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Active sensing-based prognostics for
impacted CFRP structures under
compressive fatigue loading

Ferda Cansu Gül , Morteza Moradi and Dimitrios Zarouchas

Abstract
In aircraft composite structures, impact-induced delamination poses a significant threat to their integrity, necessitat-
ing meticulous inspections to ensure reliable operation. However, monitoring delamination growth with existing
nondestructive methods remains challenging due to the intricate nature of the damage mechanisms involved. This
study introduces a novel approach by integrating guided waves (GWs) and electromechanical impedance (EMI) to
achieve the prediction of remaining useful life (RUL) in woven-type carbon fiber-reinforced polymer (CFRP) plate-
like structures subjected to compression fatigue conditions following a low-velocity impact. The novelty of this work
lies in the fusion of GW and EMI techniques for the prediction of RUL, which is integrated into a comprehensive
prognostic framework. Damage indicators (DIs) derived from GW and EMI measurements were first analyzed for
their correlation with measured delamination growth and then used as inputs for prognostic models developed using
deep neural networks. This approach significantly enhances the accuracy and reliability of RUL predictions as the
proposed GW–EMI fusion models aim to harness the most effective predictions from each DI. An evaluation of the
DIs revealed that GW–DIs achieved better accuracy on average across all cycles compared to EMI–DIs. Both fusion
models demonstrated strong accuracy for individual samples, with Fusion Model 1 (RUL-fus-1) showing a 12%
improvement and Fusion Model 2 (RUL-fus-2) showing a 24% improvement across all cycles on average. Notably,
Fusion Model 2 exhibited the lowest error in the final cycles, with a 48% improvement in accuracy compared to the
least successful model, demonstrating its potential for more precise prognosis through the integration of GW-DIs
and EMI-DIs.

Keywords
Structural health monitoring, impact damage, compression-compression fatigue, remaining useful life, guided waves, elec-
tromechanical impedance

Introduction

During the operation, composite structures may be
subjected to various loading conditions, and despite
the benefits they offer, in the sense of enabling lighter
and more fuel-efficient designs due to their superior
stiffness-to-weight ratio, they present complex damage
accumulation processes because of their heterogenous
nature. Impact events are one of the loading scenarios
that may initiate various damage mechanisms in the
form of matrix cracks, delamination, fiber fractures,
and interface debonding.1 Impact damage can escalate
under fatigue conditions and may cause a significant
loss in stiffness. Especially impact-originated delamina-
tion may experience accelerated growth under
compression-compression (C-C) fatigue and, even

further, may result in catastrophic structural failure
because of the reduction in stiffness.2,3

Aircraft composite components must undergo life-
cycle management based on damage tolerance and
safe-life principles, ensuring airworthiness through
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scheduled inspections with necessary repairs or replace-
ments. These scheduled inspections require a well-
understood damage growth behavior to be maintained
under efficient maintenance planning decisions.
However, quantifying delamination severity presents
challenges, as delamination can occur and propagate
differently across layers, often accelerating beyond a
critical damage severity level. In this regard, the struc-
tural geometry, loading conditions, and manufacturing
imperfections may create significant deviations in dela-
mination progression behavior.4,5 Moreover, consider-
ation of the interaction of other damage mechanisms
with the delamination is needed for a better description
of delamination growth and eventually for an enhanced
understanding of the contributions to the end-of-life
(EoL) span of structures and so their remaining useful
life (RUL).

Based on the challenges mentioned, determining the
damage growth precisely requires the integration of
multiscale effects, yet defining all parameters together
requires highly complicated and computationally
expensive simulations and/or empirical equations.6

Structural health monitoring (SHM) is an emerging
concept that enables real-time monitoring of the struc-
ture with the aim of performing damage diagnosis, that
is, identification, localization, quantification of dam-
age, and prognosis, that is, prediction of RUL.
Permanently installed sensors on the structure acquire
data periodically. Upon feature extraction, comprehen-
sive data-driven and hybrid techniques may enable an
in-depth understanding of damage accumulation phe-
nomena in composites. This may result in reliable diag-
nostics and prognostics of RUL, which may pave the
way for the practice of condition-based maintenance
(CBM) strategies in the aerospace industry. In such a
maintenance strategy, the structure’s health state can
be investigated without interruption in the daily opera-
tion of the system. As a result, repair and replacement
can be applied only when it is needed, which in turn
reduces the human involvement, the extra cost of man-
hours, and the environmental impact eventually.

For SHM, some techniques can be applied accord-
ing to the complexity and suitability of the structures.7

Some primary methods involve ultrasonic guided waves
(UGWs/GWs), electromechanical impedance (EMI),
vibration-based methods, eddy currents, and acoustic
emission.8,9 UGW and EMI methods are classified as
active sensing techniques that can be performed
through piezoelectric (PZT) transducers with an excita-
tion signal and can be performed in either a pitch-catch
or pulse-echo strategy in chosen intervals.10,11

The RUL is regarded as one of the ultimate stages
of SHM as it involves capturing the complex and non-
linear degradation mechanisms of structures, while
incorporating uncertainties arising from environmental

and operational variability . In earlier studies, GWs
have been employed intensively for metallic structures
in aerospace, and they demonstrated their potential in
detecting, localizing, and sizing the structural damages
owing to GWs strong capability in interrogation of the
whole structure.12–14 As a result of their capability to
capture structural variations and convey them in
acquired signals, they are considered as promising can-
didates for the RUL prognostic methodology.
Furthermore, Yu et al.15 studied that the EMI method
has shown sensitivity in damage detection and classifi-
cation in composites using statistical damage indicators
from experimental and simulation analysis.
Delamination detection via the EMI method by com-
bining experimental and simulated data to show the
method’s sensitivity to some parameters, such as the
size and position of the delamination and the sensor
investigated by Singh et al.16 and Gresil et al.17 It is
shown in the results that as the delaminated region is
closer to the PZT, the deviation in the EMI spectrum
is more significant. Considering that EMI may be
affected by changes in local conditions, GW technique
may provide a broader view of the structure owing to
its sensitivity to minor structural variations and capa-
bility for high interrogation of the structure. Therefore,
processing EMI and GW methods in an integrated
methodology might be advantageous for enhancing the
information and verifying the system’s reliability.18

Thus, a fusion approach is proposed in this study to
enhance the understanding and reveal an improved
demonstration of RUL prognostic in composites.19

GW and EMI processing exhibit challenges as the
anisotropic nature of composite structures induces
complicated interactions, which make it challenging to
analyze damage effects in the obtained signal.
Moreover, in the case of delamination, it occurs and
grows in different sizes and shapes through the compo-
site’s layers, making it even more difficult to correlate
the GW and EMI signals with the damage.20 In the lit-
erature, correlating the GW signals with damage sever-
ity has been studied through statistical techniques,
signal processing methods, and machine learning tech-
niques.21–23 Each technique may overcome specific
challenges in converting GW signals to meaningful
damage indicators. Nevertheless, the main challenge in
machine learning techniques is that they require accu-
rate labels to achieve the learning aspect for regression
objectives, despite their strong capability to handle
large data. In early studies, these methods were predo-
minantly utilized for damage detection and localization
purposes.24,25 However, estimating damage severity in
composite materials presents additional challenges due
to the complex nature of composite damage and the
corresponding lack of accurate labels. This limitation
significantly impacts the performance of machine
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learning techniques, particularly in regression tasks. In
that regard, signal processing techniques are adopted
in this work to extract damage-related information
from GWs to obtain DIs correlated with delamination
growth, independent of the target information’s assign-
ment. This approach enhances the projection of dela-
mination growth, which poses challenges to be
monitored due to the complex degradation behaviors
that originate from the anisotropic nature of composite
structures.

To analyze GW signals one of the signal processing
techniques is Hilbert transform (HT), which estimates
the envelope of the signal through its analytical repre-
sentation. Besides that, as GWs are nonstationery and
time-varying signals, it is convenient to represent them
through time–frequency analysis.26 Short-time Fourier
transform (STFT) and continuous wavelet transform
(CWT) are some of the most widely used methods in
the literature.27,28 CWT is employed mainly for GWs
as it allows for capturing localized features in the sig-
nal, making it suitable for analyzing signals with
abrupt changes or transient events. HT and CWT
methods are applied in this study, as they offer comple-
mentary advantages in extracting critical information
from GWs, enabling enhanced resolution in both time
and time-frequency domains, and improving the detec-
tion of transient features and signal anomalies.
Furthermore, GWs have frequency dependency, and
their constitutional modes can be induced via fre-
quency tuning. Most research in the literature concen-
trates on mode analysis and conducts processing
techniques based on specific GW modes. The propaga-
tion of delamination in cross-ply composites under ten-
sile fatigue loading conditions has been investigated by
Saxena et al.29 via GW signals by implementing A0
mode through STFT analysis. GW-based DIs are
obtained to convey their correlation with matrix cracks
and delamination growth, which is quantified using X-
ray images. Samaitis et al.30 investigate the fundamen-
tal A0 mode of GWs for impact-induced delamination
severity and demonstrate their sensitivity to depth and
length. In the subject of C-C fatigue, Yue et al.31 evalu-
ate the correlation of GW signals with the global stiff-
ness degradation of the stiffened structure, which is
impacted and subjected to C-C fatigue. A mode con-
version analysis has been adapted in the time domain
via statistical methods, and the results demonstrate
their potential in terms of their prognostic performance
metrics scores. The stochastic propagation of delami-
nation in various shapes across composite layers cre-
ates varied mechanical parameters at each layer, which
may challenge the accurate determination of certain
dispersion characteristics of GWs.32 Additionally,
mode separation can be a complex task when the pro-
pagation path presents a limited range between the

boundaries and the damage. This may induce many
reflections and overlapped signals besides, possible
higher mode excitation, which may also be sensitive to
variations in the damage area.33 While mode-selective
techniques offer valuable insights, the complex nature
of delamination in composite materials underscores the
need for more generalized, mode-independent
approaches to capture damage effects for improved
RUL prognostics accurately. Thus, DIs based on
GWs, referred to hereinafter as GW–DIs, are derived
through signal processing using a mode-independent
approach aiming at the delamination-sensitive portion
of the GW signal.

GW technique plays a crucial role in SHM applica-
tions, and its prognostic performance may be enhanced
by integrating the EMI technique. EMI-based SHM
has achieved significant interest in detecting local struc-
tural changes; even so, in situ monitoring of compo-
sites in the sense of delamination propagation has
limited application from an EMI-based SHM point of
view. In addition to that, delamination propagation
and RUL prognostics under C-C fatigue loading have
yet to be explored at the sample level from the EMI
and GW-based SHM perspectives. Consequently, a
prognostic framework capable of handling complex
data patterns that evolve over time is required for
achieving accurate and reliable outcomes. In the litera-
ture, data-driven approaches for RUL prognostics
have been successfully implemented using statistical
and machine learning methods.34 Among these tech-
niques, deep neural networks (DNNs) stand out for
their ability to effectively capture complex, nonlinear
relationships inherent in the data. This capability facili-
tates the mapping of complex correlations between
both GW- and EMI-based DIs and the structure’s
degradation. Moreover, their capacity to learn from
diverse datasets may enhance their adaptability to vari-
ous damage scenarios, including sudden growth beha-
viors observed under compressive fatigue loading
conditions. The use of DNNs in combination with
EMI- and GW-based DIs may potentially enable accu-
rate and adaptable RUL prognostics, especially in the
context of complex damage behaviors like delamina-
tion propagation under fatigue loading.

Therefore, this study proposes a novel framework
for RUL prognostics for composite structures that
undergo C-C fatigue loading following a low-velocity
impact. This is achieved by integrating EMI- and GW-
based SHM methods into the prognostic methodology.
The effectiveness of GWs- and EMI-based RUL prog-
nostics has been investigated by proposing DIs used as
input in a DNN model to predict RUL as output.
Finally, a comprehensive analysis was conducted to
investigate the performance of GW-DIs and EMI-DIs
in RUL prognostics. The results demonstrated that
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while GW-DIs provide higher accuracy than EMI-DIs,
proposed fusion methodologies offer significant advan-
tages with promising capability and greater stability in
enhancing the reliability of RUL predictions with lower
error through the cycles of all samples.

Within this proposed framework, while SHM has
been implemented through GWs and EMI, ultrasonic
C-scan inspections are performed to label the severity
of the damage during the fatigue life of each sample.
The extracted DIs are used to evaluate the coherence
between SHM data and delamination growth, utilizing
prognostic metrics such as monotonicity (Mo) and
trend correlation.35,36 Finally, RUL prediction is
attained via a DNN model designed to achieve a
regression task between the DIs and the RUL target.

The article is organized as follows: the experimental
setup and instrumentation are presented in the second
section. The third part studies the signal processing
techniques for GW and EMI signals. The fourth part
introduces the RUL prognostic methodology. Results
and discussions are given in fifth section. Finally, the
sixth section is devoted to the conclusion and future
work.

Design of the CAI experiment

The design steps of the experiment have been presented
under this section in two subsections:

- Experimental setup explains the steps of the realiza-
tion of compression after impact testing with SHM
system installation followed by fatigue test para-
meters and mechanical test results.

- Delamination state quantification describes the use
of the ultrasonic C-scan technique to quantify and
label the different delamination stages of each sam-
ple during their fatigue life.

Experimental setup

A large woven-type CFRP plate with a thickness of
5.5 mm has been sampled according to ASTMD713637

for CAI testing. The total number of identical samples
cut out from the large plate is 15, with each sample hav-
ing dimensions of 100 mm in width and 150 mm in
length. Figure 1 shows the experimental setup, present-
ing the impact testing, fatigue testing, and the anti-
buckling fixture to prevent global buckling. The acqui-
sition step of the experiment is achieved through multi-
ple data acquisition systems: GW, EMI, and pulse-
echo ultrasonic C-scan. The equipment list in the GW
and EMI unit consists of a signal generator, EMI ana-
lyzer, multiplexor, oscilloscope, and computer.

The sensor network used for GW and EMI applica-
tions has six PZT transducers that are linearly distribu-
ted at the top and bottom sections of the sample.
PIC255 type PZT disk transducers have been used in
this experiment with a diameter of 8 mm, thickness
0.5 mm, with diameter and thickness frequency con-
stants Np and Nt; 2000 and 1420, respectively, where
further information can be found in Ref. 38.

Before initiating the fatigue testing, three impacted
samples were tested under quasi-static (QS) compres-
sion to determine the fatigue loading parameters. The
fatigue force has been aimed at 75% of the maximum
QS stress. However, the variations in impact damages,
in terms of their severity, affect the maximum load level
for each sample. Eventually, this fact causes a variation
in maximum load values, and thus, the applied load lev-
els have been adjusted according to the impact damage
severity. Data collection steps during the fatigue testing
are implemented after each QS and cyclic loading by
holding the Fmin constant. Fatigue testing starts with a
slow cycle with a 1 Hz frequency, and later cycles are
executed with a 5 Hz frequency with a load ratio of 10.

In the dataset, constant load has been applied to
five samples: Samples 2, 7, 9, 13, 14, and 15. Sample 8
and Sample 11 have also been fatigued under constant
amplitude load, and then the applied force is increased
incrementally at the later cycles to investigate the gra-
dually growing delamination. With a similar approach,
Sample 2 is also subjected to constant loading except
for its first loading cycle, in which the applied maxi-
mum load was higher than the defined fatigue force.
That being the case, constant and nonconstant fatigue
conditions were able to be tested. The complete data
related to mechanical testing are presented in Table 1.
The impact energy is considered as initial potential
energy of the system, and it is calculated using
Equation (1) while mg represents the total weight of
the tip and attached masses, and h is the distance from
the sample’s surface to the impact tip. Figure 2 illus-
trates the impact testing setup used to induce initial
impact damage in each sample.

Impact energy= mgh ð1Þ

Delamination state quantification

During the tests, ultrasonic C-scans are performed uti-
lizing a Dolphicam 2, which operates with the pulse-
echo principle at a center frequency of excitation of
8 MHz, allowing the delamination image reconstruc-
tion with postprocessing in two ways; one is with
amplitude variation, and the other with time-of-flight
information that enables obtaining the delamination
image through the thickness. A low-pass filter is
applied to the C-scan images as a postprocessing step.
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The obtained images are presented in Figure 3 for sam-
ples 2, 7, 9, 10, 14, and 15, as the delamination growth
was present and could be captured via C-scan measure-
ment. The initial damage states of Samples 8 and 11
demonstrated no measurable variation, which may be
considered as they remained under the critical fatigue
load limit or could be considered as an accumulation
phase. Samples 12 and 13 are other two samples not
listed in the c-scan results because of the high-noise
effect in the images; thus, a linear growth regime is
considered for samples 12–13. In C-scan images, the

darkest blue color represents the last layer through the
thickness. Delamination’s shape varied in each sample,
and its propagation acceleration differed at each layer.
It should be noted that the first ;1 mm thickness of
each sample is neglected to reduce the noise originated
due to the reflection between the probe and the rough
surface of woven samples. Despite this, it is evident in
C-scan images that at the final state of delamination,
called the threshold level, the deepest layer presents a
noticeably higher growth rate in all the samples except
Sample 10. In this study, the quantification method is

Figure 1. (a) PZT network attached test sample with antibuckling fixture and (b) fatigue test setup.
PZT: Piezoelectric Transducer.

Table 1. Sample names and corresponding mechanical variables.

Samples Impact energy (joule) Max/Min force
(- kN/- kN)

EoL
(fatigue cycles)

Number of measurement
Steps

Max applied
Force (kN)

Sample2 19.45 135
13:5 79,000 12 2140

Sample7 15.35 140
14

40,500 8 2140

Sample8 15.35 135
13:5 217,500 18 2145

Sample9 15.35 140
14 97,200 14 2140

Sample10 15.35 135
13:5

6600 8 2150

Sample11 15.35 140
14 183,700 20 2150

Sample12 19.45 130
13 38,500 9 2137

Sample13 16.31 140
14 27,900 7 2140

Sample14 15.35 140
14 21,300 7 2140

Sample15 16.31 135
13:5 15,500 9 2135
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chosen to be one-dimensional: the length in the direc-
tion of delamination growth manifests perpendicular
to the direction of the applied load.

This quantification cannot involve the variations in
delamination that co-occur at each layer or other types
of damage, such as matrix cracks. However, maximum
measured length information may help determine the
evolution of the delamination during the fatigue load-
ing. The measured delamination lengths (MDL) are
indicated in Figure 4 for ten samples, where the thresh-
old level shows the last step that allows for data
collection before the failure. The maximum final dela-
mination length is identical for all samples because it is
constrained by the fixture, which is 100 mm in width.
Although the EoL may occur at 100 mm, broken sen-
sors following catastrophic failure prevent further data
collection. The threshold level, which is the final state
of each sample in that final measurement is taken, var-
ies for each sample.

RUL refers to the number of remaining operational
times (cycles) during which the structure can perform
safely. The estimation of RUL accounts for the degra-
dation rate and the structure’s capacity to endure addi-
tional loading under operational conditions before
reaching a critical threshold. This study determines
RUL based on the observed delamination length, a
key indicator of structural failure. This approach is
depicted in Figure 5, emphasizing the connection
between delamination growth and the RUL determina-
tion strategy. The increase in delamination length

defines the degradation process; parameter c denotes
the time interval between the threshold point and final
failure, which is 2700 cycles for Sample 9.

SHM techniques

Methodological steps to achieve RUL prognostic based
on GW-DIs and EMI-DIs, explained in this section. In
the first subsection, the EMI technique will be intro-
duced. In the second subsection, the GW method,
which contains the signal processing steps for GW sig-
nals will be presented. Figure 6 illustrates the steps of
the methodology contains the experimental campaign
to SHM data collection that followed by signal pro-
cessing, DI extraction and RUL prediction steps.

Electromechanical impedance-based damage
indicator

PZT transducers are piezoelectric materials employed
with the principle of transforming electrical energy into
mechanical energy and vice versa, owing to the piezo-
electric effect. The characteristic vibrational behavior
of the structure alters as damages appear, and these
vibrational variations can be measured in complex elec-
trical admittance owing to the coupling between the
PZT and the host structure. The complex electrical
admittance expression is given in Equations (2) and (3)
for the electromechanical admittance and the mechani-
cal impedance of the PZT patch:

Figure 2. Impact testing setup (left) and impact energy calculation parameters (right).
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Y vð Þ= jv
wplp

hp

Zp(v)

Zp(v) + ZS(v)

d2
31

�Y E
11tan(klp)

klp
+ �eT

33 � d2
31

�Y E
11

� �
ð2Þ

Zp =
kwphp

�Y E
11

(jv)tan klp
� � ð3Þ

where Zp and ZS are the mechanical impedance of the
PZT patch and the structure, respectively. Zp is derived
where v is the angular frequency of the excitation vol-
tage, j is the imaginary number, and wp, lp, and hp are
the width, length, and thickness of the PZT patch,

respectively. �Y E
11 is the complex Young’s modulus, �eT

33 is
the complex electric permittivity, d31 is the piezoelectric
strain coefficient, and k is the wave number.39 An
alternating voltage is applied in a frequency range of
1 Hz–1 MHz in this experiment. Admittance has been
measured for each six PZT at each acquisition step
together with the GW signals. The resonant frequency
occurs around 280 kHz 6 10 kHz, which matches the
calculated resonant frequency through the diameter of
PZT transducer PIC255 according to the given para-
meters in experimental setup section. Figure 7 shows
the admittance signal measured by six PZTs at two

Figure 3. Ultrasonic C-scan images of delamination from three-fatigue life state: initial, middle, and final/threshold.
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fatigue states for Sample 2: initial state and final state
alongside measured delamination level. The deviation
between the two spectra occurs in terms of magnitude
and shift in resonance peak. Equations (4) to (6)
demonstrates the DIs that are used to quantify the var-
iation between the admittance values at different fati-
gue loading cycle; DI 1 indicates the RMS of Cycle 0
and later cycles; DI 2 windowed RMS considers the
part where first resonance occurs; DI 3 calculates the
resonant shifts through the cycles:

DI 1path, cycles =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j = 1 Signalcycles(j)� Signalbase(j)
� �2PN

j = 1 Signal
2
base(j)

vuut
ð4Þ

DI 2path, cycles =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNwindow

j = 1 Signalcycles(j)� Signalbase(j)
� �2PNwindow

j = 1 Signal2base(j)

vuut
ð5Þ

DI 3path, cycles= peak(Signalbase windowð Þ)
� peak(Signalcycles windowð Þ)

ð6Þ

Guided wave-based damage indicator

GWs are a type of elastic wave that propagates in
plate-like structures consisting of longitudinal and
shear modes. At the same time, their characteristics
are determined by the structural geometry, ply fiber
direction, initial wave entry angle, and selected exci-
tation signal and frequency. In the experiment, GW
excitation signals are performed as 2-cycle tone-burst
signals at the center frequency of 100, 120, 140, 160,
and 180 kHz. The GW signals are acquired in the
pitch-catch mode, which describes each PZT acting as
an actuator and receiver step by step. While the top
array PZTs are in actuator mode, only the bottom
array acts as a receiver and vice versa. As a result,
each PZT has three paths, and 18 paths are collected.
After the preprocessing step, signal processing and

Figure 4. Measured delamination lengths per sample considering (a) EoL and (b) threshold.
EoL: end-of-life.

Figure 5. (a) Measured delamination length for Sample 9, (b) RUL definition, and (c) RUL for all samples.
RUL: remaining useful life.
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DI extraction process is conducted in three main
ways:

1. HT is used to obtain signal envelopes from residual
GW signal that allows for the calculation of the

signal energy in desired time interval given in
Equation (7) to (9). A time-window is assigned
with different length for each excitation signal
resulting in a longer time window for a lower fre-
quency of 100 kHz and a shorter one for 180 kHz.

Figure 6. Methodological framework.

Figure 7. Initial and final state EMI magnitude comparison for six PZTs of Sample 2.
PZT: Piezoelectric Transducer.

Gül et al. 9



These intervals are 0–5; 0–4.5; 0–4; 0–3.5; 0–3.0 ms.
Figure 8 shows the original and processed GW sig-
nals with envelope presentations:

H tð Þ =
1

p

ð+ ‘

�‘

x tð Þ
t � t

dt ð7Þ

z tð Þ= x tð Þ+ iH tð Þ ð8Þ

DI 1fexc,NPZT
=

PTwindow

t H(t)cyclesPTwindow

t H(t)base
ð9Þ

2. CWT has been applied to represent the signal in
the time–frequency domain, which allows to mea-
sure energy in segments of the signal which has
been achieved via windowed average power calcu-
lation where the related equations are given in
Equations (10) to (13).

CWT(a, b) =

ð
c

t � b

a

	 

x(t)dt ð10Þ

WAP tð Þ=
Xb = T

b = t
CWT a, bð Þj j ð11Þ

DI 2fexc,NPZT
=

PTwindow

t AP(t)cyclesPTwindow

t AP(t)base
ð12Þ

DI 3fexc,NPZT
=

PTtotal
t AP(t)cyclesPT total
t AP(t)base

ð13Þ

C(t) is the wavelet function, and CWT(a,b) are the
continuous CWT coefficients. Generally, when the sig-
nal segment shares the same form or pattern as the
wavelet, the resulting wavelet coefficients achieve their
maximum value. In order to detect the delamination-
sensitive indicators, DI 2 and DI 3 are extracted from
the average power analysis, which is derived from the
time–frequency domain estimated by CWT. The time
window is selected based on the final residue signal,
demonstrating the higher deviation in the damage-
related energy package. After determining the time
scale, the total energy change is estimated in this inter-
val to obtain DI 2. DI 3 calculates the total power
change in average power analysis that accounts for all
spectrums

3. The coherence of the signal all through the grow-
ing cycles is evaluated with the cross-correlation
between the signals in the time domain with the
following equations:

(f Hg)½n�=
X‘

m =�‘
f ½m� � g½m + n� ð14Þ

DI 4fexc,NPZT
= max corr x t � dð Þcycles, x tð Þbase

h i�1
	 


ð15Þ

the term corr denotes the correlation coefficient func-
tion, and 2d indicates the shift of the current signal.

Finally, the signals from all the PZTs in the sensor
network are fused with the same weight to obtain one
global DI for one specific time step. Equations (16) and
(17) are presents the sensor-based fusion step. In the
later step, normalization with 0 to 1 range is applied
for global DIs for a better representation with their cor-
responding MDL. On the other hand, in the prognostic
stage, a sample-based standardization step is performed
for fused-DIs to involve sample-based variations in the
model:

EMI DI =

PNtotalpath

Npath= 1
DIN , DIno

Ntotalpath
; DIno = 1, 2, 3, 4; ð16Þ

GW DI=

PNtotal path

Npath = 1
DIN , fexc, DIno

Ntotal path
; DIno = 1, 2, 3, 4;

fexc = = f100, 120, 140, 160, 180 kHzg:
ð17Þ

Methodology

For the prognostic model, a deep neural network
(DNN) model is designed as they are well-suited for
tasks with high-dimensional inputs and nonlinear rela-
tionships. To explore the performance of EMI-DIs and
GW-DIs, models are trained for each DI, which results
in two different hyperparameter tunings for each RUL
prognostic model. Two fusion methodologies are pro-
posed for further improvement to achieve a more
robust prognostic. The weighted average ensemble
(WAE) considers two RUL predictions obtained each
prognostic model trained via GW-DIs and EMI-DIs.
The second fusion methodology concatenates the out-
puts of each prognostic model and then inputs them
into the fusion model, which is designed as another
DNN architecture with independent hyperparameter
tuning and learning steps. The schematic of the pro-
posed RUL prognostic is represented in Figure 9. The
dataset was created with samples 7, 9, 12, 13, 14, and
15 by excluding samples 8 and 11 as their degradation
has not been captured in terms of delamination propa-
gation. Sample 10 is excluded because of its short EoL,
which negatively affect the prognostic criteria that con-
sider the distribution of samples’ end-of-life merit.

Prognostic models

DNNs have become highly effective tools for regres-
sion tasks due to their ability to model intricate

10 Structural Health Monitoring 00(0)



relationships between input and output variables.
DNNs can automatically learn hierarchical representa-
tions from data, making them particularly suitable for
tasks with high-dimensional inputs and nonlinear rela-
tionships. The fundamental components of a DNN are
neurons, which are arranged in layers. In a standard
DNN architecture for regression, multiple hidden
layers are placed between the input and output layers.
Well-adapted activation functions include the rectified
linear unit (ReLU), sigmoid, and hyperbolic tangent
(tanh).40 After testing various activation functions to
map DI sets, ReLU was primarily utilized in the pro-
posed model for their effectiveness in achieving higher
accuracy.

Training a DNN for regression involves adjusting
neuron weights and biases to minimize a loss function,
which measures the difference between predicted out-
puts and actual labels. This is achieved using optimiza-
tion algorithms such as stochastic gradient descent
(SGD) or its variants, like adaptive moment estimation
(Adam).41 Adam is an adaptive optimization algorithm
that maintains two moving averages of the gradients
and adapts learning rates for different parameters
based on their historical gradients, often leading to
faster convergence and greater robustness to noisy gra-
dients compared to traditional SGD methods. Mean
squared error (MSE) is used as the loss function and
accuracy metric during training and testing. The

Figure 8. Envelope representation of GW signals between Actuator: PZT 1; Receiver: PZT 6 from 180 kHz center frequency
excitation signal.
GW: guided wave; PZT: Piezoelectric Transducer.
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equations for Adam’s optimization strategy are pro-
vided in following:

nt = b1�nt�1 � 1� b1ð Þ�gt ð18Þ

st = b2�st�1 � 1� b2ð Þ�g2
t ð19Þ

Dvt = � h
ntffiffiffiffi
st

p
+ e
�gt ð20Þ

vt + 1 = vt + Dvt ð21Þ

In the given equations, h is the initial learning rate,
gt is the gradient at t each feedfroward iteration along
vt, nt is the exponential average of gradients along vt,
st is the exponential average of squares of gradients
along vt and b1,b2 are hyperparameters to control the
exponential decay rates of the moving averages.

Without explicit time dependence in its structure,
the model is trained using input data formatted time-
series. During the training phase, each iteration
involves mapping an individual input value within the
dataset to its corresponding RUL target. Training is
conducted by sequentially feeding the model with the
DI history of each sample within the training set. For
testing, the model predicts RUL for each time step
based on unseen data, effectively estimating RUL
iteratively across the time horizon. Figure 10 presents
the complete framework for RUL prognostic with the
proposed learning model. Two architectures are
trained for EMI-DIs and GW-DIs inputs named M-
EMI and M-GW. Input sets have tcyclestepsxNfeatures, M-
EMI has an input dimension of 56 3 3, and M-GW
has a dimension of 56 3 20 that has been split for test-
ing and validation purposes. Each dataset has six sam-
ples for training, and 1 sample is left for testing
purposes. In that sense, Leave-one-out-cross-validation
(LOOCV) is adopted into the framework that allows

for evaluating the model’s performance using data not
previously introduced during training, thereby asses-
sing the model’s effectiveness in handling unseen data.

As a result, each sample was held out as a testing
sample and was not included in the training phase.
Finally, RUL predictions of seven samples are
obtained. To account for potential missing data steps
and maintain consistency, interpolation is applied to
keep intervals constant. The inputs are standardized
using z-score normalization applied on each DI set sep-
arately and then fed into the M-EMI model through a
3-neuron input layer. In contrast, the M-GW model
utilizes a 20-neuron input layer. Hyperparameters are
optimized experimentally by monitoring the training
loss, which is measured as the MSE value, using valida-
tion data. The validation data are randomly selected
from the training set, with 20% of the training dataset
aside for validation. The solution space for the given
architecture is considered to be sufficiently converged,
meaning that minor adjustments in the number of neu-
rons do not significantly impact the model’s accuracy.
This suggests that the architecture is robust to small
network configuration changes, indicating that the
model’s performance has reached an optimal or near-
optimal state within the specified design parameters.
The model utilizes a batch size of 2, meaning that the
parameters are updated based on the loss function after
processing each pair of consecutive time steps. Final
hyperparameters are given in Table 2. Dropout regu-
larization layers42 are applied after the first and second
layers. To generate confidence bounds for the predic-
tions, the model was re-initialized and re-trained ten
times with random initial weights and biases, resulting
in varied predictions each time. This approach demon-
strated the stability of the proposed model by showing
that predictions consistently fell within a specific range,
confirming the model’s robustness across different ran-
dom initializations.

Fusion methodology

As can be seen in Figure 11, two fusion approaches are
proposed: WAE and DNN-fusion. WAE, shown as
Fusion 1, is defined as follows:

fWAE =
XK

k = 1

�vk fk ; �vk =
vkPK

k = 1 vk

ð22Þ

vMSE
k =

1

MSE YRUL,RULk(E)
� �

=
1

1
Nj

PNj

i = 1 Yj tið Þ �RULk(E)
j tið Þ

� �2

ð23Þ

Figure 9. Schematic of the proposed fusion frameworks for
RUL prognostics.
RUL: remaining useful life.
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vRMSE
k =

1

RMSE YRUL,RULk(E)
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nj

PNj

i = 1 Yj tið Þ �RULk(E)
j tið Þ

� �2
� �s ð24Þ

where fk represents the kth individual model and �vk is
its normalized weight. vk denotes the weight for the
kth individual base model. MSE, RMSE are calculated
as error metrics to determine the weights. Simple aver-
aging ensemble (SAE) is implemented by setting all vk

to one. The final output is selected based on WAE

Figure 10. DNN scheme for RUL prognostic framework.
DNN: deep neural network; RUL: remaining useful life.

Table 2. Hyperparameters of proposed models M-EMI and M-GW.

Model Number of neurons Initial
learning
rate

Batch
size

Layer 1 Layer 2 Layer 3 Layer 4

M-EMI 32 Dropout
0.2

ReLU 16 Dropout
0.2

ReLU 8 ReLU 1 Linear 0.01 2
M-GW 64 32 8 1 0.01 2

Gül et al. 13



output that has the minimum error with respect to tar-
get RUL value, denoted as ‘‘YRUL.’’

RUL-fused-2 is obtained in the methodology shown in
Figure 11 as Fusion 2. A DNNmodel is constructed to take
the outputs of the GW-based and EMI-based prognostic
models as inputs, and it is trained to predict the target val-
ues, YRUL. The model parameters are given in Table 3.

Results and discussion

Damage indicators

EMI-DIs are presented in Figure 12, and their accuracy
to capture delamination growth behavior is shown. In
the figures, each normalized-DI is represented with its
corresponding normalized-MDL. It can be seen from
the results that proposed DIs are not indicating the

same behavior, yet in cases of Samples 7, 9, 10, 13, and
15, there is a continuous degradation. Sample 11 and
Sample 8 show a constant state of delamination even
some fluctuations exist it seems like a steady-state
behavior confirms their MDL. Samples 8 and 11 MDL
have a limited representation after the normalization,
as the earlier stages are shown at zero level. Note that
no quantifiable change occurred during this period, yet
impact damage exists as all the samples in the dataset.
In addition to that, the load increased incrementally for
Sample 11 after the 120k cycle. Even though the change
in MDL seems drastic in the normalized form, the
actual case can be seen more realistically in Figure 4. As
so, Samples 8 and 11 are unique cases, as there was no
captured variation via c-scan until a specific cycle for
these two samples; EMI-based DIs also show an accu-
mulation, and no increasing trend is shown in their DIs.

Figure 11. Proposed fusion methodologies to integrate RUL predictions obtained from both EMI-based and GW-based prognostic
models. Fusion 1 represents the weighted average ensemble (WAE), and Fusion 2 has a deep learning basis.
RUL: remaining useful life; WAE: weighted average ensemble.

Table 3. Hyperparameters of the model ‘‘M-fuse.’’

Model Number of neurons Initial learning rate Batch size

Layer 1 Layer 2 Layer 3 Layer 4

M-Fuse 32 0.2 ReLU 16 0.2 ReLU 8 ReLU 1 Linear 0.01 1
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GW-DIs are shown with the normalized MDL val-
ues for each sample in Figure 13, presenting the results
for all samples from one-selected frequency that pre-
sents the highest prognostic score. As each frequency
contains 4-DIs, it makes 20-DIs to investigate at the
end. Therefore, most accurate results are selected and
presented.

Based on the results, Samples 8 and 11 present a
steady-state behavior that confirms with their EMI-
DIs. Sample 8 failed in the first 7000 cycles after the
210k cycles once the load was increased with 5 kN,
which did not allow for c-scan measurement before
its failure. Therefore, that may prove that the increase
in the severity that is observed in GW-DIs for Sample

Figure 12. EMI-DIs and delamination growth for all samples in set.
DI: Damage indicator; EMI: electromechanical impedance.

Gül et al. 15



8 may indicate the variation in the delamination even
though it is not visible in MDL.

From a prognostic perspective, any DI is expected
to exhibit behavior reflecting continuous structural
degradation over time, given that no maintenance
activities or self-healing processes take place. Thus, as
damage accumulates within the structure, the

associated DIs derived from GW and EMI methods
should show a progressive increase. This behavior is
critical for accurate RUL predictions, providing a mea-
surable and interpretable signal of the structure’s
ongoing deterioration. A monotonicity (Mo) metric is
often employed to quantify this expected trend.43

Additionally, the correlation metric can assess the

Figure 13. GW-DIs and delamination growth for all samples in set.
DI: Damage indicator; GW: guided wave.
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similarity between DIs and observed damage degrada-
tion trends. This criterion can measure the degree to
which the DIs reflect the underlying damage mechan-
isms as they evolve by measuring the DI correlation
with measured delamination length. High correlation
signifies that a DI tracks damage degradation and may
enable better predictive modeling and facilitate more
reliable RUL estimation. Ratings for the two metrics,
Mo and Corr, range from 0 to 1, with a score of 1
denoting ideal DI performance. Considering these cri-
teria, the following formulations for the Mo and Corr
metrics are used:

Mo=
1

M

XM

j = 1

XNj�1

k = 1

sgn xj(k + 1)� xj(k)
� �

Nj � 1


 ð25Þ

Corr=
cov xj,Dj

� �
sxj

sDj


; j = 1, 2, . . . ,M ð26Þ

In Equation (25), M is total number of composite spe-
cimens evaluated, Nj is total number of time steps (GW
measurements) for the j-th specimen, xj(k) is the value
of the j-th DI at time step k. sgn is Sign function, which
evaluates the direction of change between consecutive

points, where + 1 is for increasing DI, �1 is for
decreasing DI. In Equation (26), Dj denotes the dela-
mination length measured by C-scan for the j-th speci-
men, and s indicates the standard deviation.

In Figure 14, the Mo performance of EMI-DIs and
GW-DIs is presented for each sample. In Figure 14(a)
and (b), a similar trend is observed for GW-DIs and
EMI-DIs, where both monotonic and correlation
metrics do not show a consistent increase or decrease
across different DIs and samples. Therefore, different
DI types are treated as independent features in the
learning model. This strategy ensures that the learning
model fully utilizes the available data, enhancing the
accuracy and robustness of the prognostic methodol-
ogy. In addition, GW-DIs across frequencies are treated
as a single independent feature in the learning model, as
their corresponding DIs do not consistently indicate the
best result for a specific excitation frequency.

Prediction results

RUL prediction results are obtained as RUL-GW,
RUL-EMI, RUL-fused-1 WAE-based Fusion 1, and
RUL-fused-2; DNN-based Fusion 2. Errors of

Figure 14. Monotonicity metric for (a) EMI-DIs and (c) GW-DIs; correlation metric for (b) EMI-DIs and (d) GW-DIs.
DI: Damage indicator; EMI: electromechanical impedance; GW: guided wave.
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predictions are given by the metric of mean absolute
percentage error (MAPE), given in Equation (27):

MAPE=
1

n

Xn

i = 1

Y i
t � Y i

p

Y i
t


3100 ð27Þ

where Y
i, t
R denotes the true label for RUL. Y

i, p
R is for

the predicted RUL in average of total cycles at the ith
iteration, while n is 10, indicates the number of total
re-initializations.

RUL results are presented in Figure 15 for seven
tested samples that compare the accuracy of each input
type. Among all tested samples, samples 7, 12, and 14
have the highest accuracy. The results show that the
RUL accuracy differs for each input type in terms of
accuracy. In Figure 16, error values regarding MAPE
are given, showing the error in RUL prediction for
each cycle. It can be seen in the RUL prediction results
that the model performed well in terms of convergence
throughout the cycle steps. For sample 12, RUL-EMI
dominates the other three inputs with higher accuracy
through all cycles, yet the error in the last cycle step
shadows the overall performance. It should be noted
that sample 12 has the highest impact energy, so the
initial delamination was more severe compared to the
rest of the samples, which could be captured accurately
via EMI. Except for sample 12, lower accuracy for

RUL_EMI holds for the rest of the samples while con-
verging with lower error in later cycles in all cases.

RUL-fused-1 and RUL-fused-2 demonstrate a con-
sistent and stable performance for all tested samples.
In sample 9, delamination was propagated significantly
faster in one layer than in others. It is seen in its predic-
tion that all input types perform closely, and it demon-
strates an early prediction with a convergence in its
final cycle. In Figure 17, the average error values for
each sample are presented, and EMI_RUL has the
maximum error in most of the cases. The results show
that in Figure 18, while the RUL-GW operates with
lower error than RUL-EMI, RUL-fused-1, and RUL-
fused-2 have higher accuracy on average through the
cycles in addition to the better convergence of RUL-
fused-2 in the final cycle step.

Discussion

To better understand the results of the obtained RUL
prediction, some critical parameters need attention.
Considering the load scenarios discussed earlier in this
study, fast and slow growth trends in the delamination
may affect the performance of GW and EMI results
and the RUL prognostic. In the case of Sample 2, it is
seen in the C-scan measurements that delamination
presented a slow growth behavior in the earlier cycles,

Figure 15. RUL predictions obtained for each model.
RUL: remaining useful life.
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and it was poorly captured in EMI-DIs. It is also seen
in its RUL predictions that RUL-EMI has the lowest
accuracy, while RUL-GW presents significantly higher
performance. That can be correlated with the fact that
GW is sensitive waveforms to the slight variations in
the damage and the structure. Another point regarding
the performance of RUL-GW can be explained by the

damage mechanisms that occur during the fatigue life
of the structure and cannot be quantified through C-
scan measurements. Since the GW signal conveys infor-
mation from all structures and considers other damage
mechanisms involved in structural degradation, GW-
DIs may be more capable of predicting the RUL than
EMI-DIs. However, as the delamination propagates

Figure 16. RUL prediction accuracy scores for each sample.
RUL: remaining useful life.

Figure 17. Average normalized error for each sample.
Figure 18. Average normalized error for each RUL model.
RUL: remaining useful life.

Gül et al. 19



and approaches the sensor locations, EMI performance
is expected to improve, and this improvement manifests
itself in RUL predictions as well.

Two different approaches were developed to inte-
grate and leverage both techniques, with RUL_fused_2
proving to be the most robust approach, achieving
higher performance in terms of final cycle convergence
and throughout the fatigue life of the samples. The
improvement of RUL_fused_2 is calculated consider-
ing less effective prediction of EMI and a 48%
improvement in final cycle and 24% in overall cycles
are achieved.

Additionally, there are some limitations regarding
the proposed framework. First, the DNN model is
trained via DIs obtained through signal processing.
This poses a significant challenge considering the com-
plex relation between the damage and GW signals and
the limited capability of EMI measurements. Any noise
or variations in the signal acquisition and processing
may manifest itself in obtained DIs and can be the
source of error in the predictions. Furthermore, the
prognostic framework has limited degradation scenar-
ios regarding loads and impact. Besides, proposed
DNN models can be adapted to capture DIs separately
from each path instead of globally represented DIs by
converting them to a more complex model in terms of
architecture. Finally, although the proposed prognostic
methodology utilizes a DNN, there is potential to
develop further and explore various regression models
to more effectively leverage their respective advantages.

Conclusion and future work

This study proposed a novel framework that integrates
GW and EMI signals for RUL prognostic of woven
CFRP samples subject to compressive fatigue loading
with impact-induced delamination. Unique characteris-
tics of both techniques improve the reliability of the
results, as the integrated methodology allows for
detailed understanding by capturing the variations in
DIs for different loading cases, such as fast growth and
slow growth delamination effects.

A series of experiments have been carried out,
including low-velocity impact, quasistatic, and fatigue
testing combined with EMI and GW-based SHM
applications. Surface-attached PZT networks provide
the EMI and GW data, while the delamination pro-
gression is labeled with periodic ultrasonic C-scan mea-
surements. EMI-DIs are defined based on three DIs,
while four GW-DIs are obtained via signal processing.
In the case of delamination presenting stable behavior
during the fatigue life, EMI-DIs and GW-DIs indicate
a stationary response, which can be considered an indi-
cator of their performance in terms of their capability

of projecting progressive delamination. The prognostic
performance of each DI is investigated in terms of their
Mo and Tr, and DIs are varied in terms of their predic-
tive performance for each sample. Therefore, to cap-
ture this variation and convey it with RUL prognostic,
a DNN model was developed to fuse EMI-DIs and
GW-DIs. Finally, it demonstrated that while RUL
obtained via GW-DIs performs with better accuracy
than EMI-DIs on average, the proposed DNN-based
fusion model presents less variation throughout the
fatigue cycles and holds a higher accuracy in an aver-
age of the samples compared to sole EMI or GW-
based prognostic.

As the limitations are mentioned, to mitigate the
potential effects that may occur in the DI extraction
step, two steps can be taken: first, the paths can be
assigned as independent features into the DNN model,
enhancing its ability to capture a broader representa-
tion for the degradation of the structure. Second, incor-
porating the total signal of GW or the measurement of
EMI into the DNN model may provide more compre-
hensive information for improved RUL estimation.
Consequently, future efforts will focus on advancing
the RUL methodology by integrating these insights.
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Appendix

Abbreviations

CAI Compression After Impact
CBM Condition Based Maintenance
CFRP Carbon Fiber Reinforced Polymer

CWT Continuous Wavelet Transform
DI Damage Indicator
EMI Electromechanical Impedance
GW Guided Wave
HT Hilbert Transform
LOOCV Leave-One-Out-Cross-Validation
PZT Piezoelectric Transducer
RUL Remaining Useful Life
SHM Structural Health Monitoring
STFT Short Time Fourier Transform
WAP Windowed Average Power

Nomenclature

Np Diameter frequency constant
Nt Thickness frequency constant
Fmax Maximum applied fatigue load
Fmin Minimum applied fatigue load
wp Width of PZT
lp Length of PZT
hp Thickness of PZT
�Y E

11 Complex Young’s modulus
Zp Impedance of the PZT
ZS Impedance of the structure
d31 Piezoelectric strain coefficient
�eT

33 Complex electric permittivity
k Wave number
C(t) Wavelet function
fexc GWs Excitation Frequency
n Exponential average of gradients
h Initial learning rate
v Weight of a neuron
s Exponential average of squares of g
g Gradient
Y RUL value
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