
D
el

ft
U

ni
ve

rs
ity

of
Te

ch
no

lo
gy

MSc Thesis
Extracting insights from
black box neural networks for network-wide traffic predictions

Heqi Wang - 5216397

Extracting insights from
black box neural networks for

network-wide traffic predictions

by

Heqi Wang - 5216397

to obtain the degree Master of Science
in Delft University of Technology,

to be defended publicly on
Feburary 24th, 2023

Chair: Prof. Dr. Ir. Hans van Lint
Daily Supervisor: Dr. Ir. Panchamy Krishnakumari
Committee: Dr. Emir Demirović

Guopeng Li
Institution: Delft University of Technology
Place: Faculty of Transport and Planning, Delft
Project Duration: April, 2022 - February, 2023

Cover Image: Dutch Highway by Loes Klinker, Unsplash

Preface

Dear reader,

Sitting in front of the computer at the dawn, I feel really excited and cheerful typing these
words. After these splendid two-and-a-half years, it finally comes to an end of my adventure as
an MSc student majoring in Transport & Planning. What you are reading is my Master thesis,
a final milestone manifesting the dedication and effort that I have made in the past months.
The topic is on the intersection of traffic prediction and AI explaining, with the attempt to
open the black box.

Boldly heading toward this topic without too much experience in AI, at that time I wished
to challenge myself. ”Why not,” I murmured. And now I can confidently say, what a great
choice! It’s a pure pleasure for me to go through the code grinding, the writing grinding, and
learning to critically face the limitations, all of these things. Although I know I wouldn’t deliver
a perfect thesis because science never ends, the personal growth I have gained is gratifying.
The old me could never imagine I ended up obtaining so much knowledge and writing so many
lines of code.

Therefore, please let me express my deep gratitude to my committee members first. Hans
van Lint, the most charismatic professor I’ve ever met, thank you very much for being en-
thusiastic and also rigorous, which helps a lot in shaping my research attitude. Panchamy
Krishnakumari, my daily supervisor and nearly a caring friend too, thank you for being with
me when I was down, confused, and worried. Being supportive, you always guarantee I have the
space to explore by myself as well. Also a big thank you for being my referee during my Ph.D.
application, I’ll work hard to see you at conferences. The next thanks are to Emir Demirović. As
a committee, you provided a lot of useful remarks and feedback, and the guidelines for writing.
All of those help me greatly. Finally, Guopeng Li, the person who understands this project the
most, besides me, it’s you. You supported me a lot with programming and debugging, which
facilitates the whole project. I feel honored to have been working and discussing with all of you.

My parents supported me financially and mentally during my study at TU Delft, the most
important people in my life, are also my teachers, and my friends. Thank you for bringing me
to this beautiful world, raising me, and giving me all your love and care. Cheers to my dearest
friends, to the laughing dinners and games, and all the hanging outs, we’ll meet at the greatest
of accomplishments.

Oh, and cheers to me. One thing I will never regret in this life is studying at TU Delft. I
traveled to 10 countries in the past two-and-a-half years, and walked through the mountains
and cities; I devoted myself to absorbing knowledge and skills, and eventually determined to
pursue an academic career. Thank you for reading.

Heqi Wang - 5216397
Delft, February 2023

ii

Summary

Accurate and trustworthy short-term traffic prediction is crucial in the modern world for the
comfort of drivers and decision-makers as it is used to improve the performance of traffic
management systems, lessen congestion, increase safety, and shorten journey times. It is
possible to discover useful information for network transportation planning, such as forecasting
demand, finding bottlenecks, and prioritizing infrastructure improvements, by concentrating on
network-wide traffic prediction.

Scholars have developed a variety of methods that can be generally divided into model-based
and data-based methods in order to accurately predict network-wide traffic. However, while
studies have demonstrated the capability of deep learning methods, particularly convolutional
neural networks (CNNs), in predicting traffic states, the complex nonlinear spatial and temporal
traffic characteristics, the time-consuming model creation and training, and the unexplained
methodology and predictions continue to pose challenges to the task.

This thesis seeks to address these issues by analyzing how deep neural networks identify
spatiotemporal traffic patterns for network-wide traffic predictions. To this end, a hybrid
CNN-RNN model utilizing a pretrained Inception ResNet v2 feature extractor and a long short-
term memory encoder-decoder is constructed to forecast network traffic speeds. A pretrained
Inception ResNet v2-based image classifier is built based on the predictions to identify traffic
patterns, and Grad-CAM is used to explore how the model identifies them. A freeway network
in Amsterdam, Netherlands, is used as a case study.

While it is expected that the hybrid CNN-RNN model can give comparable performance to the
state-of-the-art methods, e.g. the DGCN proposed by Li et al., results indicate that it cannot
fully capture the dynamic characteristics of the traffic, nor can it accurately provide predictions.
The image classifier failed to identify the distinct traffic patterns as well, despite Grad-CAM’s
success in indicating locations with rapid changes of values.

Overall, the findings highlight the influence of inductive bias on deep learning models, and the
importance of fine-tuning and model-data compatibility. Although further research is required,
the conclusions are still beneficial to make informed decisions when choosing appropriate models
for future network-wide traffic speed prediction tasks.

iv

Contents

Preface ii

Summary iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Related Work. 2
1.3 Research Gap. 3
1.4 Research Questions . 4
1.5 Outline . 4

2 Literature Overview 6
2.1 Deep Neural Networks . 6

2.1.1 Convolutional Neural Networks . 8
2.1.2 Recurrent Neural Networks . 10
2.1.3 Graph Neural Networks . 11

2.2 Traffic Prediction . 12
2.2.1 Different Types of Data-based Traffic Prediction. 13
2.2.2 RNN Methods . 14
2.2.3 CNN Methods . 15
2.2.4 Other Deep Learning Methods . 15

2.3 Explaining Black Box Methods . 16
2.4 Summary . 16

3 Methodology 19
3.1 Conceptual Framework . 19
3.2 Data Rasterization. 22
3.3 Feature Extraction. 23
3.4 Traffic State Prediction . 25
3.5 Traffic Patterns Identification and Explanation . 27
3.6 Benchmark Models . 29

4 Case Study 32

5 Results 37
5.1 Data Rasterization. 37
5.2 Feature Extraction. 41
5.3 Speed Prediction . 41
5.4 Error Analysis . 52
5.5 Traffic Pattern Identification . 61
5.6 Network Explanation . 65

v

Contents vi

6 Conclusion 72
6.1 Key Findings . 72
6.2 Contributions . 74
6.3 Limitation & Recommendation . 74

References 81

A Appendix A 82

List of Figures

2.1 Artificial neuron structure . 6
2.2 An example of full-connected neural network structure 7
2.3 A LeNet-like convolutional neural network . 8
2.4 Convolutional layer operation, from (Y. Guo et al., 2016) 9
2.5 Pooling layer operation, from (Y. Guo et al., 2016) 9
2.6 Full-connected layer operation, from (Y. Guo et al., 2016) 10
2.7 A basic RNN structure . 10
2.8 Unfolded basic RNN . 11
2.9 Example structures of convolutional graph neural networks 12

3.1 Flow chart presenting conceptual framework . 21
3.2 Rasterization example of a small transportation network 22
3.3 Schema for Inception-ResNet v2, self-drawn according to (Szegedy et al., 2016) 23
3.4 Detailed Inception ResNet v2 feature extractor blocks structure 24
3.5 An illustration of RNN encoder-decoder . 25
3.6 LSTM cell structure . 26
3.7 Inception ResNet v2 based image classifier . 28
3.8 Class Activation Mapping process, from (Jiang et al., 2021) 28
3.9 Grad-CAM overview, from (Selvaraju et al., 2017) 29
3.10 DGC module: (a) the structure of a DGC module; (b) the details of filters

generation networks and the DGC graph aggregator. (Li et al., 2021) 30
3.11 DGCN cell structure, from (Li et al., 2021) . 30

4.1 Freeway network of Amsterdam with driving direction marked, from (Li et al.,
2021) . 32

4.2 Mesh gridded AMSnet at time step 120 of day 50 33
4.3 Rasterized speed image at time step 120 of day 50 34
4.4 Mask . 35

5.1 AMSnet in lat-long coordinate . 38
5.2 AMSnet in x-y coordinate . 38
5.3 Speed contour during afternoon and evening peak on day 78 39
5.4 Mesh gridded AMSnet at time step 120 on day 78 40
5.5 Rasterized speed image at time step 120 on day 78 40
5.6 Visualized feature vector of 10 time steps . 41
5.7 An illustration of 25-step sliding window, with 25-step sequences 42
5.8 Prediction of hybrid model (left) and ground truth (right) 42
5.9 Prediction of LSTM encoder-decoder (left) and ground truth (right) 43
5.10 Prediction of DGCN (left) and ground truth (right) for 10 time steps 43
5.11 Prediction of DGCN (left) and ground truth (right) for 150 time steps 44
5.12 Rasterized prediction of DGCN (left) and ground truth (right) at time step 100 44
5.13 Comparison of 3 models’ predictions at time step 96 on day 13 45
5.14 MAE and RMSE changes following the increase of prediction time steps 47

vii

List of Figures viii

5.15 Predictions of hybrid CNN-RNN model (left) and ground truths (right) from
time step 90 to 99 on day 9 . 49

5.16 Predictions of LSTM encoder-decoder (left) and ground truths (right) from time
step 90 to 99 on day 9 . 50

5.17 Predictions of DGCN (left) and ground truths (right) from time step 90 to 99
on day 9 . 51

5.18 Error metric distributions of the 3 models . 52
5.19 Elbow plots of 2 initialization methods for the 3 models 53
5.20 Clustering results of 2 initialization methods for the 3 models 54
5.21 Clustering results example & corresponding ground truth 55
5.22 Relationship between network congestion level and error level 56
5.23 Predictions of hybrid CNN-RNN model (left) and ground truths (right) of

sequence before the largest RMSE prediction 58
5.24 Predictions of LSTM encoder-decoder (left) and ground truths (right) of sequence

before the largest RMSE prediction . 59
5.25 Predictions of DGCN (left) and ground truths (right) of sequence before the

largest RMSE prediction . 60
5.26 Examples of DGCN predictions belonging to 3 congestion levels 62
5.27 Examples of hybrid model predictions belonging to 3 error classes 62
5.28 Aggregated mean speed on day 9 of the 3 models 63
5.29 Aggregated prediction error on day 9 of the 3 models 64
5.30 Predictions of hybrid model (left) and congestion classification Grad-CAMs

(right) on day 9, time step 90-99 . 68
5.31 Predictions of hybrid model (left) and error classification Grad-CAMs (right) on

day 9, time step 90-99 . 71

A.1 Aggregated hybrid model prediction error distribution of 15 days 85
A.2 Aggregated LSTM encoder-decoder prediction error distribution of 15 days . . 88
A.3 Aggregated DGCN prediction error distribution of 15 days 91
A.4 Hybrid model mean speed distribution of 15 days 94
A.5 LSTM encoder-decoder mean speed distribution of 15 days 97
A.6 DGCN mean speed distribution of 15 days . 100

List of Tables

5.1 Description of studied freeways . 39
5.2 Overall 10-step prediction performances . 46
5.3 Hybrid model prediction performances of each step 46
5.4 LSTM encoder-decoder prediction performances of each step 46
5.5 DGCN prediction performances of each step . 46
5.6 Cluster distribution of random initialization K-means for the 3 models 54
5.7 RMSE increase with speed decrease . 57
5.8 Distribution of congestion levels . 61
5.9 Distribution of error classes . 61

ix

1
Introduction

In this chapter, the research background is stated in Section 1.1. Some related works are
described in Section 1.2. Section 1.3 introduces the research gap regarding the topic. In Section
1.4, following the identification of the research gap, the main and sub research questions are
formulated. At last, Section 1.5 gives the outline of this report.

1.1. Background
Traffic prediction refers to the process of forecasting the future state of a traffic system, such
as the number of vehicles on a road network, the speed at which they are traveling, and the
amount of congestion. For the convenience of travelers and policymakers, accurate and reliable
short-term traffic prediction is essential in the modern world. Short-term traffic prediction
helps travelers make better travel plans and choices (e.g., Google Map), and it also provides
stakeholders with crucial information that can help them make informed decisions related to
environmental sustainability, future development, and traffic management. It can also be used
to optimize the performance of traffic control systems and to reduce congestion, improve safety,
and reduce travel time for drivers.

In contrast to small-scale traffic prediction that concentrates on local traffic conditions, network-
wide traffic prediction problems deal with a larger volume of data spread over a more expansive
area. Road segments are no longer isolated, allowing for observation of how disruptions at
other locations impact traffic conditions at one location. For instance, significant congestion
on a freeway could result from a minor scratch accident several kilometers ahead, or it could
also be caused by construction on another freeway. By focusing on network-wide traffic predic-
tion problems, there is a possibility to find valuable information for network transportation
planning, including forecasting demand, identifying bottlenecks, and prioritizing infrastructure
improvements.

But the challenge exists, as traffic has complex characteristics, both spatial and temporal,
and also nonlinear. The unpredictability of various factors such as weather, road conditions,
traffic incidents, and human behavior makes it hard to precisely anticipate traffic conditions in
real time. The variation of traffic conditions at different times of the day, days of the week,
and seasons also creates difficulties in developing models that can adapt to these changes.
Additionally, traffic conditions can fluctuate greatly in different areas within a road network,
making it hard to make accurate predictions that cover the entire network.

1

1.2. Related Work 2

Once a traffic prediction is generated and disseminated for use, it carries with it an inherent
responsibility for its potential consequences. Any unforeseeable errors in such predictions
may give rise to serious safety concerns. Thus, explainable traffic predictions are especially
important, so that stakeholders can more effectively evaluate and compare different models,
and identify potential biases or errors. In addition, explainable traffic prediction can facilitate
the identification of crucial factors and patterns within traffic data, which might be disregarded
by conventional statistical methods, thereby leading to improved accuracy and usefulness of
traffic prediction models.

1.2. Related Work
In order to accurately predict network-wide traffic, scholars have introduced various methods
for decades, which can be roughly classified as model-based and data-based methods.

Starting from mathematics and statistics, model-based methods are conventional computational
approaches studied by researchers, which usually require driver behavior parameters and OD
matrices for good simulation. By making use of such tractable variables, model-based methods
have an obvious advantage: they provide explainable solutions and reveal traffic patterns.
Besides, they are especially useful when planning future projects or modeling demand-expected
events. Examples of traffic prediction models include DynaMIT (Ben-Akiva et al., 2000), and
VISSIM (Traffic Simulation Software | PTV Vissim | PTV Group, 1992). These software
packages allow for the creation and combination of various components, enabling the construc-
tion of a network that ranges from a single junction to a complex and realistic large-scale
network. Additionally, regulations and policies can be incorporated into the simulation. This
makes model-based approaches particularly useful for forecasting and comparing future scenarios.

But the variables needed in the model-based methods often require much effort to obtain, and
they are sensitive to data errors. This kind of approach highly relies on the quality and amount
of data for the calibration of proper inputs and parameters, which seems not even a problem
nowadays in such a big data context. However, even if a large amount of data is on hand,
usually the information contained is not sufficient for large networks. Thus, when it comes
to large-scale networks, model-based methods sometimes give underdetermined solutions and
bring ill-posed problems (Krishnakumari et al., 2018).

The application of data-based methods was born from the willingness of scholars to leverage
the tremendous data sources generated from all kinds of infrastructure and devices. Not only
do traditional radars, detective loops, and cameras provide us with traffic data, but also smart-
phones, onboard GPS, and automatic fare collection systems significantly contribute. With the
accessible data easily obtained, it seems logical to notice the increasing popularity of data-based
methods in practical applications. Examples include support vector regression (SVR), linear
regression, and many artificial neural network (ANN) models. Among ANN models, as deep
neural networks (DNNs) have more layers between input and output layers, scholars believe
that features from more different aspects can be captured and fused together (Liu et al., 2018);
and the prediction accuracy of DNNs could be higher (H. Yu et al., 2017). Based on these
positives, there has been an increase in the number of data-driven traffic prediction studies
utilizing deep learning in recent years.

Despite their benefits, many data-based traffic prediction methods have serious limitations.
One of these flaws is the neglect of the spatial characteristics and network structure of traffic
data. This lack of physical understanding, which is provided by model-based approaches, makes

1.3. Research Gap 3

it challenging to comprehend the mechanisms driving traffic behavior and the effects of various
control strategies. These methods can also be limited in their capacity to reflect the underlying
traffic dynamics, such as the influence of road geometry, traffic signals, and other factors on
traffic flow. This includes well-known techniques like ”Auto-Regressive Integrated Moving
Average” (ARIMA) (Williams and Hoel, 2003) and more advanced methods like ”LSTM-based
RNN” (Yeon et al., 2019).

Academics have begun investigating the potential of transfer learning in addressing traffic issues
(Rosario et al., 2018). This is because data-driven traffic prediction methods based on deep
learning offer high accuracy and efficient use of data, but require a substantial amount of time
and resources for data preparation and model training. Transfer learning is a machine learning
technique where a model developed for one task is utilized as the starting point for a model on a
different task, thus reducing the time needed for model training (Fang et al., 2015). Pre-trained
models are commonly used as the basis for deep learning tasks in computer vision and natural
language processing, as they significantly reduce the time and computing resources required to
build neural network models from scratch, and can also greatly improve performance on related
problems. If transfer learning can be successfully applied to traffic prediction, it could greatly
simplify the process of constructing and training suitable models.

Although most works in the traffic speed prediction domain paid no attention to the explainability
of their prediction models, a few scholars attempted to employ explainable methods recently,
e.g., by utilizing attention mechanisms (Sohn, 2020). Based on the attention weights obtained
from their attention-based multi-encoder-decoder model, Abdelraouf et al. extended the
explainability by visualizing and interpreting them (Abdelraouf et al., 2022). In a paper related
to the early anticipation of traffic accidents (Karim et al., 2022), however, several attention-
based explaining approaches were evaluated. It would be interesting to have more work on
explaining traffic speed prediction models, out of the ethics and reliability consideration.

1.3. Research Gap
As mentioned above, some data-based traffic prediction methods, even some advanced deep
learning approaches, neglect the spatial characteristics and network structure of traffic data.
For this issue, solutions have been worked out, e.g., to analyze network traffic as images. This
point of view is special, as it adopts the knowledge and approaches of the computer vision
domain (e.g., convolutional neural networks) and applies them to traffic identification and
prediction. Another way is to utilize graph-based neural networks, thus representing the physical
understanding of traffic data in the graph structure.

However, although studies have proven the capability of convolutional neural networks (CNNs)
when predicting traffic states (Ma et al., 2017; Krishnakumari et al., 2018), it is unknown how
this prediction is performed. This leads to another important problem, i.e., they are in general
extremely difficult to explain and hence are also called black box methods. People will certainly
wonder about the decision basis of algorithms when deciding whether or not to trust them.
The current situation in the traffic domain is that a great number of papers only contribute
to the development and application of deep learning methods for traffic prediction, without
explaining how they work (e.g. Yao et al., 2019; Tian and Chan, 2021).

While scholars in the AI domain have already made great efforts to interpret the various black
box deep learning methods (Ribeiro et al., 2016, Lundberg and Lee, 2017, Q. Zhang, Cao, et al.,
2018, J. Wang et al., 2021, Maree and Omlin, 2022), to the best of the author’s knowledge,

1.4. Research Questions 4

none of them is traffic prediction related. The spatial-temporal characteristics of traffic data
and network topology together make the input very complex, also leading to the difficulty of
explaining the method and thus its untrustworthiness. To this end, how these deep learning
methods identify traffic patterns when predicting network-wide traffic states remains unknown.
Therefore, a study is needed to fill this research gap and provide insights into how deep learning
models ”learn” when tackling traffic prediction problems, so that reliable and explainable
research results can contribute to society.

1.4. Research Questions
In this research, the following main question is aimed to be answered: how do deep neural
networks identify spatio-temporal traffic patterns for network-wide traffic predictions?

In order to answer the main research question, some sub-questions are formulated. And specific
answers will be found gradually in the research process, which are helpful to finally solving the
problem.

• What are the state-of-the-art deep learning methods used for network-wide traffic predic-
tion?

• How to build a computer vision-based network-wide traffic prediction model using deep
learning methods?

• Which spatio-temporal properties of traffic contribute to identifying distinct traffic patterns
using DNN?

• How to relate traffic patterns to the features extracted using DNN?

By answering these questions, it is assumed that ultimately a series of heatmaps highlighting
key areas contributing to specific traffic patterns will be obtained from the chosen method
(class activation mapping). First, a computer vision-based DNN model will be constructed to
predict traffic speed. Following certain steps, the DNN will be revised, linked to the chosen
method, and finally unraveled to a certain extent. The prediction results provided by DNN will
be analyzed for traffic pattern identification. Unraveled DNN and generated class activation
maps can tell us what information the network is actually absorbing, as well as how important
different features are for neural networks when learning traffic patterns. As a result, explainable
DNN predictions could be more reliable and persuasive, thus promoting the application of DNN
in all kinds of fields, including in our case, network-wide traffic congestion identification and
prediction.

1.5. Outline
The rest of the thesis report is organized as follows: Chapter 2 is a literature review regarding
related works in deep learning, traffic prediction methods, and class activation maps. The
methodology used in this research is described in detail in Chapter 3, which consists of 4
stages. In Chapter 4 a case study performed in the project focusing on a freeway network in
Amsterdam is introduced. The experimental setup is also recorded in the same chapter. Results
and conclusion are respectively presented in Chapter 5 and 6.

2
Literature Overview

This study incorporates and connects two fields: traffic speed prediction using data-driven
methods and the explanation of black box methods like DNN. Considering the model complexity
of deep learning methods, the literature overview will be divided into 3 parts, corresponding
to the two fields and an introduction to DNNs. The first section reviews the basic concepts
and classic models of the deep learning domain. Different types of data-based traffic prediction
problems and related works are described in Section 2.2. And in the third section, the efforts
of explaining black box methods are presented. Finally, in the last section, a summary of the
literature overview is given, and the research scope is determined.

2.1. Deep Neural Networks
Deep neural networks (DNNs), true to the name, have deep structures. It means that these
neural networks are built by stacking artificial neural network layers, thus being multiple layers
deep. So, as a framework for deep learning, a DNN is a neural network with at least one hidden
layer. Similar to shallow neural networks, DNNs can also model complex nonlinear systems.
But the extra hidden layers give DNNs the possibility of extracting, learning, and relating more
features, thus improving their ability to solve sophisticated real-world problems (Sze et al.,
2017). The simplest component of neural networks is an artificial neuron, whose structure is
shown in Figure 2.1.

Figure 2.1: Artificial neuron structure

6

2.1. Deep Neural Networks 7

The mathematical expression of the artificial neuron is:

y = φ(
K

∑
k=1

wkxk +b) (2.1)

where φ is the activation function, wk is a vector of weights, xk is a vector of inputs, and b is
a bias of the neuron. An artificial neuron learns the values of weights wk during the training
process.

The simplest one among the most common activation functions for artificial neurons is Binary
Step function, with the formula

f (x) =

{
0, x < θ

1, x ≥ θ
(2.2)

The output y of this activation function depends on whether the input meets a specified
threshold θ . This activation function can be used in binary classifications; however, it cannot
be used in situations where multiple classes need to be dealt with. Therefore, to adapt to
different scenarios, other common activation functions like Sigmoid, tanh, Rectified Linear
Unit (ReLU), are widely used in neural networks. By using different activation functions, the
expressive power of neural networks is further enhanced.

When it comes to artificial neural networks (ANN), multiple artificial neurons are utilized
in one model. A small example of a multilayer perceptron (MLP, a full-connected neural
network) structure can be found in Figure 2.2. In fully-connected neural networks, each neuron
is connected to all neurons on its adjacent layer(s). Although not very ”deep” as it seems, MLP
is a DNN, as 2 hidden layers are involved in its structure.

Figure 2.2: An example of full-connected neural network structure

The number of parameters in a MLP is

i×h1 +
n−1

∑
j=1

(h j +h j+1)+hn ×o+
n

∑
j=1

h j +o (2.3)

where the number of hidden layers is n, and hk is the number of neurons in k-th layer.

Hence, if we keep deepening our network layers and increasing the number of neurons in each
network layer, numerous parameters will be needed, thus the model being complex. The more

2.1. Deep Neural Networks 8

sophisticated the model, the more difficult it is to modify the parameters and the easier it is
to overfit. Additionally, we can observe from the neural network’s back-propagation process
that, when a gradient is back-propagating, continuous iterations will result in the gradient
getting smaller and smaller until it eventually vanishes. With the aforementioned contents as
the basis, a number of variants have evolved. In this research, the focus is on convolutional
neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN).

2.1.1. Convolutional Neural Networks
Convolutional neural networks (CNN) are a subclass of feed-forward neural networks with a
deep structure and convolution calculations. It is one of the representative algorithms for deep
learning.

Traditional neural networks are not appropriate for use in domains that deal with images.
When a fully-connected network topology is employed, too many parameters are needed, and
the amount of calculation needed for random back-propagation is enormous. It is not advised
to employ typical neural networks in terms of computer power and parameter tuning. CNN
mimics the biological mechanism of vision and is capable of both supervised and unsupervised
learning. The sharing of convolution kernel parameters in the hidden layer, as well as the
sparsity of inter-layer connections, allow CNN to learn grid-like topological features such as
pixels and audio with little calculation. As this thesis focuses on the utilization of image data
containing the traffic network topology, CNN becomes a reliable choice.

In Figure 2.3, a CNN structure similar to one of the earliest CNNs, LeNet-5, (Lecun et al., 1998)
is presented. LeNet-5 was built in the 1980s and applied to recognize handwritten numbers,
and from then on more and more complex models were built and trained on larger and larger
datasets.

Figure 2.3: A LeNet-like convolutional neural network

Except for the input and output layers, which exist in all artificial neural networks, CNNs
have a difference in terms of their hidden layers. The hidden layers of CNNs usually contain
convolutional layers, pooling layers, and fully connected layers.

• Convolutional layer
The input is convolved with a specified number of kernels (filters) in a convolutional
layer. The convolution between the kernel and the area of the data that overlaps with it
is calculated as a kernel k slides along each point of the input image. A new convolved

2.1. Deep Neural Networks 9

image, known as a feature map, is produced as a result of the convolutions performed by
the selected kernel across all of the input data. The convolution process converts the data
into a set of feature maps by selecting multiple kernels, each with a different weight (one
per filter). Since each kernel produces a feature map itself, they all identify and extract
a particular pattern from the input. The convolved image of the convolutional layer is
then created and output by joining all of the feature maps. The operation process can be
found in Figure 2.4.

Figure 2.4: Convolutional layer operation, from (Y. Guo et al., 2016)

• Pooling layer
After convolution operation, the original input would become a new feature map, and
usually be passed to the pooling layer. The goal of a pooling layer is to condense the
convolved data and decrease the number of parameters without reducing the quality.
There are a lot of types of pooling layers, but the most commonly used one is max pooling
layer. Figure 2.5 shows the way that a max pooling layer operates by downsampling. It
can be observed that there’s also a kernel, which moves through the feature maps. At
each location, the maximum value from the feature map and kernel’s overlapped regions
is retrieved, and the output image is constructed using these maximum values. If an
average pooling layer is used, then the output image will be constructed using the average
values. In this way, pooling layers can minimize the size of the feature maps so that fewer
weights are waiting to be learned. These layers produce smaller feature maps, but each of
those elements contains data about its neighbors from the preceding layer.

Figure 2.5: Pooling layer operation, from (Y. Guo et al., 2016)

• Full-connected layer

2.1. Deep Neural Networks 10

Fully connected layers connect every neuron in one layer to every neuron in another
layer, the same as MLP as mentioned before. The feature map will be ”flattened” by
being thrown into the Flatten layer after the max pooling procedure has been completed.
The classification of the images occurs after the flattened matrix passes through a fully
connected layer. An example of full-connected layer operation can be seen in Figure 2.6.

Figure 2.6: Full-connected layer operation, from (Y. Guo et al., 2016)

In some modern algorithm architectures, CNNs might have Inception modules (e.g. Inception
v1 by Szegedy et al., 2014) which allow the use of kernels of different sizes in one layer, or
residual blocks (e.g. ResNet by He et al., 2015) which avoid the occurrence of the gradient
vanishing problem. With the consideration to utilizing them both and improving the models,
Inception-ResNet was developed (Szegedy et al., 2016). In this research, Inception-ResNet
v2 is adopted for the feature extraction of grid-like speed image data considering its good
performance (which achieves 95.1% top-5 accuracy on ImageNet) and transfer learning context.

2.1.2. Recurrent Neural Networks
ANNs can only take and process one input separately, and the previous input has nothing
to do with the next input. However, some tasks need to be able to better process sequence
information, that is, the previous input is related to the subsequent input. For example, when
understanding the meaning of a sentence, it is not enough to understand each word of the
sentence in isolation, the entire sequence of these words needs to be processed. When processing
video, it is also unreasonable to analyze each frame individually rather than the entire sequence
of connections of these frames. When it comes to dealing with speed data, the temporal
characteristic of traffic makes it necessary to consider carefully the proper method. Therefore,
RNN is adopted as the congestion prediction model for its unique advantage of handling series
data.

Figure 2.7: A basic RNN structure

2.1. Deep Neural Networks 11

RNNs were proposed according to the view that human cognition is based on past experience
and memory. One of the earliest works that introduced the concept of recurrent networks is
(Rumelhart et al., 1985). The key of RNN to realize the so-called ”memorizing” is its structure,
which is shown in Figure 2.7 as an example of a fully recurrent neural network. The hidden-to-
hidden recurrent connection is represented by the arc, with the corresponding weights labeled
as whh. Input-to-hidden connection is parameterized by weights wxh, and hidden-to-output
connection by weights why.

Unrolling the RNN by time step is to expand the recurrent kernel in the direction of the time
axis (see Figure 2.8). The memory status information ht is updated at each moment, and
the parameter matrices wxh, whh, and why are fixed. It is these parameter matrices that are
to be trained and optimized. After the training is completed, the parameter matrix with the
best effect is used to perform forward propagation, and the prediction result is obtained. The
concept of RNN is to use the recurrent kernel to extract the time features and send them to
the fully connected network to realize the prediction of continuous data.

Figure 2.8: Unfolded basic RNN

2.1.3. Graph Neural Networks
Deep learning methods represented by various end-to-end deep learning paradigms such as CNN
and LSTM have achieved great success in extracting features from data in Euclidean space.
With that being said, numerous application scenarios produce data from non-Euclidean space,
for instance, social networks, biological networks, and transportation networks. Compared with
simple text and images, these unstructured data of network type are very complex, and the
difficulties in processing them include:

1. The size of the graph is arbitrary, the topology of the graph is complex, and there is no
spatial locality like an image.

2. The graph does not have a fixed order of nodes, or a reference node.
3. Graphs are often dynamic and contain multimodal features.

To better model these unstructured data, graph neural network (GNN) was born and developed,
inspired by existing deep learning paradigms. GNNs are categorized into 4 classes, which are

2.2. Traffic Prediction 12

(a) A ConvGNN for node classification, from (Rumelhart et al., 1985)

(b) A ConvGNN for graph classification, from (Rumelhart et al., 1985)

Figure 2.9: Example structures of convolutional graph neural networks

respectively convolutional graph neural networks (Conv-GNNs), recurrent graph neural networks
(RecGNNs), spatial-temporal graph neural networks (STGNNs), and graph autoencoders
(GAEs) (Rumelhart et al., 1985). The structures of each class can be seen in Figure 2.9. GNNs
are also becoming more popular in solving traffic-related problems, specifically traffic prediction
(B. Yu et al., 2018, S. Guo et al., 2019, Li et al., 2021). To compare which method has higher
accuracy, the dynamic graph convolution network proposed by Li et al. (Li et al., 2021) is
selected as one of the benchmark models, and will be further introduced in Section 3.6.

2.2. Traffic Prediction
Model-based traffic prediction approaches aim to mathematically model the transportation
network and simulate the behaviors of traffic participants. For the purpose of being as realistic
as possible, the network structure and relevant traffic information like signal control, speed
limit, etc. are usually preserved. Based on these characteristics, model-based methods are
suitable for long-term traffic prediction as they can provide insights into the future without
actual construction or planning. Examples of developed models include DynaMIT (Ben-Akiva
et al., 2000) and TransCAD (Caliper, 1996).

Nevertheless, model-based methods cannot provide accurate predictions, because they’re limited
by the predetermined network structure and parameter. Although relatively advanced systems
were developed to involve various parameters, unexpected events, and external factors are still
difficult to capture. The real-time traffic conditions, whose data can be easily obtained and
stored nowadays, are thereby excluded in models to a certain extent. To better leverage the
data resources and develop more accurate predictions, scholars began to adopt data-based
methods for traffic prediction, especially for short-term prediction. To this end, previous work
using data-based methods will be introduced in this section in detail.

2.2. Traffic Prediction 13

2.2.1. Different Types of Data-based Traffic Prediction
Given the strong dynamic correlation between the spatial and temporal dimensions of traffic data,
it is vital to explore these complex, non-linear patterns to generate reliable traffic predictions.
Due to different research focus, a wide range of application tasks are involved in data-based
traffic prediction, which can be classified as the following:

• Traffic flow prediction.
Except for the well-known classic methods HA and ARIMA, conventional learning methods
such as support vector regression (SVR) were applied for flow prediction. An early study
(Jin et al., 2007) used principal component analysis (PCA) to reduce dimension and
recognize temporal and spatial correlations of traffic flow, and then employed SVR to
predict based on effective eigen-flows obtained from PCA. Tang et al. improved simple
SVR by adding denoising schemes (Tang et al., 2019), and they later further incorporated
a fuzzy C-means neural network for more accurate predictions (Tang et al., 2020). Lv et
al. were the first to apply a deep architecture neural network model for flow prediction
(Lv et al., 2015) by stacking autoencoders as building blocks and learning traffic flow
features. Two modules are developed by Guo et al. to encode historical traffic flow data
(S. Guo et al., 2019). While the second half employs the graph convolutional network to
capture the spatial patterns and common standard convolutions to express the temporal
characteristics, the first part uses the attention mechanism to recognize the dynamic
spatio-temporal relationships in traffic data.

• Demand prediction.
In an early work of Kitamura et al.(Kitamura et al., 2000), a micro-simulator was
developed and validated to generate daily activity-travel patterns. The modeling of travel
demand is quite mature (Domencich and McFadden, 1975, Tajaddini et al., 2020), and
well-known approaches for demand prediction include, but are not limited to gravity
model (Wilson, 2013, Erlander and Stewart, 1990), and ARIMA (integrated with other
methods by Saadallah et al., 2020). Deep learning methods are also widely applied in this
problem, for example, Kuang et al. analyzed historical demand data, formed the data
into a 4D tensor, and utilized a 3D-CNN to encode external information (Kuang et al.,
2019). Similarly, graph neural networks were also adopted out of the transport network
topology consideration. Chai et al. incorporated a graph convolutional network and an
LSTM network to predict bike flow (Chai et al., 2018), while Yoshida et al. proposed a
relational graph convolutional network (R-GCN) for feature extraction of bicycle location
(Yoshida et al., 2019).

• Traffic speed prediction.
Similar to the prediction of flow and demand, general time series prediction approaches
(HA and ARIMA) were good choices for speed prediction. With the development of
technology, deep learning approaches have usually been selected by scholars in recent
years. Ma et al. converted spatio-temporal traffic dynamics to traffic flow images by
involving both aspects in a 2D time-space matrix (Ma et al., 2017). Cui et al. proposed
a deep stacked bidirectional and unidirectional LSTM (SBU-LSTM) neural network
architecture considering forward and backward dependencies in time series data for traffic
speed prediction (Cui et al., 2018). Instead of solely using one type of DNN, Wang et al.
combined CNN and RNN models by utilizing CNN to learn spatial features and RNN
to include periodicity (W. Wang and Li, 2018). A thoughtful study conducted by Liao
et al. integrated 3 kinds of auxiliary information, namely offline geographical and social
attributes, road intersection information, and online crowd queries, in an encoder-decoder

2.2. Traffic Prediction 14

model (Liao et al., 2018). The attributes and queries were fed to the decoder’s fully
connected layer, and spatial relations were incorporated with GCN into the encoder model.
In this way, the accuracy of traffic speed prediction was improved both during events and
over time.

• Travel time prediction.
In order to choose historical trajectories whose origin and destination locations are
comparable to the provided OD input, Wang et al. first employed the kNN technique
in terms of OD travel time prediction (H. Wang et al., 2015). They then computed the
average value of the selected trajectories as the prediction result. And similarly, the travel
time on road segments was predicted by Rahmani et al. using the kNN method (Rahmani
et al., 2013). With the goal of considering the temporal dynamic patterns, Zheng et al.
learned different weights for time-varying road travel costs in a non-parametric manner
(Zheng and Ni, 2013). Yang et al. implemented a spatio-temporal hidden Markov model
to incorporate spatio-temporal dependence by dividing the road into a series of adjacent
segments (Yang et al., 2013). However, both of their methods only allowed for information
sharing between adjacent time slots, failing to take longer-term effects into account. As a
result, deep learning methods, such as CNN for local segment spatio-temporal properties
and LSTM for the entire route (D. Wang et al., 2018, H. Zhang et al., 2018), began to be
utilized.

As mentioned above, due to the tremendous amount of data and some drawbacks of model-
based methods, researchers turned to data-based methods, especially machine learning methods.
Among all kinds of machine learning methods, neural networks are the most commonly adopted,
as they perform automatic feature extraction and prediction in one model. But decades ago, the
computational power, theoretical basis, and software limited the training efficiency, so shallow
networks were used back then; only no more than ten years ago did scholars start to apply deep
neural networks (DNNs) for traffic prediction (Huang et al., 2014).

Different researchers chose different types of DNN for traffic prediction according to their
strengths. Recurrent neural networks (RNN) show explicit strength when capturing the
temporal characteristics of the data, while convolutional neural networks (CNN) are better at
the spatial perspective. Other deep learning-based methods are also being applied, for example,
stacked autoencoder (SAE) (Lv et al., 2015) and deep belief network (DBN) (Jia et al., 2016).

2.2.2. RNN Methods
As an advanced method that improves traditional RNN’s vanishing gradient problem, the long
short-term memory (LSTM) neural network was introduced. And then it became the most
popular RNN-based method for traffic prediction, as the compatibility of traffic data with LSTM
is high (Tedjopurnomo et al., 2022). One of the earliest works that can be found using LSTM on
traffic prediction is from Ma et al. (Ma et al., 2015), in which the speed prediction performance
of LSTM was compared with other methods (e.g., SVM, ARIMA, Kalman filter, and so on).
The results showed LSTM, at that time, can achieve the best prediction performance, including
stability and accuracy.

However, because of the improvements in theory and technology, more complex DNNs could be
successfully trained. Thus, a lot of studies combined neural networks and leveraged this hybrid
setting for better prediction performance. Examples include a flow prediction work combining
CNN and LSTM (Y. Wu and Tan, 2016), in which 3 neural networks were used. They used
one CNN for spatial features and two LSTMs for short-term and periodic temporal features,

2.2. Traffic Prediction 15

respectively. Another example is to use LSTM to transform one feature representation to
another before passing outputs to a max-pooling layer, and in this paper, the authors predicted
traffic congestion (Cheng et al., 2018).

Some works, such as Sun et al.’s paper (Sun et al., 2019), presented a comparison of RNN and
CNN. And they used the mean speeds calculated every 5 minutes to divide congestion levels,
based on the standard made by Chengdu Transportation Department.

2.2.3. CNN Methods
Different from RNN, how CNN captures spatial features of traffic data strongly depends on
the type of data (Tedjopurnomo et al., 2022). When predicting traffic flow, most researchers
use point data, for which the spatial features are involved by inducing traffic records from
different sensors into vectors (Du et al., 2017). For spatial and temporal features, matrices
can be adopted (Fouladgar et al., 2017). Tensors are the best choice for combining matrixed
data from multiple days as input (Ma et al., 2017). Although point data are easier to use and
transform, most of them are highway data because a lot of city roads have no loop detectors
installed.

This makes the study of network traffic difficult, so many scholars use trajectory data that
covers a larger region. Krishinakumari et al. mapped the city street network to a 2D grid,
transformed the travel time data into average speed, and assigned the speed data to the
gridded road segments (Krishnakumari et al., 2018). And Yu et al. used a similar approach
(H. Yu et al., 2017). By dividing a city into coarse grids and upscaling gridded data, Liang
et al. produced fine-grained urban flow distributions from coarse-grained inputs (Liang et
al., 2019). These works show highly visualizable predictions, which is also an advantage of CNN.

Besides spatial features, some researchers also applied CNN for temporal feature capture. For
example, Ma et al. contended that RNNs require long input sequences, which increase the
training time, and used CNN for both spatial and temporal features (Ma et al., 2017).

2.2.4. Other Deep Learning Methods
As mentioned above, some other DNNs are also applied in traffic prediction, such as stacked
auto encoder (SAE), deep belief network (DBN), and graph-based methods, especially graph
convolutional neural networks. The number of papers using SAE and DBN is not as large as
those using RNN or CNN, which is mainly due to their poor performance caused by not being
able to explicitly capture spatial or temporal features (Cheng et al., 2018).

As a breakthrough, graph-based methods have grown in popularity in recent years. Yu et al.
formulated the speed prediction problem on graphs to fully utilize spatial information and
built the model with complete convolutional structures (B. Yu et al., 2018). However, Li et al.
argued that the stacked convolutional layers used in the graph convolutional network make
the model structure complex. Apart from that, the static structures are not consistent with
dynamic spatial correlations. They developed a variant of graph attention networks named
dynamic graph convolution and used this module in an RNN network for multi-step speed
prediction (Li et al., 2021).

2.3. Explaining Black Box Methods 16

2.3. Explaining Black Box Methods
Different researchers keep working toward the explainability of black box methods, and one of
the directions is visualization. A group of scholars at MIT first introduced class activation map
(CAM) to visualize the CNNs (Zhou et al., 2016), which refers to the weighted activation maps
generated for each image. A CAM for a particular category can visually show the discriminative
area used by CNN to identify this category. But it has to be implemented in a specific network
structure by replacing the fully connected layer with a global average pooling layer, thus cannot
be generalized in application.

Starting from the initial CAM, quite a few variants were developed. Grad-CAM (Selvaraju
et al., 2017) enables the class activation mapping for any built CNN-based image classifier by
calculating the average gradients of feature maps. The gradients represent the importance of
the corresponding feature map to the target category. However, similar to CAM, Grad-CAM
also requires the final convolutional layer in CNN for class activation map generation and
cannot localize multiple occurrences of the same class. Grad-CAM++ (Chattopadhay et al.,
2018) was then proposed to solve the localization problem. With the help of Smilkov et al.’s
SMOOTHGRAD (Smilkov et al., 2017), Omeiza et al. improved Grad-CAM++ by visually
sharpen gradient-based sensitivity maps (Omeiza et al., 2019). Their Smooth Grad-CAM++
also makes it possible in terms of the visualization of not only feature maps, but also convolu-
tional layers and neurons.

Apart from CAM methods, more approaches were considered or proposed by other scientists.
Most of the works focus on post-hoc explanation of networks, as it is intuitive, does not intervene
in the model construction/training, and has a wide range of applications (Castro et al., 2002).
Recently, the number of works using active explanation has increased (M. Wu et al., 2019;
Q. Zhang, Wu, et al., 2018). Bau et al. proposed a method named ”Network Dissection”
to quantify the interpretability of latent representations of CNNs (Bau et al., 2017). While
Zhang et al. chose decision tree to interpret CNNs, mining all potential decision modes of the
CNN (Q. Zhang, Yang, et al., 2018). In both post-hoc and active explanation papers, many
scholars extracted rules from the networks. Post-hoc examples include contrastive explanations
(Dhurandhar et al., 2018) and interpretable partial substitutes (T. Wang, 2019). Decision tree
learning is also an example of post-hoc rule extraction methods, such as using CART or C4.5
to fit the inputs and outputs of a network.

2.4. Summary
Traffic is nonlinear and complex, with both spatial and temporal characteristics. Traffic predic-
tion involves the prediction of a series of traffic information, such as traffic flow, travel time,
traffic speed, and demand. When scholars refer to traffic congestion prediction, some wish to
predict the queue length, some wish to predict traffic speed, and some wish to classify the level
of congestion with traffic flow.

Among all data-based traffic prediction methods, deep learning methods, especially CNNs,
RNNs, attention-based NNs, and GNNs, are state-of-the-art. They have excellent abilities
in automated feature learning, handling massive data, and involving non-linear relationships.
CNNs and RNNs are proven to be capable of capturing spatial and temporal characteristics
respectively. However, these approaches need massive labeled data which are sometimes expen-
sive and difficult to collect. They are also difficult to understand, thus being untrustworthy.
The requirement of large amounts of computational resources limits the generalizability as well.

2.4. Summary 17

For making black box models more transparent and understandable to humans, scholars either
developed explainable models from scratch, or adopted techniques such as visualization of
model activations, saliency maps, and post-hoc explanations generated by interpretable models.
Among these approaches, saliency maps (class activation maps) are the most intuitive ones
for people to understand, which reach a balance between mathematically reliable and visually
comprehensible. However, class activation maps only highlight important regions without giving
complete explanations of the model. This method also lacks generalizability as they are specific
to a single input and prediction.

In this project, the traffic prediction task is to predict average speeds, due to the higher
accessibility and directness of the data. Specifically, the average speed refers to the mean
value of the speeds collected by a certain loop detector during a short period, and there will
exist various average speeds at different locations of the road network. Based on the literature
overview, the goal of this research is determined. The goal is to predict the average speeds,
identify distinct traffic patterns by constructing a deep learning-based model incorporating
CNN and RNN, and use Grad-CAM to figure out how the model identifies them.

3
Methodology

This chapter gives a description of the research methodology. Section 3.1 conceptually stated
the framework of the methodology. The data rasterizing method is stated in section 3.2. With
the feature extraction method mentioned in Section 3.3, speed prediction using DNN can be
found in Section 3.4. The steps for unraveling the DNN and generating class activation maps
are introduced in Section 3.5. In Section 3.6, an introduction to the 2 benchmark models
adopted in this research is presented.

3.1. Conceptual Framework
From previous studies, it is clear that classic statistical data-based methods (e.g., ARIMA)
cannot properly consider spatial dependency of traffic data. As they were born when datasets
were relatively small, classic data-based methods are usually not suitable for the current big data
context, because they lack efficiency or even the ability to process large datasets. Conventional
machine learning methods seem to be a solution; however, despite their efficiency and feasibility,
they typically suffer from high computational costs. Besides, the relatively simple structure and
limited non-linearity of conventional machine learning methods prevent them from modeling
complicated and dynamic traffic problems. Hence, deep learning methods will be a desirable
solution.

In order to better capture the spatial feature and achieve a visualizable solution for a network-
level problem, convolutional neural networks are popularly implemented for network-wide traffic
prediction. Compared to more advanced graph neural networks, CNN is the base of computer
vision methods and is more intuitive. CNN is also well proven to be capable to predict traffic
speeds, thus being a suitable method for exploring its explainability. To preserve the spatial
information and fully utilize the advantage of CNN, in this research, traffic congestion prediction
uses travel speed as the input, with freeway network mapping into a 2D grid and assigning
the data to gridded road segments. In this way, each pixel represents a geographical area and
is spatially adjacent, which can be regarded as a special kind of graph structure. Because of
RNN’s unique capability to include temporal dependencies, with CNN as a feature extractor,
the extracted features will then be fed to an RNN model to capture the underlying context
and periodicity of the data. RNN itself will also be solely considered as a prediction model to
provide a comparison with feature extracting CNN-RNN hybrid model and evaluate the role
and effects of feature extraction.

With numerous prediction images at hand, it’s difficult to analyze them one by one when

19

3.1. Conceptual Framework 20

combined with complicated dynamic traffic conditions. Therefore, to find out common and
distinct traffic patterns in the prediction, a deep classification model based on CNN archi-
tecture will be developed to classify the images. And CAM helps people by enhancing the
interpretability of complex deep learning models, thus providing a visual understanding of
what parts of the images are leading to a certain class. Among all the methods scholars have
adopted, although not the most mathematically deep and detailed, CAM has an outstanding
advantage: it is very presentational, which means not only professionals but also stakeholders
who care about the decision making process can understand it without profound scientific
insights and knowledge. With important areas highlighted on the road network, a possible
correlation between congestion propagation and the actual locations can be explored. As the
images studied in this project are sparse and of low resolution, there’s no need to implement
methods like Smooth Grad-CAM++ for high-resolution explanations. Thus, Grad-CAM would
be adopted to help figure out the key features extracted by DNN, considering its intuitive bene-
fits, and analyze the relationship between the features and spatio-temporal traffic characteristics.

Based on the above motivations, the conceptual framework can be summarized as follows. To
deal with a large image dataset and conserve resources without losing any crucial or pertinent
information, the feature extraction technique can be helpful. The redundant data in the dataset
can be decreased with the aid of feature extraction. As the context of transfer learning is
focused, the features of traffic state variable (speed) images are extracted using a pre-trained
convolutional neural network. Then, the features of the future speed images are predicted
with a recurrent neural network. For this step, an LSTM encoder-decoder is constructed. By
converting the predicted features back to images, the predicted speeds are obtained. Accuracy
can be evaluated by comparing prediction images with ground truth images at the same time
steps and calculating the MAE and RMSE. To evaluate and compare the developed model, 2
benchmark models are adopted, namely a simple RNN and the Dynamic Graph Convolutional
Network (DGCN) (Li et al., 2021). The error values of the prediction results are aggregated
and plotted to assess the predicting capability of the proposed hybrid DNN model. The flow
chart is shown in Figure 3.1.

3.1. Conceptual Framework 21

Figure 3.1: Flow chart presenting conceptual framework

3.2. Data Rasterization 22

3.2. Data Rasterization
By placing loop detectors or cameras along the road, the raw speed data can be collected.
In order to preserve the road network’s spatial information and utilize deep neural networks,
the speed data needs to be ”rasterized” so that the input is in image form and maintains the
relative positions of loop detectors. One solution to this problem is to encode traffic data in a
grid-like matrix, where the grids represent regions of the traffic network (H. Yu et al., 2017).
Usually, networks are divided into relatively small resolutions to ensure no links overlap within
one grid.

The steps for data rasterization are described below. An example for a small transportation
network rasterization can be found in Figure 3.2.

(a) (b) (c)

Figure 3.2: Rasterization example of a small transportation network

Step 1: Select a transportation network with N roads to be studied and cut it evenly into L
links with P points. Total number of time steps each day is T , and the number of days is
D.
The number of the points P is given by:

P = b ln
dx

c+1 (3.1)

where ln is the total length of road n, and dx is the link length. Thus, the number of the
links L is given by:

L = P−N +1 (3.2)

Step 2: Compute the average speeds at time step t of day d on link n, obtain a speed matrix V
with a size of (D,N,T).

Step 3: Place the transportation network in a square with side length X , and divide the square
into small grids of size (x× y) m2. As the road network consists of road sections in
meters, for the convenience of division, x and y are also length value in meters. It’s worth
noting that if the network coordinates are latitude-longitude coordinates, an appropriate
projection is required to transform the coordinates to meters-meters according to the
EPSG code of the study area.

Step 4: Map the average speed data to the grids. With the end points of the links excluded,
the other points represent small road segments and are given the speed values measured
by loop detectors. For the blank area, the value filled in each grid is 0. For the area with
links passing through, the average speed value indicated by the point in the grid is filled

3.3. Feature Extraction 23

in. If multiple points exist in one grid, then the minimum average speed value is assigned
to this grid.

Step 5: The values in all non-blank grids are normalized to [0,1]. Thus, a series of grids with a
size of (X

x ,
X
y) containing speed information are obtained. The grid-like image set I has a

size of (D,T,height,width), where height = X
x , width = X

y .

3.3. Feature Extraction
Since a pioneering work surveyed and classified transfer learning (Pan and Yang, 2009), more
and more researchers wish to dig into the ability of transfer learning for numerous models.
From recent surveys (Weiss et al., 2016, Zhuang et al., 2020) it can be observed that many
studies turned to utilize neural networks in transfer learning, and then deep neural networks.
A popular approach for deep transfer learning is utilizing models that are already trained on
other datasets (e.g., ImageNet) and removing the last layer(s) (Krishnakumari et al., 2018). As
mentioned in section 2.1.1, Inception-ResNet v2 is used as the feature extractor for preprocessed
grid-like speed data.

The condensed architecture of Inception-ResNet v2 used in this project is shown in Figure 3.3.
After removing the last layer, the grid-like speed images are fed into the model as a tensor of
size (D,T,height,width) as written in section 3.2. Then for each time step a feature of size 1536
can be extracted, thus finally a feature matrix of size (D×T,1536) is obtained.

Figure 3.3: Schema for Inception-ResNet v2, self-drawn according to (Szegedy et al., 2016)

The detailed structures of blocks can be found below in Figure 3.4. The structure adopted in
this project is consistent with Keras version Inception ResNet v2 and different from the original
paper. The last two layers, i.e., 1 global average pooling layer and 1 dense layer, are excluded as
these are used for generating the image classification results of 1001 classes. Weights pretrained
on ImageNet are loaded for feature extraction.

3.3. Feature Extraction 24

(a) Stem block (b) Inception-A block (c) Inception-ResNet-A block

(d) Reduction-A block (e) Reduction-B block

(f) Inception-ResNet-B block
(g) Inception-ResNet-C

block (h) Final convolutional block

Figure 3.4: Detailed Inception ResNet v2 feature extractor blocks structure

3.4. Traffic State Prediction 25

3.4. Traffic State Prediction
With a series of speed images, the speed prediction problem can be classified as a Sequence2Se-
quence task. In the field of deep learning, the usual way to deal with these tasks is to utilize
RNN encoder-decoder structure, encode the input source sequence into an intermediate context
(which can be understood as a code vector of a specific length), and then restore to an output
target sequence through the context. Thus, an RNN encoder-decoder consists of 3 parts:
encoder, intermediate (encoder) vector and decoder. One RNN is used to simulate the reading
action of the brain, one feature vector of a specific length is used to simulate human memory,
and then another RNN is used to simulate the action of the brain thinking and getting the
answer. The organization and utilization of the three becomes a ”simulated brain” that can
solve the Sequence2Sequence problems. After the feature extraction, the features are fed to an
RNN encoder-decoder for speed prediction (see Figure 3.5).

Figure 3.5: An illustration of RNN encoder-decoder

RNN works well in processing time series data, but there are still some problems. A more
serious one is that RNNs are prone to gradient vanishing or gradient explosion. In terms of
RNN gradient vanishing, here refers to the phenomenon that the memory value becomes small
due to too long time period. To tackle this issue, Long Short-Term Memory (LSTM) and
other more advanced cells were developed. Different from RNN who only has one state whh,
LSTM has 2 states, namely cell state (which corresponds to the RNN state whh) and hidden state.

The structure of LSTM cell is shown in Figure 3.6. A common LSTM unit is composed of a
cell, an input gate, an output gate and a forget gate. In LSTM cell, the current input at time
step t xt and prior time step’s hidden state ht−1 are utilized to train 4 states inside the cell
(namely, ft , it , C̃t , and ot). With matrices w∗ and u∗ denoting the weights of the input and
recurrent connections, the 4 states are given by:

ft = σ(w f xt +u f ht−1 +b f) (3.3)

it = σ(wixt +uiht−1 +bi) (3.4)

3.4. Traffic State Prediction 26

Figure 3.6: LSTM cell structure

C̃t = tanh(wxt +uht−1 +bc) (3.5)

ot = σ(woxt +uoht−1 +bo) (3.6)

where σ and tanh are respectively sigmoid activation function and tanh activation function. ft ,
it , and ot are gate activation vectors for forget gate, input gate and output gate respectively,
and are in range (0, 1). C̃t is the cell input activation vector in range (-1, 1).

With these states obtained, cell state Ct and hidden state ht can be inferred:

Ct = ft �Ct−1 + it �C̃t (3.7)

ht = ot � tanh(Ct) (3.8)

where initial values C0 and h0 are equal to 0. � is the operator for element-wise product
(Hadamard Product).

In LSTM encoder, each recurrent unit takes a single input sequence element, extracts information
from it, then propagates the information to subsequent elements. The input sequence is a
collection of speed images in this thesis. Each input speed image is represented as xi where i is
the time step of that image. Inducted from Equations 3.3, 3.4, 3.5, 3.6, the general encoder
hidden states hi can be given by:

ht = f (wxhxt +whhht−1 +b) (3.9)

where wxh and whh are weights for input-to-hidden connections and hidden-to-hidden recurrent
connections respectively.

While in LSTM decoder, each recurrent unit receives an input and a hidden state from the
preceding unit before producing an output and a hidden state of its own. Each predicted
speed image is represented as yi where i is the time step of that image. Any hidden state hi is
computed by:

3.5. Traffic Patterns Identification and Explanation 27

ht = f (whhht−1 +b) (3.10)

Then the output yt at time step t is calculated using the hidden state at that time step and
respective weight ws:

yt = so f tmax(wsht +b) (3.11)

Notably, as the inputs of LSTM encoder-decoder are features extracted by Inception ResNet
v2, a processing is needed to convert the predicted features back to images of the same size
and form as inputs. Therefore, an operation named transposed convolution is adopted. In a
convolution process, take conv2D layer as an example, for an input tensor of size (N,Cin,Hin,Win)
and corresponding convolutional layer output of size (N,Cout ,Hout ,Wout), below equations hold:

Hout = bHin +2× p[0]−d[0]× (k[0]−1)−1
s[0]

c (3.12)

Wout = bWin +2× p[1]−d[1]× (k[1]−1)−1
s[1]

c (3.13)

where p is padding, d denotes dilation, k is for kernel size, and s for stride.

Now consider conv2DTranspose, with the same form of input (N,Cin,Hin,Win), the following
equations can be used to calculate the shape of output tensor, which in our case is the prediction
image tensor transformed from features, or determine other parameters with known of input
and output:

Hout = (Hin −1)× s[0]−2× pi[0]+d[0]× (k[0]−1)+ po[0]+1 (3.14)

Wout = (Win −1)× s[1]−2× pi[1]+d[1]× (k[1]−1)+ po[1]+1 (3.15)

where pi and po are padding for input and output respectively.

3.5. Traffic Patterns Identification and Explanation
In order to analyze underlying traffic patterns in the speed prediction images, an image clas-
sification model is required. Due to the capability of processing image data and localizing
parts in the images, the convolutional layers should be used in the classification model. As
Inception networks are famous pretrained models for image classification tasks and also used
in this project, it’s a reasonable choice to keep it, which can reduce the complexity of codes
and avoid stacking various deep learning models. Therefore, by utilizing Inception ResNet v2
structure, an image classifier is built with the following architecture 3.7.

It is clear that only the final dense layer is changed to output the probabilities of 3 classes,
instead of initial 1001 classes. By passing the ”include_top=False” argument to keras.ap-
plications.inception_resnet_v2.InceptionResNetV2, the model keeps its convolutional blocks
and drops the last 2 layers (just the same as what has been done in the feature extraction
part). Apart from the above mentioned merits, making use of Inception ResNet v2 is also
a good opportunity to test the capability of transfer learning strategy under traffic pattern
identification context. Hence, to this end, the preserved layers are given weights obtained from
model pretraining on ImageNet dataset and frozen to be untrainable. Only the 2 manually
added layers are trained with speed images and corresponding class labels. This can save a con-
siderable amount of model training time as well, thus also a suitable approach for organizations

3.5. Traffic Patterns Identification and Explanation 28

Figure 3.7: Inception ResNet v2 based image classifier

or institutions who have equipment with limited computational power.

For now, as the Inception ResNet v2 is modified to be able to classify the speed prediction
images, the weights of the convolutional layers inside the model trained after adding the GAP
layer and dense layer can be used to generate class activation maps. The process of traditional
class activation mapping is shown in Figure 3.8.

Figure 3.8: Class Activation Mapping process, from (Jiang et al., 2021)

Grad-CAM (Figure 3.9) is a class-discriminative localization technique, which generates vi-
sual explanations for any CNN-based network without structural modification or re-training
(Selvaraju et al., 2017). From Figure 3.9 we can see that guided Grad-CAM can be generated
based on Grad-CAM by guided backpropagation, which shows the fine-grained heatmap of
the cat and provides a more detailed visualization. However, as the speed images used in this
project are sparse images without contours and shapes, Grad-CAM is sufficient for the goal of
finding key areas on the network.

The detailed mechanism of Grad-CAM generating class activation maps is as follows:

Step 1: Calculate the gradient of the score y for class c, with respect to feature map activation
Ak of a convolutional layer:

∂yc

∂Ak
i j

3.6. Benchmark Models 29

Figure 3.9: Grad-CAM overview, from (Selvaraju et al., 2017)

where i and j denote height and width dimensions respectively.
Step 2: Obtain weights W c

k by global average pooling the flowing back gradients.

W c
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i j

(3.16)

where W c
k includes the importance of feature map k for target class c, Z = i× j is the size

of feature map.
Step 3: Perform a weighted combination of forward activation maps and feed it to a ReLU

function.
Lc

Grad−CAM = ReLU(∑
k

W c
k Ak) (3.17)

where Lc
Grad−CAM is the generated Grad-CAM for class c, ReLU is rectified linear unit

activation function.

The result of above steps is a coarse heatmap of the same size as the convolutional feature
maps. Notably, the reason why ReLU is adopted after obtaining the weighted feature map
combination is that only features that positively affect the class of interest are focused, i.e.,
pixels whose intensity should be increased to enhance the probability yc of class c. And negative
values indicating pixels that are likely to belong to other classes are discarded in this way.

3.6. Benchmark Models
2 benchmark models are selected for assessing the prediction performance of the aforementioned
hybrid DNN model, which are an RNN encoder-decoder and a dynamic graph convolutional
network.

In order to explore whether CNN feature extraction improves the prediction accuracy, the LSTM
encoder-decoder is taken out as a benchmark model. The structure remains the same as in
Figures 3.5 and 3.6, and the only difference is the model input. Instead of taking the extracted
feature of gridded images as input, the images are directly fed to the LSTM encoder-decoder as
4D tensors. By comparing this model to the proposed CNN-RNN hybrid model, the efficiency

3.6. Benchmark Models 30

and effects of feature extraction on this problem can be assessed.

A dynamic graph convolution model was designed by Li et al. to capture the propagation
of congestion (Li et al., 2021). By incorporating an adjacency matrix that encodes the
connectedness, DGC is an expansion from Euclidean space to graphs. Thus, it is capable to
preserve real location information and extract spatial correlations. The model structure is
shown in Figure 3.10. The DGC’s input is divided into two tensors, namely feature maps and
traffic states. Three components make up a DGC module:

Figure 3.10: DGC module: (a) the structure of a DGC module;
(b) the details of filters generation networks and the DGC graph aggregator. (Li et al., 2021)

1. a filters generation network (FGN), which calculates dynamic graph convolutional kernels
using different feature maps;

2. the DGC kernels are subsequently used in a local-wide graph convolution with traffic
states;

3. if necessary, post-processing can modify the dimension of the outputs.

Based on the design of DGC modules, multistep traffic forecasting was performed by placing
the modules in an RNN encoder-decoder. With the RNN encoder-decoder structure presented
in Figure 3.5 applied, the cells are substituted to DGCN cells. Figure 3.11 shows the inner
structure of a DGCN cell.

Figure 3.11: DGCN cell structure, from (Li et al., 2021)

By comparing the DGCRNN with the proposed hybrid model, some insights can be gained on
whether DGC modules or CNN layers perform better.

4
Case Study

In this research, an urban freeway network in the Netherlands is selected as a case study. It is
a relatively complex freeway network around Amsterdam that contains multiple intersections,
denoted by ”AMSnet”. A map of the study area is shown in Figure 4.1.

Due to its wider coverage, AMSnet is consistently divided into 400 m links to minimize
complexity and thus has 201 links. Speed data obtained from Li et al. (Li et al., 2021) is
the speed of the entire year 2018, and holidays and weekends are excluded due to the lack of
congestion. Due to the limitation of computation power, data of 100 days without broad-scale
sensor malfunction are selected and prepared. In order to include as diverse traffic patterns as
possible, the data during the afternoon and the evening peak lasting for 6 hours is preserved,
and the dataset is named AMSnetE9.

Figure 4.1: Freeway network of Amsterdam with driving direction marked, from (Li et al., 2021)

The traffic speed prediction task in this project is to forecast the speeds of future 10 time
steps with a 15-time-step observation window. With the data aggregated every 2 minutes, it
is clear that the observation window is 30 minutes and the prediction horizon is 20 minutes.
Preprocessed AMSnetE9 is a 3D matrix of shape (100, 180, 201), which includes the speed data
of 180 time steps on 201 links in 100 days.

32

33

The freeway network is a series of latitude-longitude coordinates, which are transformed to
x-y coordinates according to the Netherlands EPSG code. The projection is achieved by
transforming EPSG:4326 to EPSG:28992 using pyproj package. Then a series of shapely
LineString objects are generated for link partition. Each link is represented by its start point
when mapping the speed to the freeway network, indicating the speed collected by sensors on
the road. According to the scale of AMSnet, it is placed in a square of 20,000m×20,000m with
meshed grids constructed by 51×51 mesh points. Each grid has a size of 400 m × 400 m. An
example of AMSnet at time step 120 of day 50 can be seen in Figure 4.2.

Figure 4.2: Mesh gridded AMSnet at time step 120 of day 50

All colored points in Figure 4.2 represent a link with mapped speed, and are considered to
locate inside a grid in the case of:

meshx[j, j]≤ ipx[i]< meshx[j+1, j+1] && meshy[k,k]≤ ipy[i]< meshy[k+1,k+1] (4.1)

where meshx and meshy are respectively the sets of x and y coordinates for mesh points, and
ipx and ipy are respectively the sets of x and y coordinates for colored points.

If a grid has a colored point inside it, it is considered to have a road passing through and is
then filled with the corresponding speed value. In the case of multiple colored points located

34

in one grid, the largest speed value is preserved and filled. Blank grids with no road passing
through are assigned with value -999. In this way, the speed data are mapped and rasterized
into a 3D matrix of size (18000,50,50). Rasterized speed image at time step 120 of day 50 is
shown in Figure 4.3, whose size is (50,50).

Figure 4.3: Rasterized speed image at time step 120 of day 50

Images are then fed to Inception ResNet v2 feature extractor after they are resized up from
size (18000,50,50) to (18000,299,299). The interpolation method is INTER_NEAREST, for
preserving the original network structure as much as possible. Extracted feature matrix of size
(18000,1536) is partitioned into 15 or 10-time-step datasets as the encoder or decoder input for
an encoder-decoder model using sliding window method, and further split into training, testing,
and validation sets. Initial unprocessed rasterized speed images are used as decoder output
during model training.

All speed data is divided by the 120 km/h speed restriction to standardize it between 0 and 1
before being fed to the models. Standardized data are utilized as input for testing, but the
prediction results are then fed into a procedure in reverse to produce true-value forecasts. By
measuring the distances between predictions and the corresponding ground truth, the errors are
estimated. The mean average error (MAE) and the root mean square error (RMSE) are used
as error measurements. MAE can measure the overall accuracy of the model predictions, and
RMSE provides insights into the uncertainty and variation. MSE is used as the loss function
for training and is minimized by optimizer Adam (Kingma and Ba, 2014). The initial learning
rate and decay rate are set to 0.001. Batch size is 6, and the number of epochs is 10. Notably,
during the calculation of error metrics, both predictions and ground truths are masked to only
consider the values on the freeway network. The visualized mask consisting of ”0”s and ”1”s is
shown in Figure 4.4.

To evaluate the impact of the CNN feature extractor, an LSTM encoder-decoder mentioned in
Section 3.6 is used as one of the benchmark models. And to compare the proposed model to
state-of-the-art, the DGCN model developed by Li et al. (Li et al., 2021) is adopted as another
benchmark model. Using the same set of parameters, the same error metrics are also calculated
for the benchmarks.

35

Figure 4.4: Mask

After the speed predictions are obtained, a deep classification model based on Inception ResNet
v2 is constructed to explore distinct spatio-temporal traffic patterns. And the model is analyzed
with Grad-CAM to see which parts of the images contribute to the identification of certain
traffic patterns, e.g. the network congestion level. Speed predictions are a set of images, of size
(2250,50,50). Each image is assigned a label, which can be used to train the classifier. The
optimizer is Adam with the learning rate and decay rate set to 0.001; the number of epochs is
10 and the batch size is 32. The loss function used is categorical cross entropy for classification
problems, and ”accuracy” is the metric for measuring the prediction accuracy.

The computer for the experiment is the author’s own laptop with an Intel Core i7-10875H @
2.30GHz processor and an NVIDIA GeForce RTX 2060 GPU. The code is written in Python
with TensorFlow Keras on Jupyter Lab for inline visualization.

5
Results

This chapter presents all intermediate and final results produced in the project, as well as
corresponding analysis and discussion. Section 5.1 gives a description of the case study
network AMSnet, as well as some analyses of the data and corresponding traffic characteristics.
The result of data rasterization is also included. In Section 5.2, the findings obtained after
feature extraction are discussed. The example results of speed prediction using 3 models and
corresponding findings are presented in Section 5.3. In the same section, the comparison of
model performances can also be found. Error metrics are analyzed in Section 5.4, including
the inspection of error histograms, K-means clustering of error metrics, and the trends of
error value with the change of network congestion level. The clustering results for traffic
pattern identification are presented, compared, and discussed in Section 5.5. Explanation using
Grad-CAM and the insights can be found in Section 5.6.

5.1. Data Rasterization
The AMSnet in latitude-longitude coordinate projection is plotted as shown in Figure 5.1. In
total there are 9 roads in this freeway network, namely A10 (north-east), A10 (south-east),
A10 (south), A10 (west), A1 (west) & A9 (east), A2, A9, A4, and A9 (west) & A5 (north).
The 9 roads are indicated by different colors. Road colors and their lengths are listed in
Table 5.1. Figure 5.2 is the x-y coordinate projected network with points partitioning the
9 roads into 201 links, each 400 meters long. The driving directions are also marked in Figure 5.2.

Being partitioned into 400 m links, however, doesn’t mean all the links are 400 meters long.
The first reason is that some roads are disconnected, and the second reason is that the lengths
of roads are not integer multiples of 400. Hence, for each road, there’s a link shorter than 400
m. The number of links on each road can be found in Table 5.1 as well. It can be seen from
the figures that the roads are not fully consecutive, which might be because the complicated
weaving segments (e.g. between A9 and A4) are difficult to completely present.

37

5.1. Data Rasterization 38

Figure 5.1: AMSnet in lat-long coordinate

Figure 5.2: AMSnet in x-y coordinate

5.1. Data Rasterization 39

Table 5.1: Description of studied freeways

Freeway Index Color Length (m) # links Cumulative # links
A10 (north-east) 1 Blue 14709.44 37 37
A10 (south-east) 2 Orange 4902.42 13 50
A10 (south) 3 Green 4443.17 12 62
A10 (west) 4 Red 7053.99 18 80
A1 (west) & A9 (east) 5 Purple 10136.57 26 106
A2 (north) 6 Brown 4265.98 11 117
A9 (south) 7 Pink 13648.96 35 152
A4 (east) 8 Grey 4040.70 11 163
A9 (west) & A5 (north) 9 Yellow 15158.33 38 201
Total Length (m) 78359.54
Total # links 201

From the raw speed data during the afternoon and the evening peak, a series of speed contour
plots can be generated, with one plot indicating the speed pattern for one day. The contour
plot of day 78 is shown in Figure 5.3, with the x-axis indicating the time steps and the y-axis
indicating the index of links. In Figure 5.3 we can clearly see some congestion propagation
patterns during time step 70-140.

Figure 5.3: Speed contour during afternoon and evening peak on day 78

Take the bottleneck that appears at link 37 between time step 90-120 as an example, the
congestion generates and propagates upstream to link 20 for about 6.8 km. According to the
cumulative number of links listed in Table 5.1, the congestion occurs on the northeast part of
A10 (link 1-37), but its downstream segment on A1 west (link 80-106) is not congested. This
bottleneck might be caused by the speed limit on the weaving segment and off-ramp. Besides, by
observing the speed values on A10 south (link 50-62), we can conclude that due to the low speed
limit on A10 west (link 62-80) and the moving jam between time step 65-90 on A4 east (link 152-
163), a moving jam (stop-and-go wave) on A10 south (link 50-62) occurs during time step 95-130.

The speed data is mapped to the network by assigning speed values to points on the roads.
Figure 5.4 shows an example of mapped data on AMSnet at time step 120 on day 78. Compared
to Figure 5.3, it’s obvious that the spatial information is well preserved and easy to understand,

5.1. Data Rasterization 40

despite it can only show the network traffic state 1 time step per image. Through a further
step of processing, the rasterization of speed data is achieved. An example is in Figure 5.5.

Figure 5.4: Mesh gridded AMSnet at time step 120 on day 78

Figure 5.5: Rasterized speed image at time step 120 on day 78

5.2. Feature Extraction 41

5.2. Feature Extraction
The rasterized images are then fed to Inception ResNet v2 for feature extraction. The last FC
layer of the CNN image classifier was removed to have the feature output of size (18000,1536).
A 10-time-step slice of visualized feature vectors is shown in Figure 5.6.

Figure 5.6: Visualized feature vector of 10 time steps

No information can be directly read from the feature vectors, even after the simple visualization.
This is because feature vectors are abstractions obtained from the original data, after complex
convolution operations the feature output is compressed. Here the author obtains an opinion
that simple plotting is not a proper way to visualize the mechanism of convolutional neural
networks, which strengthens the necessity for a model explaining method.

So far the positive effect of feature extraction on the model performance has not been exhibited,
as the prediction is not performed yet. However, the massive feature extracting time, i.e., 2743
seconds recorded when running the code, is already a quite large number reflecting the possible
low time efficiency. Nonetheless, this could be contributed to the hardware limitation, while
still being a representative example in the case of implementing the methodology with similar
less advanced machines.

5.3. Speed Prediction
Before passing the extracted features to the LSTM encoder-decoder model, it’s necessary to
convert all the inputs to image sequences. As the task is to predict future 10-time-step speed
images with 15-time-step history data, a sliding window method is implemented to generate
input sequences from 18,000 images. Figure 5.7 gives an illustration of the mechanism of sliding
window, and in our case, 3 sliding steps are tested (25, 10, and 1).

25-step sliding provides each combination of encoder input and decoder output (highlighted in
the figure) is completely isolated without overlapping with other sequences; 10-step sliding can
produce time-continuous predictions by making decoder output sequences adjacent and not

5.3. Speed Prediction 42

Figure 5.7: An illustration of 25-step sliding window, with 25-step sequences

overlapped; 1-step sliding makes full use of the speed images. But 25-step and 10-step windows
cannot fully involve the temporal patterns due to the gap of sampling.

Thus, the plan was determined to use 1-step sliding. However, that would lead to a too-large
dataset and too-long model training time which the author’s computer cannot handle. In
consideration of the balance between computational efficiency and sufficient data amount,
finally, a 5-step sliding window was adopted to generate the image sequences used for speed
prediction.

Figure 5.8: Prediction of hybrid model (left) and ground truth (right)

An example of the prediction result given by the hybrid CNN-RNN model and its corresponding
ground truth at time step 96 on day 13 is presented in Figure 5.8. Here, the speed values shown
in the figures are still standardized, which will be reversed when calculating the error metrics.
The occurrences of congestion are partially successfully predicted, for example, the low speed
limit on A10 west and the propagated congestion on A10 south. Despite the speed values, this
example prediction also fails to accurately indicate the positions of congestion, meaning that
the model did not manage to learn from history.

5.3. Speed Prediction 43

An example of the prediction result given by the LSTM encoder-decoder model and the corre-
sponding ground truth is presented in Figure 5.9. The time step of selected images is the same
as Figure 5.8. What can be observed from the comparison between predictions and the ground
truth is that the LSTM encoder-decoder performs better in detecting the traffic pattern in
images than the hybrid model. The author infers that the reason could be feature extraction
removes some useful information. However, the underperformance of the hybrid model may
also be due to the lack of tuning.

Figure 5.9: Prediction of LSTM encoder-decoder (left) and ground truth (right)

Result example for DGCNN can be found in Figure 5.10. Figure 5.10a appears to be a blurred
random spectrum with no apparent meaning. This is because it only presents a prediction of
10 time steps. Below, Figure 5.11 provides the concatenated prediction results for a whole
day’s afternoon and evening peak, and the corresponding ground truth. Although the predicted
values are not very close to the ground truth, it’s still easy to observe similar traffic patterns
co-occurring at the same locations over such a relatively long time span.

(a) (b)

Figure 5.10: Prediction of DGCN (left) and ground truth (right) for 10 time steps

5.3. Speed Prediction 44

(a) (b)

Figure 5.11: Prediction of DGCN (left) and ground truth (right) for 150 time steps

The prediction of DGCN is also transformed to rasterized speed images for a more reasonable
comparison with the results of the other 2 models, see Figure 5.12. Comparable to the hybrid
model, DGCN is able to predict congestion to some extent, but not with remarkable accuracy.
Only congestion trends can be mostly inferred. According to the images, the low speed limit on
A10 west can be the major cause of the congestion upstream, as evidenced by the stop-and-go
waves on A10 south. This can be further demonstrated by referring to the speed contour
between link 50-62 at time step 100 in Figure 5.11b.

(a) (b)

Figure 5.12: Rasterized prediction of DGCN (left) and ground truth (right) at time step 100

For comparison of all 3 models, the predictions at the same time step 96 on day 13 are shown
below in Figure 5.13. The comparison indicates that DGCN prediction best captures the
congestion locations among the 3. LSTM encoder-decoder, however, gives a prediction aiming
for the best matching values.

5.3. Speed Prediction 45

(a) Prediction of hybrid model (left) and ground truth (right)

(b) Prediction of LSTM encoder-decoder (left) and ground truth (right)

(c) Prediction of DGCN (left) and ground truth (right)

Figure 5.13: Comparison of 3 models’ predictions at time step 96 on day 13

5.3. Speed Prediction 46

The overall 10-step prediction performance of 3 models using sequences generated with 25-step
sliding are listed in Table 5.2. And the prediction error metrics for each of the 10 time steps
of the 3 models are respectively presented in Tables 5.3, 5.4, and 5.5. Hybrid CNN-RNN has
the lowest MAE and shorter training time than LSTM encoder-decoder, which can be due to
its deeper structure and extra feature extraction. However, if the time consumed on feature
extraction is considered, the hybrid model is the most computationally expensive one. DGCN
has the shortest training time, which means it has extraordinary time efficiency; however,
the prediction accuracy is not that satisfying due to too few epochs and the lack of model
fine-tuning. Regarding RMSE, the LSTM encoder-decoder gives predictions with the least
extent of variation from ground truth, while the RMSEs given by the hybrid model and the
DGCN are considerably high for a speed limit of 120 km/h. This means the hybrid model and
the DGCN have predictions with larger errors than the LSTM encoder-decoder.

Table 5.2: Overall 10-step prediction performances

Model MAE (km/h) RMSE (km/h) Time (s)
Hybrid CNN-RNN 7.00 12.753 2685 + 2743
LSTM encoder-decoder 5.731 10.811 3476
DGCN 7.396 15.852 490

Table 5.3: Hybrid model prediction performances of each step

Time Steps 0 1 2 3 4 5 6 7 8 9
MAE (km/h) 9.86 6.67 6.63 6.66 6.67 6.68 6.69 6.70 6.73 6.74
RMSE (km/h) 15.16 12.43 12.42 12.46 12.46 12.47 12.45 12.44 12.49 12.49

Table 5.4: LSTM encoder-decoder prediction performances of each step

Time Steps 0 1 2 3 4 5 6 7 8 9
MAE (km/h) 9.43 5.15 5.06 5.19 5.27 5.34 5.38 5.43 5.49 5.55
RMSE (km/h) 16.07 9.29 9.48 9.74 9.92 10.13 10.24 10.39 10.55 10.69

Table 5.5: DGCN prediction performances of each step

Time Steps 0 1 2 3 4 5 6 7 8 9
MAE (km/h) 6.84 6.94 7.07 7.20 7.35 7.50 7.61 7.71 7.80 7.93
RMSE (km/h) 15.36 15.45 15.56 15.69 15.80 15.95 16.03 16.11 16.21 16.32

Figure 5.14 shows the change of error values with the increase of prediction time steps for the 3
models. Both the hybrid model and LSTM encoder-decoder show decreasing trends of MAE
value and RMSE value, while DGCN has slightly incremented MAE and RMSE. This might
indicate that the hybrid model and LSTM encoder-decoder are more suitable and steadier in
terms of longer-period prediction, and DGCN performs better in single-step prediction.

However, this result could also be because the encoder-decoder-based models are not able to
capture the underlying patterns in the data, and are making consistent errors throughout the
prediction horizon. The uncertainty in the prediction increases with time as well, as previous
predictions were used to predict according to the sliding window method, which can lead to

5.3. Speed Prediction 47

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: MAE and RMSE changes following the increase of prediction time steps

DGCN’s rising RMSE. This is because small errors in the prediction at earlier time steps can
compound and magnify as the prediction horizon gets longer and more predictions are used to
predict.

Observing the evolution in error metrics at every single step following the increase in time
(listed in Table 5.3 and 5.4), for both the hybrid model and the LSTM encoder-decoder, the
errors first decrease and then increase. This finding is notable since it is commonly expected
that RMSEs and MAEs will increase with time, as observed in the results of DGCN (Table 5.5),
due to previously predicted results being used as later predictors. One possible explanation
for this phenomenon could be the mechanism of the encoder-decoder (Figure 3.5), where the
decoder requires a trigger to initiate predictions, and the trigger used by the author was an all-0

5.3. Speed Prediction 48

matrix. It is possible that using a more appropriate trigger could enhance the performances of
encoder-decoder-based models.
As each sequence of prediction is 10 images at 10 consecutive time steps, they need to be
concatenated together for a long period of prediction observation. One thing notable is that
the selected sliding window is 5 steps, so in each predicted sequence 5 steps of predictions are
extracted and attached together for long-period prediction. Otherwise, there will be coincided
multiple results for most of the time steps. Taking the 10th prediction sequence on day 9 as an
example, the prediction images given by the 3 models and corresponding ground truths can be
found in Figure 5.15, 5.16, and 5.17.

Compared to LSTM encoder-decoder and DGCN, the hybrid CNN-RNN model didn’t predict
very well, because:

1. Some of the congestion areas were not identified and predicted, while some low/no
congestion areas were mistakenly predicted to have low speeds. This directly shows the
hybrid model has fairly lower accuracy than the other 2 benchmarks.

2. The predicted congestion didn’t propagate upstream along the time, indicating the model
failed to capture the spatio-temporal characteristics of the traffic. A typical example is
the moving jam on northeast A10 propagating from the east to the north, which the
hybrid model failed to predict, and the LSTM encoder-decoder partially learned.

3. The predictions for 10 time steps, i.e. 20 minutes, almost remained the same. If the
congestion was caused by unexpected or emergent accidents, then the underperformance
might be caused by the changes in the underlying patterns that the model needs to
capture; if the congestion was caused by bottlenecks, then it shows that the model is not
capable of finding the patterns in historical data.

However, no matter what the other reasons are, it is notable that none of these can shake the
fact that the hybrid model did not manage to learn the underlying traffic dynamics.

Although LSTM encoder-decoder predictions have the lowest overall error values, it cannot be
ignored that there’s a sudden shift that appeared on A10 east at time step 94 and 95, and the
predicted congestion didn’t propagate upstream along the time either. In terms of prediction
accuracy, DGCN may not have the most favorable numerical values. However, it demonstrates
the ability to provide more realistic predictions by depicting slight congestion propagation and
corresponding congestion regions that align with the actual situation.

These findings, despite the fact that the models were not fine-tuned, provide some support
to the argument that graph structure is more suitable for traffic network speed prediction
than image by efficiently preserving network topology. Besides, pretrained model-based feature
extraction indeed reduces the dimensionality and complexity of the data, but the procedure
also brings the risk of losing important information.

5.3. Speed Prediction 49

(a) Day 9 time step 90 (b) Day 9 time step 91

(c) Day 9 time step 92 (d) Day 9 time step 93

(e) Day 9 time step 94 (f) Day 9 time step 95

(g) Day 9 time step 96 (h) Day 9 time step 97

(i) Day 9 time step 98 (j) Day 9 time step 99

Figure 5.15: Predictions of hybrid CNN-RNN model (left) and ground truths (right) from time step 90 to 99 on
day 9

5.3. Speed Prediction 50

(a) Day 9 time step 90 (b) Day 9 time step 91

(c) Day 9 time step 92 (d) Day 9 time step 93

(e) Day 9 time step 94 (f) Day 9 time step 95

(g) Day 9 time step 96 (h) Day 9 time step 97

(i) Day 9 time step 98 (j) Day 9 time step 99

Figure 5.16: Predictions of LSTM encoder-decoder (left) and ground truths (right) from time step 90 to 99 on
day 9

5.3. Speed Prediction 51

(a) Day 9 time step 90 (b) Day 9 time step 91

(c) Day 9 time step 92 (d) Day 9 time step 93

(e) Day 9 time step 94 (f) Day 9 time step 95

(g) Day 9 time step 96 (h) Day 9 time step 97

(i) Day 9 time step 98 (j) Day 9 time step 99

Figure 5.17: Predictions of DGCN (left) and ground truths (right) from time step 90 to 99 on day 9

5.4. Error Analysis 52

5.4. Error Analysis
This section mainly analyzes the image-specific error metrics of speed prediction for the 3
models. The distributions of MAE and RMSE are plotted, and the error values are clustered
in order to find underlying patterns. Scatter plots of mean speed and RMSE value are also
plotted to observe the relationship between the two variables.

Below (Figure 5.18) presents the MAE and RMSE distribution histograms for the 3 models with
bin=10. The MAEs and RMSEs of hybrid model predictions spread the widest, which means
the portion of its single predictions have a larger bias from ground truth is larger than other
models’ single predictions. While the error metrics of DGCN show that its single predictions
are the closest to the ground truth values.

(a) MAE histogram of hybrid model (b) RMSE histogram of hybrid model

(c) MAE histogram of LSTM encoder-decoder (d) RMSE histogram of LSTM encoder-decoder

(e) MAE histogram of DGCN (f) RMSE histogram of DGCN

Figure 5.18: Error metric distributions of the 3 models

As histogram can only allow for the inspection of one error metric, K-means clustering is applied
to combine the 2 error metrics. 2 initialization methods, namely K-means ++ and random, are
chosen for clustering and comparison. First, the elbow method is used for finding the optimal
K value for clustering, see Figure 5.19.

5.4. Error Analysis 53

(a) K-means ++, hybrid model (b) Random, hybrid model

(c) K-means ++, LSTM encoder-decoder (d) Random, LSTM encoder-decoder

(e) K-means ++, DGCN (f) Random, DGCN

Figure 5.19: Elbow plots of 2 initialization methods for the 3 models

It’s clear that the optimal K in all the cases is 2. Therefore, the MAE-RMSE matrices are
clustered with K=2. Results are shown below (Figure 5.20 and Table 5.6). And it can be
observed from the plots and the table that the 2 different initialization methods didn’t bring
different results. The clustering itself also just divides the data into 2 parts (smaller and
larger), as MAE and RMSE are dependent on each other, thus no insights can be gained. The
comparison of prediction and ground truth from each cluster also supports this argument,
taking the prediction of the hybrid model as an example (Figure 5.21).

5.4. Error Analysis 54

Table 5.6: Cluster distribution of random initialization K-means for the 3 models

Cluster 1 0
Hybrid 1733 517
LSTM 1694 556
DGCN 1752 498

Cluster 1 represents the cluster with lower MAE and lower RMSE, and cluster 0 is the opposite.
From Figure 5.21a and 5.21b, it’s obvious that the source of large errors is in the southeast
part of the network, where the quite severe congestion was not successfully predicted by the
hybrid model. While Figure 5.21c and 5.21d are considerably similar to each other, the errors
are naturally small.

(a) K-means ++, hybrid model (b) Random, hybrid model

(c) K-means ++, LSTM encoder-decoder (d) Random, LSTM encoder-decoder

(e) K-means ++, DGCN (f) Random, DGCN

Figure 5.20: Clustering results of 2 initialization methods for the 3 models

5.4. Error Analysis 55

(a) Hybrid model prediction, cluster 0,
day 3 time step 120

(b) Ground truth, cluster 0,
day 3 time step 120

(c) Hybrid model prediction, cluster 1,
day 0 time step 126

(d) Ground truth, cluster 1,
day 0 time step 126

Figure 5.21: Clustering results example & corresponding ground truth

After the exploration of the relationship between MAE and RMSE, the author found they are
dependent on each other. Hence, from here on, RMSE only is taken as the error metric for
brevity. Except for observing error metrics themselves, the relationship between the network
congestion level and error level can also be a point to dig into. Below figures (Figure 5.22) are
the scatter plots of network mean speed (x-axis) and RMSE value (y-axis) for each prediction,
and a line is fitted to each figure for inspecting the trend.

All 3 subfigures show that the higher the network mean speed, the lower the RMSE value. This
can indicate the models are better at predicting low/non congestion situations, but not that
good at capturing the information during congested times. Another finding is that there’s an
”elbow” on each fitted line. If the network average speed decreases from 97 km/h to 92 km/h,
the hybrid model’s RMSE will increase by 10.19 km/h; for a decrease from 90 km/h to 85
km/h, the RMSE increases by 6.79 km/h. Results for LSTM encoder-decoder and DGCN can
be found in Table 5.7.

5.4. Error Analysis 56

(a) Hybrid model

(b) LSTM encoder-decoder

(c) DGCN

Figure 5.22: Relationship between network congestion level and error level

5.4. Error Analysis 57

Table 5.7: RMSE increase with speed decrease

Speed Decrease km/h 97-92 90-85
RMSE Increase (Hybrid) 10.19 6.79
RMSE Increase (LSTM) 5.97 4.07
RMSE Increase (DGCN) 1.53 0.72

This conveys a message, i.e., when the network is less congested, the predicting performances
of the 3 models are more sensitive to the change of network congestion states; while when
the network becomes more congested, e.g. network mean speed is smaller than 87 km/h, the
models’ performances are relatively steady. The reason could be because the free flow situation
is more uniform, but the congested situation contains a large number of instant changes, whose
complexity prevents the deep learning models learn from the historical data. Again, the results
highlight the good prediction accuracy of DGCN, however, it’s also interesting to find that
LSTM encoder-decoder generates the most abundant traffic states (network mean speed goes
from 72 to 102, which is the largest range among the 3).

Digging deeper into sequences predicted by the models, we can refer to Figure 5.23, 5.24, and
5.25 for the sequence right before the prediction with largest error given by hybrid CNN-RNN
model, LSTM encoder-decoder and DGCN. From the figures, it can be easily found that the
ability of the hybrid model on predicting congestion is much weaker than the other 2 models,
thus also resulting in the higher RMSE values and larger RMSE increase reflected in Figure
5.18b, Figure 5.22a, and Table 5.7.

Referring to Figure 5.23g - 5.23j, a congestion propagation at around (12,12) can be observed.
However, there’s a large flaw here: the direction of congestion propagation is the same as the
driving direction, which is not possible, as the jam always propagates upstream. This turns out
a drawback of simply transforming the traffic data to static images, which is the deep neural
network may not be able to learn the driving direction from the data.

5.4. Error Analysis 58

(a) Day 9 time step 82 (b) Day 9 time step 83

(c) Day 9 time step 84 (d) Day 9 time step 85

(e) Day 9 time step 86 (f) Day 9 time step 87

(g) Day 9 time step 88 (h) Day 9 time step 89

(i) Day 9 time step 90 (j) Day 9 time step 91

Figure 5.23: Predictions of hybrid CNN-RNN model (left) and ground truths (right)
of sequence before the largest RMSE prediction

5.4. Error Analysis 59

(a) Day 9 time step 87 (b) Day 9 time step 88

(c) Day 9 time step 89 (d) Day 9 time step 90

(e) Day 9 time step 91 (f) Day 9 time step 92

(g) Day 9 time step 93 (h) Day 9 time step 94

(i) Day 9 time step 95 (j) Day 9 time step 96

Figure 5.24: Predictions of LSTM encoder-decoder (left) and ground truths (right)
of sequence before the largest RMSE prediction

5.4. Error Analysis 60

(a) Day 14 time step 79 (b) Day 14 time step 80

(c) Day 14 time step 81 (d) Day 14 time step 82

(e) Day 14 time step 83 (f) Day 14 time step 84

(g) Day 14 time step 85 (h) Day 14 time step 86

(i) Day 14 time step 87 (j) Day 14 time step 88

Figure 5.25: Predictions of DGCN (left) and ground truths (right) of sequence before the largest RMSE
prediction

5.5. Traffic Pattern Identification 61

5.5. Traffic Pattern Identification
As mentioned in Chapter 4, each image will be assigned a label for classification. By calculating
the network mean speed, the prediction images can be divided into 3 classes: low congestion,
mild congestion, and high congestion. The network mean speed values of ground truths lie in
the range (72,102), so the first 30% in this range, i.e., 72-81 km/h, is high congestion. 30% to
70% (81-93 km/h) is mild congestion; 70% and larger (93-102 km/h) belongs to low congestion
level. The prediction images are then labeled accordingly. The distribution of congestion levels
in predictions of the 3 models can be found in Table 5.8 below.

Table 5.8: Distribution of congestion levels

Class (Hybrid) Low congestion Mild congestion High congestion Total
Number of predictions 1660 590 0 2250
Class (LSTM) Low congestion Mild congestion High congestion Total
Number of predictions 1598 544 108 2250
Class (DGCN) Low congestion Mild congestion High congestion Total
Number of predictions 1700 530 20 2250

As each generated prediction image i will be possibly used to predict next sequences, the n
error values of ”prediction i’s prediction sequence In” can be attached to I. In our case, n = 3.
Therefore, each prediction I will have an RMSE distribution, in which the RMSE values are
the 3 mean RMSEs coming from sequences I1, I2, and I3, which are predicted using image i.
Similarly, the aggregation of RMSE distribution can also be used to classify the images into
different error classes: low prediction error, medium prediction error, and high prediction error.
Aggregated RMSEs lie in the range (0,34), with 30% and 70% used to divide the classes. Hence,
low prediction error means RMSE = 0-10.2 km/h; medium prediction error is 10.2-23.8 km/h;
high prediction error is 23.8-34 km/h. The distribution of error classes in predictions of the 3
models can be found in Table 5.9 below.

Table 5.9: Distribution of error classes

Class (Hybrid) Low error Mild error High error Total
Number of predictions 1425 640 185 2250
Class (LSTM) Low congestion Mild congestion High congestion Total
Number of predictions 1605 630 15 2250
Class (DGCN) Low congestion Mild congestion High congestion Total
Number of predictions 2250 0 0 2250

In terms of the congestion level, we can see that the hybrid CNN-RNN model gives the least
realistic prediction results with no high congestion level prediction at all. Figure 5.26 shows
the DGCN predicted examples from the 3 congestion levels.

5.5. Traffic Pattern Identification 62

(a) Class 0, low congestion (b) Class 1, mild congestion (c) Class 2, high congestion

Figure 5.26: Examples of DGCN predictions belonging to 3 congestion levels

In terms of RMSE, it is clear that DGCN predicts with the lowest error, followed by LSTM
encoder-decoder and hybrid CNN-RNN model. Figure 5.27 shows the hybrid model predicted
examples from the 3 error classes.

(a) Class 0, low prediction error (b) Class 1, medium prediction error (c) Class 2, high prediction error

Figure 5.27: Examples of hybrid model predictions belonging to 3 error classes

Figure 5.28 and 5.29 give examples of the distributions in one day of aggregated mean speed and
prediction error used to label the prediction images. The distributions of all 15 predicted days
are placed in Appendix A Figure A.1-A.6. It can be observed that at around time steps 20 and
100, the network is congested; and the corresponding prediction errors are higher than other
time steps. This observation is in line with Figure 5.22, manifesting the prediction unreliability
on congestion.

It can be easily observed from Table 5.8 and 5.9 that the samples have an extremely imbalanced
distribution. Therefore, during the training of the classifier, class weights are computed and
added to the model. However, the model shows no improvement during the training process
on both datasets, namely the classifier training was a failure. As the images were properly
normalized by keras.preprocess_input, the problem might be because the complex model is
overfitting the training data.

5.5. Traffic Pattern Identification 63

(a) Hybrid model aggregated prediction error

(b) LSTM encoder-decoder aggregated prediction error

(c) DGCN aggregated prediction error

Figure 5.28: Aggregated mean speed on day 9 of the 3 models

5.5. Traffic Pattern Identification 64

(a) Hybrid model aggregated prediction error

(b) LSTM encoder-decoder aggregated prediction error

(c) DGCN aggregated prediction error

Figure 5.29: Aggregated prediction error on day 9 of the 3 models

5.6. Network Explanation 65

5.6. Network Explanation
Although the classification model failed to identify the distinct traffic patterns, the Grad-CAMs
obtained can still be observed and discussed. Below are examples of Grad-CAMs for the
congestion level classification (Figure 5.30) and error level classification (Figure 5.31) of a
prediction sequence.

When classifying the congestion level, it seems that the classifier model takes A10 west as the
most important region for class 1: mild congestion. While for class 0: low congestion, other
areas in the image are highlighted. It’s intuitive that the heatmap highlights the area on the
road network, and covers the area that has the relatively larger change of values as Grad-CAM
is a gradient-based method.

Observing Figure 5.31g - 5.31l, we can see that the heatmap expanded to newly predicted
congestion. Hence, combining the findings above, it can be concluded that the hybrid CNN-RNN
and LSTM encoder-decoder proposed in this project have the ability to detect congestion and
predict speed multi steps ahead based on historical data. However, they are weak in identifying
the underlying patterns and development of traffic, namely, they cannot fully capture the
dynamic characteristics of the traffic, nor can they accurately provide predictions. Of course,
these can be caused by the lack of fine-tuning and rigorous experiments or the incompatibility
between the model and the data.

5.6. Network Explanation 66

(a) Hybrid model prediction
day 9 time step 90

(b) Grad-CAM
day 9 time step 90

(c) Hybrid model prediction
day 9 time step 91

(d) Grad-CAM
day 9 time step 91

(e) Hybrid model prediction
day 9 time step 92

(f) Grad-CAM
day 9 time step 92

(g) Hybrid model prediction
day 9 time step 93

(h) Grad-CAM
day 9 time step 93

5.6. Network Explanation 67

(i) Hybrid model prediction
day 9 time step 94

(j) Grad-CAM
day 9 time step 94

(k) Hybrid model prediction
day 9 time step 95

(l) Grad-CAM
day 9 time step 95

(m) Hybrid model prediction
day 9 time step 96

(n) Grad-CAM
day 9 time step 96

(o) Hybrid model prediction
day 9 time step 97

(p) Grad-CAM
day 9 time step 97

5.6. Network Explanation 68

(q) Hybrid model prediction
day 9 time step 98

(r) Grad-CAM
day 9 time step 98

(s) Hybrid model prediction
day 9 time step 99

(t) Grad-CAM
day 9 time step 99

Figure 5.30: Predictions of hybrid model (left) and congestion classification Grad-CAMs (right)
on day 9, time step 90-99

5.6. Network Explanation 69

(a) Hybrid model prediction
day 9 time step 90

(b) Grad-CAM
day 9 time step 90

(c) Hybrid model prediction
day 9 time step 91

(d) Grad-CAM
day 9 time step 91

(e) Hybrid model prediction
day 9 time step 92

(f) Grad-CAM
day 9 time step 92

(g) Hybrid model prediction
day 9 time step 93

(h) Grad-CAM
day 9 time step 93

5.6. Network Explanation 70

(i) Hybrid model prediction
day 9 time step 94

(j) Grad-CAM
day 9 time step 94

(k) Hybrid model prediction
day 9 time step 95

(l) Grad-CAM
day 9 time step 95

(m) Hybrid model prediction
day 9 time step 96

(n) Grad-CAM
day 9 time step 96

(o) Hybrid model prediction
day 9 time step 97

(p) Grad-CAM
day 9 time step 97

5.6. Network Explanation 71

(q) Hybrid model prediction
day 9 time step 98

(r) Grad-CAM
day 9 time step 98

(s) Hybrid model prediction
day 9 time step 99

(t) Grad-CAM
day 9 time step 99

Figure 5.31: Predictions of hybrid model (left) and error classification Grad-CAMs (right)
on day 9, time step 90-99

6
Conclusion

This research develops a deep-learning model employing CNN and RNN for network traffic speed
prediction, and a CNN-based classification model for traffic pattern identification. Grad-CAM
is utilized to generate and visualize explainable classification results, helping explore how
deep-learning models identify traffic patterns. A case study is conducted on a realistic freeway
network for analysis and verification.

In Section 6.1, the key findings of this research are given, along with the answering of research
questions. Section 6.2 summarizes the contributions of this research. The limitations and
corresponding recommendations for the future can be found in Section 6.3.

6.1. Key Findings
The hybrid model and LSTM encoder-decoder proposed in this project can detect congestion
and predict speed multi steps ahead based on historical data. But they are weak in identifying
the underlying patterns and development of traffic, namely, they cannot fully capture the
dynamic characteristics of the traffic, nor can they accurately provide predictions. Of course,
these can be caused by the lack of fine-tuning and rigorous experiments or the incompatibility
between the model and the data.

The unsatisfying performance observed with the use of the Inception ResNet v2 model pretrained
on ImageNet for transfer learning, however, does not indicate the failure of this approach for
the speed prediction problem, nor the model generalizability. Instead, the author suggests
that this outcome highlights the limitations imposed on deep learning models by the training
dataset, as known as the inductive bias.

While ImageNet is a vast dataset containing a considerable number of real-world objects, it
does not offer a sufficient number of more abstract images, such as the rasterized speed images
employed in this research. Thus, the model naturally feels strange to these images and cannot
predict/identify distinct patterns very well. Another sign of inductive bias is in the design
of Inception ResNet v2, which requires a specific input size, leading to potential weakness
regarding data padding/compressing.

Grad-CAMs indicate that the highlighted areas are mostly locations with rapid changes of
values, due to the method’s gradient-based characteristics. However, as the prediction and
classification all have unsatisfying performances, both the quality of data and the compatibility

72

6.1. Key Findings 73

between the image data and the classifier are low, resulting in the unreliability of Grad-CAM
explanations.

So, how do deep neural networks identify spatio-temporal traffic patterns for network-wide
traffic predictions?

DNN reads historical data and learns temporal variations of traffic data, which makes it able
to predict future traffic states; it learns spatial characteristics in a somehow numerical way by
observing and remembering how the values at specific areas change and mimicking this change
for future predictions aiming for the smallest loss. Without driving directions encoded in the
data, computer-vision-based DNN actually fails to learn this from static images. By finding
similarities between images in the same class, DNN attempts to identify the similarities as the
underlying patterns, yet this identification rationale is not as expected.

• What are the state-of-the-art deep learning methods used for network-wide traffic predic-
tion?

The state-of-the-art deep learning methods used for network-wide traffic prediction include
but are not limited to convolutional neural networks (CNNs), recurrent neural networks
(RNNs) (especially long short-time memory neural networks), attention-based neural
networks, and graph-based neural networks. In contrast to conventional methods, deep
learning models have the ability to handle high-dimensional and heterogeneous data
inputs, including spatio-temporal traffic data, satellite imagery, and weather data. The
ability of deep learning models, such as CNNs and RNNs, to detect spatio-temporal
patterns in traffic data permits them to capture the interactions and dependencies between
different road segments and their influence on traffic speeds. Moreover, deep learning
models can be trained end-to-end, which eliminates the requirement for hand-engineered
features and permits them to handle large quantities of data with ease.

• How to build a computer vision-based network-wide traffic prediction model using deep
learning methods?

Computer vision methods involve a wide range of techniques, including image processing,
feature extraction, object detection and recognition, segmentation, and classification. The
key is to employ models that are capable of processing and learning images, thus CNNs
are classic suitable choices. In this project, an Inception ResNet v2-based deep learning
model is constructed, with the Inception ResNet v2 as a feature extractor and an LSTM
encoder-decoder stacking on top of it. This way, the extracted features are fed into the
encoder-decoder, and the model will learn temporal characteristics and predict future
features. Using transposed convolution, the predicted features can be transformed back
to images, so that both the spatial and temporal features are taken into account.

• Which spatio-temporal properties of traffic contribute to identifying distinct traffic pat-
terns using DNN?

Although the image classifier fails to identify distinct traffic patterns, speeds and the
generation and propagation of congestion contribute to the identification, which can be
concluded from the obtained Grad-CAMs. DNN, especially computer vision-based DNN,

6.2. Contributions 74

largely focuses on the edges, curves, and parts in images. In rasterized speed images,
the edges are the road networks; and the parts with a rapid change of values are the
congestion wave and moving jams, which are all highlighted in Grad-CAMs.

• How to relate traffic patterns to the features extracted using DNN?

Heatmaps or other visualization approaches help. Feature importance analysis, such as
gradient-based attribution methods, can also help identify which features have the most
influence on the model’s predictions. In this project, Grad-CAM is used to help relate
traffic patterns to extracted features. The DNN proposed in this project extracts features
through convolutional layers. By obtaining weighted activation maps using the gradients,
intuitive class activation maps can be generated and used to find a potential relationship
between traffic patterns and extracted features. The highlighted features are the features
that contribute to the result of a certain class; the class can be a representation of a
specific traffic pattern.

6.2. Contributions
The scientific contributions of this study are as follows:

• A hybrid CNN-RNN model utilizing a pretrained Inception ResNet v2 feature extractor
and an LSTM encoder-decoder is constructed to forecast network traffic speeds with the
objective of capturing spatio-temporal characteristics of the traffic.

• Based on the image predictions, a deep learning-based classification model including the
convolution layers of pretrained Inception ResNet v2 and 2 self-stacked layers is developed
to identify underlying distinct traffic patterns.

• To address the unexplainability of the constructed classifier, an attention-based model
explaining approach, Grad-CAM, is employed to generate explainable classification results
and visualize what the DNN is learning during detecting and identifying traffic patterns.

• A real freeway network is taken as a case study to verify the method.

And the practical contributions include:

• The developed model, upon fine-tuning, can be used by authorities as a powerful tool
assisting policy making. It can also help travelers make more informed decisions about
their travel plans and routes.

• The data rasterization method is considered suitable for visualizing the real-time traffic
conditions on the road network, which can be applied to electric variable traffic sign
boards.

• An experiment using transfer learning is conducted to explore the possibility of utilizing
pretrained models on traffic speed prediction problems. Authorities or companies that
have insufficient traffic data or unadvanced equipment can still implement deep learning
techniques, as long as there is a proper pretrained model available.

• Grad-CAM provides a way to visualize and interpret the predictions made by the CNN
classifier, making it easier to understand how the model is making its predictions.

6.3. Limitation & Recommendation
There are some limitations in this project, which would be potential future research directions:

6.3. Limitation & Recommendation 75

• In terms of data rasterization, although the spatial structure was preserved, the detailed
information like driving direction was not able to be encoded, leading to the failure of
learning congestion propagation for the hybrid CNN-RNN model and LSTM encoder-
decoder. Further research can explore better approaches to encode traffic data and keep
important information.

• The size of initial rasterized images was (50, 50), which were further resized up to (299,
299). A (50, 50) image contains 2500 pixels, and only 181 of them represent the road
network, which is too sparse for DNN to learn. Further studies should fully consider
the network input requirement and data characteristics so that a suitable model can be
chosen for the prediction task.

• The input images are all in one direction, leading to the lack of further testing on CNN’s
ability to learn spatial characteristics. By flipping and rotating the images, another input
dataset can be generated and employed to compare the predictions given by the models,
thus gaining insights into to what extent the models identify spatial patterns.

• As time is limited, only 1 road network is used as a case study. Further works can try to
evaluate the models under different situations to further assess model generalizability and
scalability, e.g. different network scales, and different network resolutions.

• In this project, the author used speed to predict speed. While traffic flow is also an
essential traffic variable, a possible attempt could be to predict traffic speed with both
speed and flow data.

• Due to the equipment limitation, no fine-tuning or grid searching was performed during
the project. And only 1 set of parameters (learning rate, decay rate, training epochs, and
batch size) was used. Hence, the results are less reliable. If allowed, further research can
tune the models and compare them with their best performance.

• There can be more in-depth explorations regarding the effects of different parameter values
and data processing approaches on the model performance. For example, conducting
experiments for 5-step and 1-step sliding windows respectively to check possible influences
can be interesting to include.

• The robustness of the model was not tested. If random simulated incidents are artificially
added to the test data, the potential difference between random incident prediction and
original test prediction can be explored to see whether the model truly learns traffic.

• Grad-CAM is a semi-interpreting approach, which only visualizes the output of convo-
lutional layers but has no explanations for the mechanism. Further studies can try to
analyze and decompose deep neural networks for more theoretical explanations.

References

Abdelraouf, A., Abdel-Aty, M., & Yuan, J. (2022). Utilizing attention-based multi-encoder-
decoder neural networks for freeway traffic speed prediction. IEEE Transactions on
Intelligent Transportation Systems, 23(8), 11960–11969. https://doi.org/10.1109/TITS.
2021.3108939

Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., & Mishalani, R. (2000). Dynamit: A simulation-
based system for traffic prediction.

Caliper. (1996). Transcad transportation planning software 3.0. Retrieved April 1, 2022, from
https://www.caliper.com/tcovu.htm

Castro, J., Mantas, C., & Benitez, J. (2002). Interpretation of artificial neural networks by
means of fuzzy rules. IEEE Transactions on Neural Networks, 13(1), 101–116. https:
//doi.org/10.1109/72.977279

Chai, D., Wang, L., & Yang, Q. (2018). Bike flow prediction with multi-graph convolutional
networks. Proceedings of the 26th ACM SIGSPATIAL international conference on
advances in geographic information systems, 397–400.

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), 839–847. https:
//doi.org/10.1109/WACV.2018.00097

Cheng, X., Zhang, R., Zhou, J., & Xu, W. (2018). Deeptransport: Learning spatial-temporal
dependency for traffic condition forecasting. 2018 International Joint Conference on
Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2018.8489600

Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep bidirectional and unidirectional lstm
recurrent neural network for network-wide traffic speed prediction. arXiv preprint
arXiv:1801.02143.

Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P., Shanmugam, K., & Das, P. (2018).
Explanations based on the missing: Towards contrastive explanations with pertinent
negatives. https://doi.org/10.48550/ARXIV.1802.07623

Domencich, T. A., & McFadden, D. (1975). Urban travel demand-a behavioral analysis (tech.
rep.).

Du, S., Li, T., Gong, X., Yang, Y., & Horng, S. J. (2017). Traffic flow forecasting based on hybrid
deep learning framework. 2017 12th International Conference on Intelligent Systems
and Knowledge Engineering (ISKE), 1–6. https://doi.org/10.1109/ISKE.2017.8258813

Erlander, S., & Stewart, N. F. (1990). The gravity model in transportation analysis: Theory
and extensions (Vol. 3). Vsp.

Fang, M., Yin, J., Zhu, X., & Zhang, C. (2015). Trgraph: Cross-network transfer learning via
common signature subgraphs. IEEE Transactions on Knowledge and Data Engineering,
27(9), 2536–2549. https://doi.org/10.1109/TKDE.2015.2413789

Fouladgar, M., Parchami, M., Elmasri, R., & Ghaderi, A. (2017). Scalable deep traffic flow neural
networks for urban traffic congestion prediction. 2017 International Joint Conference on
Neural Networks (IJCNN), 2251–2258. https://doi.org/10.1109/IJCNN.2017.7966128

Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph
convolutional networks for traffic flow forecasting. Proceedings of the AAAI conference
on artificial intelligence, 33(01), 922–929.

77

https://doi.org/10.1109/TITS.2021.3108939
https://doi.org/10.1109/TITS.2021.3108939
https://www.caliper.com/tcovu.htm
https://doi.org/10.1109/72.977279
https://doi.org/10.1109/72.977279
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/IJCNN.2018.8489600
https://doi.org/10.48550/ARXIV.1802.07623
https://doi.org/10.1109/ISKE.2017.8258813
https://doi.org/10.1109/TKDE.2015.2413789
https://doi.org/10.1109/IJCNN.2017.7966128

References 78

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual
understanding: A review [Recent Developments on Deep Big Vision]. Neurocomputing,
187, 27–48. https://doi.org/https://doi.org/10.1016/j.neucom.2015.09.116

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
https://doi.org/10.48550/ARXIV.1512.03385

Huang, W., Song, G., Hong, H., & Xie, K. (2014). Deep architecture for traffic flow predic-
tion: Deep belief networks with multitask learning. IEEE Transactions on Intelligent
Transportation Systems, 15(5), 2191–2201. https://doi.org/10.1109/TITS.2014.2311123

Jia, Y., Wu, J., & Du, Y. (2016). Traffic speed prediction using deep learning method. 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
1217–1222. https://doi.org/10.1109/ITSC.2016.7795712

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., & Wei, Y. (2021). Layercam: Exploring hier-
archical class activation maps for localization. IEEE Transactions on Image Processing,
30, 5875–5888. https://doi.org/10.1109/TIP.2021.3089943

Jin, X., Zhang, Y., & Yao, D. (2007). Simultaneously prediction of network traffic flow based
on pca-svr. In D. Liu, S. Fei, Z. Hou, H. Zhang, & C. Sun (Eds.), Advances in neural
networks – isnn 2007 (pp. 1022–1031). Springer Berlin Heidelberg.

Karim, M. M., Li, Y., & Qin, R. (2022). Toward explainable artificial intelligence for early
anticipation of traffic accidents. Transportation research record, 2676(6), 743–755.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kitamura, R., Chen, C., Pendyala, R. M., & Narayanan, R. (2000). Micro-simulation of daily
activity-travel patterns for travel demand forecasting. Transportation, 27(1), 25–51.

Krishnakumari, P., Perotti, A., Pinto, V., Cats, O., & van Lint, H. (2018). Understanding
network traffic states using transfer learning. 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 1396–1401.

Kuang, L., Yan, X., Tan, X., Li, S., & Yang, X. (2019). Predicting taxi demand based on 3d
convolutional neural network and multi-task learning. Remote Sensing, 11(11), 1265.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.
1109/5.726791

Li, G., Knoop, V. L., & van Lint, H. (2021). Multistep traffic forecasting by dynamic graph
convolution: Interpretations of real-time spatial correlations. Transportation Research
Part C: Emerging Technologies, 128, 103185. https://doi.org/https://doi.org/10.1016/j.
trc.2021.103185

Liang, Y., Ouyang, K., Jing, L., Ruan, S., Liu, Y., Zhang, J., Rosenblum, D. S., & Zheng, Y.
(2019). Urbanfm: Inferring fine-grained urban flows. Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 3132–3142.
https://doi.org/10.1145/3292500.3330646

Liao, B., Zhang, J., Wu, C., McIlwraith, D., Chen, T., Yang, S., Guo, Y., & Wu, F. (2018).
Deep sequence learning with auxiliary information for traffic prediction. Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 537–546.

Liu, Z., Li, Z., Wu, K., & Li, M. (2018). Urban traffic prediction from mobility data using deep
learning. IEEE Network, 32(4), 40–46. https://doi.org/10.1109/MNET.2018.1700411

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30.

https://doi.org/https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/TITS.2014.2311123
https://doi.org/10.1109/ITSC.2016.7795712
https://doi.org/10.1109/TIP.2021.3089943
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/https://doi.org/10.1016/j.trc.2021.103185
https://doi.org/https://doi.org/10.1016/j.trc.2021.103185
https://doi.org/10.1145/3292500.3330646
https://doi.org/10.1109/MNET.2018.1700411

References 79

Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F.-Y. (2015). Traffic flow prediction with big data:
A deep learning approach. IEEE Transactions on Intelligent Transportation Systems,
16(2), 865–873. https://doi.org/10.1109/TITS.2014.2345663

Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. (2017). Learning traffic as images: A deep
convolutional neural network for large-scale transportation network speed prediction.
Sensors, 17(4). https://doi.org/10.3390/s17040818

Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural
network for traffic speed prediction using remote microwave sensor data. Transportation
Research Part C: Emerging Technologies, 54, 187–197. https://doi.org/https://doi.org/
10.1016/j.trc.2015.03.014

Maree, C., & Omlin, C. W. (2022). Understanding spending behavior: Recurrent neural network
explanation and interpretation. 2022 IEEE Symposium on Computational Intelligence
for Financial Engineering and Economics (CIFEr), 1–7.

Omeiza, D., Speakman, S., Cintas, C., & Weldemariam, K. (2019). Smooth grad-cam++: An
enhanced inference level visualization technique for deep convolutional neural network
models. CoRR, abs/1908.01224.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10), 1345–1359.

Rahmani, M., Jenelius, E., & Koutsopoulos, H. N. (2013). Route travel time estimation using
low-frequency floating car data. 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), 2292–2297. https://doi.org/10.1109/ITSC.2013.
6728569

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ” why should i trust you?” explaining the
predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–1144.

Rosario, G., Sonderman, T., & Zhu, X. (2018). Deep transfer learning for traffic sign recognition.
2018 IEEE International Conference on Information Reuse and Integration (IRI), 178–
185. https://doi.org/10.1109/IRI.2018.00034

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations
by error propagation (tech. rep.). California Univ San Diego La Jolla Inst for Cognitive
Science.

Saadallah, A., Moreira-Matias, L., Sousa, R., Khiari, J., Jenelius, E., & Gama, J. (2020).
Bright—drift-aware demand predictions for taxi networks. IEEE Transactions on Knowl-
edge and Data Engineering, 32(2), 234–245. https://doi.org/10.1109/TKDE.2018.
2883616

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam:
Visual explanations from deep networks via gradient-based localization. Proceedings of
the IEEE international conference on computer vision, 618–626.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: Removing
noise by adding noise. arXiv preprint arXiv:1706.03825.

Sohn, K. (2020). Forecasting road traffic speeds by considering area-wide spatiotemporal
dependencies based on a graph convolutional neural network (gcn). Transportation
Research Part C Emerging Technologies, 114, 189–204. https://doi.org/10.1016/j.trc.
2020.02.013

Sun, S., Chen, J., & Sun, J. (2019). Traffic congestion prediction based on gps trajectory
data. International Journal of Distributed Sensor Networks, 15(5), 1550147719847440.
https://doi.org/10.1177/1550147719847440

https://doi.org/10.1109/TITS.2014.2345663
https://doi.org/10.3390/s17040818
https://doi.org/https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/10.1109/ITSC.2013.6728569
https://doi.org/10.1109/ITSC.2013.6728569
https://doi.org/10.1109/IRI.2018.00034
https://doi.org/10.1109/TKDE.2018.2883616
https://doi.org/10.1109/TKDE.2018.2883616
https://doi.org/10.1016/j.trc.2020.02.013
https://doi.org/10.1016/j.trc.2020.02.013
https://doi.org/10.1177/1550147719847440

References 80

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329. https:
//doi.org/10.1109/JPROC.2017.2761740

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-resnet and the
impact of residual connections on learning. https://doi.org/10.48550/ARXIV.1602.07261

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
& Rabinovich, A. (2014). Going deeper with convolutions. https://doi.org/10.48550/
ARXIV.1409.4842

Tajaddini, A., Rose, G., Kockelman, K. M., & Vu, H. L. (2020). Recent progress in activity-based
travel demand modeling: Rising data and applicability. In S. de Luca, R. D. Pace, &
C. Fiori (Eds.), Models and technologies for smart, sustainable and safe transportation
systems. IntechOpen. https://doi.org/10.5772/intechopen.93827

Tang, J., Chen, X., Hu, Z., Zong, F., Han, C., & Li, L. (2019). Traffic flow prediction based
on combination of support vector machine and data denoising schemes. Physica A:
Statistical Mechanics and its Applications, 534, 120642.

Tang, J., Gao, F., Liu, F., & Chen, X. (2020). A denoising scheme-based traffic flow prediction
model: Combination of ensemble empirical mode decomposition and fuzzy c-means
neural network. IEEE Access, 8, 11546–11559.

Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury, F. M., & Qin, A. K. (2022). A survey
on modern deep neural network for traffic prediction: Trends, methods and challenges.
IEEE Transactions on Knowledge and Data Engineering, 34(4), 1544–1561. https :
//doi.org/10.1109/TKDE.2020.3001195

Tian, C., & Chan, W. K. (2021). Spatial-temporal attention wavenet: A deep learning frame-
work for traffic prediction considering spatial-temporal dependencies. IET Intelligent
Transport Systems, 15(4), 549–561.

Traffic Simulation Software | PTV Vissim | PTV Group. (1992). Ptv vissim. Retrieved April 1,
2022, from https://www.ptvgroup.com/en/solutions/products/ptv-vissim/

Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. (2018). When will you arrive? estimating
travel time based on deep neural networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1).

Wang, H., Li, Z., Kuo, Y., & Kifer, D. (2015). A simple baseline for travel time estimation
using large-scale trip data. CoRR, abs/1512.08580.

Wang, J., Zhang, W., Yang, H., Yeh, C.-C. M., & Wang, L. (2021). Visual analytics for rnn-
based deep reinforcement learning. IEEE Transactions on Visualization and Computer
Graphics.

Wang, T. (2019). Gaining free or low-cost interpretability with interpretable partial substitute.
International Conference on Machine Learning, 6505–6514.

Wang, W., & Li, X. (2018). Travel speed prediction with a hierarchical convolutional neural
network and long short-term memory model framework. CoRR, abs/1809.01887.

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of
Big data, 3(1), 1–40.

Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow as a
seasonal arima process: Theoretical basis and empirical results. Journal of transportation
engineering, 129(6), 664–672.

Wilson, A. (2013). Entropy in urban and regional modelling (routledge revivals). Routledge.
Wu, M., Parbhoo, S., Hughes, M. C., Kindle, R., Celi, L. A., Zazzi, M., Roth, V., & Doshi-Velez,

F. (2019). Regional tree regularization for interpretability in black box models. CoRR,
abs/1908.04494. http://arxiv.org/abs/1908.04494

https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.48550/ARXIV.1602.07261
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.5772/intechopen.93827
https://doi.org/10.1109/TKDE.2020.3001195
https://doi.org/10.1109/TKDE.2020.3001195
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
http://arxiv.org/abs/1908.04494

References 81

Wu, Y., & Tan, H. (2016). Short-term traffic flow forecasting with spatial-temporal correlation
in a hybrid deep learning framework. CoRR, abs/1612.01022. http://arxiv.org/abs/
1612.01022

Yang, B., Guo, C., & Jensen, C. S. (2013). Travel cost inference from sparse, spatio temporally
correlated time series using markov models. Proceedings of the VLDB Endowment, 6(9),
769–780.

Yao, H., Tang, X., Wei, H., Zheng, G., & Li, Z. (2019). Revisiting spatial-temporal similarity:
A deep learning framework for traffic prediction. Proceedings of the AAAI conference
on artificial intelligence, 33(01), 5668–5675.

Yeon, K., Min, K., Shin, J., Sunwoo, M., & Han, M. (2019). Ego-vehicle speed prediction using
a long short-term memory based recurrent neural network. International Journal of
Automotive Technology, 20(4), 713–722.

Yoshida, A., Yatsushiro, Y., Hata, N., Higurashi, T., Tateiwa, N., Wakamatsu, T., Tanaka, A.,
Nagamatsu, K., & Fujisawa, K. (2019). Practical end-to-end repositioning algorithm for
managing bike-sharing system. 2019 IEEE International Conference on Big Data (Big
Data), 1251–1258.

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, 3634–3640. https://doi.org/10.24963/
ijcai.2018/505

Yu, H., Wu, Z., Wang, S., Wang, Y., & Ma, X. (2017). Spatiotemporal recurrent convolutional
networks for traffic prediction in transportation networks. Sensors, 17(7), 1501.

Zhang, H., Wu, H., Sun, W., & Zheng, B. (2018). Deeptravel: A neural network based travel
time estimation model with auxiliary supervision. CoRR, abs/1802.02147.

Zhang, Q., Cao, R., Shi, F., Wu, Y. N., & Zhu, S.-C. (2018). Interpreting cnn knowledge via
an explanatory graph. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1).

Zhang, Q., Wu, Y. N., & Zhu, S.-C. (2018). Interpretable convolutional neural networks.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8827–8836.
https://doi.org/10.1109/CVPR.2018.00920

Zhang, Q., Yang, Y., Wu, Y. N., & Zhu, S. (2018). Interpreting cnns via decision trees. CoRR,
abs/1802.00121. http://arxiv.org/abs/1802.00121

Zheng, J., & Ni, L. M. (2013). Time-dependent trajectory regression on road networks via
multi-task learning. Proceedings of the AAAI Conference on Artificial Intelligence, 27(1),
1048–1055.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features
for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2921–2929. https://doi.org/10.1109/CVPR.2016.319

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2020). A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76.

http://arxiv.org/abs/1612.01022
http://arxiv.org/abs/1612.01022
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1109/CVPR.2018.00920
http://arxiv.org/abs/1802.00121
https://doi.org/10.1109/CVPR.2016.319

A
Appendix A

(a)

(b)

(c)

82

83

(d)

(e)

(f)

(g)

(h)

84

(i)

(j)

(k)

(l)

(m)

85

(n)

(o)

Figure A.1: Aggregated hybrid model prediction error distribution of 15 days

86

(a)

(b)

(c)

(d)

(e)

87

(f)

(g)

(h)

(i)

(j)

88

(k)

(l)

(m)

(n)

(o)

Figure A.2: Aggregated LSTM encoder-decoder prediction error distribution of 15 days

89

(a)

(b)

(c)

(d)

(e)

90

(f)

(g)

(h)

(i)

(j)

91

(k)

(l)

(m)

(n)

(o)

Figure A.3: Aggregated DGCN prediction error distribution of 15 days

92

(a)

(b)

(c)

(d)

(e)

93

(f)

(g)

(h)

(i)

(j)

94

(k)

(l)

(m)

(n)

(o)

Figure A.4: Hybrid model mean speed distribution of 15 days

95

(a)

(b)

(c)

(d)

(e)

96

(f)

(g)

(h)

(i)

(j)

97

(k)

(l)

(m)

(n)

(o)

Figure A.5: LSTM encoder-decoder mean speed distribution of 15 days

98

(a)

(b)

(c)

(d)

(e)

99

(f)

(g)

(h)

(i)

(j)

100

(k)

(l)

(m)

(n)

(o)

Figure A.6: DGCN mean speed distribution of 15 days

	Preface
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	Research Gap
	Research Questions
	Outline

	Literature Overview
	Deep Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Graph Neural Networks

	Traffic Prediction
	Different Types of Data-based Traffic Prediction
	RNN Methods
	CNN Methods
	Other Deep Learning Methods

	Explaining Black Box Methods
	Summary

	Methodology
	Conceptual Framework
	Data Rasterization
	Feature Extraction
	Traffic State Prediction
	Traffic Patterns Identification and Explanation
	Benchmark Models

	Case Study
	Results
	Data Rasterization
	Feature Extraction
	Speed Prediction
	Error Analysis
	Traffic Pattern Identification
	Network Explanation

	Conclusion
	Key Findings
	Contributions
	Limitation & Recommendation

	References
	Appendix A

