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Lay summary

In graph theory, mathematicians have been exploring cycles, essentially loops
within a network, for well over 50 years. These cycles are used in various real-
world applications such as research on ecosystems, network theory for computer
science, and traffic flow within logistics. A specific subgroup of these cycles are
the cycles where the length of the cycle is even. A visual representation of such
a cycle can be found in Figure 1 (a). Finding an algorithm that discovers the
shortest one of these even cycles in a given network, especially when one-way
streets are allowed, has been a longstanding problem in graph theory.

(a) Visual (b) Matrix

Figure 1: Two representations of the same graph in which an even cycle, indi-
cated by the color red, is depicted.

In the meantime, numerous other advancements were made such that the
problem of finding an algorithm for these shortest even cycles could be reframed
as another problem, finding two special numbers that could be extracted from
its matrix representation. In Figure 1, both a visual representation of a graph
(a) and its matrix representation (b) can be found.

These numbers, called the permanent and determinant, while solvable in
some scenarios, appeared to be much harder to solve in the scenario where the
shortest even cycle had to be found. Therefore, the challenge remained.

Until recently, when Björklund, Husfeldt, and Kaski [1] discovered an algo-
rithm that could find both the permanent and the determinant for this specific
case. Their approach involves constructing two mathematical concepts that help
in finding the permanent and determinant.

The focus of this thesis is to explain these mathematical concepts in a way
that is accessible to bachelor students of mathematics. These concepts are then
applied to explain the algorithm that finds the determinant. Additionally, the
algorithm for computing the determinant, along with one that does compu-
tations with one of the mathematical objects, is implemented in Python. By
explaining this object and the algorithm for the determinant, readers will gain
a small insight into the concepts Björklund, Husfeldt, and Kaski [1] used to find
an algorithm for the shortest even cycle in graphs.
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Abstract

The problem of finding even cycles efficiently in a directed graph can be rewritten
to a problem of finding the permanent and determinant of the graph’s adjacency
matrix. Although this has been known for a long time, it did not solve the
shortest even cycle problem, as mathematicians lacked an efficient method to
compute the permanent.

In 1979 Valiant [2] found out that in some specific cases, when one works
modulo a power of 2, the permanent could be computed efficiently. Although
this did not directly lead to a breakthrough in finding even cycles, it laid the
groundwork for Björklund, Husfeldt and Kaski [1] to solve the problem of find-
ing the shortest even cycle. Instead of working with the integers modulo 2,
Björklund, Husfeldt and Kaski [1] used a polynomial quotient ring E4d , which
is an extension of some polynomial quotient ring F2d . The polynomial quotient
ring E4d , it turns out, benefits from having a characteristic of four and relies on
F2d being a field. Surprisingly, these two properties are exactly what is needed
to efficiently compute both the permanent and determinant.

The aim of this thesis is to give the reader a better understanding of the
polynomial quotient rings F2d and E4d that are used by Björklund, Husfeldt and
Kaski in [1]. These structures are then used to explain the part of their algorithm
that computes the determinant of matrices with entries in E4d . The reader
is given a deeper insight into the algorithm by comparing it to the standard
algorithm for computing the determinant learned in most linear algebra classes.
By using the polynomial rings and algorithm for the determinant described in
[1], a Python script is written. This script can perform calculations within
E4d and compute the determinant for a matrix with entries in E4d . Finally,
the difference between computing the permanent and the determinant will be
briefly explained.
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1 Introduction

Graph theory, originally a pure math subject, has become useful in many real-
life scenarios involving networks. Within this field, some mathematicians have
focused on finding cycles, which, just as graphs, have many practical applica-
tions. Environmental science uses them to understand ecosystems and predict
climate changes, in transportation and logistics, cycles help optimize traffic
flow and supply chain management. Other fields that benefit from understand-
ing cycles include biology, electrical engineering, computer science, economics
and robotics. While not all of these applications always require the shortest
even cycle, some specific problems may benefit from tailored solutions involving
shortest even cycles.

Whether for its practical applications or the challenge of an unsolved prob-
lem, researchers have been actively studying even cycles in both directed and
undirected graphs for over 50 years. Consequently, numerous advancements
have been made leaving most even cycle problems solved. By the end of the
twentieth century, Yuster and Zwick [3] found an algorithm that could find the
shortest even cycle in undirected graphs. A mere two years later, Robertson,
Seymour and Thomas [4] came up with a way to find out if these even cycles
exist in some given directed graph.

An algorithm to find the shortest even cycle in a directed graph proved to be
more difficult to find. Only recently, in 2022, such an algorithm was discovered
by Björklund, Husfeldt and Kaski [1].

The discovered algorithm heavily relies on computing both the permanent
and the determinant. Although efficient algorithms exist for the determinant,
calculating the permanent is notoriously harder. It turns out that the perma-
nent of a matrix with entries of some specific polynomial quotient ring, called
E4d , as explained in Section 4, can be found in polynomial time. Part of this
algorithm also finds the determinant, which is covered in Section 6. Explaining
the algorithm that computes the determinant is the main goal of this thesis
and hopefully, gives the reader a slight understanding in how the permanent is
computed in [1]. Both the algorithm for finding the determinant of a matrix
with entries in E4d and the implementation of the ring E4d with its operations
are also programmed using Python, as detailed in Sections 5 and 7.
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2 The problem

Before diving into the main part of this thesis, which focuses on algebraic struc-
tures, we will briefly review some definitions in graph theory. This will help the
reader understand what Björklund, Husfeldt and Kaski [1] were investigating in
graphs and how they addressed the problem.

Definition 2.1. (Graph). A graph G is a pair (V,E), where V is a non-empty
set of vertices and E is a set of pairs {u, v} : u, v ∈ V also called edges. Whenever
the pairs {u, v} ∈ E are unordered we call G an undirected graph. When the
pairs (u, v) ∈ E are ordered it is called a directed graph.

1

2 3

4

5

6

Figure 2: A representation of an undirected graph is depicted.

The edges e ∈ E in a graph G connect its vertices v ∈ V . In undirected
graphs, these connections are two-way streets: if vertex u ∈ V has an edge to
vertex v ∈ V , then v ∈ V also has an edge to u ∈ V . Directed graphs, on
the contrary, permit one-way connections. Hence, the existence of an edge from
vertex u to v does not imply the existence of an edge from v to u.

1

2 3

4

5

6

Figure 3: A representation of a directed graph is depicted
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Figure 3 illustrates a directed graph, where the edges are depicted with ar-
rows indicating the direction of traversal. For instance, in this graph, one can
directly traverse from vertex 2 to vertex 1, but not vice versa.

Definition 2.2. (Walk). Let G = (V,E) be a graph. A walk W on G is a
sequence of vertices v1, v2, v3, . . . such that {vi, vi+1} ∈ E. Whenever the walk
starts and ends on the same vertex v1, it is called a closed walk.

In a directed graph, the existence of a walk from node ni to nj does not
imply that a walk from nj to ni exists. Whenever a walk can be traversed in
each direction a closed walk could be constructed.

Definition 2.3. (Cycle). Let G = (V,E) be a graph. A cycle C on graph G is
a closed walk where the first and therefore last vertex is visited twice while the
other vertices are visited at most once.

Figure 4 shows a graph where a closed walk is drawn. This closed walk is
not a cycle since it visits vertex 2 multiple times.

1

2 3

4

5

6

Figure 4: A representation of a closed walk which is not a cycle.

Definition 2.4. (Even cycle). Let G = (V,E) be a graph. An even cycle C in
graph G is a cycle that visits an even number of distinct vertices.

3
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Figure 5: An even cycle of length 4.

Figure 5 shows a cycle which is contained in the closed walk in Figure 4.
Furthermore, Figure 5 depicts an even cycle since it contains four vertices and
four edges. Note that if a cycle contains four edges it also contains four vertices
and vice versa.

Traditional methods efficiently find even cycles in undirected graphs. This the-
sis, however, explores an algorithm detailed in [1], which identifies even cycles
within directed graphs.

In directed graph theory, there is an established algorithm for finding closed
walks of specific lengths, which can be used to identify the shortest odd cycle
within a graph. Sometimes, closed walks can be divided into cycles, as shown
in Figures 4 and 5. A closed walk of odd length falls into one of two categories:
it is a cycle or it can split into odd and even cycles. Therefore, searching for
the shortest closed walk with an odd length naturally leads to discovering the
shortest odd cycle.

However, this method fails when searching for an even cycle, as a closed
walk of even length might split into two odd cycles. Hence, finding even cycles
requires a different approach, which involves transforming the problem into
finding the permanent and determinant of a yet to be defined adjacency matrix.

Definition 2.5. (Weighted directed graph). Let G = (V,E) be a directed
graph. Whenever G is equipped with a function ω : E → R to create a tuple
G′ = (V,E, ω) we call G′ a weighted directed graph.

The function ω in weighted directed graphs is a function that assigns a weight
to each edge in the graph. This weight can be seen as the length of an edge,
where a high weight represents a longer edge. Whenever graphs represent real-
life scenarios, it makes sense to assign weights to edges. For example, a road
network can be thought of as a graph where the weight of each edge represents
the traversal time between intersections, which are represented by nodes.

Definition 2.6. (Self loop). A self loop is an edge from a vertex to itself.

4
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Figure 6: A weighted directed graph is depicted.

In Figure 6 it can be seen that each vertex is equipped with a self loop of
weight x. Although weight x seems to be a peculiar choice as weight for an
edge, it is a necessity for Theorem 2.1 to work.

Definition 2.7. (Adjacency matrix). LetG = (V,E) be a graph with n vertices.
The adjacency matrix A is created as follows:

Ai,j =

{
wi,j , if {i, j} ∈ E

0, otherwise

Example 2.1. Let G be the weighted directed graph depicted in Figure 6.
Then its adjacency matrix A is:

x 0 0 1 0 0
1 x 1 0 0 0
0 0 x 0 1 0
0 1 0 x 0 1
0 0 0 0 x 1
0 1 0 0 0 x

 .

The following theorem transforms the problem of finding even cycles into
a problem that involves computing both the determinant and the permanent.
The permanent and determinant will be defined in Section 6. In this thesis, we
will discuss methods for computing the determinant and briefly address how the
permanent is computed in [1].

Theorem 2.1. Let G be a weighted directed graph with n vertices and a self
loop at each vertex of unspecified weight x. Then for the adjacency matrix A(x)
of G,

per(A(x))− det(A(x)) = f(x)

5



for some polynomial f(x) = a0+a1x+ ...+anx
n. Moreover, let us write [xℓ]f(x)

for the coefficient for xℓ in f(x) and n for the number of vertices in graph G.
Then the number of edges used in the shortest even cycle is equal to the smallest
positive even k such that [xn−k]f(x) is not identically zero.

The proof is given in [1, p.8].

Theorem 2.1 finds the cycle with the least number of edges such that an even
number of edges are traversed. However, this algorithm can also be applied to
a similar problem in directed weighted graphs. In these cases, a cycle must be
found with the smallest summed weight over the edges used while also having an
even total weight. By constructing a second graph that resembles the original
but with a few modifications, the same theorem can be used to find the length
of the shortest cycle with an even weight. While the construction of this second
graph varies depending on the situation, a small example will be shown to
provide insight into some of the possible concepts that can be used.

1 2

3

1

1

2

1 2

3

41

1

1

1

Figure 7: A graph and its adaptation such that Theorem 2.1 can still be used
is shown.

In Figure 7 it is shown that Theorem 2.1 can still be used on graphs where
not every edge has a weight of one. This is done by replacing the edge between
vertices two and three with two edges and an intermediate node, so that the new
edges each have a length of one and their combined length is equal to the original
edge. Although similar techniques can be applied when edges have non-integer
weights, additional questions arise. For instance, how would one categorize a
cycle with a weight of 5

2? Would that be considered an even or an odd cycle?
For this thesis, we will primarily focus on computing the determinant and leave
these questions for the reader to ponder.
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3 Algebraic structures

3.1 Rings and fields

The key advancement in [1] lies in the creation of two algebraic structures which
are called polynomial quotient rings. These polynomial quotient rings will be
defined at the end of this section. Before inspecting polynomial quotient rings,
we will lay the groundwork by exploring definitions and examples of rings. These
definitions will then be used to define and explain the more complicated poly-
nomial rings and polynomial quotient rings.

Definition 3.1. (Ring). A ring is a set R equipped with two operations, +
(addition) and · (multiplication) satisfying the first three of the following ax-
ioms, called the ring axioms. The ring R is called commutative whenever axiom
four is also satisfied.

1. R is an abelian group under addition.

• a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R (associativity).

• a+ b = b+ a for all a, b ∈ R (commutativity).

• There exists an element 0 ∈ R such that a+ 0 = a for all a ∈ R (additive
identity).

• For each a ∈ R there exists an inverse (−a) ∈ R such that a + (−a) = 0
(additive inverse).

2. R is a monoid under multiplication.

• a · (b · c) = (a · b) · c for all a, b, c ∈ R.

• There exists an element 1 ∈ R such that a · 1 = a and 1 · a = a for all
a ∈ R (multiplicative identity).

3. Multiplication is distributive with respect to addition.

• a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R.

• (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R.

4. R is commutative.

• a · b = b · a for all a, b ∈ R.

For the keen reader, it becomes apparent that a ring functions as a group
under addition while also featuring a secondary operation, namely multiplica-
tion.

Example 3.1. Z is a commutative ring.
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It is worth noting that although a ring operates as a group under addition,
it does not contain multiplicative inverses for all of its elements. Hence, a ring
does not necessarily qualify as a group under multiplication.

Definition 3.2. (Ring homomorphism).
Let R1, R2 be rings. A map M : R1 → R2 is called a ring homomorphism if
the following conditions hold:

• M(a+ b) = M(a) +M(b) for all a, b ∈ R1.

• M(a · b) = M(a) ·M(b) for all a, b ∈ R1.

• M(1) = 1, where 1 denotes the multiplicative identity element of the
groups R1 and R2.

Definition 3.3. (Field). A field is a ring F satisfying:

• For each a ∈ F : a ̸= 0 there exists an inverse a−1 ∈ R such that a·a−1 = 1
(multiplicative inverse).

In contrast to a ring, a field is a group under multiplication, provided that
zero is excluded from the multiplicative group due to its lack of an inverse.

Definition 3.4. (Isomorphism). Let R1, R2 be rings and M : R1 → R2 be a
bijective ring homomorphism. Then M is called an isomorphism.

Lemma 3.1. Let F be a field with q elements. Then F is the only finite field
with q elements up to isomorphism. That is, if another field F ′ with q elements
exists, then there exists an isomorphism M from F to F ′.

Proof. Cf. e.g. [5, p.14].

Elements and subsets of two fields that are isomorphic share the same prop-
erties. Whenever two fields are isomorphic they can be roughly seen as the same
mathematical object with a different representation.

Example 3.2. The commutative ring Z is not a field since not all non-zero
elements have an inverse. All non-zero elements a ∈ Q do have a multiplicative
inverse which can be written as 1

a , thus Q is a field.

Definition 3.5. (Zi). The ring Zi consists of all the elements 0, 1, 2, ..., i − 1
which are representatives of the equivalence classes when divided with remainder
by i. The two numbers n,m are said to be equivalent whenever they share the
same remainder when divided by i. When two numbers k and l are equivalent
we write k ≡ l.

Example 3.3. In Z2 1 ≡ 3 since dividing 3 by 2 gives us the remainder 1.

Example 3.4. In Z4 3 ≡ 15 since dividing 15 by 4 gives us the remainder 3.

8



Both Z2 and Z4 play significant roles in [1] and consequently in this thesis.
While they share a similar construction, they are fundamentally different as can
be seen in Example 3.5.

Example 3.5. Let 2 ∈ Z4. Then 22 ≡ 4 ≡ 0.

Example 3.5 illustrates a scenario in which the element 2 possesses another
element (2 itself), such that their multiplication results in zero. These elements,
known as zero divisors, signify that Z4 lacks the property of being a field, unlike
Z2.

3.2 Polynomial rings

We are now ready to explore polynomial rings and polynomial quotient rings.

Definition 3.6. (Polynomial ring). Let R be a ring. Then the polynomial ring
R[x] over R consists of the polynomials f(x) =

∑n
i=0 aix

i where ai ∈ R and n
the highest non-zero coefficient. The operators addition and multiplication are
defined as follows:

•
∑n

i=0 aix
i +

∑m
i=0 bix

i =
∑max(n,m)

i=0 (ai + bi)x
i (addition),

• (
∑n

i=0 aix
i) · (

∑m
i=0 bix

i) =
∑nm

i=0 x
i
∑i

j=0(aj · bi−j) (multiplication).

The multiplication and addition of the coefficients happen according to the
rules of the ring R.

Example 3.6. Z2[x] a polynomial ring with coefficients in Z2. One of these
polynomials is 1 + x.

In Z2[x], coefficients are restricted to only 0 or 1. Any other coefficient can
be represented as a polynomial with coefficients of 0 and 1.

Example 3.7. In Z4[x], 1 + 4x+ 6x2 equals 1 + 2x2, since 4 ≡ 0 and 6 ≡ 2 in
Z4.

Definition 3.7. (Reducible polynomial). A polynomial f(x) ∈ F [x] with co-
efficients in a field F is called reducible over F if it can be factored into two
non-constant polynomials taking coefficients in F , that is f(x) = g(x)h(x) for
some polynomials g(x), h(x) ∈ F [x]. Whenever a polynomial is not reducible,
it is called irreducible.

Lemma 3.2. The polynomial f(x) ∈ F [x] is irreducible over a finite field F if
and only if there are no elements y ∈ F such that f(y) ≡ 0.

Proof. Cf. e.g. [6, p.127].

Example 3.8. f(x) = x+ x2 is a reducible polynomial in Z2[x] since f(1) ≡ 0
and f(x) = x · (1 + x) = g(x)h(x), where g(x) = x and h(x) = (1 + x). Also
note that f(1) = f(0) = 0.

9



Irreducible polynomials share many similarities with prime numbers. For
that reason they are often referred to as prime polynomials. As with prime
numbers each polynomial has a unique factorization in irreducible polynomials
up to invertible elements. Although not of importance for this thesis an intrigued
reader can find the proof in [6].

Example 3.9. Let x2 + x+ 1 = f(x) ∈ Z2[x] be a polynomial then f(x) is an
irreducible polynomial since it is not possible to write f(x) = g(x) · h(x) with
g(x), h(x) ∈ Z2[x].

Bear in mind that an irreducible polynomial over a certain polynomial ring
R might be reducible in another polynomial ring.

Definition 3.8. (Monic polynomial). A monic polynomial is a polynomial with
the highest non zero coefficient equal to 1.

Example 3.10. 1 + x+ 2x2 is not a monic polynomial but 1 + x+ x2 is.

Proposition 3.1. Let R[x] be a polynomial ring. Then given a monic polyno-
mial g(x) ∈ R[x], every polynomial f(x) ∈ R[x] may be expressed as f(x) =
g(x)q(x) + r(x) for some q(x), r(x) ∈ R[x], where deg(r(x)) < deg(g(x)). The
polynomial r(x) is called the remainder and q(x) is called the quotient. Moreover
these q(x) and r(x) are unique.

Proof. Cf. e.g. [6, p.121].

The above proposition can be loosely interpreted as division with remainder
using numbers in Z. The uniqueness of q(x) and r(x), as the reader will find
out is rather important to create some of the mathematical structures that are
used to find the shortest even cycle.

Definition 3.9. (Polynomial quotient rings). Let Q ⊂ R[x] be the set of all
the remainders when divided by some polynomial g(x) ∈ R[x]. Then the set
Q combined with the operations + (addition) and · (multiplication) form the
polynomial quotient ring R[x]/⟨g(x)⟩.

In these polynomial quotient rings, addition and multiplication operate sim-
ilarly to regular polynomials. Both operations are associative and commutative.
Additionally, when g(x) is selected as an irreducible polynomial, no elements
f(x) and h(x) exist such that g(x) = f(x) · h(x). Moreover, if g(x) is of degree
d, then the polynomial quotient ring with g(x) as the divisor contains |R|d el-
ements, where |R| represents the number of elements in the underlying ring of
coefficients.

Example 3.11. Let g(x) = 1 + x3 + x4, f(x) = x + x4 + x5 ∈ Z2[x] and let
R = Z2[x]/⟨g(x)⟩ be a polynomial quotient ring. Since f(x) = x · g(x) + r(x),
where r(x) = 0, we have that f(x) = x+ x4 + x5 ≡ 0 in R.

10



Example 3.12. Let g(x) = 1+ x3, f(x) = 1+ x+ x4 ∈ Z2[x] and Z2[x]/⟨g(x)⟩
be a polynomial quotient ring. Since f(x) = x ·g(x)+ r(x), where r(x) = 1. We
have that f(x) = 1 + x+ x4 ≡ 1.

Theorem 3.1. Let F be a field and f(x) ∈ F [x] be an irreducible polynomial.
Then the quotient ring F [x]/⟨f(x)⟩ forms a field.

Proof. Cf. e.g. [6, p.128].

Theorem 3.1 tells us that, for every irreducible polynomial g(x) ∈ Z2[x] the
quotient ring Z2[x]/⟨g(x)⟩ forms a field. This might not be the case in Z4[x].
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4 The construction of F2d and E4d

We are now prepared to introduce two fundamental algebraic structures: the
polynomial ring F2d and its extension E4d . These structures are the foundation
of the algorithm described in [1] where they are used to calculate the determinant
and permanent.

4.1 Defining F2d

We define F2d as the finite field constructed over the binary field Z2, repre-
sented as F2d = Z2[x]/⟨g(x)⟩, where g(x) denotes an irreducible polynomial of
degree d. This construction creates a polynomial quotient ring where elements
are equivalence classes of remainders of polynomials divided by g(x). Note that
F2d is indeed a finite field according to Theorem 3.1.

The choice of the irreducible polynomial g(x) is arbitrary, as any irreducible
polynomial of degree d generates a field with 2d elements. Using Lemma 3.1 we
see that all fields with 2d elements are isomorphic.

4.2 The lift

To extend F2d to E4d , a certain operation is needed which will be called the lift.
This operation will first be discussed as an operation from Z2[x] to Z4[x] and
from there will be defined as a function from F2d to E4d .

Definition 4.1. (The lift). Given a polynomial f(x) = a0 + a1x+ a2x
2 + ...+

anx
n ∈ Z2[x] the lift L[f(x)]: Z2[x] → Z4[x] maps all coefficients ai ∈ Z2 to Z4

such that 0 ∈ Z2 7→ 0 ∈ Z4 and 1 ∈ Z2 7→ 1 ∈ Z4. This creates the polynomial
f(x) = a0 + a1x+ a2x

2 + ...+ anx
n ∈ Z4[x]

From now on we will say that f(x) is the lift of f(x).

Example 4.1. Let f(x) = 1 + x2 + x3 ∈ Z2[x]. Then L[f(x)] = 1 + x2 + x3 =
f(x) ∈ Z4[x].

Note that the polynomial might not visibly change but the created polyno-
mial is an element of a different ring and therefore a different polynomial.

Now, using the definition of the lift and the earlier defined polynomial quo-
tient ring F2d , an extension can be formed which we will call E4d .

Definition 4.2. (E4d). Let F2d = Z2[x]/⟨g2(x)⟩ for some irreducible g2(x) ∈
Z2[x] of degree d and g4(x) = g2(x) be the lift of g2(x). Then E4d is defined as
Z4[x]/⟨g4(x)⟩.

4.2.1 The lift from F2d to E4d

Now that we have defined both F2d and E4d it is time for a function that maps
elements from F2d to E4d . In Example 4.2 it becomes clear that using the lift
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on the polynomial quotient rings F2d and E4d can lead to some complications.
Therefore, some adaptions to the lift must be made.

Example 4.2. Let g(x) = 1+x+x2+x3+x4 ∈ Z2[x] be an irreducible polyno-
mial of degree 4 such that we can construct F24 . Now take f1(x) = 1+x+x2+
x3 ∈ Z2[x] and f2(x) = x4 ∈ Z2[x] such that f1(x) ≡ f2(x) ∈ F24 . By taking the
lift of both polynomials f1(x) and f2(x) to obtain f1(x) = 1+x+x2+x3 ∈ Z4[x]
and f2(x) = x4 ∈ Z4[x] it can be shown that f1(x) = 1 + x + x2 + x3 ̸=
3 + 3x+ 3x2 + 3x3 ≡ x4 = f1(x) ∈ E4d .

It would be desirable that all elements of the same equivalence class have
the same lift. With a naive definition for the lift, this is clearly not the case,
as can be seen in Example 4.2. Luckily there seems to be an easy solution
by defining the lift only on the remainders of each polynomial in the quotient
ring. A polynomial that is not equal to its remainder will first be reduced to its
remainder and only then the lift operator can take place.

Definition 4.3. (The lift from F2d to E4d). Let g(x) ∈ Z2[x] be an irreducible
polynomial of degree d that constructs F2d such that g(x) constructs E4d .

Let H2[f(x)] : F2d → Z2[x] map f(x) to its remainder r(x) in Z2[x] when
divided by g(x). Secondly, we define H4[f(x)] : Z4[x] → E4d to map f(x) to its
remainder r(x) when divided by g(x). These remainders are unique according
to Proposition 3.1.

Now define the lift on polynomial quotient rings L∗[f(x)] : F2d → E4d for all
f(x) ∈ F2d by

L∗[f(x)] = H4 ◦ L ◦ H2[f(x)].

4.3 The projection

To properly link F2d and E4d a function from E4d to F2d is needed. This function
will be called the projection and will first be discussed as an operator from Z4[x]
to Z2[x] before extending it to the quotient rings F2d and E4d .

Definition 4.4. (The projection). Given a polynomial f(x) = a0 + a1x +
a2x

2 + ... + anx
n ∈ Z4 the projection P[f(x)] : Z4 → Z2 maps all coefficients

ai ∈ Z4 to the remainder of division by 2 in Z2. This creates the polynomial
f(x) = a∗0 + a∗1x+ a∗2x

2 + ...+ a∗nx
n ∈ Z2, where a∗i ≡ ai ( mod 2).

From now on we will say that f(x) is the projection of f(x).

Example 4.3. Let f(x) = 1+3x2+2x3 ∈ E4d for some d > 3. Then P[f(x)] =
1 + x2 = f(x) ∈ F2d . The coefficient for x3 gets mapped to 0 since 0 ≡ 2 (
mod 2)

Lemma 4.1. The projection inverts the lift.

Proof. Let f(x) = a0+a1x+a2x
2+...+anx

n ∈ Z2 then f(x) = a0+a1x+a2x
2+

...+anx
n ∈ Z4. Since all coefficients are either zero or one we can conclude that

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n = f(x) ∈ Z2.

13



In the following example it is shown that the lift does not invert the projec-
tions and some information might be lost during the projection.

Example 4.4. Let f(x) = 1 + 3x2 ∈ Z4[x]. Taking first the projection and
then the lift gives us g(x) = 1 + x2 ∈ Z4[x]. Thus giving a different polynomial
than our starting polynomial.

Lemma 4.2. The projection Z4[x] → Z2[x] is a ring homomorphism

Proof. Let f(x), h(x) ∈ Z4[x] and lets denote

f(x) =

n∑
i=0

aix
i, h(x) =

m∑
j=0

bjx
j ,

L = max(n,m),

where ai = 0, i > n, bj = 0, j > m and c∗ ≡ c (modulo 2). Then

f(x) + h(x) =

L∑
i=0

(ai + bi)
∗xi =

n∑
i=0

a∗i x
i +

m∑
j=0

b∗jx
j = f(x) + h(x)

f(x) · h(x) =
L∑

i=0

i∑
j=0

(ai−jbj)
∗xi =

L∑
i=0

i∑
j=0

a∗i−jb
∗
jx

i = f(x) · h(x)

1 ≡ 1 (modulo 2) ≡ 1,

proving that the projection defined on Z4[x] to Z2[x] is a ring homomorphism.

The proof of Lemma 4.3 is strongly based on a proof found in [1].

Lemma 4.3. The projection P[f(x)] : E4d → F2d is well defined.

Proof. Let s, s′ ∈ Z4[x] be two polynomials such that s−s′ = g4(x)h(x), that is,
s and s′ share the same remainder when divided by g4(x). Since the projection
is a ring homomorphism it follows that

s− s′ = g4(x)h(x) = g4(x) ∗ h(x) = g2(x) ∗ h(x)

In other words if s and s′ share the same remainder before the projection they
also share the same remainder after the projection thus making them members
of the same equivalence class and the projection well defined.
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5 Implementing E4d in Python

Performing calculations within the constructed quotient ring E4d for small d
can be manageable by hand, but it quickly becomes impractical as d grows
larger. This scalability issue becomes particularly apparent when tasked with
identifying even cycles within larger graphs.

In order to gain insight into the behavior of the constructed quotient ring
E4d and how these rings could be implemented within a computer, a simple
script in Python was developed. This script enables basic arithmetic operations
such as addition, multiplication and polynomial reduction.

5.1 Overview of the code

The script comprises three classes: Polynomial, QuotientRing and E4d.
The class Polynomial represents polynomials in Z4[x], storing their coeffi-
cients and defining operations such as addition, multiplication and subtraction.
The class QuotientRing extends this functionality to operate within a quo-
tient ring Z4[x]/⟨g(x)⟩, where g(x) ∈ Z4[x] is given as input whenever the object
is created. Additional to Polynomial, it includes a method for reducing poly-
nomials to their remainders within the quotient ring. Finally the class E4d
extends the class QuotientRing to a polynomial in E4d using as input the lift
of an irreducible polynomial in F2d .

Polynomials in different quotient rings and different constructions of E4d,
defined by distinct divisors, cannot be combined or operated on together because
they have different structures.

5.2 Finding an irreducible polynomial of degree d

The script supports the creation of a polynomial quotient ring Z4[x]/⟨g4(x)⟩,
where the divisor g4(x) is specified as an input to the class. However, to con-
struct the quotient ring E4d for a given d, an irreducible polynomial g2(x) ∈
Z2[x] of degree d must be identified. The polynomial g4(x) can then be ob-
tained by taking the lift of g2(x).

The process of finding such an irreducible polynomial of a specified degree
can be achieved in O(d2) time using an algorithm outlined in [7]. This becomes
negligible compared to the primary algorithm’s complexity in [1] of O(n3+ω).
Here, ω denotes the exponent of square matrix multiplication.

In this case, finding an irreducible polynomial is even easier since it must only
be irreducible over Z2. According to Lemma 3.2, a polynomial f(x) including
1 and an even number of non-zero terms is irreducible because in that case,
both f(0) and f(1) are equal to 1. The chosen irreducible polynomial is g(x) =
1 + x+ x2 + x3 + x4.
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6 An efficient algorithm for the determinant

6.1 The determinant visually

Definition 6.1. (The determinant).
The determinant of an n× n matrix is equal to

det(M) =
∑
σ∈Sn

sign(σ) ·M1,σ(1) ·M2,σ(2) · ... ·Mn,σ(n)

The equation presented above may appear complex at first glance and could
benefit from a more intuitive visual explanation.

M =


1 3 1 7 8
2 0 5 1 0
9 4 1 6 2
9 3 2 1 2
1 2 2 6 7

 (1)

Considering the matrixM defined in equation (1), its determinant represents
the sum of products derived from selecting one element from each row and each
column, with no repetition. An illustrative example of such a combination is
depicted in equation (2), where the contribution of this specific combination to
the determinant is sign(σ) · 1 · 4 · 5 · 6 · 2 = sign(σ) · 240.

M ′ =


1 3 1 7 8

2 0 5 1 0

9 4 1 6 2

9 3 2 1 2

1 2 2 6 7

 (2)

The sign of σ can either be minus one or one and is determined by rearranging
rows such that the chosen elements form a diagonal line, as demonstrated in
equation (3). Notably, in transitioning from equation (2) to equation (3), rows
2 and 3, as well as rows 4 and 5, are swapped, with each swap altering the sign.
Given that the determinant of the unity matrix is one, indicative of a positive
sign, and considering that two row swaps occurred to transform (2) into (3), the
sign effectively switches by (−1)2 = 1. Thus, the sign of matrix M ′ remains the
same as matrix M .
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M =


1 3 1 7 8

9 4 1 6 2

2 0 5 1 0

1 2 2 6 7

9 3 2 1 2

 (3)

Whenever det(M) < 0 for some matrix M we say that the sign is −1. A
matrix N with det(N) > 0 has a sign of 1. The sign of a matrix is also referred
to as negative or positive respectively.

Lemma 6.1. Switching two rows in a square matrix changes the sign of its
determinant.

Proof. Cf. e.g. [8, p.256].

Lemma 6.1 becomes quit intuitive when you look at how the determinant is
defined visually.

Lemma 6.2. If the product of a scalar and one row of a square matrix is added
to a different row then the determinant stays the same.

Proof. Cf. e.g. [8, p.258].

Lemma 6.3. If the product of a scalar and one column of a square matrix is
added to a different column then the determinant stays the same.

Proof. Cf. e.g. [8, p.256-258].

6.2 Even and odd elements in E4d

Before diving into the algorithm that computes the determinant for a matrix
with elements in E4d , let us explore a few lemmas for elements in E4d . These
lemmas provide some of the motivation for why F2d and E4d are used. Without
these lemmas, it would be impossible to compute the permanent and determi-
nant with the method described in [1].

Definition 6.2. (Even elements in E4d).
An element σ =

∑
aix

i ∈ E4d is called even if every coefficient ai is even.

It is important to note that every coefficient of a polynomial in E4d must
be even for the polynomial to be considered even. For instance, the polynomial
2 + 2x + 3x2 ∈ E4d for some d > 2 is not even, as the coefficient for x2 is not
even.

Corollary 6.1. Let τ, σ ∈ E4d and τ be even. Then τσ is even.
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Proof. Write τ = 2 · (a0 + a1x+ ...+ anx
n) and σ = b0 + b1x+ ...+ bnx

n. Then
τσ = 2 · (a0 + a1x+ ...+ anx

n)(b0 + b1x+ ...+ bnx
n), which is even.

The algorithm for computing the determinant with entries in E4d , explained
in the next subsection, performs row operations to change certain matrix en-
tries from odd to even elements. It is important that no even elements change
back into odd elements during these row operations. This is ensured by using
Lemma 6.1.

Corollary 6.2. Let τ, σ ∈ E4d and τ, σ be even. Then τσ ≡ 0 ∈ E4d .

Proof. Write τ = 2 ·(a0+a1x+ ...+anx
n) and σ = 2 ·(b0+b1x+ ...+bnx

n) then
τσ = 4 · (a0 + a1x+ ...+ anx

n)(b0 + b1x+ ...+ bnx
n). Since 4 ≡ 0 (modulo 4)

we can conclude that τσ ≡ 0.

The following proof is closely based on the proof in [1] and is provided to
give the reader insight into the algorithm for the determinant. Some extra steps
have been added to make the proof easier to understand.

Lemma 6.4. For all σ, υ ∈ E4d with σ odd, there exists a τ ∈ E4d such that
υ − στ is even.

Proof. Since σ is odd the projection σ is nonzero and thus has a multiplicative

inverse σ−1 ∈ F2d . Take τ = σ−1υ and observe υ − στ = υ−σ·τ = υ−σ·σ−1·υ =
υ − υ = 0.
Since υ − στ = 0, all of its coefficients are either 0 or 2 from which we can
conclude that υ − στ is even.

Lemma 6.4 is a prime example of why Björklund, Husfeldt, and Kaski [1]
needed not only E4d but also the polynomial quotient ring F2d . Although E4d is
used to compute the permanent and determinant, it lacks the property of being
a field. By defining E4d as an extension of F2d , which is a field, all necessary
properties for efficient permanent and determinant computing are retained in
E4d . If F2d were not a field, Lemma 6.4 could not rely on the fact that every
element in F2d has an inverse, and thus it could not find a τ . This τ , as will
become clear to the reader in the following subsection, is essential for performing
row operations on matrices with entries in E4d .

One might wonder why F2d itself is not used to compute the permanent and
determinant. As will become clear in Subsection 6.7, F2d , which has character-
istic two, does not meet the requirements to find even cycles. Since there is no
field of characteristic four, another construction had to be made, leading to the
field F2d and its extension with characteristic four, E4d .

6.3 The determinant in E4d

We now are ready to perform the algorithm that computes the determinant of
a matrix whose elements are in E4d . For the following example we take, n = 3
and g(x) = 1+x+x2+x3+x4. Since g(x) is of degree 4, we will be working in E44 .
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We will start with introducing the matrix I, which will help us decide which
row operations should be executed. Take matrix M as an n × n matrix with
entries in E44 and let the indicator matrix I be constructed such that Ii,j = 0
if Mi,j is even and Ii,j = 1 if Mi,j is odd. Let

M (0) =

2 + 2x 1 + 2x 2
1 + x 1 3x
2 + x 1 + 3x 3

 then I(0) =

0 1 0
1 1 1
1 1 1

 .

6.3.1 The first step

The first step is to perform row operations on M (0) such that we end up with
a matrix that has only even lower diagonal elements. For these row operations
it is needed that each diagonal entry contains an odd element. We therefore
start by switching the first and second row from M (0) changing the sign of the
determinant. This leaves us with the matrices

M (1) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2 + x 1 + 3x 3

 and I(1) =

1 1 1
0 1 0
1 1 1

 .

We are now ready to transform all entries below the main diagonal to even
elements, starting with the first column. In this case the only odd element in
the first column beneath the diagonal is the element in the third row.

M (1) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2 + x 1 + 3x 3

 , I(1) =

1 1 1
0 1 0
1 1 1

 , τ (1) = 3 + x+ x3.

By taking υ = M
(1)
1,3 and σ = M

(1)
1,1 and using Lemma 6.4 we get our scalar

τ (1). This scalar τ is used to perform our first row operation, subtracting τ
times the first row of the third row. This changes M (1) and its indicator matrix
I(1) to

M (2) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2x 2 + 2x+ 3x3 2 + 2x+ 3x3

 and I(2) =

1 1 1
0 1 0
0 1 1

 .
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Note that these row operations do not change the determinant per Lemma
6.2 so it follows that det(M (1)) = det(M (2)). Once all the odd elements below
the first diagonal are transformed to even elements we start looking at the ele-
ments under the second diagonal entry.

Looking at I(2) it becomes clear that we need to transform the third ele-

ment of the second column. We now take υ = M
(2)
3,2 and σ = M

(2)
2,2 to get

τ(2) = 2 + 2x+ 3x3.

M (2) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2x 2 + 2x+ 3x3 2 + 2x+ 3x3

 , I(2) =

1 1 1
0 1 0
0 1 1

 .

Subtracting τ times the second row from the third one leaves us with the
matrix M (3), which has an upper triangular indicator matrix I(1).

M (3) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2 + 2x2 2 + 2x+ 2x2 + 2x3 2 + 2x+ x3

 , I(3) =

1 1 1
0 1 0
0 0 1

 .

6.3.2 The second step

The triangular form of M (3) enables us to remove all leftover non diagonal odd
elements by column operations using Lemma 6.3.

M (3) =

 1 + x 1 3x
2 + 2x 1 + 2x 2
2 + 2x2 2 + 2x+ 2x2 + 2x3 2 + 2x+ x3

 , I(3) =

1 1 1
0 1 0
0 0 1

 .

Let υ = M
(3)
1,2 and σ = M

(0)
1,1 then τ = x+x3. When subtracting τ times the

first column from the second column in M (3) we create M (4) and its indicator
matrix I(4).

M (4) =

 1 + x 2 3x
2 + 2x 3 + 2x 2
2 + 2x2 2x2 + 2x3 2 + 2x+ x3

 and I(4) =

1 0 1
0 1 0
0 0 1

 .
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We are now left with just one odd element that does not sit on the main
diagonal, namely the first element of the third column.

M (4) =

 1 + x 2 3x
2 + 2x 3 + 2x 2
2 + 2x2 2x2 + 2x3 2 + 2x+ x3

 , I(4) =

1 0 1
0 1 0
0 0 1

 and τ = 1+x+x3.

To transform this element we use Lemma 6.4 one last time and set υ = M
(4)
1,3

and σ = M
(4)
1,1 to get our scalar τ . We finish the second step by subtracting the

first column τ times from the third column leaving us with

M (5) =

 1 + x 2 2x
2 + 2x 3 + 2x 2 + 2x
2 + 2x2 2x2 + 2x3 2 + 2x2 + x3

 and I(5) =

1 0 0
0 1 0
0 0 1

 .

6.3.3 The third step

We are now ready for the third and final step. Using Lemma 6.2, we see that only
one specific combination contributes to the determinant of M (5), the diagonal
elements. Any other combination includes two or more even elements, leading
to their product being zero. Therefore we can conclude that,

det(M (5)) = (1 + x) · (3 + 2x) · (2 + 2x2 + x3) ≡ 3 + x+ x2.

Remember that, while the subtraction of rows and columns using a scalar
that were performed did not change the determinant, the switching of rows
between M (0) and M (1) did change the sign. We can therefore conclude that

det(M (0)) ≡ (−1) · det(M (5)) ≡ (−1) · (3 + x+ x2) ≡ 1 + 3x+ 3x2.

6.4 Some particular cases

With the implementation of this technique, the calculation of the determinant
unfolds into three different scenarios. The first scenario is when each row and
column contains exactly one odd element as can be seen in equation (4). In
that case the determinant is the product of the odd elements and the sign of
the matrix which was shown in Subsection 6.3.

P1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4)
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Two different scenarios occur whenever one or more diagonal entries are even.
By prioritizing the presence of odd elements in lower rows it is still possible to
perform the operations in step two of the algorithm. This gives us the following
cases: either one diagonal entry is even and the rest odd or two or more diagonal
entries are even. The two cases will form the indicator matrices

I2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , and I2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 . (5)

In the case of I2 it is also possible that more diagonal entries are even. By
Lemma 6.1 the determinant of a matrix with indicator matrix I1 is even. Using
Lemma 6.2 we see that a matrix that creates the indicator matrix I2 has a
determinant of zero.

6.5 Time complexity

Efficiently computing the determinant is crucial, and this algorithm achieves
just that. Let us take a look at its runtime complexity to see why it is efficient.
Rearranging all rows so that each contains only one element in every column
takes a maximum of n2 computations. Each computation involves multiplying a
row and then adding or subtracting it from another row, which takes n compu-
tations. In E4d , computations can be completed in d steps, as shown in [7]. This
gives us a time complexity of O(n3 ·d). To find the scalar for each row operation
the inverse must be found. To find the inverse we need to solve a linear system
of length d, which takes O(d2) time. In [1] d is set equal to 5 · log2(n). Since this
operation occurs only once for each element in the matrix, and considering that
for larger n it follows that d < n, we can deduce that d ·n < n2 and that finding
the inverse in each row operation does not add to the runtime complexity.

6.6 A different algorithm for the determinant

When dealing with matrices whose entries belong to R, a similar algorithm
exists for finding the determinant, commonly taught in most linear algebra
classes. This method employs row eliminations to create an upper triangular
matrix similar to step 1 in Subsection 6.3. The determinant of this triangular
matrix is trivial to compute since any combination that includes off-diagonal
entries will involve a zero from the lower triangle, resulting in a product of zero.
Thus, the determinant is simply the product of the diagonal entries.

For a matrix with entries in E4d , it turns out, it is not always possible
to transform row operations such that a upper triangular matrix is obtained.
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Therefore more column operations are needed which are shown in the second
step. Using Lemma 6.2 the determinant then becomes trivial to compute.

6.7 The permanent

The method to find even cycles described in [1] uses both the determinant
and the permanent, which will be defined shortly. Finding the permanent,
although similar to the determinant, is often a much harder problem then the
determinant. The difficulties in computing the permanent will become clear
once we have defined and explained the permanent.

Definition 6.3. (The permanent).
The permanent of an n× n matrix M is equal to

per(M) =
∑
σ∈Sn

M1,σ(1) ·M2,σ(2) · ... ·Mn,σ(n).

The key difference between the permanent and the determinant is that there
is no sign associated with each combination. As a consequence, Lemmas 6.2 and
6.3 do not hold, and the permanent of the matrix obtained by applying row or
column operations may be different. Therefore, the algorithm described in Sub-
section 6.3 does not work for calculating the permanent.

In most cases, there is no simple solution to work around this problem. How-
ever, there are a few special cases. One such case is when the permanent needs
to be calculated modulo 2. Since 1 ≡ −1 ( mod 2), the permanent equals the
determinant modulo 2, for which polynomial-time algorithms exist.

In [1], the algorithm heavily relies on Theorem 2.1, which deduces the length
of the shortest even cycle by subtracting the determinant from the permanent
and examining the highest non-zero even coefficient. However, when working
modulo 2, this approach is ineffective since 0 ≡ 2. The highest non-zero even
coefficient, therefore, does not exist, making the use of modulo 2 ineffective in
finding the shortest even cycle.

By 1979, Valiant had proven that the permanent can be computed modulo
2k for some k in O(n4k−3) steps [2, p.190]. Moreover, Valiant showed that
computing the permanent modulo l, where l is not a power of 2, can only be
achieved in polynomial time if every single-valued function that can be verified
in polynomial time can also be computed in polynomial time. However, since
this remains unproven and may never be proven, mathematicians had to find a
different approach.

Instead of working modulo 2, Björklund [1] created the ring E4d , which
shares some of those characteristics which makes computing the permanent
easier. Although both Lemma 6.2 and Lemma 6.3 still do not apply, there is a
way to compute the permanent in polynomial time. In [1], each row operation
is accompanied by a subroutine that calculates the change in the permanent.
By tracking these changes and adding them to the final result, the permanent
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of the original matrix can be calculated. If these changes are disregarded, the
algorithm is essentially the same as that for the determinant.

7 Coding the algorithm for the determinant

The code builds upon the code described in Section 5 and uses the created
class E4d which represents a polynomial in E4d with irreducible polynomial
g(x) = 1 + x + x2 + x3 + x4. Additionally, two functions were added to the
class E4d. One of these functions, getTau(σ), finds τ by using the method
described in Lemma 6.4. This τ is later used in row operations as a scalar. The
other function is called isEven() and returns true whenever the polynomial is
even and false otherwise. With this function, the indicator matrix I can be
constructed.

7.1 Overview of the code

Within the code, a main function Determinant(M) is defined that uses sev-
eral helper functions. The function follows the steps described in Subsection 6.3.
First, the determinant function reduces the input matrix M to a matrix M ′

which has only even elements below the diagonal. During this process the sign
of the determinant might flip. The function determinant keeps track of these
switches to ensure that the correct sign is used in the end. The matrix M ′ is
reduced even further to the matrix M ′′ where only diagonal entries can be odd.
At last, the product of the diagonal entries is returned using the correct sign
that the function kept track of in the first step.

7.2 The inverse in F2d

Within the class E4d the function getTau(σ) is given. This function needs to
find the inverse of the projection of the input polynomial σ. Finding the inverse
after projecting σ to F2d is done using the help of some open source code that
can be found at Github [9]. The code in B.4 consists of both the code that was
found on Github and some extra coding to make all the functions compatible.

7.3 Discussion

The code can generate random polynomials in E4d , which can be used as entries
in a square matrix to test the code. Calculations have been checked manually
for 3 × 3 and 4 × 4 matrices. Although not tested for correctness, the Python
script can compute the determinant of matrices larger than 50 × 50. Between
the steps of the algorithm, the indicator matrix is printed to ensure that the
row operations have the desired effect.
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Figure 8: The average of the logarithm of the time, in seconds, to compute the
determinant of a matrix of size n.

The time complexity is tested by computing the determinant of 20 random
matrices for each size from n = 4 to n = 30. The logarithm of the elapsed time
for each matrix size shows a logarithmic trend. Although it is not a formal proof
of a polynomial-time algorithm, it is a strong indicator that the programmed
algorithm operates faster than exponential-time algorithms.

7.4 Conclusion

The advancement in computing the permanent using E4d , described in [1], would
be of no use if the determinant of a matrix with entries in E4d could not be com-
puted in polynomial time. By first explaining and understanding the polynomial
quotient rings F2d and E4d , which were then used to explain an algorithm that
computes the determinant in Section 6, a Python script was written. This
Python script, which can perform operations in E4d and compute the determi-
nant for matrices with entries in E4d , was manually checked for correctness on
smaller matrices and then timed to provide an indicator of the time complexity.
The resulting data conforms to Subsection 6.5, where the algorithm is shown to
be polynomial. Therefore, we can conclude that the determinant with entries
in E4d can be computed in polynomial time.
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B Code

B.1 Operations in E4d

# -*- coding: utf-8 -*-

"""

Created on Mon Apr 15 10:02:05 2024

@author: jordi

"""

import numpy as np

from testBEP_E4d import getProjectionInverse

class polynomial:

"""

Creates a polynomial in the polynomial ring Z_i[x]

where i is given as input

"""

def __init__(self, coefficients, modulo):

self.len = len(coefficients)

self.coefficients = np.array(coefficients) % (modulo)

self.modulo = modulo

def lenn(self):

return len(self.coefficients)

def __str__(self):

"""

Returns a string which is printed in the console whenever

the polynomial is printed

"""

string = ""

for i, coeff in enumerate(self.coefficients):

string = string + " "+ str(coeff) + "x**" + str(i)

return string

def normalize(self, poly):

"""

Removes coefficients that are higher

than the degree of the polynomial

"""

while poly[-1] == 0 and len(poly) > 2:

poly = poly[:-1]
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return poly

def checkOther(self, other):

"""

Make sure that only polynomials can interact with eachother

"""

if isinstance(other, polynomial):

if self.lenn() > other.lenn():

other.coefficients = np.pad(other.coefficients,

(0,self.lenn()-other.lenn()), \

'constant', constant_values=(0,0))

if other.lenn() > self.lenn():

self.coefficients = np.pad(self.coefficients, \

(0,other.lenn()-self.lenn()), 'constant', \

constant_values=(0,0))

return

else:

raise TypeError("Other is not of class polynomial")

return self

def add(self, other):

"""

Returns itself plus a polynomial that is given as input

"""

self.checkOther(other)

return polynomial((self.coefficients + other.coefficients) \

% (self.modulo), self.modulo)

def minus(self, other):

"""

Returns itself minus a polynomial that is given as input

"""

self.checkOther(other)

return polynomial((self.coefficients - other.coefficients) \

% (self.modulo), self.modulo)

def multiply(self, other):

"""

Returns the product of the polynomial and another polynomial

which is given as input

"""

self.checkOther(other)

newSelf = np.zeros(2*len(self.coefficients) - 1)

for i, coeffSelf in enumerate(self.coefficients):

for j, coeffOther in enumerate(other.coefficients):
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newSelf[i+j] += coeffSelf*coeffOther

newSelf = newSelf % (4)

return polynomial(self.normalize(newSelf), self.modulo)

class QuotientRing(polynomial):

"""

Creates a polynomial within a polynomial quotient ring. The function

g(x) that defines the quotient ring is given as input.

"""

def __init__(self, coefficients, modulo, irreduciblePol):

super(QuotientRing, self).__init__(coefficients, modulo)

self.irr = np.array(irreduciblePol)%self.modulo

def reduce(self):

"""

Reduces the polyonomial to its remainder within

the polynomial quotient ring

"""

#print(self.coefficients)

#print("\n\n\n\n")

while self.lenn() < len(self.irr) - 1:

self.coefficients = np.append(self.coefficients, [0])

self.len += 1

if self.lenn() >= len(self.irr):

for i in range(self.lenn()-1, len(self.irr)-2, -1):

adjusterCoeff = np.zeros(len(self.coefficients))

adjusterCoeff[i-(len(self.irr)-1)] = self.coefficients[i]

adjuster = polynomial(adjusterCoeff, self.modulo)

irrReversed = polynomial(np.zeros(len(self.irr)-1), \

self.modulo)

irrReversed = irrReversed.minus(polynomial(self.irr[:-1], \

self.modulo))

replacement = irrReversed.multiply(adjuster)

#print(i)

#print(self)

self.coefficients[i] = 0

self.coefficients = self.add(replacement).coefficients
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self.coefficients = self.normalize(self.coefficients)

self.coefficients = self.coefficients % self.modulo

return self

def ADD(self, other):

"""

Adds itself with another polynomial and returns the reduced result

"""

if np.array_equal(self.irr, other.irr):

poly = self.add(other)

return QuotientRing(poly.coefficients, self.irr).reduce()

else:

raise TypeError("Polynomials do not belong to the same ring")

def MINUS(self, other):

"""

Subtracts itself with another polynomial and returns

the reduced result

"""

if np.array_equal(self.irr, other.irr):

poly = self.minus(other)

return QuotientRing(poly.coefficients, self.modulo, \

self.irr).reduce()

else:

raise TypeError("Polynomials do not belong to the same ring")

def MUL(self, other):

"""

Multiplies itself with another polynomial and returns

the reduced result

"""

if np.array_equal(self.irr, other.irr):

poly = self.multiply(other)

output = QuotientRing(poly.coefficients, self.modulo,\

self.irr).reduce()

return output

else:

raise TypeError("Polynomials do not belong to the same ring")

class E4d(QuotientRing):

"""

Creates a polynomial in the E4d polynomial quotient ring

"""

def __init__(self, coefficients, irreduciblePol):
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super(E4d, self).__init__(coefficients, 4, irreduciblePol)

def __add__(self, other):

"""

Returns the sum of itself plus another

polynomial that is given as input

"""

if isinstance(other, E4d):

newPoly = self.ADD(other)

return E4d(newPoly.coefficients, newPoly.irr)

else:

print("Not of the same class")

def __sub__(self, other):

"""

Returns itself minus another

polynomial that is given as input

"""

if isinstance(other, E4d):

newPoly = self.MINUS(other)

return E4d(newPoly.coefficients, newPoly.irr)

else:

print("Not of the same class")

def __mul__(self, other):

"""

Returns the product of itself plus another

polynomial that is given as input

"""

if isinstance(other, E4d):

newPoly = self.multiply(other)

newPoly = QuotientRing(newPoly.coefficients, newPoly.modulo, \

self.irr)

newPoly.reduce()

return E4d(newPoly.coefficients, newPoly.irr)

else:

print(type(self), type(other),"Not of the same class")

def getTau(self, sigma):

"""

Returns a polynopmial tau

such that self - tau * sigma is an even polynomial

"""

if sigma.isEven():

print("Sigma cannot be even")

print(sigma)
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else:

sigmaInvCoeff = getProjectionInverse(sigma.coefficients, \

sigma.irr % 2)

sigmaInv = E4d(sigmaInvCoeff, sigma.irr)

tau = sigmaInv * self

return tau

def makeEven(self, sigma):

"""

Returns itself - tau * sigma

such that the returned value is even

"""

# Sigma should be a polynomial in E4d

tau = self.getTau(sigma)

return self - (tau*sigma)

def isEven(self):

"""

Checks whether it is an even polynomial and

returns true if it is, false otherwise

"""

even = True

for coeff in self.coefficients:

if coeff % 2 != 0:

even = False

return even

if __name__ == "__main__":

gx = [1,1,1,1,1]

a = E4d([1,1], gx)

b = E4d([3,2], gx)

c = E4d([2,0,2,1], gx)

d = a.multiply(b).multiply(c)

print(d)
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B.2 The determinant in E4d

"""

Created on Fri May 3 12:25:27 2024

@author: jordi

"""

from BEP_Computing_E4d import QuotientRing

from BEP_Computing_E4d import E4d

import numpy as np

from testBEP_E4d import getProjectionInverse

import random as r

import multiprocessing

import time

"""

Seeds:

11

10

"""

#r.seed(11)

"""

gx is the irreducible polynomial over F2d

"""

gx = [1,1,1,1,1]

def getRandomPoly():

"""

Create a random polynomial in E4d

"""

coeffs = []

for i in range(len(gx)-1):

coeffs.append(r.randint(0,3))

return E4d(coeffs, gx)

def getRandomPolyMatrix(n):

"""

Get an NxN matrix with random polynomials
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in E4d as entries

"""

rows = []

for i in range(n):

column = []

for j in range(n):

column.append(getRandomPoly())

rows.append(column)

return rows

def rowOp(matrix, row1, col1, row2):

"""

Performs the row operation that is needed

given the rows and columns that should be made even

"""

"""entry row1, col1 gets changed to an even element"""

v = matrix[row1][col1]

s = matrix[row2][col1]

if s.isEven():

print(row1, col1, row2)

t = v.getTau(s)

#print('tau = ' , t)

for i, elem in enumerate(matrix[row1]):

elem2 = elem

matrix[row1][i] = elem - t*matrix[row2][i]

return matrix

def Indicator(matrix):

"""

Given a matrix with polynomials as input it returns a matrix of

the same size with 1 if the entry is odd and 0 if the entry is odd

"""

n = len(matrix)

indicators = np.ones((n,n))

for i in range(n):

for j in range(n):

if matrix[i][j].isEven():

indicators[i][j] = 0
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else:

indicators[i][j] = 1

return indicators

def Swap(matrix, row1, row2):

"""Swaps two rows of a matrix"""

matrix[row1][:], matrix[row2][:] = matrix[row2][:], matrix[row1][:].copy()

return matrix

def TriangleMatrix(matrix):

"""Returns a matrix that has only even elements

in the lower left triangle"""

signChange = 1

for k in range(len(matrix) - 1):

#print("New it",k)

I = Indicator(matrix)

#print(I)

ones = np.where(I[:,k])

if I[k][k] != 1:

a = np.where(ones[0] > k)[0]

#print("a = ",a, ones)

if len(a) > 0:

"""If everything breaks switch ones[0][0] to ones[0][-1]"""

matrix = Swap(matrix, k, ones[0][-1])

signChange = signChange*(-1)

#print("change")

I = Indicator(matrix)

#print(I, "Swapped?")

for i, row in enumerate(I):

if i > k and I[i][k] == 1:

try:

#print("d")

I = Indicator(matrix)

#print(I)

matrix = rowOp(matrix, i, k, k)

#Mprint(matrix)

except:

#print("\n\n\n\n Hier")

I = Indicator(matrix)

#print(I)

#print(i, k)

return matrix, signChange
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def colOp(matrix, col1, row1, col2):

"""entry row1, col1 gets changed to an even element"""

v = matrix[row1][col1]

s = matrix[row1][col2]

t = v.getTau(s)

#print("tau = ", t)

for i in range(len(matrix)):

matrix[i][col1] = matrix[i][col1] - t*matrix[i][col2]

return matrix

def Mprint(matrix):

"""

Print the matrix with polynomials in the console

"""

for row in matrix:

string = ""

for col in row:

string = string + " \n " + str(col)

print(string + " \n\n")

def noSimilarRows(matrix):

"""

Make sure that there are no rows which have

odd and even polynomials on the exact same entries

"""

I = Indicator(matrix)

for i in range(len(matrix)):

if I[i][i] == 0:

for j in range(len(matrix)):

if j != i and np.array_equal(I[i,:], I[j,:]):

matrix = rowOp(matrix, i, j, j)

return matrix

def Determinant(matrix):

"""

Computes the determinant

"""

sign = 1

I = Indicator(matrix)

print(I)
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"""Getting an upper triangle matrix """

#print("Triangular follows \n")

matrix, signchange = TriangleMatrix(matrix)

sign = sign * signchange

I = Indicator(matrix)

print("\n\n\n Should be triangular\n")

print(I)

matrix = noSimilarRows(matrix)

I = Indicator(matrix)

print("\n\n\n Should be triangular 2\n")

print(I)

"""Gaussian elimination with the columns such that only the diagonal

can have odd elements as entries"""

for k in range(len(matrix) - 1):

#print("\n\n", k)

for i in range(k+1, len(matrix)):

if I[k][i] == 1:

matrix = colOp(matrix, i, k, k)

I = Indicator(matrix)

"""Calculating the now trivial determinant"""

product = E4d([1], gx)

for i in range(len(matrix)):

#print(matrix[i][i])

product *= matrix[i][i]

print(I)

print('sign = ', sign)

return product * E4d([sign], gx)

def DetNoPrint(matrix):

"""

Compute the determinant without printing in the console

"""

sign = 1

I = Indicator(matrix)

#print(I)

"""Getting an upper triangle matrix """

#print("Triangular follows \n")

matrix, signchange = TriangleMatrix(matrix)
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sign = sign * signchange

I = Indicator(matrix)

matrix = noSimilarRows(matrix)

I = Indicator(matrix)

#print("\n\n\n Should be triangular\n")

#print(I)

"""Gaussian elimination with the columns such that only the diagonal

can have odd elements as entries"""

for k in range(len(matrix) - 1):

#print("\n\n", k)

for i in range(k+1, len(matrix)):

if I[k][i] == 1:

matrix = colOp(matrix, i, k, k)

I = Indicator(matrix)

"""Calculating the now trivial determinant"""

product = E4d([1], gx)

for i in range(len(matrix)):

#print(matrix[i][i])

product *= matrix[i][i]

#print(I)

#print('sign = ', sign)

return product * E4d([sign], gx)

"""

M = [[E4d([2,2],gx),E4d([1,2],gx), E4d([2],gx), E4d([1,2,1], gx) ],

[E4d([1,1],gx),E4d([1],gx), E4d([0,3],gx), E4d([1,1,1], gx) ],

[E4d([2,1],gx),E4d([1,3],gx), E4d([3],gx), E4d([1,1,3,1], gx) ],

[E4d([1,3], gx), E4d([1,3,2], gx), E4d([1,1,2], gx), E4d([3,1], gx)]

]

M = [[E4d([2,2],gx),E4d([1,2],gx), E4d([2],gx) ],

[E4d([1,1],gx),E4d([1],gx), E4d([0,3],gx) ],

[E4d([2,1],gx),E4d([1,3],gx), E4d([3],gx) ]

]

"""
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if __name__ == '__main__':

for i in range(1):

n = 10

M = getRandomPolyMatrix(n)

det = Determinant(M)

print(det)
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B.3 Time complexity of the determinant in E4d

# -*- coding: utf-8 -*-

"""

Created on Mon Jun 3 16:26:48 2024

@author: jordi

"""

from BEP_Computing_E4d import QuotientRing

from BEP_Computing_E4d import E4d

import numpy as np

from testBEP_E4d import getProjectionInverse

import random as r

import multiprocessing

import time

from determinant_E4d_second import DetNoPrint

from determinant_E4d_second import getRandomPolyMatrix

import matplotlib.pyplot as plt

plt.rcParams['figure.dpi'] = 1000

data = []

checkTill = 30 #Maximum matrix size checked

checkMany = 10 #Amount of matrics checked for each size

"""

The following loops keep track of the amount of time

it takes to compute the determinant

"""

beginT = time.time()

for i in range(3, checkTill + 1):

t = time.time()

print(i, time.time() - beginT)

for j in range(0,checkMany):

n = i

M = getRandomPolyMatrix(n)

det = DetNoPrint(M)

#print(det)

data.append([i, time.time() - t])

"""
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Reform data to make it easier to plot and perform linear regression

"""

data = np.array(data)

nn = data[:,0]

times = np.log(data[:,1]/checkMany)

model = np.poly1d(np.polyfit(nn, times, 3))

fig, ax = plt.subplots(

#figsize=(6, 5)

) # This sets the figure size to 6 inches wide by 5 inches high

# Plot the baseline

line = np.linspace(3, checkTill, 100)

"""

Plotting the data

"""

ax.grid()

ax.plot(line, model(line))

ax.scatter(nn,times)

ax.set_xlabel("Matrix size (n)")

ax.set_ylabel("Time ln(seconds)")

plt.show()
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B.4 The inverse in F2d

"""

BINARY POLYNOMIAL ARITHMETIC

These functions operate on binary polynomials (Z/2Z[x]),

expressed as coefficient bitmasks, etc:

0b100111 -> x^5 + x^2 + x + 1

As an implied precondition, parameters are assumed to be *nonnegative*

integers unless otherwise noted.

This code is time-sensitive and thus NOT safe to use for online cryptography.

"""

from typing import Tuple

import numpy as np

# descriptive aliases (assumed not to be negative)

Natural = int

BPolynomial = int

def p_mul(a: BPolynomial, b: BPolynomial) -> BPolynomial:

""" Binary polynomial multiplication (peasant). """

result = 0

while a and b:

if a & 1: result ^= b

a >>= 1; b <<= 1

return result

def p_mod(a: BPolynomial, b: BPolynomial) -> BPolynomial:

""" Binary polynomial remainder / modulus.

Divides a by b and returns resulting remainder polynomial.

Precondition: b != 0 """

bl = b.bit_length()

while True:

shift = a.bit_length() - bl

if shift < 0: return a

a ^= b << shift

def p_divmod(a: BPolynomial, b: BPolynomial) -> Tuple[BPolynomial, \

BPolynomial]:

""" Binary polynomial division.

Divides a by b and returns resulting (quotient, remainder) polynomials.

Precondition: b != 0 """

q = 0; bl = b.bit_length()

while True:

shift = a.bit_length() - bl
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if shift < 0: return (q, a)

q ^= 1 << shift; a ^= b << shift

def p_mod_mul(a: BPolynomial, b: BPolynomial, modulus: BPolynomial) \

-> BPolynomial:

""" Binary polynomial modular multiplication (peasant).

Returns p_mod(p_mul(a, b), modulus)

Precondition: modulus != 0 and b < modulus """

result = 0; deg = p_degree(modulus)

assert p_degree(b) < deg

while a and b:

if a & 1: result ^= b

a >>= 1; b <<= 1

if (b >> deg) & 1: b ^= modulus

return result

def p_exp(a: BPolynomial, exponent: Natural) -> BPolynomial:

""" Binary polynomial exponentiation by squaring (iterative).

Returns polynomial `a` multiplied by itself `exponent` times.

Precondition: not (x == 0 and exponent == 0) """

factor = a; result = 1

while exponent:

if exponent & 1: result = p_mul(result, factor)

factor = p_mul(factor, factor)

exponent >>= 1

return result

def p_gcd(a: BPolynomial, b: BPolynomial) -> BPolynomial:

""" Binary polynomial euclidean algorithm (iterative).

Returns the Greatest Common Divisor of polynomials a and b. """

while b: a, b = b, p_mod(a, b)

return a

def p_egcd(a: BPolynomial, b: BPolynomial) -> tuple[BPolynomial, BPolynomial, \

BPolynomial]:

""" Binary polynomial Extended Euclidean algorithm (iterative).

Returns (d, x, y) where d is the Greatest Common Divisor of

polynomials a and b.

x, y are polynomials that satisfy: p_mul(a,x) ^ p_mul(b,y) = d

Precondition: b != 0

Postcondition: x <= p_div(b,d) and y <= p_div(a,d) """

a = (a, 1, 0)

b = (b, 0, 1)

while True:

q, r = p_divmod(a[0], b[0])

if not r: return b
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a, b = b, (r, a[1] ^ p_mul(q, b[1]), a[2] ^ p_mul(q, b[2]))

def p_mod_inv(a: BPolynomial, modulus: BPolynomial) -> BPolynomial:

""" Binary polynomial modular multiplicative inverse.

Returns b so that: p_mod(p_mul(a, b), modulus) == 1

Precondition: modulus != 0 and p_coprime(a, modulus)

Postcondition: b < modulus """

d, x, y = p_egcd(a, modulus)

assert d == 1, print(a, modulus, "inverse does not exist") #inverse exists

return x

def p_mod_pow(x: BPolynomial, exponent: Natural, modulus: BPolynomial) \

-> BPolynomial:

""" Binary polynomial modular exponentiation by squaring (iterative).

Returns: p_mod(p_exp(x, exponent), modulus)

Precondition: modulus > 0

Precondition: not (x == 0 and exponent == 0) """

factor = x = p_mod(x, modulus); result = 1

while exponent:

if exponent & 1:

result = p_mod_mul(result, factor, modulus)

factor = p_mod_mul(factor, factor, modulus)

exponent >>= 1

return result

def p_degree(a: BPolynomial) -> int:

""" Returns degree of a. """

return a.bit_length() - 1

def p_congruent(a: BPolynomial, b: BPolynomial, modulus: BPolynomial) \

-> bool:

""" Checks if a is congruent with b under modulus.

Precondition: modulus > 0 """

return p_mod(a^b, modulus) == 0

def p_coprime(a: BPolynomial, b: BPolynomial) -> bool:

""" Checks if a and b are coprime. """

return p_gcd(a, b) == 1

"""

##########################

Jordi's code below vvvv
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##########################

"""

def bpoly_to_list(bpoly):

"""

Get a list of all the coefficients of the bit polynomial

"""

bits = bin(bpoly)

coeffs = list(bits[2:])

for i, coeff in enumerate(coeffs):

coeffs[i] = int(coeff)

coeffs.reverse()

return coeffs

def list_to_bpoly(coeffs):

"""

Gets as input a list of the coefficients

of the polynomial and creates a bit polynomial

with the same coefficients

"""

accumulator = 0

for i, coeff in enumerate(coeffs):

accumulator += (2**i)*coeff

return int(accumulator)

def getProjectionInverse(coefficients, modulus):

"""

# Input = coefficients for the polynomial and

#the modulus polynomial g(x)

# returns the coefficients of the inverse of the projection

# of the polynomial.

"""

newCoeff = coefficients % 2

newMod = modulus % 2

bpolyCoeff = list_to_bpoly(newCoeff)

bpolyMod = list_to_bpoly(newMod)

inv = p_mod_inv(bpolyCoeff, bpolyMod)

inv_coeff = bpoly_to_list(inv)

return np.array(inv_coeff)
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