs better for all other 

averaging procedures. 

A visual assessment of what a value of r2 = 0.02 or r2 = 0.80 means can be obtained 

from figure 6.1 in which we show the scatter plots of the measured q-values against the 

calculated -values for a selection of models. 

Table 6.1 shows that there are five models that appear to be useful in a Paintal-type 

transport equation (in terms of their goodness-of-fit being significantly higher than the 

other models): 

 

The average shear stress in the direction of the flow according to Bijker; 

 

The average shear stress in the direction of the flow according to Grant and 

Madsen; 

 

The average shear stress in the direction of the flow according to Fredsøe; 

 

The average shear stress over the whole wave period according to Fredsøe; 

 

The average shear stress over half the wave period according to Fredsøe. 

The fact that the respective r2 values vary between 0.73 and 0.80 can not be used to 

make a final choice between these methods, all methods are deemed ‘just as good’ in 

this aspect. The final choice will be made on other criteria, being: 

 

simplicity / practical use. A simpler and more practical model will be preferred 

over a more complicated one; 

 

relation to other known concepts. Ideally, the model of our choice should have 

a sound physical basis and it should be possible to relate the model to other 

known concepts, rather than proposing the model “just because it fits our data so 

nicely”. 
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Figure 6.1 – Examples of fit of q against 

 

for various stability parameters (Bijman data set). Top left: 
Morison approach (eq 6.1); top right: maximum shear stress according to Bijker; middle left: average shear 

stress over the whole wave period according to Bjker (CUR/CIRIA method); middle right: average shear 
stress over half the wave period according to Bijker (BPP method); bottom left: average shear stress in the 

direction of the current according to Fredsøe; bottom right: average shear stress in the direction of the 
current according to Grant and Madsen 
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To start with the last criterion: the Paintal formula was originally derived to describe the 

transport of rock under a current alone, and ideally our present “current and waves” 

version should tend towards the “current only” version when the waves grow weaker and 

weaker. The see which of the five remaining models best meets this criterion, we have 

plotted the Bijman data against the existing Paintal formula (in the second corrected 

version by Mosselman and Akkerman): 

9.87103q      
for 

 

< 0.05  (3.77 repeated) 

for each of the five remaining wave-current interaction models. The results are given in 

figure 6.2. 

These plots show quite clearly that if 

 

is calculated according to either: 

 

The average shear stress in the direction of the flow according to Fredsøe; 

 

The average shear stress over the whole wave period according to Fredsøe; 

the measured transport collapses quite nicely onto the Paintal curve. In other words the 

existing Paintal formula appears to be valid for a combination of currents and waves, too, 

if we replace the bed shear stress by the combined shear stress according to either of 

these two methods. This is an important result, because it means that we can cover the 

whole range of hydraulic conditions from ‘current only’ to ‘current and waves’ with one 

single formula. 

Of these two remaining models, we prefer to use the average shear stress in the 

direction of the flow according to Fredsøe, for two reasons: 

 

This is the more practical model to use, because this model has been 

parameterised by Soulsby et al (1993, see appendix 2) whereas the other model 

has not; 

 

The average shear stress in the direction of the current is effectively the bed 

shear stress caused by the current alone enhanced by the presence of the 

waves. It seems very logical to use this measure in the Paintal transport formula, 

because in the original version it also included the bed shear stress caused by 

the current. This also fits the physical explanation that the current transports the 

bed material and the waves only enhance the transport capacity. 
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6.1.2 Bijker-type formula 

A Bijker-type formula is of the form q = a·( c)
b·exp(c/ wc), so essentially it consists of a 

part related to the current shear stress c only (responsible for the actual transport of the 

bed material) and a part related to the combined wave-current shear stress wc 

wc avx
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Figure 6.2 – Match Bijman data with existing Paintal formula for various wave-current interaction models
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(responsible for the stirring up of the sediments). This formula is widely used in 

morphological transport calculations for sand, in which case 4 a = 5, b = 0.5 and  

c = -0.27; in this paragraph we will investigate whether the formula may also be used for 

stones, in which case it is expected that the values of the coefficients a, b and c will be 

different. 

In a Bijker-type formula three parameters must be fitted, so we have used the software 

package SPSS to perform a multivariate linear regression on our data, after the 

appropriate log-transformation (see Appendix 7). In our analysis we have always used 

c based on the current only and wc according to the various wave-current interaction 

models as indicated in the table. In this context the Morison stability parameter and the 

velocity parameter have no meaning, because they cannot be split in a ‘current’ part and 

a ‘waves and current’ part. They have not been included in the analysis. 

Finally, in a multivariate regression analysis the significance (in the true statistical 

meaning of the word) of the contributions of the various parameters must always be 

checked, as described in Appendix 7; models in which there is no significant contribution 

of either c or wc will be rejected. The same is true for models for which colinearity 

occurs among the dependent variables. 

The results are summarised in Table 6.2; the full SPSS output is given in appendix 8. 

From this table it is clear that: 

 

Some models give statistical problems, in terms of a non-significant contribution 

of one of the two parameters, or colinearity. This last problem occurs mainly 

when we try to use the averaged combined shear stress in the direction of the 

current. Apparently this parameter is strongly correlated to the shear stress 

caused by the current alone (which is not too hard to imagine); 

 

The models that do pass the statistical tests all show a very high goodness-of-fit, 

comparable to the best Paintal-type models. There is no apparent preference for 

a wave-current interaction model, the simpler models (even the model without 

wave-current interaction whatsoever) perform just as well as the more complex 

ones.   

                                                

 

4 There is some debate among morphological researchers as to the exact value of a. The value given here, 
a = 5, is used for transport calculations within the surf zone. Outside the surf zone, ie in the absence of 
breaking waves, a is probably lower, perhaps as low as a = 1. However, the exact values are not of 
importance to us here, we are only interested in order of magnitude 
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Table 6.2 Goodness-of-fit of various stability parameters in a Bijker-type transport formula.  
Based on data of Bijman (2000) 

Model adjusted 
r2 

Maximum 0.81 
Average in current direction a) b) c) 

Average over full period a) b) c) 

 

- without WCI  

Average over half period a) b) c) 

Maximum 0.81 

Average in current direction c) 

Average over full period d) 0.81 

 

- Bijker 

Average over half period e) 0.81 

Maximum 0.81 

Average in current direction a) c) 

Average over full period 0.80 

 

- Grant and 

Madsen 

Average over half period 0.81 

Maximum 0.81 

Average in current direction a) c) 

Average over full period a) c) 

 

- Fredsøe  

Average over half period a) c) 

Notes: a) No significant contribution of c 

b) No significant contribution of wc 

c) Colinearity occurs 
d) CIRIA/CUR method 
e) BPP method 

 

We will select two models for further analysis here: 

 

The maximum shear stress without wave-current interaction, because it is the 

simplest model to use. The full equation, including the fit parameters a, b and c 

is:  

wcecq
/118.097.2116.0  (6.2) 

 

The average shear stress according to Bijker, because it is the model most often 

used in the present design practice (a reminder: this is the ‘ wc = c + ½ w’ model). 

It is also the model used in the Bijker formula for sand transport, on which this 

new formula is based. The full equation is: 

wcecq
/114.027.20175.0  (6.3) 
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We see that the value of the fit parameters a,b and c deviate strongly from the values 

that are used in the original Bijker formula for sand. This is probably due to the different 

nature of the transport of stones (low mobility, occasional transport – see chapter 4). 

The two remaining models will be evaluated on a final criterion: their ability to relate to 

other known concepts. Just as we did for a Paintal-type formula, we would like the new 

Bijker-type formula to predict stone transport for currents only just as well as for a 

combination of currents and waves. Evidently, when the waves grow weaker and weaker 

the combined shear stress wc tends towards the current-only shear stress c, so if there 

is only a current we must replace wc in (6.3) and (6.4) by c.  

We can check the applicability of the thus obtained formulas for current-only situations 

by comparing their predictions to the transport rates measured by Paintal (1969). We 

have plotted both formulas against Paintal’s original dataset in Figure 6.4, in which we 

also include the Paintal formula (3.77) in the version by Mosselman and Akkerman.  

We can see that neither formula predicts the transport rates very well, especially around 

 

= 0.04 – 0.05 the deviations become strong and the new formulas appear to under-

predict the measured transport by a factor 100 (note the logarithmic -axis!). 

We conclude that, although a Bijker-type formula fits the Bijman data really well and has 

the advantage that the simplest of wave-current interaction models can be used, it does 

not work for ‘current only’ situations. We will therefore reject this type of formula in favour 

of a Paintal-type formula. 
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Figure 6.3 – Plots of Bijker-type formulas against Paintal data set (limit for current only) 
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6.1.3 Conclusions and discussion 

In the previous two paragraphs we have seen that both a Paintal-type formula and a 

Bijker-type formula can be used to predict the transport rates of rock under a 

combination of waves and currents.  

For a Bijker-type formula a simple wave-current interaction model appears to perform 

just as well as a more complex one, which makes this type of formula easy to use in 

practice. However, the Bijker-type formulas that were fitted for a combination of currents 

and waves do not match the measured transport rates for currents only. We believe that 

a more thorough investigation into transport of rock by a wide range of wave-current flow 

situations, including a large number of tests for currents only, could potentially result in 

an all-encompassing transport formula of this kind. But for the time being we will 

abandon the Bijker-type approach in favour of Paintal-type transport formulas. 

When a Paintal-type formula is used, we have found that shear-stress based stability 

parameters give far better results than other (ie Morison and velocity) stability 

parameters. Furthermore, the applicability of the formula depends to a large extent on 

the wave-current interaction model that is used. In general we can say that the more 

complex models give better results than the simpler ones, and that the maximum 

combined shear stress is not a good indicator for transport; instead, the average shear 

stress in the direction of the current appears to be the best parameter to use.  

Contrary to Bijker-type formulas, a Paintal-type formula can be used for the full range of 

expected flow situations, from currents only to a combination of currents and waves 

including strongly wave-dominated situations. In particular we have found that the 

Paintal formula (as corrected by Mosselman and Akkerman), originally derived for 

current only, can also be used to predict transport of rock by a combination of currents 

and waves provided that the combined bed shear stress is calculated as the average 

shear stress in the direction of the current according to Fredsøe. This can be seen as the 

main conclusion from this part of the present research. 

We note that we have assumed that the waves in Bijman’s experiment were symmetrical 

(ie sinusoidal) and that the measured transport was therefore entirely due to the (wave-

enhanced) current. This is not really the case: for the water depths and wave heights 

that Bijman used it is almost impossible to get pure sinusoidal waves in a laboratory 

flume. Bijman does indeed report that his waves were a little asymmetrical (Bijman 

2000). This means that the transport measured by Bijman was at least in part wave-

induced; unfortunately we cannot tell to which extent. The conclusion that transport of 

rock under currents and waves can be described with the Paintal formula in combination 
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with the shear stress according to Fredsøe can only be justified if we can safely assume 

that the wave-induced transport in Bijman’s experiments was small.  

In our calculations we have neglected the influence that the current has on the wave 

length and period (in other words: we have not used the adapted dispersion relation, see 

chapter 5). Before we can finalize our conclusion we will test the impact of this 

simplification. We have re-calculated the average shear stress in the direction of the 

current according to Fredsøe, this time using the adapted dispersion relation, and plotted 

the results in a similar way as we did in Figure 6.3. In this plot (Figure 6.4) we see that 

the data point with adapted dispersion relation (dots) are grouped closely to our original 

points (crosses). Therefore our main conclusions seems equally valid for both calculation 

methods and the simplification is justified.  

In a similar way we can test the recommendation to use the Soulsby parameterisation to 

calculate wc avx instead of the full Fredsøe method. This is also indicated in Figure 6.4. 

The points obtained with the Soulsby parameterisation (triangles) are slightly to the right 

of our original points (indicating higher shear stresses), but they are still close enough to 

support our recommendation. 

6.2 Design of pipeline covers with a transport-based method 

This paragraph focuses on the use of transport-based design methods for the design of 

pipeline covers. In Chapter 4 we have discussed various possibilities of doing so, and we 

have posed this research question: 
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Figure 6.4 – Influence on simplification and parameterization on the main conclusion 
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Which combination of transport formula (Paintal-type, Bijker-type or Hallermeijer-

type), stability parameter (the 19 parameters identified in paragraph 4.2.6) and 

velocity definition (see Figure 3.22) best fits the transport rates associated with a 

transport-based design method (Critical scour method or simple transport 

method)?  

Before we can proceed to answer this question we will have to find a way to translate the 

erosion area (in terms of Ae or S) to a reduction in crest height ( z). This serves two 

purposes: 

 

The starting point to calculate the transport rates associated with the critical 

scour method is a (measured) reduction in crest height, which is not known for all 

tests in our dataset. For some tests this reduction has been given (Lomónaco 

1994, Saers 2005), for other tests it has not (Van Gent and Wallast 2001). This 

means that for these last tests we will have to find a way to calculate z from the 

measured damage S.  

 

The simple transport method predicts the erosion area Ae, where in practice 

designers may be more interested in z. If we have a relationship between these 

two parameters we can use this to make the simple transport method more 

practical.  

Various ways of linking Ae to z will be investigated in paragraph 6.3.1. The actual 

analysis, the fitting of the calculated transport rates to the hydraulic parameters, is 

performed in paragraph 6.3.2 

The damage to a near-bed structure is mainly related to wave action; in design practice 

the waves commonly form the governing load. Also the data set that we use focuses 

mainly on wave load, it contains only a relatively small number of tests for waves and 

currents. For these reasons we will analyse the tests with ‘waves only’ first; when the 

results are promising we will seek to include the influence of the current as well. This 

focus on ‘waves only’ means we can reduce the research question a little: the number of 

shear-stress based stability parameters reduces to only three (for each velocity 

definition), as all wave-current interaction models and averaging procedures loose their 

significance (the difference between maximum and average is a constant factor in this 

case). We only keep the (maximum) shear stress according to Bijker, Grant and 

Madsen, and Fredsøe; these parameters differ because they use different friction factors 

(see Figure 2.4). In addition we can drop the Bijker-type transport formula if we consider 

waves only as this formula will always predict zero transport for c = 0. 
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6.2.1 Prediction of structure height after damage 

The reduction in crest height z can be calculated from the measured erosion areas (Ae 

= S*dn50
2) if we assume a (schematised) profile for the damaged structure. From looking 

at the damage profiles reported by Lomónaco (1994) we have found four possible ways 

of doing so. We will test the applicability of each schematisation by comparing the 

calculated crest reductions to the measured ones (for the part of the dataset for which 

both z and S have been given). We will select the best method and apply that method 

to calculate z for the part of the dataset for which only S has been given. 

The four possible schematisations are sketched in figure 6.5 and will be described next.  

‘Sliced’ profile: The first schematisation is the simplest, and assumes that a slice with a 

constant thickness (the required z) is taken from the crest of the structure. We will refer 

to this schematisation as the ‘sliced’ profile. The erosion area (the hatched area in figure 

6.5) can than simply be calculated as the area of a trapezoid:  

zmBzA ce 0 
(6.5) 

For a given boundary condition that the predicted erosion area must match the 

measured erosion area Ae the required crest reduction follows from the inverse: 
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Figure 6.5 –Various damage profiles for pipeline covers  
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When z is calculated for each test and compared to the measured z the result can be 

plotted as in figure 6.6, top left pane. It this plot we have used a dimensionless form, for 

which we have chosen the relative crest reduction z/dn50, We see that, although the 

overall prediction is good, the ‘sliced’ schematisation appears to over-predict the 

measured damage; it can be seen as a safe upper limit estimation of the real crest 

reduction.  

‘Combination’ profile: The over-prediction of the crest reduction with the ‘sliced’ profile 

is understandable: in this profile it is assumed that all damage occurs at the crest. 

Looking at the reported profiles learns that the damage also occurs on the slopes of the 

structure. The damage profile is usually not symmetrical: damage occurs mainly on the 

‘upstream’ slope (in terms of the propagation direction of the waves), the stones are 

mainly deposited on the downstream slope. This asymmetry is reported by all 

researchers and probably occurs because the waves in the laboratory flume were not 

purely sinusoidal (even though they may originally have been intended as such). A 

schematisation that incorporates this effect is the ‘combination’ profile, see Figure 6.5, in 

which it has been assumed that the most upstream point of the structure does not move 

and that the transition point between the slope and the crest is exactly below the original 

transition point. The total damage area can be calculated as:  
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The required crest reduction follows from the inverse:  
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(6.8) 

The results from this schematisation are given in Figure 6.6, top right pane. As can be 

seen, this schematisation tends to under-predict the measured crest height reductions – 

apparently the extent of the damage on the slopes is over-predicted by this model. 

‘Sagged’ profile: The third schematisation allows for some damage to occur on the 

slopes of the structure as well, but disregards the reported asymmetry of the damage 

profile; it assumes that the damage profile is a symmetrical trapezoid with the same crest 

width Bc as the original profile, but a new height zd and a new slope md. The new profile 
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can thus be described as a ‘sagged’ version of the original profile, which is why we will 

refer to this as the ‘sagged’ schematisation. 

We now use two unknown parameters to describe the damaged profile (zd and md) and 

consequently we need a second boundary condition to close the set of equations. We 

will do so by assuming the waves only redistribute the material, so no material is lost and 

the total cross sectional area of the damaged profile must be equal to the total cross 

sectional area of the original profile. If we call this area A0 we have  

ccc zmBzA 00 
(6.9) 

for the original profile and   

ddcd zmBzA0 
(6.10) 

for the damaged profile. 

The calculation now proceeds by iteration: we assume a damaged crest level zd and 

calculate the corresponding md. Then we can calculate the erosion area (as the area 

between the resulting two profiles) and see if it matches the measured erosion area. If it 

does not we must choose a different zd. 

The crest height reductions that were obtained in this way are plotted in figure 6.6, 

bottom left pane. We see that, despite the more sophisticated calculation, the results 

from this method are almost similar to those from the ‘combination’ profile. 

‘Gauss shaped’ profile: In the final schematisation the damage profile is described by a 

Gauss-shaped profile with a given height zd and a given width (‘standard deviation’) . 

This profile is inspired by looking at the actual shapes of the reported damage profiles, 

that do not show straight lines as assumed in the previous schematisations but appear to 

have a more ‘natural’ shape. The Gauss shape is described mathematically as  

2

2

2

x

d ezz

 

(6.11) 

with the x-coordinate horizontally along the bed and x = 0 in the symmetry-axis of the 

structure. The calculation procedure is analogous to the ‘sagged’ profile with the 

exception that the cross sectional area of a Gauss-shaped profile is calculated as:  

20 dzA

 

(6.12) 
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The erosion area follows from the area between the Gauss curve and the original profile 

and is calculated by a numerical procedure. The results of this schematisation are 

plotted in figure 6.6, bottom right pane. It is clear that this schematisation again under-

predicts the measured damage, and in addition it does not work well for small amounts 

of damage (which is the main area of interest for a designer and thus for this research). 

Conclusion: From this analysis we conclude that the more sophisticated 

schematisations of the damage profile, the ‘sagged’ profile and the ‘Gauss-shaped’ 

profile, do not work better than the cruder ‘sliced’ profile and ‘combination’ profile. As the 

latter two are easier to calculate (they do not require iteration) they are to be preferred.  

The ‘sliced’ profile over-estimates the measured crest height reduction and can thus be 

seen as a conservative, upper limit approximation of the real value. Given all the 

uncertainties involved in the design of pipeline covers it is recommended to use this 

schematisation in practice whenever a translation from Ae to z must be made. 

For our purposes (ie testing of the critical scour method) we need a slightly more 

accurate way of making this translation. We observe that the ‘sliced’ profile tends to 
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Figure 6.6 – Calculated relative crest reductions ( z/dn50) against measured values for four schematizations of 
the damage profile. Dots: data by Lomónaco (1994); triangles: data by Saers (2005)  
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over-estimate the measured z, whereas the ‘combination’ profile under-estimates it. An 

obvious assumption would be that the real z is ‘somewhere in between’. In Figure 6.8 

we have plotted the average value of z/dn50 obtained from both schematisations. We 

can see that this average predicts the measured values reasonably well: we will use this 

measure to translate S to z for the remaining part of our dataset (the tests by Van Gent 

and Wallast 2001).  

6.2.2 Transport equations 

Now that we have obtained the crest reductions for all tests in the combined Lomónaco – 

Van Gent and Wallast – Saers dataset we can proceed to analyse which transport 

equation is best able to predict these reductions in combination with the simple transport 

method or the critical scour method. 

The duration D of each test is given, and we will estimate the scouring length as  

Ls = m·zc (see Figure 3.20). Now we can calculate the transport rates associated with the 

critical scour method as 

D

z
Lq ss

 

(6.13) 

and those associated with the simple transport method as 

D

A
q e

s

 

(6.14) 
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Figure 6.7 – Calculated relative crest reductions ( z/dn50) against measured values for average of 
‘sliced’ and ‘combination’ damage profile.  

Dots: data by Lomónaco (1994); triangles: data by Saers (2005) 
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We can proceed to make the transport dimensionless in the classic way: 

3
50n

s
q

dg

q

 

(6.15) 

or in the way used in the Hallermeijer formula: 

2
50n

s
Hall d

q

 

(6.16) 

Keeping in mind that we only analyse wave-only situations, the shear-stress based 

stability parameters (

 

according to Bijker, Grant and Madsen and Fredsøe) are 

calculated using w,max = ½ fwû2 in combination with the appropriate friction factors (figure 

2.4 – the Bijker method uses the Jonsson friction factor). The Morison-type stability 

parameter 

 

is calculated as before (equation 6.1), neglecting the convective 

acceleration term as discussed in chapter 4. Finally, the velocity parameter follows from 

equation 4.4. For all stability parameters we will use all three velocity definitions as 

discussed before (see Figure 3.22). Then, for each combination we can assess the 

goodness-of-fit of a transport formula 

 

= a·(stability)b. The results are given in table 6.3 

(calculations performed with Microsoft Excel, see appendix 8). 

The results given in this table lead to the following conclusions: 

 

The use of the Morison and velocity parameters works roughly just as well as 

most shear-stress based methods; 

 

There is hardly any difference between the simple transport method and the 

critical scour method, or between the various velocity definitions; 

 

A Hallermeijer-type definition of dimensionless transport works slightly better than 

a standard definition. 

However the overall result in terms of goodness-of-fit is poor: no coefficient of 

determination higher than r2 = 0.39 was obtained. The general conclusion must be that 

no transport formula can be found that, combined with a transport based design method, 

correctly predicts the crest level reductions of the near-bed structures as measured by 

Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005). 

Given this negative conclusion, we will not proceed to analyse the tests with a 

combination of waves and a current. 
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We have seen that the critical scour method can not really be used for the design of 

near-bed structures in the case of wave-dominated loads. This is of course not 

surprising, since the method was originally developed for current-only situations. This 

means that we will need to look for other design methods. In the next stage of this thesis 

we will investigate the applicability of the ‘damage profile’ methods that were described 

in paragraph 3.6.2. 

Table 6.3 –Goodness-of-fit of various stability parameters in a transport equation (r2),  
in combination with a transport-based design method.  

Based on data of Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005) 

Simple transport 
method 

Critical scour 
method 

definition 
of orbital 
velocity 

Stability parameter 

q Hall q Hall 

 

- Bijker 0.16 0.25 0.16 0.23 

 

- Grant and Madsen 0.19 0.28 0.18 0.26 

 

- Fredsøe 0.21 0.31 0.21 0.30 

 

0.21 0.31 0.22 0.31 

û0 

 

0.23 0.33 0.23 0.32 

 

- Bijker 0.17 0.25 0.18 0.25 

 

- Grant and Madsen 0.19 0.28 0.19 0.27 

 

- Fredsøe 0.22 0.32 0.23 0.32 

 

0.22 0.31 0.24 0.33 

ûc 

 

0.23 0.34 0.25 0.34 

 

- Bijker 0.16 0.24 0.23 0.30 

 

- Grant and Madsen 0.19 0.27 0.24 0.32 

 

- Fredsøe 0.22 0.32 0.28 0.37 

 

0.22 0.32 0.29 0.38 

ûhc 

 

0.24 0.34 0.30 0.39 

6.3 Design of pipeline covers with the damage profile method 

6.3.1 The use of S in practice 

A key feature of the damage profile methods is that they predict an expected amount of 

damage to the structure, expressed as an erosion area Ae. This erosion area can be 

seen as the amount of material that is eroded from a cross section, and is commonly 

made dimensionless as: 

2
50n

e

d

A
S

 

(3.87 repeated) 
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As such, this parameter S is not a very practical parameter for design purposes. A 

designer should have some idea, or feeling, as to what a certain value of S means in 

terms of damage to the structure. For comparison we can look at the design of granular 

armour layers on revetments (from which the use of this parameter S originates), where 

a value of, say, S = 2 is directly related to a qualitative assessment of the expected 

damage, in this case “initial damage” (CIRIA/CUR 1991). 

It would be practical to have such a qualitative assessment of damage for near-bed 

structures as well. This can be obtained by looking at the damage profiles reported by 

Lomónaco (1994) and categorising them according to a visual assessment of the 

amount of damage. Roughly speaking, four levels of damage can be discerned: 

 

category 1: no damage, or rounding off of the edges. Apparently damage starts 

at the edges of the crest; the most unstable stones are those at the intersection 

of the crest and the slopes. These stones move first, but this is not considered 

serious damage. 

 

category 2: initial damage. A reduction in crest height is clearly visible and the 

slopes tend to flatten out a little. 

 

category 3: intermediate damage: Same as level 2, but the structures looks more 

seriously damaged. The distinction between level 2 and level 3 is not very easy 

to make and is solely based on arbitrary judgement. 

 

category 4: severe damage: the structure has completely lost its shape and it is 

unlikely that it still fulfils its function as a pipeline cover. 

Examples from each of these four categories are given in figure 6.8. We have 

categorised all tests by Lomónaco (1994) in this way, both the tests with waves only and 

the tests with a combination of currents and waves, details of this categorisation are 

given in appendix 8. 

When we try to relate these damage categories to the dimensionless erosion area S we 

get the plot given in figure 6.9 (left pane). Clearly there is some relationship between 

damage category and S but the distinction between the categories is not sharp: for 

instance the highest category 1 and the lowest category 4 profiles both occur around S = 

80. A clearer relationship is obtained in the right pane of figure 6.9. This picture is based 

on the reasoning that the crest width of the structure should be incorporated in the 

definition of (dimensionless) damage. For instance, suppose there are two near-bed 

structures, a narrow one and a wide one, that both have a layer with a thickness of 1 

stone diameter removed from their crests. One could argue that both structures are 

equally damaged, but the wider structure will have a larger erosion area and thus a 
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larger value of S. In order to correct for this bias, we will introduce an alternative 

measure of dimensionless damage called S* that is defined as the erosion area per unit 

crest width and stone diameter. 

50

*
nc

e

dB

A
S

 

(6.17) 

Very roughly speaking this measure S* can be seen as ‘the number of stones removed 

as a layer from the crest of the structure’. A comparison of equation 6.17 and equation 

3.87 shows that S* can be calculated as 

c

n

B

d
SS 50*

 

(6.18) 

From the right pane of figure 6.9 we see that this measure S* gives a better indication of 

the expected damage. The distinction between category 2 and category 3 is still not very 

clear and may have to be dropped, but we can safely say that ‘no damage’ corresponds 

to S* < 1 and ‘severe damage’ to S* > 4.5. If we want to keep the distinction between 

‘initial damage’ and ‘intermediate damage’ we can see from figure 6.9 that the boundary 

between these categories lies at approximately S* = 2.5. This gives a qualitative damage 

assessment, that may be used for design purposes (see table 6.4). 

Apart from this qualitative assessment a designer could also try to relate a given S-value 

to ‘actual damage’ by calculating the corresponding reduction in crest level of the 

structure (and more specifically the remaining cover thickness on the pipe). As we have 

 

Figure 6.8 - Examples of damage categories (profiles taken from Lomónaco 1994) 
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discussed in the previous paragraph we cannot do that without assuming some kind of 

damaged profile, for which we have seen that the ‘sliced’ profile (using the explicit 

relationship (6.6)) provides an easy and safe upper limit estimation. 

Table 6.4 - Qualitative damage assessment for pipeline covers 

Dimensionless erosion area 
per unit width Damage assessment 

S* < 1 No damage or rounding off of corners 

1 < S* < 2.5 Initial damage 

2.5 < S* < 4.5 Intermediate damage 

S* > 4.5 Severe damage 

It is emphasised here that these categories are based on a subjective assessment of the 

damage to the structures, obtained from looking at drawings of cross sections of the 

damaged structures. In reality the qualitative damage will also be related to the structure 

type, eg a homogeneous rubble mound or a construction with an armour layer with a 

thickness of 2·dn50, and categories like ‘filter layer exposed’ may have to be used. This 

leaves room for further research.  

6.3.2 Prediction of S 

We can now proceed to find answers to the research question we asked in chapter 4: 

Which combination of stability parameter (the 19 parameters identified in 

paragraph 4.2.6), velocity definition (see Figure 3.21) and other dimensionless 

parameters best fits the measured erosion areas? 

This question was asked given the fact that the existing design formulas for S as put 

forward in literature (Van Gent and Wallast (equation 3.91), Lomónaco and Klomp 
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Figure 6.9 – Damage category against dimensionless erosion area 
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(equation 3.90) or Saers (equation 3.92)) contradict each other in terms of the 

parameters that should be included and the way the governing velocity should be 

defined. There is another reason why we could be interested in a new design formula, 

which is illustrated in Figure 6.10: the overall fit of the Van Gent and Wallast formula is 

poor. Van Gent and Wallast do not quantify this in terms of r2, but we can estimate this 

by re-doing their analysis. A regression analysis of S/ N on 

 

(with u defined as ûhc) on 

the combined Lomónaco – Van Gent and Wallast data set indicates that the coefficient 

of determination r2 = 0.50 for this fit. We will use this value as a target value for our new 

design formula and seek to improve this fit by including more parameters. 

Just as we did in paragraph 6.2, we will first analyse the tests with waves only (which 

reduces the number of stability parameters) and only seek to include the current when 

the results are encouraging. We will use the same stability parameters as before, ie the 

shear stress parameters according to Bijker, Grant and Madsen, and Fredsøe, the 

Morison-type parameter (equation 6.1) and the velocity parameter ; also, we try all 

three velocity definitions. 

The fit may also be improved by including more dimensionless parameters, other than 

stability parameters. In this thesis we will investigate the influence of: 

 

the number of waves: N. We will leave this parameter as a ‘free’ parameter in 

the analysis, ie we will not force a dependency like N or log(N);  

 

Figure 6.10 – Goodness-of-fit of Van Gent and Wallast formula (taken from Van Gent and Wallast 2001)

 



Design of granular near-bed structures in waves and currents 
CHAPTER 6 QUANTITATIVE ANALYSIS     

THESIS March 2006  page 151 
3/24/2006 

 
the structure slope: The most obvious way to describe the effect of the 

structure slope is through the slope angle m0. This parameter directly influences 

the stability of the stones on the slope, but it can also be seen as a measure for 

the fluid motion around the structure. An alternative slope parameter that is 

meant to describe the possible influence of the fluid acceleration around the 

structure is the Saers parameter: Sa = zcm0/a0.; 

 

the relative structure height, expressed as the relative water depth hc/h. This 

parameter can be seen as an indirect indicator for the type of water motion over 

the structure; in fact it can be seen as a flow contraction parameter. As such, it 

describes the degree to which the governing near-bed velocities are disturbed (ie 

increased); 

 

the relative structure width, in which the structure width is expressed either as 

the crest width Bc or the full ‘footprint’ width B (at the base). These parameters 

can be related to either the wave length L or the excursion of the orbital motion 

a0. In short, this gives four possible relative structure width parameters: Bc/L, B/L, 

Bc/a0, and B/a0. These parameters can be seen as a measure of how strongly the 

wave ‘feels’ the structure, in other words how strong the interaction between the 

wave and the structure (and the resulting damage) will be; 

 

the relative crest width: Bc/dn50. We will add this parameter since we have seen 

in the previous paragraph that it is useful in finding a well-defined measure of the 

damage (cf the difference between S and S*).  

In general terms the purpose of this analysis is to find a design formula of the following 

form: 

f

n

ce

dcba

d

B
widthrel

heightrelfactorslopeNstabilityAS

50

)()( 

(6.19a) 

in which A is a constant. This means that we will have to perform a multivariate linear 

regression on: 

50
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factorslopecNbstabilityaBS 

(6.19b) 

after which the required parameters can be calculated as explained in appendix 7. We 
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will use SPSS to perform this regression analysis. Since we do not know beforehand 

which parameters play a role in the design formula and which do not we will use a 

‘stepwise’ regression analysis (see appendix 7).  

The results from an analysis of this kind must be interpreted very carefully; it is easy to 

obtain trivial or non-physical models. In the present analysis we have paid special 

attention to:  

 

completeness: a ‘stepwise’ regression analysis uses purely statistical criteria to 

decide whether a parameter should be in the formula or not. When this leads to 

the omission of parameters that are absolutely necessary in the formula for 

physical reasons we will reject the model; 

 

physical reality: when the model predicts a relationship between the parameters 

that is clearly non-physical (for instance when d in (6.20) is negative indicating 

that the damage reduces when the load in increased) the model is rejected; 

 

colinearity: as explained in appendix 7, this is the effect that the goodness-of-fit 

of the model is largely determined by (implicit) correlations between the 

independent parameters among themselves. This is a large risk in our analysis, 

since we use quite a lot of dimensionless parameters that are somehow related. 

For instance, many of them share the fact that they have the wave length or the 

water depth included in them. We will use the ‘tolerance’ statistic to check for 

colinearity and reject all models for which the tolerance is below 0.60 (this in an 

arbitrary choice; there is no clear criterion other than that this value “should not 

be too low”). 

The procedure is as follows: for each combination of stability parameter and velocity 

definition we will first fit a model that includes only N and m0 as extra parameters; these 

two parameters are selected because these are the only ones that can safely be 

assumed to be statistically independent (from each other as well as from the other 

parameters), so any statistical complications are ruled out. We will see this model as the 

base case. Then we will separately add hc/h, Bc/dn50 and each of the four relative width 

parameters to the regression analysis. If none, or only one of these parameters gives an 

improved goodness-of-fit with respect to the base case, the analysis ends; if two or more 

parameters give an improved goodness-of-fit we will try all combinations of these 

parameters as well. Finally, the complete procedure is repeated with Sa instead of m0 as 

the slope parameter. 

The fit results are given in appendix 8, tables A8.1 – A8.3 and summarised in table 6.5. 

These tables show the best goodness-of-fit that can be obtained for each combination of 
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parameters, after rejecting the models that did not meet the criteria stated above. Note 

that we have used the adapted r2 as a measure of the goodness-of-fit since we are 

comparing models with a different number of variables.  

Table 6.5 –Goodness-of-fit of various models to predict S 
Based on data of Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005) 

definition 
of orbital 
velocity 

stability parameter 
adjusted 
r2 of best 

model 

parameters in 
model 

 

0.61 N, m0, Bc/dn50 

 

0.58 N, m0, Bc/dn50 

 

- Bijker 0.50 N, Bc/dn50 

 

- Grant and Madsen 0.53 N, Bc/dn50 

û0 

 

- Fredsøe 0.59 N, m0, Bc/dn50 

 

0.62 N, m0, Bc/dn50 

 

0.59 N, m0, Bc/dn50 

 

- Bijker 0.52 N, m0, Bc/dn50 

 

- Grant and Madsen 0.55 N, m0, Bc/dn50 

ûc 

 

- Fredsøe 0.60 N, m0, Bc/dn50 

 

0.64 N, m0, Bc/dn50, hc/h 

 

0.61 N, m0, Bc/dn50, hc/h 

 

- Bijker 0.55 N, Bc/dn50, hc/h 

 

- Grant and Madsen 0.56 N, Bc/dn50, hc/h 

ûhc 

 

- Fredsøe 0.62 N, m0, Bc/dn50, hc/h 

This table shows that: 

 

All models include the number of waves, most include the structure slope as well. 

The relative width parameters are not included in any model; neither is the Saers 

parameter. The relative height parameter hc/h is only included in combination 

with the velocity defined as ûhc; 

 

The overall goodness-of-fit does improves compared to the Van Gent and 

Wallast formula (r2 = 0.50), but significant improvements are only obtained with 

the velocity parameter, the Morison parameter and the shear-stress based 

parameter according to Fredsøe; 

 

The differences between the results from the various wave-current interaction 

models are small; this can be explained by the fact that we have looked at waves 

only; 
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The best results are obtained with the velocity defined at the crest of the 

structure ûhc, but the differences between the results from the various velocity 

definitions are small; 

 

Then still, the goodness-of-fit is moderate at best (highest r2 = 0.64). 

Now, which model is the best? To answer that question we will follow the same 

procedure as we did in the previous paragraph; we will select a few models based on 

their goodness-of-fit and compare them on their ability to predict the damage not only for 

the scale model tests with waves only but also for the scale model tests with a 

combination of currents and waves. The selected models are: 

 

Case 1: The velocity parameter in combination with ûhc. This model is 

selected because it has the highest goodness-of-fit. Its full form (as follows from 

the full SPSS output – see the enclosed CD-ROM) is: 

02.1
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hc d
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h
mNS

 

(6.20) 

The velocity parameter 

 

has no analogy for the combination of waves and a 

current, so the only way to include the currents in this case is to neglect the 

current altogether. This is also done by Van Gent and Wallast (2001) in their 

analysis. 

 

Case 2: The velocity parameter in combination with ûc: This model has a 

goodness-of-fit that is only slightly lower than case 1, but it contains fewer 

parameters and could therefore be preferred: 

04.1

50

45.0
0

28.019.132.0
n

c
c d

B
mNS

 

(6.21) 

Again, the inclusion of the current in this case comes down to neglecting the 

current altogether.  

 

Case 3: The shear stress according to Fredsøe in combination with ûhc: This 

model also has only a slightly lower fit than case 1; in addition it provides and 

interesting alternative approach as it is shear-stress based: 

03.1

50
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This design formula was fitted on the scale model data for waves only, and the wave 

shear stress used is the maximum wave shear stress (equivalent to the standard way of 

defining wave shear stresses, see eg equation 2.28). This means that if we seek to 

include the current we will have to replace the shear stress in (6.22a) by the maximum 

combined shear stress. Alternatively we can try to use the average combined shear 

stress, but in that case we will need to use the average shear stress in the ‘waves only’ 

case as well, and rewrite (6.22a) using av = ½ max : 

03.1

50

10.2

42.0
0

28.048.1
,,642

n

cc
hcavF d

B

h

h
mNS (6.22b) 

The calculation of the combined shear stress proceeds as described in chapter 3. 

However, for near-bed structures that still leaves two possible ways to define the current 

velocity: the structure causes a contraction in the flow and thus the (depth-averaged) 

velocity over the crest is increased compared to the (depth-averaged) velocity in front of 

the structure. We can choose to correct for this phenomenon (ie use u = uda·(h/hc), or not 

(ie use u = uda). In the present analysis we will try both methods.  

This gives rise to four different versions of case 3:  

Case 3a: maximum combined shear stress and increased current velocity 

Case 3b: average combined shear stress and increased current velocity 

Case 3c: maximum combined shear stress and undisturbed current velocity 

Case 3d: average combined shear stress and undisturbed current velocity 

We note that, despite the high r2 values in table 6.5, we have not selected any models 

based on the Morison parameter. This is essentially a generalisation of the velocity 

parameter; given the fact that it does not perform significantly better than the velocity 

parameter (in fact, slightly worse) and given the uncertainties associated with the 

Morison method (see chapter 4) we will not treat this parameter separately. 

The results of this analysis, in terms of scatter plots of the predicted damage S against 

the measured damage S is given in figure 6.11. In these plots, the degree in which the 

accuracy of the design formula for a combination of currents and waves matches the 

accuracy for waves only can be judged from the degree in which the data points for the 

model tests with a combination of waves and a current (open circles) lie within the 

scatter of the data points for the model tests with waves only (dots).  
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This figure shows that using the shear stress method (case 3) does not work very well in 

the combined case, regardless of whether the average or the maximum shear stress is 

used, or the increased or undisturbed current velocity. Neglecting the currents altogether 

in combination with a velocity parameter, however, does. This is in line with the original 

conclusion of Van Gent and Wallast (2001). Once again we emphasise here that the 

data set on which this conclusion is based only includes relatively weak currents; in 
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Figure 6.11 – Predicted dimensionless erosion area (equations 6.20 – 6.22) against measurements. 
Dots: waves only. Triangles: current and waves 
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terms of the current strength parameter X (defined by Soulsby, see chapter 3) we have 

approximately X < 0.2. 

So, at this point we drop the shear-stress based method from our analysis and continue 

only with the velocity-based methods. Before we make a choice between case 1 and 

case 2 we will see if we can improve the goodness-of-fit further. 

So far we have used Hs and Tm as wave parameters. It could be argued that the damage 

to a structure is caused by the highest waves in the wave field, in which case H1% and Tp 

would be better parameters to characterise the load on the structure. If we re-calculate 

hc and c (for case 1 and 2, respectively) using H1% (equation 2.38) and Tp instead we 

get the results given in Table 6.6. 

Table 6.6 –Goodness-of-fit of selected models to predict S 
Wave parameters based on H1% and Tp 

Case 
definition 
of orbital 
velocity 

stability 
parameter 

adjusted r2 

of best 
model 

parameters in 
model 

1 ûhc  

 

0.68 N, m0, Bc/dn50 

2 ûc 

 

0.66 N, m0, Bc/dn50 

We see that the goodness-of-fit improves somewhat and that the dependency of S on 

hc/h in case 1 disappears (this may be explained by considering that the conversion 

factor from Hs to H1% is dependent on water depth, so the water depth is now implicitly 

present in û and thus ). 

A second possible improvement of the goodness-of-fit is inspired by the observation that 

the exponent of (Bc/dn50) in equations 6.20 and 6.21 is very close to 1. This suggests that 

S* could be a better way to express the damage than S (divide both sides of the 

equation by (Bc/dn50) and use the definition of S*, equation 6.17). If we re-do the 

regression analysis with S* as the dependent parameter (keeping H1% and Tp as wave 

parameters) we get the results given in Table 6.7. 

Table 6.7 –Goodness-of-fit of selected models to predict S* 
Wave parameters based on H1% and Tp 

Case 
definition 
of orbital 
velocity 

stability 
parameter 

adjusted r2 

of best 
model 

parameters in 
model 

1 ûhc  

 

0.73 N, m0 

2 ûc 

 

0.71 N, m0 

We see that the goodness-of-fit has improved even further. There is still hardly any 

difference between the two methods in terms of r2, simplicity, physical reality or any 
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other criterion that we used before, so will make our final choice simply for the model 

with the highest goodness-of-fit, which is case 1. In its final form the design formula 

becomes:  

6.0
0

6.1
%13.0

*

048.0 m
N

S
hc

 

(6.23) 

A more traditional scatter plot of this formula against the data set is given in figure 6.12 

along with a similar plot for the Van Gent and Wallast formula. We see that although the 

fit is improved, the scatter is still considerable. The data points in this plot are for the full 

Van Gent and Wallast – Lomónaco – Saers data set (waves and current as well as 

waves only, but excluding all tests with breaking waves), which explains some of the 

differences with figure 6.10 which is based on the data of Van Gent and Wallast and 

Lomónaco only. 

Figure 6.12 also shows the confidence bounds of the new design formula. In principle 

these could be obtained from the standard errors of the regression analysis (given by 

SPSS), but in this research we have opted a for a simpler approach. For the upper 

bound we have raised the constant in equation 6.23 until 90% of the measured values 

were lower than the predicted value, keeping all other fit parameters (exponents) 

constant. Similarly, lowering the constant until 90% of the measured values were higher 

gives the lower boundary. This gives: 

lower bound: 6.0
0
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*

02.0 m
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S
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(6.24a) 

0,0

2,0

4,0

6,0

8,0

10,0

0,0 1,0 2,0 3,0 4,0

hc

S
 / 

N
0.

5

eq 3.91

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 2,0 4,0 6,0 8,0

hc 1%

S
* 

/ N
0.

3 
. 
m

00.
6

eq 6.23

eq 6.24a

eq 6.24b

 

Figure 6.12 – Existing design formula (Van Gent and Wallast 2001) and new design formula for S. 
Dots: waves only. Triangles: current and waves 
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upper bound: 6.0
0
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%13.0
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S
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(6.24b) 

This closes our analysis of the prediction of damage to a pipeline cover using the 

dimensionless erosion area S. A final remark can be made on the time-dependency: our 

regression analysis shows that S ~ N0.3, which is somewhere in between the views 

expressed by Van Gent and Walllast (S ~ N0.5) and Saers (S ~ log N). This is further 

illustrated in Figure 6.13. 

6.3.3 Conclusions 

This paragraph briefly summarises the main findings considering the design of pipeline 

covers with the damage profile method: 

The damage to a pipeline cover can best be predicted by the following formula: 

6.0
0

6.1
%13.0

*

ma
N

S
hc

 

(6.23) 

The most likely value for the model constant is a = 0.048, the upper bound is a = 

0.12, the lower bound is a = 0.02. In this formula and hc 1% is a stability 
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Figure 6.13 – Time dependency of damage according to various studies 
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parameter based on the near-bed orbital velocity calculated with H1% and Tp 

assuming that the water depth is equal to hc everywhere. 

In the case of a combination waves and a weak current ( )ˆ/( wcc < 0.2) the 

influence of the current can be neglected.  

Once S* has been calculated a qualitative assessment of the damage to the 

structure can be found in table 6.4.  

When an quantitative estimate of the reduction of the crest level is required, a 

conservative estimate can be obtained assuming that a slice with a constant 

thickness is removed from the crest of the structure: 

0

0
2

2

4

m

AmBB
z ecc

 

(6.6) 

The approximate range of validity for formula (6.23) is 0.5 < hc 1% < 8. The ranges of the 

other (structural) parameters are given in table 5.2 and 5.3. Application of (6.23) outside 

this range of validity is not recommended. 

6.4 Design of near-bed structures with the critical stability approach 

The previous paragraphs have been devoted to the damage-based design of near-bed 

structures, and we have explored various ways of expressing and calculating the 

damage to a structure. In the present design practice a completely different approach is 

taken: the stone size needed for a structure is determined with a critical stability 

calculation. In this paragraph we will use our datasets to briefly investigate the validity of 

this approach, and to answer some practical questions. 

For horizontal bed protections the method explained in Chapter 2 is commonly followed: 

for current only it is recommended (CIRIA/CUR 1991) to use cr = 0.030; for waves only 

it is recommended to use either cr = 0.030 in combination with the average shear stress 

or cr = 0.055 in combination with the maximum shear stress. For a combination of 

waves and a current the recommendations are less clear; we can use the results of 

Bijman’s tests to shed some light on these matters. This is done in paragraph 6.4.1. 

For pipeline covers the the stability of a single stone in the structure is calculated as if 

the stone were in a horizontal bed protection (it is assumed that h = hc everywhere), 

Commonly, the stability parameter is either based on the average shear stress according 
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to Bijker (CIRIA/CUR method: wc = c + ½ w) with cr = 0.03, or the software program 

BPP is used in which case the stability parameter is based on the average shear stress 

under half a wave period according to Bijker (see chapter 2), also with cr = 0.03. In the 

case of irregular waves, BPP uses H1%. The validity of this approach is examined in 

paragraph 6.4.2, along with answers to questions like: “what should the value of cr be 

should we use the velocity at the crest or at the bed?”.  

6.4.1 Design of horizontal bed protections with the critical stability approach 

In our analysis of the Bijman data for horizontal bed protections we have used 18 

different stability parameters. For each stability parameter we can obtain a critical value 

by plotting it against the measured transport rates and (linearly) extrapolating the 

transport to zero; this is equivalent to the way in which Shields originally derived his 

critical mobility parameter (Shields 1936). An example of this procedure (for the 

CIRIA/CUR method) is given in figure 6.14. 

In mathematical terms we can find the critical value of a stability parameter by fitting a 

regression line directly onto the q,

 

points (so not onto the log-transformed data points 

as we did earlier). This gives a linear equation q = a·

 

+ b; the critical value of 

 

can 

now simply be found as the intersection of this line and the -axis by letting q = 0 and 

solving for ; this gives cr = -b/a. This calculation has been performed in Microsoft 

Excel; the results are given in appendix 8 and summarized in table 6.8. 
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Figure 6.14 – Example of linear extrapolation to obtain cr 
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Table 6.8 - Critical values of various stability parameters  
Based on data of Bijman (2000) 

Model cr 

Maximum 0.034 

Average in current direction 0.010 

Average over full period 0.018 

 

- No WCI 

Average over half period 0.018 

Maximum 0.076 

Average in current direction 0.027 

Average over full period a) 0.029 

 

- Bijker  

Average over half period b) 0.053 

Maximum 0.039 

Average in current direction 0.018 

Average over full period 0.023 

 

- Grant and 

Madsen 

Average over half period 0.034 

Maximum 0.036 

Average in current direction 0.014 

Average over full period 0.017 

 

- Fredsøe 

Average over half period 0.028 

  

-0.603 

  

-0.526 

Notes: 
a) CUR/CIRIA method 

b) BPP method  

From this table we see that: 

 

The critical values for the velocity parameter and the Morison parameter (

 

and 

) are negative, which is of course non-physical. This is caused by the large 

scatter in the plots for these stability parameters (note the very low r2 values in 

table 6.2) and is yet another illustration that these parameters are not suitable for 

design purposes; 

 

The critical stability parameter for the CIRIA/CUR method is cr = 0.029 which is 

close to the ‘theoretical’ value cr = 0.030. This is promising and gives some 

confidence in the calculation procedure; 

 

An important conclusion to draw from this analysis is that the critical value of the 

stability parameter is strongly dependent on the wave-current interaction model 

that is used and on the way in which the resulting shear stress is calculated. 

Methods that use, for instance, a maximum shear stress will predict higher shear 
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stresses than methods that use an average shear stress and therefore require a 

higher critical stability parameter as well. 

In practice there is some discussion on what the value of the critical stability parameter 

should be when the software programme BPP is used. Should it be cr = 0.030 as in the 

CIRIA/CUR method, or can it be higher? Table 6.10 seems to point to the conclusion 

that when we use the BPP method we may use a higher critical stability parameter than 

when we use the CIRIA/CUR method; therefore the present design practice to use cr = 

0.030 in BPP seems unjustified. However, we must keep in mind that the present 

analysis is valid only in the cases that we have a combination of waves and a current. In 

the limit case, for current only, both the CIRIA/CUR method and the BPP method predict 

the same shear stress (

 

= c , cf equations 2.34 and 2.37 with wˆ = 0) and would 

therefore need the same critical stability parameter ( cr = 0.03). So we see that, for the 

BPP method, the value of the critical stability parameter appears to be dependent on the 

situation, and perhaps on the relative current strength; whereas for the CIRIA/CUR 

method we always have cr = 0.030. This is a very useful property in practice, and since 

the overall goodness-of-fit fit of the both methods in a transport equation is comparable 

(see table 6.1) there is no reason in that aspect to prefer one over the other. Therefore 

we arrive at the following conclusion: 

When a critical stability approach is used for the design of horizontal bed 

protections, it is best to calculate the combined wave-current shear stress with 

the CIRIA/CUR method ( wc = c + ½ wˆ ) in combination with cr = 0.03. 

6.4.2 Design of pipeline covers with the critical stability approach 

The validity of the critical stability approach for the design of pipeline covers can be 

assessed with the help of our dataset. We will do so by calculating the stability 

parameters for each model test as we did before (for Hs and Tm and the three different 

velocity definitions) and plotting these against the qualitative damage categories as we 

defined in paragraph 6.3.1. Since we only have defined these damage categories for the 

test performed by Lomónaco we can only use part of the dataset. The idea is that if there 

is a critical value of the stability parameter, we should see a clear distinction between 

category 1 (no damage) and category 2 (initial damage) occurring at that value. We will 

do this analysis for waves only (to get the general picture), as well as for the combination 

of waves and a current (but only for the CIRIA/CUR method and the BPP methods as 

these are the two methods used in the present design practice; we have only used the 

undisturbed current velocity uda here and not the increased velocity uda·(h/hc) in order to 

avoid having to test too many combinations). 



        

page 164  

These plots are given in appendix 8. A typical example (for the CIRIA/CUR method and 

the velocity defined as ûhc) is given in figure 6.15. As can be seen from these plots there 

is no relationship whatsoever between the stability parameter and the damage category 

for any wave-current interaction model or velocity and roughness definition. Apparently 

there is no relationship between the stability of a single stone and the stability of the 

structure as a whole. This means that the critical stability approach is not a good design 

method for near-bed structures. 

A second thing that can be seen from the Figure 6.15 (and the figures in appendix 8) is 

that there are many model tests which resulted in some damage (categories 2, 3 or 4) 

for -values less than the commonly used critical value cr = 0.030. This could be seen 

as an indication that this value is not safe, but it must be borne in mind that the values in 

figure 6.15 were obtained using Hs and Tm. When we re-do the calculation with H1% and 
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Figure 6.15 - Typical example of relationship between stability parameter and qualitative damage 
category, for ûhc, Hs and Tm. Dots: tests with waves only. Triangles: tests with current and waves 
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Figure 6.16 - Relationship between stability parameter and qualitative damage category with ûhc, H1% 

and Tp. Dots: tests with waves only. Triangles: tests with current and waves
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Tp (as BPP does) we get the picture shown in figure 6.16 (for the CIRIA/CUR method 

and the BPP method, both with the velocity defined as ûhc). Now we see that, although 

the overall correlation does not improve, the -values for the damage categories 2, 3 

and 4 do lie above cr = 0.030. We note that we only get these results if we define the 

velocity as ûhc, for the other velocities we still get -values below cr = 0.030. 

Despite our conclusion that no critical stability parameter exists we can observe in figure 

6.16 that for the CIRIA/CUR method the lowest -value for which we find a category 2 

damage is indeed roughly 

 

= 0.030. So, in very broad terms we could say that the use 

of cr could be correct, but very conservative as there are many model tests for which no 

damage occurred (category 1) that have 

 

> 0.030. For the BPP method we see the 

same -value of roughly 0.030. This confirms our conclusion from paragraph 6.4.1 that 

the critical value of the stability parameter for the BPP method is not well defined and 

may depend on the situation; in contrast, for the CIRIA/CUR method the use of cr = 

0.030 seems to be universal. 

From this brief analysis we can conclude that: 

The stability of a single stone cannot be related to the stability of the near-bed 

structure as a whole, so the critical stability method is strictly speaking not a 

suitable design method for these type of structures, no matter which wave-

current interaction model is used, or in which way the orbital velocity is defined. 

However, if we do want to use the method (for practical reasons and as a 

conservative upper limit to the required stone size) we must use the 1%-

exceedance wave height H1% (equation 2.38) and Tp in combination with the 

orbital velocity at the crest ûhc; the use of the significant wave height Hs and Tm, 

or other velocity definitions, seriously under-predicts the governing shear 

stresses. Again, the use of the CIRIA/CUR method ( wc = c + ½ wˆ ) in 

combination with cr = 0.030 is recommended 
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7 Conclusions 

This chapter summarises and discusses the main results from the present study; the 

conclusions will be formulated in terms of answers to the research questions. First we 

will answer the specific research questions formulated in chapter 4. After that we will 

discuss the general research goal set in chapter 1. 

7.1 Answers to the specific research questions 

7.1.1 The design of horizontal bed protections with a transport-based method 

question: Which combination of transport formula (Paintal-type or Bijker-type) and 

stability parameter (the 18 parameters identified in paragraph 4.2.6) best fits the 

transport rates measured by Bijman? 

answer: Purely based on a goodness-of-fit analysis for transport rates of rock under a 

combination of waves and currents, we found that in principle both a Paintal-type formula 

and a Bijker-type formula can be used. A choice between them was made based on their 

general applicability: not only for the combination of waves and currents but also for the 

limit case ‘current only’. Then it turns out that the Bijker-type formulas that were fitted for 

a combination of currents and waves do not match the measured transport rates for 

currents only, whereas the Paintal-type formulas do.  

When a Paintal-type formula is used, we have found that stability parameters based on 

shear stresses give far better results than other (ie Morison and velocity) stability 

parameters. We believe that this is due to the fact that both the Morison parameters and 

the velocity parameters only relate to the wave-induced motion; apparently they 

underestimate the influence of the current. Furthermore, the applicability of the formula 

depends to a large extent on the wave-current interaction model that is used. In general 

we can say that the more complex models give better results than the simpler ones. 

Also, it turns out that the maximum combined shear stress is not a good indicator for 



        

page 168  

transport; instead, the average shear stress in the direction of the current appears to be 

the best parameter to use.  

In particular we have found that the Paintal formula (corrected by Mosselman and 

Akkerman (1998)) as originally derived to predict transport of rock by currents only: 

9.87103q      
for 

 

< 0.05  (3.77) 

can also be used to predict transport of rock by a combination of currents and waves, 

provided that the combined bed shear stress is calculated as the average shear stress in 

the direction of the current according to Fredsøe (1984).  

In design practice, the average shear stress in the direction of the flow according to 

Fredsøe can best be calculated with the aid of the parameterisation by Soulsby (1993), 

see appendix 2. (The ‘mean’ shear stress that follows from this method is the desired 

average shear stress in the direction of the current). 

This Paintal-type formula predicts zero transport for wave-only situations. Physically 

speaking this means that there is always a current needed, no matter how weak, to 

actually transport the stones. As discussed previously, transport under waves only is a 

completely different phenomenon: stones will be moved backwards and forwards under 

each half wave cycle, but the net transport will indeed be zero (unless the waves are 

asymmetrical). The magnitude of this half-cycle transport cannot be predicted with a 

Paintal-type formula; instead the formulas by Hallermeijer (3.81) or Madsen and Grant 

(3.80) may be used for a first estimation, keeping in mind that the typical dimensions of 

stones used in near-bed structures is officially (well) beyond the limits of applicability of 

these formulas.  

7.1.2 The design of pipeline covers with a transport based method 

Question: Which combination of transport formula (Paintal-type, Bijker-type or 

Hallermeijer-type), stability parameter (the 18 parameters identified in paragraph 4.2.6) 

and velocity definition (see Figure 3.22) best fits the transport rates associated with a 

transport-based design method (Critical scour method or simple transport method)?  

Answer: The crest level reductions of the near-bed structures as measured by 

Lomónaco (1994), Van Gent and Wallast (2001) and Saers (2005) could not be related 

at all to a transport-based design method; we conclude that neither the critical scour 

method nor the simple transport method is a suitable method for the design of pipeline 

covers. Instead, these designs must be made with a damage profile method. 
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7.1.3 The design of pipeline covers with the damage profile method  

Question 1: Which combination of stability parameter (the 18 parameters identified in 

paragraph 4.2.6), velocity definition (see Figure 3.22) and other dimensionless 

parameters best fits the measured erosion areas? 

Question 2: Once we know the value of the dimensionless erosion area S, how can we 

use this value to obtain a practical assessment of the damage to the structure? 

Answer to question 1: We have tried many dimensionless parameters in our regression 

analysis to see if inclusion of these parameters in a design formula would improve its fit 

on the test data. For most parameters, including the dimensionless structure height hc/h, 

the dimensionless structure width (Bc/L, Bc/a0, B/L or B/a0) and the Saers parameter 

zcm0/a0 we found that this was not the case. 

In the end we found that the dimensionless erosion area S was only dependent on the 

number of waves N, the side slope m0, the dimensionless crest width Bc/dn50 and the 

velocity parameter . The best way to express the velocity turned out to be ûhc: the 

orbital velocity at the crest of the structure, as if the water depth is equal to hc 

everywhere. This is in line with the observation of Lomonaco et al (2005) and the 

suggestion by Van Gent and Wallast (2001). We also found that the fit of the design 

formula improved if the orbital velocity was calculated using H1% and Tp as wave 

parameters instead of Hs and Tm. This can be seen as a suggestion that the highest 

waves in the wave field are mainly responsible for the damage. 

Our analysis has led to the following design formula: 

6.0
0

6.1
%13.0

*

ma
N

S
hc

 

(6.23) 

The most likely value for the model constant is a = 0.048, the upper bound is a = 0.12, 

the lower bound is a = 0.02. 

In this formula S* is the dimensionless erosion area per unit of crest width:  

50

*
nc

e

dB

A
S

 

(6.17) 

and hc 1% is the velocity parameter: 
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In the case of a combination waves and a weak current ( )ˆ/( wcc < 0.2) the influence 

of the current can be neglected. Definitions of the parameters used in these formulae 

can be found in Figure 3.20 and Figure 3.21. It is remarked that more recent formulas for 

H1% exist than the one use in the present research; the method by Battjes and 

Groenendijk (2000) is recommended. 

A case study (Santander outfall) based on prototype measurements (see appendix 9) 

shows that both the Van Gent and Wallast formula and the new design formula can well 

be used to predict the damage to a structure. 

Answer to question 2: Once S* has been calculated a qualitative assessment of the 

damage to the structure can be found in table 6.4. However, the case study (appendix 9) 

indicates that the values in this table may well be too high; a value of S* = 0.75 for the 

start of damage appears more reasonable. More research is required to find a good 

relationship between qualitative (subjective) damage assessment and S*.  

When an quantitative estimate of the reduction of the crest level is required, a 

conservative estimate can be obtained assuming that a slice with a constant thickness is 

removed from the crest of the structure: 
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(6.6)   
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7.1.4 The design of near-bed structures with the critical stability method  

Question: How well can we use the critical stability approach for the design of near-bed 

structures? How must we calculate the combined shear stress and what should the 

value of cr be? 

Answer: When a critical stability approach is used for the design of horizontal bed 

protections, it is best to calculate the combined wave-current shear stress with the 

CIRIA/CUR method ( wc = c + ½ wˆ in combination with cr = 0.03. We note that in the 

limit of current only (

 

= c) this recommendation equals the classic Shields approach, 

and in the limit for waves only (

 

= ½ wˆ ) it equals the present recommendation in 

CIRIA/CUR (1991) to use 

 

= 0.030 in combination with the average shear stress. 

Therefore it forms a good ‘bridge’ between these two situations. 

It is interesting to note that here, where we study critical stability, it turns out that the 

combined shear stress under waves and currents can best be expressed as the average 

shear stress ( wc av); previously we concluded that for transport of stones we could best 

use the average combined shear stress in the direction of the current ( wc avx). A physical 

explanation for this difference could be that transport is a phenomenon with a clear 

direction (the direction of the flow is the direction of transport), whereas critical stability is 

not (the stones are merely entrained from their position or not, the direction in which this 

happens is of lesser importance). 

For pipeline covers we found that the stability of a single stone could not be related to 

the stability of the structure as a whole, so the critical stability method is strictly speaking 

not a suitable design method for this type of structure, no matter which wave-current 

interaction model is used, or in which way the orbital velocity is defined. However, if we 

do want to use the method (for practical reasons and as a conservative upper limit to the 

required stone size) we must use the 1%-exceedance wave height H1% (equation 2.38 or 

Battjes and Groenendijk (2000)) and Tp in combination with the velocity at the crest ûhc; 

the use of the significant wave height Hs and other velocity definitions seriously under-

predicts the governing shear stresses. We note that these are the same parameters that 

are recommended for use in the damage-based design approach. 

Again, the use of the CIRIA/CUR method in combination with cr = 0.030 is 

recommended. This conclusion is supported by the results from the case study (see 

appendix 9). 
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7.2 Discussion of the general research question 

In Chapter 1 we formulated the research goal as follows: 

To find a design curve, expressing damage to a near-bed structure as a function 

of the stability of the individual stones, that can be used for the preliminary design 

of such structures based on an ‘allowable damage’ design approach. The stability 

parameter should be expressed in such a way that it represents the true physics 

of the destabilising mechanisms and includes a wide range of flow situations, 

including waves 

There are three main elements in this goal: damage based-design, true physics and a 

wide range of flow situations. These elements form the basis of the following discussion. 

Damage-based design: we have seen how we can adopt two different approaches: a 

transport-based method in which we can calculate a transport rate of the stones under a 

given flow situation and link this to a certain degree of damage, and a damage profile 

method in which we directly calculate the damage to the structure expressed as an 

erosion area. 

The transport-based approach has not proven very successful in our analysis. The main 

weakness of the method turns out to be the relationship between transport and damage: 

for pipeline covers we could not find such a relationship at all, for horizontal bed 

protections we could not attempt to find such a relation for lack of data. However, we 

have found an interesting result concerning the transport rates as such: in the case of a 

combination of waves and a current, the transport rate as such can be calculated with 

the same formula as used for current-only situations, provided that the shear stress is 

replaced by the combined shear stress in the direction of the current according to 

Fredsøe. 

The damage profile method provides better results: we have found a design formula for 

the design of pipeline covers with a reasonable goodness-of-fit on the scale model test 

data. We have also found a way to translate the obtained damage parameter (the 

dimensionless erosion area per unit of crest width S*) to the actual damage of the 

structure, both qualitatively (in terns of a general description of the expected damage) 

and quantitatively (in terms of the reduction in crest height of the structure). The 

disadvantage of this method is its lack of physical basis: it is effectively a black-box 

method linking large-scale fluid parameters directly to the damage without providing any 

insight into the physical processes that cause this damage. The results from the case 

study with prototype data from the Santander outfall indicates that S* = 0.7 can be used 



Design of granular near-bed structures in waves and currents 
CHAPTER 7 CONCLUSIONS     

THESIS March 2006  page 173 
3/24/2006 

as a design criterion for a damage-based design of pipeline covers – this value 

corresponds with ‘no damage’ and results in stone sizes equivalent to those obtained 

with a critical stability method. 

True physics: in the introduction we described how one of the main problems with the 

Shields method was its use of the shear stress as the governing parameter, leading to a 

lack of understanding of the actual physical processes that entrain a stone and, 

consequently, its lack of applicability in non-uniform flow situations. In this study we have 

described two alternative approaches that seek to overcome this problem: the Morison 

approach and a turbulence-based approach.  

From the Morison approach we have learnt that fluid accelerations do play a role in the 

entrainment of stones from a near-bed structure, especially in the case of asymmetric 

(shoaling) waves. However, in terms of practical applicability the Morison approach 

seems to invoke more questions than answers. Firstly, the old problem of where ‘the’ 

velocity and ‘the’ acceleration should be defined (which is why Shields proposed his 

shear-stress based approach in the first place) has not been solved yet. Secondly, the 

values of the empirical parameters CB and CM are very difficult to measure and are 

subject to a lot of discussion. Finally, although the potential power of the method lies in 

the description of wave asymmetry, the exact way in which this asymmetry should be 

included has not been established yet (and especially not in terms of practical 

parameters). 

Some of these disadvantages may be circumvented by applying a ‘hybrid’ approach in 

which the drag-and-lift part of the Morison equation is replaced by a shear stress-based 

expression; this effectively leads to a ‘Shields-type stability parameter with 

accelerations’. Such a parameter is briefly explored in this thesis, but not included in our 

main analysis. 

The turbulence-based approach probably offers the best description of the actual 

physical processes: Hofland (2005) found strong evidence that the entrainment of stones 

is related to turbulence structures in the flow. The main disadvantage of the method is 

that it requires numerical modelling of the flow situation, which makes it less suitable for 

preliminary design. However, we note that this is perhaps inevitable if we seek an all-

encompassing, versatile design method; all simplifications to avoid numerical modelling 

and make a method suitable for preliminary, ‘back of an envelope’-type of calculations 

come at the expense of physical reality and, in the extreme case, bring us right back to 

where we started: a shear-stress based design approach.  

We believe that in the future the turbulence-based calculations will be the main approach 
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to the design of near-bed structures. At this moment however, the method is not 

developed far enough to be applicable in practice. There is no consensus yet on the 

actual way in which the turbulence characteristics must be included in the stability 

parameter, and the method does not include waves. Especially, the most recent method 

(Hofland 2005) still uses the assumption of a Bakhmetev mixing length distribution 

(which is associated with uniform flow); ideally we would have a design method that is 

completely based on numerical model output so it can really be used in any flow 

situation. This suggests that more advanced turbulence closure models (eg Large Eddy 

Simulation) may have to be used instead of the presently used k-

 

model. 

In this ‘true physics’ discussion it is interesting to note that the two main results of this 

present research (concerning the transport of stones under waves and currents and the 

design of pipeline covers) do not use these more advanced approaches. The transport of 

stones is related to the shear stress, the design of pipeline covers is related to the local 

velocity. 

Wide range of flow situations: this final element of the research goal has only partly 

been reached. For the transport of stones we have managed to find a formulation that 

can be used in the case of current only, and the combination of currents and waves. 

Transport under pure wave load remains unclear. Our result concerning the design of 

pipeline covers is mainly valid for waves only; for situations with waves and a small 

current we found that the results can also be applied provided that the current is 

neglected altogether. It is of course expected that we can only do this up to a certain 

point, but where this point lies is unknown. Also the limit case of current only was not 

investigated.   
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8 Recommendations 

This chapter contains recommendations for the design of near-bed structures as well as 

recommendations for further research.  

In general terms, the recommendations for the design of near-bed structures follow from 

the present design practice and from the questions that were answered in this research. 

The recommendations for further research follow from the questions that were asked in 

this research, but not answered. 

These recommendations can be given per structure type (horizontal bed protections and 

pipeline covers), per load type (current only, waves only and a combination of both) and 

per design approach (static stability and dynamic stability). They are given in table 8.1 

and 8.2 on the next pages. 

A few of these recommendations have a general validity and are worth mentioning 

explicitly here: 

 

For horizontal bed protections we have only studied the transport rates of rock. 

As such, these transport rates are not a good indication of the expected damage 

to a structure; for design purposes they must be translated into quantitative 

measures such as the reduction in layer thickness. How this translation must be 

made is not clear at the moment. The suggestion by De Groot et al (1988) to use 

the critical scour method is followed here, but it is stressed that we have not been 

able to test this method in this research. It is recommended to study the 

relationship between transport rates and damage to a structure in more detail. 

 

The waves used in the scale model tests by Bijman (2000) were asymmetrical. 

This means that the measured transport rates were in fact a combination of 

(wave-enhanced) current-induced transport and net wave-induced transport. It is 

not clear to what extent this phenomenon biases our conclusions; this may be 

investigated further. 
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Because our dataset did not contain measurements of erosion areas and/or layer 

thickness for the horizontal bed protections we could not test the application of a 

damage profile method for this type of structure (ie develop a design formula in 

terms of S). This could be an interesting subject for further research. 

 

We have combined the Morison approach with linear wave theory, although in 

literature it has been strongly associated with asymmetric waves. We believe 

that, when wave asymmetry is correctly included in the analysis, our conclusion 

that the applicability of the Morison approach is limited may be falsified. For this 

purpose it is helpful to investigate the relationship between asymmetry and 

accelerations in more detail, and find a method to correctly account for this 

asymmetry in the Morison formula (perhaps following some suggestions made by 

Terrile (2005, Terrile et al 2006) – in any case this method should be related to 

large-scale wave parameters like H, T and h, probably in combination with a 

higher order wave theory). With this knowledge part of our analysis (likely, but not 

necessarily based on the same datasets) can be re-done. 

 

In terms of new design methods that do include correct descriptions of the actual 

physical processes we recommend to focus more on the turbulence-based 

methods instead of on the Morison approach. Main research topics could be the 

inclusion of waves, and the development of a stability parameter that is fully 

based on model output and no longer relies on simplifications like the Bakhmetev 

distribution – this means that perhaps other, more advanced turbulence closure 

models must be considered (eg LES) instead of k-

 

models. 

 

The relation between S* and an assessment of the qualitative damage to a 

structure, as given in table 6.4 of this thesis, is probably not correct – the values 

in that table are obtained from looking at drawings, not real structures, and may 

well be too high. It is recommended to conduct a specific research into this topic 

using a set of pre-defined, reasonably well described damage criteria (such as 

‘no damage’, ‘small holes’, ‘large holes’, ‘underlayer visible’ and so on) and 

possibly different types of structure (simple homogeneous rubble mounds, 

structures with an armour layer of 2·dn50 thickness and so on). This research may 

also seek to quantify the relationship between an average reduction in crest level 

(as for instance obtained with equation 6.6) and the deepest damage holes in the 

structure so that a design criterion for z/dn50 may be set. 

 

In paragraph 4.2.3 we suggested the introduction of the hybrid ‘Shields-plus’ 

stability parameter that combines shear stresses with acceleration effects. The – 

theoretical and practical – possibilities of such a stability parameter may be 

investigated further. 
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Table 8.1 Recommendations for the design of horizontal bed protections 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the classic Shields approach. 

Questions asked in 
this thesis 

none 

S
ta

tic
 s

ta
bi

lit
y 

Remaining 
questions 

none 

Design philosophy The current transports stones away from the structure causing 
ongoing damage. 

Proposed design 
method 

Use Paintal formula to estimate transport rate.  

Questions asked in 
this thesis  

How can we relate a transport rate to the actual damage to a 
structure? 
Answer: It is suggested to use the critical scour method. 

C
U

R
R

E
N

T
 O

N
LY

 

D
yn

am
ic

 s
ta

bi
lit

y 

Remaining 
questions 

Given a transport rate, can we indeed use the critical scour 
method to assess the damage to a structure? 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the Shields approach and replace the bed shear stress by 
the maximum or average wave shear stress. Follow the 
recommendations in CIRIA/CUR. 

Questions asked in 
this thesis 

none 

S
ta

tic
 s

ta
bi

lit
y 

Remaining 
questions 

none 

Design philosophy No ongoing damage, no reshaping. Only transport (back and 
fro) during half a wave cycle. Possible net transport by 
asymmetric waves. 

Proposed design 
method 

Use Madsen and Grant or Hallermeier formula to assess 
magnitude of movement under half a wave cycle, or net 
transport under asymmetric waves. 

Questions asked in 
this thesis 

none 

W
A

V
E

S
 O

N
LY

 

D
yn

am
ic

 s
ta

bi
lit

y 

Remaining 
questions 

Which transport formula is best suitable to predict the 
transport of stones under waves? Do the coefficients in the 
formula need to be adapted? 
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Table 8.1 Recommendations for the design of horizontal bed protections (CONTINUED) 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the Shields approach and replace the bed shear stress 
with the combined wave-current shear stress. Use a wave-
current interaction model and corresponding critical Shields 
parameter. 
Which WCI model gives the best results and what is the 
corresponding critical Shields parameter? 

Questions asked in 
this thesis 

Answer: the critical stability parameter depends strongly on 
the WCI model used. It is recommended to use the Bijker 
average model (CIRIA/CUR) with cr = 0.030.  S

ta
tic

 s
ta

bi
lit

y 

Remaining 
questions 

This answer is based on Bijman data set which has a limited 
applicability. More research in larger flume (no wall effects, 
hydraulically rough bottom), with wider range of dn50, , wave-
current dominance etc is required to support these 
conclusions. 

Design philosophy Waves cause transport during half a wave cycle, but also 
increase current-induced transport. 

Proposed design 
method 

As for current only, but using a transport formula that adapted 
for current + waves. Use method for waves only to assess 
transport during half a wave cycle. 
Which transport formula can best be used? Should it be 
adapted to include the effect of waves?  

Questions asked in 
this thesis 

Answer: the Paintal formula (correction by Mosselman and 
Akkerman 1996) can best be used. It does not need to be 
adapted; it can also be used for currents and waves provided 
that the combined shear stress is calculated as the average 
shear stress in the direction of the current according to 
Fredsøe. 

C
U

R
R

E
N

T
 +

 W
A

V
E

S
 

D
yn

am
ic

 s
ta

bi
lit

y 

Remaining 
questions 

This answer is based on Bijman data set which has a limited 
applicability. More research in larger flume (no wall effects, 
hydraulically rough bottom), with wider range of dn50, , wave-
current dominance etc is required to support these 
conclusions. It is recommended to include Bijker-type 
transport formulas in this research. 
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Table 8.2 Recommendations for the design of pipeline covers 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the Shields approach and replace the bed shear stress by 
the average wave shear stress. 
Where to define velocities (undisturbed or over crest)? What is 
the critical Shields parameter? 

Questions asked in 
this thesis 

Answer: There is no clear threshold of motion for near-bed 
structures; a critical stability approach as for bed protections 
gives a conservative estimate of the required stone size, 
provided that the velocity is defined at the crest and H1% and 
Tp are taken as the governing wave parameters.  

S
ta

tic
 s

ta
bi

lit
y 

Remaining 
questions 

The stability of a single stone cannot be assessed well with 
the data sets used in this research. Separate scale model 
tests aimed specifically at this purpose are required to answer 
this question. 

Design philosophy Ongoing damage in terms of reshaping of the structure. 
Use a design formula to assess damage in terms of the  Proposed design 

method erosion area S. 
How can we relate S to practical measures of damage? Can 
we find a formula that shows less scatter than the  
present design formulas? 
Answer: The dimensionless erosion area per unit crest width 
S* can best be used to obtain a qualitative assessment of the 
damage to the structure. When an quantitative assessment is 
required, a simple but conservative estimate of the crest 
height reduction of the structure can be obtained from 
equation 6.6. The present design formulas can be  

Questions asked in 
this thesis 

improved by using equation 6.23 instead. 

W
A

V
E

S
 O

N
LY

 

D
yn
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ic

 s
ta

bi
lit

y 

Remaining 
questions 

Validation of these formulae by more scale model tests and -
preferably- prototype tests. 
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Table 8.2 Recommendations for the design of pipeline covers (CONTINUED) 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the classic Shields approach. 

Questions asked in 
this thesis 

none 

S
ta

tic
 s

ta
bi

lit
y 

Remaining 
questions 

none 

Design philosophy The current transports stones away from the structure causing 
ongoing damage. 

Proposed design 
method 

Use Paintal formula to estimate transport rate.  

Questions asked in 
this thesis 

How can we relate a transport rate to the actual damage to a 
structure? 
Answer: It is suggested to use the critical scour method. 

C
U

R
R

E
N

T
 O

N
LY

 

D
yn

am
ic

 s
ta

bi
lit

y 

Remaining 
questions 

Given a transport rate, can we indeed use the critical scour 
method to assess the damage to a structure? 

Design philosophy There is an assumed threshold of motion that can be 
expressed as a critical shear stress. 

Proposed design 
method 

Use the Shields approach and replace the bed shear stress 
with the combined wave-current shear stress. Use a wave-
current interaction model and corresponding critical Shields 
parameter. 
Which WCI model gives the best results and what is the 
corresponding critical Shields parameter? Where to define 
velocities (undisturbed or over crest)?  

Questions asked in 
this thesis 

Answer: see ‘waves only’.  

S
ta

tic
 s

ta
bi

lit
y 

Remaining 
questions 

see ‘waves only’ 

Design philosophy Current causes ongoing damage. Waves cause reshaping of 
the structure, but also increase current-induced transport. 
Current dominates: use critical scour method + transport 
formula adapted for currents + waves. 

Proposed design 
method 

Waves dominate: use method for waves only and incorporate 
current. 
How must the current be incorporated in the waves-only 
approach? 

Questions asked in 
this thesis 

Answer: in the design formula (6.23) the current can be 
neglected, provided that the hydraulic conditions are strongly 
wave-dominated (X < 0.2). 

C
U

R
R

E
N

T
 +

 W
A

V
E

S
 

D
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am
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Remaining 
questions 

See ‘waves only’. Also: more tests with stronger currents to 
test up to where the current can be neglected. 
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Appendix 1 Turbulence   

Many concepts discussed in this thesis are somehow related to turbulence. This 

appendix introduces some of the most important ideas in turbulence research, and 

provides some background information. The contents of this appendix are largely based 

on the lecture notes ‘Turbulence in hydraulics’ of Delft University (Uijttewaal 2005) and 

two introductory books on the subject: (Tennekes and Lumley 1972) and (Nieuwstadt 

1992). 

A1.1  The problem of turbulence closure  

Fluid motion is described by the Navier-Stokes equations. These equations form a set of 

three nonlinear partial differential equations, for four variables (three velocity 

components u, v and w, and the pressure p). Together with a fourth equation describing 

the conservation of mass (the continuity equation) we get a closed set of equations that 

could in principle be solved for any flow problem with a given set of boundary conditions. 

Unfortunately no analytical solution to the Navier-Stokes equations exists. Solutions may 

be sought by numerical computations, but for turbulent flow this is practically impossible 

as will be discussed later. 

Throughout the history of hydraulic engineering, various researchers have proposed 

methods to solve this dilemma, but a satisfactory solution still has not been found. This 

appendix will introduce some of the best-known methods. 

In a broad sense, turbulence can be seen as an instability phenomenon: small 

disturbances in the flow have large consequences. So when a turbulent flow experiment 

is repeated a number of times the outcome for each experiment (in terms of local, 

instantaneous values of velocity and pressure) will be different, unless we manage to 

reproduce the exact boundary conditions and initial conditions with infinite accuracy, 
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which is impossible. However, each separate outcome can be seen as a mean value 

(ensemble averaged over all experiments) plus a deviation from this mean (different for 

each experiment), written as: 

'''' pppwwwvvvuuu

 

(A1.1) 

Since we are only interested in the mean values we can try to write the Navier Stokes 

equations in terms of these mean values and solve them.  

In a simplified case, when we consider only 2D flow (x horizontally in the direction of the 

flow, z vertically), the Navier-Stokes equation for flow in the x-direction becomes: 
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(A1.2) 

in which 

 

is the (molecular) kinematic viscosity of the fluid. The equation expresses that 

the fluid inertia (left hand side) is balanced by a gradient in the normal stress ?p/?x and 

the viscous shear stress (?2u/?z2). Applying (A1.1) and averaging gives, after some 

algebra: 
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(A1.3) 

We can now see that averaging the Navier Stokes equation did not simply yield the 

same equation in terms of average quantities. Instead, we now have two new terms that 

appear as (the gradients of) an extra normal stress xu /'2

 

and an extra shear 

stress zvu /'' . These stresses are the so-called Reynolds stresses.  

Note that, even though the average value of the fluctuating component 'u equals zero 

by definition, the same is not true for the average value of the product of two fluctuating 

components ''vu . Statistically, this parameter is analogous to the covariance of the 

velocity components u and v. In other words, the larger this value is, the larger the 

probability that a strong fluctuation in horizontal velocity occurs simultaneously with a 

strong fluctuation in vertical velocity. This means that the Reynolds stresses can be 

related to some kind of pattern, or structure, in the flow. So, although we refer to 

statistical methods to analyse turbulent flow, the flow is in a strict sense not random.  

The Reynolds normal stress is typically much smaller than the mean pressure gradient, 

but the Reynolds shear stress is much larger than the viscous shear stress, so (A1.3) 



Design of granular near-bed structures in waves and currents 
APPENDIX 1 TURBULENCE     

THESIS March 2006  page A-3 
3/24/2006 

can be simplified to: 
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(A1.4) 

The Reynolds shear stress is expressed in terms of the fluctuating components u’ and v’, 

so we now have two extra unknown variables but still only four equations. This means 

we no longer have a closed set of equations, and (A1.4) (known as the Reynolds 

equation) can only be solved if we can find expressions for the Reynolds stresses in 

terms of the average quantities u , v and p . This problem, which is one of the largest 

unsolved problems in fluid mechanics, is known as the turbulence closure problem. 

A1.2  The eddy viscosity concept 

The classic hypothesis to close the Reynolds equation is the introduction of a so-called 

turbulence viscosity (or eddy viscosity). From an analogy between the viscous shear 

stress gradient term in the Navier-Stokes equation:  
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(A1.5) 

and the Reynolds shear stress gradient term: 

z
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zz

vu turb''
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(A1.6) 

we can see that we can write the turbulent shear stress as: 

z

u
vu Tturb '' (A1.7) 

in which T is the eddy viscosity, which is a yet unknown property. Note that unlike the 

molecular viscosity , this eddy viscosity is not a property of the fluid, but a property of 

the flow, so T is different for each flow problem. This equation relates the Reynolds 

shear stress to the mean flow velocity u and thus closes the Reynolds equation. The 

problem has, of course, only shifted to determining T. For this, again, various solutions 

have been proposed. The most important methods are listed below. 
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A1.2.1 Constant eddy viscosity 

The simplest method is to assume that the eddy viscosity is a constant (for a given flow 

problem). Measurements have shown that this assumption is an over-simplification: the 

eddy viscosity really varies with z-coordinate, and, for unsteady flow, also with time. 

Nevertheless, the assumption of a constant eddy viscosity is still used in some older 

computer flow models (especially 2D transport models) as a ‘tuning’ parameter.  

A1.2.2 Mixing length models 

From dimensional analysis we can see that we can write T as the product of a length 

scale L and a velocity scale U; but since we know that it is more the velocity gradient 

that determines the shear stresses, we can better write the eddy viscosity as the product 

of this velocity gradient and a length scale squared: 
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(A1.8) 

For the velocity scale we can take the mean flow velocity u , and for the length scale 

Prandtl has introduced the concept of the mixing length lm, that can be thought of as the 

characteristic dimension of the turbulent eddies. So: 
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(A1.9) 

The remaining problem is now to determine the mixing length. The simplest way would 

be to assume that lm is constant. This is physically dubious (there is no reason why the 

turbulent eddies should have the same size everywhere in the fluid). Alternatively, Von 

Kármán has suggested that the mixing length is proportional to the distance from the 

bed, so the further away from the bed, the larger the turbulent eddies can grow:  

zlm

 

(A1.10) 

in which the constant of proportionality 

 

(called Von Kármán’s constant) has been 

measured in numerous experiments and appears to have the universal value 

 

= 0.4. 

Combining (A1.9) and (A1.10) gives the Prandtl-Von Kármán eddy viscosity: 
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(A1.11) 
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Other suggestions for the distribution of the mixing length have been proposed, of which 

the Bakhmetev distribution: 

h

z
zlm 1

 

(A1.12) 

is the most prominent. This distribution expresses that the turbulent eddies grow larger 

with increasing distance from the bed, but their growth is not unlimited: near the free 

surface (z 

 

h) the eddy size reduces again to lm= 0 at the free surface.  

A1.2.3 One equation model 

The turbulent fluctuations in a fluid can be associated with a turbulent kinetic energy 

defined as: 
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(A1.13) 

An important result from turbulence research is that the energy that is contained in the 

turbulent motion originates from the kinetic energy of the mean motion; in fact, the 

turbulent motion forms the most effective mechanism for dissipation of this mean kinetic 

energy. This means that k can be related to the mean motion, or more specifically, that 

we can derive a balance equation for k in terms of the mean motion properties u , v and 

w so that k can in principle be calculated at any point in the flow. 

From a dimensional analysis we can write the eddy viscosity as: 

LkCvT

 

(A1.14) 

in which Cv is a tuning parameter, and L is the length scale of the process.  

In numerical models, the Reynolds equation (A1.4) can be solved along with the balance 

equation for k, after which (A1.14) and (A1.7) can be used to close the equations. The 

parameter Cv can be used to tune the results. Uijttewaal (2005) gives Cv ˜ 0.53. The 

balance equation for k also contains two tuning parameters. 

The disadvantage of this method is that the length scale L still needs to be estimated. 

A1.2.4 Two equation model (k-

 

closure) 

The disadvantage of the one-equation model can be overcome by adding another 
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balance equation, this time for , which is the dissipation rate of the turbulent kinetic 

energy. Note that this makes hardly any sense in physical terms, because energy 

dissipation (unlike energy itself) is not a conserved quantity, so there is no reason why a 

balance equation for dissipation should hold. Such a balance equation would contain 

physically doubtful terms as the ‘production of dissipation’, ‘transport of dissipation’ and 

‘dissipation of dissipation’. Nevertheless this approach appears to give reasonable 

results, and it is quite popular in modern engineering applications.  

After 

 

is calculated from its balance equation, the eddy viscosity is calculated as: 

2

1

k
CT

 

(A1.16) 

which, again, follows purely from dimensional arguments. 

The advantage is this method is that is does not require an additional estimation of L. 

The disadvantage, apart from its dubious physical basis, is that it introduces more tuning 

parameters (C1 in the above equation, and another two in the balance equation for ), so 

it takes some practice and skill to run such a model correctly. 

A1.3  Other turbulence closure methods 

The eddy viscosity concept, described above in all its varieties, is one way of closing the 

Reynolds equations, but there are more. These are not very relevant for the research 

described in this thesis, so they will only be treated briefly below, for the sake of 

completeness. 

A1.3.1 Direct numerical simulation (DNS) 

This method circumvents the Reynolds equation altogether, and seeks to solve the 

Navier-Stokes equation directly (numerically), on a spatial grid that is fine enough to 

resolve all the relevant motion.  

For turbulent flow this is practically impossible. It can be shown that the ratio between 

the largest and the smallest spatial scales at which turbulence plays a role is equal to 

Re3/4, so for a ‘normal’ turbulent flow with Re =106 ~ 107 this ratio is in the order 105. In 

numerical applications this number is roughly equal to the number of gridpoints at which 

the Navier-Stokes equations must be evaluated. When it is also considered that the 

problem needs to be solved in three spatial dimensions and for a reasonably long period 

in time, it is seen that the total number of computations needed to solve a given fluid 



Design of granular near-bed structures in waves and currents 
APPENDIX 1 TURBULENCE     

THESIS March 2006  page A-7 
3/24/2006 

problem is in the order 1020 or more, which is well beyond the capacity of modern 

computers. 

DNS has been applied in theoretical research, but only for very simple flow geometries 

at low Reynolds numbers. 

A1.3.2 Reynolds stress modelling  

This method seeks to find direct balance equations for the Reynolds stresses, as in: 

...
''''
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(A1.17) 

The function f can be shown to contain higher order closure terms, like the triple product 

''' vuu and so on; so effectively the problem is only shifted to finding closure schemes for 

these higher order terms. It is hoped that these terms are easier to close; or at least that 

the assumptions involved in their closure do not have very far-reaching complications. 

So far, this approach has yielded few results. 

A1.3.3 Large eddy simulation (LES) 

This method can be seen as a simplified way of Direct Numerical Simulation. The 

difference with DNS is that the computational grid is much coarser, so only the largest 

turbulent motions can be resolved (hence the name of the method). This greatly reduces 

the computational capacity involved, and makes the method more suitable for practical 

applications. The smaller motions that are not resolved on the numerical grid are 

represented in the model by a so-called sub-grid stress. Modeling these sub-grid 

stresses, of course, requires some assumptions regarding turbulence closure again, but 

the powerful idea behind LES is that this is easier and less critical than finding a 

turbulence closure for the larger-scale motions. 

A1.4   Velocity profiles  

Once the Reynolds equations have been closed by one method or another, the resulting 

expression can be used to find the velocity profile )(zu of the flow. This is used 

extensively throughout this thesis, so a short introduction to the ideas behind it is given 

below. 

For open channel flow it can be shown (from a momentum balance) that the shear stress 

varies linearly from a value 

 

= 0 at the bed to 

 

= 0 at the free surface. Close to the bed, 
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it can be assumed that the shear stress is constant with a value equal to the bed shear 

stress 0. When it is further assumed that the turbulent shear stress is far larger than the 

molecular shear stress, we can write that close to the bed: 

z

u
vuu Tturb ''2

*0 
(A1.18) 

or, in short: 
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When a constant mixing length is assumed, (A1.19) becomes: 
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or 
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(A1.20b) 

which integrates to a linear velocity profile: 
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(A1.21) 

with boundary condition u = 0 at z = 0. Constant mixing lengths and the resulting linear 

velocity profiles are not commonly applied, but they are introduced here because a linear 

velocity profile is an important part of the wave-current interaction model by Bijker 

(1967). 

From (A1.21) and the definition of the mixing length (A1.9) it follows that assuming a 

constant mixing length is equivalent to assuming a constant eddy viscosity with 

mT lu* . 

Using the Prandtl-Von Kármán mixing length hypothesis leads to: 
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(A1.22a) 
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or 
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(A1.22b) 

which integrates to 

0
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(A1.23) 

with boundary condition u = 0 at z = z0. This is the well-known logarithmic velocity profile. 

So, strictly speaking, this profile was derived for the assumption that 

 

= 0, so it is only 

valid close to the wall. However, measurements have shown that the logarithmic velocity 

profile appears to be a more ‘universal law’ which is valid throughout the whole water 

column.  

Mathematically it can be shown that, if we want the logarithmic profile to hold for the 

whole water column, and so the assumption of a constant shear stress must be dropped 

in favour of the linear varying shear stress distribution, we need to use the mixing length 

distribution according to Bakhmetev (equation A1.12). 

A1.5  Turbulent flows in design practice  

Practically all flows in civil engineering are turbulent, both in nature as in scale models 

(in laboratories). This means that design methods, being based on either empirical 

evidence on prototype scale or on physical model research, have turbulence implicitly 

included in them. Therefore, it is not necessary to account for turbulence explicitly in the 

design of structures, unless of course the expected turbulence levels in the design 

situation deviate strongly from the ‘normal’ turbulence levels. Situations when this can be 

expected include the reattachment point after a sill, the outer bends of rivers or sudden 

transitions in bottom roughness. 

The most common way to express turbulence levels is by the turbulence intensity r, 

defined as: 

u

u
ru

2'

 

(A1.24a) 

with similar expressions for the intensities in the other two dimensions rv and rw. Usually 
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only flow in the x direction is considered and r is used without a subscript. Statistically 

speaking, the root of the average of the fluctuating component squared 2'u is 

equivalent to the standard deviation of u, so r can be interpreted as the coefficient of 

variance of u: 
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(A1.24b) 

In a turbulent flow it is commonly assumed that movement of stones is caused by an 

extreme velocity, say 3 standard deviations higher than the mean value. In other words, 

the governing velocity is u = (u) + 3 (u) = (1+3r)u. When we expect higher turbulence 

levels, we can use this assumption to scale the design velocity as follows (Schiereck 

2001): 

u
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)31(

 

(A1.25) 

in which rdesign is the expected increased turbulence intensity (estimated or taken from a 

3D flow model), and rnatural is the natural turbulence intensity that is implicitly used in the 

design method. This natural intensity is linked to the bed roughness (a higher roughness 

causes more turbulence) and can be calculated with the expression given by Nezu 

(1977, cf Uittenbogaard 1999): 
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(A1.26) 

in which C is the Chézy coefficient related to the bed roughness. Measurements have 

shown that in nature, turbulence intensities are usually of the order rnatural = 0.1 (which 

corresponds to C ˜ 40 m1/2/s in equation A1.26), so equation A1.25 can also be written 

as: 

u
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(A1.26) 
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Appendix 2 Soulsby parameterisation  
Soulsby (Soulsby et al 1993, Solusby 1997) gives a very useful parameterisation of 

some often-used wave-current interaction models, including the models used in this 

thesis. Their results can be used to obtain an approximation of the maximum and mean 

shear combined stresses predicted by the various models, without having to go into the 

details of the models themselves. Soulsby does not specify which measure of the ‘mean’ 

shear stress is used, but a comparison with our own simulation results (see Chapter 3) 

indicates that they have used the average shear stress in the direction of the flow, 

averaged over the whole period. 

The parameterisation requires three input parameters, the relative bed roughness z0/h, 

the relative wave excursion a0/z0 and the angle between the current and the wave 

propagation . The dimensionless parameters X, Y and Z are defined in paragraph 3.1. 

For the Bijker model, Soulsby et al (1993) give the following exact solution for the 

maximum shear stress: 

cos)1(21 2/12/1 XXZ

 

They do not give an approximation for the mean shear stress. 

For the other models Soulsby suggests approximations of the form: 

qp XbXXY 11 

nm XaXZ )1(1

 

which they stress has no physical meaning but is merely suggested by the shape of the 

curves in Figure 3.3. 

The appropriate values of the fitting parameters can be calculated from: 
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with analogous expressions for m, n, b, p and q.  

The values of a1, a2 etc vary between the models and can be read from table A2.1. The 

values of fw and CD can be calculated directly from the various models themselves (eg 

equation 2.18 and 2.25 for Bijker etc), or read from table A2.2 for various values of a0/z0 

and z0/h (by linear interpolation). 

Table A2.1 –Fitting coefficients for various wave-current interaction models (Soulsby 1997) 

 

Table A2.2 – Friction parameters for various wave-current interaction models (Soulsby 1997) 
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Appendix 3 Fredsøe’s wave-current interaction model 
The explanation of the Fredsoe model as given in paragraph 3.2.6 is in fact a 

simplification, introduced in order to explain the main features of the model without 

having to go into the (complex) details of it. In our analysis of the flat bed protection data 

and the pipeline cover data we have not used this simplification, but the full model as 

given in Fredsøe and Deigaard (1992). The main differences between the simplified 

version of chapter 3 and the full version are given below. An accompanying definition 

sketch is given in Figure A3.1. 

Notation: Fredsøe uses a different notation than we do. This appendix follows Fredsoe’s 

notation. A translation table for the most important parameters is given below. 

Table A3.1-  Differences in notation between Fredsoe and Deigaard (1992) and this thesis 

parameter Fredsoe and  
Deigaard (1992) This thesis 

maximum wave orbital velocity u1m û0 

current only shear stress velocity uf0  

enhanced current shear stress 
velocity 

ufc u*c 

combined shear stress velocity uf u*wc 

Fredsøe also uses the notation u0( t) for the instantaneous wave orbital velocity:  

u0( t) = û0sin( t). 

Current profile: In the full model the current velocity profile is split in two (logarithmic) 

parts. Inside the boundary layer the profile is influenced by the physical bed roughness 

z0 and the shear stress velocity uf0. Outside the boundary layer the boundary layer itself 

acts as a roughness element and so the current velocity profile in influenced by the 

apparent roughness zA and the corresponding shear stress velocity ufc. (see figure A3.1). 
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Iteration: In chapter 3 we described how we had to iteratively find a correct value for the 

current velocity at the edge of the boundary layer u . Fredsøe does not iterate on u

 

but 

on the current-only shear stress velocity in the boundary layer uf0. The value of u

 

then 

follows as part of the solution: 

)()( 0 tZ
u

tu f

  

(A3.1) 

This equation follows from the boundary condition at the edge of the boundary layer and 

the definition of Z (see chapter 3), and shows the same dependency between u

 

and uf0 

as between the corresponding parameters utot and uf (cf eq 3.49). We now see that u

 

is 

in fact a time-dependent parameter,. and not a constant as assumed in chapter 3. The 

rest of the procedure (ie calculate utot and so on) now proceeds as in chapter 3. The 

value of uf0 must be chosen arbitrarily at the first iteration loop, and updated until the 

correct value of uda is obtained. 

Angle between instantaneous combined shear stress and current velocity:  in 

chapter 3 we already introduced that: 

totu

uu
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(A3.2) 

This expression follows quite straightforwardly from the geometry of the situation, as 

sketched in Figure A3.2. Fredsøe and Deigaard give a far more complex expression, 

introducing yet another parameter *
fu , but we do not follow their suggestion. Instead, we 

use equation A2.2 in our analysis. 

current waves combined

profile from
linear wave

theory profile unknown
/ not relevantu(z) =      ln(z/zA)

u*c

u(z) =      ln(z/z0)
u*0

z0

u u0= û0sin( t) utot

log profile

log profile log profile

u*wc

log profile

u(z) =        ln(z/z0)

  

Figure A3.1 –Definition sketch for the Fredsøe model 
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Differential equation: The full expression for the differential equation dZ/d( t) is given 

in Fredsøe and Deigaard (1992) and in Fredsøe (1984) in two different forms, and in 

either source the exact formulation is a little unclear. We believe this may be due to 

typesetting errors. After re-doing the calculus involved in solving the momentum integral 

(eq 3.44) we believe that the correct version should be: 
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and 
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(A3.3c) 

In this version we have already substituted utot (cf equation 3.48) which simplifies the 

notation somewhat. In addition, in the version of the differential equation used in our 

software application (in Microsoft Excel) we have replaced the factor 

)tan(

1
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1 0

0 ttd
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u

  

(A3.4) 

as follows readily from u0 = û0·sin( t). 

utot( t)

u
( t)

u0( t)

u0( t)cos( )  

Figure A3.2 –Determination of ( t) 
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The initial condition for the differential equation (A3.2) is t = 0 

 

Z = 0. Unfortunately 

the differential equation is singular for t = 0, so it cannot directly be solved. However, 

Fredsøe notes that for small t equation (A3.2) can be approximated by another 

differential equation which has the analytical solution: 

ttZ
3

4
)(

  

(A3.5) 

Equation A3.5 can be used to obtain the initial values for Z( t), after which the full 

expression (A3.2) can be used to further solve Z( t) for higher t values (Note: Fredsoe 

gives a factor 2/3 in his version of A3.5, but he also has a factor 60 in the definition of 

 

(eq A3.3b) instead of 30 as we do) 

Apparent roughness: The introduction of uf0 as a parameter means that the apparent 

roughness can now be found by equating the two logarithmic velocity profiles at z = m 

(the mean boundary layer thickness):  
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or, as expressed by Fredsøe in terms of Nikuradze roughness heights (k = 30·z0): 
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(A3.6a) 

This replaces equation 3.53. We note that in his whole analysis Fredsøe has always 

assumed the edge of the boundary layer to be at a height z = z0 + m (see chapter 3). It 

is not clear why he chooses to equate the logarithmic profiles at z = m instead of z = z0 

+ m this time.  
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Appendix 4 Paintal’s bed load model 
Paintal reasoned that there are four different stochastic parameters that play a role in the 

bed load transport of stones at low -values. 

First, there is the fluctuating load (Paintal only considered drag and lift forces) caused by 

the fluctuations in the flow velocity due to turbulence. This load is assumed to have a 

normal distribution with a standard deviation 0.5 times the mean value (which Paintal 

based on earlier measurements by other researchers).  

The second stochastic parameter is the embedment: stones that happen to protrude 

more from the bed are exposed more to the flow and will have a higher probability of 

movement. Paintal’s embedment model is sketched in Figure A4.1. The stones undergo 

a drag force Dr and a lift force L, which is balanced by the stone weight W (note: these 

are Paintal’s original notations, deviating from the notation used in this thesis). A stone 

can leave its position in the bed through the escape angle . Both the magnitude of the 

hydraulic forces and the escape angle depend on the exposure of a stone (e2 in Figure 

A4.1) relative to the exposure of its neighbours (e1 and e3). Paintal assumed a uniform 

distribution for a stone’s relative exposure. 

A stone will move when Dr > (W-L)·tan . Using this inequality, expressing all parameters 

in terms of e1, e2, and e3 and combining this with the assumed distribution of the loads, 

Paintal derives a theoretical expression for the probability p0 that a given stone is at the 

point of incipient motion. The function was found to be a function of 

 

only. The full 

expression for p0 is rather complicated, but for low 

 

values Paintal states that it can be 

roughly approximated with a 4th power relation: p0 

 

4. Paintal also plots this function in 

his thesis (Paintal 1969); measurements in this plot reveal that the 4th power is a crude 

approximation and that the real relationship is p0 = 1.92· 4.5 (for 

 

< 0.06)  
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Figure A4.1- Embedment model of Paintal (taken from Paintal, 1969)  

The third stochastic parameter is the step length, being the distance a stone would travel 

once set into motion. Paintal used a negative exponential distribution here with an 

unknown mean value , made dimensionless as 0 = /d.  

The fourth and last parameter is the time in between steps. Paintal simply stated this 

parameter should be dependent on the flow and the sediment characteristics, and 

assumed from purely dimensional arguments that it should be proportional to d/u*, In 

addition, Paintal assumed it to be related to the probability p0, reasoning that a more 

exposed stone having a higher p0 would need a shorter time before it starts moving. This 

is perhaps the most disputable of Paintal’s assumptions, as we could argue that this 

exposure has already been accounted for elsewhere in the model. 

Following a simple argument, originating from H A Einstein (1942), Paintal is now able to 

show that: (for a full derivation see Paintal, 1969) 

)1( 0

3
0

p

p
Aq 

(A4.1) 

in which A denotes a collection of dimensionless proportionality constants. We have re-

written equation A4.1 in the notation used in this thesis, Paintal’s original notation is 

different. 

When we substitute the previously found relationship p0 = 1.92· 4.5, equation A4.1 

seems to induce that q

 

14. It is interesting to note that Paintal does not draw this 

conclusion anywhere in his thesis, nor does he link this to his measured correlation 

between 

 

and 16.  
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To show the sensitivity of the value of the exponent to a change in the analysis, we will 

see what happens if we drop the questionable assumption that the time between two 

consecutive steps depends on p0, but otherwise follow the same reasoning as Paintal in 

his thesis. This eventually leads to a general relationship 

)1( 0

2
0

p

p
Aq 

(A4.2) 

which would induce 

  

7.5. So, we see that Paintal’s theoretical analysis does seem to 

justify a rather high exponent of , though probably not quite as high as 16, and that the 

exact value of the exponent is very sensitive to a slight change in the assumptions. 
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Appendix 5 Data set for horizontal bed protections 
Bijman performed five test series with four different current velocities: To check his 

assumption that the velocity profiles during his tests were logarithmic, he performed 

EMS measurements at the end of his test programme, for (roughly) the same current 

velocities. These measurements showed that the velocity profiles were in fact not 

logarithmic; especially for the smaller velocities the deviations were large. However, in all 

cases the velocity profile close to the bed (ie the first five measurement points or so) 

were approximately logarithmic. This enabled Bijman to calculate the bed shear stress 

for his four EMS measurements, by fitting a logarithmic profile: 

0

* ln)(
z

zu
zu

 

(A5.1) 

to these data points by a least squares method; the values of u

 

(and thus 

 

= u 2) and 

z0 then follow as a fit parameter. The flow velocities and bed shear stresses measured 

by Bijman are given in table A5.1. 

As explained in chapter 5 Bijman proceeds to obtain an artificial bed roughness from 

these measurements (defined as that roughness that must be used to calculate the 

measured shear stress, using the measured current velocity and a calculation method 

based on the assumption of a logarithmic profile) – this artificial bed roughness is then 

also used in the analysis of the results from the main tests (with the corresponding 

current velocity). This comes down to calculating an artificial Chézy value (cf eq 2.13): 

u
u

g
C

*

 

(A5.2) 

from the measured current velocity and shear stress, and finally the artificial roughness: 

(cf eq 2.16, using the water depth h from the EMS measurements) 
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18/10

12
Cs

h
k

 

(A5.3) 

For the reasons explained in chapter 5 we adopt a slightly different approach, in which 

we do not change the bed roughness but the current velocity. In other words we ask the 

question “what should the current velocity have been in order to calculate the measured 

bed shear stress using the calculation procedure for a logarithmic profile and keeping ks 

= 2·dn50”. The ratio between this new current velocity and the measured current velocity 

is then determined, and the current velocities in the main tests are corrected with the 

same factor. This comes down to calculating C according to equation 2.16 (with the 

water depth from the EMS measurements and ks = 2·dn50) and letting the artificial 

(‘corrected’) current velocity follow from (cf eq 2.13) 

*u
g

C
ucorr

 

(A5.4) 

The required correction factor then simply follows from f = uda corr/uda meas. 

The results from these calculations is given in Table A5.1. The full dataset for the main 

tests, including the corrected current velocities, is given in Table A5.2 on the next page. 

Table A5.1 – Correction factors for current velocity in Bijman data set 

main test EMS measurements  
(Bijman 2000) 

Correction  
(present research) 

uda uda h u

 

C ucorr f Test 
series m/s m/s m cm/s m1/2/s m/s - 

1 0.35 0.35 0.281 2.65 44.8 0.38 1.08 

2 0.45 0.43 0.310 2.84 45.6 0.41 0.96 

3 0.60 0.54 0.296 3.73 45.2 0.54 1.00 

4 0.65 0.66 0.282 4.52 44.9 0.65 0.98 
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Table A5.2 – Data set for horizontal bed protections (Bijman data set) 
Hydraulic conditions and transport parameters 

Hydraulic conditions  Transport parameters 
T H uda correction uda corr h N Duration qs q 

Test 
nr 

Original 
nr 

s m m/s factor m/s m - s 10-10 m2/s 10-8 

BM 1 1,1 0,1007 0,35 1,08 0,38 0,2858 3600 3960 0 0 
BM 2 

TS 1 
1,1 0,1536 0,35 1,08 0,38 0,2858 3600 3960 0 0 

BM 3 1,1 0,1421 0,44 0,96 0,42 0,3061 3600 3960 0,39 2,46 
BM 4 1,1 0,1511 0,42 0,96 0,40 0,3172 3600 3960 0,13 0,86 
BM 5 1,1 0,1324 0,44 0,96 0,42 0,3079 3600 3960 0,68 4,36 
BM 6 1,1 0,1116 0,44 0,96 0,42 0,3073 3600 3960 0,13 0,86 
BM 7 

T
es

t 
se

ri
es

 2
 

1,1 0,1052 0,43 0,96 0,41 0,3096 3600 3960 0,13 0,86 

BM 8 1,1 0,0549 0,57 1,00 0,57 0,2775 3600 3960 0 0 
BM 9 1,1 0,0654 0,57 1,00 0,57 0,2783 3600 3960 0,21 1,32 

BM 10 1,1 0,0757 0,57 1,00 0,57 0,2802 3600 3960 1,43 9,11 
BM 11 1,1 0,0846 0,57 1,00 0,57 0,2782 3600 3960 1,43 9,11 
BM 12 1,1 0,0947 0,58 1,00 0,58 0,2769 3600 3960 4,29 27,34 
BM 13 1,1 0,1060 0,57 1,00 0,57 0,2796 3600 3960 1,43 9,11 
BM 14 1,1 0,1190 0,58 1,00 0,58 0,2752 3600 3960 2,25 14,33 
BM 15 1,1 0,1308 0,58 1,00 0,58 0,2759 3600 3960 4,09 26,08 
BM 16 1,1 0,1323 0,57 1,00 0,57 0,2815 3600 3960 3,69 23,50 
BM 17 1,1 0,1374 0,57 1,00 0,57 0,2759 3600 3960 3,53 22,47 
BM 18 1,1 0,1421 0,57 1,00 0,57 0,2794 3600 3960 4,95 31,53 
BM 19 

T
es

t 
se

ri
es

 3
 

1,1 0,1495 0,57 1,00 0,57 0,2786 3600 3960 8,79 56,00 

BM 20 1,1 0,0451 0,65 0.98 0,64 0,2873 3600 3960 1,43 9,11 
BM 21 1,1 0,0556 0,66 0.98 0,65 0,2833 3600 3960 2,46 15,65 
BM 22 1,1 0,0646 0,66 0.98 0,65 0,2859 3600 3960 4,50 28,66 
BM 23 1,1 0,0745 0,66 0.98 0,65 0,2849 3600 3960 5,32 33,88 
BM 24 1,1 0,0849 0,66 0.98 0,65 0,2823 3600 3960 5,72 36,46 
BM 25 1,1 0,0976 0,66 0.98 0,65 0,2861 3600 3960 4,29 27,34 
BM 26 1,1 0,1039 0,66 0.98 0,65 0,2817 3600 3960 6,54 41,67 
BM 27 1,1 0,1187 0,66 0.98 0,65 0,2821 3600 3960 4,90 31,24 
BM 28 1,1 0,1283 0,66 0.98 0,65 0,2840 3600 3960 5,52 35,20 
BM 29 

T
es

t 
se

ri
es

 4
 

1,1 0,1338 0,66 0.98 0,65 0,2839 3600 3960 8,79 56,00 

BM 30 1 0,0524 0,57 1,00 0,57 0,2783 3600 3600 0,90 5,73 
BM 31 1 0,0651 0,57 1,00 0,57 0,2785 3600 3600 1,12 7,16 
BM 32 1 0,0749 0,57 1,00 0,57 0,2784 3600 3600 1,12 7,16 
BM 33 1 0,0839 0,57 1,00 0,57 0,2778 3600 3600 1,80 11,47 
BM 34 1 0,0989 0,57 1,00 0,57 0,2790 3600 3600 2,91 18,52 
BM 35 1 0,1099 0,57 1,00 0,57 0,2792 3600 3600 1,12 7,16 
BM 36 1 0,1153 0,57 1,00 0,57 0,2786 3600 3600 1,80 11,47 
BM 37 1 0,1268 0,57 1,00 0,57 0,2817 3600 3600 1,80 11,47 
BM 38 

T
es

t 
se

ri
es

 5
 

1 0,1330 0,57 1,00 0,57 0,2793 3600 3600 1,01 6,45 

Notes: dn50 = 5,45 mm (constant for all tests)  
 = 1,55 (constant for all tests) 
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Appendix 6 Data set for pipeline covers  

The next pages contain the raw data from the tests performed by Lomónaco (1994), Van 

Gent and Wallast (2001) and Saers (2005), denoted LOM, VGW and SAE, respectively. 

No further analysis has been applied to these data, with the exception of the parameters 

printed in italics: 

 

The ‘maximum’ wave height H1./100 has been calculated for all tests using 

equation 2.38 

 

Only Tm was given for the tests by Van Gent and Wallast, Tp has been calculated 

as Tp = Tm/0.8 

 

Conversely, only Tp was given for the other tests, Tm has been calculated as Tm = 

Tp/0.8 

 

The original numbers refer to the numbering in the original reports by Lomónaco, 

Van Gent and Wallast and Saers 

 

Only Lomónaco states the duration of his tests explicitly; the others mention only 

a number of waves. In that case the test duration is estimated as D = N·Tm 

There are a few gaps in our numbering. The missing tests are the tests with breaking 

waves (as explained in chapter 5, these tests will not be used in the present research). 

All analyses in chapter 6 are based on the data sets without these tests. 
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Table A6.1 – Data set for pipeline covers. Tests with waves only 
Hydraulic conditions and stone parameters 

Hydraulic conditions Stone parameters 
Hs H1% Tm Tp N h hc s dn50 shape 

 
Test 

nr 
Original 

nr 
Data 
set 

m m s s - m m kg/m3 mm - - 

W 1 A310 VGW 0,090 0,129 1,11 1,39 1000 0,500 0,375 2650 7,20  1,65 
W 2 A310 VGW 0,090 0,129 1,11 1,39 3000 0,500 0,375 2650 7,20  1,65 
W 3 A311 VGW 0,127 0,179 1,32 1,65 1000 0,500 0,375 2650 7,20  1,65 
W 4 A311 VGW 0,127 0,179 1,32 1,65 3000 0,500 0,375 2650 7,20  1,65 
W 5 A312 VGW 0,163 0,225 1,51 1,89 1000 0,500 0,375 2650 7,20  1,65 
W 6 A312 VGW 0,163 0,225 1,51 1,89 3000 0,500 0,375 2650 7,20  1,65 
W 7 H312 VGW 0,162 0,224 1,51 1,89 1000 0,500 0,375 2650 7,20  1,65 
W 8 H312 VGW 0,162 0,224 1,51 1,89 3000 0,500 0,375 2650 7,20  1,65 
W 9 A313 VGW 0,188 0,256 1,66 2,08 1000 0,500 0,375 2650 7,20  1,65 
W 10 A313 VGW 0,188 0,256 1,66 2,08 3000 0,500 0,375 2650 7,20  1,65 
W 11 H313 VGW 0,186 0,254 1,66 2,08 1000 0,500 0,375 2650 7,20  1,65 
W 12 H313 VGW 0,186 0,254 1,66 2,08 3000 0,500 0,375 2650 7,20  1,65 
W 13 A320 VGW 0,085 0,120 1,10 1,38 1000 0,375 0,250 2650 7,20  1,65 
W 14 A321 VGW 0,119 0,165 1,32 1,65 1000 0,375 0,250 2650 7,20  1,65 
W 15 A321 VGW 0,119 0,165 1,32 1,65 3000 0,375 0,250 2650 7,20  1,65 
W 18 A410 VGW 0,090 0,129 1,11 1,39 1000 0,500 0,375 2650 3,10  1,65 
W 19 A410 VGW 0,090 0,129 1,11 1,39 3000 0,500 0,375 2650 3,10  1,65 
W 20 A411 VGW 0,127 0,179 1,32 1,65 1000 0,500 0,375 2650 3,10  1,65 
W 21 A411 VGW 0,127 0,179 1,32 1,65 3000 0,500 0,375 2650 3,10  1,65 
W 22 A412 VGW 0,164 0,226 1,51 1,89 1000 0,500 0,375 2650 3,10  1,65 
W 23 A412 VGW 0,164 0,226 1,51 1,89 3000 0,500 0,375 2650 3,10  1,65 

W 26 T1 D2 LOM 0,149 0,207 1,28 1,61 2897 0,500 0,470 2463 3,65 Round 1,46 
W 27 T1 D3 LOM 0,153 0,212 1,26 1,58 2870 0,500 0,444 2512 6,12 Round 1,51 
W 28 T1 D4 LOM 0,149 0,207 1,26 1,58 2845 0,500 0,444 2512 6,12 Round 1,51 
W 29 T1 D5 LOM 0,148 0,206 1,26 1,58 2840 0,500 0,446 2512 6,12 Round 1,51 
W 30 T1 D6 LOM 0,140 0,196 1,28 1,61 2806 0,500 0,375 2712 8,33 Sharp 1,71 
W 32 T2 D2 LOM 0,186 0,254 1,49 1,86 1864 0,500 0,468 2463 3,65 Round 1,46 
W 33 T2 D3 LOM 0,191 0,260 1,49 1,86 1850 0,500 0,441 2512 6,12 Round 1,51 
W 34 T2 D4 LOM 0,183 0,250 1,56 1,95 1853 0,500 0,442 2512 6,12 Round 1,51 
W 35 T2 D5 LOM 0,181 0,247 1,49 1,86 1846 0,500 0,448 2512 6,12 Round 1,51 
W 36 T2 D6 LOM 0,178 0,244 1,56 1,95 1799 0,500 0,374 2712 8,33 Sharp 1,71 
W 38 T3 D2 LOM 0,213 0,287 1,64 2,05 928 0,500 0,470 2463 3,65 Round 1,46 
W 40 T3 D4 LOM 0,209 0,282 1,64 2,05 898 0,500 0,442 2512 6,12 Round 1,51 
W 41 T3 D5 LOM 0,202 0,273 1,64 2,05 919 0,500 0,442 2512 6,12 Round 1,51 
W 44 T5A D2 LOM 0,208 0,289 1,46 1,82 953 0,700 0,670 2463 3,65 Round 1,46 
W 45 T5A D3 LOM 0,233 0,322 1,46 1,82 970 0,700 0,636 2463 3,65 Round 1,46 
W 46 T5A D4 LOM 0,201 0,280 1,49 1,86 950 0,700 0,638 2463 3,65 Round 1,46 
W 47 T5A D5 LOM 0,203 0,283 1,49 1,86 938 0,700 0,640 2512 6,12 Round 1,51 
W 48 T5A D6 LOM 0,202 0,281 1,46 1,82 920 0,700 0,572 2613 5,13 Sharp 1,61 
W 49 T5A D7 LOM 0,180 0,253 1,46 1,82 956 0,700 0,440 2712 8,33 Sharp 1,71 
W 50 T5B D2 LOM 0,208 0,289 1,49 1,86 1897 0,700 0,670 2463 3,65 Round 1,46 
W 51 T5B D3 LOM 0,233 0,322 1,46 1,82 1935 0,700 0,636 2463 3,65 Round 1,46 
W 52 T5B D4 LOM 0,201 0,281 1,49 1,86 1898 0,700 0,638 2463 3,65 Round 1,46 
W 53 T5B D5 LOM 0,202 0,281 1,49 1,86 1876 0,700 0,640 2512 6,12 Round 1,51 
W 54 T5B D6 LOM 0,204 0,284 1,46 1,82 1842 0,700 0,572 2613 5,13 Sharp 1,61 
W 55 T5B D7 LOM 0,181 0,254 1,46 1,82 1908 0,700 0,440 2712 8,33 Sharp 1,71 
W 56 T6A D2 LOM 0,251 0,344 1,64 2,05 932 0,700 0,662 2463 3,65 Round 1,46 
W 57 T6A D3 LOM 0,283 0,384 1,64 2,05 921 0,700 0,636 2463 3,65 Round 1,46 
W 58 T6A D4 LOM 0,244 0,335 1,64 2,05 929 0,700 0,637 2463 3,65 Round 1,46 
W 59 T6A D5 LOM 0,243 0,333 1,68 2,10 920 0,700 0,630 2512 6,12 Round 1,51 
W 60 T6A D6 LOM 0,244 0,335 1,68 2,10 907 0,700 0,572 2613 5,13 Sharp 1,61 
W 61 T6A D7 LOM 0,223 0,308 1,82 2,28 911 0,700 0,442 2712 8,33 Sharp 1,71 
W 62 T6B D2 LOM 0,252 0,345 1,64 2,05 1871 0,700 0,662 2463 3,65 Round 1,46 
W 63 T6B D3 LOM 0,283 0,383 1,64 2,05 1845 0,700 0,636 2463 3,65 Round 1,46 
W 64 T6B D4 LOM 0,244 0,335 1,68 2,10 1852 0,700 0,637 2463 3,65 Round 1,46 
W 65 T6B D5 LOM 0,242 0,332 1,68 2,10 1842 0,700 0,630 2512 6,12 Round 1,51 
W 66 T6B D6 LOM 0,243 0,334 1,68 2,10 1811 0,700 0,572 2613 5,13 Sharp 1,61 
W 67 T6B D7 LOM 0,223 0,309 1,82 2,28 1822 0,700 0,442 2712 8,33 Sharp 1,71 
W 68 T7A D2 LOM 0,255 0,356 1,64 2,05 975 0,900 0,861 2463 3,65 Round 1,46 
W 69 T7A D3 LOM 0,285 0,395 1,64 2,05 960 0,900 0,837 2463 3,65 Round 1,46 
W 70 T7A D4 LOM 0,248 0,347 1,64 2,05 974 0,900 0,837 2463 3,65 Round 1,46 
W 71 T7A D5 LOM 0,252 0,352 1,64 2,05 957 0,900 0,833 2512 6,12 Round 1,51 
W 72 T7A D6 LOM 0,250 0,350 1,64 2,05 960 0,900 0,773 2613 5,13 Sharp 1,61 
W 73 T7A D7 LOM 0,238 0,334 1,64 2,05 936 0,900 0,646 2712 8,33 Sharp 1,71 
W 74 T7B D2 LOM 0,257 0,358 1,64 2,05 1941 0,900 0,861 2463 3,65 Round 1,46 
W 75 T7B D3 LOM 0,286 0,396 1,64 2,05 1921 0,900 0,837 2463 3,65 Round 1,46 
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Table A6.1 – Data set for pipeline covers. Tests with waves only 
Hydraulic conditions and stone parameters (continued) 

Hydraulic conditions Stone parameters 
Hs H1% Tm Tp N h hc s dn50 shape 

 
Test 

nr 
Original 

nr 
Data 
set 

m m s s - m m kg/m3 mm - - 

W 76 T7B D4 LOM 0,248 0,347 1,64 2,05 1949 0,900 0,837 2463 3,65 Round 1,46 
W 77 T7B D5 LOM 0,250 0,349 1,64 2,05 1914 0,900 0,833 2512 6,12 Round 1,51 
W 78 T7B D6 LOM 0,252 0,352 1,64 2,05 1910 0,900 0,773 2613 5,13 Sharp 1,61 
W 79 T7B D7 LOM 0,241 0,338 1,64 2,05 1871 0,900 0,646 2712 8,33 Sharp 1,71 
W 80 T9 D2 LOM 0,207 0,280 2,05 2,56 1011 0,500 0,461 2463 3,65 Round 1,46 
W 82 T9 D4 LOM 0,199 0,270 2,05 2,56 976 0,500 0,438 2463 3,65 Round 1,46 
W 83 T9 D5 LOM 0,201 0,273 2,11 2,64 973 0,500 0,441 2463 3,65 Round 1,46 
W 86 T11 D2 LOM 0,263 0,358 1,87 2,34 968 0,700 0,669 2463 3,65 Round 1,46 
W 87 T11 D3 LOM 0,293 0,396 1,87 2,34 973 0,700 0,636 2463 3,65 Round 1,46 
W 88 T11 D4 LOM 0,253 0,346 1,87 2,34 955 0,700 0,640 2463 3,65 Round 1,46 
W 89 T11 D5 LOM 0,257 0,351 1,87 2,34 955 0,700 0,641 2463 3,65 Round 1,46 
W 90 T11 D6 LOM 0,259 0,353 1,96 2,45 919 0,700 0,571 2613 5,13 Sharp 1,61 
W 92 T12 D2 LOM 0,215 0,289 1,64 2,05 931 0,500 0,469 2463 3,65 Round 1,46 
W 94 T12 D4 LOM 0,206 0,278 1,64 2,05 905 0,500 0,443 2463 3,65 Round 1,46 
W 95 T12 D5 LOM 0,203 0,274 1,64 2,05 908 0,500 0,442 2463 3,65 Round 1,46 

W 96 0a6 SAE 0,208 0,284 1,71 2,14 1096 0,550 0,490 2470 3,70 Irregular 1,47 
W 97 0a6 SAE 0,208 0,284 1,71 2,14 3177 0,550 0,490 2470 3,70 Irregular 1,47 

W 100 1a4 SAE 0,209 0,282 1,71 2,14 1052 0,500 0,455 2470 3,70 Irregular 1,47 
W 101 1a4 SAE 0,209 0,282 1,71 2,14 3114 0,500 0,455 2470 3,70 Irregular 1,47 
W 102 1a4 SAE 0,209 0,282 1,71 2,14 6196 0,500 0,455 2470 3,70 Irregular 1,47 
W 103 1a5 SAE 0,209 0,282 1,71 2,14 1028 0,500 0,451 2470 3,70 Irregular 1,47 
W 104 1a5 SAE 0,209 0,282 1,71 2,14 2820 0,500 0,451 2470 3,70 Irregular 1,47 
W 105 1a5 SAE 0,209 0,282 1,71 2,14 5855 0,500 0,451 2470 3,70 Irregular 1,47 
W 106 1a6 SAE 0,209 0,282 1,71 2,14 982 0,500 0,436 2470 3,70 Irregular 1,47 
W 107 1a6 SAE 0,209 0,282 1,71 2,14 2941 0,500 0,436 2470 3,70 Irregular 1,47 
W 108 1a6 SAE 0,209 0,282 1,71 2,14 5961 0,500 0,436 2470 3,70 Irregular 1,47 
W 109 1a6 her SAE 0,209 0,282 1,71 2,14 1015 0,500 0,440 2470 3,70 Irregular 1,47 
W 110 1a6 her SAE 0,209 0,282 1,71 2,14 3079 0,500 0,440 2470 3,70 Irregular 1,47 
W 111 1a6 her SAE 0,209 0,282 1,71 2,14 6296 0,500 0,440 2470 3,70 Irregular 1,47 
W 112 1b4 SAE 0,180 0,244 1,62 2,02 1023 0,450 0,408 2470 3,70 Irregular 1,47 
W 113 1b4 SAE 0,180 0,244 1,62 2,02 3063 0,450 0,408 2470 3,70 Irregular 1,47 
W 114 1b4 SAE 0,180 0,244 1,62 2,02 6083 0,450 0,408 2470 3,70 Irregular 1,47 
W 115 1b6 SAE 0,180 0,244 1,62 2,02 1052 0,450 0,390 2470 3,70 Irregular 1,47 
W 116 1b6 SAE 0,180 0,244 1,62 2,02 3114 0,450 0,390 2470 3,70 Irregular 1,47 
W 117 1b6 SAE 0,180 0,244 1,62 2,02 6196 0,450 0,390 2470 3,70 Irregular 1,47 
W 121 2b4 SAE 0,173 0,236 1,62 2,02 1046 0,450 0,409 2470 3,70 Irregular 1,47 
W 122 2b4 SAE 0,173 0,236 1,62 2,02 3073 0,450 0,409 2470 3,70 Irregular 1,47 
W 123 2b4 SAE 0,173 0,236 1,62 2,02 6128 0,450 0,409 2470 3,70 Irregular 1,47 
W 124 2b5 SAE 0,173 0,236 1,62 2,02 1104 0,450 0,399 2470 3,70 Irregular 1,47 
W 125 2b5 SAE 0,173 0,236 1,62 2,02 3330 0,450 0,399 2470 3,70 Irregular 1,47 
W 126 2b5 SAE 0,173 0,236 1,62 2,02 6546 0,450 0,399 2470 3,70 Irregular 1,47 
W 127 2b6 SAE 0,173 0,236 1,62 2,02 1079 0,450 0,390 2470 3,70 Irregular 1,47 
W 128 2b6 SAE 0,173 0,236 1,62 2,02 3221 0,450 0,390 2470 3,70 Irregular 1,47 
W 129 2b6 SAE 0,173 0,236 1,62 2,02 6369 0,450 0,390 2470 3,70 Irregular 1,47 
W 130 3c4 SAE 0,148 0,202 1,61 2,01 990 0,400 0,358 2470 3,70 Irregular 1,47 
W 131 3c4 SAE 0,148 0,202 1,61 2,01 2956 0,400 0,358 2470 3,70 Irregular 1,47 
W 132 3c4 SAE 0,148 0,202 1,61 2,01 5621 0,400 0,358 2470 3,70 Irregular 1,47 
W 133 3c5 SAE 0,148 0,202 1,61 2,01 10414 0,400 0,348 2470 3,70 Irregular 1,47 
W 134 3c5 SAE 0,148 0,202 1,61 2,01 3112 0,400 0,348 2470 3,70 Irregular 1,47 
W 135 3c5 SAE 0,148 0,202 1,61 2,01 6028 0,400 0,348 2470 3,70 Irregular 1,47 
W 136 3c6 SAE 0,148 0,202 1,61 2,01 980 0,400 0,340 2470 3,70 Irregular 1,47 
W 137 3c6 SAE 0,148 0,202 1,61 2,01 2910 0,400 0,340 2470 3,70 Irregular 1,47 
W 138 3c6 SAE 0,148 0,202 1,61 2,01 5967 0,400 0,340 2470 3,70 Irregular 1,47 
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Table A6.2 – Data set for pipeline covers. Tests with waves only 
Structure parameters and damage parameters 

Structure parameters Damage parameters 
m0 zc Bc B S zd Duration Ae Test nr 

Original 
 nr 

Data 
set 

- m m m -  s cm2 

W 1 A310 VGW 3 0,1250 0,125 0,875 4,4  1110 2,28 
W 2 A310 VGW 3 0,1250 0,125 0,875 6,1  3330 3,16 
W 3 A311 VGW 3 0,1250 0,125 0,875 4,6  1320 2,38 
W 4 A311 VGW 3 0,1250 0,125 0,875 7,3  3960 3,78 
W 5 A312 VGW 3 0,1250 0,125 0,875 6,3  1510 3,27 
W 6 A312 VGW 3 0,1250 0,125 0,875 7,4  4530 3,84 
W 7 H312 VGW 3 0,1250 0,125 0,875 6,3  1510 3,27 
W 8 H312 VGW 3 0,1250 0,125 0,875 13,0  4530 6,74 
W 9 A313 VGW 3 0,1250 0,125 0,875 8,3  1660 4,30 

W 10 A313 VGW 3 0,1250 0,125 0,875 11,8  4980 6,12 
W 11 H313 VGW 3 0,1250 0,125 0,875 5,9  1660 3,06 
W 12 H313 VGW 3 0,1250 0,125 0,875 10,0  4980 5,18 
W 13 A320 VGW 3 0,1250 0,125 0,875 4,3  1100 2,23 
W 14 A321 VGW 3 0,1250 0,125 0,875 2,1  1320 1,09 
W 15 A321 VGW 3 0,1250 0,125 0,875 5,8  3960 3,01 
W 18 A410 VGW 8 0,1250 0,125 2,125 22,3  1110 2,14 
W 19 A410 VGW 8 0,1250 0,125 2,125 37,3  3330 3,58 
W 20 A411 VGW 8 0,1250 0,125 2,125 18,5  1320 1,78 
W 21 A411 VGW 8 0,1250 0,125 2,125 43,0  3960 4,13 
W 22 A412 VGW 8 0,1250 0,125 2,125 103,6  1510 9,96 
W 23 A412 VGW 8 0,1250 0,125 2,125 206,4  4530 19,84 

W 26 T1 D2 LOM 3 0,0298 0,060 0,239 60,4 0,0254 3960 8,03 
W 27 T1 D3 LOM 5 0,0562 0,120 0,682 4,5 0,0562 3960 1,70 
W 28 T1 D4 LOM 3 0,0559 0,120 0,455 20,0 0,0554 3960 7,50 
W 29 T1 D5 LOM 1 0,0540 0,120 0,228 41,5 0,0481 3960 15,55 
W 30 T1 D6 LOM 3 0,1253 0,250 1,002 4,0 0,1248 3960 2,81 
W 32 T2 D2 LOM 3 0,0320 0,060 0,252 32,0 0,0274 3000 4,25 
W 33 T2 D3 LOM 5 0,0589 0,120 0,709 8,9 0,0579 3000 3,35 
W 34 T2 D4 LOM 3 0,0576 0,120 0,466 8,3 0,0562 3000 3,10 
W 35 T2 D5 LOM 1 0,0523 0,120 0,225 28,8 0,0459 3000 10,79 
W 36 T2 D6 LOM 3 0,1265 0,250 1,009 10,2 0,1265 3000 7,06 
W 38 T3 D2 LOM 3 0,0298 0,060 0,239 39,1 0,0252 1680 5,20 
W 40 T3 D4 LOM 3 0,0579 0,120 0,467 10,6 0,0571 1680 3,99 
W 41 T3 D5 LOM 1 0,0579 0,120 0,236 48,3 0,0466 1680 18,11 
W 44 T5A D2 LOM 3 0,0300 0,060 0,240 12,3 0,0286 1680 1,63 
W 45 T5A D3 LOM 5 0,0637 0,120 0,757 24,5 0,0635 1680 3,26 
W 46 T5A D4 LOM 3 0,0625 0,120 0,495 46,2 0,0598 1680 6,13 
W 47 T5A D5 LOM 1 0,0598 0,120 0,240 15,0 0,0586 1680 5,62 
W 48 T5A D6 LOM 3 0,1280 0,250 1,018 21,3 0,1272 1680 5,62 
W 49 T5A D7 LOM 3 0,2601 0,250 1,811 14,5 0,2584 1680 10,07 
W 50 T5B D2 LOM 3 0,0300 0,060 0,240 16,8 0,0283 3360 2,23 
W 51 T5B D3 LOM 5 0,0637 0,120 0,757 37,6 0,0632 3360 5,00 
W 52 T5B D4 LOM 3 0,0625 0,120 0,495 62,1 0,0591 3360 8,25 
W 53 T5B D5 LOM 1 0,0598 0,120 0,240 21,2 0,0571 3360 7,96 
W 54 T5B D6 LOM 3 0,1280 0,250 1,018 33,5 0,1272 3360 8,80 
W 55 T5B D7 LOM 3 0,2601 0,250 1,811 24,9 0,2579 3360 17,28 
W 56 T6A D2 LOM 3 0,0376 0,060 0,286 75,0 0,0286 1680 9,97 
W 57 T6A D3 LOM 5 0,0640 0,120 0,760 77,6 0,0608 1680 10,30 
W 58 T6A D4 LOM 3 0,0630 0,120 0,498 140,4 0,0542 1680 18,65 
W 59 T6A D5 LOM 1 0,0696 0,120 0,259 69,3 0,0491 1680 26,00 
W 60 T6A D6 LOM 3 0,1277 0,250 1,016 46,0 0,1258 1680 12,11 
W 61 T6A D7 LOM 3 0,2576 0,250 1,796 77,0 0,2518 1680 53,40 
W 62 T6B D2 LOM 3 0,0376 0,060 0,286 97,7 0,0274 3360 12,98 
W 63 T6B D3 LOM 5 0,0640 0,120 0,760 128,7 0,0576 3360 17,09 
W 64 T6B D4 LOM 3 0,0630 0,120 0,498 215,9 0,0501 3360 28,69 
W 65 T6B D5 LOM 1 0,0696 0,120 0,259 76,1 0,0476 3360 28,55 
W 66 T6B D6 LOM 3 0,1277 0,250 1,016 73,7 0,1253 3360 19,40 
W 67 T6B D7 LOM 3 0,2576 0,250 1,796 119,3 0,2449 3360 82,80 
W 68 T7A D2 LOM 3 0,0386 0,060 0,292 48,0 0,0332 1680 6,37 
W 69 T7A D3 LOM 5 0,0628 0,120 0,748 80,0 0,0601 1680 10,63 
W 70 T7A D4 LOM 3 0,0632 0,120 0,499 85,9 0,0584 1680 11,41 
W 71 T7A D5 LOM 1 0,0674 0,120 0,255 57,0 0,0545 1680 21,36 
W 72 T7A D6 LOM 3 0,1270 0,250 1,012 50,6 0,1270 1680 13,32 
W 73 T7A D7 LOM 3 0,2542 0,250 1,775 39,1 0,2527 1680 27,16 
W 74 T7B D2 LOM 3 0,0386 0,060 0,292 54,5 0,0332 3360 7,24 
W 75 T7B D3 LOM 5 0,0628 0,120 0,748 100,1 0,0598 3360 13,30 
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Table A6.2 – Data set for pipeline covers. Tests with waves only 
Structure parameters and damage parameters (continued) 

Structure parameters Damage parameters 
m0 zc Bc B S zd Duration Ae Test nr 

Original

 
 nr 

Data 
set 

- m m m -  s cm2 

W 76 T7B D4 LOM 3 0,0632 0,120 0,499 105,0 0,0581 3360 13,94 
W 77 T7B D5 LOM 1 0,0674 0,120 0,255 69,4 0,0508 3360 26,03 
W 78 T7B D6 LOM 3 0,1270 0,250 1,012 66,2 0,1263 3360 17,41 
W 79 T7B D7 LOM 3 0,2542 0,250 1,775 49,9 0,2527 3360 34,63 
W 80 T9 D2 LOM 3 0,0391 0,060 0,295 92,1 0,0274 2100 12,24 
W 82 T9 D4 LOM 3 0,0625 0,120 0,495 184,4 0,0488 2100 24,49 
W 83 T9 D5 LOM 2 0,0589 0,120 0,356 209,4 0,0440 2100 27,83 
W 86 T11 D2 LOM 3 0,0308 0,060 0,245 87,8 0,0210 1920 11,66 
W 87 T11 D3 LOM 5 0,0640 0,120 0,760 199,3 0,0537 1920 26,48 
W 88 T11 D4 LOM 3 0,0601 0,120 0,481 207,6 0,0459 1920 27,58 
W 89 T11 D5 LOM 2 0,0591 0,120 0,356 227,2 0,0393 1920 30,18 
W 90 T11 D6 LOM 3 0,1289 0,250 1,023 103,8 0,1233 1920 27,30 
W 92 T12 D2 LOM 3 0,0310 0,060 0,246 51,6 0,0252 1680 6,86 
W 94 T12 D4 LOM 3 0,0571 0,120 0,463 132,2 0,0481 1680 17,56 
W 95 T12 D5 LOM 2 0,0584 0,120 0,354 203,9 0,0425 1680 27,10 

W 96 0a6 SAE 2,5 0,0598 0,040 0,339 107,8 0,0514 1876 14,76 
W 97 0a6 SAE 2,5 0,0598 0,040 0,339 128,2 0,0508 5439 17,54 
W 100 1a4 SAE 2,5 0,0448 0,040 0,264 45,1 0,0351 1801 6,18 
W 101 1a4 SAE 2,5 0,0448 0,040 0,264 53,3 0,0340 5331 7,30 
W 102 1a4 SAE 2,5 0,0448 0,040 0,264 57,6 0,0335 10608 7,89 
W 103 1a5 SAE 2,5 0,0494 0,040 0,287 83,5 0,0346 1760 11,43 
W 104 1a5 SAE 2,5 0,0494 0,040 0,287 103,1 0,0325 4828 14,12 
W 105 1a5 SAE 2,5 0,0494 0,040 0,287 104,9 0,0322 10024 14,36 
W 106 1a6 SAE 2,5 0,0637 0,040 0,359 117,2 0,0451 1681 16,04 
W 107 1a6 SAE 2,5 0,0637 0,040 0,359 138,6 0,0431 5035 18,97 
W 108 1a6 SAE 2,5 0,0637 0,040 0,359 156,5 0,0419 10205 21,42 
W 109 1a6 her SAE 2,5 0,0596 0,040 0,338 119,0 0,0407 1738 16,29 
W 110 1a6 her SAE 2,5 0,0596 0,040 0,338 133,2 0,0395 5271 18,24 
W 111 1a6 her SAE 2,5 0,0596 0,040 0,338 150,6 0,0375 10779 20,62 
W 112 1b4 SAE 2,5 0,0420 0,040 0,250 34,5 0,0342 1653 4,72 
W 113 1b4 SAE 2,5 0,0420 0,040 0,250 40,6 0,0330 4950 5,56 
W 114 1b4 SAE 2,5 0,0420 0,040 0,250 46,9 0,0321 9830 6,42 
W 115 1b6 SAE 2,5 0,0604 0,040 0,342 56,7 0,0489 1700 7,76 
W 116 1b6 SAE 2,5 0,0604 0,040 0,342 78,9 0,0459 5032 10,80 
W 117 1b6 SAE 2,5 0,0604 0,040 0,342 99,6 0,0435 10013 13,64 
W 121 2b4 SAE 2,5 0,0412 0,040 0,246 29,0 0,0343 1690 3,97 
W 122 2b4 SAE 2,5 0,0412 0,040 0,246 32,4 0,0336 4966 4,43 
W 123 2b4 SAE 2,5 0,0412 0,040 0,246 34,8 0,0332 9903 4,77 
W 124 2b5 SAE 2,5 0,0509 0,040 0,295 58,0 0,0394 1784 7,94 
W 125 2b5 SAE 2,5 0,0509 0,040 0,295 64,5 0,0385 5381 8,83 
W 126 2b5 SAE 2,5 0,0509 0,040 0,295 70,9 0,0377 10578 9,71 
W 127 2b6 SAE 2,5 0,0603 0,040 0,342 56,0 0,0491 1744 7,67 
W 128 2b6 SAE 2,5 0,0603 0,040 0,342 62,9 0,0481 5205 8,61 
W 129 2b6 SAE 2,5 0,0603 0,040 0,342 80,5 0,0459 10292 11,01 
W 130 3c4 SAE 2,5 0,0425 0,040 0,253 25,3 0,0364 1592 3,46 
W 131 3c4 SAE 2,5 0,0425 0,040 0,253 26,3 0,0364 4753 3,59 
W 132 3c4 SAE 2,5 0,0425 0,040 0,253 27,0 0,0362 9039 3,70 
W 133 3c5 SAE 2,5 0,0518 0,040 0,299 36,1 0,0439 16746 4,94 
W 134 3c5 SAE 2,5 0,0518 0,040 0,299 57,7 0,0403 5004 7,90 
W 135 3c5 SAE 2,5 0,0518 0,040 0,299 55,6 0,0406 9693 7,61 
W 136 3c6 SAE 2,5 0,0596 0,040 0,338 50,2 0,0492 1576 6,88 
W 137 3c6 SAE 2,5 0,0596 0,040 0,338 53,1 0,0488 4679 7,27 
W 138 3c6 SAE 2,5 0,0596 0,040 0,338 55,2 0,0486 9595 7,56 
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Table A6.3 – Data set for pipeline covers. Tests with current and waves 
Hydraulic conditions and stone parameters 

Hydraulic conditions Stone parameters 
Hs H1% Tm Tp N uda h hc s dn50 Shape 

 
Test  

nr 
Original 

 
nr 

Data 
set 

m m s s - m/s m m kg/m3 mm - - 

WC 1 B320 VGW 0,078 0,111 1,08 1,35 1000 0,11 0,375 0,250 2650 7,20  1,65 
WC 2 B321 VGW 0,112 0,156 1,29 1,61 1000 0,10 0,375 0,250 2650 7,20  1,65 
WC 3 B321 VGW 0,112 0,156 1,29 1,61 3000 0,10 0,375 0,250 2650 7,20  1,65 
WC 6 D320 VGW 0,067 0,096 1,12 1,40 1000 0,35 0,375 0,250 2650 7,20  1,65 
WC 7 D321 VGW 0,098 0,138 1,30 1,63 1000 0,35 0,375 0,250 2650 7,20  1,65 
WC 8 D321 VGW 0,098 0,138 1,30 1,63 3000 0,35 0,375 0,250 2650 7,20  1,65 
WC 9 D322 VGW 0,122 0,169 1,46 1,83 1000 0,35 0,375 0,250 2650 7,20  1,65 

WC 10 D322 VGW 0,122 0,169 1,46 1,83 3000 0,35 0,375 0,250 2650 7,20  1,65 
WC 11 C410 VGW 0,076 0,110 1,09 1,36 1000 0,20 0,500 0,375 2650 3,10  1,65 
WC 12 C410 VGW 0,076 0,110 1,09 1,36 3000 0,20 0,500 0,375 2650 3,10  1,65 
WC 13 C411 VGW 0,113 0,160 1,28 1,60 1000 0,19 0,500 0,375 2650 3,10  1,65 
WC 14 C412 VGW 0,147 0,205 1,49 1,86 1000 0,18 0,500 0,375 2650 3,10  1,65 
WC 15 C412 VGW 0,147 0,205 1,49 1,86 3000 0,18 0,500 0,375 2650 3,10  1,65 
WC 16 C413 VGW 0,172 0,237 1,62 2,03 1000 0,18 0,500 0,375 2650 3,10  1,65 
WC 17 C413 VGW 0,172 0,237 1,62 2,03 3000 0,18 0,500 0,375 2650 3,10  1,65 
WC 18 D413 VGW 0,163 0,225 1,60 2,00 1000 0,32 0,500 0,375 2650 3,10  1,65 
WC 19 D413 VGW 0,163 0,225 1,60 2,00 3000 0,32 0,500 0,375 2650 3,10  1,65 
WC 20 F423 VGW 0,141 0,197 1,57 1,96 1000 0,74 0,500 0,375 2650 3,10  1,65 

WC 22 T4A D2 LOM 0,210 0,284 1,64 2,05 953 0,13 0,500 0,468 2463 3,65 round 1,46 
WC 23 T4A D3 LOM 0,208 0,281 1,64 2,05 943 0,13 0,500 0,439 2512 6,12 round 1,51 
WC 24 T4A D4 LOM 0,203 0,275 1,68 2,10 934 0,13 0,500 0,438 2512 6,12 round 1,51 
WC 25 T4A D5 LOM 0,200 0,271 1,68 2,10 950 0,13 0,500 0,443 2512 6,12 round 1,51 
WC 28 T4B D2 LOM 0,211 0,284 1,68 2,10 1899 0,13 0,500 0,468 2463 3,65 round 1,46 
WC 29 T4B D3 LOM 0,208 0,281 1,68 2,10 1886 0,13 0,500 0,439 2512 6,12 round 1,51 
WC 30 T4B D4 LOM 0,205 0,277 1,68 2,10 1883 0,13 0,500 0,438 2512 6,12 round 1,51 
WC 31 T4B D5 LOM 0,199 0,270 1,68 2,10 1890 0,13 0,500 0,443 2512 6,12 round 1,51 
WC 34 T8 D2 LOM 0,236 0,331 1,64 2,05 976 0,10 0,900 0,859 2463 3,65 round 1,46 
WC 35 T8 D3 LOM 0,262 0,365 1,64 2,05 961 0,10 0,900 0,834 2463 3,65 round 1,46 
WC 36 T8 D4 LOM 0,228 0,320 1,60 2,00 976 0,10 0,900 0,839 2463 3,65 round 1,46 
WC 37 T8 D5 LOM 0,233 0,328 1,64 2,05 953 0,10 0,900 0,832 2512 6,12 round 1,51 
WC 38 T8 D6 LOM 0,234 0,329 1,64 2,05 976 0,10 0,900 0,771 2613 5,13 sharp 1,61 
WC 39 T8 D7 LOM 0,219 0,309 1,64 2,05 967 0,10 0,900 0,648 2712 8,33 sharp 1,71 
WC 40 T10 D2 LOM 0,183 0,251 2,05 2,56 1177 0,21 0,500 0,469 2463 3,65 round 1,46 
WC 41 T10 D3 LOM 0,207 0,280 2,05 2,56 1128 0,21 0,500 0,436 2463 3,65 round 1,46 
WC 42 T10 D4 LOM 0,172 0,237 2,05 2,56 1107 0,21 0,500 0,440 2463 3,65 round 1,46 
WC 43 T10 D5 LOM 0,175 0,241 2,11 2,64 1063 0,21 0,500 0,445 2463 3,65 round 1,46 
WC 44 T10 D6 LOM 0,175 0,240 1,93 2,41 1041 0,21 0,500 0,374 2613 5,13 sharp 1,61 
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Table A6.4 – Data set for pipeline covers. Tests with current and waves 
Structure parameters and damage parameters 

Structure parameters  Damage parameters 
m0 zc Bc B S zd Ae 

Test 
nr 

Original 
nr 

Data 
set 

- m m m - m cm2 

WC 1 B320 VGW 3 0,1250 0,125 0,875 2,9  1,50 
WC 2 B321 VGW 3 0,1250 0,125 0,875 3,0  1,56 
WC 3 B321 VGW 3 0,1250 0,125 0,875 6,3  3,27 
WC 6 D320 VGW 3 0,1250 0,125 0,875 14,6  7,57 
WC 7 D321 VGW 3 0,1250 0,125 0,875 2,0  1,04 
WC 8 D321 VGW 3 0,1250 0,125 0,875 3,1  1,61 
WC 9 D322 VGW 3 0,1250 0,125 0,875 1,0  0,52 

WC 10 D322 VGW 3 0,1250 0,125 0,875 1,3  0,67 
WC 11 C410 VGW 8 0,1250 0,125 2,125 18,0  1,73 
WC 12 C410 VGW 8 0,1250 0,125 2,125 25,0  2,40 
WC 13 C411 VGW 8 0,1250 0,125 2,125 14,1  1,36 
WC 14 C412 VGW 8 0,1250 0,125 2,125 10,4  1,00 
WC 15 C412 VGW 8 0,1250 0,125 2,125 18,9  1,82 
WC 16 C413 VGW 8 0,1250 0,125 2,125 28,9  2,78 
WC 17 C413 VGW 8 0,1250 0,125 2,125 44,2  4,25 
WC 18 D413 VGW 8 0,1250 0,125 2,125 22,0  2,11 
WC 19 D413 VGW 8 0,1250 0,125 2,125 47,3  4,55 
WC 20 F423 VGW 8 0,1250 0,125 2,125 769,0  73,90 

WC 22 T4A D2 LOM 3 0,0325 0,060 0,255 56,0 0,0261 7,44 
WC 23 T4A D3 LOM 5 0,0613 0,120 0,733 6,3 0,0613 2,36 
WC 24 T4A D4 LOM 3 0,0618 0,120 0,491 5,4 0,0615 2,04 
WC 25 T4A D5 LOM 1 0,0571 0,120 0,234 35,0 0,0491 13,12 
WC 28 T4B D2 LOM 3 0,0325 0,060 0,255 83,8 0,0256 11,14 
WC 29 T4B D3 LOM 5 0,0613 0,120 0,733 10,1 0,0613 3,79 
WC 30 T4B D4 LOM 3 0,0618 0,120 0,491 9,6 0,0615 3,61 
WC 31 T4B D5 LOM 1 0,0571 0,120 0,234 38,3 0,0491 14,37 
WC 34 T8 D2 LOM 3 0,0415 0,060 0,309 38,0 0,0369 5,04 
WC 35 T8 D3 LOM 5 0,0657 0,120 0,777 73,5 0,0628 9,76 
WC 36 T8 D4 LOM 3 0,0615 0,120 0,489 53,5 0,0589 7,11 
WC 37 T8 D5 LOM 1 0,0679 0,120 0,256 40,3 0,0584 15,11 
WC 38 T8 D6 LOM 3 0,1292 0,250 1,025 49,7 0,1287 13,08 
WC 39 T8 D7 LOM 3 0,2520 0,250 1,762 37,5 0,2520 26,04 
WC 40 T10 D2 LOM 3 0,0308 0,060 0,245 81,6 0,0291 10,84 
WC 41 T10 D3 LOM 5 0,0640 0,120 0,760 137,7 0,0611 18,29 
WC 42 T10 D4 LOM 3 0,0596 0,120 0,478 116,6 0,0574 15,49 
WC 43 T10 D5 LOM 2 0,0554 0,120 0,342 178,4 0,0466 23,70 
WC 44 T10 D6 LOM 3 0,1260 0,250 1,006 60,2 0,1248 15,82 
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Appendix 7 Statistical tools 

A7.1 The coefficient of determination r2 

The single most often used statistical notion in this thesis is the coefficient of 

determination r2. This is a measure of how well a given model, e.g a Paintal-type 

transport formulation q = a b fits a given dataset, on a normalised scale from 0 to 1. In 

general terms, r2 can be seen as the amount of variation in the dependent variable (in 

our example the transport rate q) that can be explained by the model under 

investigation (in our example the formula a b). In other words: if a model, say q = 5· 2, 

has a coefficient of determination r2 = 0.80, that means that calculating q as 5· 2 

explains 80% of the observed (measured) values of . 

There is no common guideline as to what value of r2 can be accepted as a good fit, but 

Bryman and Cramer (2005) give the following rules of thumb: 

Table A7.1 - Goodness-of-fit assessment using r2 

r r2 goodness-of-fit 

< 0.19 < 0.039 very low 

0.20 – 0.39 0.04 – 0.159 low 

0.40 – 0.69 0.16 – 0.489 modest 

0.70 – 0.89 0.49 – 0.809 high 

> 0.90 > 0.81 very high 

Other measures for the goodness-of-fit of a model exist, but r2 is by far the most 

common one in research. This is also the measure that a program like Microsoft Excel 

automatically calculates when a trend line is fitted through a scatter cloud of data points. 

A7.1.1 Transformation of variables and linear regression 

In this thesis we will try to fit non-linear models (like q = a b) to a dataset. The tool that 
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we use for this purpose is a simple linear regression, which means that we will have to 

transform our models to a linear form.  

A Paintal-type model q = a b is linearized by taking the (natural) logarithm of both 

sides of the equation: 

)ln()ln()ln( baq  
(6.1) 

The coefficients can now simply be found by fitting a linear equation Y = p0 + p1·X1 with Y 

= ln( q) and X1 = ln( ), for instance by a standard least-squares regression analysis. 

From (6.1) it follows that a = ep0 and b = p1 

For a Bijker-type model q = a·( c)
b·exp(c/ wc) linearization results in  

)/1()ln()ln()ln( wccq cba

 

(6.2) 

The coefficients in the model can be found by fitting a linear equation Y = p0 + p1•X1 + 

p2•X2 with Y = ln( q), X1 = ln( c) and X2 = 1/ wc, using a multivariate regression 

analysis. From (6.2) it follows that a = ep0 , b = p1 and c = p2 

In general, any model that is built of a product of variables can be fitted by a linear 

regression on the logarithms of the variables. Essentially, the variable r2 is the 

correlation coefficient (squared) between the measured Y-values and the Y-values 

predicted with the linear regression model. The correlation between the non-transformed 

variables (such as q and ) will be different! 

A7.2 Software package SPSS 

For a simple analysis on two variables (eg q = a b) we can use Microsoft Excel to 

calculate a, b and r2. This is essentially what happens when we plot q against 

 

and 

ask Excel to calculate a (power) trend line. When we want to fit more than two 

parameters (as is for instance the case when we want to fit a Bijker-type transport 

formula, or want to explore the influence of various variables on the stability of near-bed 

structures) we can no longer use Excel. Instead we will have to refer to more powerful 

statistical software. In this thesis we have used the standard software for this purpose: 

SPSS for Windows, version 12. 
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A package like SPSS produces more output than simply the regression coefficients (a, b 

and c in our examples) and r2. This output must be understood well. An example of a 

typical SPSS output (in the format that we will use in this research) is given in Figure 

A7.1. The most important parameters on this output will be discussed next. This 

discussion is largely based on Bryman and Cramer (2005) 

 

Variables entered/removed: This table shows which variables are currently in 

the model as dependent (X) variables (the independent variable Y is not shown). 

Note that SPSS always shows the results of the linear analysis on the 

transformed variables. The ‘method’ that is referred to is the procedure that 

SPSS uses to enter the variables into the equation. In this thesis we will use two 

different methods: ‘enter’ and ‘stepwise’. In the ‘enter’ method all variables are 

‘forced’ into the equation. We will use this method when we seek to fit a existing 

formula, like the Bijker transport equation, and we are certain that all variables 

should be in the equation. The ‘stepwise’ allows the software program to decide 

whether a variable must be entered into the equation or not. In general terms, a 

variable is only entered into the equation when it really adds any information to 

the resulting model. If the model performs just as good (or almost just as good) 

without it, a variable is indeed left out. We will use this method when we 

investigate the stability of near-bed structures and we do not know a priori 

whether a variable should be in the equation. It must be said that the ‘stepwise’ 

method is a simple but rather crude way of achieving this goal, and more 

sophisticated ways do exist. 

 

Figure A7.1 – Example of SPSS output 
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Model summary: this gives the value of r, r2 and an adjusted r2. The first two 

measures have been discussed above; the adjusted r2 must be used when we 

compare the goodness-of-fit of two models with a different number of variables 

(for instance a Paintal-type formula and a Bijker-type formula). In our results 

given in this chapter we will always use this adjusted r2 in order to avoid any 

complications. 

 

Coefficients: This table gives the calculated regression coefficients (B) of the 

various variables in the model. Again, it is stressed that these are the coefficients 

for the linear model (p0, p1 and p2 in our example in the previous paragraph); the 

coefficients for the ‘real’ non-linear model must be calculated by backwards 

transformation as described above. The standard errors in the next column are 

an indication of the accuracy of the results and can be used to calculate the 

confidence bounds; eg the 95% confidence bounds can be calculated as B 

 

1.96·(standard error). Next, the columns ‘t’ and ‘sig’ provide information on the 

relative contribution of the variable in question to the overall goodness-of-fit of 

the model. The SPSS documentation states that as a rule of thumb, a variable 

must have a t-value of well above 2 (or below -2) to have a serious influence; or 

equivalently the significance level of the variable (‘sig’) must be low enough (say 

< 0.005). This information is particularly of interest when the ‘enter’ method has 

been used to calculated the regression; when the ‘stepwise’ method has been 

used these values should automatically be fine (but of course it will do no harm to 

double-check that). Finally, the ‘tolerance’ statistic is an important indicator of the 

‘correctness’ of a model. It is a measure of the correlation between a dependent 

variable and the other dependent variables in the model. Ideally, an independent 

variable (Y) must be predicted by a model of dependent variables X that have no 

correlation among themselves. If this is not the case the (implicit) correlation 

between the X variables may eclipse the (desired) correlation between the X and 

Y variables, and as a result the model can be severely biased. Because of the 

way it is formally defined, the tolerance statistic should be high; a low value 

indicates that the X variables are closely correlated and that the resulting model 

is very likely to yield false results.  
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Appendix 8 Calculation results 
The next pages contain: 

 

The Excel output for the fit of a Paintal-type transport formula on the data of 

Bijman, see § 6.1.1 

 

The Excel output for the calculation of the various damage profiles based on the 

data of Lomónaco, Van Gent and Wallast and Saers, see § 6.2.1 

 

The Excel output for the fit of a transport equation on the data of Lomónaco, Van 

Gent and Wallast and Saers using a transport-based design method, see § 6.2.2 

 

The categorisation of the damaged structures in the dataset of Lomónaco, see  

§ 6.3.1 

  

A summary of the SPSS output for the fit of the dimensionless erosion area S on 

the data by Lomónaco, Van Gent and Wallast and Saers, tables A8.1 – A8.3, see 

§ 6.3.2  

 

The Excel output for the calculation of the critical values of the stability 

parameters based on the data of Bijman, see § 6.4.1 

See appendix 7 for some remarks on the way in which the full SPSS output must be 

interpreted. The full SPSS output on which the tables A7.1 – A7.3 are based, as well as 

the SPSS output for the fit of a Bijker-type formula on the data for flat bed protections 

(§ 6.1.2) is included on a CD-rom (.SPO files).  
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Fit of transport formula on data of Bijman (2000)
Sheet 1 Calculation of stability parameters

C tau c u_0 fw tau w Theta Morison

m1/2 /s Pa m/s - Pa max av x av av 1/2 max av x av av 1/2 max av x av av 1/2 max av x av av 1/2 - -

BM 1 45,0 0,693 0,201 0,161 3,263 0,084 0,024 0,028 0,051 0,046 0,013 0,022 0,034 0,034 0,011 0,013 0,023 0,048 0,008 0,016 0,016 0,49 0,76
BM 2 45,0 0,693 0,307 0,116 5,477 0,121 0,030 0,041 0,071 0,072 0,015 0,037 0,051 0,049 0,013 0,019 0,031 0,074 0,008 0,016 0,016 1,14 1,35
BM 3 45,5 0,846 0,266 0,130 4,574 0,113 0,031 0,037 0,067 0,064 0,017 0,032 0,047 0,047 0,014 0,018 0,031 0,065 0,010 0,019 0,019 0,85 1,10
BM 4 45,8 0,761 0,271 0,128 4,696 0,111 0,030 0,037 0,066 0,064 0,016 0,032 0,046 0,045 0,013 0,017 0,030 0,066 0,009 0,017 0,017 0,89 1,14
BM 5 45,5 0,844 0,246 0,138 4,162 0,106 0,029 0,035 0,063 0,060 0,017 0,029 0,044 0,014 0,017 0,029 0,060 0,010 0,019 0,019 0,73 0,99
BM 6 45,5 0,844 0,208 0,157 3,391 0,092 0,027 0,030 0,056 0,050 0,016 0,024 0,037 0,013 0,015 0,026 0,051 0,010 0,019 0,019 0,52 0,79
BM 7 45,6 0,804 0,194 0,166 3,132 0,086 0,025 0,028 0,052 0,046 0,015 0,022 0,035 0,035 0,012 0,013 0,025 0,048 0,010 0,018 0,018 0,46 0,72
BM 8 44,7 1,593 0,113 0,264 1,679 0,079 0,029 0,029 0,054 0,042 0,024 0,024 0,035 0,039 0,020 0,020 0,031 0,039 0,019 0,029 0,029 0,15 0,36
BM 9 44,8 1,591 0,134 0,227 2,035 0,087 0,031 0,031 0,059 0,047 0,025 0,025 0,039 0,042 0,020 0,020 0,034 0,044 0,019 0,029 0,029 0,22 0,45

BM 10 44,8 1,588 0,154 0,201 2,386 0,095 0,033 0,033 0,063 0,052 0,026 0,026 0,042 0,046 0,020 0,020 0,036 0,048 0,019 0,029 0,029 0,29 0,54
BM 11 44,8 1,592 0,173 0,182 2,736 0,103 0,035 0,035 0,067 0,056 0,026 0,027 0,045 0,049 0,021 0,021 0,038 0,052 0,019 0,029 0,029 0,36 0,62
BM 12 44,7 1,651 0,195 0,165 3,142 0,113 0,038 0,038 0,073 0,063 0,028 0,030 0,050 0,054 0,022 0,022 0,041 0,058 0,020 0,030 0,030 0,46 0,73
BM 13 44,8 1,589 0,216 0,152 3,557 0,119 0,039 0,040 0,076 0,067 0,028 0,031 0,053 0,022 0,023 0,042 0,062 0,019 0,029 0,029 0,56 0,83
BM 14 44,7 1,654 0,246 0,137 4,169 0,134 0,043 0,045 0,085 0,077 0,030 0,036 0,059 0,023 0,025 0,045 0,070 0,020 0,030 0,030 0,73 1,00
BM 15 44,7 1,653 0,270 0,128 4,671 0,143 0,045 0,048 0,090 0,083 0,031 0,039 0,064 0,066 0,024 0,026 0,047 0,076 0,020 0,030 0,030 0,88 1,13
BM 16 44,8 1,585 0,268 0,129 4,628 0,140 0,044 0,047 0,088 0,081 0,030 0,038 0,062 0,064 0,023 0,025 0,046 0,075 0,019 0,029 0,029 0,87 1,12
BM 17 44,7 1,596 0,284 0,123 4,965 0,147 0,045 0,049 0,092 0,086 0,030 0,040 0,065 0,067 0,024 0,026 0,048 0,079 0,019 0,029 0,029 0,97 1,21
BM 18 44,8 1,589 0,290 0,121 5,103 0,149 0,046 0,049 0,093 0,087 0,030 0,041 0,066 0,068 0,024 0,026 0,048 0,081 0,019 0,029 0,029 1,02 1,25
BM 19 44,8 1,591 0,306 0,117 5,456 0,156 0,047 0,052 0,096 0,092 0,031 0,043 0,069 0,071 0,024 0,027 0,050 0,085 0,019 0,029 0,029 1,13 1,35
BM 20 45,0 1,966 0,090 0,300 1,206 0,078 0,031 0,031 0,056 0,043 0,028 0,028 0,037 0,040 0,025 0,025 0,035 0,038 0,024 0,034 0,034 0,10 0,28
BM 21 44,9 2,036 0,112 0,266 1,667 0,089 0,034 0,034 0,062 0,049 0,030 0,030 0,042 0,045 0,026 0,026 0,038 0,045 0,025 0,035 0,035 0,15 0,36
BM 22 45,0 2,030 0,129 0,234 1,950 0,096 0,036 0,036 0,066 0,053 0,031 0,031 0,045 0,049 0,026 0,026 0,040 0,048 0,024 0,035 0,035 0,20 0,43
BM 23 44,9 2,032 0,149 0,206 2,301 0,104 0,038 0,038 0,071 0,058 0,032 0,032 0,048 0,053 0,026 0,026 0,042 0,052 0,025 0,035 0,035 0,27 0,52
BM 24 44,9 2,039 0,172 0,184 2,704 0,114 0,040 0,041 0,076 0,064 0,033 0,033 0,052 0,057 0,026 0,026 0,045 0,057 0,025 0,035 0,035 0,36 0,62
BM 25 45,0 2,029 0,195 0,165 3,140 0,123 0,043 0,043 0,081 0,070 0,034 0,034 0,056 0,061 0,026 0,026 0,047 0,062 0,024 0,035 0,035 0,46 0,73
BM 26 44,8 2,040 0,210 0,156 3,444 0,130 0,044 0,045 0,085 0,074 0,035 0,035 0,059 0,027 0,027 0,049 0,066 0,025 0,035 0,035 0,53 0,80
BM 27 44,9 2,039 0,240 0,140 4,040 0,143 0,047 0,049 0,092 0,082 0,036 0,039 0,065 0,028 0,029 0,052 0,073 0,025 0,035 0,035 0,70 0,96
BM 28 44,9 2,035 0,258 0,133 4,410 0,150 0,049 0,051 0,096 0,087 0,036 0,041 0,068 0,073 0,028 0,029 0,054 0,078 0,025 0,035 0,035 0,80 1,06
BM 29 44,9 2,035 0,269 0,128 4,647 0,155 0,050 0,052 0,099 0,090 0,037 0,042 0,070 0,074 0,028 0,030 0,055 0,081 0,025 0,035 0,035 0,87 1,12
BM 30 44,8 1,591 0,097 0,300 1,417 0,076 0,028 0,028 0,052 0,040 0,024 0,024 0,033 0,036 0,020 0,020 0,030 0,036 0,019 0,029 0,029 0,11 0,33
BM 31 44,8 1,591 0,121 0,271 1,971 0,086 0,031 0,031 0,058 0,045 0,024 0,024 0,037 0,041 0,020 0,020 0,033 0,043 0,019 0,029 0,029 0,18 0,43
BM 32 44,8 1,591 0,139 0,239 2,302 0,093 0,033 0,033 0,062 0,049 0,025 0,025 0,040 0,044 0,020 0,020 0,035 0,047 0,019 0,029 0,029 0,23 0,51
BM 33 44,7 1,592 0,156 0,216 2,624 0,100 0,034 0,035 0,066 0,053 0,026 0,026 0,043 0,047 0,020 0,021 0,037 0,051 0,019 0,029 0,029 0,29 0,58
BM 34 44,8 1,590 0,183 0,189 3,154 0,111 0,037 0,038 0,072 0,060 0,027 0,028 0,048 0,051 0,021 0,022 0,039 0,057 0,019 0,029 0,029 0,40 0,72
BM 35 44,8 1,590 0,203 0,173 3,566 0,120 0,039 0,040 0,077 0,066 0,027 0,031 0,051 0,022 0,022 0,041 0,062 0,019 0,029 0,029 0,50 0,82
BM 36 44,8 1,591 0,214 0,166 3,785 0,124 0,040 0,042 0,079 0,068 0,028 0,032 0,053 0,022 0,023 0,042 0,065 0,019 0,029 0,029 0,55 0,88
BM 37 44,8 1,585 0,232 0,155 4,180 0,132 0,042 0,044 0,083 0,073 0,028 0,034 0,057 0,022 0,023 0,043 0,070 0,019 0,029 0,029 0,65 0,98
BM 38 44,8 1,589 0,246 0,148 4,477 0,138 0,043 0,046 0,086 0,077 0,029 0,036 0,059 0,062 0,023 0,024 0,044 0,073 0,019 0,029 0,029 0,73 1,05

Test nr
Psi - No WCIPsi - Bijker Psi - Grant and Madsen Psi - Fredsoe



Fit of transport formula on data of Bijman (2000)
Sheet 2 Fit of Paintal-type transport formula

max avx av av12 max avx av av12 max avx av av12 max avx av av12
BM 1
BM 2
BM 3 -17,52 -2,19 -3,50 -3,30 -2,71 -2,75 -4,10 -3,45 -3,07 -3,08 -4,30 -4,06 -3,50 -2,73 -4,63 -4,01 -4,01 -0,16 0,10
BM 4 -18,57 -2,21 -3,54 -3,30 -2,73 -2,76 -4,19 -3,45 -3,09 -3,11 -4,38 -4,08 -3,54 -2,73 -4,73 -4,07 -4,07 -0,12 0,13
BM 5 -16,95 -2,26 -3,55 -3,37 -2,77 -2,83 -4,13 -3,55 -3,15 -4,34 -4,13 -3,56 -2,81 -4,63 -4,01 -4,01 -0,31 -0,01
BM 6 -18,57 -2,40 -3,64 -3,51 -2,90 -3,00 -4,18 -3,74 -3,30 -4,39 -4,26 -3,66 -2,98 -4,63 -4,01 -4,01 -0,65 -0,23
BM 7 -18,57 -2,47 -3,70 -3,58 -2,96 -3,08 -4,25 -3,82 -3,38 -3,37 -4,45 -4,33 -3,73 -3,06 -4,68 -4,04 -4,04 -0,79 -0,32
BM 8
BM 9 -18,14 -2,44 -3,47 -3,47 -2,84 -3,06 -3,69 -3,69 -3,25 -3,16 -3,90 -3,90 -3,39 -3,13 -3,95 -3,55 -3,55 -1,53 -0,80

BM 10 -16,21 -2,35 -3,41 -3,40 -2,77 -2,96 -3,66 -3,66 -3,17 -3,09 -3,90 -3,90 -3,33 -3,04 -3,96 -3,55 -3,55 -1,25 -0,62
BM 11 -16,21 -2,28 -3,35 -3,34 -2,70 -2,87 -3,63 -3,61 -3,10 -3,02 -3,87 -3,86 -3,28 -2,95 -3,95 -3,55 -3,55 -1,01 -0,47
BM 12 -15,11 -2,18 -3,28 -3,26 -2,62 -2,77 -3,57 -3,52 -3,00 -2,92 -3,81 -3,80 -3,20 -2,85 -3,92 -3,52 -3,52 -0,78 -0,32
BM 13 -16,21 -2,12 -3,25 -3,21 -2,57 -2,70 -3,58 -3,46 -2,95 -3,82 -3,78 -3,18 -2,78 -3,95 -3,55 -3,55 -0,57 -0,18
BM 14 -15,76 -2,01 -3,15 -3,11 -2,47 -2,57 -3,50 -3,33 -2,83 -3,76 -3,71 -3,10 -2,66 -3,91 -3,52 -3,52 -0,31 0,00
BM 15 -15,16 -1,94 -3,11 -3,04 -2,41 -2,49 -3,48 -3,25 -2,76 -2,72 -3,73 -3,66 -3,05 -2,57 -3,91 -3,52 -3,52 -0,13 0,12
BM 16 -15,26 -1,96 -3,13 -3,07 -2,43 -2,51 -3,52 -3,27 -2,78 -2,74 -3,76 -3,69 -3,08 -2,59 -3,96 -3,55 -3,55 -0,14 0,11
BM 17 -15,31 -1,92 -3,10 -3,02 -2,39 -2,46 -3,49 -3,21 -2,73 -2,70 -3,74 -3,65 -3,04 -2,54 -3,95 -3,54 -3,54 -0,03 0,19
BM 18 -14,97 -1,90 -3,09 -3,01 -2,38 -2,44 -3,49 -3,19 -2,72 -2,68 -3,73 -3,64 -3,03 -2,52 -3,95 -3,55 -3,55 0,01 0,22
BM 19 -14,40 -1,86 -3,06 -2,96 -2,34 -2,39 -3,47 -3,14 -2,67 -2,64 -3,71 -3,60 -3,00 -2,46 -3,95 -3,55 -3,55 0,12 0,30
BM 20 -16,21 -2,53 -3,43 -3,43 -2,86 -3,12 -3,53 -3,53 -3,26 -3,19 -3,66 -3,66 -3,33 -3,24 -3,70 -3,36 -3,36 -2,33 -1,28
BM 21 -15,67 -2,40 -3,34 -3,34 -2,75 -2,99 -3,46 -3,46 -3,14 -3,07 -3,61 -3,61 -3,23 -3,09 -3,67 -3,33 -3,33 -1,89 -1,02
BM 22 -15,07 -2,32 -3,30 -3,30 -2,69 -2,91 -3,44 -3,44 -3,08 -3,00 -3,61 -3,61 -3,18 -3,02 -3,67 -3,34 -3,34 -1,61 -0,84
BM 23 -14,90 -2,24 -3,24 -3,24 -2,62 -2,82 -3,41 -3,41 -3,01 -2,92 -3,62 -3,62 -3,14 -2,93 -3,67 -3,33 -3,33 -1,31 -0,66
BM 24 -14,82 -2,15 -3,18 -3,18 -2,55 -2,73 -3,38 -3,38 -2,93 -2,84 -3,61 -3,61 -3,07 -2,84 -3,66 -3,33 -3,33 -1,03 -0,48
BM 25 -15,11 -2,08 -3,13 -3,12 -2,49 -2,64 -3,35 -3,35 -2,86 -2,77 -3,60 -3,60 -3,02 -2,76 -3,67 -3,34 -3,34 -0,78 -0,32
BM 26 -14,69 -2,02 -3,09 -3,08 -2,44 -2,58 -3,33 -3,31 -2,80 -3,58 -3,57 -2,98 -2,70 -3,66 -3,33 -3,33 -0,63 -0,22
BM 27 -14,98 -1,93 -3,02 -3,01 -2,36 -2,48 -3,30 -3,24 -2,72 -3,55 -3,53 -2,92 -2,60 -3,66 -3,33 -3,33 -0,36 -0,04
BM 28 -14,86 -1,88 -2,99 -2,96 -2,32 -2,42 -3,28 -3,18 -2,67 -2,59 -3,53 -3,50 -2,89 -2,54 -3,67 -3,33 -3,33 -0,22 0,06
BM 29 -14,40 -1,85 -2,97 -2,94 -2,29 -2,39 -3,27 -3,15 -2,63 -2,58 -3,51 -3,48 -2,87 -2,51 -3,67 -3,33 -3,33 -0,14 0,12
BM 30 -16,67 -2,58 -3,56 -3,56 -2,95 -3,23 -3,75 -3,75 -3,40 -3,32 -3,90 -3,90 -3,49 -3,32 -3,95 -3,55 -3,55 -2,17 -1,11
BM 31 -16,45 -2,46 -3,48 -3,48 -2,85 -3,11 -3,71 -3,71 -3,29 -3,20 -3,91 -3,91 -3,42 -3,15 -3,95 -3,55 -3,55 -1,74 -0,85
BM 32 -16,45 -2,37 -3,42 -3,42 -2,78 -3,02 -3,68 -3,68 -3,22 -3,12 -3,91 -3,91 -3,36 -3,06 -3,95 -3,55 -3,55 -1,46 -0,68
BM 33 -15,98 -2,30 -3,37 -3,36 -2,72 -2,93 -3,66 -3,65 -3,15 -3,07 -3,89 -3,89 -3,31 -2,98 -3,95 -3,55 -3,55 -1,23 -0,54
BM 34 -15,50 -2,20 -3,30 -3,27 -2,63 -2,81 -3,62 -3,56 -3,04 -2,98 -3,86 -3,84 -3,24 -2,86 -3,95 -3,55 -3,55 -0,91 -0,33
BM 35 -16,45 -2,12 -3,24 -3,21 -2,57 -2,73 -3,60 -3,49 -2,97 -3,83 -3,80 -3,20 -2,78 -3,95 -3,55 -3,55 -0,70 -0,20
BM 36 -15,98 -2,09 -3,22 -3,18 -2,54 -2,69 -3,58 -3,45 -2,94 -3,83 -3,79 -3,18 -2,74 -3,95 -3,55 -3,55 -0,60 -0,13
BM 37 -15,98 -2,03 -3,18 -3,13 -2,49 -2,61 -3,56 -3,38 -2,87 -3,81 -3,75 -3,14 -2,67 -3,96 -3,55 -3,55 -0,43 -0,02
BM 38 -16,56 -1,98 -3,15 -3,08 -2,45 -2,57 -3,55 -3,32 -2,83 -2,78 -3,79 -3,72 -3,11 -2,61 -3,95 -3,55 -3,55 -0,32 0,05

a 1,94E-04 2,57 0,39 0,015 3,97E-04 0,19 0,47 0,012 0,017 0,66 23,52 0,62 9,95E-05 0,020 0,63 0,630 1,42E-07 1,29E-07
b 3,43 5,16 4,65 4,51 2,96 3,97 4,41 3,86 4,01 4,06 5,06 4,82 2,40 3,04 4,37 4,37 0,29 0,44

rsq 0,37 0,73 0,53 0,55 0,36 0,80 0,50 0,52 0,57 0,77 0,80 0,79 0,22 0,65 0,65 0,65 0,03 0,02

ln (Morison)ln (Phi_q)Test nr ln (Theta)
ln(Psi Bijker) ln(Psi Grant and Madsen) ln (Psi Fredsoe) ln(Psi No WCI)



Assessment of damage profiles; data of Lomonaco (1994),  Van Gent and Wallast (2001) and Saers (2005)
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delta_z 
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delta_z 
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- m - m m m m2 - m2 m - m m - m m - m - - m m - -
W 1 0,0072 3 0,125 0,875 0,125 0,063 4,40 2,28E-04 0,125 0,1820 0,00 0,0018 0,123 0,24 0,124 3,04 0,09 0,0007 0,124 0,10 0,17
W 2 0,0072 3 0,125 0,875 0,125 0,063 6,10 3,16E-04 0,125 0,1820 0,00 0,0024 0,123 0,33 0,124 3,04 0,09 0,0010 0,124 0,14 0,24
W 3 0,0072 3 0,125 0,875 0,125 0,063 4,60 2,38E-04 0,125 0,1820 0,00 0,0018 0,123 0,25 0,124 3,04 0,09 0,0008 0,124 0,11 0,18
W 4 0,0072 3 0,125 0,875 0,125 0,063 7,30 3,78E-04 0,125 0,1820 0,00 0,0028 0,122 0,39 0,124 3,07 0,17 0,0012 0,124 0,17 0,28
W 5 0,0072 3 0,125 0,875 0,125 0,063 6,30 3,27E-04 0,125 0,1820 0,00 0,0025 0,123 0,34 0,124 3,04 0,09 0,0010 0,124 0,14 0,24
W 6 0,0072 3 0,125 0,875 0,125 0,063 7,40 3,84E-04 0,125 0,1820 0,00 0,0029 0,122 0,40 0,124 3,07 0,17 0,0012 0,124 0,17 0,28
W 7 0,0072 3 0,125 0,875 0,125 0,063 6,30 3,27E-04 0,125 0,1820 0,00 0,0025 0,123 0,34 0,124 3,04 0,09 0,0010 0,124 0,14 0,24
W 8 0,0072 3 0,125 0,875 0,125 0,063 13,00 6,74E-04 0,125 0,1820 0,00 0,0048 0,120 0,67 0,123 3,11 0,26 0,0021 0,123 0,30 0,48
W 9 0,0072 3 0,125 0,875 0,125 0,063 8,30 4,30E-04 0,125 0,1820 0,00 0,0032 0,122 0,44 0,124 3,07 0,17 0,0014 0,124 0,19 0,32

W 10 0,0072 3 0,125 0,875 0,125 0,063 11,80 6,12E-04 0,125 0,1820 0,00 0,0044 0,121 0,61 0,123 3,11 0,26 0,0019 0,123 0,27 0,44
W 11 0,0072 3 0,125 0,875 0,125 0,063 5,90 3,06E-04 0,125 0,1820 0,00 0,0023 0,123 0,32 0,124 3,04 0,09 0,0010 0,124 0,14 0,23
W 12 0,0072 3 0,125 0,875 0,125 0,063 10,00 5,18E-04 0,125 0,1820 0,00 0,0038 0,121 0,53 0,124 3,07 0,17 0,0016 0,123 0,23 0,38
W 13 0,0072 3 0,125 0,875 0,125 0,063 4,30 2,23E-04 0,125 0,1820 0,00 0,0017 0,123 0,24 0,124 3,04 0,09 0,0007 0,124 0,10 0,17
W 14 0,0072 3 0,125 0,875 0,125 0,063 2,10 1,09E-04 0,125 0,1820 0,00 0,0009 0,124 0,12 0,125 3,00 0,00 0,0003 0,125 0,05 0,08
W 15 0,0072 3 0,125 0,875 0,125 0,063 5,80 3,01E-04 0,125 0,1820 0,00 0,0023 0,123 0,32 0,124 3,04 0,09 0,0010 0,124 0,13 0,22
W 18 0,0031 8 0,125 2,125 0,125 0,141 22,30 2,14E-04 0,12 0,4675 1,61 0,0016 0,123 0,50 0,125 8,00 0,00 0,0003 0,125 0,11 0,31
W 19 0,0031 8 0,125 2,125 0,125 0,141 37,30 3,58E-04 0,12 0,4675 1,61 0,0025 0,123 0,80 0,125 8,00 0,00 0,0006 0,124 0,18 0,49
W 20 0,0031 8 0,125 2,125 0,125 0,141 18,50 1,78E-04 0,12 0,4675 1,61 0,0013 0,124 0,42 0,125 8,00 0,00 0,0003 0,125 0,09 0,26
W 21 0,0031 8 0,125 2,125 0,125 0,141 43,00 4,13E-04 0,12 0,4675 1,61 0,0028 0,122 0,90 0,124 8,09 0,20 0,0007 0,124 0,21 0,56
W 22 0,0031 8 0,125 2,125 0,125 0,141 103,60 9,96E-04 0,12 0,4675 1,61 0,0058 0,119 1,87 0,124 8,17 0,40 0,0016 0,123 0,51 1,19
W 23 0,0031 8 0,125 2,125 0,125 0,141 206,40 1,98E-03 0,12 0,4675 1,61 0,0098 0,115 3,15 0,122 8,44 1,01 0,0031 0,122 1,00 2,08
W 26 0,0036 3 0,060 0,239 0,030 0,004 60,44 8,03E-04 0,0254 1,21 0,023 0,0764 1,80 0,0092 0,021 2,52 0,022 6,43 2,13 0,0070 0,023 1,91 2,22
W 27 0,0061 5 0,120 0,682 0,056 0,023 4,53 1,70E-04 0,0562 0,00 0,056 0,1365 0,00 0,0013 0,055 0,22 0,056 5,12 0,09 0,0006 0,056 0,11 0,16
W 28 0,0061 3 0,120 0,455 0,056 0,016 20,01 7,50E-04 0,0554 0,08 0,056 0,1004 0,00 0,0055 0,050 0,90 0,052 3,64 0,64 0,0036 0,052 0,59 0,74
W 29 0,0061 1 0,120 0,228 0,054 0,009 41,45 1,55E-03 0,0481 0,96 0,051 0,0738 0,53 0,0118 0,042 1,93 0,043 2,30 1,81 0,0102 0,044 1,67 1,80
W 30 0,0083 3 0,250 1,002 0,125 0,078 4,05 2,81E-04 0,1248 0,06 0,125 0,1829 0,00 0,0011 0,124 0,13 0,125 3,04 0,08 0,0006 0,125 0,08 0,10
W 32 0,0036 3 0,060 0,252 0,032 0,005 31,99 4,25E-04 0,0274 1,26 0,030 0,0655 0,44 0,0055 0,026 1,52 0,028 4,29 1,14 0,0037 0,028 1,03 1,27
W 33 0,0061 5 0,120 0,709 0,059 0,024 8,93 3,35E-04 0,0579 0,16 0,059 0,1429 0,00 0,0025 0,056 0,41 0,058 5,25 0,19 0,0012 0,058 0,20 0,31
W 34 0,0061 3 0,120 0,466 0,058 0,017 8,26 3,10E-04 0,0562 0,23 0,058 0,0838 0,00 0,0024 0,055 0,40 0,056 3,21 0,24 0,0015 0,056 0,24 0,32
W 35 0,0061 1 0,120 0,225 0,052 0,009 28,77 1,08E-03 0,0459 1,05 0,052 0,0635 0,00 0,0084 0,044 1,37 0,044 1,86 1,28 0,0072 0,045 1,18 1,27
W 36 0,0083 3 0,250 1,009 0,127 0,080 10,18 7,06E-04 0,1265 0,00 0,127 0,1843 0,00 0,0027 0,124 0,33 0,125 3,08 0,15 0,0016 0,125 0,19 0,26
W 38 0,0036 3 0,060 0,239 0,030 0,004 39,13 5,20E-04 0,0252 1,26 0,027 0,0670 0,90 0,0065 0,023 1,79 0,025 4,85 1,39 0,0047 0,025 1,28 1,53
W 40 0,0061 3 0,120 0,467 0,058 0,017 10,63 3,99E-04 0,0571 0,13 0,058 0,0841 0,00 0,0031 0,055 0,50 0,056 3,30 0,33 0,0019 0,056 0,31 0,41
W 41 0,0061 1 0,120 0,236 0,058 0,010 48,28 1,81E-03 0,0466 1,85 0,053 0,0780 0,85 0,0136 0,044 2,21 0,045 2,39 2,08 0,0117 0,046 1,91 2,06
W 44 0,0036 3 0,060 0,240 0,030 0,005 12,28 1,63E-04 0,0286 0,38 0,030 0,0495 0,00 0,0024 0,028 0,67 0,028 3,48 0,45 0,0015 0,028 0,42 0,54
W 45 0,0036 5 0,120 0,757 0,064 0,028 24,52 3,26E-04 0,0635 0,05 0,064 0,1548 0,00 0,0025 0,061 0,68 0,063 5,18 0,26 0,0012 0,063 0,32 0,50
W 46 0,0036 3 0,120 0,495 0,063 0,019 46,17 6,13E-04 0,0598 0,74 0,063 0,0997 0,00 0,0046 0,058 1,26 0,059 3,43 0,86 0,0028 0,060 0,77 1,02
W 47 0,0061 1 0,120 0,240 0,060 0,011 15,00 5,62E-04 0,0586 0,20 0,060 0,0454 0,00 0,0045 0,055 0,74 0,056 1,29 0,63 0,0037 0,056 0,61 0,67
W 48 0,0051 3 0,250 1,018 0,128 0,081 21,35 5,62E-04 0,1272 0,16 0,128 0,1861 0,00 0,0022 0,126 0,43 0,127 3,08 0,25 0,0013 0,127 0,25 0,34
W 49 0,0083 3 0,250 1,811 0,260 0,268 14,52 1,01E-03 0,2584 0,20 0,260 0,3791 0,00 0,0039 0,256 0,46 0,259 3,04 0,16 0,0016 0,259 0,19 0,33
W 50 0,0036 3 0,060 0,240 0,030 0,005 16,79 2,23E-04 0,0283 0,47 0,030 0,0543 0,00 0,0032 0,027 0,88 0,028 3,17 0,54 0,0021 0,028 0,57 0,72
W 51 0,0036 5 0,120 0,757 0,064 0,028 37,64 5,00E-04 0,0632 0,14 0,064 0,1548 0,00 0,0036 0,060 0,99 0,063 5,12 0,23 0,0018 0,062 0,48 0,74
W 52 0,0036 3 0,120 0,495 0,063 0,019 62,08 8,25E-04 0,0591 0,93 0,063 0,1078 0,00 0,0060 0,057 1,64 0,059 3,12 0,99 0,0038 0,059 1,03 1,34
W 53 0,0061 1 0,120 0,240 0,060 0,011 21,23 7,96E-04 0,0571 0,44 0,060 0,0531 0,00 0,0063 0,053 1,03 0,057 1,11 0,44 0,0052 0,055 0,85 0,94
W 54 0,0051 3 0,250 1,018 0,128 0,081 33,45 8,80E-04 0,1272 0,16 0,128 0,1861 0,00 0,0034 0,125 0,66 0,127 3,04 0,28 0,0020 0,126 0,39 0,52
W 55 0,0083 3 0,250 1,811 0,260 0,268 24,90 1,73E-03 0,2579 0,26 0,260 0,3791 0,00 0,0064 0,254 0,77 0,258 3,00 0,20 0,0027 0,257 0,32 0,55
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Assessment of damage profiles; data of Lomonaco (1994),  Van Gent and Wallast (2001) and Saers (2005)
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W 56 0,0036 3 0,060 0,286 0,038 0,006 75,04 9,97E-04 0,0286 2,47 0,030 0,0862 2,06 0,0108 0,027 2,96 0,029 5,68 2,37 0,0078 0,030 2,14 2,55
W 57 0,0036 5 0,120 0,760 0,064 0,028 77,56 1,03E-03 0,0608 0,88 0,064 0,1684 0,00 0,0067 0,057 1,84 0,060 5,79 1,05 0,0036 0,060 0,98 1,41
W 58 0,0036 3 0,120 0,498 0,063 0,019 140,38 1,87E-03 0,0542 2,41 0,059 0,1326 1,21 0,0120 0,051 3,28 0,054 4,48 2,51 0,0082 0,055 2,26 2,77
W 59 0,0061 1 0,120 0,259 0,070 0,013 69,32 2,60E-03 0,0491 3,35 0,059 0,0890 1,70 0,0187 0,051 3,06 0,052 2,54 2,84 0,0160 0,054 2,61 2,83
W 60 0,0051 3 0,250 1,016 0,128 0,081 46,02 1,21E-03 0,1258 0,37 0,128 0,1857 0,00 0,0046 0,123 0,89 0,125 3,16 0,50 0,0027 0,125 0,53 0,71
W 61 0,0083 3 0,250 1,796 0,258 0,263 76,95 5,34E-03 0,2518 0,70 0,258 0,3751 0,00 0,0176 0,240 2,12 0,249 3,26 1,08 0,0082 0,249 0,99 1,55
W 62 0,0036 3 0,060 0,286 0,038 0,006 97,71 1,30E-03 0,0274 2,80 0,027 0,0944 2,79 0,0131 0,025 3,59 0,025 4,08 3,33 0,0099 0,028 2,71 3,15
W 63 0,0036 5 0,120 0,760 0,064 0,028 128,66 1,71E-03 0,0576 1,76 0,061 0,1848 0,88 0,0100 0,054 2,76 0,058 5,51 1,55 0,0058 0,058 1,59 2,17
W 64 0,0036 3 0,120 0,498 0,063 0,019 215,94 2,87E-03 0,0501 3,54 0,052 0,1485 2,94 0,0168 0,046 4,62 0,049 3,92 3,83 0,0123 0,051 3,38 4,00
W 65 0,0061 1 0,120 0,259 0,070 0,013 76,14 2,86E-03 0,0476 3,59 0,057 0,0922 2,05 0,0203 0,049 3,32 0,047 1,17 3,63 0,0175 0,052 2,85 3,09
W 66 0,0051 3 0,250 1,016 0,128 0,081 73,74 1,94E-03 0,1253 0,47 0,128 0,1857 0,00 0,0071 0,121 1,39 0,125 3,08 0,62 0,0043 0,123 0,84 1,12
W 67 0,0083 3 0,250 1,796 0,258 0,263 119,33 8,28E-03 0,2449 1,52 0,258 0,3751 0,00 0,0254 0,232 3,05 0,247 3,14 1,30 0,0126 0,245 1,52 2,28
W 68 0,0036 3 0,060 0,292 0,039 0,007 47,96 6,37E-04 0,0332 1,48 0,035 0,0771 0,95 0,0077 0,031 2,11 0,033 4,41 1,54 0,0051 0,034 1,39 1,75
W 69 0,0036 5 0,120 0,748 0,063 0,027 80,00 1,06E-03 0,0601 0,74 0,063 0,1679 0,00 0,0069 0,056 1,89 0,059 5,86 1,12 0,0037 0,059 1,02 1,45
W 70 0,0036 3 0,120 0,499 0,063 0,020 85,88 1,14E-03 0,0584 1,32 0,063 0,1197 0,00 0,0079 0,055 2,18 0,058 3,83 1,56 0,0051 0,058 1,41 1,79
W 71 0,0061 1 0,120 0,255 0,067 0,013 56,96 2,14E-03 0,0545 2,11 0,061 0,0831 1,10 0,0157 0,052 2,57 0,053 2,24 2,37 0,0133 0,054 2,18 2,37
W 72 0,0051 3 0,250 1,012 0,127 0,080 50,64 1,33E-03 0,1270 0,00 0,127 0,1849 0,00 0,0050 0,122 0,98 0,124 3,21 0,62 0,0030 0,124 0,58 0,78
W 73 0,0083 3 0,250 1,775 0,254 0,257 39,15 2,72E-03 0,2527 0,18 0,254 0,3711 0,00 0,0097 0,244 1,17 0,250 3,11 0,46 0,0043 0,250 0,51 0,84
W 74 0,0036 3 0,060 0,292 0,039 0,007 54,52 7,24E-04 0,0332 1,48 0,034 0,0797 1,27 0,0085 0,030 2,33 0,032 3,20 1,71 0,0057 0,033 1,57 1,95
W 75 0,0036 5 0,120 0,748 0,063 0,027 100,10 1,33E-03 0,0598 0,82 0,062 0,1749 0,17 0,0082 0,055 2,26 0,059 5,18 0,99 0,0046 0,058 1,26 1,76
W 76 0,0036 3 0,120 0,499 0,063 0,020 104,96 1,39E-03 0,0581 1,40 0,062 0,1260 0,35 0,0094 0,054 2,58 0,057 3,17 1,64 0,0062 0,057 1,71 2,14
W 77 0,0061 1 0,120 0,255 0,067 0,013 69,39 2,60E-03 0,0508 2,71 0,057 0,0890 1,76 0,0188 0,049 3,06 0,051 1,28 2,64 0,0161 0,051 2,63 2,85
W 78 0,0051 3 0,250 1,012 0,127 0,080 66,16 1,74E-03 0,1263 0,14 0,127 0,1849 0,00 0,0065 0,121 1,26 0,125 3,04 0,36 0,0039 0,123 0,76 1,01
W 79 0,0083 3 0,250 1,775 0,254 0,257 49,91 3,46E-03 0,2527 0,18 0,254 0,3711 0,00 0,0121 0,242 1,45 0,251 3,04 0,33 0,0054 0,249 0,65 1,05
W 80 0,0036 3 0,060 0,295 0,039 0,007 92,11 1,22E-03 0,0274 3,21 0,030 0,0931 2,57 0,0125 0,027 3,44 0,029 6,21 2,79 0,0092 0,030 2,53 2,99
W 82 0,0036 3 0,120 0,495 0,063 0,019 184,36 2,45E-03 0,0488 3,76 0,054 0,1410 2,23 0,0149 0,048 4,08 0,051 5,13 3,26 0,0107 0,052 2,92 3,50
W 83 0,0036 2 0,120 0,356 0,059 0,014 209,44 2,78E-03 0,0440 4,09 0,047 0,1201 3,39 0,0179 0,041 4,90 0,043 4,79 4,36 0,0144 0,045 3,95 4,43
W 86 0,0036 3 0,060 0,245 0,031 0,005 87,76 1,17E-03 0,0210 2,69 0,021 0,0907 2,79 0,0121 0,019 3,32 0,020 8,56 2,92 0,0097 0,021 2,65 2,99
W 87 0,0036 5 0,120 0,760 0,064 0,028 199,30 2,65E-03 0,0537 2,83 0,056 0,1995 2,11 0,0140 0,050 3,83 0,054 7,31 2,63 0,0088 0,055 2,41 3,12
W 88 0,0036 3 0,120 0,481 0,060 0,018 207,61 2,76E-03 0,0459 3,90 0,050 0,1443 2,80 0,0163 0,044 4,48 0,047 5,65 3,63 0,0121 0,048 3,32 3,90
W 89 0,0036 2 0,120 0,356 0,059 0,014 227,15 3,02E-03 0,0393 5,43 0,046 0,1234 3,73 0,0191 0,040 5,23 0,042 5,04 4,62 0,0155 0,044 4,25 4,74
W 90 0,0051 3 0,250 1,023 0,129 0,082 103,77 2,73E-03 0,1233 1,09 0,129 0,2071 0,00 0,0098 0,119 1,91 0,122 3,43 1,26 0,0060 0,123 1,18 1,54
W 92 0,0036 3 0,060 0,246 0,031 0,005 51,64 6,86E-04 0,0252 1,59 0,026 0,0727 1,36 0,0081 0,023 2,23 0,024 5,46 1,79 0,0059 0,025 1,63 1,93
W 94 0,0036 3 0,120 0,463 0,057 0,017 132,15 1,76E-03 0,0481 2,47 0,053 0,1263 1,25 0,0114 0,046 3,12 0,048 4,66 2,43 0,0081 0,049 2,21 2,67
W 95 0,0036 2 0,120 0,354 0,058 0,014 203,95 2,71E-03 0,0425 4,36 0,047 0,1181 3,20 0,0175 0,041 4,80 0,043 4,71 4,25 0,0141 0,044 3,86 4,33
W 96 0,0037 2,5 0,04 0,339 0,0598 0,011 107,83 1,48E-03 0,0431 4,53 0,047 0,0969 3,56 0,0176 0,042 4,75 0,047 4,23 3,39 0,0114 0,048 3,09 3,92
W 97 0,0037 2,5 0,04 0,339 0,0598 0,011 128,15 1,75E-03 0,0401 5,33 0,045 0,1008 4,04 0,0197 0,040 5,32 0,045 4,67 3,96 0,0133 0,046 3,61 4,46

W 100 0,0037 2,5 0,04 0,264 0,0448 0,007 45,13 6,18E-04 0,0363 2,30 0,039 0,0689 1,45 0,0096 0,035 2,61 0,038 3,60 1,76 0,0060 0,039 1,61 2,11
W 101 0,0037 2,5 0,04 0,264 0,0448 0,007 53,30 7,30E-04 0,0349 2,66 0,038 0,0713 1,82 0,0109 0,034 2,94 0,037 3,85 2,06 0,0070 0,038 1,88 2,41
W 102 0,0037 2,5 0,04 0,264 0,0448 0,007 57,60 7,89E-04 0,0345 2,78 0,037 0,0731 2,06 0,0115 0,033 3,10 0,037 4,01 2,24 0,0075 0,037 2,02 2,56
W 103 0,0037 2,5 0,04 0,287 0,0494 0,008 83,50 1,14E-03 0,0361 3,60 0,039 0,0836 2,94 0,0148 0,035 4,01 0,039 4,40 2,94 0,0100 0,039 2,70 3,36
W 104 0,0037 2,5 0,04 0,287 0,0494 0,008 103,14 1,41E-03 0,0341 4,14 0,036 0,0894 3,60 0,0171 0,032 4,62 0,036 5,10 3,60 0,0121 0,037 3,27 3,94
W 105 0,0037 2,5 0,04 0,287 0,0494 0,008 104,88 1,44E-03 0,0336 4,27 0,036 0,0906 3,74 0,0173 0,032 4,67 0,036 5,18 3,67 0,0123 0,037 3,31 3,99
W 106 0,0037 2,5 0,04 0,3585 0,0637 0,013 117,16 1,60E-03 0,0459 4,82 0,050 0,1006 3,62 0,0186 0,045 5,02 0,051 4,16 3,53 0,0119 0,052 3,22 4,12
W 107 0,0037 2,5 0,04 0,3585 0,0637 0,013 138,56 1,90E-03 0,0446 5,16 0,048 0,1060 4,30 0,0207 0,043 5,59 0,048 4,59 4,13 0,0139 0,050 3,74 4,67
W 108 0,0037 2,5 0,04 0,3585 0,0637 0,013 156,50 2,14E-03 0,0433 5,51 0,046 0,1104 4,82 0,0223 0,041 6,04 0,047 4,94 4,56 0,0154 0,048 4,17 5,10
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Assessment of damage profiles; data of Lomonaco (1994),  Van Gent and Wallast (2001) and Saers (2005)
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W 109 0,0037 2,5 0,04 0,338 0,0596 0,011 118,97 1,63E-03 0,0411 4,99 0,045 0,0992 3,87 0,0187 0,041 5,07 0,046 4,48 3,70 0,0125 0,047 3,38 4,22
W 110 0,0037 2,5 0,04 0,338 0,0596 0,011 133,20 1,82E-03 0,0399 5,32 0,044 0,1033 4,35 0,0202 0,039 5,45 0,044 4,81 4,11 0,0138 0,046 3,74 4,60
W 111 0,0037 2,5 0,04 0,338 0,0596 0,011 150,60 2,06E-03 0,0381 5,80 0,042 0,1077 4,83 0,0218 0,038 5,89 0,043 5,26 4,59 0,0154 0,044 4,17 5,03
W 112 0,0037 2,5 0,04 0,25 0,042 0,006 34,50 4,72E-04 0,0361 1,59 0,038 0,0636 1,02 0,0079 0,034 2,14 0,037 3,42 1,42 0,0048 0,037 1,30 1,72
W 113 0,0037 2,5 0,04 0,25 0,042 0,006 40,63 5,56E-04 0,0340 2,16 0,037 0,0657 1,36 0,0089 0,033 2,41 0,036 3,61 1,65 0,0056 0,036 1,51 1,96
W 114 0,0037 2,5 0,04 0,25 0,042 0,006 46,87 6,42E-04 0,0328 2,50 0,036 0,0673 1,59 0,0099 0,032 2,68 0,035 3,81 1,87 0,0064 0,036 1,73 2,20
W 115 0,0037 2,5 0,04 0,342 0,0604 0,012 56,70 7,76E-04 0,0489 3,10 0,054 0,0847 1,63 0,0114 0,049 3,07 0,054 3,25 1,80 0,0063 0,054 1,70 2,38
W 116 0,0037 2,5 0,04 0,342 0,0604 0,012 78,90 1,08E-03 0,0459 3,92 0,051 0,0896 2,45 0,0143 0,046 3,86 0,051 3,65 2,53 0,0086 0,052 2,31 3,09
W 117 0,0037 2,5 0,04 0,342 0,0604 0,012 99,60 1,36E-03 0,0435 4,57 0,048 0,0952 3,26 0,0167 0,044 4,51 0,049 4,00 3,10 0,0106 0,050 2,86 3,69
W 121 0,0037 2,5 0,04 0,246 0,0412 0,006 29,00 3,97E-04 0,0354 1,56 0,039 0,0607 0,67 0,0069 0,034 1,87 0,037 3,29 1,22 0,0041 0,037 1,11 1,49
W 122 0,0037 2,5 0,04 0,246 0,0412 0,006 32,37 4,43E-04 0,0346 1,78 0,038 0,0620 0,89 0,0075 0,034 2,04 0,036 3,38 1,34 0,0046 0,037 1,23 1,63
W 123 0,0037 2,5 0,04 0,246 0,0412 0,006 34,83 4,77E-04 0,0350 1,67 0,037 0,0627 1,00 0,0080 0,033 2,15 0,036 3,47 1,45 0,0049 0,036 1,32 1,74
W 124 0,0037 2,5 0,04 0,2945 0,0509 0,009 58,02 7,94E-04 0,0412 2,61 0,044 0,0776 1,93 0,0115 0,039 3,12 0,043 3,62 2,06 0,0071 0,044 1,91 2,51
W 125 0,0037 2,5 0,04 0,2945 0,0509 0,009 64,52 8,83E-04 0,0392 3,16 0,043 0,0794 2,20 0,0124 0,038 3,36 0,043 3,77 2,27 0,0078 0,043 2,11 2,73
W 126 0,0037 2,5 0,04 0,2945 0,0509 0,009 70,94 9,71E-04 0,0382 3,44 0,042 0,0814 2,48 0,0133 0,038 3,59 0,042 3,93 2,48 0,0085 0,042 2,30 2,94
W 127 0,0037 2,5 0,04 0,3415 0,0603 0,012 56,04 7,67E-04 0,0507 2,61 0,054 0,0846 1,63 0,0113 0,049 3,04 0,054 3,25 1,79 0,0062 0,054 1,68 2,36
W 128 0,0037 2,5 0,04 0,3415 0,0603 0,012 62,88 8,61E-04 0,0500 2,77 0,053 0,0865 1,96 0,0122 0,048 3,30 0,053 3,37 2,04 0,0069 0,053 1,88 2,59
W 129 0,0037 2,5 0,04 0,3415 0,0603 0,012 80,46 1,10E-03 0,0500 2,77 0,051 0,0906 2,61 0,0145 0,046 3,91 0,051 3,65 2,53 0,0087 0,052 2,36 3,13
W 130 0,0037 2,5 0,04 0,2525 0,0425 0,006 25,26 3,46E-04 0,0412 0,34 0,041 0,0608 0,46 0,0062 0,036 1,68 0,039 3,12 1,03 0,0035 0,039 0,96 1,32
W 131 0,0037 2,5 0,04 0,2525 0,0425 0,006 26,26 3,59E-04 0,0412 0,34 0,041 0,0608 0,46 0,0064 0,036 1,73 0,038 3,16 1,09 0,0037 0,039 0,99 1,36
W 132 0,0037 2,5 0,04 0,2525 0,0425 0,006 27,02 3,70E-04 0,0412 0,34 0,040 0,0614 0,57 0,0066 0,036 1,77 0,038 3,16 1,09 0,0038 0,039 1,02 1,40
W 133 0,0037 2,5 0,04 0,299 0,0518 0,009 36,10 4,94E-04 0,0451 1,82 0,049 0,0719 0,84 0,0082 0,044 2,21 0,047 3,14 1,33 0,0045 0,047 1,21 1,71
W 134 0,0037 2,5 0,04 0,299 0,0518 0,009 57,68 7,90E-04 0,0414 2,80 0,045 0,0777 1,82 0,0115 0,040 3,11 0,044 3,57 2,03 0,0070 0,045 1,88 2,49
W 135 0,0037 2,5 0,04 0,299 0,0518 0,009 55,60 7,61E-04 0,0425 2,52 0,045 0,0777 1,82 0,0112 0,041 3,03 0,045 3,53 1,96 0,0067 0,045 1,82 2,42
W 136 0,0037 2,5 0,04 0,338 0,0596 0,011 50,22 6,88E-04 0,0519 2,09 0,055 0,0820 1,29 0,0104 0,049 2,81 0,054 3,17 1,61 0,0057 0,054 1,53 2,17
W 137 0,0037 2,5 0,04 0,338 0,0596 0,011 53,14 7,27E-04 0,0513 2,26 0,054 0,0829 1,45 0,0108 0,049 2,93 0,053 3,21 1,69 0,0060 0,054 1,61 2,27
W 138 0,0037 2,5 0,04 0,338 0,0596 0,011 55,23 7,56E-04 0,0513 2,26 0,054 0,0838 1,61 0,0111 0,048 3,01 0,053 3,25 1,77 0,0062 0,053 1,67 2,34

Sagged profile Combination profile
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Fit of a transport equation to model tests with pipeline covers
Sheet 1 Stability parameters

Psi_BK Psi_GM Psi_F Theta Morr Psi_BK Psi_GM Psi_F Theta Morr Psi_BK Psi_GM Psi_F Theta Morr
W 1 0,011 0,009 0,001 0,08 0,30 0,013 0,010 0,002 0,09 0,33 0,023 0,014 0,003 0,16 0,48
W 2 0,011 0,009 0,001 0,08 0,30 0,013 0,010 0,002 0,09 0,33 0,023 0,014 0,003 0,16 0,48
W 3 0,025 0,017 0,004 0,26 0,60 0,027 0,019 0,004 0,28 0,65 0,036 0,026 0,007 0,46 0,92
W 4 0,025 0,017 0,004 0,26 0,60 0,027 0,019 0,004 0,28 0,65 0,036 0,026 0,007 0,46 0,92
W 5 0,036 0,027 0,008 0,55 1,00 0,038 0,029 0,008 0,60 1,06 0,049 0,038 0,012 0,90 1,47
W 6 0,036 0,027 0,008 0,55 1,00 0,038 0,029 0,008 0,60 1,06 0,049 0,038 0,012 0,90 1,47
W 7 0,036 0,027 0,008 0,55 0,99 0,038 0,028 0,008 0,59 1,05 0,049 0,038 0,012 0,89 1,45
W 8 0,036 0,027 0,008 0,55 0,99 0,038 0,028 0,008 0,59 1,05 0,049 0,038 0,012 0,89 1,45
W 9 0,044 0,035 0,011 0,85 1,35 0,046 0,036 0,012 0,90 1,41 0,059 0,048 0,016 1,32 1,94

W 10 0,044 0,035 0,011 0,85 1,35 0,046 0,036 0,012 0,90 1,41 0,059 0,048 0,016 1,32 1,94
W 11 0,043 0,034 0,011 0,83 1,32 0,045 0,036 0,011 0,88 1,39 0,058 0,047 0,016 1,29 1,91
W 12 0,043 0,034 0,011 0,83 1,32 0,045 0,036 0,011 0,88 1,39 0,058 0,047 0,016 1,29 1,91
W 13 0,021 0,013 0,002 0,14 0,44 0,024 0,015 0,003 0,17 0,51 0,033 0,022 0,005 0,32 0,78
W 14 0,033 0,024 0,006 0,40 0,83 0,036 0,026 0,007 0,45 0,92 0,049 0,037 0,011 0,77 1,37
W 15 0,033 0,024 0,006 0,40 0,83 0,036 0,026 0,007 0,45 0,92 0,049 0,037 0,011 0,77 1,37
W 18 0,016 0,011 0,003 0,17 0,40 0,018 0,013 0,003 0,21 0,45 0,026 0,019 0,005 0,37 0,69
W 19 0,016 0,011 0,003 0,17 0,40 0,018 0,013 0,003 0,21 0,45 0,026 0,019 0,005 0,37 0,69
W 20 0,030 0,024 0,008 0,59 0,94 0,033 0,026 0,008 0,66 1,03 0,044 0,037 0,013 1,06 1,52
W 21 0,030 0,024 0,008 0,59 0,94 0,033 0,026 0,008 0,66 1,03 0,044 0,037 0,013 1,06 1,52
W 22 0,047 0,039 0,015 1,30 1,75 0,049 0,040 0,016 1,40 1,87 0,065 0,054 0,022 2,12 2,69
W 23 0,047 0,039 0,015 1,30 1,75 0,049 0,040 0,016 1,40 1,87 0,065 0,054 0,022 2,12 2,69
W 26 0,039 0,031 0,010 0,73 1,18 0,039 0,031 0,010 0,73 1,19 0,043 0,034 0,011 0,84 1,32
W 27 0,034 0,025 0,006 0,42 0,87 0,035 0,025 0,006 0,43 0,88 0,040 0,030 0,008 0,55 1,06
W 28 0,033 0,024 0,006 0,40 0,84 0,034 0,024 0,006 0,41 0,85 0,039 0,029 0,008 0,52 1,02
W 29 0,033 0,023 0,006 0,39 0,83 0,033 0,024 0,006 0,40 0,84 0,038 0,028 0,007 0,51 1,00
W 30 0,026 0,018 0,004 0,24 0,61 0,028 0,019 0,004 0,27 0,66 0,037 0,027 0,007 0,44 0,93
W 32 0,059 0,049 0,018 1,57 2,14 0,059 0,049 0,018 1,58 2,15 0,063 0,054 0,020 1,77 2,38
W 33 0,050 0,039 0,012 0,95 1,52 0,050 0,040 0,013 0,97 1,54 0,058 0,046 0,015 1,19 1,83
W 34 0,048 0,038 0,012 0,94 1,48 0,048 0,038 0,012 0,96 1,50 0,055 0,044 0,014 1,16 1,76
W 35 0,047 0,036 0,011 0,85 1,39 0,047 0,037 0,011 0,87 1,41 0,053 0,042 0,013 1,04 1,64
W 36 0,038 0,028 0,008 0,58 1,04 0,039 0,030 0,009 0,62 1,10 0,051 0,040 0,012 0,93 1,52
W 38 0,073 0,061 0,025 2,38 3,02 0,073 0,061 0,025 2,39 3,03 0,078 0,066 0,028 2,63 3,30
W 40 0,058 0,047 0,016 1,32 1,93 0,058 0,047 0,016 1,33 1,95 0,066 0,054 0,019 1,61 2,28
W 41 0,055 0,045 0,015 1,23 1,82 0,055 0,045 0,015 1,25 1,84 0,063 0,052 0,018 1,50 2,15
W 44 0,041 0,033 0,011 0,90 1,35 0,041 0,033 0,011 0,91 1,35 0,044 0,036 0,012 1,00 1,47
W 45 0,048 0,039 0,014 1,14 1,64 0,049 0,040 0,014 1,16 1,66 0,056 0,046 0,017 1,43 1,99
W 46 0,041 0,033 0,011 0,90 1,34 0,041 0,033 0,011 0,92 1,35 0,047 0,038 0,013 1,12 1,60
W 47 0,034 0,026 0,007 0,53 0,95 0,035 0,026 0,007 0,54 0,96 0,039 0,030 0,009 0,65 1,12
W 48 0,033 0,025 0,007 0,55 0,94 0,034 0,026 0,008 0,59 1,00 0,044 0,035 0,011 0,87 1,36
W 49 0,024 0,017 0,004 0,25 0,58 0,029 0,020 0,005 0,34 0,72 0,043 0,033 0,009 0,67 1,20
W 50 0,042 0,035 0,012 0,96 1,41 0,042 0,035 0,012 0,97 1,42 0,045 0,037 0,013 1,07 1,54
W 51 0,048 0,039 0,014 1,14 1,64 0,049 0,040 0,014 1,16 1,66 0,056 0,046 0,017 1,43 1,99
W 52 0,041 0,033 0,011 0,90 1,34 0,041 0,033 0,011 0,92 1,36 0,047 0,038 0,013 1,12 1,60
W 53 0,034 0,026 0,007 0,52 0,95 0,035 0,026 0,007 0,53 0,96 0,039 0,030 0,009 0,64 1,11
W 54 0,033 0,025 0,008 0,56 0,95 0,035 0,027 0,008 0,60 1,01 0,044 0,035 0,011 0,88 1,38
W 55 0,024 0,017 0,004 0,26 0,59 0,029 0,021 0,005 0,34 0,72 0,044 0,033 0,009 0,68 1,21
W 56 0,060 0,049 0,019 1,77 2,32 0,060 0,049 0,020 1,78 2,33 0,065 0,053 0,022 1,99 2,58
W 57 0,070 0,058 0,024 2,25 2,87 0,071 0,059 0,024 2,28 2,91 0,081 0,068 0,029 2,74 3,43
W 58 0,057 0,047 0,019 1,67 2,21 0,058 0,047 0,019 1,69 2,23 0,065 0,054 0,022 2,03 2,62
W 59 0,047 0,038 0,013 1,01 1,53 0,048 0,039 0,013 1,02 1,55 0,054 0,044 0,015 1,23 1,80
W 60 0,047 0,039 0,014 1,14 1,63 0,049 0,040 0,014 1,20 1,70 0,061 0,051 0,019 1,66 2,24
W 61 0,036 0,028 0,008 0,64 1,05 0,039 0,031 0,010 0,74 1,19 0,057 0,047 0,016 1,32 1,92
W 62 0,060 0,049 0,020 1,78 2,33 0,060 0,049 0,020 1,79 2,34 0,065 0,053 0,022 2,00 2,59
W 63 0,070 0,058 0,024 2,24 2,87 0,071 0,059 0,024 2,27 2,90 0,080 0,068 0,029 2,73 3,42
W 64 0,059 0,048 0,019 1,77 2,31 0,059 0,049 0,020 1,79 2,34 0,067 0,055 0,023 2,12 2,71
W 65 0,047 0,038 0,012 1,00 1,52 0,048 0,038 0,013 1,01 1,54 0,054 0,044 0,015 1,22 1,79
W 66 0,047 0,039 0,014 1,14 1,62 0,049 0,040 0,014 1,19 1,69 0,061 0,051 0,019 1,65 2,24
W 67 0,036 0,028 0,008 0,64 1,06 0,039 0,031 0,010 0,74 1,19 0,057 0,047 0,016 1,33 1,93
W 68 0,042 0,034 0,012 1,03 1,46 0,042 0,035 0,012 1,04 1,46 0,045 0,037 0,013 1,15 1,60
W 69 0,048 0,041 0,015 1,30 1,77 0,049 0,041 0,015 1,31 1,79 0,054 0,044 0,017 1,54 2,06
W 70 0,040 0,033 0,012 0,98 1,39 0,040 0,033 0,012 0,99 1,40 0,045 0,038 0,014 1,16 1,61
W 71 0,034 0,026 0,008 0,58 0,99 0,034 0,026 0,008 0,59 0,99 0,038 0,030 0,009 0,70 1,15
W 72 0,033 0,026 0,008 0,64 1,02 0,034 0,027 0,009 0,67 1,06 0,042 0,034 0,011 0,92 1,37
W 73 0,026 0,019 0,005 0,34 0,67 0,029 0,021 0,006 0,40 0,77 0,041 0,032 0,009 0,70 1,19
W 74 0,042 0,035 0,012 1,05 1,47 0,042 0,035 0,012 1,05 1,48 0,045 0,038 0,014 1,17 1,62
W 75 0,049 0,041 0,015 1,30 1,78 0,049 0,041 0,015 1,32 1,80 0,055 0,045 0,017 1,55 2,07
W 76 0,040 0,033 0,012 0,98 1,39 0,040 0,033 0,012 0,99 1,40 0,045 0,038 0,014 1,17 1,62
W 77 0,034 0,026 0,008 0,57 0,97 0,034 0,026 0,008 0,58 0,98 0,038 0,030 0,009 0,69 1,13
W 78 0,033 0,027 0,008 0,65 1,03 0,034 0,027 0,009 0,68 1,07 0,042 0,034 0,011 0,93 1,39
W 79 0,026 0,019 0,005 0,34 0,69 0,029 0,022 0,006 0,41 0,78 0,042 0,032 0,010 0,72 1,21
W 80 0,072 0,062 0,028 2,83 3,39 0,072 0,063 0,028 2,84 3,40 0,078 0,068 0,031 3,17 3,76
W 82 0,068 0,059 0,026 2,61 3,15 0,069 0,059 0,026 2,63 3,17 0,077 0,067 0,030 3,12 3,71
W 83 0,069 0,060 0,027 2,74 3,28 0,070 0,061 0,027 2,76 3,30 0,078 0,068 0,031 3,24 3,82
W 86 0,069 0,058 0,025 2,46 3,03 0,069 0,059 0,025 2,47 3,04 0,073 0,062 0,027 2,66 3,25
W 87 0,081 0,069 0,030 3,07 3,70 0,081 0,070 0,031 3,10 3,73 0,090 0,078 0,035 3,61 4,30
W 88 0,066 0,055 0,024 2,29 2,84 0,066 0,056 0,024 2,30 2,86 0,073 0,062 0,027 2,66 3,25
W 89 0,067 0,057 0,024 2,36 2,91 0,067 0,057 0,024 2,37 2,94 0,074 0,063 0,028 2,73 3,34
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Fit of a transport equation to model tests with pipeline covers
Sheet 1 Stability parameters (continued)

Psi_BK Psi_GM Psi_F Theta Morr Psi_BK Psi_GM Psi_F Theta Morr Psi_BK Psi_GM Psi_F Theta Morr
W 90 0,055 0,044 0,018 1,64 2,14 0,056 0,046 0,018 1,69 2,20 0,068 0,057 0,024 2,25 2,84
W 92 0,074 0,061 0,026 2,42 3,07 0,074 0,062 0,026 2,43 3,08 0,080 0,067 0,028 2,69 3,37
W 94 0,070 0,057 0,024 2,22 2,83 0,070 0,058 0,024 2,24 2,87 0,080 0,067 0,028 2,70 3,38
W 95 0,068 0,057 0,023 2,15 2,76 0,069 0,057 0,023 2,18 2,80 0,078 0,065 0,028 2,63 3,31
W 96 0,064 0,053 0,022 2,01 2,58 0,064 0,053 0,022 2,04 2,61 0,072 0,061 0,025 2,43 3,05
W 97 0,064 0,053 0,022 2,01 2,58 0,064 0,053 0,022 2,04 2,61 0,072 0,061 0,025 2,43 3,05

W 100 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,079 0,067 0,028 2,75 3,41
W 101 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,079 0,067 0,028 2,75 3,41
W 102 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,079 0,067 0,028 2,75 3,41
W 103 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,080 0,068 0,029 2,79 3,46
W 104 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,080 0,068 0,029 2,79 3,46
W 105 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,39 3,01 0,080 0,068 0,029 2,79 3,46
W 106 0,071 0,060 0,025 2,37 2,99 0,072 0,061 0,025 2,41 3,03 0,083 0,070 0,030 2,93 3,62
W 107 0,071 0,060 0,025 2,37 2,99 0,072 0,061 0,025 2,41 3,03 0,083 0,070 0,030 2,93 3,62
W 108 0,071 0,060 0,025 2,37 2,99 0,072 0,061 0,025 2,41 3,03 0,083 0,070 0,030 2,93 3,62
W 109 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,40 3,02 0,082 0,069 0,030 2,89 3,57
W 110 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,40 3,02 0,082 0,069 0,030 2,89 3,57
W 111 0,071 0,060 0,025 2,37 2,99 0,072 0,060 0,025 2,40 3,02 0,082 0,069 0,030 2,89 3,57
W 112 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,021 1,96 2,55 0,072 0,059 0,024 2,27 2,91
W 113 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,021 1,96 2,55 0,072 0,059 0,024 2,27 2,91
W 114 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,021 1,96 2,55 0,072 0,059 0,024 2,27 2,91
W 115 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,022 1,98 2,57 0,075 0,063 0,026 2,43 3,09
W 116 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,022 1,98 2,57 0,075 0,063 0,026 2,43 3,09
W 117 0,064 0,053 0,021 1,95 2,54 0,065 0,053 0,022 1,98 2,57 0,075 0,063 0,026 2,43 3,09
W 121 0,061 0,050 0,020 1,80 2,36 0,061 0,050 0,020 1,81 2,38 0,068 0,055 0,023 2,09 2,70
W 122 0,061 0,050 0,020 1,80 2,36 0,061 0,050 0,020 1,81 2,38 0,068 0,055 0,023 2,09 2,70
W 123 0,061 0,050 0,020 1,80 2,36 0,061 0,050 0,020 1,81 2,38 0,068 0,055 0,023 2,09 2,70
W 124 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,82 2,39 0,069 0,057 0,023 2,17 2,79
W 125 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,82 2,39 0,069 0,057 0,023 2,17 2,79
W 126 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,82 2,39 0,069 0,057 0,023 2,17 2,79
W 127 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,83 2,40 0,071 0,059 0,024 2,25 2,88
W 128 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,83 2,40 0,071 0,059 0,024 2,25 2,88
W 129 0,061 0,050 0,020 1,80 2,36 0,062 0,050 0,020 1,83 2,40 0,071 0,059 0,024 2,25 2,88
W 130 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,12 0,063 0,051 0,020 1,86 2,44
W 131 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,12 0,063 0,051 0,020 1,86 2,44
W 132 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,12 0,063 0,051 0,020 1,86 2,44
W 133 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,13 0,064 0,052 0,021 1,93 2,52
W 134 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,13 0,064 0,052 0,021 1,93 2,52
W 135 0,056 0,045 0,018 1,57 2,11 0,056 0,046 0,018 1,59 2,13 0,064 0,052 0,021 1,93 2,52
W 136 0,056 0,045 0,018 1,57 2,11 0,057 0,046 0,018 1,60 2,14 0,066 0,054 0,022 2,00 2,60
W 137 0,056 0,045 0,018 1,57 2,11 0,057 0,046 0,018 1,60 2,14 0,066 0,054 0,022 2,00 2,60
W 138 0,056 0,045 0,018 1,57 2,11 0,057 0,046 0,018 1,60 2,14 0,066 0,054 0,022 2,00 2,60
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Fit of a transport equation to model tests with pipeline covers
Sheet 2 Transport parameters

Ls omega Ae Duration qs Phi_q Phi_Hall qs Phi_q Phi_Hall
- m rad/s m2 s m3/m/s - - m3/m/s - -

W 1 0,375 5,661 2,28E-04 1110 2,05E-07 8,36E-05 7,00E-04 4,19E-07 1,70E-04 1,43E-03
W 2 0,375 5,661 3,16E-04 3330 9,50E-08 3,86E-05 3,24E-04 1,91E-07 7,79E-05 6,52E-04
W 3 0,375 4,760 2,38E-04 1320 1,81E-07 7,35E-05 7,32E-04 3,68E-07 1,50E-04 1,49E-03
W 4 0,375 4,760 3,78E-04 3960 9,56E-08 3,89E-05 3,87E-04 1,91E-07 7,78E-05 7,75E-04
W 5 0,375 4,161 3,27E-04 1510 2,16E-07 8,80E-05 1,00E-03 4,35E-07 1,77E-04 2,02E-03
W 6 0,375 4,161 3,84E-04 4530 8,47E-08 3,45E-05 3,93E-04 1,69E-07 6,89E-05 7,85E-04
W 7 0,375 4,161 3,27E-04 1510 2,16E-07 8,80E-05 1,00E-03 4,35E-07 1,77E-04 2,02E-03
W 8 0,375 4,161 6,74E-04 4530 1,49E-07 6,05E-05 6,90E-04 2,88E-07 1,17E-04 1,34E-03
W 9 0,375 3,785 4,30E-04 1660 2,59E-07 1,05E-04 1,32E-03 5,16E-07 2,10E-04 2,63E-03

W 10 0,375 3,785 6,12E-04 4980 1,23E-07 5,00E-05 6,26E-04 2,40E-07 9,75E-05 1,22E-03
W 11 0,375 3,785 3,06E-04 1660 1,84E-07 7,50E-05 9,39E-04 3,72E-07 1,51E-04 1,90E-03
W 12 0,375 3,785 5,18E-04 4980 1,04E-07 4,24E-05 5,31E-04 2,05E-07 8,34E-05 1,05E-03
W 13 0,375 5,712 2,23E-04 1100 2,03E-07 8,24E-05 6,84E-04 4,13E-07 1,68E-04 1,40E-03
W 14 0,375 4,760 1,09E-04 1320 8,25E-08 3,36E-05 3,34E-04 1,71E-07 6,94E-05 6,91E-04
W 15 0,375 4,760 3,01E-04 3960 7,59E-08 3,09E-05 3,08E-04 1,53E-07 6,24E-05 6,21E-04
W 18 1,000 5,661 2,14E-04 1110 1,93E-07 2,78E-04 3,55E-03 8,56E-07 1,23E-03 1,57E-02
W 19 1,000 5,661 3,58E-04 3330 1,08E-07 1,55E-04 1,98E-03 4,57E-07 6,59E-04 8,41E-03
W 20 1,000 4,760 1,78E-04 1320 1,35E-07 1,94E-04 2,94E-03 6,05E-07 8,71E-04 1,32E-02
W 21 1,000 4,760 4,13E-04 3960 1,04E-07 1,50E-04 2,28E-03 4,37E-07 6,29E-04 9,55E-03
W 22 1,000 4,161 9,96E-04 1510 6,59E-07 9,49E-04 1,65E-02 2,44E-06 3,52E-03 6,11E-02
W 23 1,000 4,161 1,98E-03 4530 4,38E-07 6,31E-04 1,09E-02 1,42E-06 2,05E-03 3,55E-02
W 26 0,089 4,890 8,03E-04 3960 2,03E-07 2,43E-04 3,12E-03 9,93E-08 1,19E-04 1,53E-03
W 27 0,281 4,987 1,70E-04 3960 4,29E-08 2,33E-05 2,29E-04 0,00E+00 0,00E+00 0,00E+00
W 28 0,168 4,987 7,50E-04 3960 1,89E-07 1,03E-04 1,01E-03 2,12E-08 1,15E-05 1,13E-04
W 29 0,054 4,987 1,55E-03 3960 3,93E-07 2,13E-04 2,10E-03 8,05E-08 4,36E-05 4,30E-04
W 30 0,376 4,890 2,81E-04 3960 7,09E-08 2,28E-05 2,09E-04 4,75E-08 1,52E-05 1,40E-04
W 32 0,096 4,218 4,25E-04 3000 1,42E-07 1,70E-04 2,53E-03 1,47E-07 1,77E-04 2,63E-03
W 33 0,295 4,218 3,35E-04 3000 1,12E-07 6,05E-05 7,06E-04 9,82E-08 5,32E-05 6,21E-04
W 34 0,173 4,028 3,10E-04 3000 1,03E-07 5,59E-05 6,83E-04 8,06E-08 4,37E-05 5,34E-04
W 35 0,052 4,218 1,08E-03 3000 3,60E-07 1,95E-04 2,27E-03 1,12E-07 6,05E-05 7,05E-04
W 36 0,380 4,028 7,06E-04 3000 2,35E-07 7,56E-05 8,42E-04 0,00E+00 0,00E+00 0,00E+00
W 38 0,089 3,835 5,20E-04 1680 3,09E-07 3,71E-04 6,07E-03 2,45E-07 2,94E-04 4,80E-03
W 40 0,174 3,835 3,99E-04 1680 2,37E-07 1,29E-04 1,65E-03 8,27E-08 4,48E-05 5,75E-04
W 41 0,058 3,835 1,81E-03 1680 1,08E-06 5,84E-04 7,49E-03 3,89E-07 2,11E-04 2,71E-03
W 44 0,090 4,315 1,63E-04 1680 9,71E-08 1,17E-04 1,69E-03 7,50E-08 9,00E-05 1,31E-03
W 45 0,319 4,315 3,26E-04 1680 1,94E-07 2,33E-04 3,38E-03 3,79E-08 4,55E-05 6,61E-04
W 46 0,188 4,218 6,13E-04 1680 3,65E-07 4,38E-04 6,52E-03 3,01E-07 3,61E-04 5,38E-03
W 47 0,060 4,218 5,62E-04 1680 3,35E-07 1,81E-04 2,12E-03 4,27E-08 2,31E-05 2,70E-04
W 48 0,384 4,315 5,62E-04 1680 3,34E-07 2,29E-04 2,94E-03 1,83E-07 1,25E-04 1,61E-03
W 49 0,780 4,315 1,01E-03 1680 6,00E-07 1,92E-04 2,00E-03 7,90E-07 2,53E-04 2,64E-03
W 50 0,090 4,218 2,23E-04 3360 6,64E-08 7,96E-05 1,18E-03 4,55E-08 5,46E-05 8,13E-04
W 51 0,319 4,315 5,00E-04 3360 1,49E-07 1,79E-04 2,60E-03 4,74E-08 5,69E-05 8,27E-04
W 52 0,188 4,218 8,25E-04 3360 2,45E-07 2,94E-04 4,38E-03 1,90E-07 2,28E-04 3,39E-03
W 53 0,060 4,218 7,96E-04 3360 2,37E-07 1,28E-04 1,50E-03 4,81E-08 2,60E-05 3,04E-04
W 54 0,384 4,315 8,80E-04 3360 2,62E-07 1,79E-04 2,31E-03 9,14E-08 6,26E-05 8,05E-04
W 55 0,780 4,315 1,73E-03 3360 5,14E-07 1,65E-04 1,72E-03 5,11E-07 1,64E-04 1,71E-03
W 56 0,113 3,835 9,97E-04 1680 5,93E-07 7,12E-04 1,16E-02 6,04E-07 7,25E-04 1,19E-02
W 57 0,320 3,835 1,03E-03 1680 6,13E-07 7,36E-04 1,20E-02 6,10E-07 7,31E-04 1,20E-02
W 58 0,189 3,835 1,87E-03 1680 1,11E-06 1,33E-03 2,18E-02 9,90E-07 1,19E-03 1,94E-02
W 59 0,070 3,738 2,60E-03 1680 1,55E-06 8,38E-04 1,10E-02 8,49E-07 4,60E-04 6,06E-03
W 60 0,383 3,738 1,21E-03 1680 7,21E-07 4,93E-04 7,33E-03 4,33E-07 2,97E-04 4,41E-03
W 61 0,773 3,451 5,34E-03 1680 3,18E-06 1,02E-03 1,33E-02 2,67E-06 8,56E-04 1,11E-02
W 62 0,113 3,835 1,30E-03 3360 3,86E-07 4,63E-04 7,58E-03 3,42E-07 4,11E-04 6,72E-03
W 63 0,320 3,835 1,71E-03 3360 5,09E-07 6,10E-04 9,98E-03 6,10E-07 7,31E-04 1,20E-02
W 64 0,189 3,738 2,87E-03 3360 8,54E-07 1,02E-03 1,72E-02 7,26E-07 8,70E-04 1,46E-02
W 65 0,070 3,738 2,86E-03 3360 8,50E-07 4,60E-04 6,06E-03 4,56E-07 2,47E-04 3,25E-03
W 66 0,383 3,738 1,94E-03 3360 5,77E-07 3,95E-04 5,87E-03 2,74E-07 1,87E-04 2,78E-03
W 67 0,773 3,451 8,28E-03 3360 2,46E-06 7,91E-04 1,03E-02 2,92E-06 9,38E-04 1,22E-02
W 68 0,116 3,835 6,37E-04 1680 3,79E-07 4,55E-04 7,44E-03 3,72E-07 4,46E-04 7,31E-03
W 69 0,314 3,835 1,06E-03 1680 6,33E-07 7,59E-04 1,24E-02 5,05E-07 6,05E-04 9,90E-03
W 70 0,190 3,835 1,14E-03 1680 6,79E-07 8,15E-04 1,33E-02 5,42E-07 6,50E-04 1,06E-02
W 71 0,067 3,835 2,14E-03 1680 1,27E-06 6,89E-04 8,84E-03 5,18E-07 2,80E-04 3,60E-03
W 72 0,381 3,835 1,33E-03 1680 7,93E-07 5,43E-04 7,86E-03 0,00E+00 0,00E+00 0,00E+00
W 73 0,763 3,835 2,72E-03 1680 1,62E-06 5,19E-04 6,08E-03 6,81E-07 2,19E-04 2,56E-03
W 74 0,116 3,835 7,24E-04 3360 2,16E-07 2,59E-04 4,23E-03 1,86E-07 2,23E-04 3,65E-03
W 75 0,314 3,835 1,33E-03 3360 3,96E-07 4,75E-04 7,77E-03 2,80E-07 3,36E-04 5,50E-03
W 76 0,190 3,835 1,39E-03 3360 4,15E-07 4,98E-04 8,15E-03 2,88E-07 3,45E-04 5,65E-03
W 77 0,067 3,835 2,60E-03 3360 7,75E-07 4,20E-04 5,39E-03 3,33E-07 1,80E-04 2,32E-03
W 78 0,381 3,835 1,74E-03 3360 5,18E-07 3,55E-04 5,13E-03 7,94E-08 5,43E-05 7,87E-04
W 79 0,763 3,835 3,46E-03 3360 1,03E-06 3,31E-04 3,87E-03 3,40E-07 1,09E-04 1,28E-03
W 80 0,117 3,068 1,22E-03 2100 5,83E-07 6,99E-04 1,43E-02 6,54E-07 7,84E-04 1,60E-02
W 82 0,188 3,068 2,45E-03 2100 1,17E-06 1,40E-03 2,86E-02 1,22E-06 1,47E-03 3,00E-02
W 83 0,118 2,972 2,78E-03 2100 1,33E-06 1,59E-03 3,36E-02 8,36E-07 1,00E-03 2,12E-02
W 86 0,092 3,355 1,17E-03 1920 6,07E-07 7,28E-04 1,36E-02 4,72E-07 5,66E-04 1,06E-02
W 87 0,320 3,355 2,65E-03 1920 1,38E-06 1,65E-03 3,09E-02 1,72E-06 2,06E-03 3,85E-02
W 88 0,180 3,355 2,76E-03 1920 1,44E-06 1,72E-03 3,22E-02 1,33E-06 1,60E-03 2,99E-02
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Fit of a transport equation to model tests with pipeline covers
Sheet 2 Transport parameters (continued)

Ls omega Ae Duration qs Phi_q Phi_Hall qs Phi_q Phi_Hall
- m rad/s m2 s m3/m/s - - m3/m/s - -

W 89 0,118 3,355 3,02E-03 1920 1,57E-06 1,89E-03 3,53E-02 1,22E-06 1,46E-03 2,73E-02
W 90 0,387 3,207 2,73E-03 1920 1,42E-06 9,73E-04 1,69E-02 1,13E-06 7,72E-04 1,34E-02
W 92 0,093 3,835 6,86E-04 1680 4,08E-07 4,90E-04 8,02E-03 3,21E-07 3,85E-04 6,30E-03
W 94 0,171 3,835 1,76E-03 1680 1,05E-06 1,25E-03 2,05E-02 9,18E-07 1,10E-03 1,80E-02
W 95 0,117 3,835 2,71E-03 1680 1,61E-06 1,93E-03 3,17E-02 1,11E-06 1,33E-03 2,17E-02
W 96 0,150 3,670 1,48E-03 1876 7,87E-07 9,21E-04 1,57E-02 6,67E-07 7,80E-04 1,33E-02
W 97 0,150 3,670 1,75E-03 5439 3,23E-07 3,77E-04 6,42E-03 2,47E-07 2,88E-04 4,91E-03

W 100 0,112 3,670 6,18E-04 1801 3,43E-07 4,01E-04 6,83E-03 6,04E-07 7,06E-04 1,20E-02
W 101 0,112 3,670 7,30E-04 5331 1,37E-07 1,60E-04 2,72E-03 2,26E-07 2,64E-04 4,50E-03
W 102 0,112 3,670 7,89E-04 10608 7,43E-08 8,70E-05 1,48E-03 1,20E-07 1,40E-04 2,39E-03
W 103 0,124 3,670 1,14E-03 1760 6,50E-07 7,60E-04 1,29E-02 1,04E-06 1,22E-03 2,07E-02
W 104 0,124 3,670 1,41E-03 4828 2,92E-07 3,42E-04 5,82E-03 4,32E-07 5,06E-04 8,60E-03
W 105 0,124 3,670 1,44E-03 10024 1,43E-07 1,68E-04 2,85E-03 2,12E-07 2,48E-04 4,22E-03
W 106 0,159 3,670 1,60E-03 1681 9,54E-07 1,12E-03 1,90E-02 1,76E-06 2,06E-03 3,51E-02
W 107 0,159 3,670 1,90E-03 5035 3,77E-07 4,41E-04 7,50E-03 6,53E-07 7,64E-04 1,30E-02
W 108 0,159 3,670 2,14E-03 10205 2,10E-07 2,46E-04 4,18E-03 3,40E-07 3,98E-04 6,77E-03
W 109 0,149 3,670 1,63E-03 1738 9,37E-07 1,10E-03 1,87E-02 1,62E-06 1,89E-03 3,22E-02
W 110 0,149 3,670 1,82E-03 5271 3,46E-07 4,05E-04 6,89E-03 5,67E-07 6,64E-04 1,13E-02
W 111 0,149 3,670 2,06E-03 10779 1,91E-07 2,24E-04 3,81E-03 3,05E-07 3,57E-04 6,07E-03
W 112 0,105 3,888 4,72E-04 1653 2,86E-07 3,34E-04 5,37E-03 4,98E-07 5,83E-04 9,36E-03
W 113 0,105 3,888 5,56E-04 4950 1,12E-07 1,31E-04 2,11E-03 1,90E-07 2,22E-04 3,57E-03
W 114 0,105 3,888 6,42E-04 9830 6,53E-08 7,64E-05 1,23E-03 1,06E-07 1,24E-04 1,99E-03
W 115 0,151 3,888 7,76E-04 1700 4,57E-07 5,34E-04 8,58E-03 1,02E-06 1,19E-03 1,91E-02
W 116 0,151 3,888 1,08E-03 5032 2,15E-07 2,51E-04 4,03E-03 4,35E-07 5,09E-04 8,17E-03
W 117 0,151 3,888 1,36E-03 10013 1,36E-07 1,59E-04 2,56E-03 2,55E-07 2,98E-04 4,79E-03
W 121 0,103 3,888 3,97E-04 1690 2,35E-07 2,75E-04 4,41E-03 4,18E-07 4,90E-04 7,86E-03
W 122 0,103 3,888 4,43E-04 4966 8,92E-08 1,04E-04 1,68E-03 1,57E-07 1,83E-04 2,94E-03
W 123 0,103 3,888 4,77E-04 9903 4,82E-08 5,63E-05 9,05E-04 8,28E-08 9,69E-05 1,56E-03
W 124 0,127 3,888 7,94E-04 1784 4,45E-07 5,21E-04 8,36E-03 8,20E-07 9,60E-04 1,54E-02
W 125 0,127 3,888 8,83E-04 5381 1,64E-07 1,92E-04 3,08E-03 2,94E-07 3,44E-04 5,52E-03
W 126 0,127 3,888 9,71E-04 10578 9,18E-08 1,07E-04 1,72E-03 1,59E-07 1,86E-04 2,99E-03
W 127 0,151 3,888 7,67E-04 1744 4,40E-07 5,15E-04 8,27E-03 9,70E-07 1,13E-03 1,82E-02
W 128 0,151 3,888 8,61E-04 5205 1,65E-07 1,94E-04 3,11E-03 3,53E-07 4,13E-04 6,63E-03
W 129 0,151 3,888 1,10E-03 10292 1,07E-07 1,25E-04 2,01E-03 2,10E-07 2,46E-04 3,95E-03
W 130 0,106 3,907 3,46E-04 1592 2,17E-07 2,54E-04 4,06E-03 4,08E-07 4,78E-04 7,64E-03
W 131 0,106 3,907 3,59E-04 4753 7,56E-08 8,85E-05 1,41E-03 1,37E-07 1,60E-04 2,56E-03
W 132 0,106 3,907 3,70E-04 9039 4,09E-08 4,79E-05 7,65E-04 7,39E-08 8,65E-05 1,38E-03
W 133 0,130 3,907 4,94E-04 16746 2,95E-08 3,45E-05 5,52E-04 6,09E-08 7,12E-05 1,14E-03
W 134 0,130 3,907 7,90E-04 5004 1,58E-07 1,85E-04 2,95E-03 2,98E-07 3,48E-04 5,56E-03
W 135 0,130 3,907 7,61E-04 9693 7,85E-08 9,19E-05 1,47E-03 1,49E-07 1,75E-04 2,79E-03
W 136 0,149 3,907 6,88E-04 1576 4,36E-07 5,10E-04 8,16E-03 9,81E-07 1,15E-03 1,83E-02
W 137 0,149 3,907 7,27E-04 4679 1,55E-07 1,82E-04 2,91E-03 3,45E-07 4,04E-04 6,46E-03
W 138 0,149 3,907 7,56E-04 9595 7,88E-08 9,22E-05 1,47E-03 1,71E-07 2,00E-04 3,20E-03
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Fit of a transport equation to model tests with pipeline covers
Sheet 3 Fit Simple transport method - Phi_q
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W 1 -9,39 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 2 -10,16 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 3 -9,52 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 4 -10,16 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 5 -9,34 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 6 -10,28 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 7 -9,34 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 8 -9,71 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 9 -9,16 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66

W 10 -9,90 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66
W 11 -9,50 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 12 -10,07 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 13 -9,40 -3,87 -4,35 -6,00 -1,98 -0,81 -3,74 -4,21 -5,81 -1,77 -0,67 -3,40 -3,79 -5,28 -1,15 -0,25
W 14 -10,30 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 15 -10,39 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 18 -8,19 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 19 -8,77 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 20 -8,55 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 21 -8,80 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 22 -6,96 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 23 -7,37 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 26 -8,32 -3,24 -3,48 -4,65 -0,32 0,17 -3,23 -3,48 -4,65 -0,31 0,17 -3,15 -3,38 -4,53 -0,18 0,28
W 27 -10,67 -3,38 -3,71 -5,07 -0,87 -0,14 -3,36 -3,69 -5,05 -0,84 -0,12 -3,21 -3,52 -4,83 -0,60 0,06
W 28 -9,18 -3,41 -3,74 -5,11 -0,91 -0,18 -3,39 -3,72 -5,09 -0,89 -0,16 -3,24 -3,56 -4,88 -0,65 0,02
W 29 -8,46 -3,42 -3,75 -5,13 -0,93 -0,19 -3,40 -3,74 -5,11 -0,91 -0,17 -3,26 -3,57 -4,90 -0,67 0,00
W 30 -10,69 -3,64 -4,04 -5,54 -1,42 -0,50 -3,57 -3,96 -5,43 -1,30 -0,42 -3,29 -3,63 -5,01 -0,82 -0,07
W 32 -8,68 -2,84 -3,01 -4,02 0,45 0,76 -2,84 -3,01 -4,02 0,46 0,77 -2,76 -2,93 -3,91 0,57 0,87
W 33 -9,71 -3,00 -3,24 -4,40 -0,05 0,42 -2,99 -3,22 -4,38 -0,03 0,43 -2,86 -3,08 -4,20 0,17 0,60
W 34 -9,79 -3,04 -3,27 -4,42 -0,06 0,39 -3,03 -3,26 -4,40 -0,04 0,41 -2,90 -3,12 -4,23 0,15 0,57
W 35 -8,54 -3,07 -3,31 -4,49 -0,16 0,33 -3,06 -3,30 -4,48 -0,14 0,34 -2,94 -3,17 -4,32 0,04 0,49
W 36 -9,49 -3,28 -3,56 -4,82 -0,55 0,04 -3,24 -3,51 -4,76 -0,48 0,10 -2,98 -3,23 -4,41 -0,07 0,42
W 38 -7,90 -2,62 -2,79 -3,68 0,87 1,10 -2,61 -2,79 -3,68 0,87 1,11 -2,55 -2,72 -3,59 0,97 1,20
W 40 -8,96 -2,86 -3,06 -4,14 0,28 0,65 -2,85 -3,05 -4,12 0,29 0,67 -2,72 -2,91 -3,96 0,47 0,82
W 41 -7,45 -2,90 -3,11 -4,20 0,21 0,60 -2,89 -3,10 -4,18 0,22 0,61 -2,77 -2,96 -4,02 0,41 0,77
W 44 -9,06 -3,19 -3,40 -4,50 -0,10 0,30 -3,19 -3,40 -4,49 -0,10 0,30 -3,12 -3,32 -4,40 0,00 0,39
W 45 -8,37 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 46 -7,73 -3,21 -3,41 -4,50 -0,10 0,29 -3,20 -3,40 -4,49 -0,09 0,30 -3,07 -3,26 -4,32 0,11 0,47
W 47 -8,61 -3,37 -3,65 -4,91 -0,64 -0,05 -3,36 -3,64 -4,90 -0,62 -0,04 -3,24 -3,51 -4,73 -0,43 0,11
W 48 -8,38 -3,42 -3,68 -4,90 -0,60 -0,06 -3,37 -3,63 -4,84 -0,53 0,00 -3,13 -3,36 -4,50 -0,14 0,31
W 49 -8,56 -3,72 -4,09 -5,52 -1,37 -0,54 -3,55 -3,89 -5,27 -1,09 -0,33 -3,14 -3,42 -4,68 -0,40 0,19
W 50 -9,44 -3,16 -3,37 -4,45 -0,04 0,35 -3,16 -3,36 -4,44 -0,03 0,35 -3,10 -3,29 -4,36 0,07 0,43
W 51 -8,63 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 52 -8,13 -3,20 -3,41 -4,50 -0,10 0,29 -3,19 -3,40 -4,49 -0,09 0,30 -3,06 -3,26 -4,32 0,11 0,47
W 53 -8,96 -3,37 -3,66 -4,92 -0,65 -0,06 -3,37 -3,65 -4,91 -0,63 -0,04 -3,25 -3,51 -4,74 -0,44 0,10
W 54 -8,63 -3,41 -3,67 -4,89 -0,58 -0,05 -3,36 -3,62 -4,82 -0,51 0,01 -3,12 -3,35 -4,49 -0,12 0,32
W 55 -8,71 -3,71 -4,08 -5,52 -1,36 -0,53 -3,54 -3,89 -5,27 -1,08 -0,32 -3,13 -3,41 -4,67 -0,39 0,19
W 56 -7,25 -2,82 -3,02 -3,94 0,57 0,84 -2,82 -3,02 -3,93 0,58 0,85 -2,74 -2,94 -3,83 0,69 0,95
W 57 -7,21 -2,65 -2,84 -3,73 0,81 1,06 -2,65 -2,83 -3,72 0,82 1,07 -2,52 -2,69 -3,56 1,01 1,23
W 58 -6,62 -2,86 -3,06 -3,99 0,51 0,79 -2,85 -3,06 -3,98 0,52 0,80 -2,73 -2,92 -3,82 0,71 0,96
W 59 -7,08 -3,05 -3,26 -4,38 0,01 0,42 -3,04 -3,25 -4,36 0,02 0,44 -2,92 -3,12 -4,20 0,21 0,59
W 60 -7,61 -3,05 -3,24 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,97 -3,97 0,50 0,81
W 61 -6,89 -3,34 -3,59 -4,78 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,17 -2,86 -3,06 -4,14 0,28 0,65
W 62 -7,68 -2,82 -3,02 -3,93 0,58 0,85 -2,81 -3,01 -3,93 0,58 0,85 -2,73 -2,93 -3,83 0,69 0,95
W 63 -7,40 -2,66 -2,84 -3,73 0,81 1,05 -2,65 -2,83 -3,72 0,82 1,06 -2,52 -2,69 -3,56 1,01 1,23
W 64 -6,88 -2,83 -3,04 -3,94 0,57 0,84 -2,83 -3,03 -3,93 0,58 0,85 -2,71 -2,90 -3,79 0,75 1,00
W 65 -7,68 -3,05 -3,27 -4,38 0,00 0,42 -3,04 -3,26 -4,37 0,01 0,43 -2,92 -3,13 -4,21 0,20 0,58
W 66 -7,84 -3,05 -3,25 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,98 -3,98 0,50 0,80
W 67 -7,14 -3,33 -3,58 -4,77 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,18 -2,86 -3,06 -4,13 0,28 0,66
W 68 -7,70 -3,18 -3,37 -4,41 0,03 0,38 -3,18 -3,37 -4,40 0,04 0,38 -3,11 -3,29 -4,31 0,14 0,47
W 69 -7,18 -3,03 -3,20 -4,21 0,26 0,57 -3,02 -3,20 -4,20 0,27 0,58 -2,91 -3,12 -4,06 0,43 0,72
W 70 -7,11 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 71 -7,28 -3,38 -3,64 -4,85 -0,54 -0,01 -3,37 -3,63 -4,84 -0,53 -0,01 -3,26 -3,51 -4,69 -0,35 0,14
W 72 -7,52 -3,41 -3,64 -4,79 -0,44 0,02 -3,38 -3,61 -4,75 -0,40 0,06 -3,18 -3,39 -4,48 -0,08 0,31
W 73 -7,56 -3,65 -3,97 -5,31 -1,09 -0,40 -3,54 -3,85 -5,16 -0,92 -0,27 -3,20 -3,45 -4,66 -0,35 0,17
W 74 -8,26 -3,17 -3,36 -4,40 0,05 0,39 -3,17 -3,36 -4,39 0,05 0,39 -3,10 -3,28 -4,30 0,15 0,48
W 75 -7,65 -3,03 -3,20 -4,20 0,27 0,58 -3,02 -3,19 -4,20 0,28 0,59 -2,91 -3,11 -4,05 0,44 0,73
W 76 -7,61 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 77 -7,78 -3,39 -3,65 -4,87 -0,56 -0,03 -3,38 -3,64 -4,86 -0,55 -0,02 -3,27 -3,52 -4,70 -0,37 0,12
W 78 -7,94 -3,40 -3,63 -4,78 -0,43 0,03 -3,37 -3,60 -4,74 -0,38 0,07 -3,17 -3,37 -4,47 -0,07 0,33
W 79 -8,01 -3,63 -3,95 -5,29 -1,06 -0,38 -3,53 -3,83 -5,14 -0,89 -0,25 -3,18 -3,44 -4,64 -0,33 0,19
W 80 -7,27 -2,63 -2,77 -3,58 1,04 1,22 -2,62 -2,77 -3,58 1,05 1,23 -2,55 -2,69 -3,48 1,15 1,32
W 82 -6,57 -2,69 -2,84 -3,65 0,96 1,15 -2,68 -2,82 -3,65 0,97 1,15 -2,56 -2,70 -3,50 1,14 1,31
W 83 -6,44 -2,67 -2,81 -3,62 1,01 1,19 -2,66 -2,80 -3,61 1,02 1,19 -2,55 -2,69 -3,47 1,18 1,34
W 86 -7,22 -2,67 -2,84 -3,68 0,90 1,11 -2,67 -2,84 -3,68 0,90 1,11 -2,62 -2,78 -3,62 0,98 1,18
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Sheet 3 Fit Simple transport method - Phi_q (continued)
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W 87 -6,40 -2,52 -2,67 -3,49 1,12 1,31 -2,51 -2,66 -3,48 1,13 1,32 -2,40 -2,55 -3,35 1,28 1,46
W 88 -6,36 -2,73 -2,89 -3,75 0,83 1,04 -2,72 -2,89 -3,74 0,83 1,05 -2,62 -2,78 -3,62 0,98 1,18
W 89 -6,27 -2,70 -2,87 -3,72 0,86 1,07 -2,70 -2,86 -3,71 0,86 1,08 -2,60 -2,76 -3,59 1,01 1,20
W 90 -6,94 -2,91 -3,11 -4,02 0,49 0,76 -2,89 -3,09 -3,99 0,52 0,79 -2,69 -2,87 -3,74 0,81 1,04
W 92 -7,62 -2,60 -2,79 -3,66 0,88 1,12 -2,60 -2,79 -3,66 0,89 1,12 -2,53 -2,71 -3,57 0,99 1,21
W 94 -6,68 -2,66 -2,86 -3,74 0,80 1,04 -2,66 -2,84 -3,73 0,81 1,05 -2,53 -2,71 -3,57 0,99 1,22
W 95 -6,25 -2,68 -2,87 -3,77 0,77 1,02 -2,68 -2,87 -3,75 0,78 1,03 -2,55 -2,73 -3,59 0,97 1,20
W 96 -6,99 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11
W 97 -7,88 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11

W 100 -7,82 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 101 -8,74 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 102 -9,35 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 103 -7,18 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 104 -7,98 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 105 -8,69 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 106 -6,80 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 107 -7,73 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 108 -8,31 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 109 -6,82 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 110 -7,81 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 111 -8,40 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 112 -8,00 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 113 -8,94 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 114 -9,48 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 115 -7,53 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 116 -8,29 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 117 -8,74 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 121 -8,20 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 122 -9,17 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 123 -9,78 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 124 -7,56 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 125 -8,56 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 126 -9,14 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 127 -7,57 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 128 -8,55 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 129 -8,99 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 130 -8,28 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 131 -9,33 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 132 -9,95 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 133 -10,27 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 134 -8,60 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 135 -9,30 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 136 -7,58 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 137 -8,61 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 138 -9,29 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95

a 0,01 0,01 0,01 0,00 0,00 0,01 0,01 0,01 0,00 0,00 0,02 0,02 0,01 0,00 0,00
b 1,12 1,05 0,77 0,65 0,87 1,23 1,14 0,83 0,70 0,93 1,48 1,36 1,00 0,83 1,09

rsq 0,16 0,19 0,21 0,23 0,21 0,17 0,19 0,22 0,23 0,22 0,16 0,19 0,22 0,24 0,22

u = uc u = u_hc

Test nr ln(Phi)

u = u0



Fit of a transport equation to model tests with pipeline covers
Sheet 4 Fit Simple transport method - Hallermeijer
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W 1 -7,26 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 2 -8,04 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 3 -7,22 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 4 -7,86 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 5 -6,91 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 6 -7,84 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 7 -6,91 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 8 -7,28 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 9 -6,63 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66

W 10 -7,38 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66
W 11 -6,97 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 12 -7,54 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 13 -7,29 -3,87 -4,35 -6,00 -1,98 -0,81 -3,74 -4,21 -5,81 -1,77 -0,67 -3,40 -3,79 -5,28 -1,15 -0,25
W 14 -8,00 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 15 -8,09 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 18 -5,64 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 19 -6,23 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 20 -5,83 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 21 -6,08 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 22 -4,11 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 23 -4,51 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 26 -5,77 -3,24 -3,48 -4,65 -0,32 0,17 -3,23 -3,48 -4,65 -0,31 0,17 -3,15 -3,38 -4,53 -0,18 0,28
W 27 -8,38 -3,38 -3,71 -5,07 -0,87 -0,14 -3,36 -3,69 -5,05 -0,84 -0,12 -3,21 -3,52 -4,83 -0,60 0,06
W 28 -6,89 -3,41 -3,74 -5,11 -0,91 -0,18 -3,39 -3,72 -5,09 -0,89 -0,16 -3,24 -3,56 -4,88 -0,65 0,02
W 29 -6,17 -3,42 -3,75 -5,13 -0,93 -0,19 -3,40 -3,74 -5,11 -0,91 -0,17 -3,26 -3,57 -4,90 -0,67 0,00
W 30 -8,47 -3,64 -4,04 -5,54 -1,42 -0,50 -3,57 -3,96 -5,43 -1,30 -0,42 -3,29 -3,63 -5,01 -0,82 -0,07
W 32 -5,98 -2,84 -3,01 -4,02 0,45 0,76 -2,84 -3,01 -4,02 0,46 0,77 -2,76 -2,93 -3,91 0,57 0,87
W 33 -7,26 -3,00 -3,24 -4,40 -0,05 0,42 -2,99 -3,22 -4,38 -0,03 0,43 -2,86 -3,08 -4,20 0,17 0,60
W 34 -7,29 -3,04 -3,27 -4,42 -0,06 0,39 -3,03 -3,26 -4,40 -0,04 0,41 -2,90 -3,12 -4,23 0,15 0,57
W 35 -6,09 -3,07 -3,31 -4,49 -0,16 0,33 -3,06 -3,30 -4,48 -0,14 0,34 -2,94 -3,17 -4,32 0,04 0,49
W 36 -7,08 -3,28 -3,56 -4,82 -0,55 0,04 -3,24 -3,51 -4,76 -0,48 0,10 -2,98 -3,23 -4,41 -0,07 0,42
W 38 -5,10 -2,62 -2,79 -3,68 0,87 1,10 -2,61 -2,79 -3,68 0,87 1,11 -2,55 -2,72 -3,59 0,97 1,20
W 40 -6,41 -2,86 -3,06 -4,14 0,28 0,65 -2,85 -3,05 -4,12 0,29 0,67 -2,72 -2,91 -3,96 0,47 0,82
W 41 -4,89 -2,90 -3,11 -4,20 0,21 0,60 -2,89 -3,10 -4,18 0,22 0,61 -2,77 -2,96 -4,02 0,41 0,77
W 44 -6,38 -3,19 -3,40 -4,50 -0,10 0,30 -3,19 -3,40 -4,49 -0,10 0,30 -3,12 -3,32 -4,40 0,00 0,39
W 45 -5,69 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 46 -5,03 -3,21 -3,41 -4,50 -0,10 0,29 -3,20 -3,40 -4,49 -0,09 0,30 -3,07 -3,26 -4,32 0,11 0,47
W 47 -6,16 -3,37 -3,65 -4,91 -0,64 -0,05 -3,36 -3,64 -4,90 -0,62 -0,04 -3,24 -3,51 -4,73 -0,43 0,11
W 48 -5,83 -3,42 -3,68 -4,90 -0,60 -0,06 -3,37 -3,63 -4,84 -0,53 0,00 -3,13 -3,36 -4,50 -0,14 0,31
W 49 -6,21 -3,72 -4,09 -5,52 -1,37 -0,54 -3,55 -3,89 -5,27 -1,09 -0,33 -3,14 -3,42 -4,68 -0,40 0,19
W 50 -6,74 -3,16 -3,37 -4,45 -0,04 0,35 -3,16 -3,36 -4,44 -0,03 0,35 -3,10 -3,29 -4,36 0,07 0,43
W 51 -5,95 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 52 -5,43 -3,20 -3,41 -4,50 -0,10 0,29 -3,19 -3,40 -4,49 -0,09 0,30 -3,06 -3,26 -4,32 0,11 0,47
W 53 -6,50 -3,37 -3,66 -4,92 -0,65 -0,06 -3,37 -3,65 -4,91 -0,63 -0,04 -3,25 -3,51 -4,74 -0,44 0,10
W 54 -6,07 -3,41 -3,67 -4,89 -0,58 -0,05 -3,36 -3,62 -4,82 -0,51 0,01 -3,12 -3,35 -4,49 -0,12 0,32
W 55 -6,37 -3,71 -4,08 -5,52 -1,36 -0,53 -3,54 -3,89 -5,27 -1,08 -0,32 -3,13 -3,41 -4,67 -0,39 0,19
W 56 -4,45 -2,82 -3,02 -3,94 0,57 0,84 -2,82 -3,02 -3,93 0,58 0,85 -2,74 -2,94 -3,83 0,69 0,95
W 57 -4,42 -2,65 -2,84 -3,73 0,81 1,06 -2,65 -2,83 -3,72 0,82 1,07 -2,52 -2,69 -3,56 1,01 1,23
W 58 -3,83 -2,86 -3,06 -3,99 0,51 0,79 -2,85 -3,06 -3,98 0,52 0,80 -2,73 -2,92 -3,82 0,71 0,96
W 59 -4,51 -3,05 -3,26 -4,38 0,01 0,42 -3,04 -3,25 -4,36 0,02 0,44 -2,92 -3,12 -4,20 0,21 0,59
W 60 -4,92 -3,05 -3,24 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,97 -3,97 0,50 0,81
W 61 -4,32 -3,34 -3,59 -4,78 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,17 -2,86 -3,06 -4,14 0,28 0,65
W 62 -4,88 -2,82 -3,02 -3,93 0,58 0,85 -2,81 -3,01 -3,93 0,58 0,85 -2,73 -2,93 -3,83 0,69 0,95
W 63 -4,61 -2,66 -2,84 -3,73 0,81 1,05 -2,65 -2,83 -3,72 0,82 1,06 -2,52 -2,69 -3,56 1,01 1,23
W 64 -4,06 -2,83 -3,04 -3,94 0,57 0,84 -2,83 -3,03 -3,93 0,58 0,85 -2,71 -2,90 -3,79 0,75 1,00
W 65 -5,11 -3,05 -3,27 -4,38 0,00 0,42 -3,04 -3,26 -4,37 0,01 0,43 -2,92 -3,13 -4,21 0,20 0,58
W 66 -5,14 -3,05 -3,25 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,98 -3,98 0,50 0,80
W 67 -4,58 -3,33 -3,58 -4,77 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,18 -2,86 -3,06 -4,13 0,28 0,66
W 68 -4,90 -3,18 -3,37 -4,41 0,03 0,38 -3,18 -3,37 -4,40 0,04 0,38 -3,11 -3,29 -4,31 0,14 0,47
W 69 -4,39 -3,03 -3,20 -4,21 0,26 0,57 -3,02 -3,20 -4,20 0,27 0,58 -2,91 -3,12 -4,06 0,43 0,72
W 70 -4,32 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 71 -4,73 -3,38 -3,64 -4,85 -0,54 -0,01 -3,37 -3,63 -4,84 -0,53 -0,01 -3,26 -3,51 -4,69 -0,35 0,14
W 72 -4,85 -3,41 -3,64 -4,79 -0,44 0,02 -3,38 -3,61 -4,75 -0,40 0,06 -3,18 -3,39 -4,48 -0,08 0,31
W 73 -5,10 -3,65 -3,97 -5,31 -1,09 -0,40 -3,54 -3,85 -5,16 -0,92 -0,27 -3,20 -3,45 -4,66 -0,35 0,17
W 74 -5,47 -3,17 -3,36 -4,40 0,05 0,39 -3,17 -3,36 -4,39 0,05 0,39 -3,10 -3,28 -4,30 0,15 0,48
W 75 -4,86 -3,03 -3,20 -4,20 0,27 0,58 -3,02 -3,19 -4,20 0,28 0,59 -2,91 -3,11 -4,05 0,44 0,73
W 76 -4,81 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 77 -5,22 -3,39 -3,65 -4,87 -0,56 -0,03 -3,38 -3,64 -4,86 -0,55 -0,02 -3,27 -3,52 -4,70 -0,37 0,12
W 78 -5,27 -3,40 -3,63 -4,78 -0,43 0,03 -3,37 -3,60 -4,74 -0,38 0,07 -3,17 -3,37 -4,47 -0,07 0,33
W 79 -5,55 -3,63 -3,95 -5,29 -1,06 -0,38 -3,53 -3,83 -5,14 -0,89 -0,25 -3,18 -3,44 -4,64 -0,33 0,19
W 80 -4,25 -2,63 -2,77 -3,58 1,04 1,22 -2,62 -2,77 -3,58 1,05 1,23 -2,55 -2,69 -3,48 1,15 1,32
W 82 -3,55 -2,69 -2,84 -3,65 0,96 1,15 -2,68 -2,82 -3,65 0,97 1,15 -2,56 -2,70 -3,50 1,14 1,31
W 83 -3,39 -2,67 -2,81 -3,62 1,01 1,19 -2,66 -2,80 -3,61 1,02 1,19 -2,55 -2,69 -3,47 1,18 1,34
W 86 -4,30 -2,67 -2,84 -3,68 0,90 1,11 -2,67 -2,84 -3,68 0,90 1,11 -2,62 -2,78 -3,62 0,98 1,18

u = u_hc

Test nr ln(Phi)

u = u0 u = uc
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Sheet 4 Fit Simple transport method - Hallermeijer (continued)
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W 87 -3,48 -2,52 -2,67 -3,49 1,12 1,31 -2,51 -2,66 -3,48 1,13 1,32 -2,40 -2,55 -3,35 1,28 1,46
W 88 -3,43 -2,73 -2,89 -3,75 0,83 1,04 -2,72 -2,89 -3,74 0,83 1,05 -2,62 -2,78 -3,62 0,98 1,18
W 89 -3,34 -2,70 -2,87 -3,72 0,86 1,07 -2,70 -2,86 -3,71 0,86 1,08 -2,60 -2,76 -3,59 1,01 1,20
W 90 -4,08 -2,91 -3,11 -4,02 0,49 0,76 -2,89 -3,09 -3,99 0,52 0,79 -2,69 -2,87 -3,74 0,81 1,04
W 92 -4,83 -2,60 -2,79 -3,66 0,88 1,12 -2,60 -2,79 -3,66 0,89 1,12 -2,53 -2,71 -3,57 0,99 1,21
W 94 -3,89 -2,66 -2,86 -3,74 0,80 1,04 -2,66 -2,84 -3,73 0,81 1,05 -2,53 -2,71 -3,57 0,99 1,22
W 95 -3,45 -2,68 -2,87 -3,77 0,77 1,02 -2,68 -2,87 -3,75 0,78 1,03 -2,55 -2,73 -3,59 0,97 1,20
W 96 -4,16 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11
W 97 -5,05 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11

W 100 -4,99 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 101 -5,91 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 102 -6,52 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 103 -4,35 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 104 -5,15 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 105 -5,86 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 106 -3,96 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 107 -4,89 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 108 -5,48 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 109 -3,98 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 110 -4,98 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 111 -5,57 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 112 -5,23 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 113 -6,16 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 114 -6,70 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 115 -4,76 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 116 -5,51 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 117 -5,97 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 121 -5,42 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 122 -6,39 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 123 -7,01 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 124 -4,78 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 125 -5,78 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 126 -6,36 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 127 -4,80 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 128 -5,77 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 129 -6,21 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 130 -5,51 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 131 -6,56 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 132 -7,18 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 133 -7,50 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 134 -5,83 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 135 -6,52 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 136 -4,81 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 137 -5,84 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 138 -6,52 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95

a 0,38 0,39 0,33 0,00 0,00 0,57 0,56 0,46 0,00 0,00 1,11 1,01 0,84 0,00 0,00
b 1,53 1,44 1,04 0,88 1,18 1,68 1,55 1,13 0,94 1,26 2,01 1,84 1,34 1,11 1,46

rsq 0,25 0,28 0,31 0,33 0,31 0,25 0,28 0,32 0,34 0,31 0,24 0,27 0,32 0,34 0,32

Test nr ln(Phi)

u = u0 u = uc u = u_hc
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Sheet 5 Fit Critical scour method - Phi_q
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W 1 -8,68 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 2 -9,46 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 3 -8,81 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 4 -9,46 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 5 -8,64 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 6 -9,58 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 7 -8,64 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 8 -9,05 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 9 -8,47 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66

W 10 -9,24 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66
W 11 -8,80 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 12 -9,39 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 13 -8,69 -3,87 -4,35 -6,00 -1,98 -0,81 -3,74 -4,21 -5,81 -1,77 -0,67 -3,40 -3,79 -5,28 -1,15 -0,25
W 14 -9,58 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 15 -9,68 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 18 -6,70 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 19 -7,33 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 20 -7,05 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 21 -7,37 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 22 -5,65 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 23 -6,19 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 26 -9,04 -3,24 -3,48 -4,65 -0,32 0,17 -3,23 -3,48 -4,65 -0,31 0,17 -3,15 -3,38 -4,53 -0,18 0,28
W 27 -3,38 -3,71 -5,07 -0,87 -0,14 -3,36 -3,69 -5,05 -0,84 -0,12 -3,21 -3,52 -4,83 -0,60 0,06
W 28 -11,38 -3,41 -3,74 -5,11 -0,91 -0,18 -3,39 -3,72 -5,09 -0,89 -0,16 -3,24 -3,56 -4,88 -0,65 0,02
W 29 -10,04 -3,42 -3,75 -5,13 -0,93 -0,19 -3,40 -3,74 -5,11 -0,91 -0,17 -3,26 -3,57 -4,90 -0,67 0,00
W 30 -11,09 -3,64 -4,04 -5,54 -1,42 -0,50 -3,57 -3,96 -5,43 -1,30 -0,42 -3,29 -3,63 -5,01 -0,82 -0,07
W 32 -8,64 -2,84 -3,01 -4,02 0,45 0,76 -2,84 -3,01 -4,02 0,46 0,77 -2,76 -2,93 -3,91 0,57 0,87
W 33 -9,84 -3,00 -3,24 -4,40 -0,05 0,42 -2,99 -3,22 -4,38 -0,03 0,43 -2,86 -3,08 -4,20 0,17 0,60
W 34 -10,04 -3,04 -3,27 -4,42 -0,06 0,39 -3,03 -3,26 -4,40 -0,04 0,41 -2,90 -3,12 -4,23 0,15 0,57
W 35 -9,71 -3,07 -3,31 -4,49 -0,16 0,33 -3,06 -3,30 -4,48 -0,14 0,34 -2,94 -3,17 -4,32 0,04 0,49
W 36 -3,28 -3,56 -4,82 -0,55 0,04 -3,24 -3,51 -4,76 -0,48 0,10 -2,98 -3,23 -4,41 -0,07 0,42
W 38 -8,13 -2,62 -2,79 -3,68 0,87 1,10 -2,61 -2,79 -3,68 0,87 1,11 -2,55 -2,72 -3,59 0,97 1,20
W 40 -10,01 -2,86 -3,06 -4,14 0,28 0,65 -2,85 -3,05 -4,12 0,29 0,67 -2,72 -2,91 -3,96 0,47 0,82
W 41 -8,46 -2,90 -3,11 -4,20 0,21 0,60 -2,89 -3,10 -4,18 0,22 0,61 -2,77 -2,96 -4,02 0,41 0,77
W 44 -9,32 -3,19 -3,40 -4,50 -0,10 0,30 -3,19 -3,40 -4,49 -0,10 0,30 -3,12 -3,32 -4,40 0,00 0,39
W 45 -10,00 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 46 -7,93 -3,21 -3,41 -4,50 -0,10 0,29 -3,20 -3,40 -4,49 -0,09 0,30 -3,07 -3,26 -4,32 0,11 0,47
W 47 -10,67 -3,37 -3,65 -4,91 -0,64 -0,05 -3,36 -3,64 -4,90 -0,62 -0,04 -3,24 -3,51 -4,73 -0,43 0,11
W 48 -8,99 -3,42 -3,68 -4,90 -0,60 -0,06 -3,37 -3,63 -4,84 -0,53 0,00 -3,13 -3,36 -4,50 -0,14 0,31
W 49 -8,28 -3,72 -4,09 -5,52 -1,37 -0,54 -3,55 -3,89 -5,27 -1,09 -0,33 -3,14 -3,42 -4,68 -0,40 0,19
W 50 -9,82 -3,16 -3,37 -4,45 -0,04 0,35 -3,16 -3,36 -4,44 -0,03 0,35 -3,10 -3,29 -4,36 0,07 0,43
W 51 -9,78 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 52 -8,39 -3,20 -3,41 -4,50 -0,10 0,29 -3,19 -3,40 -4,49 -0,09 0,30 -3,06 -3,26 -4,32 0,11 0,47
W 53 -10,56 -3,37 -3,66 -4,92 -0,65 -0,06 -3,37 -3,65 -4,91 -0,63 -0,04 -3,25 -3,51 -4,74 -0,44 0,10
W 54 -9,68 -3,41 -3,67 -4,89 -0,58 -0,05 -3,36 -3,62 -4,82 -0,51 0,01 -3,12 -3,35 -4,49 -0,12 0,32
W 55 -8,72 -3,71 -4,08 -5,52 -1,36 -0,53 -3,54 -3,89 -5,27 -1,08 -0,32 -3,13 -3,41 -4,67 -0,39 0,19
W 56 -7,23 -2,82 -3,02 -3,94 0,57 0,84 -2,82 -3,02 -3,93 0,58 0,85 -2,74 -2,94 -3,83 0,69 0,95
W 57 -7,22 -2,65 -2,84 -3,73 0,81 1,06 -2,65 -2,83 -3,72 0,82 1,07 -2,52 -2,69 -3,56 1,01 1,23
W 58 -6,74 -2,86 -3,06 -3,99 0,51 0,79 -2,85 -3,06 -3,98 0,52 0,80 -2,73 -2,92 -3,82 0,71 0,96
W 59 -7,68 -3,05 -3,26 -4,38 0,01 0,42 -3,04 -3,25 -4,36 0,02 0,44 -2,92 -3,12 -4,20 0,21 0,59
W 60 -8,12 -3,05 -3,24 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,97 -3,97 0,50 0,81
W 61 -7,06 -3,34 -3,59 -4,78 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,17 -2,86 -3,06 -4,14 0,28 0,65
W 62 -7,80 -2,82 -3,02 -3,93 0,58 0,85 -2,81 -3,01 -3,93 0,58 0,85 -2,73 -2,93 -3,83 0,69 0,95
W 63 -7,22 -2,66 -2,84 -3,73 0,81 1,05 -2,65 -2,83 -3,72 0,82 1,06 -2,52 -2,69 -3,56 1,01 1,23
W 64 -7,05 -2,83 -3,04 -3,94 0,57 0,84 -2,83 -3,03 -3,93 0,58 0,85 -2,71 -2,90 -3,79 0,75 1,00
W 65 -8,31 -3,05 -3,27 -4,38 0,00 0,42 -3,04 -3,26 -4,37 0,01 0,43 -2,92 -3,13 -4,21 0,20 0,58
W 66 -8,58 -3,05 -3,25 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,98 -3,98 0,50 0,80
W 67 -6,97 -3,33 -3,58 -4,77 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,18 -2,86 -3,06 -4,13 0,28 0,66
W 68 -7,71 -3,18 -3,37 -4,41 0,03 0,38 -3,18 -3,37 -4,40 0,04 0,38 -3,11 -3,29 -4,31 0,14 0,47
W 69 -7,41 -3,03 -3,20 -4,21 0,26 0,57 -3,02 -3,20 -4,20 0,27 0,58 -2,91 -3,12 -4,06 0,43 0,72
W 70 -7,34 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 71 -8,18 -3,38 -3,64 -4,85 -0,54 -0,01 -3,37 -3,63 -4,84 -0,53 -0,01 -3,26 -3,51 -4,69 -0,35 0,14
W 72 -3,41 -3,64 -4,79 -0,44 0,02 -3,38 -3,61 -4,75 -0,40 0,06 -3,18 -3,39 -4,48 -0,08 0,31
W 73 -8,43 -3,65 -3,97 -5,31 -1,09 -0,40 -3,54 -3,85 -5,16 -0,92 -0,27 -3,20 -3,45 -4,66 -0,35 0,17
W 74 -8,41 -3,17 -3,36 -4,40 0,05 0,39 -3,17 -3,36 -4,39 0,05 0,39 -3,10 -3,28 -4,30 0,15 0,48
W 75 -8,00 -3,03 -3,20 -4,20 0,27 0,58 -3,02 -3,19 -4,20 0,28 0,59 -2,91 -3,11 -4,05 0,44 0,73
W 76 -7,97 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 77 -8,62 -3,39 -3,65 -4,87 -0,56 -0,03 -3,38 -3,64 -4,86 -0,55 -0,02 -3,27 -3,52 -4,70 -0,37 0,12
W 78 -9,82 -3,40 -3,63 -4,78 -0,43 0,03 -3,37 -3,60 -4,74 -0,38 0,07 -3,17 -3,37 -4,47 -0,07 0,33
W 79 -9,12 -3,63 -3,95 -5,29 -1,06 -0,38 -3,53 -3,83 -5,14 -0,89 -0,25 -3,18 -3,44 -4,64 -0,33 0,19
W 80 -7,15 -2,63 -2,77 -3,58 1,04 1,22 -2,62 -2,77 -3,58 1,05 1,23 -2,55 -2,69 -3,48 1,15 1,32
W 82 -6,52 -2,69 -2,84 -3,65 0,96 1,15 -2,68 -2,82 -3,65 0,97 1,15 -2,56 -2,70 -3,50 1,14 1,31
W 83 -6,91 -2,67 -2,81 -3,62 1,01 1,19 -2,66 -2,80 -3,61 1,02 1,19 -2,55 -2,69 -3,47 1,18 1,34
W 86 -7,48 -2,67 -2,84 -3,68 0,90 1,11 -2,67 -2,84 -3,68 0,90 1,11 -2,62 -2,78 -3,62 0,98 1,18

u = u_hc

Test nr ln(Phi)

u = u0 u = uc



Fit of a transport equation to model tests with pipeline covers
Sheet 5 Fit Critical scour method - Phi_q (continued)
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W 87 -6,19 -2,52 -2,67 -3,49 1,12 1,31 -2,51 -2,66 -3,48 1,13 1,32 -2,40 -2,55 -3,35 1,28 1,46
W 88 -6,44 -2,73 -2,89 -3,75 0,83 1,04 -2,72 -2,89 -3,74 0,83 1,05 -2,62 -2,78 -3,62 0,98 1,18
W 89 -6,53 -2,70 -2,87 -3,72 0,86 1,07 -2,70 -2,86 -3,71 0,86 1,08 -2,60 -2,76 -3,59 1,01 1,20
W 90 -7,17 -2,91 -3,11 -4,02 0,49 0,76 -2,89 -3,09 -3,99 0,52 0,79 -2,69 -2,87 -3,74 0,81 1,04
W 92 -7,86 -2,60 -2,79 -3,66 0,88 1,12 -2,60 -2,79 -3,66 0,89 1,12 -2,53 -2,71 -3,57 0,99 1,21
W 94 -6,81 -2,66 -2,86 -3,74 0,80 1,04 -2,66 -2,84 -3,73 0,81 1,05 -2,53 -2,71 -3,57 0,99 1,22
W 95 -6,63 -2,68 -2,87 -3,77 0,77 1,02 -2,68 -2,87 -3,75 0,78 1,03 -2,55 -2,73 -3,59 0,97 1,20
W 96 -7,16 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11
W 97 -8,15 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11

W 100 -7,26 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 101 -8,24 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 102 -8,87 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 103 -6,71 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 104 -7,59 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 105 -8,30 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 106 -6,18 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 107 -7,18 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 108 -7,83 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 109 -6,27 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 110 -7,32 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 111 -7,94 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 112 -7,45 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 113 -8,41 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 114 -8,99 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 115 -6,73 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 116 -7,58 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 117 -8,12 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 121 -7,62 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 122 -8,60 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 123 -9,24 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 124 -6,95 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 125 -7,98 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 126 -8,59 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 127 -6,78 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 128 -7,79 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 129 -8,31 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 130 -7,65 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 131 -8,74 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 132 -9,36 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 133 -9,55 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 134 -7,96 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 135 -8,65 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 136 -6,77 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 137 -7,81 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 138 -8,52 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95

a 0,01 0,01 0,01 0,00 0,00 0,02 0,01 0,01 0,00 0,00 0,06 0,04 0,04 0,00 0,00
b 1,17 1,09 0,82 0,70 0,95 1,34 1,23 0,91 0,77 1,05 1,87 1,65 1,19 0,99 1,33

rsq 0,16 0,18 0,21 0,23 0,22 0,18 0,19 0,23 0,25 0,24 0,23 0,24 0,28 0,30 0,29

Test nr ln(Phi)

u = u0 u = uc u = u_hc



Fit of a transport equation to model tests with pipeline covers
Sheet 6 Fit Critical scour method - Hallermeijer
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W 1 -6,55 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 2 -7,34 -4,49 -4,76 -6,54 -2,59 -1,21 -4,31 -4,64 -6,38 -2,41 -1,10 -3,79 -4,26 -5,88 -1,84 -0,73
W 3 -6,51 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 4 -7,16 -3,68 -4,06 -5,51 -1,36 -0,51 -3,61 -3,98 -5,41 -1,26 -0,43 -3,34 -3,66 -5,00 -0,79 -0,09
W 5 -6,21 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 6 -7,15 -3,32 -3,60 -4,86 -0,59 0,00 -3,28 -3,55 -4,80 -0,52 0,06 -3,02 -3,26 -4,44 -0,10 0,38
W 7 -6,21 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 8 -6,62 -3,33 -3,61 -4,87 -0,60 -0,01 -3,28 -3,56 -4,81 -0,53 0,05 -3,03 -3,27 -4,45 -0,12 0,37
W 9 -5,94 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66

W 10 -6,71 -3,13 -3,36 -4,52 -0,17 0,30 -3,09 -3,32 -4,47 -0,11 0,34 -2,84 -3,04 -4,13 0,28 0,66
W 11 -6,27 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 12 -6,86 -3,14 -3,38 -4,54 -0,19 0,28 -3,10 -3,33 -4,48 -0,13 0,33 -2,85 -3,06 -4,15 0,26 0,65
W 13 -6,57 -3,87 -4,35 -6,00 -1,98 -0,81 -3,74 -4,21 -5,81 -1,77 -0,67 -3,40 -3,79 -5,28 -1,15 -0,25
W 14 -7,28 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 15 -7,38 -3,41 -3,75 -5,12 -0,92 -0,18 -3,34 -3,66 -5,00 -0,79 -0,09 -3,01 -3,29 -4,54 -0,26 0,32
W 18 -4,15 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 19 -4,78 -4,11 -4,47 -5,90 -1,75 -0,92 -4,00 -4,35 -5,75 -1,57 -0,79 -3,66 -3,96 -5,25 -1,00 -0,37
W 20 -4,33 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 21 -4,65 -3,49 -3,72 -4,88 -0,52 -0,06 -3,42 -3,65 -4,78 -0,41 0,03 -3,11 -3,31 -4,37 0,06 0,42
W 22 -2,79 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 23 -3,34 -3,06 -3,23 -4,22 0,27 0,56 -3,01 -3,23 -4,16 0,34 0,63 -2,73 -2,91 -3,80 0,75 0,99
W 26 -6,48 -3,24 -3,48 -4,65 -0,32 0,17 -3,23 -3,48 -4,65 -0,31 0,17 -3,15 -3,38 -4,53 -0,18 0,28
W 27 -3,38 -3,71 -5,07 -0,87 -0,14 -3,36 -3,69 -5,05 -0,84 -0,12 -3,21 -3,52 -4,83 -0,60 0,06
W 28 -9,09 -3,41 -3,74 -5,11 -0,91 -0,18 -3,39 -3,72 -5,09 -0,89 -0,16 -3,24 -3,56 -4,88 -0,65 0,02
W 29 -7,75 -3,42 -3,75 -5,13 -0,93 -0,19 -3,40 -3,74 -5,11 -0,91 -0,17 -3,26 -3,57 -4,90 -0,67 0,00
W 30 -8,87 -3,64 -4,04 -5,54 -1,42 -0,50 -3,57 -3,96 -5,43 -1,30 -0,42 -3,29 -3,63 -5,01 -0,82 -0,07
W 32 -5,94 -2,84 -3,01 -4,02 0,45 0,76 -2,84 -3,01 -4,02 0,46 0,77 -2,76 -2,93 -3,91 0,57 0,87
W 33 -7,38 -3,00 -3,24 -4,40 -0,05 0,42 -2,99 -3,22 -4,38 -0,03 0,43 -2,86 -3,08 -4,20 0,17 0,60
W 34 -7,54 -3,04 -3,27 -4,42 -0,06 0,39 -3,03 -3,26 -4,40 -0,04 0,41 -2,90 -3,12 -4,23 0,15 0,57
W 35 -7,26 -3,07 -3,31 -4,49 -0,16 0,33 -3,06 -3,30 -4,48 -0,14 0,34 -2,94 -3,17 -4,32 0,04 0,49
W 36 -3,28 -3,56 -4,82 -0,55 0,04 -3,24 -3,51 -4,76 -0,48 0,10 -2,98 -3,23 -4,41 -0,07 0,42
W 38 -5,34 -2,62 -2,79 -3,68 0,87 1,10 -2,61 -2,79 -3,68 0,87 1,11 -2,55 -2,72 -3,59 0,97 1,20
W 40 -7,46 -2,86 -3,06 -4,14 0,28 0,65 -2,85 -3,05 -4,12 0,29 0,67 -2,72 -2,91 -3,96 0,47 0,82
W 41 -5,91 -2,90 -3,11 -4,20 0,21 0,60 -2,89 -3,10 -4,18 0,22 0,61 -2,77 -2,96 -4,02 0,41 0,77
W 44 -6,64 -3,19 -3,40 -4,50 -0,10 0,30 -3,19 -3,40 -4,49 -0,10 0,30 -3,12 -3,32 -4,40 0,00 0,39
W 45 -7,32 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 46 -5,23 -3,21 -3,41 -4,50 -0,10 0,29 -3,20 -3,40 -4,49 -0,09 0,30 -3,07 -3,26 -4,32 0,11 0,47
W 47 -8,22 -3,37 -3,65 -4,91 -0,64 -0,05 -3,36 -3,64 -4,90 -0,62 -0,04 -3,24 -3,51 -4,73 -0,43 0,11
W 48 -6,43 -3,42 -3,68 -4,90 -0,60 -0,06 -3,37 -3,63 -4,84 -0,53 0,00 -3,13 -3,36 -4,50 -0,14 0,31
W 49 -5,94 -3,72 -4,09 -5,52 -1,37 -0,54 -3,55 -3,89 -5,27 -1,09 -0,33 -3,14 -3,42 -4,68 -0,40 0,19
W 50 -7,12 -3,16 -3,37 -4,45 -0,04 0,35 -3,16 -3,36 -4,44 -0,03 0,35 -3,10 -3,29 -4,36 0,07 0,43
W 51 -7,10 -3,04 -3,23 -4,29 0,13 0,49 -3,02 -3,22 -4,28 0,15 0,51 -2,89 -3,07 -4,10 0,36 0,69
W 52 -5,69 -3,20 -3,41 -4,50 -0,10 0,29 -3,19 -3,40 -4,49 -0,09 0,30 -3,06 -3,26 -4,32 0,11 0,47
W 53 -8,10 -3,37 -3,66 -4,92 -0,65 -0,06 -3,37 -3,65 -4,91 -0,63 -0,04 -3,25 -3,51 -4,74 -0,44 0,10
W 54 -7,12 -3,41 -3,67 -4,89 -0,58 -0,05 -3,36 -3,62 -4,82 -0,51 0,01 -3,12 -3,35 -4,49 -0,12 0,32
W 55 -6,37 -3,71 -4,08 -5,52 -1,36 -0,53 -3,54 -3,89 -5,27 -1,08 -0,32 -3,13 -3,41 -4,67 -0,39 0,19
W 56 -4,43 -2,82 -3,02 -3,94 0,57 0,84 -2,82 -3,02 -3,93 0,58 0,85 -2,74 -2,94 -3,83 0,69 0,95
W 57 -4,43 -2,65 -2,84 -3,73 0,81 1,06 -2,65 -2,83 -3,72 0,82 1,07 -2,52 -2,69 -3,56 1,01 1,23
W 58 -3,94 -2,86 -3,06 -3,99 0,51 0,79 -2,85 -3,06 -3,98 0,52 0,80 -2,73 -2,92 -3,82 0,71 0,96
W 59 -5,11 -3,05 -3,26 -4,38 0,01 0,42 -3,04 -3,25 -4,36 0,02 0,44 -2,92 -3,12 -4,20 0,21 0,59
W 60 -5,42 -3,05 -3,24 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,97 -3,97 0,50 0,81
W 61 -4,50 -3,34 -3,59 -4,78 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,17 -2,86 -3,06 -4,14 0,28 0,65
W 62 -5,00 -2,82 -3,02 -3,93 0,58 0,85 -2,81 -3,01 -3,93 0,58 0,85 -2,73 -2,93 -3,83 0,69 0,95
W 63 -4,43 -2,66 -2,84 -3,73 0,81 1,05 -2,65 -2,83 -3,72 0,82 1,06 -2,52 -2,69 -3,56 1,01 1,23
W 64 -4,23 -2,83 -3,04 -3,94 0,57 0,84 -2,83 -3,03 -3,93 0,58 0,85 -2,71 -2,90 -3,79 0,75 1,00
W 65 -5,73 -3,05 -3,27 -4,38 0,00 0,42 -3,04 -3,26 -4,37 0,01 0,43 -2,92 -3,13 -4,21 0,20 0,58
W 66 -5,88 -3,05 -3,25 -4,30 0,13 0,49 -3,02 -3,21 -4,26 0,18 0,53 -2,80 -2,98 -3,98 0,50 0,80
W 67 -4,41 -3,33 -3,58 -4,77 -0,45 0,05 -3,24 -3,48 -4,64 -0,30 0,18 -2,86 -3,06 -4,13 0,28 0,66
W 68 -4,92 -3,18 -3,37 -4,41 0,03 0,38 -3,18 -3,37 -4,40 0,04 0,38 -3,11 -3,29 -4,31 0,14 0,47
W 69 -4,61 -3,03 -3,20 -4,21 0,26 0,57 -3,02 -3,20 -4,20 0,27 0,58 -2,91 -3,12 -4,06 0,43 0,72
W 70 -4,54 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 71 -5,63 -3,38 -3,64 -4,85 -0,54 -0,01 -3,37 -3,63 -4,84 -0,53 -0,01 -3,26 -3,51 -4,69 -0,35 0,14
W 72 -3,41 -3,64 -4,79 -0,44 0,02 -3,38 -3,61 -4,75 -0,40 0,06 -3,18 -3,39 -4,48 -0,08 0,31
W 73 -5,97 -3,65 -3,97 -5,31 -1,09 -0,40 -3,54 -3,85 -5,16 -0,92 -0,27 -3,20 -3,45 -4,66 -0,35 0,17
W 74 -5,61 -3,17 -3,36 -4,40 0,05 0,39 -3,17 -3,36 -4,39 0,05 0,39 -3,10 -3,28 -4,30 0,15 0,48
W 75 -5,20 -3,03 -3,20 -4,20 0,27 0,58 -3,02 -3,19 -4,20 0,28 0,59 -2,91 -3,11 -4,05 0,44 0,73
W 76 -5,18 -3,22 -3,41 -4,46 -0,02 0,33 -3,21 -3,40 -4,45 -0,01 0,34 -3,10 -3,28 -4,30 0,15 0,48
W 77 -6,07 -3,39 -3,65 -4,87 -0,56 -0,03 -3,38 -3,64 -4,86 -0,55 -0,02 -3,27 -3,52 -4,70 -0,37 0,12
W 78 -7,15 -3,40 -3,63 -4,78 -0,43 0,03 -3,37 -3,60 -4,74 -0,38 0,07 -3,17 -3,37 -4,47 -0,07 0,33
W 79 -6,66 -3,63 -3,95 -5,29 -1,06 -0,38 -3,53 -3,83 -5,14 -0,89 -0,25 -3,18 -3,44 -4,64 -0,33 0,19
W 80 -4,13 -2,63 -2,77 -3,58 1,04 1,22 -2,62 -2,77 -3,58 1,05 1,23 -2,55 -2,69 -3,48 1,15 1,32
W 82 -3,51 -2,69 -2,84 -3,65 0,96 1,15 -2,68 -2,82 -3,65 0,97 1,15 -2,56 -2,70 -3,50 1,14 1,31
W 83 -3,86 -2,67 -2,81 -3,62 1,01 1,19 -2,66 -2,80 -3,61 1,02 1,19 -2,55 -2,69 -3,47 1,18 1,34
W 86 -4,55 -2,67 -2,84 -3,68 0,90 1,11 -2,67 -2,84 -3,68 0,90 1,11 -2,62 -2,78 -3,62 0,98 1,18

u = u_hc

Test nr ln(Phi)

u = u0 u = uc



Fit of a transport equation to model tests with pipeline covers
Sheet 6 Fit Critical scour method - Hallermeijer (continued)
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W 87 -3,26 -2,52 -2,67 -3,49 1,12 1,31 -2,51 -2,66 -3,48 1,13 1,32 -2,40 -2,55 -3,35 1,28 1,46
W 88 -3,51 -2,73 -2,89 -3,75 0,83 1,04 -2,72 -2,89 -3,74 0,83 1,05 -2,62 -2,78 -3,62 0,98 1,18
W 89 -3,60 -2,70 -2,87 -3,72 0,86 1,07 -2,70 -2,86 -3,71 0,86 1,08 -2,60 -2,76 -3,59 1,01 1,20
W 90 -4,31 -2,91 -3,11 -4,02 0,49 0,76 -2,89 -3,09 -3,99 0,52 0,79 -2,69 -2,87 -3,74 0,81 1,04
W 92 -5,07 -2,60 -2,79 -3,66 0,88 1,12 -2,60 -2,79 -3,66 0,89 1,12 -2,53 -2,71 -3,57 0,99 1,21
W 94 -4,02 -2,66 -2,86 -3,74 0,80 1,04 -2,66 -2,84 -3,73 0,81 1,05 -2,53 -2,71 -3,57 0,99 1,22
W 95 -3,83 -2,68 -2,87 -3,77 0,77 1,02 -2,68 -2,87 -3,75 0,78 1,03 -2,55 -2,73 -3,59 0,97 1,20
W 96 -4,32 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11
W 97 -5,32 -2,76 -2,94 -3,84 0,70 0,95 -2,75 -2,94 -3,82 0,71 0,96 -2,63 -2,80 -3,67 0,89 1,11

W 100 -4,42 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 101 -5,40 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 102 -6,04 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,54 -2,71 -3,56 1,01 1,23
W 103 -3,88 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 104 -4,76 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 105 -5,47 -2,64 -2,81 -3,69 0,86 1,10 -2,64 -2,81 -3,68 0,87 1,10 -2,53 -2,70 -3,55 1,03 1,24
W 106 -3,35 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 107 -4,34 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 108 -5,00 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,80 -3,68 0,88 1,11 -2,49 -2,67 -3,51 1,08 1,29
W 109 -3,44 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 110 -4,48 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 111 -5,10 -2,64 -2,81 -3,69 0,86 1,10 -2,63 -2,81 -3,68 0,88 1,11 -2,50 -2,68 -3,52 1,06 1,27
W 112 -4,67 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 113 -5,63 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 114 -6,22 -2,74 -2,94 -3,85 0,67 0,93 -2,74 -2,94 -3,84 0,67 0,94 -2,64 -2,83 -3,72 0,82 1,07
W 115 -3,96 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 116 -4,81 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 117 -5,34 -2,74 -2,94 -3,85 0,67 0,93 -2,73 -2,93 -3,84 0,68 0,94 -2,59 -2,77 -3,65 0,89 1,13
W 121 -4,85 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 122 -5,83 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 123 -6,47 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -3,00 -3,91 0,59 0,87 -2,69 -2,89 -3,79 0,74 0,99
W 124 -4,17 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 125 -5,20 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 126 -5,81 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,67 -2,86 -3,76 0,77 1,03
W 127 -4,01 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 128 -5,02 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 129 -5,53 -2,80 -3,00 -3,92 0,59 0,86 -2,79 -2,99 -3,91 0,60 0,87 -2,64 -2,83 -3,72 0,81 1,06
W 130 -4,87 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 131 -5,97 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 132 -6,58 -2,88 -3,10 -4,04 0,45 0,74 -2,88 -3,09 -4,03 0,46 0,75 -2,77 -2,97 -3,89 0,62 0,89
W 133 -6,78 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 134 -5,19 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 135 -5,88 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,74 -2,95 -3,86 0,66 0,93
W 136 -4,00 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 137 -5,04 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95
W 138 -5,74 -2,88 -3,10 -4,04 0,45 0,74 -2,87 -3,08 -4,02 0,47 0,76 -2,72 -2,92 -3,83 0,69 0,95

a 0,51 0,50 0,45 0,00 0,00 0,90 0,80 0,71 0,00 0,00 3,76 2,65 2,08 0,00 0,00
b 1,59 1,47 1,09 0,92 1,26 1,79 1,63 1,20 1,01 1,37 2,40 2,12 1,53 1,27 1,70

rsq 0,23 0,26 0,30 0,32 0,31 0,25 0,27 0,32 0,34 0,33 0,30 0,32 0,37 0,39 0,38
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Categorisation of data Lomonaco (1994) on qualitative damage
Sheet 1

Test nr Bc dn50 S S*
damage 
category

Test nr Bc dn50 S S*
damage 
category

- m m - - - - m m - - -
W 26 0,06 3,65E-03 60,44 3,67 2 WC 22 0,06 3,65E-03 56,03 3,40 2
W 27 0,12 6,12E-03 4,53 0,23 1 WC 23 0,12 6,12E-03 6,28 0,32 1
W 28 0,12 6,12E-03 20,01 1,02 1 WC 24 0,12 6,12E-03 5,44 0,28 1
W 29 0,12 6,12E-03 41,45 2,12 2 WC 25 0,12 6,12E-03 34,99 1,79 2
W 30 0,25 8,33E-03 4,05 0,13 1 WC 28 0,06 3,65E-03 83,81 5,09 4
W 32 0,06 3,65E-03 31,99 1,94 2 WC 29 0,12 6,12E-03 10,10 0,52 1
W 33 0,12 6,12E-03 8,93 0,46 1 WC 30 0,12 6,12E-03 9,64 0,49 1
W 34 0,12 6,12E-03 8,26 0,42 1 WC 31 0,12 6,12E-03 38,32 1,96 2
W 35 0,12 6,12E-03 28,77 1,47 2 WC 34 0,06 3,65E-03 37,96 2,31 2
W 36 0,25 8,33E-03 10,18 0,34 1 WC 35 0,12 3,65E-03 73,47 2,23 2
W 38 0,06 3,65E-03 39,13 2,38 2 WC 36 0,12 3,65E-03 53,52 1,63 2
W 40 0,12 6,12E-03 10,63 0,54 1 WC 37 0,12 6,12E-03 40,30 2,06 2
W 41 0,12 6,12E-03 48,28 2,46 3 WC 38 0,25 5,13E-03 49,72 1,02 1
W 44 0,06 3,65E-03 12,28 0,75 1 WC 39 0,25 8,33E-03 37,53 1,25 1
W 45 0,12 3,65E-03 24,52 0,74 1 WC 40 0,06 3,65E-03 81,62 4,96 4
W 46 0,12 3,65E-03 46,17 1,40 2 WC 41 0,12 3,65E-03 137,69 4,18 2
W 47 0,12 6,12E-03 15,00 0,77 1 WC 42 0,12 3,65E-03 116,58 3,54 2
W 48 0,25 5,13E-03 21,35 0,44 1 WC 43 0,12 3,65E-03 178,40 5,42 4
W 49 0,25 8,33E-03 14,52 0,48 1 WC 44 0,25 5,13E-03 60,15 1,23 2
W 50 0,06 3,65E-03 16,79 1,02 1
W 51 0,12 3,65E-03 37,64 1,14 1
W 52 0,12 3,65E-03 62,08 1,89 2
W 53 0,12 6,12E-03 21,23 1,08 1
W 54 0,25 5,13E-03 33,45 0,69 1
W 55 0,25 8,33E-03 24,90 0,83 1
W 56 0,06 3,65E-03 75,04 4,56 3
W 57 0,12 3,65E-03 77,56 2,36 2
W 58 0,12 3,65E-03 140,38 4,26 3
W 59 0,12 6,12E-03 69,32 3,54 3
W 60 0,25 5,13E-03 46,02 0,94 2
W 61 0,25 8,33E-03 76,95 2,56 2
W 62 0,06 3,65E-03 97,71 5,94 2
W 63 0,12 3,65E-03 128,66 3,91 2
W 64 0,12 3,65E-03 215,94 6,56 2
W 65 0,12 6,12E-03 76,14 3,89 2
W 66 0,25 5,13E-03 73,74 1,51 2
W 67 0,25 8,33E-03 119,33 3,98 2
W 68 0,06 3,65E-03 47,96 2,91 2
W 69 0,12 3,65E-03 80,00 2,43 2
W 70 0,12 3,65E-03 85,88 2,61 2
W 71 0,12 6,12E-03 56,96 2,91 3
W 72 0,25 5,13E-03 50,64 1,04 1
W 73 0,25 8,33E-03 39,15 1,30 2
W 74 0,06 3,65E-03 54,52 3,31 2
W 75 0,12 3,65E-03 100,10 3,04 2
W 76 0,12 3,65E-03 104,96 3,19 2
W 77 0,12 6,12E-03 69,39 3,54 2
W 78 0,25 5,13E-03 66,16 1,36 1
W 79 0,25 8,33E-03 49,91 1,66 2
W 80 0,06 3,65E-03 92,11 5,60 3
W 82 0,12 3,65E-03 184,36 5,60 3
W 83 0,12 3,65E-03 209,44 6,36 3
W 86 0,06 3,65E-03 87,76 5,33 4
W 87 0,12 3,65E-03 199,30 6,05 3
W 88 0,12 3,65E-03 207,61 6,31 3
W 89 0,12 3,65E-03 227,15 6,90 4
W 90 0,25 5,13E-03 103,77 2,13 2
W 92 0,06 3,65E-03 51,64 3,14 2
W 94 0,12 3,65E-03 132,15 4,01 3
W 95 0,12 3,65E-03 203,95 6,19 3
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Table A8.1 - Summary of fit results for S and û0, expressed as (adjusted) r2 [in ‰].  
Lomónaco – Van Gent and Wallast – Saers data set 

Velocity at the bed in front of the structure (û0) 

Stability parameters Model includes 

  

BK GM F 

N, m0    479 428 378 411 458 

N, m0 Bc/L   479 428 378 411 458 

N, m0 Bc/a0   479 428 378 411 458 

N, m0 B/L   479 428 378 411 458 

N, m0 B/a0   479 428 378 411 458 

N, m0  Bc/dn50  611 581 501 531 591 

N, m0   hc/h 479 428 378 411 458 

N, m0 other combinations nt nt nt nt nt 

N, Sa    479 428 378 411 458 

N, Sa Bc/L   479 428 378 411 458 

N, Sa Bc/a0   479 428 378 411 458 

N, Sa B/L   479 428 378 411 458 

N, Sa B/a0   479 428 378 411 458 

N, Sa  Bc/dn50  592 566 501 531 575 

N, Sa   hc/h 479 428 378 411 458 

N, Sa other combinations nt nt nt nt nt 

remarks nt: not tested 

best fit per model in italics 
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Table A8.2 - Summary of fit results for S, expressed as (adjusted) r2 [in ‰]. 
Lomónaco – Van Gent and Wallast – Saers data set 

Undisturbed velocity at the level of the crest of the structure (ûc) 

Stability parameters Model includes 

  

BK GM F 

N, m0    488 434 382 414 467 

N, m0 Bc/L   488 434 382 414 467 

N, m0 Bc/a0   488 434 382 414 467 

N, m0 B/L   488 434 382 414 467 

N, m0 B/a0   488 434 382 414 467 

N, m0  Bc/dn50  623 589 519 548 602 

N, m0   hc/h 488 434 382 414 467 

N, m0 other combinations nt nt nt nt nt 

N, Sa    488 434 382 414 467 

N, Sa Bc/L   488 434 382 414 467 

N, Sa Bc/a0   488 434 382 414 467 

N, Sa B/L   488 434 382 414 467 

N, Sa B/a0   488 434 382 414 467 

N, Sa  Bc/dn50  600 570 507 534 582 

N, Sa   hc/h 488 434 382 414 467 

N, Sa other combinations nt nt nt nt nt 

remarks nt: not tested 

best fit per model in italics 
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Table A8.3 - Summary of fit results for S, expressed as (adjusted) r2 [in ‰]. 
Lomónaco – Van Gent and Wallast – Saers data set 

Velocity at the crest of the structure (ûhc) 

Stability parameters Model includes 

  

BK GM F 

N, m0    488 427 360 395 462 

N, m0 Bc/L   488 427 360 395 462 

N, m0 Bc/a0   488 427 360 395 462 

N, m0 B/L   488 427 360 395 462 

N, m0 B/a0   488 427 360 395 462 

N, m0  Bc/dn50  616 568 488 513 589 

N, m0   hc/h 503 461 414 437 484 

N, m0  Bc/dn50 hc/h 635 608 548 557 616 

N, m0 other combinations nt nt nt nt nt 

N, Sa    488 427 360 395 462 

N, Sa Bc/L   488 427 360 395 462 

N, Sa Bc/a0   488 427 360 395 462 

N, Sa B/L   488 427 360 395 462 

N, Sa B/a0   488 427 360 395 462 

N, Sa  Bc/dn50  568 567 451 475 544 

N, Sa   hc/h 503 468 414 437 484 

N, Sa  Bc/dn50 hc/h 613 592 548 557 598 

N, Sa other combinations nt nt nt nt nt 

remarks nt: not tested 

best fit per model in italics 
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Figure A8.1 – Relationship between stability parameter and damage category for pipeline covers 
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Figure A8.1 – Relationship between stability parameter and damage category for pipeline covers 

(continued)  
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Appendix 9 Case study: Santander outfall 

A9.1 General data 

After the construction of a sewer outfall off the North Spanish coast near Santander, the 

University of Cantabria took the opportunity to test the damage to this type of structure in 

prototype conditions. Three test sections were built on top of the original structure, using 

three different stone sizes (all smaller than the design stone size). The environmental 

conditions, in terms of wave height, period and flow velocities at the crest of the 

structure, were measured during a period of two years after the construction (September 

1999 – August 2001), and the damage to the test sections was monitored with regular 

intervals. The results from these prototype tests, and an analysis of them, are reported 

by Vidal et al (2002) and Lomonaco et al (2005). In this appendix we will use their test 

 

Figure A9.1 – Location of Santander outfall (British Admiralty Chart no 1105 – fragment) 
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data to validate the calculation methods used in this thesis; these calculations also serve 

as a calculation example. 

The location of the test section is given in Figure A9.1. The original outfall consisted of a 

rubble mound with Bc = 3.0 m, m0 = 2 and zc = 4.0 m, with a 3 tonnes rock armour layer. 

The outfall is constructed on a gently sloping seabed with water depths ranging from h = 

20 m to h = 21 m at the test sections. The test sections themselves are placed on top of 

the original structure, also with m0 = 2, and the crest level was always placed at hc = 

15.0 m. This means that the layer thickness and consequently the crest width is different 

for each section; the principal dimensions of these sections are given in Figure A9.2. 

Vidal et al (2002) describes the measured damage to the structure: section I suffered ‘no 

appreciable damage’ during the full test period; section II suffered ‘important damage’ 

(‘wide areas in which the second layer of the armour was exposed’) and section III was 

‘nearly destroyed’. The damage to sections II and III can be related to a single storm in 

November 2000. Also, section III suffered ‘important damage’ during an earlier period; 

the strongest storm during that period occurred in December 1999 – it will be assumed 

that this storm caused that damage. Vidal et al do not give very detailed quantitative 

-15,0

-21,0

3,0

-17,0

3,9

1:2 dn50 = 0,65 m

M50 = 700 kg
Section I

-15,0

-20,5
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 = 1,54
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Figure A9.2 – Dimensions of test sections 
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results, but from an accompanying graph in their article a rough estimate of the 

associated damage numbers S can be obtained. All required information is given in table 

A9.1. 

Table A9.1 - Hydraulic conditions and damage 
for Santander outfall prototype measurements 

Storm Hs 

m 

Tp 

s 

Dur 

h 

Damage to 

section I 

Damage to 

section II 

Damage to 

section III 

November 

2000 

6.6 13.9 48 no damage important damage 

S = 4 – 6 

nearly destroyed 

S = 18 – 20 

December 

1999 

5.9 14.2 27 (no damage) (no damage) important damage 

S = 3 – 5 

In the following paragraphs we will test whether: 

 

the measured quantitative damage in terms of S can be predicted by the Van 

Gent and Wallast formula (eq 3.91) and by the new formula (eq 6.23); 

 

the damage predicted by these formulas can be related to the reported 

qualitative damage; 

 

the critical stability method could have been used to design this structure, using 

the storm of November 2000 as a design condition. 

 

the two damage-based design formulas could have been used to design this 

structure, using the storm of November 2000 as a design condition; 

Using the observation that in the design conditions a stone with dn50 = 0.65 m was 

stable, and dn50 = 0.53 m was not, we will assume that a good design method should 

result in a stone diameter somewhere in that range (and probably closer to 0.65 m than 

to 0.53 m since this last stone size resulted in ‘important damage’). This will be the basis 

for the last two tests. 

Vidal et al only mention wave conditions in their article – they do not mention a current. 

For the sake of argument (and completeness of the calculation example) we will assume 

that there has been a current as well. This particular stretch of the north coast of Spain 

features strong tidal currents – according to the British Admiralty Pilot (no 22) up to 3 

knots at spring tide. A tidal reconstruction (using the program TidePred and the harmonic 

constants for the port of Santander) shows that on 8 November 2001 (the day of the 

storm) the tide was halfway between neap and spring; we will therefore reduce the 

current velocity a little and assume ucur = 2 kn = 1.0 m/s. 
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A9.2 Prediction of S  

A9.2.1 Van Gent and Wallast formula 

First we check the applicability of the formula in terms of current strength, so we need to 

check whether X = c/( c + w) < 0.2 (using w = 1025 kg/m3, Hs, Tm, the average full 

water depth h = 20.5 m and a representative stone diameter dn50 = 0.60 m – the exact 

values do not really matter as this is only an order-of-magnitude estimate): 

 

Tm = 0.8·Tp = 11.1 s 

  

= 2 /Tm = 0.566 rad/s 

 

2 = gk·tanh(k·h) 

 

k = 0.0450 rad/m (from iteration) 

 

L = 2 /k = 139.7 m 

 

û0 = Hs/Tm·(1/sinh(k·h)) = 1.77 m/s (eq 2.29) 

 

a0 = û0/

 

= 3.12 m 

 

ks = 2·dn50 = 1.20 m 

 

a0/ks = 2.60 

 

fw = exp(-6.0 + 5.2·(a0/ks)
-0.19) = 0.190 

 

w = ½fw û0
2 = 304 Pa  

 

C = 18·log(12·h/ks) = 41.6 m1/2/s 

 

c = (g/C2)·ucur
2 = 5.8 Pa 

 

X = c/( c + w) = 0.02 << 0.2 so the waves dominate (strongly) and the formula is valid. 

The number of waves can be estimated as: 

 

N = Tm·Duration = 15560 (this is quite large but simply follows from the extremely long 

duration of the storm – 48 hours!) 

The Van Gent and Wallast formula uses ûhc, Hs and Tm. Assuming a water depth equal 

to hc everywhere gives (for section I): 

 

2 = gk·tanh(k·hc) 

 

k = 0.0509 rad/m (from iteration) 

 

L = 2 /k = 123.6 m 

 

ûhc = Hs/Tm·(1/sinh(k·hc)) = 2.23 m/s (eq 2.29) 

 

hc = ûhc
2/(g dn50) = 0.51 (eq 4.4) 

 

S = 0.2·( hc)
3· N = 3.33 (eq 3.91) 

 

S* = S·(dn50/Bc) = 0.55 (eq 6.18) 

 

Ae = S·dn50
2 = 1.39 m2 (eq 3.87) 

 

z = (-Bc + (Bc
2+4·m0·Ae))/2m0 = 0.31 m (eq 6.6) 

 

z/dn50 = 0.48  

Results for the other sections follow from similar calculations; these are given in table 

A9.2 
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Table A9.2 – Calculation results for Santander outfall 
Van Gent and Wallast formula 

Section Hs 

m 

Tm 

s 

hc 

m 

ûhc 

m/s 
hc 

- 

S 

- 

S* 

- 

z/dn50 

- 

I 6.6 11.1 15 2.23 0.51 3.33 0.55 0.48 

II 6.6 11.1 15 2.23 0.62 6.03 0.86 0.72 

III 6.6 11.1 15 2.23 0.91 18.9 1.96 1.49 

A9.2.2 New design formula 

The new formula uses ûhc, H1% and Tp. We calculate H1% using the full water depth h. 

Here, too, X = 0.02 << 0.2 so the formula is valid. 

For section I, h = 21.0 m so we get: 

 

H1% = Hs·1.52/(1+Hs/h)1/3 = 9.16 m 

  

= 2 /Tp = 0.452 rad/s 

 

2 = gk·tanh(k·hc) 

 

k = 0.0393 rad/m (from iteration) 

 

L = 2 /k = 159.7 m  

 

ûhc 1% = H1%/Tp·(1/sinh(k·hc)) = 3.31 m/s  

 

hc 1% = (ûhc 1%)2/(g dn50) = 1.13  

 

S* = 0.048·( hc 1%)1.6·N0.3·m0
-0.6 = 0.69 (eq 6.23) 

 

S = S*·(Bc/dn50) = 4.18  

 

Ae = S·dn50
2 = 1.74 m2  

 

z = (-Bc + (Bc
2+4·m0·Ae))/2m0 = 0.38 m  

 

z/dn50 = 0.58 

Results for the other sections follow from similar calculations and are given in table A9.3 

Table A9.3 – Calculation results for Santander outfall 
New design formula 

Section H1% 

m 

Tp 

s 

hc 

m 

ûhc 1% 

m/s 
hc 1% 

- 

S* 

- 

S 

- 

z/dn50 

- 

I 9.16 13.9 15 3.31 1.13 0.69 4.18 0.58 

II 9.14 13.9 15 3.31 1.37 0.95 6.65 0.78 

III 9.12 13.9 15 3.30 2.00 1.73 16.8 1.35 
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A9.2.3 Relation with reported damage 

In quantitative terms, we see that both the Van Gent and Wallast formula and the new 

formula predict values of S for section II and III that are close to the reported damages. 

Other quantitative results, for instance in terms of z/dn50 can not be compared as these 

values are not given by Vidal et al However, if we try to relate the values of S* for these 

sections to the reported qualitative damage we see that the values are too low: 

according to table 6.4 we should have had S* > 2.5 for section II (‘important damage’) 

and S* > 4.5 for section III (‘destroyed’). Perhaps the values given in table 6.4 are too 

low – we must keep in mind that they originate from a visual assessment of drawings of 

damaged structures, not from a direct assessment of the structures themselves.  

We can also try to relate the calculated crest reductions ( z/dn50) to the reported 

damage. From Figure A9.2 we see that all test sections have a thickness of roughly 3 

times dn50. The maximum calculated crest reduction is roughly 1.5 times dn50, so only half 

the layer thickness; though it is reported that this layer was ‘nearly destroyed’. Of course 

the calculated crest reduction is only an average value, and the real damage could well 

be much higher locally. Still, a difference of a factor 2 is quite large and makes this 

method not very reliable to use in practice. In general, we conclude that perhaps there is 

room for improvement (by means of a separate research) of the relation between S* (or 

z/dn50) and damage. 

A9.3 Design with critical stability approach 

As discussed before, it seems that the required stone diameter for this structure is in the 

order dn50 = 0.60 m. It is interesting to see whether we would have found this diameter 

with the critical stability approach. First we study the situation without a current, then we 

study the situation with the (assumed) current ucur = 1 m/s. 

We use the CIRIA/CUR method with H1%, Tp and ûhc, in combination with cr = 0.030, as 

recommended in section 6.4.2. The calculation requires iteration, we start with dn50 = 

0.60 m. 

For section I we get: 

  

= 0.452 rad/s, H1% = 9.16 m and ûhc 1% = 3.31 m/s as before 

 

a0 = û/

 

= 7.33 m/s 

 

ks = 2·dn50 = 1.20 m 

 

a0/ks = 6.11 

 

fw = exp(-6.0 + 5.2·(a0/ks)
-0.19) = 0.099 

 

w = ½fw û0
2 = 556 Pa  

 

w,av = ½ w = 278 Pa 
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dn50 = w,av/( g cr) = 0.60 m so the calculation converges after the first iteration. 

For sections II and III we get dn50 = 0.59 m (because H1% is slightly lower there).  

If we use the computer programme BPP we get dn50 = 0.50 m. This is because, by 

default, BPP calculates H1% with h = hc= 15.0 m instead of h = 21 m, giving H1% = 8.88 

m. If we force the programme to use H1% = 9.17 m (by feeding it with a higher value for 

Hs until the calculated bed orbital velocity equals the value that corresponds with H1% = 

9.17 m, so ûhc = 3.31 m/s) we get dn50 = 0.57 m. So, now we see that the values from the 

CIRIA/CUR calculation and BPP are almost the same (in theory, in the absence of a 

current, they should be exactly the same – the difference is probably due to rounding 

errors). 

When we add the current velocity we get (again iterating with CIRIA/CUR and dn50 = 0.60 

as a start value, and using h = hc): 

 

w = ½fw û0
2 = 556 Pa as before 

 

C = 18·log(12·hc/ks) = 39.2 m1/2/s 

 

c = (g/C2)·ucur
2 = 12.8 Pa 

 

wc = c + ½ w = 403 Pa 

 

dn50 = wc/( g cr) = 0.61 m 

 

repeat iteration. The values converge to dn50 = 0.65 m. 

For sections II and III we get dn50 = 0.65 m and dn50 = 0.64 m, respectively. This is only a 

little larger than the values without a current, which seems logical considering our earlier 

conclusion that the wave are dominant. Interestingly, if we use BPP with ucur = 1.0 m, we 

get dn50 = 1.78 m (!), which is obviously way too large. This is a conformation of our 

conclusion of section 6.1 that cr= 0.030 is too conservative for this method. Some trial-

and-error shows that, if we want to get the same order of magnitude results as with the 

CIRIA/CUR method, we need to use cr = 0.038. This does not correspond with the 

values found earlier in this thesis: cr = 0.05 in paragraph 6.4.1, cr = 0.03 in paragraph 

6.4.2. 

Again, we conclude that the CIRIA/CUR method gives reasonable results, and the BPP 

method may better not be used because it is not clear what cr should be (especially in 

the case of a combination of waves and a current) 

A9.4 Damage-based design 

We can also try to use the Van Gent and Wallast formula, or the new design formula, to 

calculate a stone size that results in a reasonable amount of damage. As a starting point, 

we will use S* = 1 as a design criterion (see table 6.4). Again, we would expect an 
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outcome in the order dn50 = 0.60 m.  

A9.4.1 Design with the Van Gent and Wallast formula 

Since our starting point is S* we have to translate this to S first, which requires an 

estimate of dn50 – therefore the calculation is iterative. We start with dn50 = 0.60 m. 

For section I we get: 

S* = 1 

 

S = S*·(Bc/dn50) = 6.50  

 

hc = ((1/0.2)·S/ N)1/3 = 0.64 

 

dn50 = ûhc
2/(g ) = 0.52 m 

 

the iteration must be repeated. The values converge to dn50 

= 0.48 m.  

For section II we get dn50 = 0.49 m, for section III dn50 = 0.50 m (the values are slightly 

different because Bc is different for each section and so the requirement S* = 1 leads to 

different required values for S) 

We see that the calculated stones are too small – apparently we need to use a lower 

design value of S*. This again confirms our earlier observation that the S* values in table 

6.4 are probably too high. Some trial-and-error shows that if we start with S* = 0.7 we 

end up with dn50 = 0.57 m (section I), dn50 = 0.58 m (section II) and dn50 = 0.60 m (section 

III), which is more in the range that we expected, and equal to the values obtained with 

the critical stability method. 

A9.4.2 Design with the new design formula 

The new formula uses S* instead of S so iteration is not necessary. For section I we get: 

S* = 1 

 

hc 1% = ((1/0.048)·S·N-0.3·m0
0.6)1/1.6 = 1.42 

 

dn50 = (ûhc 1%)2/(g ) = 0.51 m 

For section II and III we get dn50 = 0.51 m as well (the only difference between the 

sections is a very small difference in ûhc 1% which does not influence the outcome). Again 

we see that these stones are too small. If we want to get results comparable to those 

obtained with the critical stability method we need to use S* = 0.75, as found by trial-

and-error. This gives dn50 = 0.61 m for all sections. 

We see that both the Van Gent and Wallast formula and the new design formula can be 
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used for damage-based design of pipeline covers; however, the design criterion in terms 

of S* must be set lower than the value suggested by Table 6.4 (S* = 1). For the Van 

Gent and Wallast formula S* = 0.7 seems more appropriate, for the new design formula 

the corresponding value is S* = 0.75. These values give results in terms of required dn50 

that are comparable to the results from the critical stability method.  

A9.5 Conclusions 

This case study has shown the following: 

 

Both the Van Gent and Wallast formula and the new design formula predicted the 

actually measured damage to the outfall cover well, in quantitative terms (S).  

 

In qualitative terms it is suggested that the values of S* as mentioned in table 6.4 

are too high. It is recommended to study the relationship between S* (and/or 

z/dn50) and (qualitative) damage in more detail in a separate study. A clue can 

be obtained from the prototype measurements: S* ˜ 0.6 – 0.7 means ‘no 

damage’, S* ˜ 0.9 – 1.0 means ‘important damage’ and S* ˜ 1.7 – 2.0 means 

‘almost destroyed’. 

 

Given the damage to the structure, it is expected that a stone size in the range 

dn50 = 0.60 – 0.65 m would have been the ‘correct’ outcome of a design formula. 

The critical stability method (CIRIA/CUR method with H1%, Tp, ûhc and cr = 

0.030) predicts these values quite well. The BPP method also works well in the 

absence of a current, but as soon as a (small) current is assumed the predicted 

dn50-values get (way) too large. The CIRIA/CUR method still gives reasonable 

answers when the current is added. 

 

Both the Van Gent and Wallast formula and the new design formula can be used 

for damage-based design of pipeline covers, but again the design requirement (in 

terms of S*) must be lower than the values suggested by table 6.4. For the Van 

Gent and Wallast method S* = 0.7 is suggested, and for the new design formula 

S* = 0.75, in order to obtain the same results as with the critical stability formula. 
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