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Abstract

Virtual Reality (VR) offers the possibility to explore and interact with complex digital worlds, yet natural
locomotion is constrained by the limits of physical space. Hyperbolic geometry provides a compelling
solution by embedding infinite virtual environments within finite areas, creating novel opportunities for
research and design. This thesis investigates how embodied training and haptic feedback can enhance
navigation and user experience in such non-Euclidean spaces. Twenty-eight participants took part in a
between-subjects user study, using Holonomy VR, a hyperbolic VR application instrumented with the
SenseGlove Nova 1 for force feedback and vibrotactile interaction. Participants were trained with either
a drag-based embodied interface or a conventional button-based control scheme before completing
matched navigation tasks. Performance wasmeasured through speed, path efficiency and sequencing,
while user experience was assessed through established questionnaires and interaction behaviour.
The study finds that embodied training affords a practical advantage in subsequent navigation, and that
perceived engagement with haptic elements is a strong predictor of positive usability, beyond the effects
of task duration alone. Together, these results demonstrate that embodied practice and meaningful
tactile interaction can help users adapt more effectively to non-Euclidean environments, offering both
methodological contributions for VR research and design implications for the creation of more intuitive
and engaging virtual worlds.

A. Achilleos
Delft, September 2025
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1
Introduction

Virtual Reality (VR) has become an increasingly powerful medium, enabling rich and immersive interac-
tions across a variety of fields such as entertainment, education, medical training, architectural visual-
isation, and scientific research. Its appeal lies in the ability to create experiences that closely replicate
real-world interactions or, more intriguingly, allow exploration of entirely novel environments beyond
physical constraints. Among these novel possibilities are environments built upon non-Euclidean ge-
ometries, like hyperbolic spaces, which have fundamentally different properties than the Euclidean
geometry familiar from everyday experience.

Non-Euclidean geometries, particularly hyperbolic geometry, introduce fascinating properties that de-
viate significantly from everyday spatial intuitions, creating opportunities for unique spatial interactions
and visualisations. This makes them particularly valuable for applications aiming to overcome physical
limitations or intuitively visualise complex structures.

A key advantage of such a unique geometry, and why it is relevant in a navigational context for this
thesis, is the inherent capacity to represent an infinite space in a compact form. This becomes es-
pecially useful in VR applications where physical boundaries are often a big restriction, requiring the
use of movement illusions (teleportation, virtual locomotion, etc.) to navigate the virtual space. These
unnatural movement mechanics are the main cause of (visually induced) motion sickness [9] in such
applications due to the mismatch in the sense of motion between the visually induced one (in the VR
application) and the sense of motion the user’s body is experiencing in the real world (often standing
still). This advantage can also be leveraged to visualise complex hierarchical structures more clearly,
particularly in contexts where conventional Euclidean data representations would become overly dense
or cluttered. Educational applications are also compelling, with the ability to offer a more intuitive un-
derstanding and engagement with complex mathematical concepts previously accessible only through
abstract, formal instruction.

However, navigating these immersive virtual environments that defy Euclidean geometry poses a novel
challenge for human spatial cognition. These VR spaces behave in counterintuitive ways that can ob-
struct and distort users’ usual navigation strategies. Holonomy VR, discussed in more detail in Chapter
2, leverages the holonomy property to allow users to navigate an infinite virtual environment by walking,
despite the physical confines. Having to use this property to navigate the hyperbolic scene makes it
difficult for users to build accurate cognitive maps of the scene.

Prior work suggests that, despite these challenges, humans can adapt to and navigate non-Euclidean
spaces with the right support. A recent study by Pisani et al. had participants navigate analogous
tasks in Euclidean vs. hyperbolic VR levels. Interestingly, users did not become highly disoriented
in the hyperbolic condition and even found certain complex structures less confusing to navigate than
in Euclidean space [33]. With minimal training, several users reported they ”had not realised it was
an unusual space” when first experiencing the hyperbolic world. Holonomy VR allows participants to
physically walk within a tracked 3×3m area, using natural locomotion as the input for virtual movement
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2

[44]. Such embodied interaction made movement control intuitive and, notably, aided in preventing mo-
tion sickness. This aligns with broader VR research showing that physical locomotion reduces sensory
conflict and improves user comfort compared to joystick or teleportation locomotion [38] [26]. However,
physical free-walking interfaces are constrained by real-world space andmay not, by themselves, teach
users the underlying spatial relationships of the warped world. There is a need for methods that both
accelerate spatial learning of non-Euclidean layouts and enhance user experience (usability, comfort,
immersion), without requiring large tracking areas or costly hardware setups.

This thesis investigates a dual approach to improving user performance and experience in a hyper-
bolic VR environment (1), an embodied learning intervention to foster spatial understanding, and (2)
the use of haptic feedback hardware to provide amore natural interaction during navigation. The central
idea is that engaging users’ sensorimotor abilities during training/acclimation will help them form better
mental models of the strange geometry properties and feel more ”at home” when navigating. Embod-
ied cognition theory stipulates that cognitive processes (like spatial reasoning) are deeply grounded in
the body’s perceptual and motor experiences [50]. In line with this, physical movement and interaction
are known to be critical for spatial learning [26]. For example, Ruddle et al. [38] found that allowing
participants to physically move (walk or turn) in VR resulted in significantly more efficient navigation
and spatial memory than purely using joystick controls. It is hypothesised that applying these prin-
ciples in a targeted training phase will improve users’ ability to handle hyperbolic navigation. In this
intervention, one group of participants (treatment) will learn the Holonomy movement mechanics via
drag-based embodied controls to grab and move a pawn within a 9-tile grid, while a control group learns
via traditional button-based controls. Both groups make use of haptic feedback hardware. The study
design is detailed further in Chapter 5. This kind of embodied learning approach has shown promise
in other domains; for instance, VR studies in education report that manipulating virtual objects with
natural hand movements can ground understanding of abstract concepts in sensorimotor experience
[8]. This research aims to test whether such benefits carry over to spatial skills in a non-Euclidean VR
context.

The second facet of this thesis addresses the user interface and feedback during the main VR nav-
igation tasks. In standard VR setups, users usually interact by using hand controllers, which only
provide limited vibrotactile feedback and use abstract input (button presses or joystick tilts) to repre-
sent actions like grabbing or moving. Replacing the controllers with haptic gloves introduces a far more
natural mapping between real and virtual actions. The SenseGlove Nova 1 device used in this study
is a wireless force-feedback glove that tracks the user’s finger movements and provides kinaesthetic
and tactile feedback for virtual interactions [41]. With the SenseGlove, a user can literally grasp at vir-
tual objects or surfaces and feel resistance to simulate touch and weight. More information about the
SenseGlove follows in Section 2.3. Such rich feedback and one-to-one hand mapping are expected to
heighten immersion and presence. Indeed, recent research comparing such gloves to standard con-
trollers found that gloves yielded a significantly greater sense of spatial presence and embodiment, as
users felt their natural hand movements were directly reflected in VR. [31]. Participants using gloves
describe the interaction as ”highly natural”, leading to deeper cognitive absorption in the virtual task.
In a dense and potentially disorienting environment like Holonomy VR, it is anticipated that the gloves
will improve usability (by means of more intuitive interactions and reduced mental effort) and comfort
(by mitigating the disconnect between action and virtual feedback). It is important to note that these
assumptions need to be empirically verified. Some studies have noted that adding haptic feedback
does not improve objective task performance or spatial learning, potentially due to increased cognitive
load or device encumbrance [40].

In summary, this research tackles a fundamental question: Can we leverage embodied learning tech-
niques and haptic technology to improve how people navigate and experience non-Euclidean virtual
worlds?. To this end, an experiment is conducted in the Holonomy hyperbolic VR environment with
a controlled intervention in the training stage (embodied vs. conventional learning). The experiment
is built to exaggerate the use of haptic feedback hardware and its impact on user experience. The
study is designed to shed light on both performance outcomes (e.g., navigation efficiency, error rates,
spatial learning transfer) and user experience outcomes (e.g., usability ratings, (dis)comfort, sense of
presence).



2
Background

This chapter provides foundational knowledge required to understand the concepts and techniques ex-
plored in this thesis. Hyperbolic geometry and its differences from Euclidean geometry are introduced,
followed by the Holonomy VR environment that this research builds upon. Lastly, an overview of haptic
technology, particularly gloves, is given, alongside its role for interactions in VR spaces.

2.1. Hyperbolic Geometry
Euclidean geometry, formalised by the ancient mathematician Euclid, is founded on five key postulates.
The fifth postulate states that if a line segment intersects two straight lines, which form two interior
angles on the same side that are less than 90∘, then if the lines are extended indefinitely, they will
intersect. This can be visualised better in Figure 2.3. Non-Euclidean geometries challenge the fifth
postulate, commonly known as the parallel postulate, and propose alternative axioms. Two prominent
types of non-Euclidean geometries stem from this: elliptic and hyperbolic; this thesis focuses on the
latter, the same geometry also being used in Holonomy VR. However, elliptic geometry provides a
noteworthy example to understand the parallel transport effect. Their main differences can be seen in
Figure 2.1 below, where the same triangle and circles are plotted on the surface of each geometry.

Figure 2.1: A right-angle triangle drawn with each geometry and their main differences illustrated.

Consider the elliptic geometry that examines principles on the surface of a sphere. Parallel transport
involves moving a vector along such a curved path while maintaining its orientation relative to the
surface’s curvature. Parallel transport in such a (curved) geometry can alter the vector’s orientation,
an effect not observed in flat, Euclidean spaces. Figure 2.2 shows an illustration of this in elliptic
geometry, and an intuitive real-world example of parallel transport could be given as follows: An arrow-
shaped cart is placed on the North Pole (A), pointing east, and its starting orientation is marked on the
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ground. The cart is never rotated and is dragged sideways from the North Pole to the equator (B). From
there, it follows the equator line being pushed forward until a quarter of the equator’s length is covered
(C). From that point, the cart is then dragged sideways back to the North Pole (A). The cart will now be
rotated 90∘ relative to its original marked orientation. This direction change is precisely what holonomy
is, and is a result of parallel transport along a curved surface such as the Earth. Holonomy VR makes
use of this effect, hence the name of the project, since it also exists in hyperbolic geometry.

Figure 2.2: Parallel transport following A→B→C→A. The
vector is rotated 90∘ counter-clockwise at the starting position.

Figure 2.3: Euclid’s fifth postulate visualised. With
𝛼,𝛽 < 90∘, the line segments will intersect if extended. [16]

Hyperbolic geometry replaces this fifth postulate with a rule stating that through any given point not
on a given line, infinitely many parallel lines can be drawn, none of which intersect with the original
line or each other [43]. This deviation creates fascinating properties such as the angles in triangles
summing to less than 180∘, parallel lines diverging from one another, and most notably, the space ex-
pands exponentially as one moves away from any given point. This expansion and the holonomy effect
are the enabling properties for Holonomy VR to represent compactly and allow for exploration of an in-
finite area even in a constrained physical space. This is explained in more detail in the following section.

Navigating virtual environments constructed on hyperbolic geometry introduces unique cognitive chal-
lenges. The unfamiliar curvature and holonomy effects disrupt traditional spatial strategies, making it
difficult for users to form reliable mental maps or predict how their movement will affect their orienta-
tion. In Holonomy VR, users often experience disorientation when first encountering these conditions,
especially when the environment appears to shift unexpectedly during looped movements. This thesis
directly addresses these challenges by investigating whether haptic feedback through wearable glove-
based hardware can support users in adapting to the hyperbolic space and improving their experience.
This is discussed in more detail in Section 4.2.

2.2. Holonomy: A Virtual Reality Environment in Hyperbolic Space
Holonomy VR is a ”non-Euclidean labyrinth” game set on a model of a hyperbolic world [46] designed in
Unity to facilitate exploration of hyperbolic geometry. It currently supports three game modes: finding
a flag, finding keys to open a chest, and finding landmarks. For the purpose of this thesis, this will be
expanded upon to facilitate haptic feedback interaction. Holonomy VR provides users with an infinitely
large, explorable hyperbolic world through natural locomotion, allowing them to physically walk within
a confined real-world space (typically around a 3×3 meter area), eliminating the need for artificial VR
movement methods such as teleportation or joystick movements [44]. This intuitive approach signifi-
cantly enhances immersion, reduces VR-induced motion sickness, and closely aligns virtual navigation
with physical motion.
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2.2. Holonomy: A Virtual Reality Environment in Hyperbolic Space 5

The application leverages a hyperbolic square tiling system where five squares meet at each vertex,
creating the smallest feasible hyperbolic configuration that still exhibits essential hyperbolic properties,
notably the phenomenon of holonomy itself. The environment is constructed from square tiles arranged
in a 3×3 grid, bounded by a hedge to prevent movement and viewing tiles beyond this area. This setup
creates the illusion of a confined play space, where users are seemingly limited to 2 steps in any direc-
tion. Yet, because of the hyperbolic structure, the environment can incorporate more than the visible 9
tiles. Unlike Euclidean space, where at most 4 squares meet at a single vertex, the order-5 square tiling,
see Figure 2.4, constructs a hyperbolic plane with more tiles existing in the 9-tile grid. In VR, these tiles
are hidden unless a user stands and orients themselves in a position where a fifth tile is shown around
a particular point, see Figure 2.5 for an example. This tiling structure enables spatial compression but
causes a misalignment between physical and virtual coordinates, making it difficult for users to navi-
gate in the space. Users see, move, and exist in a seemingly Euclidean play area, but that is merely
a ”truncated” projection of a larger hyperbolic world centred on their current location. To shift this grid
forward, for example, users have to use the holonomy property to reveal new tiles by completing a loop.

One of the ways to model a hyperbolic plane is the Poincaré Disk Model, which in Holonomy VR is
used as the minimap, see Figure 2.6, and is a core component of the navigation system. The hyper-
bolic plane is mapped inside a unit circle, and its circumference border is set at infinity, with distances
growing exponentially as previously mentioned. It makes up a compact and visually comprehensible
depiction of hyperbolic geometry in two dimensions. The minimap aids navigation by offering visual
cues about the user’s position and the surrounding environment, although interpreting these cues ef-
fectively can still be challenging due to the non-intuitive geometric relationships of the hyperbolic space
and the real Euclidean world users themselves exist in.

Figure 2.4: Order 5 hyperbolic tiling
with 5 squares highlighted around a

single vertex. [6]

Figure 2.5: The confined top-down view
of the play area with the tile grid

overlaid. Tiles 1 and 2 are both visible
from the indicated location.

Figure 2.6: The minimap corresponding
to the top down view in Figure 2.5. Tiles

1 and 2 are noted as seen on the
minimap, modelling the hyperbolic

environment.

Users frequently report initial confusion and disorientation as they attempt to make sense of the unfa-
miliar spatial dynamics. The environment’s compactness and shifting geometry often elicit sensations
of claustrophobia or spatial discomfort during early interactions. Forming accurate cognitive maps is
particularly difficult, as users must reconcile global inconsistencies with their intuitive Euclidean expec-
tations. Consequently, successful navigation demands significant acclimation and the development of
new spatial cognition strategies tailored to the non-Euclidean context. Holonomy’s unique implemen-
tation of hyperbolic geometry and embodied locomotion thus provides a compelling platform to explore
whether enhanced sensory feedback, specifically haptics as explained in the next section, can help
mitigate these challenges.
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2.3. Haptics
Haptic technology refers to the systems that simulate the sense of touch by applying forces, vibrations,
or motions to the user, enhancing interaction by engaging the tactile modality. In the context of virtual
reality, haptics serve as a critical complement to visual and auditory feedback, enabling more immer-
sive, intuitive, and embodied experiences. By incorporating the sense of touch, haptics reduce the
abstraction inherent in traditional VR control schemes, such as handheld controllers, and allow users
to interact with virtual environments using familiar motor patterns.

Among the various types of haptic interfaces, glove-based systems have gained attention for their abil-
ity to replicate the fine motor control of human hands. Unlike standard VR controllers, which offer
limited vibrotactile feedback through a few contact points, haptic gloves afford more granular, spatially
distributed feedback across the hand and fingers. This natural mapping of interaction, where users
can touch, grasp, and manipulate virtual objects with gestures that mirror real-world behaviour, can
significantly enhance presence and reduce cognitive load.

In this thesis, the SenseGlove Nova 1 is employed as the haptic interface of choice [41]. The Nova 1 is
a lightweight, wireless, exoskeleton-style glove designed specifically for VR and AR applications. Two
primary forms of feedback are offered:

• Force-feedback: Achieved through mechanically actuated tendons that restrict finger motion to
simulate resistance or object solidity during grasping, with up to 20 N of force.

• Vibrotactile-feedback: Delivered through actuators placed on the thumb, index, and palm. En-
ables users to feel impacts, contact events, or any type of notification conveyed through vibration.

This combination allows users to experience the sensation of physically interacting with the virtual
world. For instance, when a user’s hand collides with a virtual object in Holonomy VR, the glove can
simultaneously stop finger movement to simulate resistance and emit a vibration to represent the mo-
ment of contact. Such feedback can deepen immersion, improve spatial awareness, and reinforce the
link between motor actions and virtual consequences.

The integration of the SenseGlove into Holonomy VR is particularly relevant given the spatial disorien-
tation and perceptual challenges introduced by the non-Euclidean environment. Tactile feedback may
help reduce feelings of detachment or confusion by anchoring the user’s experience through physical
sensation. Research shows that the combination of vision and proprioception significantly improves
spatial orientation and memory for self-motion in immersive VR [4], underscoring the potential of haptic
gloves to provide the stabilising sensorimotor cues needed in such disorienting contexts. It also of-
fers an opportunity to investigate how enhanced embodiment, via hands-on interaction with the virtual
world, can improve users’ ability to understand and navigate hyperbolic spaces.

In this thesis, the SenseGlove Nova 1 serves both as a tool for embodied training in the intervention
phase and as an input device in the main Holonomy task. Its role is not only functional but investi-
gational: to determine whether haptic-enhanced interaction leads to better navigation outcomes and
higher overall user experience in non-Euclidean virtual environments.



3
Related Work

This chapter reviews relevant literature on embodied learning in virtual reality, haptic feedback tech-
nologies, and spatial navigation in non-Euclidean VR environments. Firstly, the theoretical foundations
of embodied interaction and embodied learning in VR are discussed, drawing on recent frameworks that
explain how physical action and context can ground abstract understanding in immersive settings. Prior
work is then examined, related to spatial orientation and navigation in virtual environments, with a fo-
cus on the unique challenges posed by non-Euclidean geometries such as hyperbolic or curved virtual
spaces. Finally, research on haptic feedback in VR is reviewed, particularly the use of glove-based
interfaces, and how tactile cues can enhance user interaction, presence, and learning. Highlighted
throughout this chapter is the rationale for combining an embodied training approach with a haptic in-
terface (the SenseGlove Nova 1) to improve users’ spatial learning and experience in the Holonomy
hyperbolic VR application.

3.1. Embodied Interaction and Learning in VR
Virtual reality offers the opportunity for embodied learning, where learners actively use their bodies
to interact with digital content, potentially leading to deeper understanding. The notion of embodied
cognition posits that cognitive processes are fundamentally grounded in the body’s sensorimotor expe-
riences [50]. In other words, how we think and learn is tightly coupled with how we move and perceive
through our bodies. This contrasts with traditional ”disembodied” views that treat the body as just an
output device for the brain’s commands.

3.1.1. Embodied Learning in Educational Contexts
Alibali et al. identify three ways in which gestures can be used in teaching and learning, and argue that
mathematical cognition is embodied in both perception and action [3]. Hostetter and Alibali propose
that gestures stem frommental simulations and serve to facilitate the retrieval of imagery and embodied
representations of language and knowledge [18]. This embodied perspective has influenced research
in Virtual Reality (VR) and Mixed Reality (MR). For instance, Lindgren and Johnson-Glenberg base
their view of embodied learning on the premise that bodily actions can enhance cognitive processes,
such as language and memory retrieval. This way, increasing an individual’s range of meaningful
physical experiences may lay the groundwork for new conceptual structures [28]. Supporting this,
Johnson-Glenberg et al. found that students who learned STEM concepts in immersive, body-engaging
MR environments demonstrated significantly greater understanding than those receiving traditional
instruction [24], suggesting that linking ideas to sensorimotor activity can enhance conceptual learning.
Similar implications emerged in a study by Prakash and Rajendran [35], who implemented interaction
behavioural data logging in a VR learning environment. Their analysis of learners’ embodied actions
revealed patterns linked to deeper engagement and suggested the potential for improved learning
outcomes through embodied interaction.

7
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3.1.2. Frameworks for Embodied Interaction Design
Embodied interaction is a key component of this approach, referring to the design of interactive sys-
tems that involve bodily actions to manipulate virtual objects or environments. Chatain et al. describe
a theoretical framework for embodied learning in VR in which both the physical and social context in-
fluence the learner’s bodily interactions [8]. According to this framework, meaningful learning emerges
from goal-directed physical actions that are situated within a context, for instance, manipulating virtual
objects with one’s hand in a way that aligns with real-world experiences, ideally in a social or envi-
ronmental setting that supports the learning goals. In their aforementioned framework, the authors
highlight three perspectives for embodied learning in VR as can be seen in Figure 3.1 below:

• Embodied cognition: The idea that thinking is grounded in bodily experiences, physical actions
can support conceptual understanding and memory formation.

• Embodied interaction: Emphasises the goal-directed engagement with virtual objects and en-
vironments, shaped by the physical and social context of the user.

• Avatar embodiment: Captures the extent to which users identify with their virtual body, and how
bodily ownership and agency contribute to learning and engagement.

Figure 3.1: Representation of the three perspectives proposed by Chatain et al. in their work. Ellipses represent actors, and
rectangles represent processes. The relation A → B means that A informs B, while C ⇒ D means that C induces D. All arrows

are conditional, e.g., a certain process may happen but does not necessarily. [8]

A well-designed VR learning activity ideally harmonises these aspects. Figure 3.2 illustrates the pro-
posed framework by Chatain et al., and how these perspectives interrelate. Bodily actions informed by a
learner’s context and mediated through an avatar can lead to meaning-making and learning outcomes.
Important to note, these perspectives do not automatically coincide; the authors formulate conditional
relationships, but they are not guaranteed without support from a congruent design. For example, high
embodied interaction does not warrant embodied cognition benefits unless the interactions are thought-
fully aligned with the learning objectives. Similarly, a realistic avatar embodiment can sometimes be
broken in favour of learning; Chatain et al. found that even non-intuitive avatar designs can support
meaning-making if they direct the user’s focus to key concepts. These insights underscore the need
for intentional design strategies that align bodily activity with learning objectives.

In practical terms, this framework justifies the use of physical interaction to support abstract concept
acquisition. Prior work confirms that such a design can improve learning outcomes: when learners can
grab, gesture, or move as part of the lesson, they develop sensorimotor links to the content, making it
more memorable and intuitive [24]. In this research, this model provides the foundation for introducing
an embodied training phase, where users explore the logic of hyperbolic movement through haptic-
supported interaction, before entering the full Holonomy VR environment. The goal is to design the
intervention to activate all three layers of embodiment, a deeper and more intuitive understanding of
the spatial structure and its navigation in a non-Euclidean world.
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Figure 3.2: The framework proposed by Chatain et al. in their work combines all three perspectives for embodied learning.
Ellipses represent actors, and rectangles represent processes. The relation A → B means that A informs B, while C ⇒ D means

that C induces D. All arrows are conditional, e.g., a certain process may happen but does not necessarily. [8]

3.2. Spatial Navigation in Virtual Environments
Navigating virtual environments (VEs) directly impacts spatial learning, cognitive engagement, and user
comfort. Over the years, various locomotion techniques have been explored, each with distinct bene-
fits and drawbacks regarding user immersion, spatial cognition, cognitive load, and motion sickness.
This section reviews key findings on how different navigation methods influence spatial cognition and
performance, contrasting embodied (physical) approaches and abstract (controller-based) approaches
across both non-Euclidean and Euclidean virtual spaces.

3.2.1. Natural Locomotion and Embodied Navigation
Embodied interaction through natural locomotion, specifically physical walking and turning, has been
shown to significantly improve navigational search performance in virtual environments. Ruddle and
Lessels [38] demonstrated that participants who physically walked and turned in an immersive VR
setting completed a spatial search task with far greater efficiency than those limited to visual input or
rotational movement alone. Their results highlight the critical role of the ability to move one’s body nat-
urally (even within a limited tracking area) provides cues that complement visual information, leading
to better formation of cognitive maps of the virtual space

Early evidence also came from Pausch et al. [32], who quantified the effects of immersive VR on visual
search tasks. While immersive VR did not significantly improve users’ ability to find targets in camou-
flaged scenes, it enabled users to more efficiently determine when no target was present, likely due
to a better internal model of the space. Notably, training in VR transferred positively to desktop use,
while the reverse led to performance degradation. A landmark study by Usoh et al. [45] compared
three locomotion modes: actual walking, walking-in-place, and virtual flying. They reported a clear
hierarchy of presence and spatial engagement: ”Walking > walking in-place > flying”, and found that
presence was strongly correlated with users’ sense of embodiment in their avatars. This finding was
further supported by Ruddle et al. [39], who demonstrated that translational body-based cues, specifi-
cally walking, are critical for building accurate cognitive maps in virtual environments, especially when
these environments are both large in scale and extent.

Aligning with current evidence, Waller and Hodgson [47] highlight that full-body translational movement
provides body-based sensory inputs that support spatial tasks like orientation and path integration. In
contrast, stationary navigation using a controller deprives users of these cues, often creating sensory
conflicts when vision indicates movement but the body senses none. Nguyen-Vo et al. [30] in their
‘NaviBoard’ and ‘NaviChair’ experiments demonstrated that full physical rotation paired with limited
translational cues through leaning or stepping significantly improves virtual locomotion performance
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and user experience. These interfaces nearly matched physical walking and outperformed joystick-
based navigation by a wide margin. Similarly, Reuterswärd [37] found that combining vertical loco-
motion with embodied interaction in ‘impossible spaces’ significantly enhanced user immersion across
spatial, emotional, cognitive, and tactical dimensions.

The gathered evidence and support from literature bode well for the setup in Holonomy VR, where
natural locomotion is the method of traversing the VR space. It must be noted, as previously mentioned,
that embodied interfaces do not universally guarantee better learning; their advantage can depend
on task complexity and user strategy. While embodied interaction often provides qualitative benefits
(greater presence, engagement, attention allocation), its impact on measurable learning outcomes
may vary with context. Researchers advocate examining how learners’ bodies are engaged during VR
training and aligning design with learning objectives.

3.2.2. Abstract and Artificial Locomotion Techniques
While natural locomotion provides significant cognitive and experiential advantages, practical con-
straints often warrant alternative locomotion methods such as the aforementioned joystick controls,
teleportation, or even thought-based navigation. These abstract locomotion methods differ significantly
in their cognitive and experiential impacts.

Teleportation, though effective in reducing cybersickness compared to smooth locomotion methods,
may compromise users’ spatial learning and spatial updating. Cherep et al. [10] demonstrated that
teleportation disrupts continuous spatial awareness due to the fragmented view of the environment,
leading to greater disorientation and navigation errors. Similarly, Christou and Aristidou [11] found that
although teleportation yielded the lowest levels of cybersickness among tested locomotion methods,
it often resulted in users overlooking spatial details and collecting fewer environmental cues, indicat-
ing diminished spatial engagement. Langbehn et al. [27] reinforced these concerns by showing that
teleportation led to significantly poorer spatial orientation performance and increased angular errors
compared to real walking and redirected walking. In contrast, thought-based navigation, as explored
by Friedman et al. [13], introduces a novel interaction paradigm via motor imagery and brain-computer
interfaces (BCIs), offering hands-free control in immersive environments. However, their study high-
lighted that while immersive displays enhanced presence and BCI accuracy, users encountered sub-
stantial cognitive and usability challenges due to the indirect and abstract mappings between mental
commands and virtual movement.

Kimura et al. [25] found that while participants were able to navigate and reorient in both real-world
and immersive virtual environments, their reliance on spatial cues differed. In particular, geometric cues
were encoded less accurately in VR, leading participants to rely more on encoded feature information
compared to those in real-world conditions. This hints towards the fact that spatial cue use in VR may
not fully replicate real-world navigation behaviour, even in highly immersive setups.

3.2.3. Spatial Navigation in Non-Euclidean Virtual Environments
Navigating non-Euclidean spaces such as hyperbolic or curved environments poses unique cognitive
challenges, mainly because human spatial cognition appears strongly biased toward Euclidean as-
sumptions. Studies by Widdowson and Wang [48][49] demonstrate that participants persistently relied
on Euclidean mental models even in environments with clear, visually curved, non-Euclidean geometry.
Their findings indicate that people systematically default to Euclidean spatial updating and representa-
tions, regardless of perceptual evidence to the contrary. This urges the need for targeted interventions
to facilitate adaptation to non-Euclidean environments and steer away from these deeply ingrained in-
tuitions.

However, humans are not all helpless in non-Euclidean spaces; Pisani et al. [33] found that users were
able to adapt well to navigation in hyperbolic VR spaces, indicating that non-Euclidean geometries are
not inherently disorienting in immersive environments. In fact, users sometimes reported that navigat-
ing branching structures like trees felt more intuitive in hyperbolic space. Similarly, Jaksties et al. [23],
in their study of orientation within Magical Tower VR, observed that players successfully navigated a
non-Euclidean level structure and responded positively to the experience, suggesting that with appro-
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priate design elements, such as landmarks and spatial consistency, effective navigation is achievable
in non-Euclidean VR worlds.

An additional practical example of navigating hyperbolic environments is seen in the VR game Hy-
perbolica[20]. In this first-person adventure, players find themselves in a “reality-warping” hyperbolic
world, where straight lines diverge, space grows exponentially, and the horizon is curved. Although
its geometry can be initially disorienting, both developers and players report that users quickly built an
intuitive sense of navigation through exposure to non-Euclidean mechanics and use of familiar land-
marks. Another notable example is HyperRogue [21], a rogue-like game set on the hyperbolic plane
that offers a non-VR but conceptually related experience. In gameplay, tiles shrink toward the edges
due to hyperbolic mapping; fog-of-war ensures the world feels vast and inexhaustible. Players not only
adapt to but also exploit the geometry to their advantage. Together, these two examples demonstrate
how a well-designed experience in hyperbolic spaces allows humans to adapt meaningfully to spatial
distortions, supporting the argument that non-Euclidean VR navigation is both feasible and engaging.

3.2.4. Enhancing Spatial Understanding Through Embodied Pre-Training
Given the inherent complexity of non-Euclidean navigation, preliminary embodied training may signif-
icantly benefit users by establishing initial sensorimotor familiarity before exposure to a complicated
virtual environment. Abrahamson and Sánchez-García [1] articulate how physical interaction and em-
bodied cognition theories support the idea that embodied experiences facilitate comprehension of math-
ematical concepts. The authors argue that learning mathematics is not just cognitive or symbolic, but
deeply sensorimotor. They found that learners first executed random hand movements and, over time,
began to coordinate their motions. Eventually, the learners discovered the mathematical ratio as an
emergent property of their sensorimotor coordination.

Alibali and Nathan [3], as previously stated, provide empirical evidence that embodied interactions
such as gestures significantly enhance abstract reasoning and convey structure, order, and relation-
ships between concepts. The aforementioned embodied interaction framework proposed by Chatain
et al. further supports structured, preliminary embodied training as crucial for aligning sensorimotor
experiences with subsequent cognitive tasks.

In the context of this Holonomy VR study, the embodied pre-training approach (explained in more detail
in Subsection 5.4.1) leverages these insights. By using drag-based controls to physically manipulate a
simplified representation, participants activate cognitive and sensorimotor systems relevant to hyper-
bolic navigation, potentially facilitating improved learning outcomeswithin the complex VR environment.

3.2.5. Comparing Navigation Interfaces: Drag-based vs. Button-based Controls
A critical component of this research is the comparative evaluation of embodied drag-based controls
versus abstract button-based navigation methods. Recent studies have explicitly compared these in-
terface types, highlighting nuanced differences in user experience and performance.

Huang et al. [19] examined different levels of embodied interaction in a study involving navigation
and analysis of network visualisations across four interfaces: standard 2D visualisation with mouse
input, 3D visualisation with mouse, 3D visualisation with physical trackball, and immersive VR with
handheld controllers. Their findings indicated that while the 3D immersive VR interface significantly
enhanced accuracy and reduced perceived workload in tasks involving spatial exploration (counting
triangles within a network), it performed poorly in tasks requiring precise comparative analysis due to
perspective distortions and increased cognitive load. Thus, embodied VR interactions demonstrated
task-dependent benefits, suggesting that highly embodied interfaces are most effective for exploratory
tasks requiring spatial understanding, while simpler interfaces remain advantageous for tasks requiring
quick comparative judgments or precision.

Similarly, Bektaş et al. [5] developed and evaluated the Limbic Chair, an embodied control interface that
uses leg-based movements to control avatar locomotion in VR, comparing it to traditional gamepad-
based controls across city navigation and flight simulation tasks. While gamepad controls led to faster
task completion and were rated higher in usability, likely due to user familiarity, the Limbic Chair offered
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reduced simulator sickness and was described as more immersive and natural by some participants.
The study concluded that embodied interfaces like the Limbic Chair can enhance user experience in
certain VR contexts, despite trade-offs in workload and performance efficiency.”

These findings underline the importance of considering both the nature of the task and user familiarity
when designing VR navigation interfaces. However, the extent to which these embodied interaction
advantages extend robustly into non-Euclidean contexts remains under-investigated. This research
aims to further investigate these findings by comparing drag-based and button-based navigation con-
trols within the context of complex spatial tasks in virtual reality. By employing both control interfaces
utilising the SenseGlove to maintain hardware consistency, it can be shown how different interaction
mappings influence cognitive load, spatial understanding, and user experience. This comparative ap-
proach directly addresses critical gaps identified in current literature and aims to inform best practices
for interface design in complex spatial navigation contexts.

3.3. Haptic Feedback and Natural Interaction in VR
Haptic feedback technologies are a key enabler of embodied interaction in VR, allowing users to phys-
ically feel and manipulate virtual objects through tactile and force-based stimuli. This section synthe-
sises current knowledge on haptic modalities, their applications in education and spatial learning, and
the implications for user experience and interface design.

3.3.1. Overview of Haptic Interfaces and Capabilities
Haptic feedback in VR is typically categorised into three modalities:

• Tactile: Surface-level vibration or pressure

• Kinaesthetic: Force-feedback that resists motion

• Proprioceptive: Body positioning or balance-related

The SenseGlove Nova 1 used in this research utilises all three modalities, as explained in Section
2.3, with the third being achieved by taking advantage of the VR controllers mounted on the gloves
and used in conjunction with an HMD. Shi and Shen [42] provide a comprehensive taxonomy of these
techniques, emphasising their relevance to immersive environments. Their review categorises tactile
sensing by mechanism and haptic feedback by actuator type. These modalities enable a broad range
of applications, from gesture recognition and virtual object manipulation to medical rehabilitation and
remote robotic control. However, the authors warn that more realistic feedback often requires bulky
hardware, with latency and energy efficiency being crucially important. High-fidelity haptics are still
expensive and not easily mass-produced, and the next generation of haptic VR systems calls for inter-
disciplinary collaboration between engineering, biomechanics, and material science fields.

Smart gloves have emerged as one of the most promising tools for integrating haptic feedback into VR.
According to Caeiro-Rodríguez et al. [7], commercial gloves, such as the SenseGlove Nova 1 used
in this research, offer multiple degrees of freedom and force feedback, enabling realistic hand-object
interactions. In their review of 24 commercially available gloves, the authors found that most gloves
focused on tracking, with far fewer providing haptic feedback. Integration of such devices in any sys-
tem is often complicated, with limited products offering standardisation and interoperability. Similar
limitations are identified here; gloves are often developed for niche or specialised cases, with comfort,
ergonomics, and battery life being major design trade-offs.

Irigoyen et al. [22] highlight the broad utility of haptic technologies, not limited to glove-type devices, in
educational, rehabilitation, and training settings. They emphasise these systems’ capacity to enhance
user engagement and support skill acquisition, particularly in medical education and specialised learn-
ing contexts, through real-time feedback. Their review suggests that combining visual and haptic cues
can improve immersion and task comprehension, although with similar technical and adoption barriers
as previously mentioned.
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In a study by Afzaal and Alim [2], a haptic-enabled stylus was compared with traditional VR handheld
controllers and found that interaction performance varied by task. The stylus enabled faster and some-
times more accurate point localisation, especially when users physically contacted the surface, while
handheld controllers allowed faster curve brushing. Nonetheless, they concluded there is no univer-
sally superior device, interaction effectiveness is task-specific, and system designers should consider
task requirements and user ergonomics when choosing input modalities for VR environments.

Palombo et al. [31] qualitatively investigated how VR gloves compare to handheld controllers in influ-
encing spatial presence, embodiment, and cognitive absorption. In a crane assembly task involving 20
participants, the VR glove was consistently rated as more natural and immersive than the HTC Vive and
Valve Index controllers. Participants reported deeper engagement and a stronger sense of ownership
over the virtual hand. While no performance metrics were collected, the study highlights how naturally
mapped input devices can enhance subjective VR experiences, suggesting experiential benefits even
in the absence of haptic feedback.

Earlier work by Poorten et al. and van der Meijden and Schijven [34][29] offers a nuanced view of haptic
feedback in surgical training. Poorten et al. reviewed the literature and found mixed evidence for the
value of haptic feedback, especially noting concerns over the quality and appropriateness of haptic
implementation in VR simulators. Van der Meijden and Schijven similarly concluded that while haptic
feedback shows promise, particularly in robot-assisted and complex surgical tasks, empirical support
remains inconsistent and context-dependent

3.3.2. Haptic Feedback for Learning and Spatial Cognition
Several studies have examined how haptic interaction influences cognitive performance in spatial tasks.
Ruthenbeck et al. [40] investigated whether visuo-haptic interaction in a VR nasendoscopy simulation
would enhance spatial learning compared to visual-only exploration. Contrary to intuitive expectations,
their study found no significant improvement in recall accuracy or response times for the haptic group.
The authors suggest that the added cognitive load of manipulating an unfamiliar haptic device may
have interfered with spatial encoding, particularly for novice users. This implies that, unlike in motor-
intensive tasks, haptic feedback may not offer a learning advantage for spatial cognition, especially
when the interface itself demands considerable mental effort.

Similarly, Forgiarini et al. [12] compared force-feedback gloves with standard handheld controllers in a
VR object-location memory task. Despite users reporting a higher sense of presence with the gloves,
the study found no significant differences in memory accuracy between the two groups. In fact, partici-
pants using the gloves completed tasks more slowly and reported greater physical fatigue, particularly
in the fingers and wrists. The authors suggest that the added physical demands of force-feedback
gloves may limit their effectiveness for spatial memory training in this context. As with Ruthenbeck et
al.’s results, the study suggests that haptic feedback, while engaging, may not enhance spatial memory
and should be deployed sensibly in cognitive training contexts.

The previously mentioned study by Palombo et al. [31] found that VR gloves, due to their realistic
natural mapping, led to higher levels of cognitive absorption and embodiment. Complementing these
findings, Gibbs et al. [15] demonstrated that the integration of haptic and visual feedback in VR envi-
ronments significantly enhanced users’ sense of presence. In their experiment, participants interacted
with a virtual stick as a ball bounced across it under varying feedback conditions. Presence scores
were consistently highest when both modalities were combined. These results underscore the impor-
tance of multimodal sensorimotor sensations in creating convincing and immersive virtual experiences.
Tactile feedback plays a critical role in how users engage with and make sense of virtual environments.

Gao et al. [14] investigated the use of bi-manual haptic feedback, delivered through standard VR con-
trollers, for supporting spatial search tasks in virtual reality. They found this approach significantly
improved the users’ ability to recognise spatial directions with high accuracy and reduced head move-
ment compared to uni-manual haptic and no-feedback conditions. In complex spatial search tasks,
bi-manual haptics achieved performance on par with visual arrow cues while offering advantages in
guiding users toward targets located behind them. Although participants reported slightly higher mental
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effort than with visual guidance, many indicated that the technique became more efficient with practice.

3.3.3. User Experience and Design Implications
The evaluation of alternative VR input methods, like haptic styluses, gloves, and embodied interfaces,
reveals that user experience is shaped by the interplay of realism, control intuitiveness, and task con-
text. Each study reviewed here contributes distinct insights into how interaction design can support or
hinder immersion and usability in VR environments.

Bektaş et al. [5] demonstrated that embodied interfaces like the Limbic Chair offer benefits in reduc-
ing simulator sickness during flight simulation, but traditional gamepad controls still outperformed it
in terms of usability, workload, and presence in city navigation tasks. This highlights a key trade-off:
while embodied systems may enhance physical engagement or realism in some scenarios, they can
introduce learning curves or performance penalties in others.

Palombo et al. [31] found that devices with high degrees of natural mapping, such as VR gloves, signif-
icantly increased users’ sense of embodiment and cognitive absorption. Participants reported stronger
spatial presence and more intuitive interaction with VR gloves than with standard controllers, urging
that alignment of control inputs with natural motor expectations can deepen immersion.

Afzaal and Alim’s [2] comparative study underlined how force-based haptics can improve precision and
tactile perception in surface-based tasks, especially under occlusion. While handheld controllers al-
lowed faster interaction in some tasks, the haptic stylus enabled smoother and more deliberate input,
indicating a potential design strategy for balancing speed and accuracy depending on task demands.

Gibbs et al. [15] showed that the presence of haptic feedback, especially when combined with visual
cues, enhanced users’ spatial presence and perceptual awareness. Notably, haptic-only conditions
sometimes outperformed visual-only ones in terms of user perception, further backing up the impor-
tance of multisensory integration in VR.

Taken together, these findings suggest that user experience in VR is not governed solely by realism or
technological novelty but by the alignment of input modalities with the cognitive and perceptual models
users bring to the environment. Designers should consider how natural mapping, feedback modal-
ity, and task complexity influence both performance and subjective experience. Embodied or haptic
interfaces should be introduced with attention to learning curves and physical comfort to avoid com-
promising usability in pursuit of immersion.

In summary, haptic feedback offers powerful affordances for spatial learning, task engagement, and
user immersion in VR. While more embodied interaction generally yields cognitive and experiential
benefits, its effectiveness depends on careful integration with task demands, user familiarity, and er-
gonomic constraints. In the context of this research, SenseGlove-based interaction supports both pre-
training and in-game engagement, aligning well with current best practices in embodied VR system
design, albeit caution is warranted to ensure a smooth user experience.



4
Contributions

This chapter explicitly outlines the key contributions of this thesis, addressing notable gaps identified
in existing literature regarding embodied interaction, spatial navigation, and haptic feedback within
non-Euclidean virtual environments. This discussion begins with a comprehensive summary of these
literature gaps, clearly motivating the research, and explicitly stating refined research questions and
hypotheses. It concludes with an in-depth discussion of technical contributions involving the devel-
opment and integration of innovative embodied and haptic interaction methods into the Holonomy VR
environment.

4.1. Literature Gaps and Motivation
Despite significant research progress in VR-based spatial cognition, embodied learning, and haptic
feedback technologies, notable gaps persist, particularly in the context of non-Euclidean (hyperbolic)
VEs:

• Limited Research on Embodied Pre-training in Non-Euclidean VR
Current literature extensively covers embodied interactions for enhancing spatial cognition within
traditional, Euclidean VR contexts. However, minimal empirical evidence exists exploring struc-
tured pre-training interventions that leverage elements of embodiment explicitly tailored to spatial
understanding and navigation efficiency within non-Euclidean, hyperbolic VR environments. It
remains unclear how preliminary embodied interactions can facilitate the cognitive adaptation
necessary to navigate non-intuitive, hyperbolic spaces effectively.

• Comparative Evaluations of Embodied vs. Abstract Interfaces
Much of the existing literature comparing VR navigation interfaces has predominantly focused on
fully embodied physical locomotion (e.g., walking) against simplified abstract interfaces (e.g., joy-
stick or teleportation). Few studies examine nuanced variations within embodied control methods
themselves, such as comparing drag-based embodied controls against abstract button-based in-
teractions, particularly within challenging geometric scenarios such as hyperbolic environments.

• Relationship Between Haptic Feedback, User Experience, and Spatial Learning
While prior studies separately address user experience, behavioural interactions, or objective
spatial performance within VR, few explicitly correlate these data streams. The relationship be-
tween subjective user experience metrics (such as UEQ ratings), objective navigation perfor-
mance (e.g., task completion times and accuracy), and behavioural data (interaction frequencies
and durations) remains insufficiently explored, much less in contexts employing advanced haptic
technologies.

4.2. Main Contributions
Building on the gaps identified above, this work aims to explore how embodied pre-training interven-
tions and haptic feedback affect spatial understanding and usability in non-Euclidean virtual reality (VR).

15
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While previous studies demonstrate that users can adapt to navigating hyperbolic spaces through ex-
ploration or repetition, it remains unclear how embodied interaction strategies and haptic affordances
shape this adaptation process, particularly when users must perform in constrained, immersive, and
counterintuitive virtual environments like Holonomy VR. This thesis makes two principal research con-
tributions:

1. Empirical Evaluation of Embodied Interaction in Pre-Training
This work introduces and evaluates a novel pre-training method using drag-based manipulation
of a pawn in a grid-based minimap, leveraging embodied interaction through haptic gloves. The
effectiveness of this intervention is compared to a more abstract button-based interaction. The
goal is to examine whether embodied interaction facilitates better spatial cognition and adaptation
to the non-intuitive nature of hyperbolic navigation.

2. Assessment of Haptic Feedback in Spatial Navigation Tasks
By integrating the SenseGlove Nova 1, providing tactile and force feedback, into the navigation
tasks in Holonomy VR, this thesis examines the extent to which haptic feedback influences user
performance, cognitive map formation, and subjective experience in hyperbolic environments.
This is measured through a combination of objective task metrics and the User Experience Ques-
tionnaire (UEQ).

4.2.1. Research Objective
The central objective of this thesis is to investigate how pre-navigation interaction methods and hap-
tic feedback devices affect spatial learning and user experience in a non-Euclidean VR environment.
Specifically, here, the haptic feedback device is leveraged to ground this interaction in embodied cogni-
tion. In particular, it seeks to assess whether embodied manipulation and tactile interaction can invoke
familiar instincts while learning to facilitate the comprehension of such a complicated topic. By ex-
tension, it will be evaluated to what degree: the properties of hyperbolic geometry are understood,
disorientation is mitigated, and cognitive mapping is improved.

For this investigation, participants engage in a structured training task followed by targeted navigation
tasks within Holonomy VR that are built to utilise haptic feedback hardware. The training intervention is
built to mimic the navigation task participants will be faced with in Holonomy VR, albeit in a low-fidelity,
simplified environment focusing on the minimap and the navigation controls as seen in Figures 4.1 and
4.2. The reason for that is to isolate the navigation mechanics of Holonomy, to allow for familiarisation
with the environment and the particularities of moving around in a hyperbolic world, with the ultimate
goal of learning.

Figure 4.1: The training intervention environment using
button-based controls [Control group].

Figure 4.2: The training intervention environment using
drag-based controls. [Treatment group]
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The main takeaway for participants should be the method to reveal new tiles so that they can navigate
to the switches both in the intervention and in the subsequent Holonomy VR tasks. Figure 4.3 shows
how moving in a closed loop reveals new tiles on the minimap and rotates the world as a consequence
of the holonomy property. Their performance will be measured on the basis of completion times and
efficiency of navigation, which is defined as the least amount of deviation from the optimal path to each
of the switches to be collected. The performance scoring is explained in a lot more detail in Section 6.2.
Exposing participants to the properties of the world in this manner would allow them to carry over this
gathered knowledge to the actual hyperbolic environment, and a discrepancy in performance between
the two training groups (buttons and dragging) would be observed, should the embodied approach
have any effect on the training.

(a) Origin (b) Moving Up ↑ (c) Moving Right → (d) Moving Down ↓ (e) Moving Left ←

Figure 4.3: Moving in a closed loop (↑, →, ↓, ←) starting at the origin to reveal new tiles. The world is also rotated 90∘ and the
user does not arrive back at the origin.

4.2.2. Research Questions
The thesis is guided by the following research questions, each designed to address a specific dimen-
sion of the navigation problem in hyperbolic VR:

RQ1: How does embodied learning (drag-based interaction with haptic gloves) affect spatial under-
standing and navigation performance in hyperbolic VR compared to abstract button-based interaction?
This question is motivated by the strong evidence that active, body-involving exploration enhances
spatial cognition [26][38], and addresses the cognitive and behavioural impact of embodied learning
principles in this context.

RQ2: Howdoes variation in user-driven interaction intensity with environmental elements in a haptically-
enabled, non-Euclidean VR environment relate to user experience, engagement, and usability percep-
tions?
This question builds upon interface research demonstrating that active, multimodal interaction, partic-
ularly through tactile feedback, is associated with enhanced user satisfaction and presence [31][15].
While this study does not experimentally manipulate the presence or absence of haptic feedback itself,
it explores how naturally arising variations in participant-driven interaction intensity, enabled by the
availability of tactile feedback, relate to experiential outcomes such as immersion, engagement, and
perceived usability. Such an approach acknowledges individual differences in exploratory behaviour,
providing insights into whether more active physical exploration, through increased tactile interactions
with reactive environmental elements, correlates positively with subjective user experience and poten-
tially mitigates spatial discomfort in non-Euclidean virtual environments.

4.2.3. Hypotheses
To address these research questions, the following hypotheses are proposed:

Hypothesis 1 (H1):
Embodied-trained participants will exhibit superior navigation performance, e.g., faster completion times,
and more optimal path choices, compared to non-embodied trained participants using button-based in-
teractions.

This hypothesis is grounded in the theory of embodied cognition, which emphasises that learning and
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memory are enhanced through sensorimotor engagement with a task environment [50][26]. Prior stud-
ies show that embodied navigation (e.g., full-body motion, gesture-based input) improves spatial mem-
ory and pathfinding skills in VR settings [38][8]. While such evidence exists for Euclidean contexts, the
application to hyperbolic space is novel. This thesis bridges this gap by testing whether similar benefits
arise in non-Euclidean spaces where spatial logic is unfamiliar and cognitive maps are harder to build
[48].

It is expected, then, that embodied-trained participants will require fewer moves to reach targets, make
fewer navigation errors, and report a more intuitive understanding of movement mechanics and hyper-
bolic properties. The feedback of each participant will be quantified through the UEQ responses [17],
and scored questions about their takeaways regarding the hyperbolic world.

Hypothesis 2 (H2):
Participants who voluntarily spend more time interacting with reactive environmental elements (e.g.,
touching trees and bushes) are expected to report higher levels of perceived engagement, immersion,
and overall positive user experience compared to participants who engage minimally or not at all. Ad-
ditionally, perceived interaction intensity is hypothesised to correlate positively (though possibly mod-
estly) with actual measured interaction time and will also be associated with higher User Experience
Questionnaire (UEQ) scores, particularly on scales such as efficiency, perspicuity, and stimulation.

While all participants used identical haptic glove hardware, this study specifically explores how naturally
arising variation in user-driven interaction intensity may inform our understanding of active sensorimo-
tor engagement’s role in shaping subjective experiences in non-Euclidean virtual reality. Drawing on
embodied learning theory, it is theorised that participants’ physical exploration and tactile interaction
with reactive elements could foster stronger sensorimotor coupling and enhanced affordance percep-
tion [1][8]. This notion aligns closely with the concept of ”learning by doing” or ”enactive exploration,”
which posits that sensorimotor activity is not merely functional but fundamentally instrumental to cog-
nition and affective experiences [50].

Prior research further supports this hypothesis by indicating that tactile feedback from non-essential
virtual objects can positively influence users’ sense of engagement and environmental richness, even
when such interactions are not strictly required for task completion [40]. This study investigates these
ideas through two primary data streams:

• Objective interaction time with reactive objects (bushes, trees).

• Self-reported perception of interaction intensity and environmental richness.

By correlating these measures with responses from the UEQ (particularly efficiency, perspicuity, and
stimulation scales) and additional custom items addressing memorability and presence, this study aims
to provide nuanced insights into how voluntary physical exploration, beyond navigational necessity, may
meaningfully shape user experience in non-Euclidean VR.

4.3. Technical Contributions
In preparation for answering the aforementioned research questions, the Holonomy VR project requires
some modifications and updates. Primarily to support and facilitate the use of the SenseGlove and
enable haptic-focused interactions with the environment.

4.3.1. Minimap Augmentation
The minimap in Holonomy VR is the main tool for navigating the hyperbolic space; it gives information
as to where the landmarks are, and it updates as the player moves along. To fit in with the theme of
the intervention and to make it more visually appealing, the minimap was updated to support the use
of 3D models for landmarks.

The now updated minimap uses the Poincaré tile centres, and the Möbius transformation to the centre
of the minimap to map 3D models representing the switches, and shift them accordingly as the player
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moves. The achieved effect is this 2.5D version of the otherwise flat minimap, as it is illustrated in Fig-
ure 4.4. To improve performance, only landmarks in the immediately visible tiles within the boundaries
appear as three-dimensional.

The indicators of the landmarks now support colour-coding to make it easier to follow their movements
when they are beyond the boundaries of the 9-tile grid. Previously, all landmarks appeared as red bea-
cons, which have now been updated to support any colour for any landmark. The user interface is also
simplified, stating only the remaining landmarks to be collected, and displays them in their respective
colours that match their beacons. This creates a much less confusing setup for the player, and it is
illustrated in Figure 4.5.

Figure 4.4: The 3D models of the switches plotted
on the minimap to achieve a 2.5D effect.

Figure 4.5: The colour-coded beacons of the
switches outside the bounds. The remaining

objectives text also matches the switch-specific
colours.

4.3.2. Tutorial
Tomake the provision of instructions to participants consistent across trials, an automated tutorial scene
was created. Participants are placed in a scene in front of a whiteboard, where they receive instructions
regarding the intervention phase and its goal, what they are expected to do, and how they navigate
depending on the group they were assigned to.

A sequence of instructions was choreographed and animated; first, the goal of the intervention is ex-
plained, and the participants are introduced to the switches that act as their objectives. They are then
shown what they look like on the minimap (see Figure 4.6), followed by looping animations of the two
different control schemes (see Figure 4.7). The tutorial then urges them to ask any remaining questions
before prompting them to press a button to finish this segment and move to the next phase. The entire
sequence is narrated to make it easier for the participants to follow along.

Figure 4.6: Tutorial segment with animated minimap
annotations explaining what the switches look like.

Figure 4.7: Tutorial segment with looping animations
explaining the control schemes for the intervention phase.
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4.3.3. Intervention
The intervention phase of the study is a completely new addition to the project, made for the purpose
of this study. It utilises core components of Holonomy VR, such as the minimap, while adding new
functionality aimed at facilitating learning about moving in the hyperbolic environment.

Surrounding environment
The intervention scene was custom modelled to represent a scene from an office, as shown in Figure
4.8. This was made in an attempt to make the surroundings more welcoming. The participants interact
with an arcade machine that is placed in the middle of everything, with the minimap acting as a screen,
and the controls right below it.

Figure 4.8: The modelled environment of the intervention scene.

Button-based navigation
One of the control methods for the participants in the training intervention is pushing buttons using their
virtual hands, utilising the haptic functionalities of the SenseGlove. The buttons were created from
scratch and were made to mimic the behaviour of a spring-loaded button as closely as possible (see
Figure 4.9). The buttons, when activated, emit a small vibration to the hand that initiated the activation
through the motors that the SenseGlove is equipped with. They are also fully force-feedback enabled,
meaning that the hand feels resistance when pushing against them.

Four of these buttons, arranged in a cross pattern, make up the controls for one of the intervention
groups (see Figure 4.10). A button exists for each of the four cardinal directions: up, down, left, and
right, and pushing each respective one moves the player one tile in that direction.

Figure 4.9: Button that is used for controlling the player
in the intervention phase.

Figure 4.10: Setup of the button-based control group
during the intervention phase. The minimap is located at

the top, with the 4 buttons right below it.
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Drag-based navigation
The second control method for the participants during the intervention phase is picking up a pawn piece
and dragging it across a 9-tile grid board using their virtual hands. This method is rooted in embodied
learning, and the movements their hands and arms execute are meant to make understanding the hy-
perbolic environment navigation easier and more memorable.

The board and pawn, as seen in Figure 4.11, were made to utilise the SenseGlove features fully.
The 9-tile grid corresponds exactly to the tiles the players will be placed on in the main game of Holon-
omy VR. The red rectangle around the board is created using a custom shader to simulate a hologram
barrier; it is hidden during runtime and only appears when the pawn is taken out of bounds. When the
pawn is out of bounds, it is dropped by the hand currently grabbing it, and it is snapped to the centre
of the closest tile. This is to prevent illegal moves while the pawn is off the board.

The pawn offers full force-feedback support, and the hand that grabs it snaps to pre-defined points
around it to give a natural impression of picking up a board game pawn. The participants move around
the hyperbolic environment by dragging the pawn around; moving the pawn across tiles moves and
updates the minimap. On every tile cross, there is a very small vibration emitted through the fingertips
of the glove grabbing the pawn.

Figure 4.11: Board and pawn used for controlling the
player in the intervention phase. The holographic barrier

here is enabled.

Figure 4.12: Setup of the drag-based control group
during the intervention phase. The minimap is located at

the top, and the board with the pawn right below it.

4.3.4. Haptic Switches
Pivotal additions to the Holonomy VR project are the haptic switches that were created to replace the
landmarks that previously acted as objectives. The goal was to create objectives for the main game
that forced some form of interaction with the SenseGlove. Hence, the following switches were created:

• Lever switch: Pull laterally until the switch reaches the activation point.

• Rotary switch: Twist clockwise or counter-clockwise until the switch reaches the activation point.

• Tube switch: Pull vertically until the switch reaches the activation point.

Each of the switches, as can be seen in Figures 4.13, 4.14, and 4.15, has a red handle where the
SenseGlove can grab on to initiate the activation movement. All switches are force-feedback enabled;
reaching the activation point for any of them will lock the switch in place and will, in turn, send a vibration
through the hand that was grabbing the switch. If any of the switches are released before reaching
their activation point, they will spring back to their initial position. Each of the switches was placed on a
pedestal to make it easier to interact with while in the Holonomy VR environment, since this positions
them around waist-height.
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Figure 4.13: Lever switch tile. Figure 4.14: Rotary switch tile. Figure 4.15: Tube switch tile.

4.3.5. Haptic-enabled Environment
To make the environment in Holonomy VR feel more alive, the trees and the surrounding hedge in the
playable grid area offer vibrotactile feedback. The tree trunks give off a small impact vibration when
they are touched or grabbed, as well as full force-feedback resistance. Similarly, the surrounding hedge
causes the hand that collides with its bounding box (see Figure 4.16) to vibrate while the two colliders
overlap. The vibration scales in intensity depending on the depth that the hand penetrates the bounding
box and is calculated with 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐴 (see Equation 4.1):

𝐹̃ = 𝐹front − 𝑠 Δ𝑑, (4.1a)
𝑟 = 𝑠 (𝑥 − 𝐹̃), (4.1b)

𝑑 =max(0,min( 𝑟𝑡 , 1)), (4.1c)

𝐴 = 𝑘 𝑑, (4.1d)

where
𝐹front ∶ frontFace, Δ𝑑 ∶ depthOffset, 𝑠 ∈ {+1,−1} ∶ dirSign,

𝑥 ∶ axisValue, 𝑡 ∶ thickness, 𝑘 = 0.65 vibrationGain.
These interactions are not mandatory to complete the levels in Holonomy VR but serve a secondary
role in enriching the experience for the player. The environment being reactive to the player’s presence
can help with feelings of claustrophobia and can increase engagement with the activity at hand.

Figure 4.16: The bounding boxes on the surrounding hedge and trees in the
Holonomy VR environment.
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4.3.6. Environment Interaction Tracking
To answer the second research question, it is necessary to collect data regarding the players’ inter-
action with the environment. To that extent, another system was created that produces another data
stream with interaction data of the player with the trees and hedges. For each level in the study, a
log is maintained that tracks the total interaction time of the player with each of the two haptic-enabled
elements of the environment (excluding the switches). Interaction here is defined as any of the colliders
on the hands intersecting with any of the colliders of the trees or hedges. The total interaction time for
the trees and hedges is stored separately and is updated every frame, providing millisecond (1 ms)
accuracy.

4.3.7. Experiment Manager
For administrative purposes, and to connect all the different scenes of the experiment together, an
experiment manager was developed that takes care of data logging and transitioning between scenes.
Data is logged automatically depending on which phase of the study is completed. The data includes
a participant ID, the phase they completed, time taken, the complete path taken, steps away from the
hyperbolic origin, interaction time with the environment, objectives and the order they were collected
in, and a timestamp. The data is stored in an Excel file for further analysis. Through the experiment
manager, the training group can be selected, which automatically changes all the necessary settings
in every scene to accommodate it. A participant ID can also be entered before the experiment com-
mences, which should match the participant ID entered in Qualtrics, where the survey takes place.

The experiment manager starts the experience in the tutorial scene and then awaits the prompt from
the participant to move on to the next phase. It then moves to the first part of the intervention phase.
Once complete, it presents the participant with an end screen and a prompt to call the researcher to
move on to the next step of the intervention. Once the intervention is complete, another screen is
shown so that the participant can remove the hardware and complete the first UEQ. After equipping
the hardware again, the participant goes on to complete 2 levels in the Holonomy VR environment,
which, with the completion of the final survey, marks the end of the study. More information regarding
the exact experiment procedure is outlined in the next Chapter 5.



5
Methodology

This chapter explains how the study was designed and executed. The between-subjects experiment
is outlined, which compares Buttons (conventional) vs Drag (embodied) training with random assign-
ment in a hyperbolic VR setting. This is then followed by a matched Main evaluation in Holonomy
VR. The participants and demographics are then described, along with the materials, apparatus, and
telemetry captured. The procedure is detailed across phases: pre-Intervention, Intervention, and Main.
The chapter concludes with a brief mention of the pilot and logistics setup to ensure consistency and
reproducibility.

5.1. Experimental Design
This study employs a between-subjects experimental design with a single independent variable at two
levels: the training method (Embodied vs. Conventional). Participants are randomly assigned to one
of two intervention conditions to evaluate the impact of embodied interaction on spatial navigation
performance and user experience in a hyperbolic VR environment. The details of this intervention, as
well as subsequent main tasks in the Holonomy environment, are thoroughly described in the following
sections.

5.2. Participants
Participants are recruited from a university setting, primarily targeting students with diverse back-
grounds in education, experience with VR and video games, and varying familiarity with hyperbolic ge-
ometry. Demographic information such as age, gender, educational background, field of study (based
on ISCED-F1), and prior experiences are collected via a survey to ensure balanced distribution be-
tween experimental conditions. This information is necessary to form relations between participant
performance and their distinct characteristics that could be affecting it. For example, someone very
experienced with VR or video games exhibits a significant advantage over other participants simply
because they don’t need that much acclimation time.

5.3. Materials and Apparatus
The experiment utilises the Meta Quest 2 VR headset paired with SenseGlove Nova 1 haptic gloves.
All participants use the gloves throughout the entire experiment. The experimental software consists
of a custom-designed intervention using a simulated arcade machine interface for the learning phase
and the Holonomy VR environment for the main navigational tasks. Since Holonomy VR was a project
made with Unity, all additions were created in the same environment using Unity version 2022.3.27f1.
The majority of the 3D assets were custom-made using Blender v4.3; assets for the intervention envi-
ronment were adapted from an office pack in the Unity AssetStore2, as well as some additional low-poly
1https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_Standard_Classification_of_Education_(ISCED)
2https://assetstore.unity.com/packages/3d/characters/low-poly-office-pack-characters-props-119386?aid=1100liZev
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assets adapted from Poly Pizza3. Both systems log detailed data about user interactions, task perfor-
mance, paths taken, and times spent interacting with various environmental elements.

5.4. Procedure
The experimental procedure consists of three distinct phases: pre-intervention, intervention, and post-
intervention, as seen in Figure 5.1 below.

Figure 5.1: The procedure followed for the experiment. Ellipses represent actions by the participants involving the use
of the VR headset and haptic hardware. Rectangles represent forms and surveys filled in by the participants. The

rhombus represents the group assignment point, where participants are divided into groups.

5.4.1. Pre-Intervention Phase
Upon arrival, participants provide informed consent via a form. The form outlines the procedure for the
experiment and briefs participants about the collected data, participation risks, and voluntary participa-
tion rights, followed by a chance to ask any questions that may arise. The full informed consent form
can be found in Appendix C. Afterwards, they complete an initial survey gathering demographic data,
prior VR and gaming experience, familiarity with hyperbolic geometry, and self-reported claustrophobic
predispositions. This part of the survey can be found in Appendix B.1.

5.4.2. Intervention Phase
Participants are then randomly assigned to either:

• Conventional (Control) group: Participants interact using abstract button presses correspond-
ing to cardinal movements of the player in the hyperbolic world.

• Embodied (Treatment) group: Participants interact by physically dragging a virtual pawn across
a 3×3 grid that corresponds to the grid in the main Holonomy VR game.

During the intervention phase, participants observe the hyperbolic environment’s reactions via a min-
imap, relating their movement actions to changes within the non-Euclidean space. The tasks for both
groups are identical; they have to reach 3 objectives across 2 levels of increasing difficulty. Difficulty
here is defined as the furthest from the hyperbolic origin that an objective exists in the level. For the
first level in the intervention, the objectives lie at most 3 tiles away from the hyperbolic origin. In the
second level, that limit is increased to 5 tiles from the hyperbolic origin. This is to allow for gradual
familiarisation with both the control mechanisms of the system and with the hardware itself. Since
completion times may vary across participants, a cut-off point has been set at 15 minutes for each level
of the intervention phase to prevent the session from running over the estimated duration of 60 to 70
minutes. These data entries will be classified as partial or invalid, but could still hold some value in
giving insight regarding the second research question about user experience.
3https://poly.pizza/

https://poly.pizza/
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Following the completion of the two levels in the intervention, participants are asked to fill in the first part
of the survey, as seen in Appendix B.2. This consists of 26 questions that make up the user experience
questionnaire (UEQ) [17], which is a widely used tool for measuring user experience with interactive
products. It assesses user perceptions across six key dimensions: Attractiveness, Efficiency, Perspicu-
ity, Dependability, Stimulation, and Novelty. This is a concise and efficient way to gather quantitative
data regarding the users’ experience and will be used twice in this study. The participants are asked
to fill in only this part of the UEQ according to the experience they’ve just had during the intervention
phase, in isolation, with no other considerations about the study. The survey at this point also serves
as a nice break for the participants to keep them from exhausting themselves due to the lengthy nature
of the study and the extra weight of the hardware.

5.4.3. Post-Intervention Phase (Holonomy VR)
The next step after the intervention is the post-intervention phase, where participants engage in two
navigational tasks within Holonomy VR. Once again, the participants are required to complete two
levels of increasing difficulty, both of which have 3 objectives/switches to be found. Difficulty here is
defined in the same manner as the intervention phase, namely, how far from the hyperbolic origin the
switches exist. For the post-intervention (Main) levels, these limits were set to 4 tiles away from the
hyperbolic origin for level 1, and to 6 tiles away for level 2. These limits were chosen as a step-up
from the intervention phase since the participants are expected to carry over their gathered knowledge
and experience. A cut-off point was also chosen for this part of the study to keep participants from
exceeding the estimated total duration. This is set at 15 minutes for each of the levels, similar to the
intervention phase.

All participants continue using the SenseGlove Nova 1 as they have been for the entirety of this study.
The environment in Holonomy VR is haptic-enabled, as explained in Subsection 4.3.5, meaning that
it reacts to the participants’ presence. The trees and bushes on all levels react to the player’s touch,
providing a more engaging and memorable experience. This functionality will be disclosed to all par-
ticipants to make them aware it exists, since the second research question requires data about their
interaction with these elements of the environment. That behaviour is not forced, though, and all partic-
ipants will be left to their own devices to act as naturally and as instinctively as possible when tackling
the navigation tasks of this segment. This interaction is, in addition, not mandatory to complete any of
the levels; the only haptic interaction required is with the switches that are encountered throughout the
levels. Participants need to seek the switches located around the hyperbolic world, and once found,
they are required to activate them (in the ways described in Subsection 4.3.3) to collect them and move
on to the next objective.

When the two levels in Holonomy VR are completed (or the cut-off is reached), participants are again
required to fill in the second part of the survey. This is 26 additional questions comprising a second
UEQ, whereas this time it is targeted at the post-intervention only. Participants are asked to focus
solely on the Holonomy VR experience and answer according to that, without regarding any previous
parts of their session, so that the Holonomy VR part of the study can be analysed in isolation.

The final part of the experiment is the remaining questions in the survey, which are designed to assess
different areas of the participants’ understanding regarding the hyperbolic world and its properties. The
questions, as listed in the survey, can be found in Appendix B.3. The full version of the survey can be
found in the Appendix B. Specifically, the last part of the survey is structured as follows:

• Hyperbolic World Understanding (4 pts)
(4) Multiple-choice questions targeted to assess the participants’ understanding of the hyperbolic
world and its properties.

• Self-reported Environment Interaction (5-point scale)
(2) Questions made for the participants to report how they perceived their interaction in the Holon-
omy VR environment.
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• Self-reported Feelings of Claustrophobia (5-point scale) (5) Questions adapted from the
claustrophobia questionnaire (CLQ) [36] (available online4), aimed at assessing any feelings of
claustrophobia that participants may have experienced during the study

This brings up the total to 11 questions to round off the last part of the session. With this, the data
collection is complete and the session is concluded.

5.5. Pilot User Study
To verify the feasibility of the study and to test the robustness of the system, a very small pilot study with
4 participants was conducted. The duration of the session was left open-ended to gauge an estimate of
the total duration of the final form of the study, but would not exceed 90 minutes. The participants were
students and professionals, aged between 24 and 26 years old, 2 males and 2 females. The study was
conducted on private premises, with the system and hardware that were used to develop the entire
system, to minimise any possibilities of unintended behaviour being introduced due to changes in the
equipment. The participants were split into groups of two, with group one training using the button-
based controls and group two training using the drag-based controls. The pilot study served as a limit
test to determine the difficulty of the levels for both the intervention and post-intervention phases, as
well as hone in on a suitable cut-off time for any prolonged attempts, which 15 minutes was found to
be sufficient.

A lot of feedback from the participants in terms of usability and interface design was incorporated to
accommodate some poorly designed features. For example, the timings in the tutorial segment were
found to be too short to follow for someone experiencing it for the first time. Additionally, the placement
of the minimap in the Holonomy VR segment was adjusted to make viewing the environment slightly
easier, since the minimap follows head movements and is constantly in view. The pawn in the drag-
based controls was found to be too difficult and unnatural to grab, so its snap points were adjusted.
Furthermore, a lot of unintended game-breaking behaviour was discovered and resolved. A participant
managed to activate a switch while not being in its tile; after crossing between tile boundaries and while
still holding on to the switch, the participant’s hand got unparented from the XR Rig, causing it to float
infinitely in the level. This was due to the Holonomy implementation deleting and re-spawning tiles
while the player is crossing tile boundaries, and since the hand was parented to one of the tiles, it got
removed with it. A solution for this issue was found by temporarily disabling the grabbing function for
any hands currently holding on to a switch when the player is crossing tiles. The data logging was also
faulty when participants did not manage to find all objectives on time; thus, some fail-safes were set in
place that can restore the session data through some researcher-controlled shortcuts.

All participants were able to complete all levels in under 13 minutes, albeit with some variations in
level difficulty, but this serves as a good indicator that the cut-off point is well picked. The survey
questions were also answered in a reasonable amount of time by everyone, meaning that the overall
session time shouldn’t exceed 70 minutes. The different strategies of each participant proved to be a
good exercise for determining when a hint should be given that they are heading too far away from their
objective. Since no precise tile distances are shown, it is not possible to determine an exact moment to
give a hint for a change in course, but a visual indication when the switch appears to be moving much
further was found to be a good moment for it.

5.6. User Study
The user study was conducted at TU Delft facilities. Some of the sessions took place at the XR zone
within the TU Delft library, while most sessions took place at the Insyght lab within the EEMCS faculty.
The setup at both locations was identical: a 3×3 meter area with the centre of it marked to accurately
place participants across phases. A monitor was also made available for the responsible researcher to
see a live feed of the participants’ point of view, in order to answer any questions or provide additional
guidance.

4https://psytests.org/diag/clqen.html
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Consistency across sessions was ensured through the scripted tutorial phase in Unity, as mentioned
in Subsection 4.3.2. Only one responsible researcher conducted all the sessions, so no coordination
was required. Besides the tutorial phase, the same information was given to all participants. The
manoeuvre of performing a loop around a vertex to ”unlock more tiles” was given as an initial hint to
everyone. All sessions followed the same structure as outlined before in 5.4, and the data from all
participants are presented in the next chapter.



6
Results

This chapter reports empirical findings in the order needed to support the two research questions. It
begins with sample characteristics and balance checks for demographic confounds. The performance
scoring framework is then defined with three robust within-level pillars that are used to obtain a compos-
ite metric. Next, performance is compared across groups and phases using distributional graphics and
pillar profiles to pinpoint where differences arise. The focus then narrows to the Main phase, where
groups are on equal footing. Parametric and rank tests, a mixed-effects model, and two sensitivity
analyses are presented. This is then followed by exploratory checks to contextualise robustness and
investigate parallel avenues. Finally, for the second research question, the interaction intensity and
user experience in the Main phase are examined. A validity link between logs and self-reports is then
established. To track perceived engagement, the UEQ scales and item-level regressions are tested.
Throughout, estimates are shown with uncertainty, and multiplicity is controlled where families of tests
are run.

6.1. Demographics
A total of 28 participants took part in the user study. Participants were divided evenly across the two
groups; 14 were assigned to the drag controls group, and 14 were assigned to the buttons control
group. Each group had 11 male participants and 3 female participants. Demographic balance was
checked descriptively and with a non-parametric Mann-Whitney U test per variable. A smaller 𝑈 value
indicates a greater difference between distributions, with the associated 𝑝-values indicating statistical
significance. No large imbalances were observed that would warrant covariate adjustment specific
to demographics, since no 𝑝-value falls under the significance level 𝑎 = 0.05. Table 6.1 shows all
the checks, with just the Age and Hyperbolic geometry experience variables being close to statistical
significance. The distributions for the ”Field of study” and ”Educational attainment” can be seen in
Figures 6.1 and 6.2, respectively. The Education distributions were almost identical, and the field of
study distributions are also comparable. Important to note is that no participant exceeded the 15-minute
cut-off limit, as mentioned in Section 5.4. This means that the full range of obtained data is used for
the following analysis.

Demographic info 𝑈 statistic 𝑝-value
Age 65.000 0.125
Gender 98.000 1.000
Field of study 115.000 0.430
Educational attainment 104.000 0.783
Video game experience 96.000 0.943
VR experience 88.500 0.652
Hyperbolic geometry experience 120.500 0.286
Claustrophobia predisposition 105.000 0.724

Table 6.1: Mann–Whitney U test for demographic balance checks across groups.
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Figure 6.1: Distribution of educational attainment across the
two groups.

Figure 6.2: Distribution of field of study across the two
groups.

6.2. Performance Scoring
A robust metric was required to measure participant performance. A composite metric was developed
that combined three pillars of scoring, each targeting a different facet of a participant’s run through a
level.

• Speed: How fast a participant completed a level

• Efficiency: How long (in tile counts) was a participant’s path compared to an optimal path*

• Sequence: How did a participant’s path sequence of tiles compare to an optimal path*

*The notion of the ”optimal path” is explained in the next subsection

6.2.1. Optimal paths
To obtain an optimal path to compare the participant’s paths to, an A* algorithm was used to obtain
approximations of the optimal path from point to point. There are 3 objectives in every level, in every
phase, and all levels start from the hyperbolic origin of the world. This means there are 6 permutations
of the objective order collection for every level (e.g O → A → B → C, O → B → C → A, ...).

A caveat with this approach is the environment that A* considered within Holonomy VR. The path
approximations were obtained from an unrestricted version of the tile-based world of Holonomy VR;
that is, the shortest path from point to point without accounting for tile revealing or rotations to unlock
more tiles, as a participant would have to do. This outputs a theoretical approximation of the shortest
paths to collect all objectives, which is not necessarily reproducible in live Holonomy conditions.

To circumvent this shortcoming, when picking which permutation to consider for each participant, the
permutation that maximised the sum of the efficiency and sequence pillars was chosen. This is to avoid
over-penalising viable strategies and to use the best possible optimal path approximation as a starting
point for the pillar calculations. This is applied identically to both groups. The calculations of each pillar
are explained in the next subsections.

6.2.2. Speed pillar
The speed pillar reflects how quickly a participant completed a level. Each participant’s time was
converted to seconds, and a leave-one-out median 𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁 was computed per participant 𝑡𝑖𝓁 time
for the same level 𝓁 (see Equation 6.1a). Levels differ in inherent difficulty and length, so raw times are
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not comparable across levels. The 𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁 is chosen because this value will be used to calculate
the deviation from the ”typical” time for that level. Excluding the currently considered observation from
the median calculation does not artificially shrink this deviation. That is, participants essentially don’t
set their own benchmark. The median is used since it is robust to outliers. A log relative time 𝐿𝑅𝑇𝑖𝓁
was formed using the deviation of the participant’s time 𝑡𝑖𝓁 from the typical 𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁 time for this
level. This gives the Equation 6.1b. −𝐿𝑅𝑇𝑖𝓁 is used so higher means better; log() gives symmetry for
multiplicative differences and makes the effect additive (see Equation 6.1c).

LOOmedianiℓ =median({𝑡𝑗𝓁 ∶ 𝑗 ≠ 𝑖}) (6.1a)

LRTiℓ = log(𝑡𝑖𝓁) − log(𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁) = log( 𝑡𝑖𝓁
𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁

) (6.1b)

−LRTiℓ = log(
𝐿𝑂𝑂𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝓁

𝑡𝑖𝓁
) (6.1c)

6.2.3. Efficiency pillar
The efficiency pillar compares how close the participant’s path length 𝐿𝑟𝑒𝑎𝑙 was to the best optimal
path approximation length 𝐿∗𝑝. As explained in 6.2.1, the considered optimal path is the permutation
that maximises both the efficiency and sequence components. Here, inefficiency 𝐹𝑝 for participant 𝑝 is
used instead (see Equation 6.2b), so that 0 is considered optimal. An inefficiency score of 0.25 would
mean 25% longer than the optimal path length and can be interpreted directly. The sign is flipped again
−𝐹𝑝 so that higher means better.

R = 𝐿𝑟𝑒𝑎𝑙
𝐿∗ (6.2a)

Fp = 𝑅 − 1 =
𝐿𝑟𝑒𝑎𝑙 − 𝐿∗𝑝

𝐿∗𝑝
(6.2b)

6.2.4. Sequence pillar
The sequence pillar reflects how much the participant’s path tile sequence deviated from the best
optimal path approximation tile sequence. Similarly to the efficiency pillar, the considered optimal path
is the permutation that gives the best combined sequence and efficiency score. The sequence score
is a composite of two equally weighted components:

• J: Jaccard bigram similarity. It captures local order, immediate transitions by the participant, but
does not look at far-apart sections of the sequence. It penalises reversals, detours, and extra
steps. J is calculated as the ratio between the sum of the min count of bigram 𝑔 occurrences
in the participant’s path countp(𝑔) and optimal path countopt(𝑔), over the sum of max (see
Equation 6.3a).

• LCSF1: F1 score of the longest common subsequence. It captures global order and rewards
equal relative order, even if extra tokens (tiles) are inserted or some are skipped. It penalises
long-range inversions with truly scrambled order. LCSF1 is calculated from the precision P and
recall R scores (see Equation 6.3b). The terms combine the longest common subsequence 𝐿𝐶𝑆
with the participant’s path length 𝐿𝑟𝑒𝑎𝑙 and optimal path length 𝐿∗ (see Equation 6.3c).

The two metrics complement each other, which is why they are used together to obtain a final SEQp
score (see Equation 6.3d). The metrics are conceptually similar; if they correlate moderately-strongly,
and positively, they are plausibly measuring the same construct. In that case, an equal weight of 0.5
is justified. Table 6.2 shows a strong positive correlation since 𝛼 > 0.9 and Pearson’s 𝑟 > 0.8 across
Intervention, Main, and pooled (all runs) phases.
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J =
∑𝑔∈𝐺min{countp(𝑔), countopt(𝑔)}
∑𝑔∈𝐺max{countp(𝑔), countopt(𝑔)}

∈ [0, 1] (6.3a)

P = 𝐿𝐶𝑆
𝐿𝑟𝑒𝑎𝑙

, R = 𝐿𝐶𝑆
𝐿∗ (6.3b)

LCSF1 =
2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅 (6.3c)

SEQp = 0.5 ⋅ 𝐿𝐶𝑆𝐹1 + 0.5 ⋅ 𝐽 , SEQp ∈ [0, 1] (6.3d)

Phase Cronbach’s 𝛼 Pearson’s 𝑟
Intervention 0.909 0.833
Main 0.958 0.920
Pooled 0.945 0.896

Table 6.2: Cronbach’s 𝛼 and Pearson’s 𝑟 for J and LCSF1 across phases.

6.2.5. Standardisation
All 3 of the aforementioned pillar scores are then standardised using a robust z-score. This is necessary
to obtain a performance composite, since all pillars start on different scales; log-ratio for −𝐿𝑅𝑇𝑖𝓁, per
cent overhead for −𝐹𝑝, and [0, 1] for 𝑆𝐸𝑄𝑝. Standardisation happens within-level to remove inherent
level difficulty/length effects. The mean 𝑥̄ and SD 𝑠 are sensitive to outliers; with an 𝑁 = 28, only two
runs per level, and mostly heavy-tailed data, a couple of extremes can dominate 𝑥̄ and 𝑠 and can inflate
a classic 𝑧𝑖 score (see Equation 6.4). Instead, the median(𝑥) and mean absolute deviation 𝑀𝐴𝐷 are
used to obtain a robust z-score 𝑧𝑟𝑜𝑏𝑖 (see Equation 6.5).

z𝑖 =
𝑥𝑖 − 𝑥̄
𝑠 (6.4)

MAD =median(|𝑥𝑖 −median(𝑥)|)

𝑧rob𝑖 = 𝑥𝑖 −median(𝑥)
1.4826 ⋅MAD

(6.5)

6.2.6. PCA for composite weights
For the final performance composite, appropriate weights are necessary to combine all 3 pillar (z)scores.
To that extent, a principal component analysis is performed that finds the linear combination of weights
that maximises the shared variance of the 3 indicators. This way, pillar-level results are retained, but
the composite reflects the dominant shared dimension across these correlated indicators of the same
latent construct ”performance”. Table 6.3 shows the first component’s loadings; with 72% of variance
explained, this shows unidimensionality. The 3 pillars behave as one latent factor, and the normalised
weights from the first component are appropriate for the final composite.

Loading (standardised) PC1 (L2 norm) PC1 (L1 norm) Variance explained

Speed (−LRT𝑖𝓁) −0.591 0.342
72%Efficiency (−F𝑝) −0.604 0.349

Sequence (SEQ𝑝) −0.535 0.309

Table 6.3: L2- and L1-normalised PC1 loadings from the PCA over the three pillars.

6.2.7. Performance composite
Finally, the standardised pillar scores, and the normalised PC1 loadings as weights 𝑤𝑠 , 𝑤𝑝, 𝑤𝑞 are used
to form a performance composite 𝑃𝑒𝑟𝑓𝑖𝓁 for participant 𝑖 in level 𝓁 (see Equation 6.6d). Scoring can
now be interpreted as: 0 typical performance for that level, +1/-1 about one robust SD above/below
typical performance, respectively.
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Speed_ziℓ = zrobi (−𝐿𝑅𝑇𝑖𝓁) (6.6a)

Efficiency_ziℓ = zrobi (−𝐹𝑖𝓁) (6.6b)

Sequence_ziℓ = zrobi (𝑆𝐸𝑄𝑖𝓁) (6.6c)
Perfiℓ = 𝑤𝑠Speed_ziℓ +𝑤𝑝Efficiency_ziℓ +𝑤𝑞Sequence_ziℓ (6.6d)

6.3. Performance Across Groups and Phases
The participant performance across groups and phases is analysed. For all subsequent sections, ref-
erences to ”Intervention phase” and ”Main phase” correspond to the Intervention with the two different
navigation control groups (Drag, Buttons) and the Holonomy VR environment, respectively. Refer-
ences to ”PhaseX ”, where Phase:{Intervention, Main} and X :{1,2} correspond to levels 1 or 2 of the
respective phase. In all the following visualisations, the group encoding by colour was kept consistent,
with Buttons: , and Drag: .

6.3.1. Overall performance
To obtain a single score for the Intervention and Main phases, per participant, their performance scores
are aggregated into one score per phase. Table 6.4 shows descriptive statistics for the mean perfor-
mance for each group and each phase. A few notable mentions from it: the worst and best (averaged)
runs in both phases were from the Buttons group. The mean performance in the Main phase by the
Drag group was quite a bit higher than the Buttons group; the same holds for overall (Intervention and
Main) performance. Figure 6.3 helps visualise this in more detail with boxplots for each of the levels
separately. The two groups show similar performance in the Intervention, with the Buttons group out-
performing Drag by a small margin. In the Main phase and overall, the Drag group outperforms Buttons
by a larger margin.

Phase Group 𝑁 Mean SD Min P25 P50 P75 Max

Intervention Buttons 14 −0.169 0.899 −1.958 −0.517 −0.118 0.567 1.052
Drag 14 −0.209 0.819 −2.000 −0.392 −0.032 0.408 0.723

Main Buttons 14 −0.460 1.097 −2.138 −1.468 −0.254 0.043 1.667
Drag 14 0.154 0.668 −1.003 −0.469 0.257 0.669 1.281

Both phases Buttons 14 −0.315 0.784 −1.561 −0.794 −0.272 0.061 1.231
Drag 14 −0.027 0.530 −0.874 −0.347 −0.205 0.240 1.002

Table 6.4: Descriptive statistics for mean performance (Perf) by phase and group. Quartiles are P25, P50 (median), P75.

Figure 6.3: Mean performance per participant for all levels across groups.
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6.3.2. Intervention vs. Main performance
Here, performance is compared across groups for each of the phases separately. Figure 6.4 shows
violin plots of the full distribution of participants’ mean performance by phase with width encoding den-
sity. In Intervention, the two groups’ centres are similar, whereas in Main, the Drag violin is shifted
upward with less overlap with Buttons, previewing the group difference.

Figures 6.5 and 6.6 show in more detail boxplot visualisations of the mean performance per group
for each of the Intervention and Main phases, respectively. It can be seen in Intervention, medians and
IQRs largely overlap across groups; in Main, the Drag median and IQR are shifted relative to Buttons,
indicating better typical performance and a distributional shift, not just a few high performers.

Figures 6.7 and 6.8 show kernel density estimations for the performance distributions on a common
scale, overlaid for both groups in the Intervention and Main phases, respectively. Intervention curves
substantially overlap, suggesting comparable performance; in Main, the Drag density is shifted to higher
values with a thinner left tail, consistent with a group advantage.

Figure 6.4: Violin plots for mean performance per participant across phases for both groups.

Figure 6.5: Mean performance per participant in the
Intervention phase across groups.

Figure 6.6: Mean performance per participant in the Main
phase across groups.



6.3. Performance Across Groups and Phases 35

Figure 6.7: Kernel density estimates for Intervention
performance distributions for both groups.

Figure 6.8: Kernel density estimates for Main
performance distributions for both groups.

6.3.3. Intervention vs. Main pillar scores
It is also interesting to compare the pillar scores for each group across phases. Figures 6.9 and 6.10
summarise each group’s pillar profile on a common, zero-centred scale (mid-ring = 0, outward = better).
They can be read by comparing the distance to the outer ring on each spoke. Greater radial separation
between groups on a spoke indicates a larger pillar gap. In Intervention, the polygons largely overlap,
suggesting similar profiles across groups. In Main the Drag polygon is consistently farther out on all
spokes, indicating a broader advantage rather than a single pillar dominance.

Figure 6.11 shows grouped bar plots of the pillar contributions to the mean performance per group
across all phases. This view pinpoints which pillars drive the between-group difference and whether
gaps are uniform or concentrated. With an axis-aligned comparison, it is clearer where the Drag advan-
tage lies, especially for the Main phase. The Drag group had considerably better Speed and Sequence
scores and a better Efficiency score. In the Intervention, the pillar gaps between groups were much
closer. This aligns with the glyphs but gives a more quantitative sense of magnitude. Figure 6.12 shows
a stacked bar plot. The bars decompose each group’s mean performance into pillar contributions (to
the total) encoded into segment lengths. The total bar length matches the overall composite. The
figure visualises nicely each group’s mean performance with its pillar contributions and complements
the grouped bars. The latter isolates per-pillar gaps, while this figure shows how those gaps add up to
the observed composite difference. Only the Drag group in the Main phase achieved a positive mean
performance, with the Button’s group performance being substantially inferior (and overall negative).
The mean performance for both groups in the Intervention was comparable, but it is easy to pinpoint
where the (small) difference lies, namely in the Speed and Efficiency pillars.

Figure 6.9: Mean pillar scores in the Intervention
phase overlaid for both groups.

Figure 6.10: Mean pillar scores in the Main phase
overlaid for both groups.
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Figure 6.11: Grouped pillar contributions to mean performance per phase for both groups.

Figure 6.12: Stacked pillar contributions to mean performance per phase for both groups. Hatched shows a negative
contribution, and bar length shows mean performance.

6.4. Main Phase Performance Analysis
The participants’ performance in the Main phase is of particular interest since that is the part of the
study where everyone was on equal footing. The levels, equipment, and environment were identical
across groups; the distinguishing factor is the method of interaction they had in the Intervention phase.

6.4.1. Assumption checks for mean comparison
The Main performance data are checked for normality and homogeneity of variances. A simple ordi-
nary least squares (OLS) model was fitted on the Main mean performance per participant to check for
normality. Figures 6.13 and 6.14 show the Q-Q and histogram plots for the residuals of the model. The
point spread on the Q-Q plot is pretty narrow, and the residuals seem to be normally distributed. The
same goes for the histogram being roughly symmetric and centred at 0.

A Shapiro-Wilk test and a Levene’s test were also run on the Main mean performance, and the re-
sults can be seen in Table 6.5. The Shapiro-Wilk test statistic 𝑊 measures how close the sample
distribution is to normal, with 1 indicating closer agreement. The 𝑝-value tests the null-hypothesis of
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normality. Both 𝑝-values are well above 𝛼 = 0.05 and𝑊 is close to 1, so normality can be assumed for
either group. This is consistent with the Q-Q plot and residual histogram. The Levene’s test checks for
homogeneity of variances across groups. Its statistic 𝑊 (or 𝐹) evaluates the null that the group vari-
ances are equal. With 𝑝-value > 0.05 again, equal variances can be assumed. The checks support
using a parametric mean comparison.

Figure 6.13: Q-Q plot of residuals from a simple model fit
on Main mean performance per participant.

Figure 6.14: Histogram of residuals from a simple model fit
on Main mean performance per participant.

Test Group 𝑊 𝑝-value

Shapiro-Wilk Buttons 0.953 0.606
Drag 0.963 0.776

Levene’s - 2.415 0.132
Table 6.5: Results of the Shapiro-Wilk and Levene’s test on the mean performance in the Main phase.

6.4.2. Between-group tests
Since normality and homogeneity of variances are established, a (Student’s) t-test can be used to com-
pare mean performance for the Main phase across groups at the participant level. A Mann-Whitney U
test can also be used as a non-parametric alternative. The results of both of these tests, along with
Cohen’s d to provide an effect size and CIs, can be found in Table 6.6.

The two-sample 𝑡-test asks whether the group means differ. Its statistic (𝑡 = 1.790) is the observed
mean difference scaled by its standard error. The two-sided 𝑝 = 0.085 is the probability of seeing a
value at least this extreme if the true mean difference were zero. At 𝑝 > 0.05, the equal means at
5% is not rejected, though the value is suggestive rather than negligible. The Mann-Whitney 𝑈 test
checks whether the two distributions are identical based on the rank ordering of all observations. Here
𝑈 = 135.000 with 𝑝 = 0.094, essentially mirroring the 𝑡-test. There is a similar trend, but not conven-
tionally significant at 𝛼 = 0.05.

To gauge magnitude, Cohen’s 𝑑 standardises the mean difference in units of the pooled standard
deviation. The point estimate 𝑑 = 0.677 corresponds to a moderate difference (about two-thirds of a
SD) in favour of the group with the higher mean (Drag, per the descriptives). However, the 95% confi-
dence interval [−0.037, 1.666] includes zero, meaning at 𝑁 = 28, the uncertainty remains wide.



6.4. Main Phase Performance Analysis 38

Test 𝑡-value 𝑈-statistic 𝑝-value 𝑑 95% CI

(Student’s) t-test 1.790 – 0.085 – –
Mann–Whitney U – 135.000 0.094 – –
Cohen’s d – – – 0.677 [−0.037, 1.666]

Table 6.6: Group comparison tests for mean performance in the Main phase.

To complement the tests mentioned above, a mixed-effects model is used. The model is similar to the
OLS model that was fit for the residuals, but also accounts for between-level difficulty:

Perfiℓ = 𝛽0 + 𝛽1𝐷𝑟𝑎𝑔𝑖 + 𝑢𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑖 + 𝑢𝑙𝑒𝑣𝑒𝑙𝓁 + 𝜀𝑖𝓁 (6.7)

The two-sample tests above compare group means on a per-participant summary and ignore two
things: repeated runs per participant and systematic differences in level of difficulty. The mixed-effects
model retains all runs, models Drag vs. Buttons as a fixed effect, and includes random intercepts
for participant and level to prevent within-person correlation from inflating the evidence. Additionally,
harder/easier levels are absorbed rather than attributed to the group effect. Here 𝛽1 is the mean differ-
ence 𝐷𝑟𝑎𝑔 − 𝐵𝑢𝑡𝑡𝑜𝑛𝑠 on the performance scale after adjusting for participant and level.

The naive Wald test for 𝛽1 was anti-conservative, estimating participant random variance near zero
and effectively treating the 56 runs as independent. To respect the data structure, cluster-aware per-
mutations (𝑁 = 2000) are used to shuffle group labels per participant. The observed fixed effect was
𝛽̂1 ≈ 0.614 with a permutation 𝑝 = 0.092. This means that on average, Drag scores about 0.61 units
higher than Buttons after adjusting for level and clustering. The cluster permutation 𝑝 = 0.092 indicates
suggestive but not conventionally significant evidence at 𝛼 = 0.05. To obtain a confidence interval for
𝛽̂1, participants are similarly resampled with replacement (𝑁 = 2000) to get a bootstrap distribution.
This yielded a 95% CI [0.107, 1.126] which broadly agrees with the direction and magnitude seen in
the 𝑡/Mann-Whitney results. The CI excludes 0, implying significance at 5% but permutation 𝑝 ≈ 0.09.
Small discrepancies are common at this sample size, so this is interpreted conservatively.

Across methods that assume normality and equal variances (two-sample 𝑡), rank-based distribution-
free (Mann-Whitney), and model the full repeated-measures structure (mixed-effects model), the story
is consistent. Drag tends to outperform Buttons by a moderate amount, but with the present sample,
the evidence is not definitive at 5%. Reporting the point estimate and its uncertainty (permutation 𝑝,
bootstrap CI) is the most informative summary. A larger 𝑁 would be needed to narrow the CI and turn
this suggestive result into a more precise one.

6.4.3. Controlling for baseline (Intervention) performance
Because the Intervention phase used different control schemes by design (Buttons vs Drag), the pri-
mary inference thus far focused on the Main phase. As a complementary analysis, an ANCOVA is fit
at the participant level. It essentially asks whether groups differ in Main performance at a common
baseline level. Drag𝑖 = 1 is coded for Drag and 0 for Buttons:

𝑀𝑎𝑖𝑛𝑃𝑒𝑟𝑓𝑖 = 𝛽0 + 𝛽1Drag𝑖 + 𝛽2 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑓centred𝑖 + 𝜀𝑖 , (6.8)

The adjusted Drag effect remained positive: 𝛽̂1 = 0.620 (SE = 0.350), 95% CI [−0.103, 1.343],
𝑝 = 0.090, indicating that holding baseline constant, Drag tends to score higher in Main. Once again, CI
crosses zero, so this is suggestive but not definitive, but it is consistent in direction with the mixed-model
results. The baseline (Intervention) slope was small and not significant: 𝛽̂2 = 0.279 (SE = 0.286), 95%
CI [−0.312, 0.869], 𝑝 = 0.339, implying that Intervention performance carries limited predictive infor-
mation for Main once group is accounted for. This is no surprise, given the different control schemes
used in Intervention. Adding an interaction term 𝑔𝑟𝑜𝑢𝑝 × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 had a negligible incremental fit
(Δ𝑅2 ≈ 0.015; AIC/BIC worsened; 𝐹(1, 24) = 0.41, 𝑝 = 0.527). This supports the ANCOVA assumption
that the baseline-Main relationship is parallel across groups. Overall model fit was modest, 𝑅2 = 0.129,
indicating that group and baseline together only explained ≈ 13% of the variance in Main performance.
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Adjusting for Intervention performance does not change the qualitative conclusion: Drag tends to out-
perform Buttons in theMain phase. Because Intervention used different control schemes, this ANCOVA
is presented as an adjusted, supportive analysis rather than a causal “change-from-baseline” model.

6.4.4. Performance delta across phases
As an exploratory cross-check, it is worth looking at a per-participant change score Δ𝑖 and comparing
between groups:

Δ𝑖 = 𝑀𝑎𝑖𝑛𝑃𝑒𝑟𝑓𝑖 − 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑓𝑖 (6.9)

The change score Δ𝑖 captures within-participant trajectories from Intervention to Main, asking whether
Drag improved more than Buttons when each person serves as their own benchmark. Figure 6.15
presents Δ𝑖 as a waterfall plot; bars above zero indicate improvement and overlaid group means sum-
marise central tendency. This view makes clear the heterogeneity of responses (not all participants
move in the same direction) while showing that Drag’s average change is more positive than Buttons.

̄Δ𝐷 for the Drag group was 0.363, and ̄Δ𝐵 for the Buttons group was −0.291, yielding a between-group
difference of 0.654. A Welch’s t-test resulted in 𝑡 = 1.497, 𝑝 = 0.147, and a Mann-Whitney U test
resulted in 𝑈 = 116.0, 𝑝 = 0.421. A participant-label permutation test gave 𝑝 = 0.152. Directionally,
Drag improved from Intervention to Main while Buttons declined on average. This is consistent with the
Main phase analysis, but at 𝑁 = 14 per group, evidence is suggestive and not statistically conclusive.

Given the different control schemes used in the Intervention by design, Δ is a post-randomisation con-
trast without an equivalent baseline. The change score is also noisy since the baseline reliability is
modest, with 𝛽̂2 = 0.279, 𝑝 = 0.339 as seen in Subsection 6.4.3; hence, this is treated as descriptive
support rather than a stand-alone causal estimate.

Figure 6.15: Performance delta from Intervention to Main per participant for both groups.

6.5. Exploratory Analysis
Here, other facets of the study are looked at to gain more insight into additional relationships that may
exist among the data. These outcomes are to be treated as descriptive and/or exploratory; they are
not intended for inference or causality investigation.

An understanding score𝑈𝑆𝐶 ∈ [0, 4] is formed, which reflects the correct participant answers in the ”Hy-
perbolic World Understanding” part of the survey as explained in Subsection 5.4.3. A point is awarded
for every correct answer to the 4 multiple-choice questions. Table 6.7 shows the mean ̄𝑈𝑆𝐶 score
for each group and overall, along with the correlation values for 𝑈𝑆𝐶 and overall performance (both
phases). 𝑈𝑆𝐶 shows no relationship with overall performance. A Welch’s t-test with 𝑝 = 0.114, and a
Mann-Whitney U test with 𝑝 = 0.169, further confirm it since 𝑝-values are above the significance level.
A relationship between 𝑈𝑆𝐶 and the participants’ field of study was also examined, but with sparse,
uneven distributions, no conclusive evidence was found.
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Group 𝑁 ̄𝑈𝑆𝐶 score SD Spearman’s 𝜌 𝑝-value
Buttons 14 2.643 0.842 0.092 0.756
Drag 14 2.071 0.997 0.052 0.861
Overall 28 2.357 0.951 0.002 0.993

Table 6.7: Mean understanding score ̄𝑈𝑆𝐶 per group and Spearman’s 𝜌 correlation of 𝑈𝑆𝐶 with overall performance.

Additionally, the predictive validity across phases was examined using Spearman’s 𝜌 between the
Intervention mean performance and the Main mean performance. This was further extended to (z-
standardised) pillar-wise correlations as well. As seen in Table 6.8, correlations are positive but small
and imprecise with large 𝑝-values. This is consistent with the observed modest reliability of single-
session baselines.

Group Perf Speed Efficiency Sequence
𝜌 𝑝-value 𝜌 𝑝-value 𝜌 𝑝-value 𝜌 𝑝-value

Buttons 0.244 0.401 0.389 0.169 0.209 0.474 0.323 0.260
Drag 0.196 0.503 0.174 0.553 0.143 0.626 0.314 0.274

Table 6.8: Correlation between Intervention and Main phase scores (at the participant level) for performance (Perf), and all
pillars individually (Speed, Efficiency, Sequence).

To further look into performance differences per group from the Intervention to the Main phase, partici-
pants were stratified within group into Low/Mid/High based on their Intervention performance, so each
comparison is made within the same baseline band. The stratification asks whether the𝐷𝑟𝑎𝑔−𝐵𝑢𝑡𝑡𝑜𝑛𝑠
difference from Intervention→Main is merely a by-product of baseline composition (e.g. Drag having
more high baselines) or whether it persists across baseline levels. The mean performance per group
was calculated and compared using a Mann-Whitney U test, reported alongside Hedges’ g (smaller
𝑁 = 14) to obtain an effect size. The results shown in Table 6.9 favour the Drag group in all strata,
since the Drag-Button difference is positive, largest for the Low stratum (𝑔 = 1.302, 𝑝 = 0.095), and
smaller, imprecise in Mid/High (𝑔 = 0.379; 0.429, 𝑝 = 0.680; 0.690). This pattern indicates that Drag’s
advantage in Main is not explained by Drag participants starting higher in Intervention. On the contrary,
the advantage was numerically largest among those who performed lower at baseline. This, combined
with the ANCOVA in 6.4.3, where the baseline slope and 𝑔𝑟𝑜𝑢𝑝 × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 interaction were small,
suggests limited baseline carry-over. Given the very small per-stratum 𝑁, the focus is on effect-size
direction and consistency over 𝑝-values. This result is treated as exploratory support for the primary
Main-phase finding.

Strata Buttons Drag Drag - Buttons MWU 𝑈 MWU 𝑝 Hedges’ 𝑔
Low −0.796 0.053 0.849 21.000 0.095 1.302
Mid −0.404 −0.099 0.305 10.000 0.686 0.379
High −0.169 0.458 0.627 15.000 0.690 0.429

Table 6.9: Differences in performance from Intervention to Main, stratified by Intervention performance.

6.6. Interaction and User Experience Analysis
The interaction analysis concerns only the Main phase, since that is where the interactive environment
elements were introduced to the participants.

For each run in the Main phase, a tree interaction 𝐼𝑇𝑟𝑒𝑒 timer kept track of the total duration of the
participant’s interaction with trees in the Holonomy VR environment. Similarly, a hedge interaction
𝐼𝐻𝑒𝑑𝑔𝑒 timer kept track of the total duration of interaction with the hedge in Holonomy VR. A sum of the
quantities 𝐼𝑡𝑜𝑡𝑎𝑙 (see Equation 6.10a) captures the entire duration a participant spent interacting with
either trees or the hedge across their runs in the Main phase. Since the distribution is right-skewed with
zeroes (not all participants interacted with the environment), a 𝑙𝑜𝑔(1𝑝) transform and z-score standard-
isation are used to obtain 𝑧𝐼𝑡𝑜𝑡𝑎𝑙 (see Equation 6.10b). The total time spent in the Main phase 𝑧𝑇𝑀𝑎𝑖𝑛
is also calculated (see Equation 6.10d) by summing the time across runs and then standardising in the
same way to obtain 𝑧𝐼𝑡𝑜𝑡𝑎𝑙.
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Itotal = 𝐼𝑇𝑟𝑒𝑒1 + 𝐼𝐻𝑒𝑑𝑔𝑒1 + 𝐼𝑇𝑟𝑒𝑒2 + 𝐼𝐻𝑒𝑑𝑔𝑒2 (6.10a)
zItotal = z(log(1 + 𝐼𝑡𝑜𝑡𝑎𝑙)) (6.10b)
TMain = 𝑇𝑀𝑎𝑖𝑛1 + 𝑇𝑀𝑎𝑖𝑛2 (6.10c)
zTMain = z(log(1 + 𝑇𝑀𝑎𝑖𝑛)) (6.10d)

The 26 User Experience Questionnaire (UEQ) items are transformed on a [−3, 3] scale, with negative
values attributed to the negative adjective of each item. The items are mapped to the 6 official scales
by the UEQ’s authors: Attractiveness, Perspicuity, Efficiency, Dependability, Stimulation, and Novelty.
Mean scores for each scale are obtained per participant. The overall scale means for the responses
regarding the Main phase can be seen in Table 6.10 for completeness. At this sample size, confidence
intervals are relatively wide, so estimates should be read as directional rather than precise.

To contextualise magnitudes, Figure 6.16 overlays the per-scale means on the UEQ benchmark bands
(as per the authors). The coloured bands indicate percentile ranges from the UEQ reference, and
the black markers the obtained Main-phase means. On this scale, the Main phase was evaluated
as Above-Average/Good/Excellent on all dimensions except for Perspicuity, which achieved a Below-
Average score. This is understandable given the learning demands of non-Euclidean navigation and
first-time exposure. Stimulation and Novelty are comparatively high, suggesting the experience is en-
gaging and distinctive. Efficiency and Dependability cluster around Above-Average/Good, indicating
that perceived effectiveness and reliability were generally positive despite the elements of unfamiliarity.

The benchmark is treated as a comparison in a descriptive context rather than a hypothesis test. This
situates the achieved scale means against a broad UEQ reference but does not adjust for domain dif-
ferences or the sample size. The corresponding table and graph for the Intervention phase scales can
be found in the Appendix A.

Scale Mean SD Confidence 95%CI

Attractiveness 1.702 1.117 0.414 [1, 289, 2.116]
Perspicuity 0.973 1.220 0.452 [0, 521, 1.425]
Efficiency 1.250 1.145 0.424 [0, 826, 1.674]
Dependability 1.232 1.078 0.399 [0, 833, 1.631]
Stimulation 1.938 0.778 0.288 [1, 649, 2.226]
Novelty 2.063 0.648 0.240 [1, 823, 2.302]

Table 6.10: UEQ scale means and descriptives from all participants for the Main phase.

Figure 6.16: The UEQ scale means from the Main phase responses compared to a benchmark.

As discussed in Subsection 5.4.3, the survey includes two self-reported multiple-choice questions,
which will be referred to asMCQ5 andMCQ6, that regard interactions in the Holonomy VR environment.
MCQ5 reflects the perceived time spent interacting, while MCQ6 reflects how memorable or engaging
the interactions were. Both are on a 6-point scale, with category 6 = ”chose not to / not applicable”
respectively. For the analysis, 6 was excluded, and the remaining 1-5 were standardised to 𝑧𝑀𝐶𝑄5
and 𝑧𝑀𝐶𝑄6 (where necessary).
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6.6.1. Objective interaction vs. self-reports
An ordinal logistic model was fit to check if the objectively measured time 𝑧𝐼𝑡𝑜𝑡𝑎𝑙 captures what partici-
pants experienced through the self-reports by MCQ5 and MCQ6. Table 6.11 shows the odds ratio (per
1 standard deviation in log interaction time) and Spearman’s 𝜌 between the self-reported responses
and the log interaction time. At 𝑂𝑅 = 1.931 for MCQ5, the odds of one choosing a higher MCQ5 cate-
gory are ∼93% greater for someone one SD higher in objective time (95% CI [0.926, 4.027], 𝑝 = 0.079).
This is paired with Spearman’s 𝜌 as a model-free, rank-based robustness check, which for MCQ5 gave
𝜌 = 0.404, at 𝑝 = 0.041. MCQ6 is directionally positive (𝑂𝑅 = 1.684; 𝜌 = 0.138), but imprecise at
𝑁 = 28. Together, these results suggest the log-time measure has reasonable correspondence with
perceived time, while engagement/memorability is not tightly determined by time alone. This is consis-
tent with later findings (see Subsection 6.6.2) where MCQ6 relates more strongly to UEQ scales than
to logs. This is treated as a validity check, not a causal claim.

Survey Question Odds Ratio 95%CI 𝑝-value Spearman’s 𝜌 Spearman’s 𝑝-value
MCQ5 1.931 [0.926, 4.027] 0.079 0.404 0.041
MCQ6 1.684 [0.846, 3.355] 0.138 0.187 0.341
Table 6.11: Odds ratio per +1 SD in log interaction time and Spearman’s 𝜌 for MCQ5 and MCQ6 and 𝑧𝐼𝑡𝑜𝑡𝑎𝑙.

6.6.2. Interaction vs. UEQ scales
Interaction can be compared to the 6 UEQ scales through 3 lenses: objective interaction time, MCQ5
(perceived interaction time), and MCQ6 (perceived engagement). An ordinary least squares model
with robust SEs was fit for each UEQ scale [-3,3] on each of the standardised 𝑧𝐼𝑡𝑜𝑡𝑎𝑙, 𝑧𝑀𝐶𝑄5, and
𝑧𝑀𝐶𝑄6. Since 6 scales are tested, the false discovery rate (FDR) is controlled across p-values at
𝑞 = 0.10. Spearman’s 𝜌 is also calculated for each scale as a rank-based robustness check. The OLS
coefficient 𝛽 gives the expected change in a UEQ scale [−3, 3] per +1 SD in the tested metric.

Seeing the results in Table 6.12, MCQ6 was found as best, showing its strongest, FDR-significant
association with Efficiency (𝛽 = 0.766, 𝜌 = 0.627, 𝑝 < 0.001). This means a participant one SD higher
on MCQ6 is, on average, 0.8 scale points higher on Efficiency. Dependability (𝛽 = 0.489, 𝑝 = 0.091,
𝜌 = 0.326, 𝑞 = 0.092) and Stimulation (𝛽 = 0.369, 𝑝 = 0.047, 𝜌 = 0.359, 𝑞 = 0.093) are positive and
near-threshold after FDR. Attractiveness and Perspicuity trend positively but are imprecise at 𝑁 = 28;
Novelty is small. In models adjusting for total interaction time 𝑧𝐼𝑡𝑜𝑡𝑎𝑙 and total time spent in Main 𝑧𝑇𝑀𝑎𝑖𝑛,
Efficiency remains robust while other coefficients slightly diminish, indicating the MCQ6-UEQ link is not
explained by exposure time alone. The full results obtained from all models can be found in Appendix A.

Objective time had small UEQ effects, whereas perceived engagement aligns with perceived quality
(especially Efficiency). This is a pattern that matches the item-level findings (see 6.6.3), and supports
using MCQ6 as the primary perceptual driver in the second research question.

UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness 0.538 [−0.067, 1.144] 0.081 0.122 0.409 0.031
Perspicuity 0.436 [−0.097, 0.968] 0.109 0.130 0.275 0.157
Efficiency 0.766 [0.392, 1.140] 0.000 0.000 0.627 0.000
Dependability 0.489 [0.046, 0.932] 0.031 0.092 0.326 0.091
Stimulation 0.369 [0.006, 0.733] 0.047 0.093 0.359 0.061
Novelty 0.195 [−0.061, 0.452] 0.136 0.136 0.268 0.169
Table 6.12: Results of OLS regression model for each UEQ scale on 𝑧𝑀𝐶𝑄6 with Spearman’s 𝜌 and FDR control.

6.6.3. Interaction vs. UEQ items
Similarly, interaction can be compared to the individual UEQ items to ask which specific adjectives drive
the scale-level effects. Meaning, is the MCQ6-UEQ link broad, or concentrated in particular facets of
the questionnaire? For each UEQ item [−3, 3], the item score is regressed on 𝑧𝑀𝐶𝑄6, with 𝛽 being
the expected item shift (in scale points) per +1 SD in MCQ6. Multiplicity is again controlled with FDR
at the same threshold 𝑞 = 0.10 and Spearman’s 𝜌 as a rank-based check.
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The (near) FDR-significant positives, as seen in Table 6.13, cluster in Efficiency (items: 20 [ineffi-
cient/efficient], 23 [cluttered/organised], 22 [impractical/practical]), with additional support in Depend-
ability (11 [obstructive/supportive]), Stimulation (5 [demotivating/motivating]), Novelty (26 [conserva-
tive/innovative]), and Attractiveness (16 [unattractive/attractive]). Effects are sizeable (≈ 0.6; 1.0 points
per +1 SD MCQ6), and Spearman’s 𝜌 agrees in sign and rank. This indicates that higher perceived
engagement/memorability aligns with feeling more efficient, organised, and supported, with secondary
feelings of more motivation, innovation, and attractiveness. This mirrors the scale-level finding where
Efficiency is the clearest responder to MCQ6.

At the scale-level, objective time 𝑧𝐼𝑡𝑜𝑡𝑎𝑙, and perceived time 𝑧𝑀𝐶𝑄5 showed small, non-significant
associations after FDR. In exploratory item fits, they similarly produced no coherent FDR-robust pat-
tern at 𝑁 = 28. To avoid accumulation of marginal tests and false positives, the MCQ6→items re-
sults are placed in the foreground. The full table with all items can be found in the Appendix A for
transparency. This keeps the item analysis aligned with the main second research question signal of
engagement↔perceived quality.

UEQ Scale Item # 𝛽 95% CI 𝑝-value FDR 𝑞 Spearman 𝜌 Spearman 𝑝
Attractiveness 16 0.858 [0.186, 1.529] 0.012 0.054 0.522 0.004
Perspicuity 13 0.588 [−0.036, 1.212] 0.065 0.187 0.344 0.073

Efficiency
20 0.912 [0.468, 1.356] 0.000 0.001 0.550 0.002
23 1.013 [0.448, 1.578] 0.000 0.006 0.495 0.007
22 0.757 [0.170, 1.344] 0.012 0.054 0.450 0.016

Dependability 11 0.654 [0.173, 1.135] 0.008 0.050 0.391 0.040
Stimulation 5 0.634 [0.119, 1.150] 0.016 0.059 0.448 0.017
Novelty 26 0.509 [0.173, 1.135] 0.002 0.014 0.478 0.010

Table 6.13: (Near) FDR-significant UEQ items of the OLS regression model fit on 𝑧𝑀𝐶𝑄6 with Spearman’s 𝜌.
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Discussion

This chapter interprets the empirical findings with respect to the two research questions and situates
them in the broader literature. The first research question is revisited, combining distributional evi-
dence, mixed-effects inference, and sensitivity checks to assess whether Drag confers a Main-phase
advantage under matched conditions. Then the second research question is addressed, contrasting
objective interaction time with self-reports and showing how perceived engagement (MCQ6) relates to
UEQ scales and items, including time-adjusted models and FDR control. Afterwards, key methodolog-
ical considerations are laid out that guided inference, like choice of estimand, dependence handling,
and robustness checks. This is followed by limitations and alternative readings regarding statistical
power, zero-inflation, measurement scope, and shared-method variance. The implications for design
and theory are then presented, and subsequently, the findings are positioned within the state of the art.
This is clarified by how they extend prior work and where future studies should take the platform next.

7.1. Performance in Context
The first hypothesis essentially posits that participants trained with the Drag interaction method ulti-
mately perform better than participants trained with the Buttons interaction when both are faced with
the same conditions in the Main phase. The outcome is a composite performance score 𝑃𝑒𝑟𝑓, derived
from three pillars: Speed, Efficiency, and Sequence. Each pillar was standardised within level and
combined in a way that mirrors the dominant component from a PCA that explained 72% of variance
over the pillars. This yields a scale where 0 reflects level-typical performance and ±1 approximately
one robust standard deviation from typical performance. That construction matters for interpretation:
a between-group difference in 𝑃𝑒𝑟𝑓 can be read as a standardised advantage in overall task fluency
that combines timing, spatial optimality, and action ordering.

When the two Main runs were averaged per participant (the primary estimand for the first research
question), the Drag group outperformed the Buttons group by roughly 0.61 𝑃𝑒𝑟𝑓 points, roughly two-
thirds of a robust SD. Classical tests agreed on direction and magnitude and produced 𝑝-values just
above conditional thresholds with (Student’s) 𝑡 = 1.790, 𝑝 = 0.085, and Mann-Whitney 𝑈 = 135,
𝑝 = 0.094 with the effect size by Cohen’s 𝑑 = 0.677 95% CI[−0.037, 1.666]. Assumption checks sup-
ported parametric testing: Shapiro–Wilk within groups 𝑝 ≥ 0.606; Levene 𝑝 = 0.132, but at 𝑁 = 14
per group, these should not be over-interpreted. With few participants per group, the 𝑝-values from the
tests reflect limited power rather than conflicting signals. All point estimates place Drag higher than
Buttons by an amount that would be practically noticeable in the task, albeit just above conventional
thresholds and with a wide confidence interval.

Because runs are nested within participants and levels differ in difficulty, a run-level model is also fit
with random intercepts for participant and level. In maximum-likelihood estimation, the participant vari-
ance collapsed toward zero, which made the usual Wald 𝑝-values anti-conservative. To restore valid
inference without abandoning the model’s structure, a cluster-aware label permutation at the participant
level is used. Group labels were shuffled by person, refitting the model, and situating the observed 𝛽 in
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the empirical null distribution. The observed group effect from the mixed model was again 𝛽̂ = 0.614,
95% CI [0.107, 1.126] with a permutation 𝑝 = 0.092. This agreement with the participant-level analysis
indicates that the Main phase Drag advantage is not an artefact of treating runs as independent or of
single-level characteristics.

A natural follow-up is whether the performance difference in the Main phase persists after accounting
for initial ”ability” as expressed in the Intervention phase. An ANCOVA that regressed Main perfor-
mance on group and Intervention performance gave an adjusted Drag coefficient 𝛽̂1 = 0.620, 95% CI
[−0.103, 1.343], 𝑝 = 0.090 with a modest overall 𝑅2 = 0.129. The slope on Intervention was small and
imprecise 𝛽̂2 = 0.279, 95% CI [−0.312, 0.869], 𝑝 = 0.339. A 𝑔𝑟𝑜𝑢𝑝 × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 interaction was tested,
which essentially asks ”do better baselines translate to better Main performance differently by group?”.
The interaction did not improve model fit Δ𝑅2 ≈ 0.015, AIC/BIC worsened, 𝑝 = 0.527. Two things
follow from this. First, adjusting for baseline Intervention performance does not change the qualitative
conclusion; if anything, it stabilises it by showing the group difference is not driven by an imbalance
in baseline ability. Second, the lack of an interaction means the homogeneity of slopes assumption is
reasonable in this dataset: the relationship between prior performance and Main performance looks
similar across groups.

A simple per-participant change score is also computed Δ = 𝑀𝑎𝑖𝑛− 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, and Δ is compared
between groups. The Drag group’s change was larger, with a difference of 0.654, but the evidence
was modest with a Welch’s 𝑡 = 1.497, 𝑝 = 0.147 and Mann-Whitney 𝑈 = 116.0, 𝑝 = 0.421. This is
consistent in direction with the Main-only contrast, but is softer statistically. This is unsurprising given
the design of the experiment; the Intervention deliberately differed across groups, and this is why the
Main-only estimand is the most faithful to the research question.

In sum, the entirety of the first hypothesis analyses point in the same way: the Drag group carries
a Main-phase performance advantage of moderate size, stable across analytical lenses: participant-
mean tests, dependence-aware mixed model with permutations, ANCOVA adjusting for Intervention.
The effect’s practical meaning is straightforward on the 𝑃𝑒𝑟𝑓 scale: Drag participants executed the
Main task faster, along shorter and more appropriate paths and action orders by roughly two-thirds of
a level-standard deviation. The statistical uncertainty is a function of sample size rather than mixed or
contradictory evidence.

7.2. Engagement and User Experience
The second hypothesis examines how variation in user-driven interaction with reactive elements, trees
and hedges that respond haptically, relates to user experience in the Main phase. Here, objective
interaction time and self-reports are treated as complementary views of ”interaction intensity”. Objec-
tive time aggregates the seconds spent directly engaging with reactive elements across both runs in
the Main phase. These counts are zero-inflated and right-skewed because not all participants inter-
acted with the environment; therefore, the counts are transformed using 𝑙𝑜𝑔1𝑝 and standardised with
z-scores. Self-reports captured two related but distinct quantities: MCQ5, a self-estimate of how long
participants interacted for; and MCQ6, a rating of how engaging or memorable those interactions felt.
Both items offered a ”6 = chose not to / not applicable” category, which was excluded in level analyses
and flagged as a special case in ordinal checks.

Before connecting interaction intensity to user experience, the two representations of intensity (objec-
tive time, MCQ5/MCQ6) were checked to see if they align with each other. Participants who had higher
log-scaled objective time tended to report higher MCQ5 categories with ordinal-logit 𝑂𝑅 = 1.931 per
+1 SD, 95% CI [0.926, 4.027], 𝑝 = 0.079, and Spearman 𝜌 = 0.404. The association with MCQ6 was
positive but imprecise with 𝑂𝑅 = 1.684, 95% CI [0.846, 3.355], 𝑝 = 0.138, and Spearman 𝜌 = 0.187.
The pattern suggests that objective time captures something participants notice and can self-estimate,
and is at least directionally grounded. Perceived engagement, however, is not reducible to time alone
and seems to tap a distinct dimension; this is an important conceptual point for the following interpre-
tations. Again, with wide confidence intervals and moderate 𝑝-values, precision is modest at 𝑁 = 28.
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The primary concern in the second research question and hypothesis is the link from perceived in-
teraction length/engagement (MCQ5/MCQ6, respectively) to user experience, which is measured by
the UEQ scales and items. Across the 6 UEQ scales, the clearest and most robust association was
between MCQ6 and Efficiency. In the unadjusted model, a one-SD increase in MCQ6 corresponded to
about 𝛽 = 0.766 points on the [−3, 3] Efficiency scale (95% CI [0.392, 1.140], 𝑝 < 0.001). Crucially, that
relationship remained strong after adjustment for both log objective interaction time and total exposure
time in Main. The coefficient increased to 𝛽 = 0.811 (95% CI [0.288, 1.335], 𝑝 = 0.002). This ”speci-
ficity” check matters for interpretation: if the MCQ6-Efficiency link were merely a factor for ”they stayed
longer”, it should diminish notably once time is in the model, but did not. The false-discovery-rate (FDR)
correction, applied across the 6 UEQ scales to guard against family-wise cherry-picking, kept Efficiency
as significant both before and after adjusting for time. The practical meaning is that participants who
experienced the interactions as engaging or memorable also experienced the system as more efficient
to use, and this relationship is not simply explained by raw exposure to the environment of Holonomy
VR.

Two other scales, Dependability and Stimulation, also moved positively with MCQ6. Their unad-
justed slopes were moderate, with coefficients 𝛽𝐷 = 0.489, 𝛽𝑆 = 0.369 (per +1 SD), and 𝑝𝐷 = 0.031,
𝑝𝑆 = 0.047 respectively. Adjusting for time, still kept the estimates positive with 𝑝 ≈ 0.07 and FDR-
adjusted values near the reporting threshold (𝑞 = 0.10). Although these are statistically softer than
Efficiency, they are theoretically coherent: feeling the interactions ”click” can reasonably bring a sense
that the system is reliable and that the experience is stimulating or exciting. The remaining scales:
Attractiveness, Perspicuity, and Novelty showed smaller positive trends with wider intervals. These do
not contradict the story but should be treated as descriptive in this sample.

To avoid hiding effects by averaging items into scales, item-level regressions of each response are
also examined on MCQ6 with FDR control across the 26 tests. The significant items cluster exactly
where the scale results suggest. Multiple Efficiency items were positively associated with MCQ6, and
there were additional significant items under Dependability, Stimulation, Novelty, and Attractiveness.
This granularity helps interpretability. It indicates that the engagement-UX link is not a single outlier
item or an averaging artefact; rather, it is made up of specific points in perceived efficiency (e.g. being
fast, organised, effective) and extends to a subset of reliability and hedonic items.

The full range of models in Appendix A show that objective interaction time (𝑧𝐼𝑡𝑜𝑡𝑎𝑙) or self-reported in-
teraction time (MCQ5) do not survive the FDR control (𝑞 ≥ 0.915) and are generally statistically weak;
hence, the focus is shifted to MCQ6. This strengthens the interpretation that memorable/engaging
interaction predicts perceived efficiency rather than any simple exposure-driven mechanism. The pat-
tern fits the hypothesis that ”learning by doing” and enactive exploration improve practical proficiency.
Taking everything together, a chain is suggested with progressively stronger links as one moves from
raw time to perceived engagement to UX: objective time (𝑧𝐼𝑡𝑜𝑡𝑎𝑙)→ self-estimated time (MCQ5)→ per-
ceived engagement (MCQ6) → user experience. The first arrow is present but modest; the second
and third are the points where the signal becomes clear. Conceptually, this favours an enactive per-
spective. It is less the sheer duration of touching reactive elements and more whether those touches
yielded meaningful sensorimotor coupling that shaped how the system felt to use.

The evidence supports the second hypothesis in its perceptual core; participants who experienced
the reactive interactions as engaging reported a better user experience. A plausible alternative ex-
planation could be common-source variance since both MCQ6 and UEQ are self-reports collected
post-treatment. A positive effect might inflate correlations, which is why the time-adjusted analysis
helps here. Moreover, the absence of MCQ5 to UEQ effects, despite MCQ5 being a similar kind of
self-report, suggests the MCQ6 link is not merely a result of global positivity but pulls from the quality
of interaction experience. Still, the design does not permit causal claims; the results should be read as
strong associations consistent with the hypothesis, not as definitive proof of causation.
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7.3. Methodological Considerations
Several analysis choices were made to keep inference aligned with the design and to guard against
small-sample pitfalls. For H1, the Main phase participant mean was chosen as the primary estimand
because that is where both groups operated under the same control and task rules. The mixed model
at the run level, supplemented by label-permutation inference when random-effects estimates became
degenerate, allowed the analysis to acknowledge dependence without relying on asymptotic Wald tests
that are fragile at 𝑁 = 28. The ANCOVA served a specific purpose, showing the Drag advantage is
not an artefact of Intervention baseline, and the non-significant 𝑔𝑟𝑜𝑢𝑝 × 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 interaction provided
a direct test of the homogeneity-of-slopes assumption often left implicit.

For H2, using robust standard errors in OLS guarded against small-sample variance difference on the
[−3, 3] UEQ scales. Using ordinal logistic and Spearman for MCQ5/MCQ6 respected their ordered-
category nature while removing the ”6 = not applicable” category from the intensity scale. Because the
study involves families of parallel tests (6 scales, 26 items), the FDR was controlled rather than the
family-wise error rate. This choice is appropriate when the goal is to identify a pattern of effects without
becoming so conservative that genuine signals are erased, especially at this sample size. Finally, the
distinction between objective and perceived interaction intensity was formalised in the models via time
adjustments and by placing the perceptual metric as the primary test for the second research ques-
tion. This is faithful to the question’s wording about ”user-driven interaction intensity” and ”perceived
engagement”.

7.4. Limitations and Alternative Readings
The most obvious limitation is statistical power. With 28 participants, the study is well-suited to detect
moderate to large effects, but will produce borderline 𝑝-values for moderate effects in the 0.5 − 0.7
SD range, as observed for the first research question. That does not negate the practical magnitude
of the differences, but it calls for caution against over-generalisation. The second limitation is zero
inflation in objective interaction with many participants gathering little or no time on reactive elements;
linear models on log time only partially address skew. A two-part model could be considered in future
work to separate the decision to interact at all from the amount of interaction among interactors. A
third limitation is measurement scope. Objective time collapses ”what was done” into ”how long”. It
misses important distinctions such as purposeful actions versus incidental contact, temporal alignment
of touches with goals, and the tactile extent of events. Such features could sharpen behavioural links
to user experience and might reveal effects that total time alone cannot.

The following design and measurement constraints could be read as alternative explanations for some
effects. The onboarding aimed for minimal guidance to preserve naturalistic exploration. While this
choice fits the study’s spirit, a more structured tutorial that potentially includes an intuition-building
base on hyperbolic geometry might have reduced early variance and cold-start costs in the Main task.
The trade-off is that a stronger structuring could reduce novelty effects, but risks teaching to the test
and diluting practical validity.

There is also a training-evaluation mismatch. During the Intervention, participants practised on a 2D
plane (Minimap); in Main, they gained an extra axis through self-rotation while walking that can be off-
putting. Several participants visibly adapted by fixing a local orientation and advancing with side/forward
steps, while others rotated freely. This strategy discrepancy was not modelled explicitly and may have
contributed to between-participant variance that is not attributed to the control scheme they used. Re-
latedly, first-exposure effects are likely; most participants had no prior experience with a space of this
kind, so part of what was measured is the cost of learning to predict a novel control-geometry combi-
nation.

Additionally, two task-level constraints limit generality. First, the ”optimal path” used for the Efficiency
and Sequence pillars is a principled alternative, but under Holonomy VR conditions, the notion of opti-
mality depends on local frames. This ground truth may slightly over- or under-penalise certain routes.
Second, the study used two levels per phase to keep the sessions tractable and of reasonable duration.
However, this restricts the spread of difficulties and the precision of run-level variance estimates. Ad-
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ditional, diverse levels would better separate learning, difficulty, and interface effects, and would allow
stronger tests of path optimality under explicit Holonomy VR constraints.

It is also noted that the UEQ and MCQ6 have a post-treatment nature. Both are outcomes of the ex-
perience and susceptible to shared method variance. The time-adjusted analyses partly address the
simplest confound, but causal claims require a design that manipulates interaction intensity directly.
Finally, the results are task-specific. The performance composite is tuned to non-Euclidean navigation
under this environment and these haptic responses; different tasks or reactive element designs may
alter which UEQ facets respond most strongly.

7.5. Implications
The results regarding the first research question imply that once participants are placed on equal foot-
ing in Main, those who had trained with Drag carry over a performance advantage. In practical terms,
Drag’s platform facilitates embodiment by associating hand/arm movements with movements on the
minimap/world. This continuous mapping may support a more efficient transformation in non-Euclidean
layouts, yielding better timing, path choice, and action sequencing. This bears on interface design,
when the environment departs from familiar Euclidean structure, control schemes that reduce transla-
tion costs can pay off at evaluation time.

The second research question’s results point to the importance of how reactive interactions are ex-
perienced, not merely how long they occur. The strong, time-robust link between MCQ6 and UEQ Effi-
ciency suggests that engaging, memorable contact with reactive elements supports pragmatic usability.
The supporting signals on Dependability and Stimulation fit the story; when interactions themselves feel
”right”, the environment feels more predictable and exciting. For embodied learning accounts, this pat-
tern of: objective time weak, perceived engagement strong, suggests that the quality and meaning of
contact, not mere duration, is central. This aligns with enactive perspectives; it is the sensorimotor
experience achieved that predicts perceived efficiency, not just clocked exposure.

7.6. Positioning within the State of the Art
This thesis sits at the overlap of three conversations that are often kept apart: control and performance
in unfamiliar (non-Euclidean) environments, embodied accounts of how action shapes perception, and
user-experience work on the role of reactive haptic feedback in VR that is not strictly task-critical. Bring-
ing them together in one task, with one set of measures, allows for saying something concrete about
when a continuous, embodied interaction helps and how voluntary, tactile exploration shows up in peo-
ple’s experience.

On the control side, most prior work on navigation in non-Euclidean spaces has shown that people
do not merely transpose Euclidean intuitions; instead, they learn local action-outcome regularities, of-
ten with increased cognitive load and unfamiliar path structure. Much of that literature has focused
on spatial cognition, how well participants can form and use internal representations, under visual and
movement variants that keep the control method relatively simple. The present results extend that line
by touching upon the control method itself. When the mapping is continuous (Drag) rather than dis-
cretised (Buttons), the Main-phase performance is consistently higher in equal conditions, even once
baseline performance is accounted for. In other words, when the geometry is already asking the user
to update their predictive model of movement, a control scheme that minimises translation between
intention and act appears to reduce error across timing, path choice, and action ordering. This is
precisely where an embodied perspective on control predicts an advantage: fewer ”transformations”
in the control loop, tighter perception-action coupling, less overhead devoted to managing the inter-
face itself. Methodologically, this is tied to the design rather than a single estimator. Participant-mean
comparisons, a run-level mixed model tested by participant-label permutation, and ANCOVA against
Intervention all point the same way.

On the experience side, reactive haptics are often discussed as ”nice to have” for presence, real-
ism, or delight, with mixed evidence about later impacts on task performance or usability. Here, more
specificity is afforded. A question is whether ”non-essential” haptics (touching bushes and trees in this
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case) meaningfully shape experience or simply decorate it. The pattern observed in this research clar-
ifies this distinction. Simply spending more seconds touching reactive elements is a weak predictor of
UEQ scales. What matters is whether those touches feel engaging and memorable. The MCQ6→UEQ
link, even after adjusting for exposure and objective time, suggests that meaningful interactions at the
sensorimotor level are the active ingredient. Item-level results also reinforce this. In short, hedonic
engagement and pragmatic usability are not orthogonal in this setting. When the interaction ”clicks”,
the system also feels more efficient. The contribution here is not a claim that ”more haptics is always
better”, but a more precise and testable proposition that the quality of sensorimotor coupling and not
just duration, adapts with actual usability judgments.

A second contribution is measurement clarity. Exposure time, behaviour time, and experience are
deliberately separated and then tested for links among them. Exposure and behaviour are related but
zero-inflated; behaviour and experience are related but only moderately so. The strongest, most reli-
able association with UEQ runs through experience. This helps explain why ”more haptics” or ”more
time on task” sometimes fail to move UX. Exposure is necessary, but engagement is what translates
into perceived efficiency. This also rationalises the mixed results around ”training transfer” in complex
VR tasks. Improvements may depend less on how long users touch reactive elements and more on
whether those contacts afford learning-relevant predictors that later shape action selection. By making
these distinctions explicit and showing their different outcomes, this research offers a useful template
for future VR UX studies to avoid over-attributing effects to time alone.

Finally, the analysis choices are part of the contribution. Estimates were matched to the design (Main-
phase as primary target), dependence is handled explicitly (mixed models), used permutations when
random-effect estimates collapsed, relied on robust errors and rank checks for small-sample inference,
and multiplicity is controlled with FDR at the scale and item families. That combination can serve as a
template and platform for similar future studies.

Against this background, this thesis advances the state of the art in two ways. First, it provides ev-
idence that continuous, embodied control can yield a practically meaningful performance advantage
in a non-Euclidean environment under uniform operating conditions. This answers the first research
question to the degree allowed by the sample; not as definitive proof, but as a robust effect that future,
larger studies can work on. Second, it shows that perceived engagement with non-essential reactive
elements is reliably associated with perceived efficiency, even when adjusting for interaction time. That
answers the second research question at its core; it is not the existence of reactive elements or the
raw time spent with them that matter most, but whether those interactions form the experience that
users find engaging, and in turn more efficient, stimulating, and useful. In both cases, the contribution
is progressive rather than final. The work set an experimental and analytical platform that others can
reuse to move from association to causation and from a single task to broader generality.
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Conclusion

This thesis examined how embodied control and voluntary interaction shaped both performance and
experience in a non-Euclidean, haptically enabled VR environment. Two questions guided the study.
RQ1 asked whether participants trained with a continuous, drag-based control would later perform bet-
ter than those trained with button-based input when evaluated under identical conditions. RQ2 asked
how naturally occurring variation in interaction with reactive elements (trees, hedges) relates to user
experience during the main task.

Across the analyses that matter for the design, participant-level comparisons in the Main phase, a
dependence-aware mixed model with permutation inference, and an ANCOVA that adjusts for Inter-
vention, Drag consistently outperformed Buttons by a practically meaningful margin. The estimates
were stable across methods and pointed in the same direction, while acknowledging the statistical mod-
esty expected at this sample size. The take-home message is straightforward: when both groups face
the same non-Euclidean task, prior practice with a continuous mapping carries over to better overall
fluency (speed, path, sequencing), which is exactly what an embodied account of control would predict.

The clearest way from ”interaction intensity” to user experience ran through perceived engagement/
memorability (MCQ6), not through raw time. Participants who experienced the reactive contacts as
engaging reported higher UEQ scores. This association persisted even after controlling for measured
exposure. Item-level results reinforced the picture by showing which anchors of the UEQ moved with
engagement. By contrast, objective interaction time and self-estimated time were weak predictors
of UEQ in this dataset. Together, these findings suggest that in non-Euclidean VR, it is the quality of
the tactile exploration, rather than its duration, that most reliably translates into better reported usability.

Beyond specific answers, the work contributes an analysis pattern for small-N VR: a transparent pillar-
based performance score, estimands aligned to the design, with mixed models, and multiplicity-aware
robust scale/item analyses for UEQ. Separating exposure, behaviour, and experience as distinct con-
structs proved especially useful for avoiding common pitfalls in the literature and for explaining why
”more time” does not automatically produce better UX.

There are inevitably limits. With 28 participants, the precision around moderate effects is finite. Objec-
tive interaction time is zero-inflated and unrefined as a behavioural summary. Both MCQ6 and UEQ are
post-treatment self-reports, so the experience findings are associative, not causal. These constraints
do not undercut the pattern but do set the scope: the claims are strongest for the task studied and for
the way reactive elements were implemented here.

The results suggest concrete next steps. Increasing the sample size would tighten uncertainty around
the Main-phase group difference. Manipulating the quality and intensity of reactive interactions would
convert the engagement-UX link from association to causal estimate. Richer telemetry would clarify
how different aspects of exploration matter. Cross-over study designs could test the durability and
transfer of embodied training benefits.

50
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In closing, the study offers two simple lessons for designing and evaluating interaction in less conven-
tional VR spaces. First, minimise translation costs in the control loop; continuous, embodied mappings
better support later proficiency when the world itself is unfamiliar. Second, design a reactive contact
that invites meaningful exploration; it is the felt engagement that users turn into a sense of efficiency
and control. Put differently, in spaces where straight lines bend, how we move and how we choose to
touch the world are what make it navigable.
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A
Extra results

Scale Mean SD Confidence 95%CI
Attractiveness 1.440 1.131 0.419 [1.021, 1.860]
Perspicuity 0.571 1.388 0.514 [0.057, 1.085]
Efficiency 1.071 1.182 0.438 [0.634, 1.509]
Dependability 0.741 1.044 0.387 [0.354, 1.128]
Stimulation 1.438 0.925 0.342 [1.095, 1.780]
Novelty 1.813 0.841 0.311 [1.501, 2.124]

Table A.1: UEQ scale means and descriptives from all participants for the Intervention phase.

Figure A.1: The UEQ scale means from the Intervention phase responses compared to a benchmark.

UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness 0.554 [−0.252, 1.361] 0.178 0.208 0.409 0.031
Perspicuity 0.518 [−0.200, 1.236] 0.157 0.208 0.275 0.157
Efficiency 0.811 [0.288, 1.335] 0.002 0.014 0.627 0.000
Dependability 0.552 [−0.054, 1.157] 0.074 0.148 0.326 0.091
Stimulation 0.420 [−0.036, 0.875] 0.071 0.148 0.359 0.061
Novelty 0.420 [−0.110, 0.506] 0.208 0.208 0.268 0.169
Table A.2: Results of OLS regression model for each UEQ scale on 𝑧𝑀𝐶𝑄6, adjusted for time with 𝑧𝐼𝑡𝑜𝑡𝑎𝑙 and 𝑧𝑇𝑚𝑎𝑖𝑛.

Spearman’s 𝜌 and FDR control included.
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UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness −0.033 [−0.317, 0.251] 0.821 0.833 0.002 0.994
Perspicuity −0.225 [−0.685, 0.234] 0.337 0.685 −0.168 0.413
Efficiency −0.161 [−0.493, 0.171] 0.342 0.685 −0.169 0.408
Dependability −0.086 [−0.433, 0.261] 0.628 0.833 −0.078 0.705
Stimulation −0.124 [−0.320, 0.073] 0.217 0.685 −0.227 0.266
Novelty 0.027 [−0.227, 0.281] 0.833 0.833 −0.004 0.986

Table A.3: Results of OLS regression model for each UEQ scale on 𝑧𝑀𝐶𝑄5, with Spearman’s 𝜌 and FDR control included.

UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness −0.084 [−0.502, 0.335] 0.696 0.915 0.002 0.994
Perspicuity −0.193 [−0.823, 0.438] 0.549 0.915 −0.168 0.413
Efficiency −0.206 [−0.741, 0.328] 0.449 0.915 −0.169 0.408
Dependability −0.023 [−0.510, 0.464] 0.925 0.925 −0.078 0.705
Stimulation −0.093 [−0.510, 0.464] 0.557 0.915 −0.227 0.266
Novelty 0.060 [−0.331, 0.452] 0.762 0.915 −0.004 0.986
Table A.4: Results of OLS regression model for each UEQ scale on 𝑧𝑀𝐶𝑄5, adjusted for time with 𝑧𝐼𝑡𝑜𝑡𝑎𝑙 and 𝑧𝑇𝑚𝑎𝑖𝑛.

Spearman’s 𝜌 and FDR control included.

UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness 0.104 [−0.399, 0.606] 0.686 0.944 0.205 0.294
Perspicuity −0.117 [−0.589, 0.355] 0.627 0.944 −0.142 0.471
Efficiency 0.118 [−0.344, 0.579] 0.617 0.944 0.066 0.738
Dependability −0.018 [−0.514, 0.478] 0.944 0.944 −0.068 0.732
Stimulation −0.013 [−0.377, 0.351] 0.944 0.944 −0.068 0.732
Novelty 0.080 [−0.162, 0.322] 0.518 0.944 0.106 0.592

Table A.5: Results of OLS regression model for each UEQ scale on 𝑧𝐼𝑡𝑜𝑡𝑎𝑙, with Spearman’s 𝜌 and FDR control included.

UEQ Scale 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value
Attractiveness 0.092 [-0.532, 0.715] 0.774 0.945 0.205 0.294
Perspicuity −0.103 [-0.633, 0.427] 0.703 0.945 −0.142 0.471
Efficiency 0.151 [-0.423, 0.725] 0.606 0.945 0.066 0.738
Dependability 0.021 [-0.571, 0.612] 0.945 0.945 −0.068 0.732
Stimulation 0.029 [-0.399, 0.457] 0.894 0.945 −0.068 0.732
Novelty 0.114 [-0.167, 0.395] 0.427 0.945 0.106 0.592

Table A.6: Results of OLS regression model for each UEQ scale on 𝑧𝐼𝑡𝑜𝑡𝑎𝑙, adjusted for time with 𝑧𝑇𝑚𝑎𝑖𝑛. Spearman’s 𝜌 and
FDR control included.
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UEQ Scale Item # 𝛽 95%CI 𝑝-value FDR 𝑞 Spearman’s 𝜌 Spearman’s 𝑝-value

Attractiveness

16 0.858 [0.186, 1.529] 0.012 0.054 0.522 0.004
14 0.613 [−0.084, 1.311] 0.085 0.220 0.349 0.069
12 0.508 [−0.111, 1.128] 0.108 0.255 0.270 0.164
1 0.563 [−0.359, 1.484] 0.231 0.310 0.288 0.138
25 0.350 [−0.232, 0.933] 0.238 0.310 0.306 0.113
24 0.337 [−0.307, 0.981] 0.305 0.367 0.204 0.298

Perspicuity

13 0.588 [−0.036, 1.212] 0.065 0.187 0.344 0.073
2 0.522 [−0.133, 1.176] 0.118 0.256 0.247 0.205
21 0.372 [−0.348, 1.092] 0.311 0.367 0.227 0.245
4 0.261 [−0.485, 1.007] 0.493 0.558 0.073 0.713

Efficiency

20 0.912 [0.468, 1.356] 0.000 0.001 0.550 0.002
23 1.013 [0.448, 1.578] 0.000 0.006 0.495 0.007
22 0.757 [0.170, 1.344] 0.012 0.054 0.450 0.016
9 0.381 [−0.234, 0.996] 0.224 0.310 0.221 0.258

Dependability

11 0.654 [0.173, 1.135] 0.008 0.050 0.391 0.040
17 0.563 [0.006, 1.119] 0.048 0.155 0.414 0.028
19 0.483 [−0.283, 1.249] 0.216 0.310 0.215 0.272
8 0.256 [−0.565, 1.078] 0.541 0.586 0.024 0.905

Stimulation

5 0.634 [0.119, 1.150] 0.016 0.059 0.448 0.017
18 0.336 [−0.112, 0.784] 0.142 0.265 0.225 0.249
7 0.273 [−0.152, 0.698] 0.208 0.310 0.249 0.201
6 0.234 [−0.132, 0.601] 0.210 0.310 0.321 0.096

Novelty

26 0.509 [0.173, 1.135] 0.002 0.014 0.478 0.010
10 0.244 [−0.082, 0.571] 0.143 0.265 0.300 0.120
3 0.070 [0.070, −0.267] 0.685 0.712 0.115 0.560
15 −0.042 [−0.516, 0.432] 0.862 0.862 0.065 0.741

Table A.7: UEQ items of the OLS regression model fit on 𝑧𝑀𝐶𝑄6 with Spearman’s 𝜌.

Figure A.2: The UEQ scale answer distribution per item for the Intervention phase.
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Figure A.3: The UEQ scale answer distribution per item for the Main phase.
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B.2. UEQ (Intervention and Main)
The UEQ for the Main phase was excluded for redundancy
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